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Preface

This book is intended primarily for use in a second-semester course in graduate
econometrics, after a first course at the level of Goldberger (1991) or Greene (1997).
Parts of the book can be used for special-topics courses, and it should serve as a
general reference.

My focus on cross section and panel data methods—in particular, what is often
dubbed microeconometrics—is novel, and it recognizes that, after coverage of the
basic linear model in a first-semester course, an increasingly popular approach is to
treat advanced cross section and panel data methods in one semester and time series
methods in a separate semester. This division reflects the current state of econometric
practice.

Modern empirical research that can be fitted into the classical linear model para-
digm is becoming increasingly rare. For instance, it is now widely recognized that a
student doing research in applied time series analysis cannot get very far by ignoring
recent advances in estimation and testing in models with trending and strongly de-
pendent processes. This theory takes a very different direction from the classical lin-
ear model than does cross section or panel data analysis. Hamilton’s (1994) time
series text demonstrates this difference unequivocally.

Books intended to cover an econometric sequence of a year or more, beginning
with the classical linear model, tend to treat advanced topics in cross section and
panel data analysis as direct applications or minor extensions of the classical linear
model (if they are treated at all). Such treatment needlessly limits the scope of appli-
cations and can result in poor econometric practice. The focus in such books on the
algebra and geometry of econometrics is appropriate for a first-semester course, but
it results in oversimplification or sloppiness in stating assumptions. Approaches to
estimation that are acceptable under the fixed regressor paradigm so prominent in the
classical linear model can lead one badly astray under practically important depar-
tures from the fixed regressor assumption.

Books on “advanced” econometrics tend to be high-level treatments that focus on
general approaches to estimation, thereby attempting to cover all data configurations—
including cross section, panel data, and time series—in one framework, without giving
special attention to any. A hallmark of such books is that detailed regularity con-
ditions are treated on par with the practically more important assumptions that have
economic content. This is a burden for students learning about cross section and
panel data methods, especially those who are empirically oriented: definitions and
limit theorems about dependent processes need to be included among the regularity
conditions in order to cover time series applications.

In this book I have attempted to find a middle ground between more traditional
approaches and the more recent, very unified approaches. I present each model and



XViil Preface

method with a careful discussion of assumptions of the underlying population model.
These assumptions, couched in terms of correlations, conditional expectations, con-
ditional variances and covariances, or conditional distributions, usually can be given
behavioral content. Except for the three more technical chapters in Part III, regularity
conditions—for example, the existence of moments needed to ensure that the central
limit theorem holds—are not discussed explicitly, as these have little bearing on ap-
plied work. This approach makes the assumptions relatively easy to understand, while
at the same time emphasizing that assumptions concerning the underlying population
and the method of sampling need to be carefully considered in applying any econo-
metric method.

A unifying theme in this book is the analogy approach to estimation, as exposited
by Goldberger (1991) and Manski (1988). [For nonlinear estimation methods with
cross section data, Manski (1988) covers several of the topics included here in a more
compact format.] Loosely, the analogy principle states that an estimator is chosen to
solve the sample counterpart of a problem solved by the population parameter. The
analogy approach is complemented nicely by asymptotic analysis, and that is the focus
here.

By focusing on asymptotic properties I do not mean to imply that small-sample
properties of estimators and test statistics are unimportant. However, one typically
first applies the analogy principle to devise a sensible estimator and then derives its
asymptotic properties. This approach serves as a relatively simple guide to doing
inference, and it works well in large samples (and often in samples that are not so
large). Small-sample adjustments may improve performance, but such considerations
almost always come after a large-sample analysis and are often done on a case-by-
case basis.

The book contains proofs or outlines the proofs of many assertions, focusing on the
role played by the assumptions with economic content while downplaying or ignoring
regularity conditions. The book is primarily written to give applied researchers a very
firm understanding of why certain methods work and to give students the background
for developing new methods. But many of the arguments used throughout the book
are representative of those made in modern econometric research (sometimes without
the technical details). Students interested in doing research in cross section or panel
data methodology will find much here that is not available in other graduate texts.

I have also included several empirical examples with included data sets. Most of
the data sets come from published work or are intended to mimic data sets used in
modern empirical analysis. To save space I illustrate only the most commonly used
methods on the most common data structures. Not surprisingly, these overlap con-
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siderably with methods that are packaged in econometric software programs. Other
examples are of models where, given access to the appropriate data set, one could
undertake an empirical analysis.

The numerous end-of-chapter problems are an important component of the book.
Some problems contain important points that are not fully described in the text;
others cover new ideas that can be analyzed using the tools presented in the current
and previous chapters. Several of the problems require using the data sets that are
included with the book.

As with any book, the topics here are selective and reflect what I believe to be the
methods needed most often by applied researchers. I also give coverage to topics that
have recently become important but are not adequately treated in other texts. Part I
of the book reviews some tools that are elusive in mainstream econometrics books—
in particular, the notion of conditional expectations, linear projections, and various
convergence results. Part II begins by applying these tools to the analysis of single-
equation linear models using cross section data. In principle, much of this material
should be review for students having taken a first-semester course. But starting with
single-equation linear models provides a bridge from the classical analysis of linear
models to a more modern treatment, and it is the simplest vehicle to illustrate the
application of the tools in Part I. In addition, several methods that are used often
in applications—but rarely covered adequately in texts—can be covered in a single
framework.

I approach estimation of linear systems of equations with endogenous variables
from a different perspective than traditional treatments. Rather than begin with simul-
taneous equations models, we study estimation of a general linear system by instru-
mental variables. This approach allows us to later apply these results to models
with the same statistical structure as simultaneous equations models, including
panel data models. Importantly, we can study the generalized method of moments
estimator from the beginning and easily relate it to the more traditional three-stage
least squares estimator.

The analysis of general estimation methods for nonlinear models in Part III begins
with a general treatment of asymptotic theory of estimators obtained from non-
linear optimization problems. Maximum likelihood, partial maximum likelihood,
and generalized method of moments estimation are shown to be generally applicable
estimation approaches. The method of nonlinear least squares is also covered as a
method for estimating models of conditional means.

Part IV covers several nonlinear models used by modern applied researchers.
Chapters 15 and 16 treat limited dependent variable models, with attention given to



XX Preface

handling certain endogeneity problems in such models. Panel data methods for binary
response and censored variables, including some new estimation approaches, are also
covered in these chapters.

Chapter 17 contains a treatment of sample selection problems for both cross sec-
tion and panel data, including some recent advances. The focus is on the case where
the population model is linear, but some results are given for nonlinear models as
well. Attrition in panel data models is also covered, as are methods for dealing with
stratified samples. Recent approaches to estimating average treatment effects are
treated in Chapter 18.

Poisson and related regression models, both for cross section and panel data, are
treated in Chapter 19. These rely heavily on the method of quasi-maximum likeli-
hood estimation. A brief but modern treatment of duration models is provided in
Chapter 20.

I have given short shrift to some important, albeit more advanced, topics. The
setting here is, at least in modern parlance, essentially parametric. 1 have not included
detailed treatment of recent advances in semiparametric or nonparametric analysis.
In many cases these topics are not conceptually difficult. In fact, many semiparametric
methods focus primarily on estimating a finite dimensional parameter in the presence
of an infinite dimensional nuisance parameter—a feature shared by traditional par-
ametric methods, such as nonlinear least squares and partial maximum likelihood.
It is estimating infinite dimensional parameters that is conceptually and technically
challenging.

At the appropriate point, in lieu of treating semiparametric and nonparametric
methods, I mention when such extensions are possible, and I provide references. A
benefit of a modern approach to parametric models is that it provides a seamless
transition to semiparametric and nonparametric methods. General surveys of semi-
parametric and nonparametric methods are available in Volume 4 of the Handbook
of Econometrics—see Powell (1994) and Hérdle and Linton (1994)—as well as in
Volume 11 of the Handbook of Statistics—see Horowitz (1993) and Ullah and Vinod
(1993).

I only briefly treat simulation-based methods of estimation and inference. Com-
puter simulations can be used to estimate complicated nonlinear models when tradi-
tional optimization methods are ineffective. The bootstrap method of inference and
confidence interval construction can improve on asymptotic analysis. Volume 4 of
the Handbook of Econometrics and Volume 11 of the Handbook of Statistics contain
nice surveys of these topics (Hajivassilou and Ruud, 1994; Hall, 1994; Hajivassilou,
1993; and Keane, 1993).



Preface XXI1

On an organizational note, I refer to sections throughout the book first by chapter
number followed by section number and, sometimes, subsection number. Therefore,
Section 6.3 refers to Section 3 in Chapter 6, and Section 13.8.3 refers to Subsection 3
of Section 8 in Chapter 13. By always including the chapter number, I hope to
minimize confusion.

Possible Course Outlines

If all chapters in the book are covered in detail, there is enough material for two
semesters. For a one-semester course, I use a lecture or two to review the most im-
portant concepts in Chapters 2 and 3, focusing on conditional expectations and basic
limit theory. Much of the material in Part I can be referred to at the appropriate time.
Then I cover the basics of ordinary least squares and two-stage least squares in
Chapters 4, 5, and 6. Chapter 7 begins the topics that most students who have taken
one semester of econometrics have not previously seen. I spend a fair amount of time
on Chapters 10 and 11, which cover linear unobserved effects panel data models.

Part III is technically more difficult than the rest of the book. Nevertheless, it is
fairly easy to provide an overview of the analogy approach to nonlinear estimation,
along with computing asymptotic variances and test statistics, especially for maxi-
mum likelihood and partial maximum likelihood methods.

In Part IV, I focus on binary response and censored regression models. If time
permits, I cover the rudiments of quasi-maximum likelihood in Chapter 19, especially
for count data, and give an overview of some important issues in modern duration
analysis (Chapter 20).

For topics courses that focus entirely on nonlinear econometric methods for cross
section and panel data, Part III is a natural starting point. A full-semester course
would carefully cover the material in Parts III and IV, probably supplementing the
parametric approach used here with popular semiparametric methods, some of which
are referred to in Part IV. Parts III and IV can also be used for a half-semester course
on nonlinear econometrics, where Part III is not covered in detail if the course has an
applied orientation.

A course in applied econometrics can select topics from all parts of the book,
emphasizing assumptions but downplaying derivations. The several empirical exam-
ples and data sets can be used to teach students how to use advanced econometric
methods. The data sets can be accessed by visiting the website for the book at MIT
Press: http://mitpress.mit.edu/Wooldridge-EconAnalysis.






I INTRODUCTION AND BACKGROUND

In this part we introduce the basic approach to econometrics taken throughout the
book and cover some background material that is important to master before reading
the remainder of the text. Students who have a solid understanding of the algebra of
conditional expectations, conditional variances, and linear projections could skip
Chapter 2, referring to it only as needed. Chapter 3 contains a summary of the
asymptotic analysis needed to read Part II and beyond. In Part III we introduce ad-
ditional asymptotic tools that are needed to study nonlinear estimation.



1 Introduction

1.1 Causal Relationships and Ceteris Paribus Analysis

The goal of most empirical studies in economics and other social sciences is to de-
termine whether a change in one variable, say w, causes a change in another variable,
say y. For example, does having another year of education cause an increase in
monthly salary? Does reducing class size cause an improvement in student per-
formance? Does lowering the business property tax rate cause an increase in city
economic activity? Because economic variables are properly interpreted as random
variables, we should use ideas from probability to formalize the sense in which a
change in w causes a change in y.

The notion of ceteris paribus—that is, holding all other (relevant) factors fixed—is
at the crux of establishing a causal relationship. Simply finding that two variables
are correlated is rarely enough to conclude that a change in one variable causes a
change in another. This result is due to the nature of economic data: rarely can we
run a controlled experiment that allows a simple correlation analysis to uncover
causality. Instead, we can use econometric methods to effectively hold other factors
fixed.

If we focus on the average, or expected, response, a ceteris paribus analysis entails
estimating E(y | w, ¢), the expected value of y conditional on w and ¢. The vector c—
whose dimension is not important for this discussion—denotes a set of control vari-
ables that we would like to explicitly hold fixed when studying the effect of w on the
expected value of y. The reason we control for these variables is that we think w is
correlated with other factors that also influence y. If w is continuous, interest centers
on JE(y|w,c¢)/dw, which is usually called the partial effect of w on E(y|w,c¢). If wis
discrete, we are interested in E(y |w,c) evaluated at different values of w, with the
elements of ¢ fixed at the same specified values.

Deciding on the list of proper controls is not always straightforward, and using
different controls can lead to different conclusions about a causal relationship be-
tween y and w. This is where establishing causality gets tricky: it is up to us to decide
which factors need to be held fixed. If we settle on a list of controls, and if all ele-
ments of ¢ can be observed, then estimating the partial effect of w on E(y|w,¢) is
relatively straightforward. Unfortunately, in economics and other social sciences,
many elements of ¢ are not observed. For example, in estimating the causal effect of
education on wage, we might focus on E(wage | educ, exper, abil) where educ is years
of schooling, exper is years of workforce experience, and abil is innate ability. In this
case, ¢ = (exper,abil ), where exper is observed but abil is not. (It is widely agreed
among labor economists that experience and ability are two factors we should hold
fixed to obtain the causal effect of education on wages. Other factors, such as years
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with the current employer, might belong as well. We can all agree that something
such as the last digit of one’s social security number need not be included as a con-
trol, as it has nothing to do with wage or education.)

As a second example, consider establishing a causal relationship between student
attendance and performance on a final exam in a principles of economics class. We
might be interested in E(score | attend, SAT, priGPA), where score is the final exam
score, attend is the attendance rate, SAT is score on the scholastic aptitude test, and
priGPA is grade point average at the beginning of the term. We can reasonably col-
lect data on all of these variables for a large group of students. Is this setup enough
to decide whether attendance has a causal effect on performance? Maybe not. While
SAT and priGPA are general measures reflecting student ability and study habits,
they do not necessarily measure one’s interest in or aptitude for econonomics. Such
attributes, which are difficult to quantify, may nevertheless belong in the list of con-
trols if we are going to be able to infer that attendance rate has a causal effect on
performance.

In addition to not being able to obtain data on all desired controls, other problems
can interfere with estimating causal relationships. For example, even if we have good
measures of the elements of ¢, we might not have very good measures of y or w. A
more subtle problem—which we study in detail in Chapter 9—is that we may only
observe equilibrium values of y and w when these variables are simultaneously de-
termined. An example is determining the causal effect of conviction rates (w) on city
crime rates ().

A first course in econometrics teaches students how to apply multiple regression
analysis to estimate ceteris paribus effects of explanatory variables on a response
variable. In the rest of this book, we will study how to estimate such effects in a
variety of situations. Unlike most introductory treatments, we rely heavily on con-
ditional expectations. In Chapter 2 we provide a detailed summary of properties of
conditional expectations.

1.2 The Stochastic Setting and Asymptotic Analysis

1.2.1 Data Structures

In order to give proper treatment to modern cross section and panel data methods,
we must choose a stochastic setting that is appropriate for the kinds of cross section
and panel data sets collected for most econometric applications. Naturally, all else
equal, it is best if the setting is as simple as possible. It should allow us to focus on
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interpreting assumptions with economic content while not having to worry too much
about technical regularity conditions. (Regularity conditions are assumptions in-
volving things such as the number of absolute moments of a random variable that
must be finite.)

For much of this book we adopt a random sampling assumption. More precisely,
we assume that (1) a population model has been specified and (2) an independent,
identically distributed (i.i.d.) sample can be drawn from the population. Specifying a
population model—which may be a model of E(y|w,c¢), as in Section 1.1—requires
us first to clearly define the population of interest. Defining the relevant population
may seem to be an obvious requirement. Nevertheless, as we will see in later chapters,
it can be subtle in some cases.

An important virtue of the random sampling assumption is that it allows us to
separate the sampling assumption from the assumptions made on the population
model. In addition to putting the proper emphasis on assumptions that impinge on
economic behavior, stating all assumptions in terms of the population is actually
much easier than the traditional approach of stating assumptions in terms of full data
matrices.

Because we will rely heavily on random sampling, it is important to know what it
allows and what it rules out. Random sampling is often reasonable for cross section
data, where, at a given point in time, units are selected at random from the popula-
tion. In this setup, any explanatory variables are treated as random outcomes along
with data on response variables. Fixed regressors cannot be identically distributed
across observations, and so the random sampling assumption technically excludes the
classical linear model. This result is actually desirable for our purposes. In Section 1.4
we provide a brief discussion of why it is important to treat explanatory variables as
random for modern econometric analysis.

We should not confuse the random sampling assumption with so-called experi-
mental data. Experimental data fall under the fixed explanatory variables paradigm.
With experimental data, researchers set values of the explanatory variables and then
observe values of the response variable. Unfortunately, true experiments are quite
rare in economics, and in any case nothing practically important is lost by treating
explanatory variables that are set ahead of time as being random. It is safe to say that
no one ever went astray by assuming random sampling in place of independent
sampling with fixed explanatory variables.

Random sampling does exclude cases of some interest for cross section analysis.
For example, the identical distribution assumption is unlikely to hold for a pooled
cross section, where random samples are obtained from the population at different
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points in time. This case is covered by independent, not identically distributed (i.n.i.d.)
observations. Allowing for non-identically distributed observations under indepen-
dent sampling is not difficult, and its practical effects are easy to deal with. We will
mention this case at several points in the book after the analyis is done under random
sampling. We do not cover the i.n.i.d. case explicitly in derivations because little is to
be gained from the additional complication.

A situation that does require special consideration occurs when cross section ob-
servations are not independent of one another. An example is spatial correlation
models. This situation arises when dealing with large geographical units that cannot
be assumed to be independent draws from a large population, such as the 50 states in
the United States. It is reasonable to expect that the unemployment rate in one state
is correlated with the unemployment rate in neighboring states. While standard esti-
mation methods—such as ordinary least squares and two-stage least squares—can
usually be applied in these cases, the asymptotic theory needs to be altered. Key sta-
tistics often (although not always) need to be modified. We will briefly discuss some
of the issues that arise in this case for single-equation linear models, but otherwise
this subject is beyond the scope of this book. For better or worse, spatial correlation
is often ignored in applied work because correcting the problem can be difficult.

Cluster sampling also induces correlation in a cross section data set, but in most
cases it is relatively easy to deal with econometrically. For example, retirement saving
of employees within a firm may be correlated because of common (often unobserved)
characteristics of workers within a firm or because of features of the firm itself (such
as type of retirement plan). Each firm represents a group or cluster, and we may
sample several workers from a large number of firms. As we will see later, provided
the number of clusters is large relative to the cluster sizes, standard methods can
correct for the presence of within-cluster correlation.

Another important issue is that cross section samples often are, either intentionally
or unintentionally, chosen so that they are not random samples from the population
of interest. In Chapter 17 we discuss such problems at length, including sample
selection and stratified sampling. As we will see, even in cases of nonrandom samples,
the assumptions on the population model play a central role.

For panel data (or longitudinal data), which consist of repeated observations on the
same cross section of, say, individuals, households, firms, or cities, over time, the
random sampling assumption initially appears much too restrictive. After all, any
reasonable stochastic setting should allow for correlation in individual or firm be-
havior over time. But the random sampling assumption, properly stated, does allow
for temporal correlation. What we will do is assume random sampling in the cross
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section dimension. The dependence in the time series dimension can be entirely un-
restricted. As we will see, this approach is justified in panel data applications with
many cross section observations spanning a relatively short time period. We will
also be able to cover panel data sample selection and stratification issues within this
paradigm.

A panel data setup that we will not adequately cover—although the estimation
methods we cover can be usually used—is seen when the cross section dimension and
time series dimensions are roughly of the same magnitude, such as when the sample
consists of countries over the post—World War II period. In this case it makes little
sense to fix the time series dimension and let the cross section dimension grow. The
research on asymptotic analysis with these kinds of panel data sets is still in its early
stages, and it requires special limit theory. See, for example, Quah (1994), Pesaran
and Smith (1995), Kao (1999), and Phillips and Moon (1999).

1.2.2 Asymptotic Analysis

Throughout this book we focus on asymptotic properties, as opposed to finite sample
properties, of estimators. The primary reason for this emphasis is that finite sample
properties are intractable for most of the estimators we study in this book. In fact,
most of the estimators we cover will not have desirable finite sample properties such
as unbiasedness. Asymptotic analysis allows for a unified treatment of estimation
procedures, and it (along with the random sampling assumption) allows us to state all
assumptions in terms of the underlying population. Naturally, asymptotic analysis is
not without its drawbacks. Occasionally, we will mention when asymptotics can lead
one astray. In those cases where finite sample properties can be derived, you are
sometimes asked to derive such properties in the problems.

In cross section analysis the asymptotics is as the number of observations, denoted
N throughout this book, tends to infinity. Usually what is meant by this statement is
obvious. For panel data analysis, the asymptotics is as the cross section dimension
gets large while the time series dimension is fixed.

1.3 Some Examples

In this section we provide two examples to emphasize some of the concepts from the
previous sections. We begin with a standard example from labor economics.

Example 1.1 (Wage Offer Function): Suppose that the natural log of the wage offer,
wage®, 1s determined as
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log(wage®) = B, + f,educ + Brexper + fymarried + u (L.1)

where educ is years of schooling, exper is years of labor market experience, and
married is a binary variable indicating marital status. The variable u, called the error
term or disturbance, contains unobserved factors that affect the wage offer. Interest
lies in the unknown parameters, the f;.

We should have a concrete population in mind when specifying equation (1.1). For
example, equation (1.1) could be for the population of all working women. In this
case, it will not be difficult to obtain a random sample from the population.

All assumptions can be stated in terms of the population model. The crucial
assumptions involve the relationship between u and the observable explanatory vari-
ables, educ, exper, and married. For example, is the expected value of u given the
explanatory variables educ, exper, and married equal to zero? Is the variance of u
conditional on the explanatory variables constant? There are reasons to think the
answer to both of these questions is no, something we discuss at some length in
Chapters 4 and 5. The point of raising them here is to emphasize that all such ques-
tions are most easily couched in terms of the population model.

What happens if the relevant population is a// women over age 18?7 A problem
arises because a random sample from this population will include women for whom
the wage offer cannot be observed because they are not working. Nevertheless, we
can think of a random sample being obtained, but then wage® is unobserved for
women not working.

For deriving the properties of estimators, it is often useful to write the population
model for a generic draw from the population. Equation (1.1) becomes

log(wage?) = By + feduc; + Prexper; + fymarried; + u;, (1.2)

where i indexes person. Stating assumptions in terms of u; and x; = (educ;, exper;,
married;) is the same as stating assumptions in terms of u# and x. Throughout this
book, the i subscript is reserved for indexing cross section units, such as individual,
firm, city, and so on. Letters such as j, g, and /# will be used to index variables,
parameters, and equations.

Before ending this example, we note that using matrix notation to write equation
(1.2) for all N observations adds nothing to our understanding of the model or sam-
pling scheme; in fact, it just gets in the way because it gives the mistaken impression
that the matrices tell us something about the assumptions in the underlying popula-
tion. It is much better to focus on the population model (1.1).

The next example is illustrative of panel data applications.
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Example 1.2 (Effect of Spillovers on Firm Output): Suppose that the population is
all manufacturing firms in a country operating during a given three-year period. A
production function describing output in the population of firms is

log(output,) = 6, + 5, log(labor,) + p, log(capital,)
+ Bsspillover, + quality + uy, t=1,2,3 (1.3)

Here, spillover, is a measure of foreign firm concentration in the region containing the
firm. The term quality contains unobserved factors—such as unobserved managerial
or worker quality—which affect productivity and are constant over time. The error u,
represents unobserved shocks in each time period. The presence of the parameters J;,
which represent different intercepts in each year, allows for aggregate productivity
to change over time. The coefficients on labor,, capital,, and spillover, are assumed
constant across years.

As we will see when we study panel data methods, there are several issues in
deciding how best to estimate the f3;. An important one is whether the unobserved
productivity factors (quality) are correlated with the observable inputs. Also, can we
assume that spillover, at, say, t = 3 is uncorrelated with the error terms in all time
periods?

For panel data it is especially useful to add an i subscript indicating a generic cross
section observation—in this case, a randomly sampled firm:

log(output;,) = J, + f, log(labory) + B, log(capital)
+ Byspillover;, + quality; + uj, t=1,2,3 (1.4)

Equation (1.4) makes it clear that quality; is a firm-specific term that is constant over
time and also has the same effect in each time period, while u;, changes across time
and firm. Nevertheless, the key issues that we must address for estimation can be
discussed for a generic i, since the draws are assumed to be randomly made from the
population of all manufacturing firms.

Equation (1.4) is an example of another convention we use throughout the book: the
subscript ¢ is reserved to index time, just as 7 is reserved for indexing the cross section.

1.4 Why Not Fixed Explanatory Variables?

We have seen two examples where, generally speaking, the error in an equation can
be correlated with one or more of the explanatory variables. This possibility is
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so prevalent in social science applications that it makes little sense to adopt an
assumption—namely, the assumption of fixed explanatory variables—that rules out
such correlation a priori.

In a first course in econometrics, the method of ordinary least squares (OLS) and
its extensions are usually learned under the fixed regressor assumption. This is ap-
propriate for understanding the mechanics of least squares and for gaining experience
with statistical derivations. Unfortunately, reliance on fixed regressors or, more gen-
erally, fixed “‘exogenous’ variables, can have unintended consequences, especially in
more advanced settings. For example, in Chapters 7, 10, and 11 we will see that as-
suming fixed regressors or fixed instrumental variables in panel data models imposes
often unrealistic restrictions on dynamic economic behavior. This is not just a tech-
nical point: estimation methods that are consistent under the fixed regressor as-
sumption, such as generalized least squares, are no longer consistent when the fixed
regressor assumption is relaxed in interesting ways.

To illustrate the shortcomings of the fixed regressor assumption in a familiar con-
text, consider a linear model for cross section data, written for each observation i as

vi=Pfo+xip+u, i=12,... N

where x; is a 1 x K vector and fis a K x 1 vector. It is common to see the “ideal”
assumptions for this model stated as “The errors {u;: i =1,2,..., N} are i.i.d. with
E(u;) =0 and Var(y;) = ¢°.” (Sometimes the u; are also assumed to be normally
distributed.) The problem with this statement is that it omits the most important
consideration: What is assumed about the relationship between u; and x;? If the x; are
taken as nonrandom—which, evidently, is very often the implicit assumption—then
u; and x; are independent of one another. In nonexperimental environments this as-
sumption rules out too many situations of interest. Some important questions, such
as efficiency comparisons across models with different explanatory variables, cannot
even be asked in the context of fixed regressors. (See Problems 4.5 and 4.15 of
Chapter 4 for specific examples.)

In a random sampling context, the u; are always independent and identically dis-
tributed, regardless of how they are related to the x;. Assuming that the population
mean of the error is zero is without loss of generality when an intercept is included
in the model. Thus, the statement “The errors {u;: i =1,2,...,N} are i.i.d. with
E(u;) = 0 and Var(u;) = ¢2” is vacuous in a random sampling context. Viewing the
x; as random draws along with y; forces us to think about the relationship between
the error and the explanatory variables in the population. For example, in the popu-
lation model y = 8, + xp + u, is the expected value of u given x equal to zero? Is u
correlated with one or more elements of x? Is the variance of u given x constant, or
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does it depend on x? These are the assumptions that are relevant for estimating # and
for determining how to perform statistical inference.

Because our focus is on asymptotic analysis, we have the luxury of allowing for
random explanatory variables throughout the book, whether the setting is linear
models, nonlinear models, single-equation analysis, or system analysis. An incidental
but nontrivial benefit is that, compared with frameworks that assume fixed explan-
atory variables, the unifying theme of random sampling actually simplifies the
asymptotic analysis. We will never state assumptions in terms of full data matrices,
because such assumptions can be imprecise and can impose unintended restrictions
on the population model.






2 Conditional Expectations and Related Concepts in Econometrics

2.1 The Role of Conditional Expectations in Econometrics

As we suggested in Section 1.1, the conditional expectation plays a crucial role
in modern econometric analysis. Although it is not always explicitly stated, the goal
of most applied econometric studies is to estimate or test hypotheses about the ex-
pectation of one variable—called the explained variable, the dependent variable, the
regressand, or the response variable, and usually denoted y—conditional on a set of
explanatory variables, independent variables, regressors, control variables, or covari-
ates, usually denoted x = (x1, x2,...,Xg).

A substantial portion of research in econometric methodology can be interpreted
as finding ways to estimate conditional expectations in the numerous settings that
arise in economic applications. As we briefly discussed in Section 1.1, most of the
time we are interested in conditional expectations that allow us to infer causality
from one or more explanatory variables to the response variable. In the setup from
Section 1.1, we are interested in the effect of a variable w on the expected value of
v, holding fixed a vector of controls, ¢. The conditional expectation of interest is
E(y|w,c), which we will call a structural conditional expectation. If we can collect
data on y, w, and ¢ in a random sample from the underlying population of interest,
then it is fairly straightforward to estimate E(y | w, ¢c)—especially if we are willing to
make an assumption about its functional form—in which case the effect of w on
E(y|w,¢), holding ¢ fixed, is easily estimated.

Unfortunately, complications often arise in the collection and analysis of economic
data because of the nonexperimental nature of economics. Observations on economic
variables can contain measurement error, or they are sometimes properly viewed as
the outcome of a simultaneous process. Sometimes we cannot obtain a random
sample from the population, which may not allow us to estimate E(y | w,¢). Perhaps
the most prevalent problem is that some variables we would like to control for (ele-
ments of ¢) cannot be observed. In each of these cases there is a conditional expec-
tation (CE) of interest, but it generally involves variables for which the econometrician
cannot collect data or requires an experiment that cannot be carried out.

Under additional assumptions—generally called identification assumptions—we
can sometimes recover the structural conditional expectation originally of interest,
even if we cannot observe all of the desired controls, or if we only observe equilib-
rium outcomes of variables. As we will see throughout this text, the details differ
depending on the context, but the notion of conditional expectation is fundamental.

In addition to providing a unified setting for interpreting economic models, the CE
operator is useful as a tool for manipulating structural equations into estimable
equations. In the next section we give an overview of the important features of the
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conditional expectations operator. The appendix to this chapter contains a more ex-
tensive list of properties.

2.2 Features of Conditional Expectations

2.2.1 Definition and Examples

Let y be a random variable, which we refer to in this section as the explained variable,
and let x = (x,x2,...,xk) be a 1 x K random vector of explanatory variables. 1If
E(|y]) < oo, then there is a function, say u: RX — IR, such that

E(y|x1,x2,...,xx) = u(x1,x2,...,Xxk) (2.1)

or E(y|x) = u(x). The function u(x) determines how the average value of y changes
as elements of x change. For example, if y is wage and x contains various individual
characteristics, such as education, experience, and 1Q, then E(wage | educ, exper, IQ)
is the average value of wage for the given values of educ, exper, and IQ. Technically,
we should distinguish E(y|x)—which is a random variable because x is a random
vector defined in the population—from the conditional expectation when x takes on
a particular value, such as xp: E(y|x = X¢). Making this distinction soon becomes
cumbersome and, in most cases, is not overly important; for the most part we avoid
it. When discussing probabilistic features of E(y|x), x is necessarily viewed as a
random variable.

Because E(y|x) is an expectation, it can be obtained from the conditional density
of y given x by integration, summation, or a combination of the two (depending on
the nature of y). It follows that the conditional expectation operator has the same
linearity properties as the unconditional expectation operator, and several additional
properties that are consequences of the randomness of u(x). Some of the statements
we make are proven in the appendix, but general proofs of other assertions require
measure-theoretic probabability. You are referred to Billingsley (1979) for a detailed
treatment.

Most often in econometrics a model for a conditional expectation is specified to
depend on a finite set of parameters, which gives a parametric model of E(y | x). This
considerably narrows the list of possible candidates for pu(x).

Example 2.1: For K = 2 explanatory variables, consider the following examples of
conditional expectations:

E(y|x1,x2) = By + B1x1 + frx2 (2.2)
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E(y|x1,x2) = By + fix1 + Baxz + B3x3 (2.3)
E(y|x1,x2) = By + B1x1 + Brxa + B3x1x2 (2.4)
E(y|x1,x2) = exp[fy + By log(x1) + frx2], y=0, x>0 (2.5)

The model in equation (2.2) is linear in the explanatory variables x; and x,. Equation
(2.3) is an example of a conditional expectation nonlinear in x,, although it is linear
in x;. As we will review shortly, from a statistical perspective, equations (2.2) and
(2.3) can be treated in the same framework because they are linear in the parameters
B;. The fact that equation (2.3) is nonlinear in x has important implications for
interpreting the f8;, but not for estimating them. Equation (2.4) falls into this same
class: it is nonlinear in x = (xy,x2) but linear in the f;.

Equation (2.5) differs fundamentally from the first three examples in that it is a
nonlinear function of the parameters f;, as well as of the x;. Nonlinearity in the
parameters has implications for estimating the f.; we will see how to estimate such
models when we cover nonlinear methods in Part III. For now, you should note that
equation (2.5) is reasonable only if y > 0.

2.2.2 Partial Effects, Elasticities, and Semielasticities

If y and x are related in a deterministic fashion, say y = f(x), then we are often
interested in how y changes when elements of x change. In a stochastic setting we
cannot assume that y = f(x) for some known function and observable vector x be-
cause there are always unobserved factors affecting y. Nevertheless, we can define the
partial effects of the x; on the conditional expectation E(y|x). Assuming that x(-)
is appropriately differentiable and x; is a continuous variable, the partial derivative
du(x)/0x; allows us to approximate the marginal change in E(y|x) when x; is

increased by a small amount, holding xi,. .., Xj_1, Xj41, ... Xk constant:
AE _ ou(x) .
(y|x) =~ o Ax;, holding xi,...,xj_1, Xj41,... Xk fixed (2.6)
OXj

The partial derivative of E(y|x) with respect to x; is usually called the partial effect
of x; on E(y|x) (or, to be somewhat imprecise, the partial effect of x; on y). Inter-
preting the magnitudes of coefficients in parametric models usually comes from the
approximation in equation (2.6).

If x; is a discrete variable (such as a binary variable), partial effects are computed
by comparing E(y|x) at different settings of x; (for example, zero and one when x; is
binary), holding other variables fixed.
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Example 2.1 (continued): In equation (2.2) we have

JE(y[x) _ 8, JE(y|x) _p

6x2

6x1
As expected, the partial effects in this model are constant. In equation (2.3),

JE(y|x) JE(y|x)
o1 =Py, %y =By +2B3x2

so that the partial effect of x; is constant but the partial effect of x, depends on the
level of x,. In equation (2.4),

JE(y|x)
8x1

JE(y|x
= By + B3x2, 7;}‘ ) = B + f3x1
X2

so that the partial effect of x; depends on x,, and vice versa. In equation (2.5),

EU —exprpifm), LY~ expip, )

6x2
where exp(-) denotes the function E(y|x) in equation (2.5). In this case, the partial
effects of x; and x, both depend on x = (x1, x3).

Sometimes we are interested in a particular function of a partial effect, such as an
elasticity. In the determinstic case y = f(x), we define the elasticity of y with respect
to x; as

oYX X
ox; y ox;  f(x)
again assuming that x; is continuous. The right-hand side of equation (2.8) shows

that the elasticity is a function of x. When y and x are random, it makes sense to use
the right-hand side of equation (2.8), but where f(x) is the conditional mean, u(x).

(2.8)

Therefore, the (partial) elasticity of E(y|x) with respect to x;, holding xi,...,x;_1,
Xjt1,--.,Xg constant, is
5E(y | X) X _ 5ﬂ(X) Y ) (29)
oy EGIN) dy a)
If E(y|x) > 0 and x; > 0 (as is often the case), equation (2.9) is the same as
0 log[E
og[E(y|x)] (2.10)

0 log(x;)
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This latter expression gives the elasticity its interpretation as the approximate per-
centage change in E(y|x) when x; increases by 1 percent.

Example 2.1 (continued): In equations (2.2) to (2.5), most elasticities are not con-
stant. For example, in equation (2.2), the elasticity of E(y|x) with respect to x; is
(B1x1)/(By + P1x1 + Pax2), which clearly depends on x; and x,. However, in equa-
tion (2.5) the elasticity with respect to x; is constant and equal to f;.

How does equation (2.10) compare with the definition of elasticity from a model
linear in the natural logarithms? If y > 0 and x; > 0, we could define the elasticity as

OE[log(y) | x]

3 1og(x,) @11)

This is the natural definition in a model such as log(y) = g(x) + u, where g(x) is
some function of x and u is an unobserved disturbance with zero mean conditional on
x. How do equations (2.10) and (2.11) compare? Generally, they are different (since
the expected value of the log and the log of the expected value can be very different).
If u is independent of x, then equations (2.10) and (2.11) are the same, because then

E(y[x) =d-explg(x)]

where 0 = E[exp(u)]. (If u and x are independent, so are exp(u) and exp[g(x)].) As a
specific example, if

log(y) = By + By log(x1) + Brxa +u (2.12)

where u has zero mean and is independent of (xj,x,), then the elasticity of y with
respect to x; is f#; using either definition of elasticity. If E(u|x) = 0 but u and x are
not independent, the definitions are generally different.

For the most part, little is lost by treating equations (2.10) and (2.11) as the same
when y > 0. We will view models such as equation (2.12) as constant elasticity
models of y with respect to x; whenever log(y) and log(x;) are well defined. Defini-
tion (2.10) is more general because sometimes it applies even when log(y) is not
defined. (We will need the general definition of an elasticity in Chapters 16 and 19.)

The percentage change in E(y | x) when x; is increased by one unit is approximated
as

OE(y[x) 1

100
dx;  E(y[x)

(2.13)

which equals
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0 log[E(y|x)]

100
5Xj

(2.14)

if E(y|x) > 0. This is sometimes called the semielasticity of E(y | x) with respect to x;.

Example 2.1 (continued): 1In equation (2.5) the semielasticity with respect to x;
is constant and equal to 100-f,. No other semielasticities are constant in these
equations.

2.2.3 The Error Form of Models of Conditional Expectations

When y is a random variable we would like to explain in terms of observable vari-
ables x, it is useful to decompose y as

y=E(y|x)+u (2.15)
E(u|x)=0 (2.16)

In other words, equations (2.15) and (2.16) are definitional: we can always write y as
its conditional expectation, E(y|x), plus an error term or disturbance term that has
conditional mean zero.

The fact that E(u|x) = 0 has the following important implications: (1) E(u) = 0;
(2) u is uncorrelated with any function of xi,x,,...,xk, and, in particular, u is
uncorrelated with each of x,x,,...,xk. That u has zero unconditional expectation
follows as a special case of the law of iterated expectations (LIE), which we cover
more generally in the next subsection. Intuitively, it is quite reasonable that E(u|x) =
0 implies E(u) = 0. The second implication is less obvious but very important. The
fact that u is uncorrelated with any function of x is much stronger than merely saying
that u is uncorrelated with xp, ..., xg.

As an example, if equation (2.2) holds, then we can write

y = Po+Pix1 + faxa +u, E(u|x1,x2) =0 (2.17)
and so
E(u)=0,  Cov(xj,u) =0,  Cov(x,u)=0 (2.18)

But we can say much more: under equation (2.17), u is also uncorrelated with any
other function we might think of, such as x7, x3, x;x2, exp(x}), and log(x? + 1). This
fact ensures that we have fully accounted for the effects of x; and x; on the expected
value of y; another way of stating this point is that we have the functional form of
E(y|x) properly specified.
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If we only assume equation (2.18), then u can be correlated with nonlinear func-
tions of x; and x;, such as quadratics, interactions, and so on. If we hope to estimate
the partial effect of each x; on E(y|x) over a broad range of values for x, we want
E(u|x) = 0. [In Section 2.3 we discuss the weaker assumption (2.18) and its uses.]

Example 2.2: Suppose that housing prices are determined by the simple model
hprice = By + By sqrft + Badistance + u,

where sgrft is the square footage of the house and distance is distance of the house
from a city incinerator. For f8, to represent OE (hprice | sqrft, distance) /0 distance, we
must assume that E(u | sqrft, distance) = 0.

2.2.4 Some Properties of Conditional Expectations

One of the most useful tools for manipulating conditional expectations is the law of
iterated expectations, which we mentioned previously. Here we cover the most gen-
eral statement needed in this book. Suppose that w is a random vector and y is a
random variable. Let x be a random vector that is some function of w, say x = f(w).
(The vector x could simply be a subset of w.) This statement implies that if we know
the outcome of w, then we know the outcome of x. The most general statement of the
LIE that we will need is

E(y[x) = E[E(y|w) |x] (2.19)

In other words, if we write u;(w) = E(y|w) and u,(x) = E(y|x), we can obtain
1> (x) by computing the expected value of u,(w) given x: g, (x) = E[g;(w) | x].

There is another result that looks similar to equation (2.19) but is much simpler to
verify. Namely,

E(y[x) =E[E(y|x)|w] (2.20)

Note how the positions of x and w have been switched on the right-hand side of
equation (2.20) compared with equation (2.19). The result in equation (2.20) follows
easily from the conditional aspect of the expection: since x is a function of w, know-
ing w implies knowing x; given that u,(x) = E(y|x) is a function of x, the expected
value of u,(x) given w is just u,(x).

Some find a phrase useful for remembering both equations (2.19) and (2.20): “The
smaller information set always dominates.” Here, x represents less information than
w, since knowing w implies knowing x, but not vice versa. We will use equations
(2.19) and (2.20) almost routinely throughout the book.
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For many purposes we need the following special case of the general LIE (2.19). If
x and z are any random vectors, then

E(y[x) = E[E(y|x,2) |x] (2.21)
or, defining u,(x,z) = E(y|x,z) and u,(x) = E(y|x),

Hy(x) = E[p(x,2) [ X] (2.22)

For many econometric applications, it is useful to think of y,(x,z) = E(y|x,z) as
a structural conditional expectation, but where z is unobserved. If interest lies in
E(y|x,z), then we want the effects of the x; holding the other elements of x and z
fixed. If z is not observed, we cannot estimate E(y |x,z) directly. Nevertheless, since
y and x are observed, we can generally estimate E(y|x). The question, then, is
whether we can relate E(y|x) to the original expectation of interest. (This is a ver-
sion of the identification problem in econometrics.) The LIE provides a convenient
way for relating the two expectations.

Obtaining E[y;(x,z)|x] generally requires integrating (or summing) u;(x,z)
against the conditional density of z given x, but in many cases the form of E(y|x, z)
is simple enough not to require explicit integration. For example, suppose we begin
with the model

E(y[x1,x2,2) = Bo + Brx1 + foxa + B3z (2.23)
but where z is unobserved. By the LIE, and the linearity of the CE operator,
E(y|x1,x2) = E(By + Bix1 + Brx2 + B3z | x1,x2)

= Bo + Bi1x1 + Brx2 + B3E(z | X1, x2) (2.24)

Now, if we make an assumption about E(z | x;, x,), for example, that it is linear in x;
and x,,

E(z|x1,x2) =g + 01X + d2x2 (2.25)
then we can plug this into equation (2.24) and rearrange:

= o + B1x1 + Box2 + P3(d0 + O1x1 +d2x2)

= (Bo + B300) + (1 + B301)x1 + (B2 + B302)x2

This last expression is E(y | xj, x2); given our assumptions it is necessarily linear in

(x1,x2).
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Now suppose equation (2.23) contains an interaction in x; and z:
E(y|x1,x2,2) = By + Brx1 + Boxa + 3z + Buxiz (2.26)
Then, again by the LIE,
E(y[x1,x2) = o + B1x1 + foxa + B3E(z| x1,x2) + Bex1E(z | x1, x2)

If E(z|x,x,) is again given in equation (2.25), you can show that E(y|xi,x;) has
terms linear in x; and x; and, in addition, contains x? and x;x;. The usefulness of
such derivations will become apparent in later chapters.

The general form of the LIE has other useful implications. Suppose that for some
(vector) function f(x) and a real-valued function g(-), E(y|x) = g[f(x)]. Then

E[y[f(x)] = E(y|x) = g[f(x)] (2.27)

There is another way to state this relationship: If we define z = f(x), then E(y|z) =
¢(z). The vector z can have smaller or greater dimension than x. This fact is illus-
trated with the following example.

Example 2.3: 1f a wage equation is
E(wage | educ, exper) = B, + Bieduc + Brexper + Brexper? + Byeduc-exper
then
E(wage | educ, exper, exper®, educ-exper)
= Py + feduc + prexper + ﬁ3exper2 + fieduc-exper.

In other words, once educ and exper have been conditioned on, it is redundant to
condition on exper? and educ-exper.

The conclusion in this example is much more general, and it is helpful for analyz-
ing models of conditional expectations that are linear in parameters. Assume that, for
some functions g;(x), g2(X), . .., gm(X),

E(y[%) = Bo + B191(X) + f292(%) + -~ + Byrgm (x) (2.28)

This model allows substantial flexibility, as the explanatory variables can appear in
all kinds of nonlinear ways; the key restriction is that the model is linear in the §;. If
we define z; = ¢((X),...,zy = gu(X), then equation (2.27) implies that

E(y|217227"';ZM) :ﬂ0+ﬁlzl +ﬁ222+“'+ﬂMZM (229)
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This equation shows that any conditional expectation linear in parameters can
be written as a conditional expectation linear in parameters and linear in some
conditioning variables. If we write equation (2.29) in error form as y = ff, + f,z1 +
prza+ -+ Pyzm + u, then, because E(u|x) =0 and the z; are functions of x, it
follows that u is uncorrelated with zj, ...,z (and any functions of them). As we will
see in Chapter 4, this result allows us to cover models of the form (2.28) in the same
framework as models linear in the original explanatory variables.

We also need to know how the notion of statistical independence relates to condi-
tional expectations. If u is a random variable independent of the random vector x,
then E(u | x) = E(u), so that if E(u) = 0 and u and x are independent, then E(u |x) =
0. The converse of this is not true: E(u|x) = E(u) does not imply statistical inde-
pendence between u and x (just as zero correlation between u and x does not imply
independence).

2.2.5 Average Partial Effects

When we explicitly allow the expectation of the response variable, y, to depend on
unobservables—usually called unobserved heterogeneity—we must be careful in
specifying the partial effects of interest. Suppose that we have in mind the (structural)
conditional mean E(y |x,¢q) = u;(x, g), where x is a vector of observable explanatory
variables and ¢ is an unobserved random variable—the unobserved heterogeneity.
(We take ¢ to be a scalar for simplicity; the discussion for a vector is essentially the
same.) For continuous x;, the partial effect of immediate interest is

0;(x,q) = 0E(y|x,q)/0x; = 0py (X, q)/ 0x; (2.30)

(For discrete x;, we would simply look at differences in the regression function for x;
at two different values, when the other elements of x and ¢ are held fixed.) Because
0;(x, q) generally depends on ¢, we cannot hope to estimate the partial effects across
many different values of ¢. In fact, even if we could estimate 0;(x, ¢) for all x and ¢,
we would generally have little guidance about inserting values of ¢ into the mean
function. In many cases we can make a normalization such as E(g) = 0, and estimate
0;(x,0), but ¢ = 0 typically corresponds to a very small segment of the population.
(Technically, ¢ = 0 corresponds to no one in the population when ¢ is continuously
distributed.) Usually of more interest is the partial effect averaged across the popu-
lation distribution of ¢; this is called the average partial effect (APE).

For emphasis, let x° denote a fixed value of the covariates. The average partial
effect evaluated at x? is

9j(x) = Eg[0;(x”, q)] (2.31)
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where E, [ - ] denotes the expectation with respect to ¢. In other words, we simply average
the partial effect 0;(x?, ¢) across the population distribution of ¢. Definition (2.31) holds
for any population relationship between ¢ and x; in particular, they need not be inde-
pendent. But remember, in definition (2.31), x° is a nonrandom vector of numbers.

For concreteness, assume that ¢ has a continuous distribution with density func-
tion g(-), so that

50 = | 6"l dy (2.32)

where ¢ is simply the dummy argument in the integration. The question we answer
here is, Is it possible to estimate J;(x°) from conditional expectations that depend
only on observable conditioning variables? Generally, the answer must be no, as ¢
and x can be arbitrarily related. Nevertheless, if we appropriately restrict the rela-
tionship between ¢ and x, we can obtain a very useful equivalance.

One common assumption in nonlinear models with unobserved heterogeneity is
that ¢ and x are independent. We will make the weaker assumption that ¢ and x are
independent conditional on a vector of observables, w:

D(g[x,w) =D(q|w) (2.33)

where D(-|-) denotes conditional distribution. (If we take w to be empty, we get the
special case of independence between ¢ and x.) In many cases, we can interpret
equation (2.33) as implying that w is a vector of good proxy variables for ¢, but
equation (2.33) turns out to be fairly widely applicable. We also assume that w is
redundant or ignorable in the structural expectation

E(y | X, (’Iaw) - E(y | X, q) (234)

As we will see in subsequent chapters, many econometric methods hinge on being
able to exclude certain variables from the equation of interest, and equation (2.34)
makes this assumption precise. Of course, if w is empty, then equation (2.34) is trivi-
ally true.

Under equations (2.33) and (2.34), we can show the following important result,
provided that we can interchange a certain integral and partial derivative:

3/(x") = E,[GE(y | x", w)/dx)] (2.35)

where E,,[ -] denotes the expectation with respect to the distribution of w. Before we
verify equation (2.35) for the special case of continuous, scalar ¢, we must understand
its usefulness. The point is that the unobserved heterogeneity, ¢, has disappeared en-
tirely, and the conditional expectation E(y|x,w) can be estimated quite generally
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because we assume that a random sample can be obtained on (y, X, w). [Alternatively,

when we write down parametric econometric models, we will be able to derive

E(y|x,w).] Then, estimating the average partial effect at any chosen x° amounts to

averaging 0f,(x?, w;)/0x; across the random sample, where u,(x,w) = E(y|x, w).
Proving equation (2.35) is fairly simple. First, we have

to(x,w) = E[E(y|x,q,w) [x,w] = E[1(x,q) | x,w] = J}R (X, q)g(g |w)dy

where the first equality follows from the law of iterated expectations, the second
equality follows from equation (2.34), and the third equality follows from equation
(2.33). If we now take the partial derivative with respect to x; of the equality

e = | n(x.a)aly 1w dy (2:36)

and interchange the partial derivative and the integral, we have, for any (x, w),

(e )/03 = | 0/x. )ty 1)y .37

For fixed x°, the right-hand side of equation (2.37) is simply E[0;(x°, #) | w], and so
another application of iterated expectations gives, for any x?,

E, [0 (x?, W)/ 0x;] = E{E[0;(x", q) | W]} = 0;(x")

which is what we wanted to show.

As mentioned previously, equation (2.35) has many applications in models where
unobserved heterogeneity enters a conditional mean function in a nonadditive fash-
ion. We will use this result (in simplified form) in Chapter 4, and also extensively in
Part III. The special case where ¢ is independent of x—and so we do not need the
proxy variables w—is very simple: the APE of x; on E(y|x,¢) is simply the partial
effect of x; on u,(x) = E(y|x). In other words, if we focus on average partial effects,
there is no need to introduce heterogeneity. If we do specify a model with heteroge-
neity independent of x, then we simply find E(y|x) by integrating E(y|x, ¢) over the
distribution of g¢.

2.3 Linear Projections

In the previous section we saw some examples of how to manipulate conditional
expectations. While structural equations are usually stated in terms of CEs, making
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linearity assumptions about CEs involving unobservables or auxiliary variables is
undesirable, especially if such assumptions can be easily relaxed.

By using the notion of a linear projection we can often relax linearity assumptions
in auxiliary conditional expectations. Typically this is done by first writing down a
structural model in terms of a CE and then using the linear projection to obtain an
estimable equation. As we will see in Chapters 4 and 5, this approach has many
applications.

Generally, let y, xq, ..., xx be random variables representing some population such
that E(y?) < oo, E(sz) < oo, j=1,2,...,K. These assumptions place no practical
restrictions on the joint distribution of (y, x1, xa, ..., xg): the vector can contain dis-
crete and continuous variables, as well as variables that have both characteristics. In
many cases y and the x; are nonlinear functions of some underlying variables that
are initially of interest.

Define x = (x1,...,xk) as a 1 x K vector, and make the assumption that the
K x K variance matrix of x is nonsingular (positive definite). Then the linear projec-
tion of y on 1,x,x5,...,xg always exists and is unique:

L(y|Lx1,...xk) = L(y[1,x) = By + fix1 + - + Brxx = By +xB (2.38)

where, by definition,
B = [Var(x)]"' Cov(x, y) (2.39)

Bo =E(y) — E(X)B = E(p) = f1E(x1) — -+ — fxB(xk) (2.40)

The matrix Var(x) is the K x K symmetric matrix with (j,k)th element given by
Cov(x;, xx), while Cov(x, y) is the K x 1 vector with jth element Cov(x;, y). When
K =1 we have the familiar results f; = Cov(x;, y)/Var(x;) and S, =E(y)—
B1E(x1). As its name suggests, L(y|1,x;,x2,...,xg) is always a linear function of
the X;.

Other authors use a different notation for linear projections, the most common
being E*(-|-) and P(:|-). [For example, Chamberlain (1984) and Goldberger (1991)
use E*(-|-).] Some authors omit the 1 in the definition of a linear projection because
it is assumed that an intercept is always included. Although this is usually the case,
we put unity in explicitly to distinguish equation (2.38) from the case that a zero in-
tercept is intended. The linear projection of y on xy, X2, ..., xk is defined as

L(y|x) :L(y‘Xth,...,XK) =71X1 X s+ P XK = XY

where y = (E(x'x))'E(x'y). Note that y # f unless E(x) = 0. Later, we will include
unity as an element of x, in which case the linear projection including an intercept
can be written as L(y | x).
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The linear projection is just another way of writing down a population linear
model where the disturbance has certain properties. Given the linear projection in
equation (2.38) we can always write

y=PFo+pix1+ -+ Prxx+u (2.41)

where the error term u has the following properties (by definition of a linear projec-
tion): E(u?) < oo and

E(u) =0, Cov(xj,u) =0, j=12...K (2.42)

In other words, u has zero mean and is uncorrelated with every x;. Conversely, given
equations (2.41) and (2.42), the parameters f; in equation (2.41) must be the param-
eters in the linear projection of y on 1,xy,...,xg given by definitions (2.39) and
(2.40). Sometimes we will write a linear projection in error form, as in equations
(2.41) and (2.42), but other times the notation (2.38) is more convenient.

It is important to emphasize that when equation (2.41) represents the linear pro-
jection, all we can say about u is contained in equation (2.42). In particular, it is not
generally true that u is independent of x or that E(u|x) = 0. Here is another way of
saying the same thing: equations (2.41) and (2.42) are definitional. Equation (2.41)
under E(u|x) = 0 is an assumption that the conditional expectation is linear.

The linear projection is sometimes called the minimum mean square linear predictor
or the least squares linear predictor because f, and # can be shown to solve the fol-
lowing problem:

min  E[(y — by — xb)?] (2.43)
by, be RK
(see Property LP.6 in the appendix). Because the CE is the minimum mean square
predictor—that is, it gives the smallest mean square error out of all (allowable)
functions (see Property CE.8)—it follows immediately that if E(y|x) is linear in x
then the linear projection coincides with the conditional expectation.

As with the conditional expectation operator, the linear projection operator sat-
isfies some important iteration properties. For vectors x and z,

L(y|1l,x) =L[L(y|1l,x,2z)|1,x] (2.44)

This simple fact can be used to derive omitted variables bias in a general setting as
well as proving properties of estimation methods such as two-stage least squares and
certain panel data methods.

Another iteration property that is useful involves taking the linear projection of a
conditional expectation:
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L(y|1,x) =L[E(y]|x,z)]|,x] (2.45)

Often we specify a structural model in terms of a conditional expectation E(y|x,z)
(which is frequently linear), but, for a variety of reasons, the estimating equations are
based on the linear projection L(y|1,x). If E(y|x,z) is linear in x and z, then
equations (2.45) and (2.44) say the same thing.

For example, assume that

E(y|x1,x2) = By + fix1 + Boxa + f3x1%2
and define z; = xx,. Then, from Property CE.3,
E(y|x1,x2,21) = By + B1x1 + faxa + B321 (2.46)

The right-hand side of equation (2.46) is also the linear projection of y on 1, x1, x2,
and z;; it is not generally the linear projection of y on 1, x1, x,.

Our primary use of linear projections will be to obtain estimable equations
involving the parameters of an underlying conditional expectation of interest. Prob-
lems 2.2 and 2.3 show how the linear projection can have an interesting interpreta-
tion in terms of the structural parameters.

Problems

2.1. Given random variables y, x;, and x,, consider the model

E(y|x1,x2) = By + f1x1 + frx2 + B335 + fyx1x2
a. Find the partial effects of x| and x; on E(y| x1, x2).

b. Writing the equation as
Y= Po+ Pix1 + Prxs 4 B3x3 + fyxixa +u

what can be said about E(u|xy, x,)? What about E(u | xy, x2, X3, x1x2)?

c. In the equation of part b, what can be said about Var(u | x;, x;)?
2.2. Let y and x be scalars such that

E(y|x) =0 +31(x — p) +da(x — p)°

where u = E(x).

a. Find JE(y|x)/dx, and comment on how it depends on x.

b. Show that d; is equal to JE(y|x)/dx averaged across the distribution of x.
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c. Suppose that x has a symmetric distribution, so that E[(x — x)°] = 0. Show that
L(y|1,x) = o + 1x for some og. Therefore, the coefficient on x in the linear pro-
jection of y on (1, x) measures something useful in the nonlinear model for E(y | x): it
is the partial effect JE(y|x)/0x averaged across the distribution of x.

2.3. Suppose that

E(y[x1,x2) = Bo + Br1x1 + frxa + f3x1 (2.47)
a. Write this expectation in error form (call the error u), and describe the properties
of u.

b. Suppose that x; and x, have zero means. Show that 5, is the expected value of
OE(y|x1,x2)/0x1 (where the expectation is across the population distribution of x3).
Provide a similar interpretation for f,.

c. Now add the assumption that x; and x, are independent of one another. Show
that the linear projection of y on (1,x1,x2) is

L(y |1, x1,x20) = By + Bix1 + frx (2.48)
(Hint: Show that, under the assumptions on x; and x;, x;x, has zero mean and is
uncorrelated with x; and x;.)

d. Why is equation (2.47) generally more useful than equation (2.48)?

2.4. For random scalars u and v and a random vector X, suppose that E(u|x,v) is a

linear function of (x,v) and that # and v each have zero mean and are uncorrelated
with the elements of x. Show that E(u | x,v) = E(u|v) = p,v for some p;.

2.5. Consider the two representations
Y= (x,z) +u, E(u [x,2) =0
y=m(x)+u,  E(|x)=0

Assuming that Var(y|x,z) and Var(y|x) are both constant, what can you say about
the relationship between Var(u;) and Var(u;)? (Hint: Use Property CV.4 in the
appendix.)

2.6. Let x be a 1 x K random vector, and let ¢ be a random scalar. Suppose that
g can be expressed as g = ¢* + e, where E(e) = 0 and E(x’e) = 0. Write the linear
projection of ¢* onto (1,Xx) as ¢g* =g + d1x; + - - - + ogxk + r*, where E(r*) = 0 and
E(x'r*) = 0.
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a. Show that

L(g|1,x) =00 +d1x1 + -+ +0xxk

b. Find the projection error r = g — L(¢| 1,x) in terms of r* and e.

2.7. Consider the conditional expectation

E(y[x,2) = g(x) + 28

where ¢(-) is a general function of x and fis a 1 x M vector. Show that
E(y|z) =z

where y = y — E(y|x) and z = z — E(z| x).

Appendix 2A

2.A.1 Properties of Conditional Expectations

PROPERTY CE.l: Let a(x),...,a¢(x) and b(x) be scalar functions of x, and let
Y1,---, Y be random scalars. Then

(Z% X)y; + b(x) ) Za] X) + b(x)

provided that E(|y;|) < oo, E[|a;(x)y;|] < o0, and E[|b(x)|] < oo. This is the sense in
which the conditional expectation is a linear operator.

PROPERTY CE.2: E(y) = E[E(y|x)] = E[u(x)].

Property CE.2 is the simplest version of the law of iterated expectations. As an
illustration, suppose that x is a discrete random vector taking on values ¢;,¢;, ..., ¢y
with probabilities p;, p,, ..., pys- Then the LIE says

E(y)=pE(y|x=¢1) + pE(y|x=¢2) + -+ pyE(y[x=cn) (2.49)

In other words, E(y) is simply a weighted average of the E(y|x = ¢;), where the
weight p; is the probability that x takes on the value ¢;.

PROPERTY CE.3: (1) E(y|x) = E[E(y|w)|x], where x and w are vectors with x =
f(w) for some nonstochastic function f(-). (This is the general version of the law of
iterated expectations.)

(2) As a special case of part 1, E(y|x) = E[E(y|x,z)|x] for vectors x and z.
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PROPERTY CE.4: If f(x) € R” is a function of x such that E(y|x) = g[f(x)] for some
scalar function g(-), then E[y |f(x)] = E(y|x).

PROPERTY CE.5: If the vector (u, v) is independent of the vector x, then E(u|x,v) =
E(ulv).

PROPERTY CE.6: If u = y — E(y]|x), then E[g(x)u] = 0 for any function g(x), pro-
vided that E[|g;(x)u|] < o0, j=1,...,J, and E(Ju|) < oo. In particular, E(u) = 0 and
Cov(xj,u) =0, j=1,...,K.

Proof: First, note that
E(u|x) = E[(y — E(»|x))[x] = E[(y — u(x)) [x] = E(y |x) — pu(x) = 0

Next, by property CE.2, E[g(x)u] = E(E[g(x)u|x]) = E[g(x)E(u|x)] (by property
CE.1) = 0 because E(u|x) = 0.

PROPERTY CE.7 (Conditional Jensen’s Inequality): If ¢: R — R is a convex function
defined on R and EJ[|y|] < oo, then

c[E(y|x)] < Ele(») |x]

Technically, we should add the statement “almost surely-Py,”” which means that the
inequality holds for all x in a set that has probability equal to one. As a special
case, [E(y)]> < E(3?). Also, if y > 0, then —log[E(y)] < E[—log(y)], or E[log(y)] <
log[E(y)].

PROPERTY CE.8: If E(»?) < oo and u(x) = E(y|x), then g is a solution to

min E[(y — m(x))’]

me .M

where .# is the set of functions m: RX — R such that E[m(x)?] < oo. In other words,
1(x) is the best mean square predictor of y based on information contained in x.

Proof: By the conditional Jensen’s inequality, if follows that E(y?) < co implies
E[u(x)?] < o0, so that u € .. Next, for any m € ./, write

E[(y —m(x))?] = E[{(y — #(x)) + (u(x) = m(x))}’]

= E[(y — #(x))’] + E[((x) = m(x))?] + 2E[(u(x) — m(x))u]
where u = y — u(x). Thus, by CE.6,
El(y — m(x))*] = E(u?) + E[(u(x) — m(x))?]

The right-hand side is clearly minimized at m = u.
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2.A.2 Properties of Conditional Variances
The conditional variance of y given x is defined as
Var(y|x) = o?(x) = E[{y — E(y|x)}* |x] = E(»*|x) — [E(y [x)]’

The last representation is often useful for computing Var(y|x). As with the con-
ditional expectation, ¢*(x) is a random variable when x is viewed as a random
vector.

PROPERTY CV.1:  Varla(x)y + b(x) |x] = [a(x)]* Var(y|x).
PROPERTY CV.2: Var(y) = E[Var(y|x)] + Var[E(y|x)] = E[¢?(x)] + Var[u(x)].
Proof:
Var(y) = E[(y - E())’] = E[(y - E(»[%) + E(y[ %) + E(1))’]

= E[(y - E(y[x))’] + E[(E(y |x) — E(1))’]

+2E[(y — E(y [x))(E(y [x) — E(»))]

By CE.6, El(y — E(y | X))(E(y|x) — E())] = 0; 50
Var(y) = E[(» — E(»|x))*] + E[(E(»| %) — E(»))?]

— E{E[(» — E(»|x))*|x]} + E[(E(y| %) — E[E(y | x)))?
by the law of iterated expectations
= E[Var(y|x)] + Var[E(y )
An extension of Property CV.2 is often useful, and its proof is similar:
PROPERTY CV.3: Var(y|x) = E[Var(y|x,z)|x] + Var[E(y|x,z) | X].
Consequently, by the law of iterated expectations CE.2,
PROPERTY CV.4: E[Var(y|x)] > E[Var(y|x,2)].

For any function m(-) define the mean squared error as MSE(y; m) = E[(y — m(x))?].
Then CV.4 can be loosely stated as MSE[y; E(y|x)] = MSE[y; E(y|x,z)]. In other
words, in the population one never does worse for predicting y when additional vari-
ables are conditioned on. In particular, if Var(y|x) and Var(y|x,z) are both con-
stant, then Var(y|x) > Var(y|x,z).
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2.A.3 Properties of Linear Projections

In what follows, y is a scalar, xis a 1 x K vector, and z is a 1 x J vector. We allow
the first element of x to be unity, although the following properties hold in either
case. All of the variables are assumed to have finite second moments, and the ap-
propriate variance matrices are assumed to be nonsingular.

PROPERTY LP.1: If E(y|x) = xf, then L(y|x) = xf. More generally, if
E(y[x) = B191(x) + f292(x) + - - + Byrgm (X)

then

LyIwi,.ooywm) = Biwr + fowa + -+ + Byywu

where w; = g;(x), j =1,2,..., M. This property tells us that, if E(y|x) is known to
be linear in some functions g;(x), then this linear function also represents a linear
projection.

PROPERTY LP.2: Defineu = y — L(y|x) = y — xf. Then E(x'u) = 0.

PROPERTY LP.3: Suppose y;, j = 1,2,..., G are each random scalars, and ay, . .. ,a¢
are constants. Then

G G
L(Zajyj | x) = ZajL(yj | x)
J=1 J=1
Thus, the linear projection is a linear operator.

PROPERTY LP.4 (Law of Iterated Projections): L(y|x)=L[L(y|x,z)|x]. More
precisely, let

L(y|x,z) = xf +zy and L(y|x) =xd

For each element of z, write L(z;|x) =x=;, j=1,...,J, where z; is K x 1. Then
L(z|x) = xII where II is the K x J matrix Il = (n,7>,...,n;). Property LP.4
implies that

L(y[%) = L(xf +27|%) = L(x|x)f+ L(z|x)y  (by LP.3)
=xf + (xII)y = x(B + Iy) (2.50)

Thus, we have shown that 6 = f# + Iy. This is, in fact, the population analogue of the
omitted variables bias formula from standard regression theory, something we will
use in Chapter 4.
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Another iteration property involves the linear projection and the conditional
expectation:

PROPERTY LP.5: L(y|x) =L[E(y|x,z)|x].

Proof: Write y = u(x,z) +u, where u(x,z)=E(y|x,z). But E(u|x,z) =0;
so E(x'u) =0, which implies by LP.3 that L(y|x)=L[u(x,z)]|x]+ L(u|x) =
Llu(x,2) [x] = LIE(y [x,2) [ x].

A useful special case of Property LP.5 occurs when z is empty. Then L(y|x) =
LE(y[x)[x].
PROPERTY LP.6: f is a solution to

min E[(y — xb)?] (2.51)
beR

If E(x'x) is positive definite, then f is the unigue solution to this problem.
Proof: For any b, write y — xb = (y — xf) + (xf — xb). Then
(¥ —xb)* = (y — xB)” + (xp — xb)” + 2(x — xb)(y — xB)
= (y=xB)’+ (B—b)'X'x(B—b) +2(8 —b)'x'(y — xp)
Therefore,
E[(y — xb)’] = E[(y — xB)’] + (B — b)'E(x'x)(8 — b)
+2(8—b)E[X(y — xB)]
=E[(y = xB)’| + (B~ b)E(x'x)(8 — b) (2.52)

because E[x'(y —xf)] =0 by LP.2. When b = f, the right-hand side of equation
(2.52) is minimized. Further, if E(x'x) is positive definite, (8 —b)'E(x'x)(8 — b) > 0
if b # f; so in this case f is the unique minimizer.

Property LP.6 states that the linear projection is the minimum mean square /inear
predictor. It is not necessarily the minimum mean square predictor: if E(y |x) = u(x)
is not linear in X, then

E[(y — u(x))’] < E[(y — xB)’] (2.53)

PROPERTY LP.7: This is a partitioned projection formula, which is useful in a variety
of circumstances. Write

L(y|x,z) =xp +zy (2.54)
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Define the 1 x K vector of population residuals from the projection of x on z as
r = x — L(x|z). Further, define the population residual from the projection of y on z
as v = y — L(y|z). Then the following are true:

L(v|r) =1p (2.55)
and
L(y|r) = rp (2.56)

The point is that the f# in equations (2.55) and (2.56) is the same as that appearing in
equation (2.54). Another way of stating this result is

B = [E(WD)] ") = [E('n)] EW). (2.57)
Proof: From equation (2.54) write
y=xp+zy+u, E(x'u) =0, E(z'u) =0 (2.58)

Taking the linear projection gives

L(y|2) = L(x|2)f + 7 (2.59)
Subtracting equation (2.59) from (2.58) gives y — L(y|z) = [x — L(x|z)]f + u, or
v=rf+u (2.60)

Since r is a linear combination of (x,z), E(r'u) = 0. Multiplying equation (2.60)
through by r’ and taking expectations, it follows that

B = [E(r'r)]'E(r'v)

[We assume that E(r'r) is nonsingular.] Finally, E(r'v) = E[r'(y — L(y|z))] = E(r’
since L(y|z) is linear in z and r is orthogonal to any linear function of z.

),



3 Basic Asymptotic Theory

This chapter summarizes some definitions and limit theorems that are important for
studying large-sample theory. Most claims are stated without proof, as several re-
quire tedious epsilon-delta arguments. We do prove some results that build on fun-
damental definitions and theorems. A good, general reference for background in
asymptotic analysis is White (1984). In Chapter 12 we introduce further asymptotic
methods that are required for studying nonlinear models.

3.1 Convergence of Deterministic Sequences

Asymptotic analysis is concerned with the various kinds of convergence of sequences
of estimators as the sample size grows. We begin with some definitions regarding
nonstochastic sequences of numbers. When we apply these results in econometrics, N
is the sample size, and it runs through all positive integers. You are assumed to have
some familiarity with the notion of a limit of a sequence.

DEFINITION 3.1: (1) A sequence of nonrandom numbers {ay: N =1,2,...} con-
verges to a (has limit @) if for all ¢ > 0, there exists N, such that if N > N, then
lay — a| < e. We write ay — a as N — o0.

(2) A sequence {ay: N =1,2,...} is bounded if and only if there is some b < oo
such that |ay| < b for all N = 1,2,.... Otherwise, we say that {ay} is unbounded.

These definitions apply to vectors and matrices element by element.

Example 3.1: (1) If ay =2+ 1/N, then ay — 2. (2) If ay = (—1)", then ay does
not have a limit, but it is bounded. (3) If ay = N'/4, ay is not bounded. Because ay
increases without bound, we write ay — oo.

DEFINITION 3.2: (1) A sequence {ay} is O(N*) (at most of order N*) if N~%ay is
bounded. When A = 0, {ay} is bounded, and we also write ay = O(1) (big oh one).
(2) {ay} is o(N*) if N~*ay — 0. When 1 =0, ay converges to zero, and we also
write ay = o(1) (little oh one).

From the definitions, it is clear that if ay = o(N*), then ay = O(N*); in particular,
if ay = o(1), then ay = O(1). If each element of a sequence of vectors or matrices
is O(N*), we say the sequence of vectors or matrices is O(N*), and similarly for
o(N*).

Example 3.2: (1) If ay =log(N), then ay = o(N*) for any A >0. (2) If ay =
10 + /N, then ay = O(N'/?) and ay = o(N1/>)) for any y > 0.
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3.2 Convergence in Probability and Bounded in Probability

DEFINITION 3.3: (1) A sequence of random variables {xy: N = 1,2,...} converges in
probability to the constant « if for all £ > 0,

Pllxy —al >¢ — 0 as N — «©

We write xy 2 aand say that a is the probability limit (plim) of xy: plim xy = a.
(2) In the special case where a = 0, we also say that {xy} is 0,(1) (little oh p one).
We also write xy = 0,(1) or xx 2 0.
(3) A sequence of random variables {xy} is bounded in probability if and only if
for every ¢ > 0, there exists a b, < oo and an integer N, such that

Pllxy| > b,] <e  forall N > N,
We write xy = O,(1) ({xn} is big oh p one).

If ¢y is a nonrandom sequence, then ¢y = O, (1) if and only if cxy = O(1); ey = 0,(1)
if and only if ¢y = o(1). A simple, and very useful, fact is that if a sequence converges
in probability to any real number, then it is bounded in probability.

LEMMA 3.1 If xy 5 a, then xy = O,(1). This lemma also holds for vectors and
matrices.

The proof of Lemma 3.1 is not difficult; see Problem 3.1.

DEFINITION 3.4: (1) A random sequence {xy: N =1,2,...} is 0,(ay), where {ay} is
a nonrandom, positive sequence, if xy/ay = 0,(1). We write xy = op(ay).

(2) A random sequence {xy: N =1,2,...} is O,(ay), where {ay} is a non-
random, positive sequence, if xy/ay = O,(1). We write xy = O,(ay).

We could have started by defining a sequence {xy} to be 0,(N°) for e R if
N-9xy 2 0, in which case we obtain the definition of 0p(1) when 6 = 0. This is where
the one in 0,(1) comes from. A similar remark holds for O,(1).

Example 3.3: 1f z is a random variable, then xy = V/Nz is O,(N'/?) and xy =
0,(N?) for any 6 > 1.

LEMMA 3.2: If wy = 0,(1), xy = 0,(1), yy = Op(1), and zy = O,(1), then (1) wy +
xy = 0p(1); (2) yy + 28 = Op(1); (3) yvzy = Op(1); and (4) xyzy = 0y(1).

In derivations, we will write relationships 1 to 4 as 0,(1) + 0,(1) = 0,(1), O,(1) +
O,(1) =0,(1), Oy(1)-O,(1) = O,(1), and 0,(1) - O,(1) = 0,(1), respectively. Be-
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cause a 0,(1) sequence is O, (1), Lemma 3.2 also implies that 0,(1) + O,(1) = O,(1)
and o,(1) - 0,(1) = 0,(1).

All of the previous definitions apply element by element to sequences of random
vectors or matrices. For example, if {xy} is a sequence of random K x 1 random
vectors, Xy 2 a, where a is a K x 1 nonrandom vector, if and only if xy; LN aj,
j=1,...,K. This is equivalent to |xy —a| = 0, where ||b|| = (b'b)"/* denotes the
Euclidean length of the K x 1 vector b. Also, Zy XA B, where Zy and B are M x K,
is equivalent to || Zy — B|| 2 0, where ||A| = [tr(A’A)]"/* and tr(C) denotes the trace
of the square matrix C.

A result that we often use for studying the large-sample properties of estimators for
linear models is the following. It is easily proven by repeated application of Lemma
3.2 (see Problem 3.2).

LEMMA 3.3: Let {Zx: N =1,2,...} be a sequence of J x K matrices such that Zy =
0p(1), and let {xy} be a sequence of J x 1 random vectors such that xy = O,(1).
Then Zyxy = 0,(1).

The next lemma is known as Slutsky’s theorem.

LEmMMA 3.4: Let gt R — R’ be a function continuous at some point ¢ € RX. Let
{xy: N =1,2,...} be sequence of K x 1 random vectors such that xy — ¢. Then
g(xy) > g(c) as N — oo. In other words,

plim g(xy) = g(plim xy) (3.1)
if g(+) is continuous at plim xy.

Slutsky’s theorem is perhaps the most useful feature of the plim operator: it shows
that the plim passes through nonlinear functions, provided they are continuous. The
expectations operator does not have this feature, and this lack makes finite sample
analysis difficult for many estimators. Lemma 3.4 shows that plims behave just like
regular limits when applying a continuous function to the sequence.

DEFINITION 3.5: Let (Q,%,P) be a probability space. A sequence of events {Qy:
N =1,2,...} =« is said to occur with probability approaching one (w.p.a.l) if and
only if P(Qy) — 1 as N — o0.

Definition 3.5 allows that Q, the complement of Qy, can occur for each N, but its
chance of occuring goes to zero as N — 0.

COROLLARY 3.1: Let {Zy: N =1,2,...} be a sequence of random K x K matrices,
and let A be a nonrandom, invertible K x K matrix. If Zy 2, A then
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(1) Zy' exists w.p.a.1;
2) 7, 2 A~! or plim Zy' = A7 (in an appropriate sense).

Proof: Because the determinant is a continuous function on the space of all square
matrices, det(Zy) 2 det(A). Because A is nonsingular, det(A) # 0. Therefore, it
follows that P[det(Zy) # 0] — 1 as N — oo. This completes the proof of part 1.

Part 2 requires a convention about how to define Z;,l when Zy is nonsingular. Let
Qy be the set of @ (outcomes) such that Zy(w) is nonsingular for w € Qu; we just
showed that P(Qy) — 1 as N — oo. Define a new sequence of matrices by

ZN(w) = Zy(w) when o € Qy, iN(a)) = Ix when o ¢ Qy

Then P(iN =Zy) =P(Qy) — 1 as N — o0. Then, because Zy N A, Zy 2 A. The
. . . . . . -1 P -1
inverse operator is continuous on the space of invertible matrices, so Z — A™".
This is what we mean by ZX,I 2, A~'; the fact that Zy can be singular with vanishing
probability does not affect asymptotic analysis.

3.3 Convergence in Distribution

DEFINITION 3.6: A sequence of random variables {xy: N =1,2,...} converges in
distribution to the continuous random variable x if and only if

Fy(&) — F(&) as N — oo forall £ e R

where Fy is the cumulative dijtribution function (c.d.f.) of xy and F is the (continu-
ous) c.d.f. of x. We write xy — Xx.

When x ~ Normal(y, 62) we write xy - Normal(u, 02) or xy < Normal(, ¢?)
(xy is asymptotically normal ).

In Definition 3.6, x is not required to be continuous for any N. A good example
of where xy is discrete for all N but has an asymptotically normal distribution is
the Demoivre-Laplace theorem (a special case of the central limit theorem given in
Section 3.4), which says that xy = (sy — Np)/[Np(1 — p)]"/ has a limiting standard
normal distribution, where sy has the binomial (N, p) distribution.

DEFINITION 3.7: A sequence of K x | random vectors {xy: N = 1,2,...} converges
in distribution to the continuous randomdvector x if and only if for any K x 1 non-
random vector ¢ such that ¢’c = 1, ¢/xy — ¢’x, and we write Xy — X.

. . . . d

When x ~ Normal(m,V) the requirement in Definition 3.7 is that ¢'xy ~

Normal(c'm, ¢'Ve) for every ¢ € RX such that ¢’c = 1; in this case we write xy —
Normal(m, V) or xy ~ Normal(m, V). For the derivations in this book, m = 0.
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LEMMA 3.5: If xy 4 X, where x is any K x 1 random vector, then xy = O,(1).

As we will see throughout this book, Lemma 3.5 turns out to be very useful for
establishing that a sequence is bounded in probability. Often it is easiest to first verify
that a sequence converges in distribution.

LEMMA 3.6: Let {xy} be a sequence of K x 1 ranc%lom vectors such that xy 4 If
g: RX — R’ is a continuous function, then g(xy) — g(x).

The usefulness of Lemma 3.6, which is called the continuous mapping theorem,
cannot be overstated. It tells us that once we know the limiting distribution of x, we
can find the limiting distribution of many interesting functions of xy. This is espe-
cially useful for determining the asymptotic distribution of test statistics once the
limiting distribution of an estimator is known; see Section 3.5.

The continuity of g is not necessary in Lemma 3.6, but some restrictions are
needed. We will only need the form stated in Lemma 3.6.

COROLLARY 3.2: If {zy} is a sequence of K x 1 random vectors such that zy 4
Normal(0, V) then

(1) For any K x M nonrandom matrix A, A'zy 4, Normal(0, A'VA).

(2) zZyV'zy 4 7% (or ZyV'zy < y2).

LEMMA 3.7: Let {xy} and {zy} be sequences of K x 1 random vectors. If zy < g

p d
and xy —zy — 0, then xy — z.

Lemma 3.7 is called the asymptotic equivalence lemma. In Section 3.5.1 we discuss
generally how Lemma 3.7 is used in econometrics. We use the asymptotic equiva-
lence lemma so frequently in asymptotic analysis that after a while we will not even
mention that we are using it.

3.4 Limit Theorems for Random Samples

In this section we state two classic limit theorems for independent, identically dis-
tributed (i.i.d.) sequences of random vectors. These apply when sampling is done
randomly from a population.

THEOREM 3.1: Let {w;: i=1,2,...} be a sequence of independent, identically dis-
tributed G x 1 random vectors such that E(|wy|) < o0, g=1,...,G. Then the
sequence satisfies the weak law of large numbers (WLLN): N~ Zl]i | Wi 24 M, where

My = E(W,’).
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THEOREM 3.2 (Lindeberg-Levy): Let {w;: i =1,2,...} be a sequence of independent,
identically distributed G x 1 random vectors such that £ (w,?g) <w,g=1,...,G,and
E(w;) = 0. Then {w;: i =1,2,...} satisfies the central limit theorem (CLT); that is,

N
N712 Z w; 4 Normal(0, B)
i=1

where B = Var(w;) = E(w;w/) is necessarily positive semidefinite. For our purposes,
B is almost always positive definite.

3.5 Limiting Behavior of Estimators and Test Statistics

In this section, we apply the previous concepts to sequences of estimators. Because
estimators depend on the random outcomes of data, they are properly viewed as
random vectors.

3.5.1 Asymptotic Properties of Estimators

DEFINITION 3.8: Let {fy: N =1,2,...} be a sequence of estimators of the P x 1
vector 0 € @, where N indexes the sample size. If

oy 20 (3.2)
for any value of 8, then we say Oy is a consistent estimator of 6.

Because there are other notions of convergence, in the theoretical literature condi-
tion (3.2) is often referred to as weak consistency. This is the only kind of consistency
we will be concerned with, so we simply call condition (3.2) consistency. (See White,
1984, Chapter 2, for other kinds of convergence.) Since we do not know 6, the con-
sistency definition requires condition (3.2) for any possible value of 6.

DEFINITION 3.9: Let {fy: N =1,2,...} be a sequence of estimators of the P x 1
vector 6 € ®@. Suppose that

VN(By — 0) 4 Normal(0, V) (3.3)

where V is a P x P positive semidefinite matrix. Then we say that Oy is VN-
asymptotically normally distributed and V is the asymptotic variance of v/N(0y — 0),
denoted Avar v/N(Oy — 0) = V.

Even though V/N = Var(éN) holds only in special cases, and Oy rarely has an exact
normal distribution, we treat 8y as if
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6y ~ Normal(6,V/N) (3.4)

whenever statement (3.3) holds. For this reason, V/N is called the asymptotic vari-
ance of @y, and we write

Avar(@y) = V/N (3.5)

However, the only sense in which Oy is approximately normally distributed with
mean 0 and variance V/N is contained in statement (3.3), and this is what is needed
to perform inference about 6. Statement (3.4) is a heuristic statement that leads to the
appropriate inference.

When we discuss consistent estimation of asymptotic variances—a topic that will
arise often—we should technically focus on estimation of V = Avar /N (@y — 0). In
most cases, we will be able to find at least one, and usually more than one, consistent
estimator Vy of V. Then the corresponding estimator of Avar(fy) is Vy/N, and we
write

Avar(@y) = Vy/N (3.6)

The division by N in equation (3.6) is practically very important. What we call the
asymptotic variance of Oy is estimated as in equation (3.6). Unfortunately, there has
not been a consistent usage of the term ““asymptotic variance” in econometrics.

Taken literally, a statement such as “Vy /N is consistent for Avar(fy)” is not very
meaningful because V/N converges to 0 as N — oo; typically, W /N 2, 0 whether
or not Vy is not consistent for V. Nevertheless, it is useful to have an admittedly
imprecise shorthand. In what follows, if we say that “Vy /N consistently estimates
Avar(fy),” we mean that Vy consistently estimates Avar v/ N (@y — 0).

DEFINITION 3.10:  If v/N(fy — 0) < Normal(0, V) where V is positive definite with
Jjth diagonal v;, and Vy 4 V, then the asymptotic standard error of 8y;, denoted
se(Ony), is (ba/N)"/.

In other words, the asymptotic standard error of an estimator, which is almost
always reported in applied work, is the square root of the appropriate diagonal ele-
ment of Vy /N. The asymptotic standard errors can be loosely thought of as estimating
the standard deviations of the elements of 8y, and they are the appropriate quantities
to use when forming (asymptotic) ¢ statistics and confidence intervals. Obtaining
valid asymptotic standard errors (after verifying that the estimator is asymptotically
normally distributed) is often the biggest challenge when using a new estimator.

If statement (3.3) holds, it follows by Lemma 3.5 that v/N(fy — 8) = O,(1), or
Oy — 0 = 0,(N'/?), and we say that Oy is a v/N-consistent estimator of 0. v/N-
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consistency certainly implies that plim Oy = 0, but it is much stronger because it tells
us that the rate of convergence is almost the square root of the sample size N:
Oy — 0= 0p(N~¢) forany 0 < ¢ < % In this book, almost every consistent estimator
we will study—and every one we consider in any detail—is v/N-asymptotically nor-
mal, and therefore \/N-consistent, under reasonable assumptions.

If one \/N-asymptotically normal estimator has an asymptotic variance that is
smaller than another’s asymptotic variance (in the matrix sense), it makes it easy to
choose between the estimators based on asymptotic considerations.

DEFINITION 3.11:  Let @y and @y be estimators of @ each satisfying statement (3.3),
with asymptotic variances V = Avar v/N(@y — 0) and D = Avar v/N(By — 6) (these
generally depend on the value of 6, but we suppress that consideration here). (1) 8y is
asymptotically efficient relative to 8y if D — V is positive semidefinite for all 8; (2) Oy
and Oy are v/N-equivalent if vN(Oy — Oy) = 0,(1).

When two estimators are v/N-equivalent, they have the same limiting distribution
(multivariate normal in this case, with the same asymptotic variance). This conclu-
sion follows immediately from the asymptotic equivalence lemma (Lemma 3.7).
Sometimes, to find the limiting distribution of, say, v N (é/v — ), it is easiest to first
find the limiting distribution of v/N(@y — ), and then to show that 8y and Oy are
v/N-equivalent. A good example of this approach is in Chapter 7, where we find the
limiting distribution of the feasible generalized least squares estimator, after we have
found the limiting distribution of the GLS estimator.

DEFINITION 3.12:  Partition @y satisfying statement (3.3) into vectors @y; and Oy,.
Then 8y, and @y, are asymptotically independent if

Vi 0
V =
< 0 V2>
where V; is the asymptotic variance of v/N(@y; — 0;) and similarly for V,. In other
words, the asymptotic variance of /N (8y — ) is block diagonal.

Throughout this section we have been careful to index estimators by the sample
size, N. This is useful to fix ideas on the nature of asymptotic analysis, but it is cum-
bersome when applying asymptotics to particular estimation methods. After this
chapter, an estimator of # will be denoted 6, which is understood to depend on the
sample size N. When we write, for example, 6> 0, we mean convergence in proba-
bility as the sample size N goes to infinity.
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3.5.2 Asymptotic Properties of Test Statistics
We begin with some important definitions in the large-sample analysis of test statistics.

DEFINITION 3.13: (1) The asymptotic size of a testing procedure is defined as the
limiting probability of rejecting Hy when it is true. Mathematically, we can write this
as limy_ ., Py(reject Hy | Hp), where the N subscript indexes the sample size.

(2) A test is said to be consistent against the alternative H; if the null hypothesis
is rejected with probability approaching one when H; is true: limy_ ., Py(reject
Hy |H;) = 1.

In practice, the asymptotic size of a test is obtained by finding the limiting distribu-
tion of a test statistic—in our case, normal or chi-square, or simple modifications of
these that can be used as ¢ distributed or F distributed—and then choosing a critical
value based on this distribution. Thus, testing using asymptotic methods is practically
the same as testing using the classical linear model.

A test is consistent against alternative H; if the probability of rejecting H; tends to
unity as the sample size grows without bound. Just as consistency of an estimator is a
minimal requirement, so is consistency of a test statistic. Consistency rarely allows us
to choose among tests: most tests are consistent against alternatives that they are
supposed to have power against. For consistent tests with the same asymptotic size,
we can use the notion of local power analysis to choose among tests. We will cover
this briefly in Chapter 12 on nonlinear estimation, where we introduce the notion of
local alternatives—that is, alternatives to Hy that converge to Hy at rate 1/y/N.
Generally, test statistics will have desirable asymptotic properties when they are
based on estimators with good asymptotic properties (such as efficiency).

We now derive the limiting distribution of a test statistic that is used very often in
econometrics.

LEMMA 3.8: Suppose that statement (3.3) holds, where V is positive definite. Then
for any nonstochastic matrix Q x P matrix R, Q < P, with rank(R) = Q,

VNR(Oy — ) < Normal(0, RVR')
and
[VNR(Oy — 0)]'[RVR']"'[VNR(Oy — 0)] < 7},
In addition, if plim Vi = V then
[VNR(Oy — 0)]'RVWR'] "' [VNR(By — 0)]
= (v — 0)R'[R(Vy/N)R'|"'R(y — 0) ~ 1}
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For testing the null hypothesis Hy: R =r, where r is a Q x 1 nonrandom vector,
define the Wald statistic for testing Hy against H;: R0 #r as

Wy = (ROy — 1) [R(Vy/N)R'] " (ROy — 1) (3.7)

Under Hy, Wy ~ ){é. If we abuse the asymptotics and treat 8y as being distributed
as Normal(@, Viy/N), we get equation (3.7) exactly.

LEMMA 3.9:  Suppose that statement (3.3) holds, where V is positive definite. Let ¢: @
— R? be a continuously differentiable function on the parameter space ® = RRY,
where Q < P, and assume that @ is in the interior of the parameter space. Define
C(0) = Vyc(0) as the Q x P Jacobian of ¢. Then

VN[e(Oy) — ¢(0)] £ Normal[0, C(6)VC(0)'] (3.8)
and

{VN[e(0y) — (0]} [COVC(O)'] {VN[c(By) — c(0)]} ~ 13

Define Cy = C(y). Then plim Cy = C(6). If plim Vy =V, then

{VN[e(Oy) — c(0)]} [CyWCL]  {VN[e(0y) — c(0)]} ~ 15 (3.9)

Equation (3.8) is very useful for obtaining asymptotic standard errors for nonlin-
ear functions of @y. The appropriate estimator of Avare(dy)] is Cy(Vy/N)Ch =
Cy[Avar(8y)]Cy. Thus, once Avar(fy) and the estimated Jacobian of ¢ are ob-
tained, we can easily obtain

Avarle(fy)] = Cy[Avar(6y)]C (3.10)

The asymptotic standard errors are obtained as the square roots of the diagonal
elements of equation (3.10). In the scalar case j = c(fy), the asymptotic standard
error of §y is [Vpc(Oy)[Avar(8y)]Voc(Oy)'">.

Equation (3.9) is useful for testing nonlinear hypotheses of the form Hy: ¢(6) = 0
against H;: ¢(0) # 0. The Wald statistic is

Wy = VNe(By) [CxVyCh] ' VNe(8y) = ¢(By)'[Cx (Vi /N)Cyy] ' e(8y) (3.11)

Under Hy, Wy ~ xé.

The method of establishing equation (3.8), given that statement (3.3) holds, is often
called the delta method, and it is used very often in econometrics. It gets its name
from its use of calculus. The argument is as follows. Because @ is in the interior of @,
and because plim éN =6, Oy is in an open, convex subset of @ containing § with
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probability approaching one, therefore w.p.a.l we can use a mean value expansion
¢(By) = c¢(0) + Cy - (@y — 0), where Cy denotes the matrix C(#) with rows eval-
uated at mean values between 8y and 0. Because these mean values are trapped be-
tween @y and 6, they converge in probability to . Therefore, by Slutsky’s theorem,
Cy 2 C(8), and we can write

\/ﬁ[c(ézv) —c(0)] = CN : \/N_(ézv —-0)
= C(0)V'N(Oy — 0) + [Cy — C(0)]VN(Oy — 0)
= C(O)VN(Oy — 0) +0,(1) - Oy(1) = C()V'N(Oy — ) + 0,(1)

We can now apply the asymptotic equivalence lemma and Lemma 3.8 [with R =
C(0)] to get equation (3.8).

Problems

3.1. Prove Lemma 3.1.

3.2. Using Lemma 3.2, prove Lemma 3.3.

3.3. Explain why, under the assumptions of Lemma 3.4, g(xy) = O,(1).

3.4. Prove Corollary 3.2.

3.5. Let {y;:i=1,2,...} be an independent, identically distributed sequence with
E(y?) < 0. Let u = E(y;) and 6% = Var(y,).

a. Let yy denote the sample average based on a sample size of N. Find
Var[VN(y — w)]-

b. What is the asymptotic variance of v/N (¥ — u)?

c. What is the asymptotic variance of y,? Compare this with Var(y).

d. What is the asymptotic standard deviation of y,?

e. How would you obtain the asymptotic standard error of y?

3.6. Give a careful (albeit short) proof of the following statement: If N (@y — 0) =
0,(1), then 8y — 0 = 0,(N°) forany 0 < ¢ < 1.

37. Let 0 be a v/N-asymptotically normal estimator for the scalar 0 > 0. Let

7 = log(#) be an estimator of y = log(6).

a. Why is  a consistent estimator of y?
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b. Find the asymptotic variance of v/N(j — y) in terms of the asymptotic variance of
N - 0).

c. Suppose that, for a sample of data, 6 =4 and se(é) =2. What is § and its
(asymptotic) standard error?

d. Consider the null hypothesis Hy: 6 = 1. What is the asymptotic ¢ statistic for
testing Hy, given the numbers from part ¢?

e. Now state Hy from part d equivalently in terms of y, and use 7 and se(y) to test
Hy. What do you conclude?

38. Let 6= (01,492) be a v/N-asymptotically normal estimator for 8 = (0, 6,)’,
with 6, # 0. Let y = 01/02 be an estimator of y = 6,/6,.

a. Show that plim § = y.

b. Find Avar($) in terms of @ and Avar(6) using the delta method.

- 5 1 -4
c. If, for a sample of data, § = (—1.5,.5)" and Avar(8) is estimated as ( 4 2 ),
find the asymptotic standard error of . o

3.9. Let  and 6 be two consistent, v/N -asymptotically normal estimators of the
P x 1 parameter vector 0, with Avar v/N(@ — @) =V, and Avar vN(0 — 8) = V,.
Define a Q x 1 parameter vector by y = g(6), where g(-) is a continuously differ-
entiable function. Show that, if @ is asymptotlcally more efficient than 6, then y =
g(0) is asymptotically efficient relative to 7 = g(8).



II LINEAR MODELS

In this part we begin our econometric analysis of linear models for cross section and
panel data. In Chapter 4 we review the single-equation linear model and discuss
ordinary least squares estimation. Although this material is, in principle, review, the
approach is likely to be different from an introductory linear models course. In ad-
dition, we cover several topics that are not traditionally covered in texts but that have
proven useful in empirical work. Chapter 5 discusses instrumental variables estima-
tion of the linear model, and Chapter 6 covers some remaining topics to round out
our treatment of the single-equation model.

Chapter 7 begins our analysis of systems of equations. The general setup is that the
number of population equations is small relative to the (cross section) sample size.
This allows us to cover seemingly unrelated regression models for cross section data
as well as begin our analysis of panel data. Chapter 8 builds on the framework from
Chapter 7 but considers the case where some explanatory variables may be uncorre-
lated with the error terms. Generalized method of moments estimation is the unifying
theme. Chapter 9 applies the methods of Chapter 8 to the estimation of simultaneous
equations models, with an emphasis on the conceptual issues that arise in applying
such models.

Chapter 10 explicitly introduces unobserved-effects linear panel data models. Under
the assumption that the explanatory variables are strictly exogenous conditional on
the unobserved effect, we study several estimation methods, including fixed effects,
first differencing, and random effects. The last method assumes, at a minimum,
that the unobserved effect is uncorrelated with the explanatory variables in all time
periods. Chapter 11 considers extensions of the basic panel data model, including
failure of the strict exogeneity assumption.






4 The Single-Equation Linear Model and OLS Estimation

4.1 Opverview of the Single-Equation Linear Model

This and the next couple of chapters cover what is still the workhorse in empirical
economics: the single-equation linear model. Though you are assumed to be com-
fortable with ordinary least squares (OLS) estimation, we begin with OLS for a
couple of reasons. First, it provides a bridge between more traditional approaches
to econometrics—which treats explanatory variables as fixed—and the current ap-
proach, which is based on random sampling with stochastic explanatory variables.
Second, we cover some topics that receive at best cursory treatment in first-semester
texts. These topics, such as proxy variable solutions to the omitted variable problem,
arise often in applied work.
The population model we study is linear in its parameters,

y=PFo+pix1+Pxa+ -+ Prxx+u (4.1)

where y,x1,x2,x3,...,Xgx are observable random scalars (that is, we can observe
them in a random sample of the population), u is the unobservable random distur-
bance or error, and f,, 8, f,, - - ., fx are the parameters (constants) we would like to
estimate.

The error form of the model in equation (4.1) is useful for presenting a unified
treatment of the statistical properties of various econometric procedures. Neverthe-
less, the steps one uses for getting to equation (4.1) are just as important. Goldberger
(1972) defines a structural model as one representing a causal relationship, as opposed
to a relationship that simply captures statistical associations. A structural equation
can be obtained from an economic model, or it can be obtained through informal
reasoning. Sometimes the structural model is directly estimable. Other times we must
combine auxiliary assumptions about other variables with algebraic manipulations
to arrive at an estimable model. In addition, we will often have reasons to estimate
nonstructural equations, sometimes as a precursor to estimating a structural equation.

The error term u can consist of a variety of things, including omitted variables
and measurement error (we will see some examples shortly). The parameters f3;
hopefully correspond to the parameters of interest, that is, the parameters in an un-
derlying structural model. Whether this is the case depends on the application and the
assumptions made.

As we will see in Section 4.2, the key condition needed for OLS to consistently
estimate the f§; (assuming we have available a random sample from the population) is
that the error (in the population) has mean zero and is uncorrelated with each of the
regressors:

E(u) =0, Cov(xj,u) =0, j=12....K (4.2)
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The zero-mean assumption is for free when an intercept is included, and we will
restrict attention to that case in what follows. It is the zero covariance of u with each
x; that is important. From Chapter 2 we know that equation (4.1) and assumption
(4.2) are equivalent to defining the linear projection of y onto (1, x,x2,...,xk) as
Bo+ Pixi + faxa + - + Prxk.

Sufficient for assumption (4.2) is the zero conditional mean assumption

E(u|xi,x2,...,xx) =E(u|x) =0 (4.3)
Under equation (4.1) and assumption (4.3) we have the population regression function
E(y|x17x2a .- '7XK) = ﬁ() +ﬂ1X1 +ﬁ2x2 + e +ﬂKxK (44)

As we saw in Chapter 2, equation (4.4) includes the case where the x; are nonlinear
functions of underlying explanatory variables, such as

E(savings | income, size, age, college) = B, + f, log(income) + B,size + fzage
+ Bycollege + fscollege-age

We will study the asymptotic properties of OLS primarily under assumption (4.2),
since it is weaker than assumption (4.3). As we discussed in Chapter 2, assumption
(4.3) is natural when a structural model is directly estimable because it ensures that
no additional functions of the explanatory variables help to explain y.

An explanatory variable ; is said to be endogenous in equation (4.1) if it is corre-
lated with u. You should not rely too much on the meaning of “endogenous” from
other branches of economics. In traditional usage, a variable is endogenous if it is
determined within the context of a model. The usage in econometrics, while related to
traditional definitions, is used broadly to describe any situation where an explanatory
variable is correlated with the disturbance. If x; is uncorrelated with u, then x; is said
to be exogenous in equation (4.1). If assumption (4.3) holds, then each explanatory
variable is necessarily exogenous.

In applied econometrics, endogeneity usually arises in one of three ways:

Omiitted Variables Omitted variables appear when we would like to control for one
or more additional variables but, usually because of data unavailability, we cannot
include them in a regression model. Specifically, suppose that E(y|x,¢) is the con-
ditional expectation of interest, which can be written as a function linear in parame-
ters and additive in ¢. If ¢ is unobserved, we can always estimate E(y|x), but this
need have no particular relationship to E(y|x,¢) when ¢ and x are allowed to be
correlated. One way to represent this situation is to write equation (4.1) where ¢ is
part of the error term u. If ¢ and x; are correlated, then x; is endogenous. The cor-
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relation of explanatory variables with unobservables is often due to self-selection: if
agents choose the value of x;, this might depend on factors (g) that are unobservable
to the analyst. A good example is omitted ability in a wage equation, where an indi-
vidual’s years of schooling are likely to be correlated with unobserved ability. We
discuss the omitted variables problem in detail in Section 4.3.

Measurement Error In this case we would like to measure the (partial) effect of a
variable, say xj, but we can observe only an imperfect measure of it, say xx. When
we plug xg in for xz—thereby arriving at the estimable equation (4.1)—we neces-
sarily put a measurement error into u. Depending on assumptions about how xj
and xg are related, # and xg may or may not be correlated. For example, xj might
denote a marginal tax rate, but we can only obtain data on the average tax rate. We
will study the measurement error problem in Section 4.4.

Simultaneity Simultaneity arises when at least one of the explanatory variables is
determined simultaneously along with y. If, say, xx is determined partly as a function
of y, then xx and u are generally correlated. For example, if y is city murder rate
and xg is size of the police force, size of the police force is partly determined by the
murder rate. Conceptually, this is a more difficult situation to analyze, because we
must be able to think of a situation where we could vary xx exogenously, even though
in the data that we collect y and xx are generated simultaneously. Chapter 9 treats
simultaneous equations models in detail.

The distinctions among the three possible forms of endogeneity are not always
sharp. In fact, an equation can have more than one source of endogeneity. For ex-
ample, in looking at the effect of alcohol consumption on worker productivity (as
typically measured by wages), we would worry that alcohol usage is correlated with
unobserved factors, possibly related to family background, that also affect wage; this
is an omitted variables problem. In addition, alcohol demand would generally de-
pend on income, which is largely determined by wage; this is a simultaneity problem.
And measurement error in alcohol usage is always a possibility. For an illuminating
discussion of the three kinds of endogeneity as they arise in a particular field, see
Deaton’s (1995) survey chapter on econometric issues in development economics.

4.2 Asymptotic Properties of OLS

We now briefly review the asymptotic properties of OLS for random samples from a
population, focusing on inference. It is convenient to write the population equation
of interest in vector form as
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y=xf+u (4.5)

where x is a 1 x K vector of regressors and f = (B,5,,...,0x) is a K x 1 vector.
Since most equations contain an intercept, we will just assume that x; = 1, as this
assumption makes interpreting the conditions easier.

We assume that we can obtain a random sample of size N from the population in
order to estimate f; thus, {(x;, y,): i = 1,2,..., N} are treated as independent, iden-
tically distributed random variables, where x; is 1 x K and y; is a scalar. For each
observation i we have

- (4.6)

which is convenient for deriving statistical properties of estimators. As for stating and
interpreting assumptions, it is easiest to focus on the population model (4.5).

4.2.1 Consistency

As discussed in Section 4.1, the key assumption for OLS to consistently estimate f is
the population orthogonality condition:

ASSUMPTION OLS.1:  E(x'u) =0.

Because x contains a constant, Assumption OLS.1 is equivalent to saying that u
has mean zero and is uncorrelated with each regressor, which is how we will refer to
Assumption OLS.1. Sufficient for Assumption OLS.1 is the zero conditional mean
assumption (4.3).

The other assumption needed for consistency of OLS is that the expected outer
product matrix of x has full rank, so that there are no exact linear relationships
among the regressors in the population. This is stated succinctly as follows:

ASSUMPTION OLS.2: rank E(x'x) = K.

As with Assumption OLS.1, Assumption OLS.2 is an assumption about the popu-
lation. Since E(x'x) is a symmetric K x K matrix, Assumption OLS.2 is equivalent
to assuming that E(x'x) is positive definite. Since x; = 1, Assumption OLS.2 is also
equivalent to saying that the (population) variance matrix of the K — 1 nonconstant
elements in x is nonsingular. This is a standard assumption, which fails if and only if
at least one of the regressors can be written as a linear function of the other regressors
(in the population). Usually Assumption OLS.2 holds, but it can fail if the population
model is improperly specified [for example, if we include too many dummy variables
in x or mistakenly use something like log(age) and log(age?) in the same equation].
Under Assumptions OLS.1 and OLS.2, the parameter vector f is identified. In the
context of models that are linear in the parameters under random sampling, identi-
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fication of f simply means that f can be written in terms of population moments
in observable variables. (Later, when we consider nonlinear models, the notion of
identification will have to be more general. Also, special issues arise if we cannot
obtain a random sample from the population, something we treat in Chapter 17.) To
see that f is identified under Assumptions OLS.1 and OLS.2, premultiply equation
(4.5) by x', take expectations, and solve to get

B = [E(x'x)]'E(x'y)

Because (x, y) is observed, f is identified. The analogy principle for choosing an esti-
mator says to turn the population problem into its sample counterpart (see Gold-
berger, 1968; Manski, 1988). In the current application this step leads to the method
of moments: replace the population moments E(x'x) and E(x'y) with the corre-
sponding sample averages. Doing so leads to the OLS estimator:

R N -1 N N -1 N
B = <N1 fox,-) (Nl Zx;yl) =p+ (Nl fox,) (Nl fou,)
i1 i1 P i1

which can be written in full matrix form as (X’ X)71X’Y, where X is the N x K data
matrix of regressors with ith row x; and Y is the N x 1 data vector with ith element
;. Under Assumption OLS.2, XX is nonsingular with probability approaching one
and plim[(N~' 32N, x,fx,-)fl] = A™!, where A = E(x'x) (see Corollary 3.1). Further,
under Assumption OLS.1, plim(N ' S, x/u;) = E(x'u) = 0. Therefore, by Slutsky’s
theorem (Lemma 3.4), plim ﬁ =pf+A' 0= p. Wesummarize with a theorem:

THEOREM 4.1 (Consistency of OLS): Under Assumptions OLS.1 and OLS.2, the
OLS estimator # obtained from a random sample following the population model
(4.5) is consistent for f.

The simplicity of the proof of Theorem 4.1 should not undermine its usefulness.
Whenever an equation can be put into the form (4.5) and Assumptions OLS.1 and
OLS.2 hold, OLS using a random sample consistently estimates f. It does not matter
where this equation comes from, or what the §; actually represent. As we will see in
Sections 4.3 and 4.4, often an estimable equation is obtained only after manipulating
an underlying structural equation. An important point to remember is that, once
the linear (in parameters) equation has been specified with an additive error and
Assumptions OLS.1 and OLS.2 are verified, there is no need to reprove Theorem 4.1.

Under the assumptions of Theorem 4.1, xf is the linear projection of y on x. Thus,
Theorem 4.1 shows that OLS consistently estimates the parameters in a linear pro-
jection, subject to the rank condition in Assumption OLS.2. This is very general, as it
places no restrictions on the nature of y—for example, y could be a binary variable
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or some other variable with discrete characteristics. Since a conditional expectation
that is linear in parameters is also the linear projection, Theorem 4.1 also shows that
OLS consistently estimates conditional expectations that are linear in parameters. We
will use this fact often in later sections.

There are a few final points worth emphasizing. First, if either Assumption OLS.1
or OLS.2 fails, then f# is not identified (unless we make other assumptions, as in
Chapter 5). Usually it is correlation between u and one or more elements of x that
causes lack of identification. Second, the OLS estimator is not necessarily unbiased
even under Assumptions OLS.1 and OLS.2. However, if we impose the zero condi-
tional mean assumption (4.3), then it can be shown that E(f#|X) = g if X'X is non-
singular; see Problem 4.2. By iterated expectations, f is then also unconditionally
unbiased, provided the expected value E(f) exists.

Finally, we have not made the much more restrictive assumption that # and x are
independent. If E(u) = 0 and u is independent of x, then assumption (4.3) holds, but
not vice versa. For example, Var(u | x) is entirely unrestricted under assumption (4.3),
but Var(u | x) is necessarily constant if # and x are independent.

4.2.2 Asymptotic Inference Using OLS

The asymptotic distribution of the OLS estimator is derived by writing

(v o) (2350)

As we saw in Theorem 4.1, (N"'S° N, x/x;) " — A7 =0p(1). Also, {(X/u;):i =
1,2,...} is an ii.d. sequence with zero mean, and we assume that each element
has finite variance. Then the central limit theorem (Theorem 3.2) implies that
NN Xy <, Normal(0, B), where B is the K x K matrix

B = E(u’x'x) (4.7

This implies N~'/2 3" x/u; = 0,(1), and so we can write

VN(B—p)=A" <N1/2 f:x;u,) +0,(1) (4.8)
i=1

since 0,(1) - O,(1) = 0,(1). We can use equation (4.8) to immediately obtain the
asymptotic distribution of v/N( ﬂ B). A homoskedasticity assumption simplifies the
form of OLS asymptotic variance:

ASSUMPTION OLS.3:  E(u?x'x) = ¢’E(x'x), where o2 = E(u?).



The Single-Equation Linear Model and OLS Estimation 55

Because E(u) = 0, ¢? is also equal to Var(u). Assumption OLS.3 is the weakest form
of the homoskedasticity assumption. If we write out the K x K matrices in Assump-
tion OLS.3 element by eclement, we see that Assumption OLS.3 is equivalent to
assuming that the squared error, 2, is uncorrelated with each Xj, sz, and all cross
products of the form x;x;. By the law of iterated expectations, sufficient for As-
sumption OLS.3 is E(u?|x) = ¢?, which is the same as Var(u|x) = o> when
E(u|x) = 0. The constant conditional variance assumption for u given X is the easiest
to interpret, but it is stronger than needed.

THEOREM 4.2 (Asymptotic Normality of OLS): Under Assumptions OLS.1-OLS.3,
VN(B —p) < Normal(0,0°A™") (4.9)

Proof: From equation (4.8) and definition of B, it follows from Lemma 3.7 and
Corollary 3.2 that

VN(f - B) £ Normal(0,A"'BA™")
Under Assumption OLS.3, B = ¢?A, which proves the result.

Practically speaking, equation (4.9) allows us to treat § as approximately normal
with mean g and variance ¢2[E(x'x)]"'/N. The usual estimator of ¢2, 6% = SSR/
(N — K), where SSR = 3"~ @2 is the OLS sum of squared residuals, is easily shown
to be consistent. (Using N or N — K in the denominator does not affect consistency.)
When we also replace E(x’x) with the sample average N~ ZIZ L X1x; = (X'X/N), we
get

Avar(B) = 62(X'X) ™! (4.10)

The right-hand side of equation (4.10) should be familiar: it is the usual OLS variance
matrix estimator under the classical linear model assumptions. The bottom line of
Theorem 4.2 is that, under Assumptions OLS.1-OLS.3, the usual OLS standard
errors, ¢ statistics, and F statistics are asymptotically valid. Showing that the F sta-
tistic is approximately valid is done by deriving the Wald test for linear restrictions of
the form Rf = r (see Chapter 3). Then the F statistic is simply a degrees-of-freedom-
adjusted Wald statistic, which is where the F distribution (as opposed to the chi-
square distribution) arises.

4.2.3 Heteroskedasticity-Robust Inference

If Assumption OLS.1 fails, we are in potentially serious trouble, as OLS is not even
consistent. In the next chapter we discuss the important method of instrumental
variables that can be used to obtain consistent estimators of f when Assumption
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OLS.1 fails. Assumption OLS.2 is also needed for consistency, but there is rarely any
reason to examine its failure.

Failure of Assumption OLS.3 has less serious consequences than failure of As-
sumption OLS.1. As we have already seen, Assumption OLS.3 has nothing to do
with consistency of ﬁ Further, the proof of asymptotic normality based on equation
(4.8) is still valid without Assumption OLS.3, but the final asymptotic variance is
different. We have assumed OLS.3 for deriving the limiting distribution because it
implies the asymptotic validity of the usual OLS standard errors and test statistics.
All regression packages assume OLS.3 as the default in reporting statistics.

Often there are reasons to believe that Assumption OLS.3 might fail, in which case
equation (4.10) is no longer a valid estimate of even the asymptotic variance matrix.
If we make the zero conditional mean assumption (4.3), one solution to violation
of Assumption OLS.3 is to specify a model for Var(y|x), estimate this model, and
apply weighted least squares (WLS): for observation i, y; and every element of x;
(including unity) are divided by an estimate of the conditional standard deviation
[Var(y; | x;)]'%, and OLS is applied to the weighted data (see Wooldridge, 2000a,
Chapter 8, for details). This procedure leads to a different estimator of f. We discuss
WLS in the more general context of nonlinear regression in Chapter 12. Lately, it
has become more popular to estimate f# by OLS even when heteroskedasticity is sus-
pected but to adjust the standard errors and test statistics so that they are valid in the
presence of arbitrary heteroskedasticity. Since these standard errors are valid whether
or not Assumption OLS.3 holds, this method is much easier than a weighted least
squares procedure. What we sacrifice is potential efficiency gains from weighted least
squares (WLS) (see Chapter 14). But, efficiency gains from WLS are guaranteed only
if the model for Var(y|x) is correct. Further, WLS is generally inconsistent if
E(u|x) # 0 but Assumption OLS.1 holds, so WLS is inappropriate for estimating
linear projections. Especially with large sample sizes, the presence of heteroskeda-
sticity need not affect one’s ability to perform accurate inference using OLS. But we
need to compute standard errors and test statistics appropriately.

The adjustment needed to the asymptotic variance follows from the proof of The-
orem 4.2: without OLS.3, the asymptotic variance of ﬁ’ is Avar(ﬁ) = AleA*I/N ,
where the K x K matrices A and B were defined earlier. We already know how
to consistently estimate A Estimation of B is also straightforward. First, by the law
of large numbers, N~' YV u2x/x; & E(u>x'x) = B. Now, since the u are not
observed, we replace u; w1th the OLS residual o = y; — x,—ﬁ. This leads to the con-
sistent estimator B= N~' S°N #2x/x;. See White (1984) and Problem 4.5.

The heteroskedasticity-robust variance matrix estimator of ﬁ is A7'BA™! /N or,
after cancellations,
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Avar(f) = (X'X)™! (i a,?x;xi> (X'X)"! (4.11)
i=1

This matrix was introduced in econometrics by White (1980b), although some attri-
bute it to either Eicker (1967) or Huber (1967), statisticians who discovered robust
variance matrices. The square roots of the diagonal elements of equation (4.11) are
often called the White standard errors or Huber standard errors, or some hyphenated
combination of the names Eicker, Huber, and White. It is probably best to just call
them heteroskedasticity-robust standard errors, since this term describes their purpose.
Remember, these standard errors are asymptotically valid in the presence of any kind
of heteroskedasticity, including homoskedasticity.

Robust standard errors are often reported in applied cross-sectional work, espe-
cially when the sample size is large. Sometimes they are reported along with the usual
OLS standard errors; sometimes they are presented in place of them. Several regres-
sion packages now report these standard errors as an option, so it is easy to obtain
heteroskedasticity-robust standard errors.

Sometimes, as a degrees-of-freedom correction, the matrix in equation (4.11) is
multiplied by N/(N — K). This procedure guarantees that, if the #> were constant
across i (an unlikely event in practice, but the strongest evidence of homoskedasticity
possible), then the usual OLS standard errors would be obtained. There is some evi-
dence that the degrees-of-freedom adjustment improves finite sample performance.
There are other ways to adjust equation (4.11) to improve its small-sample properties—
see, for example, MacKinnon and White (1985)—but if N is large relative to K, these
adjustments typically make little difference.

Once standard errors are obtained, ¢ statistics are computed in the usual way.
These are robust to heteroskedasticity of unknown form, and can be used to test
single restrictions. The 7 statistics computed from heteroskedasticity robust standard
errors are heteroskedasticity-robust ¢ statistics. Confidence intervals are also obtained
in the usual way.

When Assumption OLS.3 fails, the usual F statistic is not valid for testing multiple
linear restrictions, even asymptotically. Some packages allow robust testing with a
simple command, while others do not. If the hypotheses are written as

Ho: Rf=r (4.12)

where R is O x K and has rank Q < K, and r is Q x 1, then the heteroskedasticity-
robust Wald statistic for testing equation (4.12) is

W =RB—r)(RVR) ' (Rg 1) (4.13)
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where V is given in equation (4.11). Under Hy, W < ){é. The Wald statistic can be
turned into an approximate #p y_x random variable by dividing it by Q (and usu-
ally making the degrees-of-freedom adjustment to V) But there is nothing wrong
with using equation (4.13) directly.

4.2.4 Lagrange Multiplier (Score) Tests
In the partitioned model
y=xip +x2f, +u (4.14)

under Assumptions OLS.1-OLS.3, where x; is 1 x Kj and x; is | x K5, we know that
the hypothesis Hy: #, = 0 is easily tested (asymptotically) using a standard F test.
There is another approach to testing such hypotheses that is sometimes useful, espe-
cially for computing heteroskedasticity-robust tests and for nonlinear models.

Let ﬁl be the estimator of #, under the null hypothesis Hy: f, = 0; this is called
the estimator from the restricted model. Define the restricted OLS residuals as #; =
yi— xify, i=1,2,...,N. Under Hy, x;, should be, up to sample variation, uncor-
related with #; in the sample. The Lagrange multiplier or score principle is based on
this observation. It turns out that a valid test statistic is obtained as follows: Run the
OLS regression

uon X1, X2 (415)

(where the observation index i has been suppressed). Assuming that x; contains a
constant (that is, the null model contains a constant), let R? denote the usual R-
squared from the regression (4.15). Then the Lagrange multiplier (LM) or score sta-
tistic is LM = NR2. These names come from different features of the constrained
optimization problem; see Rao (1948), Aitchison and Silvey (1958), and Chapter
12. Because of its form, LM is also referred to as an N-R-squared test. Under Hy,
LM R ;(%Q, where K is the number of restrictions being tested. If NR? is suffi-
ciently large, then # is significantly correlated with x;, and the null hypothesis will be
rejected.

It is important to include x; along with x; in regression (4.15). In other words, the
OLS residuals from the null model should be regressed on all explanatory variables,
even though # is orthogonal to x; in the sample. If x; is excluded, then the resulting
statistic generally does not have a chi-square distribution when x, and x,; are corre-
lated. If E(x{x2) = 0, then we can exclude x; from regression (4.15), but this ortho-
gonality rarely holds in applications. If x; does not include a constant, R? should be
the uncentered R-squared: the total sum of squares in the denominator is obtained
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without demeaning the dependent variable, z. When x; includes a constant, the usual
centered R-squared and uncentered R-squared are identical because ZIZ 4 =0.

Example 4.1 (Wage Equation for Married, Working Women): Consider a wage
equation for married, working women:

log(wage) = B, + pexper + frexper’ + freduc
+ fiage + Pskidslt6 + Pekidsge6 + u (4.16)

where the last three variables are the woman’s age, number of children less than six,
and number of children at least six years of age, respectively. We can test whether,
after the productivity variables experience and education are controlled for, women
are paid differently depending on their age and number of children. The F statistic for
the hypothesis Hy: 8, = 0,85 = 0,8, =01is F = [(R2, — R?)/(1 — R2)] - [(N —7)/3],
where R2 and R? are the unrestricted and restricted R-squareds; under Hy (and
homoskedasticity), F ~ 73 y_7. To obtain the LM statistic, we estimate the equation
without age, kidslt6, and kidsge6; let u denote the OLS residuals. Then, the LM sta-
tistic is NR2 from the regression & on 1, exper, exper?, educ, age, kidslt6, and kidsge6,
where the 1 denotes that we include an intercept. Under Hy and homoskedasticity,
NR; ~ 73.

Using the data on the 428 working, married women in MROZ.RAW (from Mroz,
1987), we obtain the following estimated equation:

log(Wage) = —.421 + .040 exper — .00078 exper® + .108 educ

(.317)  (.013) (.00040) (.014)
[.316] [.015] [.00041] [.014]
— .0015 age — .061 kidslt6 — .015 kidsge6, R?* =158
(.0053) (.089) (.028)
[.0059) [.105] [.029]

where the quantities in brackets are the heteroskedasticity-robust standard errors.
The F statistic for joint significance of age, kidsit6, and kidsge6 turns out to be about
.24, which gives p-value ~ .87. Regressing the residuals # from the restricted model
on all exogenous variables gives an R-squared of .0017, so LM = 428(.0017) = .728,
and p-value ~ .87. Thus, the F and LM tests give virtually identical results.

The test from regression (4.15) maintains Assumption OLS.3 under Hy, just like
the usual F test. It turns out to be easy to obtain a heteroskedasticity-robust LM
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statistic. To see how to do so, let us look at the formula for the LM statistic from
regression (4.15) in more detail. After some algebra we can write

N ! N -1 N
LM = (Nl/zzf;a,) <&2N1 Zf}f,-) (NI/ZZf}ﬁ,)
i=1 i=1 i=1

where 62 = N"' 32 42 and each  is a 1 x K, vector of OLS residuals from the
(multivariate) regression of x;; on x;1, i = 1,2,..., N. This statistic is not robust to
heteroskedasticity because the matrix in the middle is not a consistent estimator of
the asymptotic variance of (N~!/2 Z,Z , /4;) under heteroskedasticity. Following the
reasoning in Section 4.2.3, a heteroskedasticity-robust statistic is

N ! -1 N
LM = (Nl/ZZf;ﬂ,) (NIZ ff{f‘,) (NI/ZZE';&,)
=1 =1

i=1

Dropping the i subscript, this is easily obtained, as N — SSR( from the OLS regres-
sion (without an intercept)

lona-t (4.17)

where & -t = (& - 71,6 F,...,0-Tx,) is the 1 x K, vector obtained by multiplying #
by each element of ¥ and SSRy is just the usual sum of squared residuals from re-
gression (4.17). Thus, we first regress each element of x, onto all of x; and collect the
residuals in t. Then we form # - t (observation by observation) and run the regression
in (4.17); N — SSRy from this regression is distributed asymptotically as y% . (Do not
be thrown off by the fact that the dependent variable in regression (4.17) is unity for
each observation; a nonzero sum of squared residuals is reported when you run OLS
without an intercept.) For more details, see Davidson and MacKinnon (1985, 1993)
or Wooldridge (1991a, 1995b).

Example 4.1 (continued): To obtain the heteroskedasticity-robust LM statistic for
Ho: f, =0,65 =0,6, =0 in equation (4.16), we estimate the restricted model as
before and obtain & Then, we run the regressions (1) age on 1, exper, exper?, educ;
(2) kidslt6 on 1, exper, exper?, educ; (3) kidsge6 on 1, exper, exper?, educ; and obtain
the residuals 7, 7,, and 73, respectively. The LM statistic is N — SSR( from the re-
gression 1 on @ - 1, @ - 72, @ - 3, and N — SSRg < y3.
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When we apply this result to the data in MROZ.RAW we get LM = .51, which
is very small for a ){% random variable: p-value ~ .92. For comparison, the hetero-
skedasticity-robust Wald statistic (scaled by Stata” to have an approximate F distri-
bution) also yields p-value ~ .92.

4.3 OLS Solutions to the Omitted Variables Problem

4.3.1 OLS Ignoring the Omitted Variables

Because it is so prevalent in applied work, we now consider the omitted variables
problem in more detail. A model that assumes an additive effect of the omitted vari-
able is

E(y|x1,x2,...,Xk,q) = Bo + 1x1 + faxa + - + Brxk + 7q (4.18)

where ¢ is the omitted factor. In particular, we are interested in the f3;, which are the
partial effects of the observed explanatory variables holding the other explanatory
variables constant, including the unobservable ¢. In the context of this additive
model, there is no point in allowing for more than one unobservable; any omitted
factors are lumped into ¢g. Henceforth we simply refer to ¢ as the omitted variable.

A good example of equation (4.18) is seen when y is log(wage) and ¢ includes
ability. If xx denotes a measure of education, fy in equation (4.18) measures the
partial effect of education on wages controlling for—or holding fixed—the level of
ability (as well as other observed characteristics). This effect is most interesting from
a policy perspective because it provides a causal interpretation of the return to edu-
cation: S is the expected proportionate increase in wage if someone from the work-
ing population is exogenously given another year of education.

Viewing equation (4.18) as a structural model, we can always write it in error form
as

y=PBo+Pix1 +Prxz+ -+ Prxg +yg+v (4.19)
E(v|x1,x2,...,xk,q) =0 (4.20)

where v is the structural error. One way to handle the nonobservability of ¢ is to put
it into the error term. In doing so, nothing is lost by assuming E(g) = 0 because an
intercept is included in equation (4.19). Putting ¢ into the error term means we re-
write equation (4.19) as

y=PFg+bix1+Poxa+ -+ Prxx+u (4.21)
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u=yqg+v (4.22)

The error u in equation (4.21) consists of two parts. Under equation (4.20), v has zero
mean and is uncorrelated with x;,x,,...,xx (and ¢). By normalization, ¢ also has
zero mean. Thus, E(u) = 0. However, u is uncorrelated with x1, x, ..., xg if and only
if ¢ is uncorrelated with each of the observable regressors. If ¢ is correlated with any
of the regressors, then so is u, and we have an endogeneity problem. We cannot ex-
pect OLS to consistently estimate any ;. Although E(u|x) # E(u) in equation (4.21),
the B; do have a structural interpretation because they appear in equation (4.19).

It is easy to characterize the plims of the OLS estimators when the omitted variable
is ignored; we will call this the OLS omitted variables inconsistency or OLS omitted
variables bias (even though the latter term is not always precise). Write the linear
projection of ¢ onto the observable explanatory variables as

q=20)+01x1+ - +0gxg+r (4.23)

where, by definition of a linear projection, E(r) =0, Cov(x;,r) =0, j=1,2,... K.
Then we can easily infer the plim of the OLS estimators from regressing y onto
1,x1,...,xg by finding an equation that does satisfy Assumptions OLS.1 and OLS.2.
Plugging equation (4.23) into equation (4.19) and doing simple algrebra gives

y = (Po +yo0) + (By +y01)x1 + (B +yd2)x2 + - - - 4 (B + yox )Xk + v+ yr

Now, the error v + pr has zero mean and is uncorrelated with each regressor. It fol-
lows that we can just read off the plim of the OLS estimators from the regression of y
on 1,xy,...,xg: plim ﬂAj = B; + yd;. Sometimes it is assumed that most of the J; are
zero. When the correlation between ¢ and a particular variable, say xg, is the focus,
a common (usually implicit) assumption is that all J; in equation (4.23) except the
intercept and coefficient on xg are zero. Then plim /§/ =pB,j=1,....,K—1,and

plim B = B + y[Cov(xx,q)/Var(xx)] (4.24)

[since dx = Cov(xg,q)/Var(xk) in this case]. This formula gives us a simple way
to determine the sign, and perhaps the magnitude, of the inconsistency in ﬁ Iy >0
and xgx and ¢ are positively correlated, the asymptotic bias is positive. The other
combinations are easily worked out. If xg has substantial variation in the population
relative to the covariance between xgx and ¢, then the bias can be small. In the general
case of equation (4.23), it is difficult to sign dx because it measures a partial correla-
tion. It is for this reason that 6; =0, j =1,...,K — 1 is often maintained for deter-
mining the likely asymptotic bias in BK when only xg is endogenous.
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Example 4.2 (Wage Equation with Unobserved Ability): Write a structural wage
equation explicitly as

log(wage) = B, + Biexper + Brexper® + Byeduc + y abil + v

where v has the structural error property E(v | exper, educ, abil) = 0. If abil is uncor-
related with exper and exper” once educ has been partialed out—that is, abil = o+
03educ + r with r uncorrelated with exper and exper’*—then plim /)33 = f5 + yJ3. Un-
der these assumptions the coefficients on exper and exper? are consistently estimated
by the OLS regression that omits ability. If d; > 0 then plim ﬁ3 > [3; (because y > 0
by definition), and the return to education is likely to be overestimated in large samples.

4.3.2 The Proxy Variable—-OLS Solution

Omitted variables bias can be eliminated, or at least mitigated, if a proxy variable is
available for the unobserved variable ¢. There are two formal requirements for a
proxy variable for ¢. The first is that the proxy variable should be redundant (some-
times called ignorable) in the structural equation. If z is a proxy variable for ¢, then
the most natural statement of redundancy of z in equation (4.18) is

E(y[x,9,2) = E(y|x,q) (4.25)

Condition (4.25) is easy to interpret: z is irrelevant for explaining y, in a conditional
mean sense, once x and ¢ have been controlled for. This assumption on a proxy
variable is virtually always made (sometimes only implicitly), and it is rarely contro-
versial: the only reason we bother with z in the first place is that we cannot get data
on ¢. Anyway, we cannot get very far without condition (4.25). In the wage-education
example, let ¢ be ability and z be IQ score. By definition it is ability that affects wage:
1Q would not matter if true ability were known.

Condition (4.25) is somewhat stronger than needed when unobservables appear
additively as in equation (4.18); it suffices to assume that v in equation (4.19) is
simply uncorrelated with z. But we will focus on condition (4.25) because it is natu-
ral, and because we need it to cover models where ¢ interacts with some observed
covariates.

The second requirement of a good proxy variable is more complicated. We require
that the correlation between the omitted variable ¢ and each x; be zero once we par-
tial out z. This is easily stated in terms of a linear projection:

L(g|1,xi1,...,xk,z) = L(q|1,2) (4.26)

It is also helpful to see this relationship in terms of an equation with an unobserved
error. Write ¢ as a linear function of z and an error term as
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gq=00+0z+r (4.27)

where, by definition, E(r) = 0 and Cov(z,r) = 0 because 6y + 6,z is the linear pro-
jection of ¢ on 1, z. If z is a reasonable proxy for ¢, 6, # 0 (and we usually think in
terms of 0; > 0). But condition (4.26) assumes much more: it is equivalent to

Cov(xj,r) =0, j=12....K

This condition requires z to be closely enough related to ¢ so that once it is included
in equation (4.27), the x; are not partially correlated with ¢.

Before showing why these two proxy variable requirements do the trick, we should
head off some possible confusion. The definition of proxy variable here is not uni-
versal. While a proxy variable is always assumed to satisfy the redundancy condition
(4.25), it is not always assumed to have the second property. In Chapter 5 we will use
the notion of an indicator of ¢, which satisfies condition (4.25) but not the second
proxy variable assumption.

To obtain an estimable equation, replace ¢ in equation (4.19) with equation (4.27)
to get

y = (Bo+ybo) + p1x1 + -+ Prxg + y01z + (yr +v) (4.28)

Under the assumptions made, the composite error term u = yr + v is uncorrelated
with x; for all j; redundancy of z in equation (4.18) means that z is uncorrelated with
v and, by definition, z is uncorrelated with r. It follows immediately from Theorem
4.1 that the OLS regression y on 1, xy, X, ..., Xk, z produces consistent estimators of
(Bo +760), By, By - - -, P> and p8;. Thus, we can estimate the partial effect of each of
the x; in equation (4.18) under the proxy variable assumptions.

When z is an imperfect proxy, then r in equation (4.27) is correlated with one or
more of the x;. Generally, when we do not impose condition (4.26) and write the
linear projection as

qg="00+px1+-+pgxxg +0iz+r

the proxy variable regression gives plim ﬂ; = B; + yp;. Thus, OLS with an imperfect
proxy is inconsistent. The hope is that the p; are smaller in magnitude than if z were
omitted from the linear projection, and this can usually be argued if z is a reasonable
proxy for q.

If including z induces substantial collinearity, it might be better to use OLS with-
out the proxy variable. However, in making these decisions we must recognize that
including z reduces the error variance if 6 # 0: Var(yr 4 v) < Var(yg + v) because
Var(r) < Var(g), and v is uncorrelated with both r and ¢. Including a proxy variable
can actually reduce asymptotic variances as well as mitigate bias.
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Example 4.3 (Using 1Q as a Proxy for Ability): We apply the proxy variable
method to the data on working men in NLS80.RAW, which was used by Blackburn
and Neumark (1992), to estimate the structural model

log(wage) = f, + p,exper + fytenure + fzmarried
+ Bysouth + psurban + feblack + freduc + y abil + v (4.29)

where exper is labor market experience, married is a dummy variable equal to unity if
married, south is a dummy variable for the southern region, urban is a dummy vari-
able for living in an SMSA, black is a race indicator, and educ is years of schooling.
We assume that /Q satisfies the proxy variable assumptions: in the linear projection
abil = 0y + 0,10 + r, where r has zero mean and is uncorrelated with /Q, we also
assume that r is uncorrelated with experience, tenure, education, and other factors
appearing in equation (4.29). The estimated equations without and with /Q are

log(Wwage) = 5.40 + .014 exper + .012 tenure + .199 married
(0.11) (.003) (.002) (.039)

— .091 south + .184 urban — .188 black + .065 educ
(.026) (.027) (.038) (.006)

N =935, R?> =253

log(wage) = 5.18 + .014 exper + .011 tenure + .200 married

(0.13)  (.003) (.002) (.039)

— .080 south + .182 urban — .143 black + .054 educ
(.026) (.027) (.039) (.007)

+ .0036 10
(.0010)

N =935, R?> =263

Notice how the return to schooling has fallen from about 6.5 percent to about 5.4
percent when /Q is added to the regression. This is what we expect to happen if
ability and schooling are (partially) positively correlated. Of course, these are just
the findings from one sample. Adding /Q explains only one percentage point more of
the variation in log(wage), and the equation predicts that 15 more /Q points (one
standard deviation) increases wage by about 5.4 percent. The standard error on the
return to education has increased, but the 95 percent confidence interval is still fairly
tight.
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Often the outcome of the dependent variable from an earlier time period can be a
useful proxy variable.

Example 4.4 (Effects of Job Training Grants on Worker Productivity): The data in
JTRAINI1.RAW are for 157 Michigan manufacturing firms for the years 1987, 1988,
and 1989. These data are from Holzer, Block, Cheatham, and Knott (1993). The goal
is to determine the effectiveness of job training grants on firm productivity. For this
exercise, we use only the 54 firms in 1988 which reported nonmissing values of the
scrap rate (number of items out of 100 that must be scrapped). No firms were
awarded grants in 1987; in 1988, 19 of the 54 firms were awarded grants. If the
training grant has the intended effect, the average scrap rate should be lower among
firms receiving a grant. The problem is that the grants were not randomly assigned:
whether or not a firm received a grant could be related to other factors unobservable
to the econometrician that affect productivity. In the simplest case, we can write (for
the 1988 cross section)

log(scrap) = Py + figrant + yq + v

where v is orthogonal to grant but ¢ contains unobserved productivity factors that
might be correlated with grant, a binary variable equal to unity if the firm received a
job training grant. Since we have the scrap rate in the previous year, we can use
log(scrap_1) as a proxy variable for g:

q =0y + 0, log(scrap_,) +r

where r has zero mean and, by definition, is uncorrelated with log(scrap_1). We hope
that r has no or little correlation with grant. Plugging in for ¢ gives the estimable model

log(scrap) = 8¢ + fgrant + y0; log(scrap_1) +r+v

From this equation, we see that f; measures the proportionate difference in scrap
rates for two firms having the same scrap rates in the previous year, but where one
firm received a grant and the other did not. This is intuitively appealing. The esti-
mated equations are

log(sérap) = .409 + .057 grant
(.240) (.406)

N = 54, R? = .0004

log(sérap) = .021 — 254 grant + .831 log(scrap_1)
(.089) (.147) (.044)

N = 54, R?> = 873
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Without the lagged scrap rate, we see that the grant appears, if anything, to reduce
productivity (by increasing the scrap rate), although the coefficient is statistically in-
significant. When the lagged dependent variable is included, the coefficient on grant
changes signs, becomes economically large—firms awarded grants have scrap rates
about 25.4 percent less than those not given grants—and the effect is significant at the
5 percent level against a one-sided alternative. [The more accurate estimate of the
percentage effect is 100 - [exp(—.254) — 1] = —22.4%; see Problem 4.1(a).]

We can always use more than one proxy for xx. For example, it might be that
E(q|x,z1,22) = E(q|z1,22) = 0y + 0121 + 0222, in which case including both z; and
zp as regressors along with xp,...,xx solves the omitted variable problem. The
weaker condition that the error r in the equation g = 0y + 0,zy + 0z, + r is uncor-
related with xp, ..., xg also suffices.

The data set NLS80.RAW also contains each man’s score on the knowledge of
the world of work (KWW ) test. Problem 4.11 asks you to reestimate equation (4.29)
when KWW and IQ are both used as proxies for ability.

4.3.3 Models with Interactions in Unobservables

In some cases we might be concerned about interactions between unobservables and
observable explanatory variables. Obtaining consistent estimators is more difficult in
this case, but a good proxy variable can again solve the problem.

Write the structural model with unobservable ¢ as

y=P0+Bix1+ -+ PrXk + 719 + 72Xkq + v (4.30)
where we make a zero conditional mean assumption on the structural error v:
E(v[x,q) =0 (4.31)

For simplicity we have interacted g with only one explanatory variable, xg.

Before discussing estimation of equation (4.30), we should have an interpretation
for the parameters in this equation, as the interaction xgg¢ is unobservable. (We dis-
cussed this topic more generally in Section 2.2.5.) If xg is an essentially continuous
variable, the partial effect of xx on E(y|x, ¢q) is

JE(y|x,q

# = Bx + 74 (4.32)
OXKg

Thus, the partial effect of xg actually depends on the level of ¢. Because ¢ is not

observed for anyone in the population, equation (4.32) can never be estimated, even

if we could estimate y, (which we cannot, in general). But we can average equation
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(4.32) across the population distribution of g. Assuming E(g) = 0, the average partial
effect (APE) of xk is

E(Bk + 724) = Pk (4.33)

A similar interpretation holds for discrete xx. For example, if xg is binary, then
E(y|x1,...,xk-1,1,q) —E(y|x1,...,xk-1,0,9) = fx + 7,¢, and S is the average
of this difference over the distribution of ¢. In this case, fy is called the average
treatment effect (ATE). This name derives from the case where xg represents receiv-
ing some ‘“‘treatment,” such as participation in a job training program or partici-
pation in an income maintenence program. We will consider the binary treatment
case further in Chapter 18, where we introduce a counterfactual framework for esti-
mating average treatment effects.

It turns out that the assumption E(g) = 0 is without loss of generality. Using sim-
ple algebra we can show that, if 4, = E(g) # 0, then we can consistently estimate
Bk + v2u,, which is the average partial effect.

If the elements of x are exogenous in the sense that E(g|x) = 0, then we can con-
sistently estimate each of the 8; by an OLS regression, where ¢ and xgq are just part
of the error term. This result follows from iterated expectations applied to equation
(4.30), which shows that E(y|x)=pf,+ fx1+ -+ fgxk if E(g|x)=0. The
resulting equation probably has heteroskedasticity, but this is easily dealt with. Inci-
dentally, this is a case where only assuming that ¢ and x are uncorrelated would not
be enough to ensure consistency of OLS: xg¢ and x can be correlated even if ¢ and x
are uncorrelated.

If ¢ and x are correlated, we can consistently estimate the f5; by OLS if we have a
suitable proxy variable for g. We still assume that the proxy variable, z, satisfies the
redundancy condition (4.25). In the current model we must make a stronger proxy
variable assumption than we did in Section 4.3.2:

E(q|x,z) = E(q|z) = b1z (4.34)

where now we assume z has a zero mean in the population. Under these two proxy
variable assumptions, iterated expectations gives

E(y|x,z) =By + fix1 + -+ + frxx + y,61z + 9,01 xk 2 (4.35)

and the parameters are consistently estimated by OLS.

If we do not define our proxy to have zero mean in the population, then estimating
equation (4.35) by OLS does not consistently estimate . If E(z) # 0, then we would
have to write E(g|z) = 6y + 6z, in which case the coefficient on xg in equation
(4.35) would be i + 6yy,. In practice, we may not know the population mean of the
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proxy variable, in which case the proxy variable should be demeaned in the sample
before interacting it with xg.

If we maintain homoskedasticity in the structural model—that is, Var(y|x,¢,z) =
Var(y|x,q) = o>—then there must be heteroskedasticity in Var(y|x,z). Using
Property CV.3 in Appendix 2A, it can be shown that

Var(y|x,z) = o> + (y, + k)’ Var(q|x,2)

Even if Var(q|x,z) is constant, Var(y|x,z) depends on xg. This situation is most
easily dealt with by computing heteroskedasticity-robust statistics, which allows for
heteroskedasticity of arbitrary form.

Example 4.5 (Return to Education Depends on Ability): Consider an extension of
the wage equation (4.29):

log(wage) = fy + fiexper + pytenure + fymarried + f,s0uth
+ Bsurban + f¢black + f,educ + y,abil + y,educ-abil + v (4.36)

so that educ and abil have separate effects but also have an interactive effect. In this
model the return to a year of schooling depends on abil: f; + y,abil. Normalizing abil
to have zero population mean, we see that the average of the return to education is
simply f,. We estimate this equation under the assumption that /Q is redundant
in equation (4.36) and E(abil |x,1Q) = E(abil | IQ) = 0,(I1Q — 100) = 6,1Q,, where
10, is the population-demeaned /Q (IQ is constructed to have mean 100 in the pop-
ulation). We can estimate the f8; in equation (4.36) by replacing abil with 1Qy and
educ-abil with educ-1Qy and doing OLS.
Using the sample of men in NLS80.RAW gives the following:

log(wage) = -+ + .052 educ — .00094 IQy + .00034 educ - IQ,
(.007) (.00516) (.00038)

N =935, R? = 263

where the usual OLS standard errors are reported (if y, = 0, homoskedasticity may
be reasonable). The interaction term educ-1Qy is not statistically significant, and the
return to education at the average 1Q, 5.2 percent, is similar to the estimate when the
return to education is assumed to be constant. Thus there is little evidence for an in-
teraction between education and ability. Incidentally, the F test for joint significance
of IQy and educ-1Q, yields a p-value of about .0011, but the interaction term is not
needed.
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In this case, we happen to know the population mean of /Q, but in most cases we
will not know the population mean of a proxy variable. Then, we should use the
sample average to demean the proxy before interacting it with xg; see Problem 4.8.
Technically, using the sample average to estimate the population average should be
reflected in the OLS standard errors. But, as you are asked to show in Problem 6.10
in Chapter 6, the adjustments generally have very small impacts on the standard
errors and can safely be ignored.

In his study on the effects of computer usage on the wage structure in the United
States, Krueger (1993) uses computer usage at home as a proxy for unobservables
that might be correlated with computer usage at work; he also includes an interaction
between the two computer usage dummies. Krueger does not demean the “uses
computer at home” dummy before constructing the interaction, so his estimate on
“uses a computer at work’™ does not have an average treatment effect interpreta-
tion. However, just as in Example 4.5, Krueger found that the interaction term is
insignificant.

4.4 Properties of OLS under Measurement Error

As we saw in Section 4.1, another way that endogenous explanatory variables can
arise in economic applications occurs when one or more of the variables in our model
contains measurement error. In this section, we derive the consequences of measure-
ment error for ordinary least squares estimation.

The measurement error problem has a statistical structure similar to the omitted
variable—proxy variable problem discussed in the previous section. However, they are
conceptually very different. In the proxy variable case, we are looking for a variable
that is somehow associated with the unobserved variable. In the measurement error
case, the variable that we do not observe has a well-defined, quantitative meaning
(such as a marginal tax rate or annual income), but our measures of it may contain
error. For example, reported annual income is a measure of actual annual income,
whereas 1Q score is a proxy for ability.

Another important difference between the proxy variable and measurement error
problems is that, in the latter case, often the mismeasured explanatory variable is the
one whose effect is of primary interest. In the proxy variable case, we cannot estimate
the effect of the omitted variable.

Before we turn to the analysis, it is important to remember that measurement error
is an issue only when the variables on which we can collect data differ from the vari-
ables that influence decisions by individuals, families, firms, and so on. For example,
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suppose we are estimating the effect of peer group behavior on teenage drug usage,
where the behavior of one’s peer group is self-reported. Self-reporting may be a mis-
measure of actual peer group behavior, but so what? We are probably more inter-
ested in the effects of how a teenager perceives his or her peer group.

4.4.1 Measurement Error in the Dependent Variable

We begin with the case where the dependent variable is the only variable measured
with error. Let y* denote the variable (in the population, as always) that we would
like to explain. For example, y* could be annual family saving. The regression model
has the usual linear form

Y =P+ Bixi+ -+ Prxx v (4.37)

and we assume that it satisfies at least Assumptions OLS.1 and OLS.2. Typically, we
are interested in E(y*|xi,...,xx). We let y represent the observable measure of y*
where y # y*.

The population measurement error is defined as the difference between the ob-
served value and the actual value:

ep=y—y* (4.38)

For a random draw i from the population, we can write e;) = y; — y;, but what is
important is how the measurement error in the population is related to other factors.
To obtain an estimable model, we write y* = y — ¢y, plug this into equation (4.37),
and rearrange:

y=FB+hxi+ - +Pxxk+v+e (4.39)

Since y, x1, X2, ..., Xxg are observed, we can estimate this model by OLS. In effect, we
just ignore the fact that y is an imperfect measure of y* and proceed as usual.

When does OLS with y in place of y* produce consistent estimators of the f8,?
Since the original model (4.37) satisfies Assumption OLS.1, v has zero mean and is
uncorrelated with each x;. It is only natural to assume that the measurement error
has zero mean; if it does not, this fact only affects estimation of the intercept, f,.
Much more important is what we assume about the relationship between the mea-
surement error ey and the explanatory variables x;. The usual assumption is that
the measurement error in y is statistically independent of each explanatory variable,
which implies that ¢ is uncorrelated with x. Then, the OLS estimators from equation
(4.39) are consistent (and possibly unbiased as well). Further, the usual OLS infer-
ence procedures (7 statistics, F statistics, LM statistics) are asymptotically valid under
appropriate homoskedasticity assumptions.
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If ¢y and v are uncorrelated, as is usually assumed, then Var(v+ ¢) = a2 + o2 >
2. Therefore, measurement error in the dependent variable results in a larger error
variance than when the dependent variable is not measured with error. This result is
hardly surprising and translates into larger asymptotic variances for the OLS esti-
mators than if we could observe y*. But the larger error variance violates none of the
assumptions needed for OLS estimation to have its desirable large-sample properties.

Example 4.6 (Saving Function with Measurement Error): Consider a saving function
E(sav* | inc, size, educ, age) = Py + finc + Bysize + fyeduc + frage

but where actual saving (sav*) may deviate from reported saving (sav). The question
is whether the size of the measurement error in sav is systematically related to the
other variables. It may be reasonable to assume that the measurement error is not
correlated with inc, size, educ, and age, but we might expect that families with higher
incomes, or more education, report their saving more accurately. Unfortunately,
without more information, we cannot know whether the measurement error is cor-
related with inc or educ.

When the dependent variable is in logarithmic form, so that log(y*) is the depen-
dent variable, a natural measurement error equation is

log(y) = log(y*) +eo (4.40)

This follows from a multiplicative measurement error for y: y = y*ay where ay > 0
and ey = log(ag).

Example 4.7 ( Measurement Error in Firm Scrap Rates): In Example 4.4, we might
think that the firm scrap rate is mismeasured, leading us to postulate the model
log(scrap™) = py + p,grant + v, where scrap* is the true scrap rate. The measurement
error equation is log(scrap) = log(scrap™) 4+ ey. Is the measurement error ¢y inde-
pendent of whether the firm receives a grant? Not if a firm receiving a grant is more
likely to underreport its scrap rate in order to make it look as if the grant had the
intended effect. If underreporting occurs, then, in the estimable equation log(scrap) =
o + Bigrant + v + ey, the error u = v + ey is negatively correlated with grant. This
result would produce a downward bias in f,, tending to make the training program
look more effective than it actually was.

These examples show that measurement error in the dependent variable can cause
biases in OLS if the measurement error is systematically related to one or more of the
explanatory variables. If the measurement error is uncorrelated with the explanatory
variables, OLS is perfectly appropriate.
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4.4.2 Measurement Error in an Explanatory Variable

Traditionally, measurement error in an explanatory variable has been considered a
much more important problem than measurement error in the response variable. This
point was suggested by Example 4.2, and in this subsection we develop the general
case.

We consider the model with a single explanatory measured with error:

y:ﬁo +BIXI+ﬁ2x2+"'+ﬁKXI*{+U (441)
where p,xj,...,xx_| are observable but x} is not. We assume at a minimum that
v has zero mean and is uncorrelated with xj,xs,...,xg_1, x§; in fact, we usually

have in mind the structural model E(y | x1,...,xg_1,x%) = fo + fi1x1 + frxo + -+ +
Prxk. If xg were observed, OLS estimation would produce consistent estimators.
Instead, we have a measure of xy; call it xx. A maintained assumption is that v
is also uncorrelated with xg. This follows under the redundancy assumption
E(y|x1,...,xXk-1,Xg, xk) = E(¥|x1,...,Xk_1, X)), an assumption we used in the
proxy variable solution to the omitted variable problem. This means that xx has
no effect on y once the other explanatory variables, including xj, have been con-
trolled for. Since xy is assumed to be the variable that affects y, this assumption is
uncontroversial.
The measurement error in the population is simply

ex = Xg — Xk (4.42)

and this can be positive, negative, or zero. We assume that the average measurement
error in the population is zero: E(egx) = 0, which has no practical consequences be-
cause we include an intercept in equation (4.41). Since v is assumed to be uncorre-
lated with x} and xg, v is also uncorrelated with eg.

We want to know the properties of OLS if we simply replace x; with xx and run
the regression of y on 1, xq, x3,. .., xg. These depend crucially on the assumptions we
make about the measurement error. An assumption that is almost always maintained
is that eg is uncorrelated with the explanatory variables not measured with error:
E(xjex) =0,j=1,...,K—1.

The key assumptions involve the relationship between the measurement error and
xy and xg. Two assumptions have been the focus in the econometrics literature, and
these represent polar extremes. The first assumption is that ex is uncorrelated with
the observed measure, xg:

Cov(xg,ex) =0 (4.43)



74 Chapter 4

From equation (4.42), if assumption (4.43) is true, then ex must be correlated with
the unobserved variable x;. To determine the properties of OLS in this case, we write
Xy = Xg — ex and plug this into equation (4.41):

Y= Po+Bix1+ foxa + - + Prxk + (v — Brex) (4.44)

Now, we have assumed that v and ex both have zero mean and are uncorrelated with
each x;, including xg; therefore, v — fgex has zero mean and is uncorrelated with the
x;. It follows that OLS estimation with xg in place of xj produces consistent esti-
mators of all of the f; (assuming the standard rank condition Assumption OLS.2).
Since v is uncorrelated with ek, the variance of the error in equation (4.44) is
Var(v — figex) = o> + /)’,2(J§K. Therefore, except when fy =0, measurement error
increases the error variance, which is not a surprising finding and violates none of the
OLS assumptions.

The assumption that eg is uncorrelated with xg is analogous to the proxy variable
assumption we made in the Section 4.3.2. Since this assumption implies that OLS has
all its nice properties, this is not usually what econometricians have in mind when
referring to measurement error in an explanatory variable. The classical errors-in-
variables (CEV ) assumption replaces assumption (4.43) with the assumption that the
measurement error is uncorrelated with the unobserved explanatory variable:

Cov(xg,ex) =0 (4.45)

This assumption comes from writing the observed measure as the sum of the true
explanatory variable and the measurement error, xx = X3 + eg, and then assuming
the two components of xg are uncorrelated. (This has nothing to do with assump-
tions about v; we are always maintaining that v is uncorrelated with x} and xg, and
therefore with ex.)

If assumption (4.45) holds, then xgx and ex must be correlated:
Cov(xk,ex) = E(xgex) = E(xjek) + E(ex) = a2 (4.46)

€K

Thus, under the CEV assumption, the covariance between xx and ek is equal to the
variance of the measurement error.

Looking at equation (4.44), we see that correlation between xx and ex causes
problems for OLS. Because v and xgx are uncorrelated, the covariance between
xx and the composite error v — fxex is Cov(xg,v — frex) = —fx Cov(xg,ex) =
—ﬁKafk. It follows that, in the CEV case, the OLS regression of y on xi, xs,...,Xg
generally gives inconsistent estimators of al/ of the f3;.
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The plims of the ﬁ; for j # K are difficult to characterize except under special
assumptions. If xy is uncorrelated with x;, all j # K, then so is xk, and it follows that
plim ﬂ} = p;, all j # K. The plim of ﬁK can be characterized in any case. Problem
4.10 asks you to show that

o
Plim(ﬁK) = Bx (n() (4.47)

2 2
Oy +o;,
where rj is the linear projection error in
Xj =00 +01X] +02x2 + - +0g_1XKk_1 + %

An important implication of equation (4.47) is that, because the term multiplying Sy
is always between zero and one, |plim(f)| < |Bx|. This is called the attenuation bias
in OLS due to classical errors-in-variables: on average (or in large samples), the esti-
mated OLS effect will be attenuated as a result of the presence of classical errors-in-
variables. If S is positive, fx will tend to underestimate S ; if B« is negative, 5 will
tend to overestimate f.

In the case of a single explanatory variable (K = 1) measured with error, equation
(4.47) becomes

2 2
GXT + o

. a2.
plim ; = B, <7> (4.48)
The term multiplying £, in equation (4.48) is Var(x;)/Var(x;), which is always less
than unity under the CEV assumption (4.45). As Var(e;) shrinks relative to Var(x;),
the attentuation bias disappears.

In the case with multiple explanatory variables, equation (4.47) shows that it is not
01,2(; that affects plim(f) but the variance in Xy after netting out the other explana-
tory variables. Thus, the more collinear xj is with the other explanatory variables,
the worse is the attenuation bias.

Example 4.8 (Measurement Error in Family Income): Consider the problem of
estimating the causal effect of family income on college grade point average, after
controlling for high school grade point average and SAT score:

colGPA = 3, + B, faminc* + p,hsGPA + 3SAT + v

where faminc* is actual annual family income. Precise data on co/GPA, hsGPA, and
SAT are relatively easy to obtain from school records. But family income, especially
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as reported by students, could be mismeasured. If faminc = faminc* + e;, and the
CEV assumptions hold, then using reported family income in place of actual family
income will bias the OLS estimator of f;, toward zero. One consequence is that a
hypothesis test of Hy: f#; = 0 will have a higher probability of Type II error.

If measurement error is present in more than one explanatory variable, deriving
the inconsistency in the OLS estimators under extensions of the CEV assumptions is
complicated and does not lead to very usable results.

In some cases it is clear that the CEV assumption (4.45) cannot be true. For ex-
ample, suppose that frequency of marijuana usage is to be used as an explanatory
variable in a wage equation. Let smoked* be the number of days, out of the last 30,
that a worker has smoked marijuana. The variable smoked is the self-reported num-
ber of days. Suppose we postulate the standard measurement error model, smoked =
smoked* + e, and let us even assume that people try to report the truth. It seems
very likely that people who do not smoke marijuana at all—so that smoked* = 0—
will also report smoked = 0. In other words, the measurement error is zero for people
who never smoke marijuana. When smoked™ > 0 it is more likely that someone mis-
counts how many days he or she smoked marijuana. Such miscounting almost cer-
tainly means that e; and smoked* are correlated, a finding which violates the CEV
assumption (4.45).

A general situation where assumption (4.45) is necessarily false occurs when the
observed variable xx has a smaller population variance than the unobserved variable
Xg. Of course, we can rarely know with certainty whether this is the case, but we
can sometimes use introspection. For example, consider actual amount of schooling
versus reported schooling. In many cases, reported schooling will be a rounded-off
version of actual schooling; therefore, reported schooling is less variable than actual
schooling.

Problems

4.1. Consider a standard log(wage) equation for men under the assumption that all
explanatory variables are exogenous:

log(wage) = f, + fimarried + preduc + zy + u (4.49)
E(u | married, educ,z) = 0

where z contains factors other than marital status and education that can affect wage.
When g, is small, 100 - §, is approximately the ceteris paribus percentage difference
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in wages between married and unmarried men. When f; is large, it is preferable to
use the exact percentage difference in E(wage | married, educ,z). Call this 6.

a. Show that, if u is independent of all explanatory variables in equation (4.49), then
6, =100 - [exp(f;) — 1]. [Hint: Find E(wage |married, educ,z) for married =1 and
married = 0, and find the percentage difference.] A natural, consistent, estimator of
0, is 0; = 100 - [exp(B,) — 1], where f, is the OLS estimator from equation (4.49).

b. Use the delta method (see Section 3.5.2) to show that asymptotic standard error of
01 is [100 - eXP(/;'l)] 'Se(ﬁl)'

c. Repeat parts a and b by finding the exact percentage change in E(wage | married,
educ,z) for any given change in educ, Aeduc. Call this 6,. Explain how to estimate
0, and obtain its asymptotic standard error.

d. Use the data in NLS80.RAW to estimate equation (4.49), where z contains the
remaining variables in equation (4.29) (except ability, of course). Find 0 and its
standard error; find 6, and its standard error when Aeduc = 4.

4.2. a. Show that, under random sampling and the zero conditional mean as-
sumption E(u|x) = 0, E(#|X) = g if X'X is nonsingular. (Hint: Use Property CE.5
in the appendix to Chapter 2.)

b. In addition to the assumptions from part a, assume that Var(u|x) = ¢2. Show
that Var(B]X) = 62(X'X) ™"

4.3. Suppose that in the linear model (4.5), E(x'u) = 0 (where x contains unity),
Var(u|x) = ¢, but E(u|x) # E(u).
a. Is it true that E(u? |x) = ¢2?

b. What relevance does part a have for OLS estimation?

4.4. Show that the estimator B = N~' 32, #2x/x; is consistent for B = E(u>x'x) by

i=1"i
showing that N~' SN a2x/x; = N~ "N w?x/x; + 0,(1). [Hint: Write 7 = u? —
2xiu; (f— B) + [xi(B — ﬂ}z, and use the facts that sample averages are O,(1) when
expectations exist and that f— f = 0,(1). Assume that all necessary expectations

exist and are finite. |

4.5. Let y and z be random scalars, and let x be a 1 x K random vector, where one
element of x can be unity to allow for a nonzero intercept. Consider the population
model

E(y|x,z) =xf+yz (4.50)
Var(y|x,z) = o? (4.51)
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where interest lies in the K x 1 vector f. To rule out trivialities, assume that y # 0. In
addition, assume that x and z are orthogonal in the population: E(x'z) = 0.
Consider two estimators of # based on N independent and identically distributed
observations: (1) # (obtained along with ) is from the regression of y on x and z; (2)
B is from the regression of y on x. Both estimators are consistent for # under equa-

tion (4.50) and E(x'z) = 0 (along with the standard rank conditions).

a. Show that, without any additional assumptions (except those needed to apply
the law of large numbers and central limit theorem), Avar v/N(f—p)—
Avar vN(f — p) is always positive semidefinite (and usually positive definite).
Therefore—from the standpoint of asymptotic analysis—it is always better under
equations (4.50) and (4.51) to include variables in a regression model that are
uncorrelated with the variables of interest.

b. Consider the special case where z = (xgx — pux)?, where i = E(xg), and xi is
symetrically distributed: E[(xgx — ux)°] = 0. Then f is the partial effect of xx on
E(y|x) evaluated at xx = ug. Is it better to estimate the average partial effect with or
without (xx — sx)? included as a regressor?

c. Under the setup in Problem 2.3, with Var(y|x) = o2, is it better to estimate f3,
and f, with or without x;x; in the regression?

4.6. Let the variable nonwhite be a binary variable indicating race: nonwhite = 1 if
the person is a race other than white. Given that race is determined at birth and is
beyond an individual’s control, explain how nonwhite can be an endogenous explan-
atory variable in a regression model. In particular, consider the three kinds of endo-
geneity discussed in Section 4.1.

4.7. Consider estimating the effect of personal computer ownership, as represented
by a binary variable, PC, on college GPA, colGPA. With data on SAT scores and
high school GPA you postulate the model

COZGPA :ﬂo +ﬂthGPA +ﬁ25AT+ﬁ3PC+ u

a. Why might u and PC be positively correlated?

b. If the given equation is estimated by OLS using a random sample of college
students, is f; likely to have an upward or downward asymptotic bias?

c. What are some variables that might be good proxies for the unobservables in u
that are correlated with PC?

4.8. Consider a population regression with two explanatory variables, but where
they have an interactive effect and x, appears as a quadratic:
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E(y|x1,x2) = By + Bix1 + Baxa + faxix2 + f4x3

Let 4, = E(x;) and i, = E(x3) be the population means of the explanatory variables.

a. Let o denote the average partial effect (across the distribution of the explanatory
variables) of x; on E(y|xy,x,), and let o be the same for x,. Find «; and o, in terms
of the B, and ;.

b. Rewrite the regression function so that «; and «, appear directly. (Note that u,
and u, will also appear.)

c. Given a random sample, what regression would you run to estimate o; and oy
directly? What if you do not know y; and u,?

d. Apply part c to the data in NLS80.RAW, where y = log(wage), x; = educ, and
x, = exper. (You will have to plug in the sample averages of educ and exper.) Com-
pare coefficients and standard errors when the interaction term is educ-exper instead,
and discuss.

4.9. Consider a linear model where the dependent variable is in logarithmic form,
and the lag of log(y) is also an explanatory variable:

log(y) = Bo +xB + oy log(y_1) +u, E(u|x,y 1) =0

where the inclusion of log(y_,) might be to control for correlation between policy
variables in x and a previous value of y; see Example 4.4.

a. For estimating , why do we obtain the same estimator if the growth in y, log(y) —
log(y_;), is used instead as the dependent variable?

b. Suppose that there are no covariates x in the equation. Show that, if the dis-
tributions of y and y_, are identical, then |a;| < 1. This is the regression-to-the-mean
phenomenon in a dynamic setting. {Hint: Show that «; = Corr[log(y),log(y_;)]-}

4.10. Use Property LP.7 from Chapter 2 [particularly equation (2.56)] and Problem
2.6 to derive equation (4.47). (Hint: First use Problem 2.6 to show that the popula-
tion residual rg, in the linear projection of xg on 1,xy,...,xx_1, 18 ¥ + ex. Then
find the projection of y on rg and use Property LP.7.)

4.11. a. In Example 4.3, use KWW and IQ simultaneously as proxies for ability
in equation (4.29). Compare the estimated return to education without a proxy for
ability and with /Q as the only proxy for ability.

b. Test KWW and IQ for joint significance in the estimated equation from part a.

c. When KWW and IQ are used as proxies for abil, does the wage differential be-
tween nonblacks and blacks disappear? What is the estimated differential?
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d. Add the interactions educ(IQ — 100) and educ(KWW — KWW) to the regression
from part a, where KWW is the average score in the sample. Are these terms jointly
significant using a standard F test? Does adding them affect any important con-
clusions?

4.12. Redo Example 4.4, adding the variable union—a dummy variable indicat-
ing whether the workers at the plant are unionized—as an additional explanatory
variable.

4.13. Use the data in CORNWELL.RAW (from Cornwell and Trumball, 1994) to
estimate a model of county level crime rates, using the year 1987 only.

a. Using logarithms of all variables, estimate a model relating the crime rate to the
deterrent variables prbarr, prbconv, prbpris, and avgsen.

b. Add log(crmrte) for 1986 as an additional explanatory variable, and comment on
how the estimated elasticities differ from part a.

c. Compute the F statistic for joint significance of all of the wage variables (again in
logs), using the restricted model from part b.

d. Redo part c but make the test robust to heteroskedasticity of unknown form.

4.14. Use the data in ATTEND.RAW to answer this question.

a. To determine the effects of attending lecture on final exam performance, estimate
a model relating stndfnl (the standardized final exam score) to atndrte (the percent of
lectures attended). Include the binary variables frosh and soph as explanatory vari-
ables. Interpret the coefficient on atndrte, and discuss its significance.

b. How confident are you that the OLS estimates from part a are estimating the
causal effect of attendence? Explain.

c. As proxy variables for student ability, add to the regression priGPA (prior cumu-
lative GPA) and ACT (achievement test score). Now what is the effect of atndrte?
Discuss how the effect differs from that in part a.

d. What happens to the significance of the dummy variables in part ¢ as compared
with part a? Explain.

e. Add the squares of priGPA and ACT to the equation. What happens to the co-
efficient on atndrte? Are the quadratics jointly significant?

f. To test for a nonlinear effect of atndrte, add its square to the equation from part e.
What do you conclude?

4.15. Assume that y and each x; have finite second moments, and write the linear
projection of y on (1, xy,...,xg) as
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y=PBy+pix1+ -+ Prxg+u=pFy+xp+u
Ew)=0, E(xu)=0, j=12,...,K
a. Show that o7 = Var(x) + o;.

b. For a random draw 7 from the population, write y; = 5, + x;# + u,;. Evaluate the
following assumption, which has been known to appear in econometrics textbooks:
“Var(u;) = o = Var(y,) for all i.”

c. Define the population R-squared by p? = 1 — o} /a7 = Var(x)/o}. Show that the
R-squared, R> = 1 — SSR/SST, is a consistent estimator of p?, where SSR is the OLS
sum of squared residuals and SST = Zi}i (v = 7)? is the total sum of squares.

d. Evaluate the following statement: “In the presence of heteroskedasticity, the R-

squared from an OLS regression is meaningless.” (This kind of statement also tends
to appear in econometrics texts.)






5 Instrumental Variables Estimation of Single-Equation Linear Models

In this chapter we treat instrumental variables estimation, which is probably second
only to ordinary least squares in terms of methods used in empirical economic re-
search. The underlying population model is the same as in Chapter 4, but we explic-
itly allow the unobservable error to be correlated with the explanatory variables.

5.1 Instrumental Variables and Two-Stage Least Squares

5.1.1 Motivation for Instrumental Variables Estimation

To motivate the need for the method of instrumental variables, consider a linear
population model

y=PBg+Bix1+Byxo+ -+ Pyxk +u (5.1)
E(u) =0, Cov(xj,u) =0, j=12...,K—-1 (5.2)

but where xx might be correlated with u. In other words, the explanatory variables
X1, X2,...,Xg_] are exogenous, but xg is potentially endogenous in equation (5.1).
The endogeneity can come from any of the sources we discussed in Chapter 4. To fix
ideas it might help to think of u as containing an omitted variable that is uncorrelated
with all explanatory variables except xx. So, we may be interested in a conditional
expectation as in equation (4.18), but we do not observe ¢, and ¢ is correlated with
XK.

As we saw in Chapter 4, OLS estimation of equation (5.1) generally results in in-
consistent estimators of a/l the ; if Cov(x, u) # 0. Further, without more informa-
tion, we cannot consistently estimate any of the parameters in equation (5.1).

The method of instrumental variables (IV) provides a general solution to the
problem of an endogenous explanatory variable. To use the IV approach with xg
endogenous, we need an observable variable, z;, not in equation (5.1) that satisfies
two conditions. First, z; must be uncorrelated with u:

Cov(zy,u) =0 (5.3)

In other words, like xj,...,xk_1, z; is exogenous in equation (5.1).

The second requirement involves the relationship between z; and the endogenous
variable, xx. A precise statement requires the linear projection of xx onto all the
exogenous variables:

Xk =00 +01X1 +02x2 + -+ +0x_1xXk—1 + 0121 + 1k (54)

where, by definition of a linear projection error, E(rx) = 0 and rg is uncorrelated
with x;, x»,...,xk_1, and z;. The key assumption on this linear projection is that the
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coefficient on z; is nonzero:
0, #0 (5.5)

This condition is often loosely described as “z; is correlated with xg,” but that
statement is not quite correct. The condition ; # 0 means that z; is partially corre-
lated with xg once the other exogenous variables xp, ..., xg_; have been netted out.
If xx is the only explanatory variable in equation (5.1), then the linear projection is
Xg =Jdo + 0121 + rg, where 0, = Cov(z|,xg)/Var(z;), and so condition (5.5) and
Cov(zy,xk) # 0 are the same.

At this point we should mention that we have put no restrictions on the distribu-
tion of xg or z;. In many cases xg and z; will be both essentially continuous, but
sometimes xg, z1, or both are discrete. In fact, one or both of xg and z; can be binary
variables, or have continuous and discrete characteristics at the same time. Equation
(5.4) is simply a linear projection, and this is always defined when second moments of
all variables are finite.

When z; satisfies conditions (5.3) and (5.5), then it is said to be an instrumental
variable (IV) candidate for xg. (Sometimes z; is simply called an instrument for xg.)
Because xp,...,xgx_; are already uncorrelated with u, they serve as their own instru-
mental variables in equation (5.1). In other words, the full list of instrumental vari-
ables is the same as the list of exogenous variables, but we often just refer to the
instrument for the endogenous explanatory variable.

The linear projection in equation (5.4) is called a reduced form equation for the
endogenous explanatory variable xg. In the context of single-equation linear models,
a reduced form always involves writing an endogenous variable as a linear projection
onto all exogenous variables. The “reduced form” terminology comes from simulta-
neous equations analysis, and it makes more sense in that context. We use it in all IV
contexts because it is a concise way of stating that an endogenous variable has been
linearly projected onto the exogenous variables. The terminology also conveys that
there is nothing necessarily structural about equation (5.4).

From the structural equation (5.1) and the reduced form for xg, we obtain a
reduced form for y by plugging equation (5.4) into equation (5.1) and rearranging:

y=oo+oux;+- - +og 1Xg_1+A1z1 +v (5.6)

where v = u + fgrx is the reduced form error, o; = f; + fxd;, and 1 = B0;. By our
assumptions, v is uncorrelated with all explanatory variables in equation (5.6), and so
OLS consistently estimates the reduced form parameters, the o; and 4;.

Estimates of the reduced form parameters are sometimes of interest in their own
right, but estimating the structural parameters is generally more useful. For example,
at the firm level, suppose that xg is job training hours per worker and y is a measure
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of average worker productivity. Suppose that job training grants were randomly
assigned to firms. Then it is natural to use for z; either a binary variable indicating
whether a firm received a job training grant or the actual amount of the grant per
worker (if the amount varies by firm). The parameter ;. in equation (5.1) is the effect
of job training on worker productivity. If z; is a binary variable for receiving a job
training grant, then 4, is the effect of receiving this particular job training grant on
worker productivity, which is of some interest. But estimating the effect of an hour of
general job training is more valuable.

We can now show that the assumptions we have made on the IV z; solve the
identification problem for the f5; in equation (5.1). By identification we mean that we
can write the f3; in terms of population moments in observable variables. To see how,
write equation (5.1) as

y=xf+u (5.7)

where the constant is absorbed into x so that x = (1, x3,...,xk). Write the 1 x K
vector of all exogenous variables as

7= (1,X27 s afohzl)
Assumptions (5.2) and (5.3) imply the K population orthogonality conditions
E(z'u) =0 (5.8)

Multiplying equation (5.7) through by z’, taking expectations, and using equation
(5.8) gives

[E(z'x)| = E(z'y) (5.9)
where E(z'x) is K x K and E(z’y) is K x 1. Equation (5.9) represents a system of K
linear equations in the K unknowns S, f,, ..., fx. This system has a unique solution

if and only if the K x K matrix E(z'x) has full rank; that is,
rank E(z'x) = K (5.10)

in which case the solution is

B = [E(z'x)]'E(zy) (5.11)

The expectations E(z'x) and E(z’y) can be consistently estimated using a random
sample on (X, y,z;), and so equation (5.11) identifies the vector f.

It is clear that condition (5.3) was used to obtain equation (5.11). But where have
we used condition (5.5)? Let us maintain that there are no linear dependencies among
the exogenous variables, so that E(z'z) has full rank K; this simply rules out perfect
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collinearity in z in the population. Then, it can be shown that equation (5.10) holds if
and only if 6; # 0. (A more general case, which we cover in Section 5.1.2, is covered
in Problem 5.12.) Therefore, along with the exogeneity condition (5.3), assumption
(5.5) is the key identification condition. Assumption (5.10) is the rank condition for
identification, and we return to it more generally in Section 5.2.1.

Given a random sample {(x;, y;,z;1): i =1,2,..., N} from the population, the in-
strumental variables estimator of f is

N -1 N
b= <N1 Zz;x,) (lez;y,) = (Z'X)'2'Y
i=1 i=1

where Z and X are N x K data matrices and Y is the N x 1 data vector on the y;.
The consistency of this estimator is immediate from equation (5.11) and the law of
large numbers. We consider a more general case in Section 5.2.1.

When searching for instruments for an endogenous explanatory variable, con-
ditions (5.3) and (5.5) are equally important in identifying f. There is, however, one
practically important difference between them: condition (5.5) can be tested, whereas
condition (5.3) must be maintained. The reason for this disparity is simple: the
covariance in condition (5.3) involves the unobservable u, and therefore we cannot
test anything about Cov(zy, u).

Testing condition (5.5) in the reduced form (5.4) is a simple matter of computing a
t test after OLS estimation. Nothing guarantees that rg satisfies the requisite homo-
skedasticity assumption (Assumption OLS.3), so a heteroskedasticity-robust ¢ statis-
tic for 6, is often warranted. This statement is especially true if xx is a binary variable
or some other variable with discrete characteristics.

A word of caution is in order here. Econometricians have been known to say that
“it is not possible to test for identification.” In the model with one endogenous vari-
able and one instrument, we have just seen the sense in which this statement is true:
assumption (5.3) cannot be tested. Nevertheless, the fact remains that condition (5.5)
can and should be tested. In fact, recent work has shown that the strength of the re-
jection in condition (5.5) (in a p-value sense) is important for determining the finite
sample properties, particularly the bias, of the IV estimator. We return to this issue in
Section 5.2.6.

In the context of omitted variables, an instrumental variable, like a proxy variable,
must be redundant in the structural model [that is, the model that explicitly contains
the unobservables; see condition (4.25)]. However, unlike a proxy variable, an IV for
xxg should be uncorrelated with the omitted variable. Remember, we want a proxy
variable to be highly correlated with the omitted variable.
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Example 5.1 (Instrumental Variables for Education in a Wage Equation): Consider
a wage equation for the U.S. working population

log(wage) = By + fexper + frexper® + Byeduc + u (5.12)

where u is thought to be correlated with educ because of omitted ability, as well as
other factors, such as quality of education and family background. Suppose that we
can collect data on mother’s education, motheduc. For this to be a valid instrument
for educ we must assume that motheduc is uncorrelated with # and that 6, # 0 in the
reduced form equation

educ = 6y + d1exper + drexper® + Oymotheduc + r

There is little doubt that educ and motheduc are partially correlated, and this corre-
lation is easily tested given a random sample from the population. The potential
problem with motheduc as an instrument for educ is that motheduc might be corre-
lated with the omitted factors in u: mother’s education is likely to be correlated with
child’s ability and other family background characteristics that might be in u.

A variable such as the last digit of one’s social security number makes a poor IV
candidate for the opposite reason. Because the last digit is randomly determined, it is
independent of other factors that affect earnings. But it is also independent of edu-
cation. Therefore, while condition (5.3) holds, condition (5.5) does not.

By being clever it is often possible to come up with more convincing instruments.
Angrist and Krueger (1991) propose using quarter of birth as an IV for education. In
the simplest case, let frstqrt be a dummy variable equal to unity for people born in the
first quarter of the year and zero otherwise. Quarter of birth is arguably independent
of unobserved factors such as ability that affect wage (although there is disagreement
on this point; see Bound, Jaeger, and Baker, 1995). In addition, we must have ¢, # 0
in the reduced form

educ = 6y + d1exper + drexper® + 0, frstqrt +r

How can quarter of birth be (partially) correlated with educational attainment?
Angrist and Krueger (1991) argue that compulsory school attendence laws induce a
relationship between educ and fistqrt: at least some people are forced, by law, to at-
tend school longer than they otherwise would, and this fact is correlated with quarter
of birth. We can determine the strength of this association in a particular sample by
estimating the reduced form and obtaining the ¢ statistic for Hy: ¢, = 0.

This example illustrates that it can be very difficult to find a good instrumental
variable for an endogenous explanatory variable because the variable must satisfy
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two different, often conflicting, criteria. For motheduc, the issue in doubt is whether
condition (5.3) holds. For frstgrt, the initial concern is with condition (5.5). Since
condition (5.5) can be tested, frstgrt has more appeal as an instrument. However, the
partial correlation between educ and frstgrt is small, and this can lead to finite sample
problems (see Section 5.2.6). A more subtle issue concerns the sense in which we are
estimating the return to education for the entire population of working people. As we
will see in Chapter 18, if the return to education is not constant across people, the IV
estimator that uses frstgrt as an IV estimates the return to education only for those
people induced to obtain more schooling because they were born in the first quarter
of the year. These make up a relatively small fraction of the population.

Convincing instruments sometimes arise in the context of program evaluation,
where individuals are randomly selected to be eligible for the program. Examples
include job training programs and school voucher programs. Actual participation is
almost always voluntary, and it may be endogenous because it can depend on unob-
served factors that affect the response. However, it is often reasonable to assume that
eligibility is exogenous. Because participation and eligibility are correlated, the latter
can be used as an IV for the former.

A valid instrumental variable can also come from what is called a natural experi-
ment. A natural experiment occurs when some (often unintended) feature of the setup
we are studying produces exogenous variation in an otherwise endogenous explana-
tory variable. The Angrist and Krueger (1991) example seems, at least initially, to be
a good natural experiment. Another example is given by Angrist (1990), who studies
the effect of serving in the Vietnam war on the earnings of men. Participation in the
military is not necessarily exogenous to unobserved factors that affect earnings, even
after controlling for education, nonmilitary experience, and so on. Angrist used the
following observation to obtain an instrumental variable for the binary Vietnam war
participation indicator: men with a lower draft lottery number were more likely to
serve in the war. Angrist verifies that the probability of serving in Vietnam is indeed
related to draft lottery number. Because the lottery number is randomly determined,
it seems like an ideal IV for serving in Vietnam. There are, however, some potential
problems. It might be that men who were assigned a low lottery number chose to
obtain more education as a way of increasing the chance of obtaining a draft defer-
ment. If we do not control for education in the earnings equation, lottery number
could be endogenous. Further, employers may have been willing to invest in job
training for men who are unlikely to be drafted. Again, unless we can include mea-
sures of job training in the earnings equation, condition (5.3) may be violated. (This
reasoning assumes that we are interested in estimating the pure effect of serving in
Vietnam, as opposed to including indirect effects such as reduced job training.)
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Hoxby (1994) uses topographical features, in particular the natural boundaries
created by rivers, as I'Vs for the concentration of public schools within a school dis-
trict. She uses these I'Vs to estimate the effects of competition among public schools
on student performance. Cutler and Glaeser (1997) use the Hoxby instruments, as
well as others, to estimate the effects of segregation on schooling and employment
outcomes for blacks. Levitt (1997) provides another example of obtaining instrumen-
tal variables from a natural experiment. He uses the timing of mayoral and guber-
natorial elections as instruments for size of the police force in estimating the effects of
police on city crime rates. (Levitt actually uses panel data, something we will discuss
in Chapter 11.)

Sensible IVs need not come from natural experiments. For example, Evans and
Schwab (1995) study the effect of attending a Catholic high school on various out-
comes. They use a binary variable for whether a student is Catholic as an IV for
attending a Catholic high school, and they spend much effort arguing that religion is
exogenous in their versions of equation (5.7). [In this application, condition (5.5) is
easy to verify.] Economists often use regional variation in prices or taxes as instru-
ments for endogenous explanatory variables appearing in individual-level equations.
For example, in estimating the effects of alcohol consumption on performance in
college, the local price of alcohol can be used as an IV for alcohol consumption,
provided other regional factors that affect college performance have been appropri-
ately controlled for. The idea is that the price of alcohol, including any taxes, can be
assumed to be exogenous to each individual.

Example 5.2 (College Proximity as an 1V for Education): Using wage data for
1976, Card (1995) uses a dummy variable that indicates whether a man grew up in
the vicinity of a four-year college as an instrumental variable for years of schooling.
He also includes several other controls. In the equation with experience and its
square, a black indicator, southern and urban indicators, and regional and urban
indicators for 1966, the instrumental variables estimate of the return to schooling is
.132, or 13.2 percent, while the OLS estimate is 7.5 percent. Thus, for this sample of
data, the IV estimate is almost twice as large as the OLS estimate. This result would
be counterintuitive if we thought that an OLS analysis suffered from an upward
omitted variable bias. One interpretation is that the OLS estimators suffer from the
attenuation bias as a result of measurement error, as we discussed in Section 4.4.2.
But the classical errors-in-variables assumption for education is questionable. Another
interpretation is that the instrumental variable is not exogenous in the wage equation:
location is not entirely exogenous. The full set of estimates, including standard errors
and ¢ statistics, can be found in Card (1995). Or, you can replicate Card’s results in
Problem 5.4.
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5.1.2 Multiple Instruments: Two-Stage Least Squares

Consider again the model (5.1) and (5.2), where xx can be correlated with u. Now,
however, assume that we have more than one instrumental variable for xg. Let zy,
z3, ...,z be variables such that

Cov(zp,u) =0, h=12...,.M (5.13)

so that each z; is exogenous in equation (5.1). If each of these has some partial cor-
relation with xg, we could have M different IV estimators. Actually, there are many
more than this—more than we can count—since any linear combination of xi,
X2,...,XK_1, Z1, Z2, - - . , 2y 18 uncorrelated with u. So which IV estimator should we
use?

In Section 5.2.3 we show that, under certain assumptions, the two-stage least
squares (2SLS) estimator is the most efficient IV estimator. For now, we rely on
intuition.

To illustrate the method of 2SLS, define the vector of exogenous variables again by
z=(l,x1,x2,...,Xk-1,21,---,2m), @ 1 x L vector (L = K + M). Out of all possible
linear combinations of z that can be used as an instrument for xg, the method of
2SLS chooses that which is most highly correlated with xg. If xx were exogenous,
then this choice would imply that the best instrument for xg is simply itself. Ruling
this case out, the linear combination of z most highly correlated with xg is given by
the linear projection of xgx on z. Write the reduced form for xx as

Xk =00 +01x] + - +0x_1XKk_1+ 0121 + -+ Opzpy +rg (5.14)

where, by definition, rx has zero mean and is uncorrelated with each right-hand-side
variable. As any linear combination of z is uncorrelated with u,

Xg =00 +01x1 + - +0g_1xk_1 +O1z1 + -+ Oyzy (5.15)

is uncorrelated with u. In fact, xj; is often interpreted as the part of xx that is
uncorrelated with u. If xg is endogenous, it is because rg is correlated with u.

If we could observe xj, we would use it as an instrument for xx in equation (5.1)
and use the IV estimator from the previous subsection. Since the J; and 6, are pop-
ulation parameters, xy is not a usable instrument. However, as long as we make the
standard assumption that there are no exact linear dependencies among the exoge-
nous variables, we can consistently estimate the parameters in equation (5.14) by
OLS. The sample analogues of the x}; for each observation i are simply the OLS
fitted values:

Fik = 00 + 01X + - - +5K—1Xi,K—1 + 01z + -+ Oy zing (5.16)
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Now, for each observation i, define the vector X; = (1,xu,...,%; k-1, %), [ =
1,2,...,N. Using X; as the instruments for x; gives the IV estimator

N 1/ N

p= (Z&fx,) ( ﬁ[y,») = (X'X)"'X'Y (5.17)
i1 i1

where unity is also the first element of x;.

The IV estimator in equation (5.17) turns out to be an OLS estimator. To see this
fact, note that the N x (K + 1) matrix X can be expressed as X = Z(Z'Z) ' Z'X =
P_X, where the projection matrix P, = Z(Z'Z)"'Z’ is idempotent and symmetric.
Therefore, X'X = X'PzX = (P2zX)'P,X = X’X. Plugging this expression into equa-
tion (5.17) shows that the IV estimator that uses instruments X; can be written as
ﬁ = (X’ X)le/Y. The name “two-stage least squares’” comes from this procedure.

To summarize, ﬁ can be obtained from the following steps:

1. Obtain the fitted values xXg from the regression
Xg On 1, Xlyoo oy XK—15Z1y-+ 9y ZM (518)

where the 7 subscript is omitted for simplicity. This is called the first-stage regression.
2. Run the OLS regression

yonl, xp,...,xg_1,Xg (5.19)
This is called the second-stage regression, and it produces the /?l

In practice, it is best to use a software package with a 2SLS command rather than
explicitly carry out the two-step procedure. Carrying out the two-step procedure
explicitly makes one susceptible to harmful mistakes. For example, the following,
seemingly sensible, two-step procedure is generally inconsistent: (1) regress xgx on
1,z1,...,zy and obtain the fitted values, say Xk; (2) run the regression in (5.19) with
Xk in place of Xg. Problem 5.11 asks you to show that omitting xi,...,xg_; in the
first-stage regression and then explicitly doing the second-stage regression produces
inconsistent estimators of the ;.

Another reason to avoid the two-step procedure is that the OLS standard errors
reported with regression (5.19) will be incorrect, something that will become clear
later. Sometimes for hypothesis testing we need to carry out the second-stage regres-
sion explicitly—see Section 5.2.4.

The 2SLS estimator and the IV estimator from Section 5.1.1 are identical when
there is only one instrument for xg. Unless stated otherwise, we mean 2SLS whenever
we talk about IV estimation of a single equation.
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What is the analogue of the condition (5.5) when more than one instrument is
available with one endogenous explanatory variable? Problem 5.12 asks you to show
that E(z'x) has full column rank if and only if at least one of the ; in equation (5.14)
is nonzero. The intuition behind this requirement is pretty clear: we need at least one
exogenous variable that does not appear in equation (5.1) to induce variation in xg
that cannot be explained by xi,...,xgx_;. Identification of # does not depend on the
values of the J,, in equation (5.14).

Testing the rank condition with a single endogenous explanatory variable and
multiple instruments is straightforward. In equation (5.14) we simply test the null
hypothesis

H()191=0, 92:07---79M:0 (5.20)

against the alternative that at least one of the 0 is different from zero. This test gives
a compelling reason for explicitly running the first-stage regression. If rx in equation
(5.14) satisfies the OLS homoskedasticity assumption OLS.3, a standard F statistic or
Lagrange multiplier statistic can be used to test hypothesis (5.20). Often a hetero-
skedasticity-robust statistic is more appropriate, especially if xx has discrete charac-
teristics. If we cannot reject hypothesis (5.20) against the alternative that at least one
0y, is different from zero, at a reasonably small significance level, then we should have
serious reservations about the proposed 2SLS procedure: the instruments do not pass
a minimal requirement.

The model with a single endogenous variable is said to be overidentified when M >
1 and there are M — 1 overidentifying restrictions. This terminology comes from the
fact that, if each z;, has some partial correlation with xg, then we have M — 1 more
exogenous variables than needed to identify the parameters in equation (5.1). For
example, if M = 2, we could discard one of the instruments and still achieve identi-
fication. In Chapter 6 we will show how to test the validity of any overidentifying
restrictions.

5.2 General Treatment of 2SLS

5.2.1 Consistency

We now summarize asymptotic results for 2SLS in a single-equation model with
perhaps several endogenous variables among the explanatory variables. Write the
population model as in equation (5.7), where x is 1 x K and generally includes unity.
Several elements of x may be correlated with u. As usual, we assume that a random
sample is available from the population.
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ASSUMPTION 2SLS.1:  For some | x L vector z, E(z'u) = 0.

Here we do not specify where the elements of z come from, but any exogenous ele-
ments of x, including a constant, are included in z. Unless every element of x is ex-
ogenous, z will have to contain variables obtained from outside the model. The zero
conditional mean assumption, E(u|z) = 0, implies Assumption 2SLS.1.

The next assumption contains the general rank condition for single-equation
analysis.

ASSUMPTION 2SLS.2: (a) rank E(z'z) = L; (b) rank E(z'x) = K.

Technically, part a of this assumption is needed, but it is not especially important,
since the exogenous variables, unless chosen unwisely, will be linearly independent in
the population (as well as in a typical sample). Part b is the crucial rank condition for
identification. In a precise sense it means that z is sufficiently linearly related to x so
that rank E(z'x) has full column rank. We discussed this concept in Section 5.1 for
the situation in which x contains a single endogenous variable. When x is exogenous,
so that z = x, Assumption 2SLS.1 reduces to Assumption OLS.1 and Assumption
2SLS.2 reduces to Assumption OLS.2.

Necessary for the rank condition is the order condition, L. > K. In other words, we
must have at least as many instruments as we have explanatory variables. If we do
not have as many instruments as right-hand-side variables, then £ is not identified.
However, L > K is no guarantee that 2SLS.2b holds: the elements of z might not be
appropriately correlated with the elements of x.

We already know how to test Assumption 2SLS.2b with a single endogenous ex-
planatory variable. In the general case, it is possible to test Assumption 2SLS.2b,
given a random sample on (x,z), essentially by performing tests on the sample ana-
logue of E(z'x), Z'X/N. The tests are somewhat complicated; see, for example Cragg
and Donald (1996). Often we estimate the reduced form for each endogenous ex-
planatory variable to make sure that at least one element of z not in x is significant.
This is not sufficient for the rank condition in general, but it can help us determine if
the rank condition fails.

Using linear projections, there is a simple way to see how Assumptions 2SLS.1 and
2SLS.2 identify B. First, assuming that E(z'z) is nonsingular, we can always write
the linear projection of x onto z as x* = zIl, where II is the L x K matrix IT =
[E(z'z)] 'E(zx). Since each column of IT can be consistently estimated by regressing
the appropriate element of x onto z, for the purposes of identification of f, we can
treat IT as known. Write x = x* +r, where E(z'r) = 0 and so E(x*'r) = 0. Now, the
2SLS estimator is effectively the IV estimator using instruments x*. Multiplying
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equation (5.7) by x*/, taking expectations, and rearranging gives

E(x*x)p = E(x*'y) (5.21)
since E(x*'u) = 0. Thus, g is identified by g = [E(x*'x)]"'E(x*'y) provided E(x*'x) is
nonsingular. But

E(x*'x) = I'E(z'x) = E(xz)[E(zz)] 'E(z'x)

and this matrix is nonsingular if and only if E(z’x) has rank K; that is, if and only if
Assumption 2SLS.2b holds. If 2SLS.2b fails, then E(x*'x) is singular and f is not
identified. [Note that, because x = x* + r with E(x*'r) = 0, E(x*'x) = E(x*'x*). So f
is identified if and only if rank E(x*'x*) = K]

The 2SLS estimator can be written as in equation (5.17) or as

(e ()] ()5 ()
(5.22)

We have the following consistency result.

THEOREM 5.1 (Consistency of 2SLS): Under Assumptions 2SLS.1 and 2SLS.2, the
2SLS estimator obtained from a random sample is consistent for f.

Proof: Write

~ N N - S
o[ ) o) (o)
i=1 i=1 =1

N N -1 N
AN Xz | [N 2z NS 2w
p) i=1 i=1

and, using Assumptions 2SLS.1 and 2SLS.2, apply the law of large numbers to each
term along with Slutsky’s theorem.

-1

5.2.2 Asymptotic Normality of 2SLS

The asymptotic normality of v/N(B — B) follows from the asymptotic normality of
N2 5N 2/u;, which follows from the central limit theorem under Assumption

2SLS.1 and mild finite second-moment assumptions. The asymptotic variance is
simplest under a homoskedasticity assumption:
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ASSUMPTION 2SLS.3:  E(u’z'z) = ¢’E(z'z), where o> = E(u?).

This assumption is the same as Assumption OLS.3 except that the vector of instru-
ments appears in place of x. By the usual LIE argument, sufficient for Assumption
2SLS.3 is the assumption

E(u?|z) = ¢° (5.23)

which is the same as Var(u|z) = ¢* if E(u|z) = 0. [When x contains endogenous
elements, it makes no sense to make assumptions about Var(u | x).]

THEOREM 5.2 (Asymptotic Normality of 2SLS): Under Assumptions 2SLS.1-2SLS.3,
V/N(B — p) is asymptotically normally distributed with mean zero and variance matrix

o*{E(x'z)[E(z'z)] 'E(z'x)} " (5.24)

The proof of Theorem 5.2 is similar to Theorem 4.2 for OLS and is therefore omitted.
The matrix in expression (5.24) is easily estimated using sample averages. To esti-
mate o> we will need appropriate estimates of the ;. Define the 2SLS residuals as

0=y —x,  i=12..,N (5.25)

Note carefully that these residuals are not the residuals from the second-stage OLS
regression that can be used to obtain the 2SLS estimates. The residuals from the
second-stage regression are y; — ﬁiﬁ. Any 2SLS software routine will compute equa-
tion (5.25) as the 2SLS residuals, and these are what we need to estimate o2.

Given the 2SLS residuals, a consistent (though not unbiased) estimator of 6% under
Assumptions 2SLS.1-2SLS.3 is

62=(N-K)! ZNjuz (5.26)
i=1

Many regression packages use the degrees of freedom adjustment N — K in place of
N, but this usage does not affect the consistency of the estimator.
The K x K matrix

-1
62 (Z 5;;;2,-) =&X'X)"! (5.27)

is a valid estimator of the asymptotic variance of ﬁ under Assumptions 2SLS.1-
2SLS.3. The (asymptotic) standard error of ﬂ; is just the square root of the jth diag-
onal element of matrix (5.27). Asymptotic confidence intervals and ¢ statistics are
obtained in the usual fashion.
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Example 5.3 (Parents’ and Husband’s Education as IVs): We use the data on the
428 working, married women in MROZ.RAW to estimate the wage equation (5.12).
We assume that experience is exogenous, but we allow educ to be correlated with u.
The instruments we use for educ are motheduc, fatheduc, and huseduc. The reduced
form for educ is

educ = 6y + d1exper + drexper? + Oymotheduc + 0, fatheduc + Oshuseduc + r

Assuming that motheduc, fatheduc, and huseduc are exogenous in the log(wage)
equation (a tenuous assumption), equation (5.12) is identified if at least one of 6, 65,
and 65 is nonzero. We can test this assumption using an F test (under homoskedas-
ticity). The F statistic (with 3 and 422 degrees of freedom) turns out to be 104.29,
which implies a p-value of zero to four decimal places. Thus, as expected, educ is
fairly strongly related to motheduc, fatheduc, and huseduc. (Each of the three ¢ sta-
tistics is also very significant.)
When equation (5.12) is estimated by 2SLS, we get the following:

log(wage) = —.187+ .043 exper — .00086 exper® + .080 educ
(.285) (.013) (.00040) (.022)

where standard errors are in parentheses. The 2SLS estimate of the return to educa-
tion is about 8 percent, and it is statistically significant. For comparison, when
equation (5.12) is estimated by OLS, the estimated coefficient on educ is about .107
with a standard error of about .014. Thus, the 2SLS estimate is notably below the
OLS estimate and has a larger standard error.

5.2.3 Asymptotic Efficiency of 2SLS
The appeal of 2SLS comes from its efficiency in a class of IV estimators:

THEOREM 5.3 (Relative Efficiency of 2SLS): Under Assumptions 2SLS.1-2SLS.3,
the 2SLS estimator is efficient in the class of all instrumental variables estimators
using instruments linear in z.

Proof: Let ﬁ be the 2SLS estimator, and let f be any other IV estimator using
instruments linear in z. Let the instruments for f be X = zI', where T is an L x K
nonstochastic matrix. (Note that z is the 1 x L random vector in the population.)
We assume that the rank condition holds for X. For 2SLS, the choice of IVs is
effectively x* = zI1, where IT = [E(z'z)] 'E(z'x) = D~'C. (In both cases, we can re-
place T and IT with \/N-consistent estimators without changing the asymptotic vari-
ances.) Now, under Assumptions 2SLS.1-2SLS.3, we know the asymptotic variance
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of VN(f —p) is 62[E (x*’x*)] , where x* = zI1. It is straightforward to show that
Avar[vVN(f — -p)l=o0 2[E(x! X)T1 [E(X'X)][E(x'X)]"". To show that Avar[v/N(f — B)]
- Avar[\/_ (B — B)] is positive semidefinite (p.s.d.), it suffices to show that E(x*'x*) —
E(x'X)[E(X'X)] 'E(X'x )ispsd But x = x* +r, where E(z'r) = 0, and so E(x'r) = 0.
It follows that E(x'x) = E(X'x*), and so

E(x*'x") — E(X'%)[E(X'R)] 'E(X'x)
= E(x*'x*) — E(x"X)[E(X'X)] 'E(X'x*) = E(s"'s")

where s* = x* — L(x*| X) is the population residual from the linear projection of x*
on X. Because E(s*'s*) is p.s.d, the proof is complete.

Theorem 5.3 is vacuous when L = K because any (nonsingular) choice of I leads
to the same estimator: the IV estimator derived in Section 5.1.1.

When x is exogenous, Theorem 5.3 implies that, under Assumptions 2SLS.1-
2SLS.3, the OLS estimator is efficient in the class of all estimators using instruments
linear in exogenous variables z. This statement is true because x is a subset of z and
so L(x|z) = x.

Another important implication of Theorem 5.3 is that, asymptotically, we always
do better by using as many instruments as are available, at least under homo-
skedasticity. This conclusion follows because using a subset of z as instruments cor-
responds to using a particular linear combination of z. For certain subsets we might
achieve the same efficiency as 2SLS using all of z, but we can do no better. This ob-
servation makes it tempting to add many instruments so that L is much larger than
K. Unfortunately, 2SLS estimators based on many overidentifying restrictions can
cause finite sample problems; see Section 5.2.6.

Since Assumption 2SLS.3 is assumed for Theorem 5.3, it is not surprising that
more efficient estimators are available if Assumption 2SLS.3 fails. If L > K, a more
efficient estimator than 2SLS exists, as shown by Hansen (1982) and White (1982b,
1984). In fact, even if x is exogenous and Assumption OLS.3 holds, OLS is not gen-
erally asymptotically efficient if, for x = z, Assumptions 2SLS.1 and 2SLS.2 hold but
Assumption 2SLS.3 does not. Obtaining the efficient estimator falls under the rubric
of generalized method of moments estimation, something we cover in Chapter 8.

5.2.4 Hypothesis Testing with 2SLS

We have already seen that testing hypotheses about a single f; is straightforward us-
ing an asymptotic ¢ statistic, which has an asymptotic normal distribution under the
null; some prefer to use the 7 distribution when N is small. Generally, one should be
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aware that the normal and ¢ approximations can be poor if NV is small. Hypotheses
about single linear combinations involving the f8; are also easily carried out using a ¢
statistic. The easiest procedure is to define the linear combination of interest, say
0= a1, + af, + -+ axfx, and then to write one of the f; in terms of 6 and the
other elements of B. Then, substitute into the equation of interest so that 6 appears
directly, and estimate the resulting equation by 2SLS to get the standard error of 6.
See Problem 5.9 for an example.

To test multiple linear restrictions of the form Hy: Rf = r, the Wald statistic is just
as in equation (4.13), but with V given by equation (5.27). The Wald statistic, as
usual, is a limiting null )(2Q distribution. Some econometrics packages, such as Stata®,
compute the Wald statistic (actually, its F statistic counterpart, obtained by dividing
the Wald statistic by Q) after 2SLS estimation using a simple test command.

A valid test of multiple restrictions can be computed using a residual-based
method, analogous to the usual F statistic from OLS analysis. Any kind of linear re-
striction can be recast as exclusion restrictions, and so we explicitly cover exclusion
restrictions. Write the model as

y=xip +xp, tu (5.28)
where x; is 1 x Kj and x; is 1 x K5, and interest lies in testing the K, restrictions
Hp: 8, =0 against Hi: g, #0 (5.29)

Both x; and x; can contain endogenous and exogenous variables.

Let z denote the L > K + K5 vector of instruments, and we assume that the rank
condition for identification holds. Justification for the following statistic can be found
in Wooldridge (1995b).

Let 4; be the 2SLS residuals from estimating the unrestricted model using z; as
instruments. Using these residuals, define the 2SLS unrestricted sum of squared
residuals by

N
SSRy = i (5.30)
i=1

In order to define the F statistic for 2SLS, we need the sum of squared residuals from
the second-stage regressions. Thus, let X;; be the 1 x K fitted values from the first-
stage regression X;; on z;. Similarly, X;, are the fitted values from the first-stage re-
gression X;; on z;. Define SSRW as the usual sum of squared residuals from the
unrestricted second-stage regression y on X1, X;. Similarly, SSR, is the sum of squared
residuals from the restricted second-stage regression, y on X;. It can be shown that,
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under Hy: #, = 0 (and Assumptions 2SLS.1-2SLS.3), N - (SSR, — SSR,,)/SSR,,, ~
)(,2(2. It is just as legitimate to use an F-type statistic:

(SSR, — SSR,,) (N —K)

F .
SSR ., K,

(5.31)

is distributed approximately as g, y_k.

Note carefully that SSR, and SSR,, appear in the numerator of (5.31). These
quantities typically need to be computed directly from the second-stage regression. In
the denominator of F is SSR,,, which is the 2SLS sum of squared residuals. This is
what is reported by the 2SLS commands available in popular regression packages.

For 2SLS it is important not to use a form of the statistic that would work for
OLS, namely,

(SSR, — SSR,,) (N —K)
SSR,, K

(5.32)

where SSR, is the 2SLS restricted sum of squared residuals. Not only does expression
(5.32) not have a known limiting distribution, but it can also be negative with positive
probability even as the sample size tends to infinity; clearly such a statistic cannot
have an approximate F distribution, or any other distribution typically associated
with multiple hypothesis testing.

Example 5.4 (Parents’ and Husband’s Education as IVs, continued): We add the
number of young children (kids/t6) and older children (kidsge6) to equation (5.12)
and test for their joint significance using the Mroz (1987) data. The statistic in equa-
tion (5.31) is F = .31; with two and 422 degrees of freedom, the asymptotic p-value is
about .737. There is no evidence that number of children affects the wage for working
women.

Rather than equation (5.31), we can compute an LM-type statistic for testing hy-
pothesis (5.29). Let #; be the 2SLS residuals from the restricted model. That is, obtain
ﬁl from the model y = x;f, + u using instruments z, and let &; = y; — x,-lﬁl. Letting
X;1 and X;» be defined as before, the LM statistic is obtained as NR% from the
regression

ﬁ,‘ on )A(,'hf(,'z, i= 1,2,...,N (533)

where R2 is generally the uncentered R-squared. (That is, the total sum of squares in
the denominator of R-squared is not demeaned.) When {#;} has a zero sample aver-
age, the uncentered R-squared and the usual R-squared are the same. This is the case
when the null explanatory variables x; and the instruments z both contain unity, the
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typical case. Under Hy and Assumptions 2SLS.1-2SLS.3, LM ~ ){,2(2. Whether one
uses this statistic or the F statistic in equation (5.31) is primarily a matter of taste;
asymptotically, there is nothing that distinguishes the two.

5.2.5 Heteroskedasticity-Robust Inference for 2SLS

Assumption 2SLS.3 can be restrictive, so we should have a variance matrix estimator
that is robust in the presence of heteroskedasticity of unknown form. As usual, we
need to estimate B along with A. Under Assumptions 2SLS.1 and 2SLS.2 only,

Avar(f) can be estimated as

N
X'x)"! ( af&;&,-) (X'x)"! (5.34)
=1

Sometimes this matrix is multiplied by N/(N — K) as a degrees-of-freedom adjust-
ment. This heteroskedasticity-robust estimator can be used anywhere the estimator
&2(5(’5()71 is. In particular, the square roots of the diagonal elements of the matrix
(5.34) are the heteroskedasticity-robust standard errors for 2SLS. These can be used
to construct (asymptotic) ¢ statistics in the usual way. Some packages compute these
standard errors using a simple command. For example, using Stata® rounded to
three decimal places the heteroskedasticity-robust standard error for educ in Example
5.3 1s .022, which is the same as the usual standard error rounded to three decimal
places. The robust standard error for exper is .015, somewhat higher than the non-
robust one (.013).

Sometimes it is useful to compute a robust standard error that can be computed
with any regression package. Wooldridge (1995b) shows how this procedure can be
carried out using an auxiliary linear regression for each parameter. Consider com-
puting the robust standard error for ﬁ, Let “se( ﬁj)” denote the standard error com-
puted using the usual variance matrix (5.27); we put this in quotes because it is no
longer appropriate if Assumption 2SLS.3 fails. The & is obtained from equation
(5.26), and @; are the 2SLS residuals from equation (5.25). Let 7; be the residuals
from the regression

x,;/ on xil,xiz,...,x[,j,l,xi,jﬂ,...,x,-K, 1= 1,2,...7N

and define 7i;; = 3" #;i1;. Then, a heteroskedasticity-robust standard error of /5', can
be tabulated as

se(f) = [N/(N — K)|'*[“se(,)” /6] /(i)' (5.35)

Many econometrics packages compute equation (5.35) for you, but it is also easy to
compute directly.
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To test multiple linear restrictions using the Wald approach, we can use the usual
statistic but with the matrix (5.34) as the estimated variance. For example, the
heteroskedasticity-robust version of the test in Example 5.4 gives F = .25; asymp-
totically, F can be treated as an ., 4y, variate. The asymptotic p-value is .781.

The Lagrange multiplier test for omitted variables is easily made heteroskedasticity-
robust. Again, consider the model (5.28) with the null (5.29), but this time with-
out the homoskedasticity assumptions. Using the notation from before, let r; =
(Fi1, 72,y - - -, Fi,) be the 1 x Ky vectors of residuals from the multivariate regression
X» on X;1, i =1,2,...,N. (Again, this procedure can be carried out by regressing
each element of X;, on all of X;;.) Then, for each observation, form the 1 x K, vector
-t = (@ - F1,. .., 0 - Fig,). Then, the robust LM test is N — SSR from the regres-
sion 1 on & - #,... 8 - figy, i = 1,2,...,N. Under Ho, N — SSR¢ ~ y% . This pro-
cedure can be justified in a manner similar to the tests in the context of OLS. You are
referred to Wooldridge (1995b) for details.

5.2.6 Potential Pitfalls with 2SLS

When properly applied, the method of instrumental variables can be a powerful tool
for estimating structural equations using nonexperimental data. Nevertheless, there
are some problems that one can encounter when applying IV in practice.

One thing to remember is that, unlike OLS under a zero conditional mean as-
sumption, IV methods are never unbiased when at least one explanatory variable is
endogenous in the model. In fact, under standard distributional assumptions, the
expected value of the 2SLS estimator does not even exist. As shown by Kinal (1980),
in the case when all endogenous variables have homoskedastic normal distributions
with expectations linear in the exogenous variables, the number of moments of the
2SLS estimator that exist is one less than the number of overidentifying restrictions.
This finding implies that when the number of instruments equals the number of ex-
planatory variables, the IV estimator does not have an expected value. This is one
reason we rely on large-sample analysis to justify 2SLS.

Even in large samples IV methods can be ill-behaved if the instruments are weak.
Consider the simple model y = f, + f,x1 + u, where we use z; as an instrument for
x1. Assuming that Cov(zy, x;) # 0, the plim of the IV estimator is easily shown to be

plim B, = B, + Cov(z1,u)/Cov(z, x1) (5.36)

When Cov(z,u) = 0 we obtain the consistency result from earlier. However, if z; has
some correlation with u, the IV estimator is, not surprisingly, inconsistent. Rewrite
equation (5.36) as

plim f, = B, + (0,/0y, )[Corr(zy,u) /Corr(zy, x1)] (5.37)
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where Corr(-,-) denotes correlation. From this equation we see that if z; and u are
correlated, the inconsistency in the IV estimator gets arbitrarily large as Corr(z;, x;)
gets close to zero. Thus seemingly small correlations between z; and u can cause
severe inconsistency—and therefore severe finite sample bias—if z; is only weakly
correlated with x;. In such cases it may be better to just use OLS, even if we only
focus on the inconsistency in the estimators: the plim of the OLS estimator is gen-
erally f§; + (0,/0y,) Corr(x;,u). Unfortunately, since we cannot observe u, we can
never know the size of the inconsistencies in IV and OLS. But we should be con-
cerned if the correlation between z; and x; is weak. Similar considerations arise with
multiple explanatory variables and instruments.

Another potential problem with applying 2SLS and other IV procedures is that the
2SLS standard errors have a tendency to be “large.” What is typically meant by this
statement is either that 2SLS coefficients are statistically insignificant or that the
2SLS standard errors are much larger than the OLS standard errors. Not suprisingly,
the magnitudes of the 2SLS standard errors depend, among other things, on the
quality of the instrument(s) used in estimation.

For the following discussion we maintain the standard 2SLS Assumptions 2SLS.1-
2SLS.3 in the model

y=PBg+Bix1 +Boxa+ - + Prxk +u (5.38)

Let ﬁ be the vector of 2SLS estimators using instruments z. For concreteness, we focus
on the asymptotic variance of ﬁK. Technically, we should study Avar v/N( ﬁK = Bx)s
but it is easier to work with an expression that contains the same information. In
particular, we use the fact that

A a2

Avar(fy) ~ SR (5.39)

where SSR is the sum of squared residuals from the regression

fxonl, Xp,... %x_1 (5.40)

. . . ~ _ 2 . .
(Remember, if x; is exogenous for any j, then X; = x;.) If we replace g~ in regression

(5.39) with 62, then expression (5.39) is the usual 2SLS variance estimator. For the
current discussion we are interested in the behavior of SSRg.
From the definition of an R-squared, we can write

SSRy = SSTx (1 — R2) (5.41)

where SSTy is the total sum of squares of Xk in the sample, SSTx = Zﬁ | (Xik — xK),
and R2 is the R-squared from regression (5.40). In the context of OLS, the term
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(1 — R2) in equation (5.41) is viewed as a measure of multicollinearity, whereas SSTx
measures the total variation in xg. We see that, in addition to traditional multicol-
linearity, 2SLS can have an additional source of large variance: the total variation in
Xk can be small.

When is SSTK small? Remember, Xx denotes the fitted values from the regression

Xk onz (5.42)

Therefore, SSTk is the same as the explained sum of squares from the regression
(5.42). If xk is only weakly related to the I'Vs, then the explained sum of squares from
regression (5.42) can be quite small, causing a large asymptotic variance for ﬁK. If
x is highly correlated with z, then SSTx can be almost as large as the total sum of
squares of xg and SSTk, and this fact reduces the 2SLS variance estimate.

When xg is exogenous—whether or not the other elements of x are—SSTx =
SSTx. While this total variation can be small, it is determined only by the sample
variation in {xi:i=1,2,..., N}. Therefore, for exogenous elements appearing
among X, the quality of instruments has no bearing on the size of the total sum of
squares term in equation (5.41). This fact helps explain why the 2SLS estimates
on exogenous explanatory variables are often much more precise than the coeffi-
cients on endogenous explanatory variables.

In addition to making the term SSTx small, poor quality of instruments can lead to
R% close to one. As an illustration, consider a model in which xg is the only endog-
enous variable and there is one instrument z; in addition to the exogenous variables
(I,x1,...,xk-1). Therefore, z = (1, x1,...,xk_1,21). (The same argument works for
multiple instruments.) The fitted values xx come from the regression

Xg On 1, X1y...,XK-1,Z21 (543)

Because all other regressors are exogenous (that is, they are included in z), f{% comes
from the regression

)%K on 17 X1y v ey XK1 (544)

Now, from basic least squares mechanics, if the coefficient on z; in regression (5.43) is
exactly zero, then the R-squared from regression (5.44) is exactly unity, in which case
the 2SLS estimator does not even exist. This outcome virtually never happens, but
z1 could have little explanatory value for xx once xi,...,xx_1 have been controlled
for, in which case R12< can be close to one. Identification, which only has to do with
whether we can consistently estimate f, requires only that z; appear with nonzero
coefficient in the population analogue of regression (5.43). But if the explanatory
power of z; is weak, the asymptotic variance of the 2SLS estimator can be quite
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large. This is another way to illustrate why nonzero correlation between xg and z; is
not enough for 2SLS to be effective: the partial correlation is what matters for the
asymptotic variance.

As always, we must keep in mind that there are no absolute standards for deter-
mining when the denominator of equation (5.39) is “large enough.” For example, it
is quite possible that, say, xx and z are only weakly linearly related but the sample
size is sufficiently large so that the term SSTx is large enough to produce a small
enough standard error (in the sense that confidence intervals are tight enough to re-
ject interesting hypotheses). Provided there is some linear relationship between xg
and z in the population, SSTx L w0 as N — . Further, in the preceding example, if
the coefficent 0; on z; in the population regression (5.4) is different from zero, then
R2 converges in probability to a number less than one; asymptotically, multicol-
linearity is not a problem.

We are in a difficult situation when the 2SLS standard errors are so large that
nothing is significant. Often we must choose between a possibly inconsistent estima-
tor that has relatively small standard errors (OLS) and a consistent estimator that is
so imprecise that nothing interesting can be concluded (2SLS). One approach is to
use OLS unless we can reject exogeneity of the explanatory variables. We show how
to test for endogeneity of one or more explanatory variables in Section 6.2.1.

There has been some important recent work on the finite sample properties of
2SLS that emphasizes the potentially large biases of 2SLS, even when sample sizes
seem to be quite large. Remember that the 2SLS estimator is never unbiased (pro-
vided one has at least one truly endogenous variable in x). But we hope that, with a
very large sample size, we need only weak instruments to get an estimator with small
bias. Unfortunately, this hope is not fulfilled. For example, Bound, Jaeger, and Baker
(1995) show that in the setting of Angrist and Krueger (1991) the 2SLS estimator
can be expected to behave quite poorly, an alarming finding because Angrist and
Krueger use 300,000 to 500,000 observations! The problem is that the instruments—
representing quarters of birth and various interactions of these with year of birth and
state of birth—are very weak, and they are too numerous relative to their contribu-
tion in explaining years of education. One lesson is that, even with a very large sample
size and zero correlation between the instruments and error, we should not use too
many overidentifying restrictions.

Staiger and Stock (1997) provide a theoretical analysis of the 2SLS estimator with
weak instruments and conclude that, even with large sample sizes, instruments that
have small partial correlation with an endogenous explanatory variable can lead to
substantial biases in 2SLS. One lesson that comes out of the Staiger-Stock work is
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that we should always compute the F statistic from the first-stage regression (or the ¢
statistic with a single instrumental variable). Staiger and Stock (1997) provide some
guidelines about how large this F statistic should be (equivalently, how small the p-
value should be) for 2SLS to have acceptable properties.

5.3 1V Solutions to the Omitted Variables and Measurement Error Problems

In this section, we briefly survey the different approaches that have been suggested
for using IV methods to solve the omitted variables problem. Section 5.3.2 covers an
approach that applies to measurement error as well.

5.3.1 Leaving the Omitted Factors in the Error Term
Consider again the omitted variable model
y=Pp+pxi+ -+ Bxxxk +yqg+v (5.45)

where ¢ represents the omitted variable and E(v|x, g) = 0. The solution that would
follow from Section 5.1.1 is to put ¢ in the error term, and then to find instruments
for any element of x that is correlated with ¢. It is useful to think of the instruments
satisfying the following requirements: (1) they are redundant in the structural model
E(y]|x,q); (2) they are uncorrelated with the omitted variable, ¢; and (3) they are
sufficiently correlated with the endogenous elements of x (that is, those elements that
are correlated with ¢). Then 2SLS applied to equation (5.45) with u = yq + v pro-
duces consistent and asymptotically normal estimators.

5.3.2 Solutions Using Indicators of the Unobservables

An alternative solution to the omitted variable problem is similar to the OLS proxy
variable solution but requires IV rather than OLS estimation. In the OLS proxy
variable solution we assume that we have z; such that ¢ = 6y + 6,z; + r; where r| is
uncorrelated with z; (by definition) and is uncorrelated with x, ..., xx (the key proxy
variable assumption). Suppose instead that we have two indicators of ¢. Like a proxy
variable, an indicator of ¢ must be redundant in equation (5.45). The key difference is
that an indicator can be written as

q1 =00 +919+a (5.46)
where

Cov(g,a1) =0,  Cov(x,a1)=0 (5.47)
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This assumption contains the classical errors-in-variables model as a special case,
where ¢ is the unobservable, ¢, is the observed measurement, dp = 0, and J; = 1, in
which case y in equation (5.45) can be identified.

Assumption (5.47) is very different from the proxy variable assumption. Assuming
that 9; # 0—otherwise ¢; is not correlated with g—we can rearrange equation (5.46)
as

q=—(00/01) + (1/01)q1 — (1/01)ar (5.48)

where the error in this equation, —(1/J1)a;, is necessarily correlated with g;; the
OLS-proxy variable solution would be inconsistent.

To use the indicator assumption (5.47), we need some additional information. One
possibility is to have a second indicator of ¢:

42 =po+p1q+a (5.49)

where a, satisfies the same assumptions as a; and p; # 0. We still need one more
assumption:

Cov(ay,ay) =0 (5.50)

This implies that any correlation between ¢; and ¢, arises through their common
dependence on g.
Plugging ¢, in for ¢ and rearranging gives

y=ao+xp+ g1+ (v—ya) (5.51)

where y; = y/d;. Now, ¢, is uncorrelated with v because it is redundant in equation
(5.45). Further, by assumption, ¢, is uncorrelated with a; (@; is uncorrelated with ¢
and a,). Since ¢; and ¢, are correlated, ¢, can be used as an IV for ¢; in equation
(5.51). Of course the roles of ¢, and ¢; can be reversed. This solution to the omitted
variables problem is sometimes called the multiple indicator solution.

It is important to see that the multiple indicator IV solution is very different from
the IV solution that leaves ¢ in the error term. When we leave ¢ as part of the error,
we must decide which elements of x are correlated with ¢, and then find I'Vs for those
elements of x. With multiple indicators for ¢, we need not know which elements of x
are correlated with ¢; they all might be. In equation (5.51) the elements of x serve as
their own instruments. Under the assumptions we have made, we only need an in-
strument for ¢;, and ¢, serves that purpose.

Example 5.5 (IQ and KWW as Indicators of Ability): We apply the indicator
method to the model of Example 4.3, using the 935 observations in NLS80.RAW. In
addition to IQ, we have a knowledge of the working world (KW W) test score. If we
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write 1Q = dg + d1abil + ay, KWW = p, + p,abil + a,, and the previous assumptions
are satisfied in equation (4.29), then we can add /Q to the wage equation and use
KWW as an instrument for /Q. We get

log(wage) = 4.59 + .014 exper + .010 tenure + 201 married
(0.33) (.003) (.003) (.041)

— 051 south + 177 urban — .023 black + .025 educ + .013 IQ
(.031) (.028) (.074) (.017) (.005)

The estimated return to education is about 2.5 percent, and it is not statistically sig-
nificant at the 5 percent level even with a one-sided alternative. If we reverse the roles
of KWW and IQ, we get an even smaller return to education: about 1.7 percent with
a ¢ statistic of about 1.07. The statistical insignificance is perhaps not too surprising
given that we are using IV, but the magnitudes of the estimates are surprisingly small.
Perhaps @ and a; are correlated with each other, or with some elements of x.

In the case of the CEV measurement error model, ¢; and ¢, are measures of
q assumed to have uncorrelated measurement errors. Since dp = p, = 0 and J; =
p1 = 1, y; = y. Therefore, having two measures, where we plug one into the equation
and use the other as its instrument, provides consistent estimators of all parameters in
the CEV setup.

There are other ways to use indicators of an omitted variable (or a single mea-
surement in the context of measurement error) in an IV approach. Suppose that only
one indicator of ¢ is available. Without further information, the parameters in the
structural model are not identified. However, suppose we have additional variables
that are redundant in the structural equation (uncorrelated with v), are uncorrelated
with the error a; in the indicator equation, and are correlated with ¢. Then, as you
are asked to show in Problem 5.7, estimating equation (5.51) using this additional set
of variables as instruments for ¢; produces consistent estimators. This is the method
proposed by Griliches and Mason (1972) and also used by Blackburn and Neumark
(1992).

Problems

5.1. In this problem you are to establish the algebraic equivalence between 2SLS
and OLS estimation of an equation containing an additional regressor. Although the
result is completely general, for simplicity consider a model with a single (suspected)
endogenous variable:
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Y1 =12101 + o1y + uy
Vo =Im) + 12

For notational clarity, we use y, as the suspected endogenous variable and z as the
vector of all exogenous variables. The second equation is the reduced form for y,.
Assume that z has at least one more element than z;.

We know that one estimator of (d, «;) is the 2SLS estimator using instruments X.
Consider an alternative estimator of (d1,;): (a) estimate the reduced form by OLS,
and save the residuals 9,; (b) estimate the following equation by OLS:

Y1 = 12101 + a1y2 + p02 + error (5.52)

Show that the OLS estimates of d; and «; from this regression are identical to the
2SLS estimators. [Hint: Use the partltloned regression algebra of OLS. In particular,
if y= xlﬂl +X2ﬂ2 is an OLS regression, ﬂl can be obtained by first regressing x;
on Xx;, getting the residuals, say X;, and then regressing y on X;; see, for example,
Davidson and MacKinnon (1993, Section 1.4). You must also use the fact that z; and
¥, are orthogonal in the sample.]

5.2. Consider a model for the health of an individual:
health = f, + f,age + p,weight + fheight
+ famale + fswork + Peexercise + u (5.53)

where health is some quantitative measure of the person’s health, age, weight, height,
and male are self-explanatory, work is weekly hours worked, and exercise is the hours
of exercise per week.

a. Why might you be concerned about exercise being correlated with the error term
ul?

b. Suppose you can collect data on two additional variables, disthome and distwork,
the distances from home and from work to the nearest health club or gym. Discuss
whether these are likely to be uncorrelated with u.

c. Now assume that disthome and distwork are in fact uncorrelated with u;, as are all
variables in equation (5.53) with the exception of exercise. Write down the reduced

form for exercise, and state the conditions under which the parameters of equation
(5.53) are identified.

d. How can the identification assumption in part ¢ be tested?

5.3. Consider the following model to estimate the effects of several variables, in-
cluding cigarette smoking, on the weight of newborns:



Instrumental Variables Estimation of Single-Equation Linear Models 109

log(bwght) = B, + Bymale + B, parity + S5 log( faminc) + P4 packs + u (5.54)

where male is a binary indicator equal to one if the child is male; parity is the birth
order of this child; faminc is family income; and packs is the average number of packs
of cigarettes smoked per day during pregnancy.

a. Why might you expect packs to be correlated with u?

b. Suppose that you have data on average cigarette price in each woman’s state of
residence. Discuss whether this information is likely to satisfy the properties of a
good instrumental variable for packs.

c. Use the data in BWGHT.RAW to estimate equation (5.54). First, use OLS. Then,
use 2SLS, where cigprice is an instrument for packs. Discuss any important differ-
ences in the OLS and 2SLS estimates.

d. Estimate the reduced form for packs. What do you conclude about identification
of equation (5.54) using cigprice as an instrument for packs? What bearing does this
conclusion have on your answer from part c?

5.4. Use the data in CARD.RAW for this problem.

a. Estimate a log(wage) equation by OLS with educ, exper, exper?, black, south,
smsa, reg66l through reg668, and smsa66 as explanatory variables. Compare your
results with Table 2, Column (2) in Card (1995).

b. Estimate a reduced form equation for educ containing all explanatory variables
from part a and the dummy variable nearc4. Do educ and nearc4 have a practically
and statistically significant partial correlation? [See also Table 3, Column (1) in Card
(1995).]

c. Estimate the log(wage) equation by IV, using nearc4 as an instrument for educ.
Compare the 95 percent confidence interval for the return to education with that
obtained from part a. [See also Table 3, Column (5) in Card (1995).]

d. Now use nearc2 along with nearc4 as instruments for educ. First estimate the
reduced form for educ, and comment on whether nearc2 or nearc4 is more strongly
related to educ. How do the 2SLS estimates compare with the earlier estimates?

e. For a subset of the men in the sample, IQ score is available. Regress ig on nearc4.
Is IQ score uncorrelated with nearc4?

f. Now regress ig on nearc4 along with smsa66, reg661, reg662, and reg669. Are iq
and nearc4 partially correlated? What do you conclude about the importance of
controlling for the 1966 location and regional dummies in the log(wage) equation
when using nearc4 as an 1V for educ?
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5.5. One occasionally sees the following reasoning used in applied work for choos-
ing instrumental variables in the context of omitted variables. The model is

Y1 =210 + o y2 + yq + a4y

where ¢ is the omitted factor. We assume that a; satisfies the structural error as-
sumption E(a; |z, y,,¢q) = 0, that z; is exogenous in the sense that E(¢|z;) = 0, but
that y, and ¢ may be correlated. Let z; be a vector of instrumental variable candi-
dates for y,. Suppose it is known that z, appears in the linear projection of y, onto
(z1,22), and so the requirement that z, be partially correlated with y, is satisfied.
Also, we are willing to assume that z, is redundant in the structural equation, so that
a; is uncorrelated with z,. What we are unsure of is whether z, is correlated with the
omitted variable ¢, in which case z, would not contain valid IVs.

To “test” whether z, is in fact uncorrelated with ¢, it has been suggested to use
OLS on the equation

Y1 =2101 +oyy + oy + U (5.55)
where u; = yq + a;, and test Hy: y; = 0. Why does this method not work?

5.6. Refer to the multiple indicator model in Section 5.3.2.

a. Show that if ¢, is uncorrelated with x;, j =1,2,..., K, then the reduced form of
¢1 depends only on ¢,. [Hint: Use the fact that the reduced form of g; is the linear
projection of ¢; onto (1,x1,x2,...,xk,q2) and find the coefficient vector on x using
Property LP.7 from Chapter 2.]

b. What happens if ¢, and x are correlated? In this setting, is it realistic to assume
that ¢, and x are uncorrelated? Explain.

5.7. Consider model (5.45) where v has zero mean and is uncorrelated with
X1,...,xg and ¢. The unobservable ¢ is thought to be correlated with at least some of
the x;. Assume without loss of generality that E(¢) = 0.

You have a single indicator of ¢, written as ¢q; = ;¢ + a;, ; # 0, where a; has
zero mean and is uncorrelated with each of x;, ¢, and v. In addition, z1,z>,...,zp isa
set of variables that are (1) redundant in the structural equation (5.45) and (2)
uncorrelated with a;.

a. Suggest an IV method for consistently estimating the ;. Be sure to discuss what is
needed for identification.

b. If equation (5.45) is a log(wage) equation, ¢ is ability, g; is IQ or some other test
score, and zy, ..., zy; are family background variables, such as parents’ education and
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number of siblings, describe the economic assumptions needed for consistency of the
the IV procedure in part a.

c. Carry out this procedure using the data in NLS80.RAW. Include among the ex-
planatory variables exper, tenure, educ, married, south, urban, and black. First use IQ
as ¢; and then KWW. Include in the z, the variables meduc, feduc, and sibs. Discuss
the results.

5.8. Consider a model with unobserved heterogeneity (¢) and measurement error in
an explanatory variable:

y=PF+pix1+ - +Pxxg+q+v

where ex = xg — xj is the measurement error and we set the coefficient on ¢ equal to
one without loss of generality. The variable ¢ might be correlated with any of the
explanatory variables, but an indicator, q; = dp + 14 + ai, is available. The mea-
surement error ex might be correlated with the observed measure, xg. In addition to
q1, you also have variables zj, z;,...,zy, M > 2, that are uncorrelated with v, a;,
and eg.

a. Suggest an IV procedure for consistently estimating the ;. Why is M >2
required? (Hint: Plug in ¢, for ¢ and xx for x}, and go from there.)
b. Apply this method to the model estimated in Example 5.5, where actual educa-

tion, say educ*, plays the role of xj. Use IQ as the indicator of ¢ = ability, and
KWW, meduc, feduc, and sibs as the elements of z.

5.9. Suppose that the following wage equation is for working high school graduates:
log(wage) = B, + Biexper + Byexper? + Bytwoyr + B, fouryr + u

where twoyr is years of junior college attended and fouryr is years completed at a
four-year college. You have distances from each person’s home at the time of high
school graduation to the nearest two-year and four-year colleges as instruments for
twoyr and fouryr. Show how to rewrite this equation to test Ho: f; = 4 against
Hy: p, > 3, and explain how to estimate the equation. See Kane and Rouse (1995)
and Rouse (1995), who implement a very similar procedure.

5.10. Consider IV estimation of the simple linear model with a single, possibly
endogenous, explanatory variable, and a single instrument:

y="Ppo+hix+u
E(u) =0, Cov(z,u) =0, Cov(z,x) # 0, E(u?|z) = o
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a. Under the preceding (standard) assumptions, show that Avar v/N(f, — ;) can be
expressed as 6% /(p? a?), where 2 = Var(x) and p,, = Corr(z, x). Compare this result
with the asymptotic variance of the OLS estimator under Assumptions OLS.1-OLS.3.

b. Comment on how each factor affects the asymptotic variance of the IV estimator.
What happens as p., — 0?

5.11. A model with a single endogenous explanatory variable can be written as
Y1 = 2101 + oy + uy, E(z'u;)) =0

where z = (z1,2>). Consider the following two-step method, intended to mimic 2SLS:

a. Regress y, on z,, and obtain fitted values, y,. (That is, z; is omitted from the first-
stage regression.)

b. Regress y, on z;, y, to obtain 6 and &. Show that &, and &, are generally in-
consistent. When would é; and &; be consistent? [Hint: Let »9 be the population
linear projection of y, on z,, and let a» be the projection error: y9 = 234 + aa,
E(zia,) = 0. For simplicity, pretend that 4, is known, rather than estimated; that is,
assume that p, is actually yg. Then, write

Y1 =12101 + oclyg + oray + uy

and check whether the composite error aja, + u is uncorrelated with the explanatory
variables.]

5.12. In the setup of Section 5.1.2 with x = (x1,...,xk) and z = (x1,x2, ..., XK1,
Z1y...,zy) (let x; =1 to allow an intercept), assume that E(z'z) is nonsingular.
Prove that rank E(z'x) = K if and only if at least one 6; in equation (5.15) is different
from zero. [Hint: Write x* = (xy,...,xg_1,x)) as the linear projection of each ele-
ment of x on z, where xy =d;x1 + -+ +0x_1xg_1 + 0121 + -+ + Opzyr. Then x =
x* +r, where E(z'r) =0, so that E(z'x) = E(z'x*). Now x* =zII, where II is
the L x K matrix whose first K — 1 columns are the first K — 1 unit vectors in R”—
(1,0,0,...,0)", (0,1,0,...,0),...,(0,0,...,1,0,...,0)'—and whose last column is
(01,02, ...,0k—1,01,...,05). Write E(z'x*) = E(z'z)I1, so that, because E(z'z) is
nonsingular, E(z'x*) has rank K if and only if IT has rank K.]

5.13. Consider the simple regression model
y=Ppo+pix+u

and let z be a binary instrumental variable for x.

a. Show that the IV estimator f; can be written as
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B = —¥o)/ (%1 — Xo)
where 7, and X, are the sample averages of y; and x; over the part of the sample with
z; =0, and y; and X, are the sample averages of y; and x; over the part of the sample

with z; = 1. This estimator, known as a grouping estimator, was first suggested by
Wald (1940).

b. What is the intepretation of ﬁl if x is also binary, for example, representing par-
ticipation in a social program?

5.14. Consider the model in (5.1) and (5.2), where we have additional exogenous
variables zj,...,zy. Let z= (1,xy,...,xx-1,21,...,2n) be the vector of all exoge-
nous variables. This problem essentially asks you to obtain the 2SLS estimator using
linear projections. Assume that E(z’z) is nonsingular.

a. Find L(y|z) in terms of the f5;, x1,...,xk-1, and xg = L(xx | 2).

b. Argue that, provided xi,...,xg_1,xg are not perfectly collinear, an OLS regres-
sion of y on 1, xy,...,Xg_1,Xg—using a random sample—consistently estimates all
B;-

c. State a necessary and sufficient condition for xj not to be a perfect linear combi-
nation of xi,...,xx_1. What 2SLS assumption is this identical to?

5.15. Consider the model y =xf+u, where xj, x2,...,xk,, Kj <K, are the
(potentially) endogenous explanatory variables. (We assume a zero intercept just to
simplify the notation; the following results carry over to models with an unknown
intercept.) Let zj,...,z;, be the instrumental variables available from outside the
model. Let z = (z1,...,zL,, Xk, +1, - - -, Xk ) and assume that E(zz) is nonsingular, so
that Assumption 2SLS.2a holds.

a. Show that a necessary condition for the rank condition, Assumption 2SLS.2b, is
that for each j = 1,..., K, at least one z; must appear in the reduced form of x;.

b. With K| = 2, give a simple example showing that the condition from part a is not
sufficient for the rank condition.

c. If L) = K, show that a sufficient condition for the rank condition is that only z;

appears in the reduced form for x;, j = 1,..., K. [As in Problem 5.12, it suffices to
study the rank of the L x K matrix ITin L(x |z) = zI1.]



6 Additional Single-Equation Topics

6.1 Estimation with Generated Regressors and Instruments

6.1.1 OLS with Generated Regressors

We often need to draw on results for OLS estimation when one or more of the
regressors have been estimated from a first-stage procedure. To illustrate the issues,
consider the model

y=PFy+pixi+ -+ Pxxk +yq+u (6.1)

We observe xi,...,xg, but ¢ is unobserved. However, suppose that ¢ is related to
observable data through the function ¢ = f(w, d), where f is a known function and
w is a vector of observed variables, but the vector of parameters é is unknown (which
is why ¢ is not observed). Often, but not always, ¢ will be a linear function of w and
d. Suppose that we can consistently estimate d, and let d be the estimator. For each

observation i, §; = f(w;,0) effectively estimates ¢;. Pagan (1984) calls ¢, a generated
regressor. It seems reasonable that, replacing ¢; with ¢; in running the OLS regression

yion 1, X, X0, ..y Xik, Gy i=1,...,N (6.2)

should produce consistent estimates of all parameters, including y. The question is,
What assumptions are sufficient?

While we do not cover the asymptotic theory needed for a careful proof until
Chapter 12 (which treats nonlinear estimation), we can provide some intuition here.
Because plim =20, by the law of large numbers it is reasonable that

N N
N Z‘Zui % Elqu), N~ inj‘?[ % E(xjq1)
i1 i1
From this relation it is easily shown that the usual OLS assumption in the population—
that u is uncorrelated with (xj, x,, ..., xk, ¢)—suffices for the two-step procedure to
be consistent (along with the rank condition of Assumption OLS.2 applied to the
expanded vector of explanatory variables). In other words, for consistency, replacing
¢; with ¢; in an OLS regression causes no problems.

Things are not so simple when it comes to inference: the standard errors and test
statistics obtained from regression (6.2) are generally invalid because they ignore the
sampling variation in d. Since 4 is also obtained using data—usually the same sample
of data—uncertainty in the estimate should be accounted for in the second step.
Nevertheless, there is at least one important case where the sampling variation of P
can be ignored, at least asymptotically: if
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E[Vsf(w,0)'u] =0 (6.3)
y=20 (6.4)

then the \/N-limiting distribution of the OLS estimators from regression (6.2) is the
same as the OLS estimators when ¢ replaces ¢g. Condition (6.3) is implied by the zero
conditional mean condition

E(u|x,w)=0 (6.5)

which usually holds in generated regressor contexts.

We often want to test the null hypothesis Hy: y = 0 before including § in the final
regression. Fortunately, the usual ¢ statistic on ¢ has a limiting standard normal dis-
tribution under Hy, so it can be used to test Hy. It simply requires the usual homo-
skedasticity assumption, E(u?|x,q) = o>. The heteroskedasticity-robust statistic
works if heteroskedasticity is present in u under Hy.

Even if condition (6.3) holds, if y # 0, then an adjustment is needed for the
asymptotic variances of all OLS estimators that are due to estimation of 4. Thus,
standard ¢ statistics, F statistics, and LM statistics will not be asymptotically valid
when y # 0. Using the methods of Chapter 3, it is not difficult to derive an ad-
justment to the usual variance matrix estimate that accounts for the variability in
o (and also allows for heteroskedasticity). It is not true that replacing ¢; with g,
simply introduces heteroskedasticity into the error term; this is not the correct way
to think about the generated regressors issue. Accounting for the fact that o depends
on the same random sample used in the second-stage estimation is much different
from having heteroskedasticity in the error. Of course, we might want to use
a heteroskedasticity-robust standard error for testing Hp:y =0 because
heteroskedasticity in the population error u can always be a problem. However, just
as with the usual OLS standard error, this is generally justified only under Hy: y = 0.

A general formula for the asymptotic variance of 2SLS in the presence of gen-
erated regressors is given in the appendix to this chapter; this covers OLS with gen-
erated regressors as a special case. A general framework for handling these problems
is given in Newey (1984) and Newey and McFadden (1994), but we must hold off
until Chapter 14 to give a careful treatment.

6.1.2 2SLS with Generated Instruments

In later chapters we will need results on 2SLS estimation when the instruments have
been estimated in a preliminary stage. Write the population model as
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y=xf+u (6.6)
E(z'u) =0 (6.7)

where xis a 1 x K vector of explanatory variablesand zisa 1 x L (L > K) vector of
intrumental variables. Assume that z = g(w, 1), where g(-, 4) is a known function but
J needs to be estimated. For each i, define the generated instruments z; = g(w;, 1).
What can we say about the 2SLS estimator when the z; are used as instruments?

By the same reasoning for OLS with generated regressors, consistency follows
under weak conditions. Further, under conditions that are met in many applications,
we can ignore the fact that the instruments were estimated in using 2SLS for infer-

ence. Sufficient are the assumptions that J. is v/N-consistent for 4 and that
E[V;g(w, 2)'u] = 0 (6.8)

Under condition (6.8), which holds when E(u|w) = 0, the v/N-asymptotic distribu-
tion of f is the same whether we use 4 or 4 in constructing the instruments. This fact
greatly simplifies calculation of asymptotic standard errors and test statistics. There-
fore, if we have a choice, there are practical reasons for using 2SLS with generated
instruments rather than OLS with generated regressors. We will see some examples in
Part I'V.

One consequence of this discussion is that, if we add the 2SLS homoskedasticity
assumption (2SLS.3), the usual 2SLS standard errors and test statistics are asymp-
totically valid. If Assumption 2SLS.3 is violated, we simply use the heteroskedasticity-
robust standard errors and test statistics. Of course, the finite sample properties of the
estimator using Z; as instruments could be notably different from those using z; as
instruments, especially for small sample sizes. Determining whether this is the case
requires either more sophisticated asymptotic approximations or simulations on a
case-by-case basis.

6.1.3 Generated Instruments and Regressors

We will encounter examples later where some instruments and some regressors are
estimated in a first stage. Generally, the asymptotic variance needs to be adjusted
because of the generated regressors, although there are some special cases where the
usual variance matrix estimators are valid. As a general example, consider the model

y=xp+/(w,0) +u, E(u|z,w)=0

and we estimate o in a first stage. If y = 0, then the 2SLS estimator of (#,7)" in the
equation
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vi = Xiff +f; + error;

using instruments (z;, f;), has a limiting distribution that does not depend on the
limiting distribution of v/N(d — ) under conditions (6.3) and (6.8). Therefore, the
usual 2SLS ¢ statistic for 7, or its heteroskedsticity-robust version, can be used to test
Hy: Y= 0.

6.2 Some Specification Tests

In Chapters 4 and 5 we covered what is usually called classical hypothesis testing for
OLS and 2SLS. In this section we cover some tests of the assumptions underlying
either OLS or 2SLS. These are easy to compute and should be routinely reported in
applications.

6.2.1 Testing for Endogeneity

We start with the linear model and a single possibly endogenous variable. For nota-
tional clarity we now denote the dependent variable by y, and the potentially endog-
enous explanatory variable by y,. As in all 2SLS contexts, y, can be continuous or
binary, or it may have continuous and discrete characteristics; there are no restric-
tions. The population model is

Y1 =12101 + o1y, +u (6.9)

where z; is 1 x L; (including a constant), d; is L; x 1, and u; is the unobserved dis-
turbance. The set of all exogenous variables is denoted by the 1 x L vector z, where
Z; is a strict subset of z. The maintained exogeneity assumption is

E(z'u)) =0 (6.10)

It is important to keep in mind that condition (6.10) is assumed throughout this
section. We also assume that equation (6.9) is identified when E(y,u;) # 0, which
requires that z have at least one element not in z; (the order condition); the rank
condition is that at least one element of z not in z; is partially correlated with y,
(after netting out z;). Under these assumptions, we now wish to test the null hypothesis
that y, is actually exogenous.

Hausman (1978) suggested comparing the OLS and 2SLS estimators of f, =
(07,01)" as a formal test of endogeneity: if y, is uncorrelated with u;, the OLS and
2SLS estimators should differ only by sampling error. This reasoning leads to the
Hausman test for endogeneity.
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The original form of the statistic turns out to be cumbersome to compute because
the matrix appearing in the quadratic form is singular, except when no exogenous
variables are present in equation (6.9). As pointed out by Hausman (1978, 1983),
there is a regression-based form of the test that turns out to be asymptotically
equivalent to the original form of the Hausman test. In addition, it extends easily to
other situations, including some nonlinear models that we cover in Chapters 15, 16,
and 19.

To derive the regression-based test, write the linear projection of y, on z in error
form as

Vo = Imy + U2 (6.11)
E(z'v2) =0 (6.12)

where 7, is L x 1. Since u; is uncorrelated with z, it follows from equations (6.11)
and (6.12) that y, is endogenous if and only if E(u;v;) # 0. Thus we can test whether
the structural error, uy, is correlated with the reduced form error, v,. Write the linear
projection of u; onto v; in error form as

Uy = piv2 +e; (6.13)

where p; = E(vau1)/E(v3), E(vaer) = 0, and E(z’e;) = 0 (since u; and v, are each
orthogonal to z). Thus, y, is exogenous if and only if p; = 0.
Plugging equation (6.13) into equation (6.9) gives the equation

V1 =12101 + a1y, + piv2 + e (6.14)

The key is that e; is uncorrelated with z;, y,, and v, by construction. Therefore, a test
of Ho: p; =0 can be done using a standard ¢ test on the variable v, in an OLS re-
gression that includes z; and y,. The problem is that v, is not observed. Nevertheless,
the reduced form parameters n, are easily estimated by OLS. Let 9, denote the OLS
residuals from the first-stage reduced form regression of y, on z—remember that z
contains all exogenous variables. If we replace v, with 9, we have the equation

V1 =12101 + a1y, + p b2 + error (6.15)

and d1, o1, and p; can be consistently estimated by OLS. Now we can use the results
on generated regressors in Section 6.1.1: the usual OLS ¢ statistic for p; is a valid test
of Hy: p; =0, provided the homoskedasticity assumption E(u?|z,y;) = o} is sat-
isfied under Hy. (Remember, y, is exogenous under Hy.) A heteroskedasticity-robust

t statistic can be used if heteroskedasticity is suspected under Hy.
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As shown in Problem 5.1, the OLS estimates of d; and «; from equation (6.15) are
in fact identical to the 2SLS estimates. This fact is convenient because, along with
being computationally simple, regression (6.15) allows us to compare the magnitudes
of the OLS and 2SLS estimates in order to determine whether the differences are
practically significant, rather than just finding statistically significant evidence of
endogeneity of y,. It also provides a way to verify that we have computed the statistic
correctly.

We should remember that the OLS standard errors that would be reported from
equation (6.15) are not valid unless p; = 0, because 0, is a generated regressor. In
practice, if we reject Hy: p; = 0, then, to get the appropriate standard errors and
other test statistics, we estimate equation (6.9) by 2SLS.

Example 6.1 (Testing for Endogeneity of Education in a Wage Equation): Consider
the wage equation

log(wage) = 8 + o1exper + drexper? + oy educ + u; (6.16)

for working women, where we believe that educ and u; may be correlated. The
instruments for educ are parents’ education and husband’s education. So, we first
regress educ on 1, exper, exper’, motheduc, fatheduc, and huseduc and obtain the
residuals, #,. Then we simply include #, along with unity, exper, exper?, and educ in
an OLS regression and obtain the 7 statistic on #,. Using the data in MROZ.RAW
gives the result p; = .047 and #;, = 1.65. We find evidence of endogeneity of educ at
the 10 percent significance level against a two-sided alternative, and so 2SLS is
probably a good idea (assuming that we trust the instruments). The correct 2SLS
standard errors are given in Example 5.3.

Rather than comparing the OLS and 2SLS estimates of a particular linear combi-
nation of the parameters—as the original Hausman test does—it often makes sense
to compare just the estimates of the parameter of interest, which is usually ;. If,
under Hy, Assumptions 2SLS.1-2SLS.3 hold with w replacing z, where w includes
all nonredundant elements in x and z, obtaining the test is straightforward. Under
these assumptions it can be shown that Avar(d; ssis — d1,0ors) = Avar(& asis) —
Avar(a; ors). [This conclusion essentially holds because of Theorem 5.3; Problem
6.12 asks you to show this result formally. Hausman (1978), Newey and McFadden
(1994, Section 5.3), and Section 14.5.1 contain more general treatments.] Therefore,
the Hausman ¢ statistic is simply (&) 2s1s — &LOLS)/{[se(&MSLS)}Z - [se(&l_,oLs)]z}l/z,
where the standard errors are the usual ones computed under homoskedasticity. The
denominator in the ¢ statistic is the standard error of (& 2sLs — @1, oLs). If there is
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heteroskedasticity under Hy, this standard error is invalid because the asymptotic
variance of the difference is no longer the difference in asymptotic variances.

Extending the regression-based Hausman test to several potentially endogenous
explanatory variables is straightforward. Let y, denote a 1 x G| vector of possible
endogenous variables in the population model

V1 =2101 + Y0 + uy, E(z'u;) =0 (6.17)

where a; is now G| x 1. Again, we assume the rank condition for 2SLS. Write the
reduced form as y, = zII, + v,, where Il, is L x G| and v, is the 1 x G vector of
population reduced form errors. For a generic observation let ¥, denote the 1 x G
vector of OLS residuals obtained from each reduced form. (In other words, take each
element of y, and regress it on z to obtain the RF residuals; then collect these in the
row vector v,.) Now, estimate the model

V1 = 2101 + Y01 + Vap, + error (6.18)

and do a standard F test of Hy: p; = 0, which tests G restrictions in the unrestricted
model (6.18). The restricted model is obtained by setting p; = 0, which means we
estimate the original model (6.17) by OLS. The test can be made robust to hetero-
skedasticity in u; (since u; = e; under Hy) by applying the heteroskedasticity-robust
Wald statistic in Chapter 4. In some regression packages, such as Stata®, the robust
test is implemented as an F-type test.

An alternative to the F test is an LM-type test. Let &#; be the OLS residuals from
the regression y, on z;,y, (the residuals obtained under the null that y, is exogenous).
Then, obtain the usual R-squared (assuming that z; contains a constant), say R2,
from the regression

@ oNn z1,y,, V2 (6.19)

and use NR? as asymptotically xél . This test again maintains homoskedasticity under
Hy. The test can be made heteroskedasticity-robust using the method described in
equation (4.17): take x; = (z;,y,) and x, = ¥,. See also Wooldridge (1995b).

Example 6.2 (Endogeneity of Education in a Wage Equation, continued): We add
the interaction term black-educ to the log(wage) equation estimated by Card (1995);
see also Problem 5.4. Write the model as

log(wage) = ajeduc + o black-educ + 219, + u) (6.20)

where z; contains a constant, exper, exper?, black, smsa, 1966 regional dummy vari-
ables, and a 1966 SMSA indicator. If educ is correlated with u;, then we also expect
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black-educ to be correlated with u,. If nearc4, a binary indicator for whether a worker
grew up near a four-year college, is valid as an instrumental variable for educ, then a
natural instrumental variable for black-educ is black-nearc4. Note that black-nearc4 is
uncorrelated with u; under the conditional mean assumption E(u; |z) = 0, where z
contains all exogenous variables.

The equation estimated by OLS is

log(wage) = 4.81 + .071 educ + .018 black-educ — .419 black + - - -
(0.75)  (.004) (.006) (.079)

Therefore, the return to education is estimated to be about 1.8 percentage points
higher for blacks than for nonblacks, even though wages are substantially lower for
blacks at all but unrealistically high levels of education. (It takes an estimated 23.3
years of education before a black worker earns as much as a nonblack worker.)

To test whether educ is exogenous we must test whether educ and black-educ are
uncorrelated with u;. We do so by first regressing educ on all instrumental variables:
those elements in z; plus nearc4 and black-nearc4. (The interaction black-nearc4
should be included because it might be partially correlated with educ.) Let 0,1 be the
OLS residuals from this regression. Similarly, regress black-educ on z;, nearc4, and
black-nearc4, and save the residuals 0. By the way, the fact that the dependent
variable in the second reduced form regression, black-educ, is zero for a large fraction
of the sample has no bearing on how we test for endogeneity.

Adding 9, and 95, to the OLS regression and computing the joint F test yields F =
0.54 and p-value = 0.581; thus we do not reject exogeneity of educ and black-educ.

Incidentally, the reduced form regressions confirm that educ is partially corre-
lated with nearc4 (but not black-nearc4) and black-educ is partially correlated with
black-nearc4 (but not nearc4). It is easily seen that these findings mean that the rank
condition for 2SLS is satisfied—see Problem 5.15¢c. Even though educ does not ap-
pear to be endogenous in equation (6.20), we estimate the equation by 2SLS:

log(wage) = 3.84 + .127 educ + .011 black-educ — .283 black + - - -
(0.97) (.057) (.040) (.506)

The 2SLS point estimates certainly differ from the OLS estimates, but the standard
errors are so large that the 2SLS and OLS estimates are not statistically different.

6.2.2 Testing Overidentifying Restrictions

When we have more instruments than we need to identify an equation, we can test
whether the additional instruments are valid in the sense that they are uncorrelated
with u;. To explain the various procedures, write the equation in the form
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yi=12101 +Yra1 +uy (6.21)

where z; is 1 x L; and y, is 1 x G;. The 1 x L vector of all exogenous variables is
again z; partition this as z = (z;,z,) where z, is 1 x L, and L = L, + L,. Because the
model is overidentified, L, > G. Under the usual identification conditions we could
use any 1 x G subset of z, as instruments for y, in estimating equation (6.21) (re-
member the elements of z; act as their own instruments). Following his general
principle, Hausman (1978) suggested comparing the 2SLS estimator using all instru-
ments to 2SLS using a subset that just identifies equation (6.21). If all instruments are
valid, the estimates should differ only as a result of sampling error. As with testing for
endogeneity, constructing the original Hausman statistic is computationally cumber-
some. Instead, a simple regression-based procedure is available.

It turns out that, under homoskedasticity, a test for validity of the overidentifi-
cation restrictions is obtained as NR2 from the OLS regression

i onz (6.22)

where i, are the 2SLS residuals using a// of the instruments z and R? is the usual R-
squared (assuming that z; and z contain a constant; otherwise it is the uncentered R-
squared). In other words, simply estimate regression (6.21) by 2SLS and obtain the
2SLS residuals, #;. Then regress these on all exogenous variables (including a con-
stant). Under the null that E(z'u;) = 0 and Assumption 2SLS.3, NR2 ~ y3, , where
01 = L, — G is the number of overidentifying restrictions.

The usefulness of the Hausman test is that, if we reject the null hypothesis, then our
logic for choosing the IVs must be reexamined. If we fail to reject the null, then we
can have some confidence in the overall set of instruments used. Of course, it could also
be that the test has low power for detecting endogeneity of some of the instruments.

A heteroskedasticity-robust version is a little more complicated but is still easy to
obtain. Let §, denote the fitted values from the first-stage regressions (each element of
y, onto z). Now, let hy be any 1 x Q) subset of z,. (It does not matter which elements
of z, we choose, as long as we choose Q; of them.) Regress each element of h, onto
(z1,¥,) and collect the residuals, ¥, (1 x Q). Then an asymptotic )(él test statistic is
obtained as N — SSR from the regression 1 on #;r,. The proof that this method
works is very similar to that for the heteroskedasticity-robust test for exclusion
restrictions. See Wooldridge (1995b) for details.

Example 6.3 (Overidentifying Restrictions in the Wage Equation): In estimating
equation (6.16) by 2SLS, we used (motheduc, fatheduc, huseduc) as instruments for
educ. Therefore, there are two overidentifying restrictions. Letting #; be the 2SLS
residuals from equation (6.16) using all instruments, the test statistic is NV times the R-
squared from the OLS regression
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iy on 1, exper, exper?, motheduc, fatheduc, huseduc

Under Hy and homoskedasticity, NR? < ){%. Using the data on working women in
MROZ.RAW gives R? = .0026, and so the overidentification test statistic is about
1.11. The p-value is about .574, so the overidentifying restrictions are not rejected at
any reasonable level.

For the heteroskedasticity-robust version, one approach is to obtain the residuals,
#1 and 7, from the OLS regressions motheduc on 1, exper, exper?, and educ and
fatheduc on 1, exper, exper?, and ec;’uc, where educ are the first-stage fitted values
from the regression educ on 1, exper, exper?, motheduc, fatheduc, and huseduc. Then
obtain N — SSR from the OLS regression 1 on #;- 7y, #-7,. Using only the 428
observations on working women to obtain #; and #,, the value of the robust test sta-
tistic is about 1.04 with p-value = .595, which is similar to the p-value for the non-
robust test.

6.2.3 Testing Functional Form

Sometimes we need a test with power for detecting neglected nonlinearities in models
estimated by OLS or 2SLS. A useful approach is to add nonlinear functions, such as
squares and cross products, to the original model. This approach is easy when all
explanatory variables are exogenous: F statistics and LM statistics for exclusion
restrictions are easily obtained. It is a little tricky for models with endogenous ex-
planatory variables because we need to choose instruments for the additional non-
linear functions of the endogenous variables. We postpone this topic until Chapter 9
when we discuss simultaneous equation models. See also Wooldridge (1995b).

Putting in squares and cross products of all exogenous variables can consume
many degrees of freedom. An alternative is Ramsey’s (1969) RESET, which has
degrees of freedom that do not depend on K. Write the model as

y=xf+u (6.23)
E(u|x) =0 (6.24)

[You should convince yourself that it makes no sense to test for functional form if we
only assume that E(x’u) = 0. If equation (6.23) defines a linear projection, then, by
definition, functional form is not an issue.] Under condition (6.24) we know that any
function of x is uncorrelated with u (hence the previous suggestion of putting squares
and cross products of x as additional regressors). In particular, if condition (6.24)
holds, then (xf)” is uncorrelated with u for any mteger p- Since f is not observed, we
replace it with the OLS estimator, ﬁ Define y; = x; ﬂ as the OLS fitted values and #;
as the OLS residuals. By definition of OLS, the sample covariance between #; and ),
is zero. But we can test whether the #; are sufficiently correlated with low-order poly-
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nomials in J;, say y2, y?, and p?, as a test for neglected nonlinearity. There are a
couple of ways to do so. Ramsey suggests adding these terms to equation (6.23) and
doing a standard F test [which would have an approximate 3 y_g_3 distribution
under equation (6.23) and the homoskedasticity assumption E(u? | x) = ¢%]. Another
possibility is to use an LM test: Regress #; onto x;, $7, 7, and ! and use N times
the R-squared from this regression as ;{%. The methods discussed in Chapter 4 for
obtaining heteroskedasticity-robust statistics can be applied here as well. Ramsey’s
test uses generated regressors, but the null is that each generated regressor has zero
population coefficient, and so the usual limit theory applies. (See Section 6.1.1.)

There is some misunderstanding in the testing literature about the merits of
RESET. It has been claimed that RESET can be used to test for a multitude of
specification problems, including omitted variables and heteroskedasticity. In fact,
RESET is generally a poor test for either of these problems. It is easy to write down
models where an omitted variable, say ¢, is highly correlated with each x, but RESET
has the same distribution that it has under Hy. A leading case is seen when E(¢|x) is
linear in x. Then E(y|x) is linear in x [even though E(y|x) # E(y|x, ¢)], and the
asymptotic power of RESET equals its asymptotic size. See Wooldridge (1995b) and
Problem 6.4a. The following is an empirical illustration.

Example 6.4 (Testing for Neglected Nonlinearities in a Wage Equation): We use
OLS and the data in NLS80.RAW to estimate the equation from Example 4.3:

log(wage) = S, + fexper + tenure + fymarried + Pysouth
+ psurban + Beblack + freduc + u

The null hypothesis is that the expected value of u given the explanatory variables
in the equation is zero. The R-squared from the regression # on x, j2, and > yields
R2 =.0004, so the chi-square statistic is .374 with p-value ~.83. (Adding * only
increases the p-value.) Therefore, RESET provides no evidence of functional form
misspecification.

Even though we already know IQ shows up very significantly in the equation
(¢ statistic = 3.60—see Example 4.3), RESET does not, and should not be expected
to, detect the omitted variable problem. It can only test whether the expected value
of y given the variables actually in the regression is linear in those variables.

6.2.4 Testing for Heteroskedasticity

As we have seen for both OLS and 2SLS, heteroskedasticity does not affect the con-
sistency of the estimators, and it is only a minor nuisance for inference. Nevertheless,
sometimes we want to test for the presence of heteroskedasticity in order to justify use
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of the usual OLS or 2SLS statistics. If heteroskedasticity is present, more efficient
estimation is possible.

We begin with the case where the explanatory variables are exogenous in the sense
that u has zero mean given x:

y=Po+xp+u, E(u|x) =0

The reason we do not assume the weaker assumption E(x'u) = 0 is that the fol-
lowing class of tests we derive—which encompasses all of the widely used tests for
heteroskedasticity—are not valid unless E(u | x) = 0 is maintained under Hy. Thus
we maintain that the mean E(y|x) is correctly specified, and then we test the con-
stant conditional variance assumption. If we do not assume correct specification of
E(y|x), a significant heteroskedasticity test might just be detecting misspecified
functional form in E(y|x); see Problem 6.4c.

Because E(u|x) =0, the null hypothesis can be stated as Hy: E(u?|x) = o>
Under the alternative, E(u? |x) depends on x in some way. Thus it makes sense to
test Hy by looking at covariances

Covlh(x), u?] (6.25)

for some 1 x Q vector function h(x). Under Hy, the covariance in expression (6.25)
should be zero for any choice of h(-).

Of course a general way to test zero correlation is to use a regression. Putting i
subscripts on the variables, write the model

u? = +h;d + v, (6.26)

where h; = h(x;); we make the standard rank assumption that Var(h;) has rank Q, so
that there is no perfect collinearity in h;. Under Hy, E(v; | h;) = E(v;|x;) =0, 6 =0,
and Jy = 2. Thus we can apply an F test or an LM test for the null Hy: 6 =0
in equation (6.26). One thing to notice is that v; cannot have a normal distribution
under Hy: because v; = u? — ¢, v; > —a?. This does not matter for asymptotic anal-
ysis; the OLS regression from equation (6.26) gives a consistent, v/N-asymptotically
normal estimator of 6 whether or not Hy is true. But to apply a standard F or LM
test, we must assume that, under Hy, E(v?|x;) is constant: that is, the errors in
equation (6.26) are homoskedastic. In terms of the original error u;, this assumption

implies that
E(u}|x;) = constant = x> (6.27)

under Hy. This is called the homokurtosis (constant conditional fourth moment) as-
sumption. Homokurtosis always holds when u is independent of x, but there are
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conditional distributions for which E(u|x) =0 and Var(u|x) = ¢ but E(u*|x)
depends on x.

As a practical matter, we cannot test = 0 in equation (6.26) directly because u; is
not observed. Since u; = y; — X; and we have a consistent estimator of f, it is natu-
ral to replace u? with 2, where the #@; are the OLS residuals for observation i. Doing
this step and applying, say, the LM principle, we obtain NR? from the regression

@onlh;, i=12....,N (6.28)

where R? is just the usual centered R-squared. Now, if the u? were used in place of
the #?, we know that, under Hy and condition (6.27), NR?> < Xé’ where Q is the di-
mension of h;.

What adjustment is needed because we have estimated u?? It turns out that, be-
cause of the structure of these tests, no adjustment is needed to the asymptotics. (This
statement is not generally true for regressions where the dependent variable has been
estimated in a first stage; the current setup is special in that regard.) After tedious
algebra, it can be shown that

N
N2 Zh’ —6%) = N2 (b — ) (w2 — ) + 0,(1) (6.29)
i=1
see Problem 6.5. Along with condition (6.27), this equation can be shown to justify
the NR? test from regression (6.28).

Two popular tests are special cases. Koenker’s (1981) version of the Breusch and
Pagan (1979) test is obtained by taking h; = x;, so that Q = K. [The original version
of the Breusch-Pagan test relies heavily on normality of the ;, in particular x> = 342,
so that Koenker’s version based on NR? in regression (6.28) is preferred.] White’s
(1980Db) test is obtained by taking h; to be all nonconstant, unique elements of x; and
x/x;: the levels, squares, and cross products of the regressors in the conditional mean.

The Breusch-Pagan and White tests have degrees of freedom that depend on the
number of regressors in E(y|x). Sometimes we want to conserve on degrees of free-
dom. A test that combines features of the Breusch-Pagan and White tests, but which
has only two dfs, takes h; = (3, $?), where the j; are the OLS fitted values. (Recall
that these are linear functions of the x;.) To justify this test, we must be able to re-
place h(x;) with h(x;, #). We discussed the generated regressors problem for OLS in
Section 6.1.1 and concluded that, for testing purposes, using estimates from earlier
stages causes no complications. This is the case here as well: NR? from 47 on 1, j;, 7,
i=1,2,...,N has a limiting )(% distribution under the null, along with condition
(6.27). This is easily seen to be a special case of the White test because (J;, y?) con-
tains two linear combinations of the squares and cross products of all elements in x;.



128 Chapter 6

A simple modification is available for relaxing the auxiliary homokurtosis as-
sumption (6.27). Following the work of Wooldridge (1990)—or, working directly
from the representation in equation (6.29), as in Problem 6.5—it can be shown that
N — SSR from the regression (without a constant)

lon (h; —h)(@? -6%), i=12,...,N (6.30)

is distributed asymptotically as )(ZQ under Hy [there are Q regressors in regression
(6.30)]. This test is very similar to the heteroskedasticity-robust LM statistics derived
in Chapter 4. It is sometimes called a heterokurtosis-robust test for heteroskedasticity.

If we allow some elements of x; to be endogenous but assume we have instruments
z; such that E(u; | z;) = 0 and the rank condition holds, then we can test Ho: E(u? | z;)
= ¢ (which implies Assumption 2SLS.3). Let h; = h(z;) be a 1 x Q function of the
exogenous variables. The statistics are computed as in either regression (6.28) or
(6.30), depending on whether the homokurtosis is maintained, where the #; are the
2SLS residuals. There is, however, one caveat. For the validity of the asymptotic
variances that these regressions implicitly use, an additional assumption is needed
under Hy: Cov(x;,u; | z;) must be constant. This covariance is zero when z; = Xx;, so
there is no additional assumption when the regressors are exogenous. Without the
assumption of constant conditional covariance, the tests for heteroskedasticity are
more complicated. For details, see Wooldridge (1990).

You should remember that h; (or h;) must only be a function of exogenous vari-
ables and estimated parameters; it should not depend on endogenous elements of x;.
Therefore, when x; contains endogenous variables, it is not valid to use x,-ﬁ and
()(,-/53)2 as elements of il,-. It is valid to use, say, fciﬁ and (X,ﬁ)z, where the X; are the
first-stage fitted values from regressing x; on z;.

6.3 Single-Equation Methods under Other Sampling Schemes

So far our treatment of OLS and 2SLS has been explicitly for the case of random
samples. In this section we briefly discuss some issues that arise for other sampling
schemes that are sometimes assumed for cross section data.

6.3.1 Pooled Cross Sections over Time

A data structure that is useful for a variety of purposes, including policy analysis, is
what we will call pooled cross sections over time. The idea is that during each year a
new random sample is taken from the relevant population. Since distributions of
variables tend to change over time, the identical distribution assumption is not usu-
ally valid, but the independence assumption is. This approach gives rise to indepen-
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dent, not identically distributed (i.n.i.d.) observations. It is important not to confuse a
pooling of independent cross sections with a different data structure, panel data,
which we treat starting in Chapter 7. Briefly, in a panel data set we follow the same
group of individuals, firms, cities, and so on over time. In a pooling of cross sections
over time, there is no replicability over time. (Or, if units appear in more than one
time period, their recurrence is treated as coincidental and ignored.)

Every method we have learned for pure cross section analysis can be applied to
pooled cross sections, including corrections for heteroskedasticity, specification test-
ing, instrumental variables, and so on. But in using pooled cross sections, we should
usually include year (or other time period) dummies to account for aggregate changes
over time. If year dummies appear in a model, and it is estimated by 2SLS, the year
dummies are their own instruments, as the passage of time is exogenous. For an ex-
ample, see Problem 6.8. Time dummies can also appear in tests for heteroskedasticity
to determine whether the unconditional error variance has changed over time.

In some cases we interact some explanatory variables with the time dummies to
allow partial effects to change over time. This procedure can be very useful for policy
analysis. In fact, much of the recent literature in policy analyis using natural experi-
ments can be cast as a pooled cross section analysis with appropriately chosen
dummy variables and interactions.

In the simplest case, we have two time periods, say year 1 and year 2. There are
also two groups, which we will call a control group and an experimental group or
treatment group. In the natural experiment literature, people (or firms, or cities, and
so on) find themselves in the treatment group essentially by accident. For example, to
study the effects of an unexpected change in unemployment insurance on unemploy-
ment duration, we choose the treatment group to be unemployed individuals from a
state that has a change in unemployment compensation. The control group could be
unemployed workers from a neighboring state. The two time periods chosen would
straddle the policy change.

As another example, the treatment group might consist of houses in a city under-
going unexpected property tax reform, and the control group would be houses in a
nearby, similar town that is not subject to a property tax change. Again, the two (or
more) years of data would include the period of the policy change. Treatment means
that a house is in the city undergoing the regime change.

To formalize the discussion, call 4 the control group, and let B denote the treat-
ment group; the dummy variable dB equals unity for those in the treatment group
and is zero otherwise. Letting d2 denote a dummy variable for the second (post-policy-
change) time period, the simplest equation for analyzing the impact of the policy
change is
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y =By +00d2 + BydB +61d2 - dB + u (6.31)

where y is the outcome variable of interest. The period dummy d2 captures aggregate
factors that affect y over time in the same way for both groups. The presence of dB
by itself captures possible differences between the treatment and control groups be-
fore the policy change occurs. The coefficient of interest, J;, multiplies the interaction
term, d2 - dB (which is simply a dummy variable equal to unity for those observations
in the treatment group in the second year).

The OLS estimator, J;, has a very interesting interpretation. Let 3, | denote the
sample average of y for the control group in the first year, and let y, , be the average
of y for the control group in the second year. Define jz | and jj , similarly. Then 6,
can be expressed as

o = (P2 —¥p1) — (Pa2—Fu1) (6.32)

This estimator has been labeled the difference-in-differences (DID) estimator in the
recent program evaluation literature, although it has a long history in analysis of
variance.

To see how effective d; is for estimating policy effects, we can compare it with some
alternative estimators. One possibility is to ignore the control group completely and
use the change in the mean over time for the treatment group, yg , — yp |, to measure
the policy effect. The problem with this estimator is that the mean'response can
change over time for reasons unrelated to the policy change. Another possibility is to
ignore the first time period and compute the difference in means for the treatment
and control groups in the second time period, g » — ¥, . The problem with this pure
cross section approach is that there might be systematic, unmeasured differences in
the treatment and control groups that have nothing to do with the treatment; attrib-
uting the difference in averages to a particular policy might be misleading.

By comparing the time changes in the means for the treatment and control groups,
both group-specific and time-specific effects are allowed for. Nevertheless, unbiased-
ness of the DID estimator still requires that the policy change not be systematically
related to other factors that affect y (and are hidden in u).

In most applications, additional covariates appear in equation (6.31); for example,
characteristics of unemployed people or housing characteristics. These account for
the possibility that the random samples within a group have systematically differ-
ent characteristics in the two time periods. The OLS estimator of J; no longer has
the simple representation in equation (6.32), but its interpretation is essentially
unchanged.
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Example 6.5 (Length of Time on Workers’ Compensation): Meyer, Viscusi, and
Durbin (1995) (hereafter, MVD) study the length of time (in weeks) that an injured
worker receives workers’ compensation. On July 15, 1980, Kentucky raised the cap
on weekly earnings that were covered by workers’ compensation. An increase in the
cap has no effect on the benefit for low-income workers, but it makes it less costly
for a high-income worker to stay on workers” comp. Therefore, the control group is
low-income workers, and the treatment group is high-income workers; high-income
workers are defined as those for whom the pre-policy-change cap on benefits is
binding. Using random samples both before and after the policy change, MVD are
able to test whether more generous workers’ compensation causes people to stay out
of work longer (everything else fixed). MVD start with a difference-in-differences
analysis, using log(durat) as the dependent variable. The variable afchnge is the
dummy variable for observations after the policy change, and highearn is the dummy
variable for high earners. The estimated equation is

log(c;’urat) = 1.126 + .0077 afchnge + .256 highearn
(0.031) (.0447) (.047)

+ 191 afchnge-highearn (6.33)
(.069)

N = 5,626, R* = .021

Therefore, 6; = .191 (t =2.77), which implies that the average duration on workers’
compensation increased by about 19 percent due to the higher earnings cap. The co-
efficient on afchnge is small and statistically insignificant: as is expected, the increase
in the earnings cap had no effect on duration for low-earnings workers. The coeffi-
cient on highearn shows that, even in the absence of any change in the earnings cap,
high earners spent much more time—on the order of 100 - [exp(.256) — 1] =29.2
percent—on workers’ compensation.

MVD also add a variety of controls for gender, marital status, age, industry, and
type of injury. These allow for the fact that the kind of people and type of injuries
differ systematically in the two years. Perhaps not surprisingly, controlling for these
factors has little effect on the estimate of J;; see the MVD article and Problem 6.9.

Sometimes the two groups consist of people or cities in different states in the
United States, often close geographically. For example, to assess the impact of
changing alcohol taxes on alcohol consumption, we can obtain random samples on
individuals from two states for two years. In state 4, the control group, there was no
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change in alcohol taxes. In state B, taxes increased between the two years. The out-
come variable would be a measure of alcohol consumption, and equation (6.31) can
be estimated to determine the effect of the tax on alcohol consumption. Other factors,
such as age, education, and gender can be controlled for, although this procedure is
not necessary for consistency if sampling is random in both years and in both states.

The basic equation (6.31) can be easily modified to allow for continuous, or at least
nonbinary, “treatments.” An example is given in Problem 6.7, where the “treatment”
for a particular home is its distance from a garbage incinerator site. In other words,
there is not really a control group: each unit is put somewhere on a continuum of
possible treatments. The analysis is similar because the treatment dummy, dB, is
simply replaced with the nonbinary treatment.

For a survey on the natural experiment methodology, as well as several additional
examples, see Meyer (1995).

6.3.2 Geographically Stratified Samples

Various kinds of stratified sampling, where units in the sample are represented with
different frequencies than they are in the population, are also common in the social
sciences. We treat general kinds of stratification in Chapter 17. Here, we discuss some
issues that arise with geographical stratification, where random samples are taken
from separate geographical units.

If the geographically stratified sample can be treated as being independent but not
identically distributed, no substantive modifications are needed to apply the previous
econometric methods. However, it is prudent to allow different intercepts across
strata, and even different slopes in some cases. For example, if people are sampled
from states in the United States, it is often important to include state dummy vari-
ables to allow for systematic differences in the response and explanatory variables
across states.

If we are interested in the effects of variables measured at the strata level, and the
individual observations are correlated because of unobserved strata effects, estima-
tion and inference are much more complicated. A model with strata-level covariates
and within-strata correlation is

Yis = Xisﬁ +Zsy + g5 + eis (634)

where 7 is for individual and s is for stratum. The covariates in x;; change with the
individual, while z; changes only at the strata level. That is, there is correlation in the
covariates across individuals within the same stratum. The variable ¢, is an unob-
served stratum effect. We would typically assume that the observations are inde-
pendently distributed across strata, that the e; are independent across i, and that
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E(ess | Xy, 25, ¢5) = 0 for all i and s—where X is the set of explanatory variables for
all units in stratum s—and ¢, is an unobserved stratum effect.

The presence of the unobservable ¢, induces correlation in the composite error
ujs = ¢s + e;; within each stratum. If we are interested in the coefficients on the
individual-specific variables, that is, f, then there is a simple solution: include stra-
tum dummies along with x;,. That is, we estimate the model y,, = o, + x;;f + e;s by
OLS, where oy is the stratum-specific intercept.

Things are more interesting when we want to estimate y. The OLS estimators of f
and y in the regression of y; on X, z, are still unbiased if E(g,|Xj,z,) =0, but
consistency and asymptotic normality are tricky, because, with a small number of
strata and many observations within each stratum, the asymptotic analysis makes
sense only if the number of observations within each stratum grows, usually with the
number of strata fixed. Because the observations within a stratum are correlated, the
usual law of large numbers and central limit theorem cannot be applied. By means of
a simulation study, Moulton (1990) shows that ignoring the within-group correlation
when obtaining standard errors for y can be very misleading. Moulton also gives
some corrections to the OLS standard errors, but it is not clear what kind of asymp-
totic analysis justifies them.

If the strata are, say, states in the United States, and we are interested in the effect
of state-level policy variables on economic behavior, one way to proceed is to use
state-level data on all variables. This avoids the within-stratum correlation in the
composite error in equation (6.34). A drawback is that state policies that can be
taken as exogenous at the individual level are often endogenous at the aggregate
level. However, if z; in equation (6.34) contains policy variables, perhaps we should
question whether these would be uncorrelated with ¢,. If ¢, and z; are correlated,
OLS using individual-level data would be biased and inconsistent.

Related issues arise when aggregate-level variables are used as instruments in
equations describing individual behavior. For example, in a birth weight equation,
Currie and Cole (1993) use measures of state-level AFDC benefits as instruments for
individual women’s participation in AFDC. (Therefore, the binary endogenous ex-
planatory variable is at the individual level, while the instruments are at the state
level.) If state-level AFDC benefits are exogenous in the birth weight equation, and
AFDC participation is sufficiently correlated with state benefit levels—a question
that can be checked using the first-stage regression—then the IV approach will yield
a consistent estimator of the effect of AFDC participation on birth weight.

Moffitt (1996) discusses assumptions under which using aggregate-level 1Vs yields
consistent estimators. He gives the example of using observations on workers from
two cities to estimate the impact of job training programs. In each city, some people
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received some job training while others did not. The key element in X;; is a job training
indicator. If, say, city 4 exogenously offered more job training slots than city B, a
city dummy variable can be used as an IV for whether each worker received training.
See Mofftitt (1996) and Problem 5.13b for an interpretation of such estimators.

If there are unobserved group effects in the error term, then at a minimum, the
usual 2SLS standard errors will be inappropriate. More problematic is that aggregate-
level variables might be correlated with ¢;. In the birth weight example, the level of
AFDC benefits might be correlated with unobserved health care quality variables
that are in ¢,. In the job training example, city 4 may have spent more on job train-
ing because its workers are, on average, less productive than the workers in city B.
Unfortunately, controlling for ¢, by putting in strata dummies and applying 2SLS
does not work: by definition, the instruments only vary across strata—not within
strata—and so B in equation (6.34) would be unidentified. In the job training exam-
ple, we would put in a dummy variable for city of residence as an explanatory vari-
able, and therefore we could not use this dummy variable as an IV for job training
participation: we would be short one instrument.

6.3.3 Spatial Dependence

As the previous subsection suggests, cross section data that are not the result of
independent sampling can be difficult to handle. Spatial correlation, or, more gen-
erally, spatial dependence, typically occurs when cross section units are large relative
to the population, such as when data are collected at the county, state, province, or
country level. Outcomes from adjacent units are likely to be correlated. If the corre-
lation arises mainly through the explanatory variables (as opposed to unobservables),
then, practically speaking, nothing needs to be done (although the asymptotic anal-
ysis can be complicated). In fact, sometimes covariates for one county or state appear
as explanatory variables in the equation for neighboring units, as a way of capturing
spillover effects. This fact in itself causes no real difficulties.

When the unobservables are correlated across nearby geographical units, OLS can
still have desirable properties—often unbiasedness, consistency, and asymptotic nor-
mality can be established—but the asymptotic arguments are not nearly as unified as
in the random sampling case, and estimating asymptotic variances becomes difficult.

6.3.4 Cluster Samples

Cluster sampling is another case where cross section observations are correlated, but
it is somewhat easier to handle. The key is that we randomly sample a large number
of clusters, and each cluster consists of relatively few units (compared with the overall
sample size). While we allow the units within each cluster to be correlated, we assume
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independence across clusters. An example is studying teenage peer effects using a
large sample of neighborhoods (the clusters) with relatively few teenagers per neigh-
borhood. Or, using siblings in a large sample of families. The asymptotic analysis is
with fixed cluster sizes with the number of clusters getting large. As we will see in
Section 11.5, handling within-cluster correlation in this context is relatively straight-
forward. In fact, when the explanatory variables are exogenous, OLS is consistent
and asymptotically normal, but the asymptotic variance matrix needs to be adjusted.
The same holds for 2SLS.

Problems

6.1. a. In Problem 5.4d, test the null hypothesis that educ is exogenous.
b. Test the the single overidentifying restriction in this example.

6.2. In Problem 5.8b, test the null hypothesis that educ and IQ are exogenous in the
equation estimated by 2SLS.

6.3. Consider a model for individual data to test whether nutrition affects produc-
tivity (in a developing country):

log(produc) =y + d1exper + 6zexper2 + dszeduc + oy calories + o, protein + u,
(6.35)

where produc is some measure of worker productivity, calories is caloric intake per
day, and protein is a measure of protein intake per day. Assume here that exper,
exper?, and educ are all exogenous. The variables calories and protein are possibly
correlated with u; (see Strauss and Thomas, 1995, for discussion). Possible instru-
mental variables for calories and protein are regional prices of various goods such as
grains, meats, breads, dairy products, and so on.

a. Under what circumstances do prices make good IVs for calories and proteins?
What if prices reflect quality of food?

b. How many prices are needed to identify equation (6.35)?

c. Suppose we have M prices, p,...,pmu. Explain how to test the null hypothesis
that calories and protein are exogenous in equation (6.35).

6.4. Consider a structural linear model with unobserved variable ¢:

y=xp+q+uv, E(v|x,9) =0
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Suppose, in addition, that E(¢|x) = xé for some K x 1 vector J; thus, ¢ and x are
possibly correlated.

a. Show that E(y|x) is linear in x. What consequences does this fact have for tests of
functional form to detect the presence of ¢? Does it matter how strongly ¢ and x are
correlated? Explain.

b. Now add the assumptions Var(v|x,¢) =a> and Var(g|x) = 0(12. Show that
Var(y|x) is constant. [Hint: E(gv|x) = 0 by iterated expectations.] What does this

fact imply about using tests for heteroskedasticity to detect omitted variables?

c. Now write the equation as y = xf + u, where E(x'u) = 0 and Var(u|x) = ¢2. If
E(u|x) # E(u), argue that an LM test of the form (6.28) will detect ‘“‘hetero-
skedasticity” in u, at least in large samples.

6.5. a. Verify equation (6.29) under the assumptions E(u | x) = 0 and E(u? | x) = ¢2.
b. Show that, under the additional assumption (6.27),

E[(u? = %)*(h; — ) (h; — )] = n°E[(hi — )" (h; — )]

where 72 = E[(u? — ¢2)7].

c. Explain why parts a and b imply that the LM statistic from regression (6.28) has a
limiting x5 distribution.

d. If condition (6.27) does not hold, obtain a consistent estimator of
E[(u? — 62)*(h; — w,)(h; — m,)]. Show how this leads to the heterokurtosis-robust

1
test for heteroskedasticity.

6.6. Using the test for heteroskedasticity based on the auxiliary regression % on j,

72, test the log(wage) equation in Example 6.4 for heteroskedasticity. Do you detect
heteroskedasticity at the 5 percent level?

6.7. For this problem use the data in HPRICE.RAW, which is a subset of the data
used by Kiel and McClain (1995). The file contains housing prices and characteristics
for two years, 1978 and 1981, for homes sold in North Andover, Massachusetts. In
1981 construction on a garbage incinerator began. Rumors about the incinerator
being built were circulating in 1979, and it is for this reason that 1978 is used as the
base year. By 1981 it was very clear that the incinerator would be operating soon.

a. Using the 1981 cross section, estimate a bivariate, constant elasticity model relat-
ing housing price to distance from the incinerator. Is this regression appropriate for
determining the causal effects of incinerator on housing prices? Explain.

b. Pooling the two years of data, consider the model
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log(price) = dg + 0181 + 6, log(dist) + 93 y81 - log(dist) + u

If the incinerator has a negative effect on housing prices for homes closer to the
incinerator, what sign is J3? Estimate this model and test the null hypothesis that
building the incinerator had no effect on housing prices.

c. Add the variables log(intst), [log(intst))*, log(area), log(land), age, age®, rooms,
baths to the model in part b, and test for an incinerator effect. What do you conclude?

6.8. The data in FERTIL1.RAW are a pooled cross section on more than a thou-
sand U.S. women for the even years between 1972 and 1984, inclusive; the data set is
similar to the one used by Sander (1992). These data can be used to study the rela-
tionship between women’s education and fertility.

a. Use OLS to estimate a model relating number of children ever born to a woman
(kids) to years of education, age, region, race, and type of environment reared in.
You should use a quadratic in age and should include year dummies. What is the
estimated relationship between fertility and education? Holding other factors fixed,
has there been any notable secular change in fertility over the time period?

b. Reestimate the model in part a, but use motheduc and fatheduc as instruments for
educ. First check that these instruments are sufficiently partially correlated with educ.
Test whether educ is in fact exogenous in the fertility equation.

c. Now allow the effect of education to change over time by including interaction
terms such as y74-educ, y76-educ, and so on in the model. Use interactions of time
dummies and parents’ education as instruments for the interaction terms. Test that
there has been no change in the relationship between fertility and education over
time.

6.9. Use the data in INJURY.RAW for this question.

a. Using the data for Kentucky, reestimate equation (6.33) adding as explanatory
variables male, married, and a full set of industry- and injury-type dummy variables.
How does the estimate on afchnge-highearn change when these other factors are
controlled for? Is the estimate still statistically significant?

b. What do you make of the small R-squared from part a? Does this mean the
equation is useless?

c. Estimate equation (6.33) using the data for Michigan. Compare the estimate on the
interaction term for Michigan and Kentucky, as well as their statistical significance.

6.10. Consider a regression model with interactions and squares of some explana-
tory variables: E(y|x) = zf,, where z contains a constant, the elements of x, and
quadratics and interactions of terms in x.
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a. Let u = E(x) be the population mean of x, and let X be the sample average based
on the NV available observations. Let ﬁ be the OLS estimator of f using the NV obser-
vations on y and z. Show that /N (ﬁ —p) and V/N(X — u) are asymptotically un-
correlated. [Hint: Write v/N(f — f) as in equation (4.8), and ignore the 0p(1) term.
You will need to use the fact that E(u|x) = 0.]

b. In the model of Problem 4.8, use part a to argue that
Avar(d;) = Avar(d;) + i3 Avar(%) = Avar(d) + f3(a3/N)

where o = f3; + 316, & is the estimator of o if ' we knew ,, and 67 = Var(x,).

¢. How would you obtain the correct asymptotic standard error of &;, having run the
regression in Problem 4.8d? [Hint: The standard error you get from the regression is
really se(&;). Thus you can square this to estimate Avar(d;), then use the preceding
formula. You need to estimate 3, t0o.]

d. Apply the result from part ¢ to the model in Problem 4.8; in particular, find the
corrected asymptotic standard error for &;, and compare it with the uncorrected one
from Problem 4.8d. (Both can be nonrobust to heteroskedasticity.) What do you
conclude?

6.11. The following wage equation represents the populations of working people in
1978 and 1985:

log(wage) = By + 00y85 + feduc + 01y85-educ + f,exper
+ ﬁ3experz + fyunion + s female 4 65y85- female + u

where the explanatory variables are standard. The variable union is a dummy vari-
able equal to one if the person belongs to a union and zero otherwise. The variable
¥85 is a dummy variable equal to one if the observation comes from 1985 and zero if
it comes from 1978. In the file CPS78_85.RAW there are 550 workers in the sample
in 1978 and a different set of 534 people in 1985.

a. Estimate this equation and test whether the return to education has changed over
the seven-year period.

b. What has happened to the gender gap over the period?

c. Wages are measured in nominal dollars. What coefficients would change if we
measure wage in 1978 dollars in both years? [Hint: Use the fact that for all 1985
observations, log(wage;/P85) = log(wage;) — log(P85), where P85 is the common
deflator; P85 = 1.65 according to the Consumer Price Index.]

d. Is there evidence that the variance of the error has changed over time?
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e. With wages measured nominally, and holding other factors fixed, what is the
estimated increase in nominal wage for a male with 12 years of education? Propose a
regression to obtain a confidence interval for this estimate. (Hint: You must replace
¥85-educ with something else.)

6.12. In the linear model y = xf + u, assume that Assumptions 2SLS.1 and 2SLS.3
hold with w in place of z, where w contains all nonredundant elements of x and z.
Further, assume that the rank conditions hold for OLS and 2SLS. Show that

AVar[W(ﬁzsLs - ﬁOLS)} = AVar[\/N(ﬁZSLs -B) - Avar[\/ﬁ(ﬁOLS - B)]

[Hint: First, Avar[v/N(fsis — Bors)] = Vi + V2 — (C+ C’), where V; = Avar-
VN (s s — B)], V2 = Avar[V'N(fo;s — B)], and C is the asymptotic covariance

between VN (B s — B) and VN(Bors — B). You can stack the formulas for the
2SLS and OLS estimators and show that C = ¢2[E(x*'x*)] 'E(x*'x)[E(x'x)] " =
o2[E(x'x)] " = V. To show the second equality, it will be helpful to use E(x*'x) =

E(x*'x*).]

Appendix 6A

We derive the asymptotic distribution of the 2SLS estimator in an equation with
generated regressors and generated instruments. The tools needed to make the proof
rigorous are introduced in Chapter 12, but the key components of the proof can be
given here in the context of the linear model. Write the model as

y=xf+u, E(ulv)=0

where x = f(w,d), dis a O x 1 vector, and B is K x 1. Let é be a v/N-consistent es-
timator of 4. The instruments for each i are z; = g(v;,4) where g(v,4) isa 1 x L
vector, Ais an S x 1 vector of parameters, and 4 is v/N-consistent for 4. Let # be the

2SLS estimator from the equation
i =X;p + error;

where X; = f(w;,d), using instruments Z;:

Write y, = x;f+ (x; — X;)p + u;, where x; = f(w;,0). Plugging this in and multi-
plying through by v/N gives
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Now, using Lemma 12.1 in Chapter 12, C % E(z'x) and D 2 E(z'z). Further, a
mean value expansion of the kind used in Theorem 12.3 gives

N N
N71/2 Zz uj=N"17? szui + |N ! ZVZg(vi,l)uil VN —2)+ 0,(1)
i=1 i=1
where V,g(vi,A) is the L xS Jacobian of g(vi,4)". Because E(u;|v;) =0,

E[V;MgA(v,»,l)’ui] =0. It follows that N-'S°N Vig(v, Du; = 0,(1) and, since
V/N(4— 2) = 0,(1), it follows that

N
l/zzzu — NS gl 4 oy (1)
i=1

Next, using similar reasoning,

N N
Z Xi — %) Z B ® z) Vst (wi, 6) | VN(6 — 8) + 0,(1)

= —GVN(0—6) +o,(1)

where G = E[(B ® z;)'Vsf(w;,0)] and Vsf(w;,d) is the K x Q Jacobian of f(w;,d)".
We have used a mean value expansion and 2/(x; — X;)f = ( ® 2;)'(x; — X;)". Now,
assume that

VN (b — 1/221.1 + 0p(1

where E[r;(d)] = 0. This assumption holds for all estimators discussed so far, and it
also holds for most estimators in nonlinear models; see Chapter 12. Collecting all
terms gives

VN(B-p)=(C'D'C)'C { I/ZZzu, Gr;(6 }+o,,(l)
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By the central limit theorem,

VN(B - p) £ Normal[0, (C'D~'C)"'C’'D-'MD'C(C'D'C) !
where

M = Var[z/u; — Gr;(9)]

The asymptotic variance of § is estimated as

(C'D'C)'C'D'MD'C(C'DIC) !N, (6.36)

where

A N ~ ~

M= N""Y (% — GE) (% — Gy’ (6.37)
i=1

A~ N ~ ~

G=N"> (B®z) Vsf(w;0) (6.38)
i=1

and

£ =r1,(0), i = y; — X (6.39)

A few comments are in order. First, estimation of 4 does not affect the asymptotic
distribution of ﬁ Therefore, if there are no generated regressors, the usual 2SLS in-
ference procedures are valid [G = 0 in this case and so M = E(u?z/z;)]. If G = 0 and
E(u’2'z) = 6*E(z'z), then the usual 2SLS standard errors and test statistics are valid.
If Assumption 2SLS.3 fails, then the heteroskedasticity-robust statistics are valid.

If G #0, then the asymptotic variance of ﬁ depends on that of o [through
the presence of r;(d)]. Neither the usual 2SLS variance matrix estimator nor the
heteroskedasticity-robust form is valid in this case. The matrix M should be com-
puted as in equation (6.37).

In some cases, G = 0 under the null hypothesis that we wish to test. The jth row of
G can be written as E[z;8'Vsf(w;,d)]. Now, suppose that % is the only generated
regressor, so that only the Ath row of Vsf(w;,d) is nonzero. But then if f, =0,
B'Vst(w;,6) = 0. It follows that G = 0 and M = E(u?z/z;), so that no adjustment for
the preliminary estimation of ¢ is needed. This observation is very useful for a variety
of specification tests, including the test for endogeneity in Section 6.2.1. We will also
use it in sample selection contexts later on.






7 Estimating Systems of Equations by OLS and GLS

7.1 Introduction

This chapter begins our analysis of linear systems of equations. The first method of
estimation we cover is system ordinary least squares, which is a direct extension of
OLS for single equations. In some important special cases the system OLS estimator
turns out to have a straightforward interpretation in terms of single-equation OLS
estimators. But the method is applicable to very general linear systems of equations.

We then turn to a generalized least squares (GLS) analysis. Under certain as-
sumptions, GLS—or its operationalized version, feasible GLS—will turn out to be
asymptotically more efficient than system OLS. However, we emphasize in this chapter
that the efficiency of GLS comes at a price: it requires stronger assumptions than
system OLS in order to be consistent. This is a practically important point that is
often overlooked in traditional treatments of linear systems, particularly those which
assume that explanatory variables are nonrandom.

As with our single-equation analysis, we assume that a random sample is available
from the population. Usually the unit of observation is obvious—such as a worker, a
household, a firm, or a city. For example, if we collect consumption data on various
commodities for a sample of families, the unit of observation is the family (not a
commodity).

The framework of this chapter is general enough to apply to panel data models.
Because the asymptotic analysis is done as the cross section dimension tends to in-
finity, the results are explicitly for the case where the cross section dimension is large
relative to the time series dimension. (For example, we may have observations on N
firms over the same T time periods for each firm. Then, we assume we have a random
sample of firms that have data in each of the T years.) The panel data model covered
here, while having many useful applications, does not fully exploit the replicability
over time. In Chapters 10 and 11 we explicitly consider panel data models that con-
tain time-invariant, unobserved effects in the error term.

7.2 Some Examples

We begin with two examples of systems of equations. These examples are fairly gen-
eral, and we will see later that variants of them can also be cast as a general linear
system of equations.

Example 7.1 (Seemingly Unrelated Regressions): The population model is a set of
G linear equations,
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yi=xif+u
Y2 =Xoff; +un
? (7.1)
Y6 =X6Pg + uc
where X, is 1 x K; and B, is K, x 1, g =1,2,...,G. In many applications X, is the

same for all g (in which case the B, necessarily have the same dimension), but the
general model allows the elements and the dimension of x,, to vary across equations.
Remember, the system (7.1) represents a generic person, firm, city, or whatever from
the population. The system (7.1) is often called Zellner’s (1962) seemingly unrelated
regressions (SUR) model (for cross section data in this case). The name comes from
the fact that, since each equation in the system (7.1) has its own vector g, it appears
that the equations are unrelated. Nevertheless, correlation across the errors in differ-
ent equations can provide links that can be exploited in estimation; we will see this
point later.

As a specific example, the system (7.1) might represent a set of demand functions
for the population of families in a country:

housing = B,y + 1 houseprc + B, foodprc + fsclothpre + f4income
+ Bissize + Bigage + u
Jood = Py + Py houseprc + B, foodpre + fasclothpre + fosincome
+ Passize + Prsage + uz
clothing = Py + Py housepre + B, foodpre + fayclothpre + fayincome
+ Bassize + Pygage + u3

In this example, G = 3 and x,, (a 1 x 7 vector) is the same for g = 1,2, 3.

When we need to write the equations for a particular random draw from the pop-
ulation, y,, X,, and u, will also contain an i subscript: equation g becomes y;, =
XigB, + uig. For the purposes of stating assumptions, it does not matter whether or
not we include the 7 subscript. The system (7.1) has the advantage of being less clut-
tered while focusing attention on the population, as is appropriate for applications.
But for derivations we will often need to indicate the equation for a generic cross
section unit 7.

When we study the asymptotic properties of various estimators of the f, the
asymptotics is done with G fixed and N tending to infinity. In the household demand
example, we are interested in a set of three demand functions, and the unit of obser-
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vation is the family. Therefore, inference is done as the number of families in the
sample tends to infinity.

The assumptions that we make about how the unobservables u, are related to the
explanatory variables (x;,Xa,...,X¢) are crucial for determining which estimators of
the B, have acceptable properties. Often, when system (7.1) represents a structural
model (without omitted variables, errors-in-variables, or simultaneity), we can as-
sume that

E(u0|X17X27”’7XG):07 g:17>G (72)

One important implication of assumption (7.2) is that u, is uncorrelated with the
explanatory variables in all equations, as well as all functions of these explanatory
variables. When system (7.1) is a system of equations derived from economic theory,
assumption (7.2) is often very natural. For example, in the set of demand functions
that we have presented, x, = x is the same for all g, and so assumption (7.2) is the
same as E(u, |x,) = E(u,|x) = 0.

If assumption (7.2) is maintained, and if the x, are not the same across g, then any
explanatory variables excluded from equation g are assumed to have no effect on
expected y, once x, has been controlled for. That is,

E(yg|X1,X27...Xg):E(yg‘Xg):Xgﬂy, g:1727"'7G (73)

There are examples of SUR systems where assumption (7.3) is too strong, but stan-
dard SUR analysis either explicitly or implicitly makes this assumption.

Our next example involves panel data.

Example 7.2 (Panel Data Model): Suppose that for each cross section unit we ob-
serve data on the same set of variables for 7" time periods. Let x, be a 1 x K vector
fortr=1,2,..., T, and let g be a K x 1 vector. The model in the population is

¥y, =X+ uy, t=12,....T (7.4)

where y, is a scalar. For example, a simple equation to explain annual family saving
over a five-year span is

sav, = By + Byinc, + Prage; + Preduc, + uy, t=1,2,....5

where inc, is annual income, educ, is years of education of the household head, and
age, is age of the household head. This is an example of a linear panel data model. It
is a static model because all explanatory variables are dated contemporaneously with
savy.

The panel data setup is conceptually very different from the SUR example. In Ex-
ample 7.1, each equation explains a different dependent variable for the same cross
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section unit. Here we only have one dependent variable we are trying to explain—
sav—but we observe sav, and the explanatory variables, over a five-year period.
(Therefore, the label “system of equations” is really a misnomer for panel data
applications. At this point, we are using the phrase to denote more than one equation
in any context.) As we will see in the next section, the statistical properties of esti-
mators in SUR and panel data models can be analyzed within the same structure.

When we need to indicate that an equation is for a particular cross section unit i
during a particular time period ¢, we write y;, = X + u;. We will omit the 7 sub-
script whenever its omission does not cause confusion.

What kinds of exogeneity assumptions do we use for panel data analysis? One
possibility is to assume that u, and x, are orthogonal in the conditional mean sense:

E(MI‘X[)Z(L ZZI,...,T (75)

We call this contemporaneous exogeneity of x, because it only restricts the relation-
ship between the disturbance and explanatory variables in the same time period. It is
very important to distinguish assumption (7.5) from the stronger assumption

E(u; | x1,X2,...,x7) =0, t=1,...,.T (7.6)

which, combined with model (7.4), is identical to E(y,|xi,Xa,...,xr) = E(y,|X).
Assumption (7.5) places no restrictions on the relationship between x; and u, for
s # t, while assumption (7.6) implies that each u, is uncorrelated with the explanatory
variables in all time periods. When assumption (7.6) holds, we say that the explana-
tory variables {x;,Xs,...,X,..., Xy} are strictly exogenous.

To illustrate the difference between assumptions (7.5) and (7.6), let x, = (1, y,_;).
Then assumption (7.5) holds if E(y, | ¥,_1, ¥s_2- - -, ¥o) = Po + B1¥:_1, which imposes
first-order dynamics in the conditional mean. However, assumption (7.6) must fail
since x,4+1 = (1, y,), and therefore E(u, | x1,X2,...,X7) = E(u, | yo, Y1y« s V1) = Us
fort=1,2,..., T — 1 (because u, = y, — fo — 1 V,—1)-

Assumption (7.6) can fail even if x, does not contain a lagged dependent variable.
Consider a model relating poverty rates to welfare spending per capita, at the city
level. A finite distributed lag (FDL) model is

poverty, = 0, + oowelfare; + dywelfare,_| + oywelfare,_» + u, (7.7)

where we assume a two-year effect. The parameter 6, simply denotes a different ag-
gregate time effect in each year. It is reasonable to think that welfare spending reacts
to lagged poverty rates. An equation that captures this feedback is

welfare, = 5, + ppoverty,_1 + r; (7.8)
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Even if equation (7.7) contains enough lags of welfare spending, assumption (7.6)
would be violated if p; # 0 in equation (7.8) because welfare,.; depends on u, and
X,y includes welfare, .

How we go about consistently estimating f depends crucially on whether we
maintain assumption (7.5) or the stronger assumption (7.6). Assuming that the x;, are
fixed in repeated samples is effectively the same as making assumption (7.6).

7.3 System OLS Estimation of a Multivariate Linear System

7.3.1 Preliminaries

We now analyze a general multivariate model that contains the examples in Section
7.2, and many others, as special cases. Assume that we have independent, identically
distributed cross section observations {(X;,y;): i=1,2,..., N}, where X;isa G x K
matrix and y; is a G x 1 vector. Thus, y; contains the dependent variables for all G
equations (or time periods, in the panel data case). The matrix X; contains the ex-
planatory variables appearing anywhere in the system. For notational clarity we in-
clude the i subscript for stating the general model and the assumptions.

The multivariate linear model for a random draw from the population can be
expressed as

Vi =Xif+u (7.9)

where f is the K x 1 parameter vector of interest and w; is a G x 1 vector of un-
observables. Equation (7.9) explains the G variables y;,..., y;; in terms of X; and
the unobservables u;. Because of the random sampling assumption, we can state all
assumptions in terms of a generic observation; in examples, we will often omit the i
subscript.

Before stating any assumptions, we show how the two examples introduced in
Section 7.2 fit into this framework.

Example 7.1 (SUR, continued): The SUR model (7.1) can be expressed as in
equation (7.9) by defining y; = (yi, Vins - -+ Vig) » W = (i1, upa, - . ., i)', and

xi 0 0 - 0
0 x» 0 B
i B>
Xi=|0 o 2 I P (7.10)
. . :
Be
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Note that the dimension of X; is G x (K; + Ky +---+ Kg), so we define K =
K+ + Kg.
Example 7.2 ( Panel Data, continued): The panel data model (7.6) can be expressed

as in equation (7.9) by choosing X; to be the 7' x K matrix X; = (x/;, X}, ..., X/z)".

7.3.2 Asymptotic Properties of System OLS

Given the model in equation (7.9), we can state the key orthogonality condition for
consistent estimation of f by system ordinary least squares (SOLS).

AsSUMPTION SOLS.1:  E(X'w;) = 0.

Assumption SOLS.1 appears similar to the orthogonality condition for OLS analysis
of single equations. What it implies differs across examples because of the multiple-
equation nature of equation (7.9). For most applications, X; has a sufficient number
of elements equal to unity so that Assumption SOLS.1 implies that E(u;) = 0, and we
assume zero mean for the sake of discussion.

It is informative to see what Assumption SOLS.1 entails in the previous examples.

Example 7.1 (SUR, continued): 1In the SUR case, X/u; = (xju;1, . . .,x,—GuiG)', and
so Assumption SOLS.1 holds if and only if

E(Xz{guig):07 g:1727"'7G (711)
Thus, Assumption SOLS.1 does not require x;; and u;, to be uncorrelated when

h#g.

Example 7.2 ( Panel Data, continued): For the panel data setup, Xu; = 31| x/uy;
therefore, a sufficient, and very natural, condition for Assumption SOLS.1 is

E(x},u;) = 0, t=1,2,...,T (7.12)

Like assumption (7.5), assumption (7.12) allows x;; and u; to be correlated when
s # t; in fact, assumption (7.12) is weaker than assumption (7.5). Therefore, As-
sumption SOLS.1 does not impose strict exogeneity in panel data contexts.

Assumption SOLS.1 is the weakest assumption we can impose in a regression
framework to get consistent estimators of f. As the previous examples show, As-
sumption SOLS.1 allows some elements of X; to be correlated with elements of u;.
Much stronger is the zero conditional mean assumption
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which implies, among other things, that every element of X; and every element of u;
are uncorrelated. [Of course, assumption (7.13) is not as strong as assuming that w;
and X; are actually independent.] Even though assumption (7.13) is stronger than
Assumption SOLS.1, it is, nevertheless, reasonable in some applications.

Under Assumption SOLS.1 the vector f satisfies

E[Xi(y; — XiB)] =0 (7.14)

or E(X/X;)p = E(Xly,). For each i, X]y; is a K x | random vector and X/X; is a
K x K symmetric, positive semidefinite random matrix. Therefore, E(X/X;) is always
a K x K symmetric, positive semidefinite nonrandom matrix (the expectation here is
defined over the population distribution of X;). To be able to estimate f we need to
assume that it is the only K x 1 vector that satisfies assumption (7.14).

ASSUMPTION SOLS.2: A = E(XX;) is nonsingular (has rank K).
Under Assumptions SOLS.1 and SOLS.2 we can write f as
B = [E(X/X)] 'E(X]y;) (7.15)

which shows that Assumptions SOLS.1 and SOLS.2 identify the vector f. The anal-
ogy principle suggests that we estimate f by the sample analogue of assumption
(7.15). Define the system ordinary least squares (SOLS) estimator of f as

R N -1 N
p= <N1 > X{X,) <N1 > X;y,) (7.16)
i=1 i=1

For computing # using matrix language programming, it is sometimes useful to write
B = (X'X)"'X"Y, where X = (X[, X5,...,X})" is the NG x K matrix of stacked X
and Y = (y},y5,...,¥y) is the NG x 1 vector of stacked observations on the y;. For
asymptotic derivations, equation (7.16) is much more convenient. In fact, the con-
sistency of B can be read off of equation (7.16) by taking probability limits. We
summarize with a theorem:

THEOREM 7.1 (Consistency of System OLS): Under Assumptions SOLS.1 and
SOLS.2, 5 p.

It is useful to see what the system OLS estimator looks like for the SUR and panel
data examples.

Example 7.1 (SUR, continued): For the SUR model,
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x;xq 0 0

!
0 xLxp 0 Xi1Jin
N N N N | Xy
DXXi=> [ 0 0 ol X Xm=)
i1 i=1 : 0 i=1 i1
' Xig i
0 0 0 - Xxg G

Straightforward inversion of a block diagonal matrix shows that the OLS estimator
from equation (7.16) can be written as f = (B], ;. .., ;) , where each ﬁq is just the
single-equation OLS estimator from the gth equation. In other words, system OLS
estimation of a SUR model (without restrictions on the parameter vectors ) is
equivalent to OLS equation by equation. Assumption SOLS.2 is easily seen to hold if
E(x;,Xiy) is nonsingular for all g.

Example 7.2 (Panel Data, continued): 1In the panel data case,

N N T N N T
2 : ’ _ 2 :2 : v . § : le § : z : /
Xixi - thxzh XjYi - xityit
i=1 i=1 =1 i=1 i=1 =1

Therefore, we can write f§ as

R N T 1y N T
k= <szﬁzxfr> <Z Xé%;) (7.17)
i=1 =1 i=1 =1
This estimator is called the pooled ordinary least squares (POLS) estimator because it
corresponds to running OLS on the observations pooled across i and ¢. We men-
tioned this estimator in the context of independent cross sections in Section 6.3. The
estimator in equation (7.17) is for the same cross section units sampled at different
points in time. Theorem 7.1 shows that the POLS estimator is consistent under
the orthogonality conditions in assumption (7.12) and the mild condition rank

E(EtT:I XZ(IX,-,) =K.

In the general system (7.9), the system OLS estimator does not necessarily have an
interpretation as OLS equation by equation or as pooled OLS. As we will see in
Section 7.7 for the SUR setup, sometimes we want to impose cross equation restric-
tions on the f, in which case the system OLS estimator has no simple interpretation.

While OLS is consistent under Assumptions SOLS.1 and SOLS.2, it is not neces-
sarily unbiased. Assumption (7.13), and the finite sample assumption rank(X'X) =
K, do ensure unbiasedness of OLS conditional on X. [This conclusion follows be-
cause, under independent sampling, E(u; | X1,Xs,...,Xy) = E(w; | X;) = 0 under as-



Estimating Systems of Equations by OLS and GLS 151

sumption (7.13).] We focus on the weaker Assumption SOLS.1 because assumption
(7.13) is often violated in economic applications, something we will see especially in
our panel data analysis.

For inference, we need to find the asymptotic variance of the OLS estimator under
essentially the same two assumptions; technically, the following derivation requires
the elements of X'uu/X; to have finite expected absolute value. From (7.16) and (7.9)
write

VN(B-B) = ( IZXX> (Nl/zzN:Xfu,)

Because E(X/u;) = 0 under Assumption SOLS.1, the CLT implies that

N

NY23" X/u; % Normal(0, B) (7.18)
i=1

where

B = E(X/uuX;) = Var(X/w;) (7.19)

In particular, N~'/2 37, X/u; = O,(1). But (X'X/N) ' = A~ +0,(1), s0

VNB-B)=A ( I/ZZXu,) [(X'X/N)™! 1]<N1/22N:x;u,~>
i=1
N
=A" (N‘”ZX&»-) +0p(1) - Oy(1)

i=1

N
=A"! (NVZ Zx,fu,) +0,(1) (7.20)
i=1

Therefore, just as with single-equation OLS and 2SLS, we have obtained an asymp-
totic representation for v/N(f — f) that is a nonrandom linear combination of a par-
tial sum that satisfies the CLT. Equations (7.18) and (7.20) and the asymptotic
equivalence lemma imply

VN — ) % Normal(0,A"'BA™") (7.21)
We summarize with a theorem.

THEOREM 7.2 (Asymptotic Normality of SOLS): Under Assumptions SOLS.1 and
SOLS.2, equation (7.21) holds.
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The asymptotic variance of ﬁ is

Avar(f) = A"'BA”'/N (7.22)

so that Avar(f) shrinks to zero at the rate 1/N, as expected. Consistent estimation of
A is simple:

N

A=XX/N=N"> XX, (7.23)
i1

A consistent estimator of B can be found using the analogy principle. First, because

B = E(X/uwX;), N' N X/uu/X; L B. Since the u; are not observed, we replace

them with the SOLS residuals:

b=y, - Xf=u-X(p-p (7.24)

Using matrix algebra and the law of large numbers, it can be shown that

A N

B=N") XuaX; > B (7.25)
i=1

[To establish equation (7.25), we need to assume that certain moments involving X;
and v, are finite.] Therefore, Avar v/N (B — ) is consistently estimated by AT'BA,

and Avar(p) is estimated as

R N L/ N N -1
V= (Z x;x,-) (Z leﬁ,-ﬁ;Xi> (Z x;x,-) (7.26)
i=1 i=1 i=1

Under Assumptions SOLS.1 and SOLS.2, we perform inference on g as if § is nor-
mally distributed with mean # and variance matrix (7.26). The square roots of the
diagonal elements of the matrix (7.26) are reported as the asymptotic standard errors.
The ¢ ratio, ﬁj/ se(ﬂ}), has a limiting normal distribution under the null hypothesis
Hy: ﬁj = (. Sometimes the ¢ statistics are treated as being distributed as #yg_g, which
is asymptotically valid because NG — K should be large.

The estimator in matrix (7.26) is another example of a robust variance matrix esti-
mator because it is valid without any second-moment assumptions on the errors u;
(except, as usual, that the second moments are well defined). In a multivariate setting
it is important to know what this robustness allows. First, the G x G unconditional
variance matrix, Q = E(u;u)), is entirely unrestricted. This fact allows cross equation
correlation in an SUR system as well as different error variances in each equation.
In panel data models, an unrestricted  allows for arbitrary serial correlation and
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time-varying variances in the disturbances. A second kind of robustness is that the
conditional variance matrix, Var(u; | X;), can depend on X, in an arbitrary, unknown
fashion. The generality afforded by formula (7.26) is possible because of the N — oo
asymptotics.

In special cases it is useful to impose more structure on the conditional and un-
conditional variance matrix of w; in order to simplify estimation of the asymptotic
variance. We will cover an important case in Section 7.5.2. Essentially, the key re-
striction will be that the conditional and unconditional variances of u; are the same.

There are also some special assumptions that greatly simplify the analysis of the
pooled OLS estimator for panel data; see Section 7.8.

7.3.3 Testing Multiple Hypotheses

Testing multiple hypotheses in a very robust manner is easy once V in matrix (7.26)
has been obtained. The robust Wald statistic for testing Hyo: Rf =r, where Ris Q x K
with rank Q and r is Q x 1, has its usual form, W = (R —r) (RVR") "' (Rf —r).
Under Hy, W ~ ){é. In the SUR case this is the easiest and most robust way of
testing cross equation restrictions on the parameters in different equations using sys-
tem OLS. In the panel data setting, the robust Wald test provides a way of testing
multiple hypotheses about g without assuming homoskedasticity or serial indepen-
dence of the errors.

7.4 Consistency and Asymptotic Normality of Generalized Least Squares

7.4.1 Consistency

System OLS is consistent under fairly weak assumptions, and we have seen how to
perform robust inference using OLS. If we strengthen Assumption SOLS.1 and add
assumptions on the conditional variance matrix of u;, we can do better using a gen-
eralized least squares procedure. As we will see, GLS is not usually feasible because it
requires knowing the variance matrix of the errors up to a multiplicative constant.
Nevertheless, deriving the consistency and asymptotic distribution of the GLS esti-
mator is worthwhile because it turns out that the feasible GLS estimator is asymp-
totically equivalent to GLS.

We start with the model (7.9), but consistency of GLS generally requires a stronger
assumption than Assumption SOLS.1. We replace Assumption SOLS.1 with the as-
sumption that each element of u; is uncorrelated with each element of X;. We can
state this succinctly using the Kronecker product:
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AssuMPTION SGLS.1: E(X; ®u;) = 0.

Typically, at least one element of X; is unity, so in practice Assumption SGLS.1
implies that E(u;) = 0. We will assume u; has a zero mean for our discussion but not
in proving any results.

Assumption SGLS.1 plays a crucial role in establishing consistency of the GLS
estimator, so it is important to recognize that it puts more restrictions on the ex-
planatory variables than does Assumption SOLS.1. In other words, when we allow
the explanatory variables to be random, GLS requires a stronger assumption than
system OLS in order to be consistent. Sufficient for Assumption SGLS.1, but not
necessary, is the zero conditional mean assumption (7.13). This conclusion follows
from a standard iterated expectations argument.

For GLS estimation of multivariate equations with i.i.d. observations, the second-
moment matrix of u; plays a key role. Define the G x G symmetric, positive semi-
definite matrix

Q = E(uu)) (7.27)

As mentioned in Section 7.3.2, we call © the unconditional variance matrix of u;. [In
the rare case that E(u;) # 0, Q is not the variance matrix of w;, but it is always the
appropriate matrix for GLS estimation.] It is important to remember that expression
(7.27) is definitional: because we are using random sampling, the unconditional vari-
ance matrix is necessarily the same for all i.

In place of Assumption SOLS.2, we assume that a weighted version of the expected
outer product of X; is nonsingular.

ASSUMPTION SGLS.2: Qs positive definite and E(X/Q~'X;) is nonsingular.

For the general treatment we assume that Q is positive definite, rather than just
positive semidefinite. In applications where the dependent variables across equations
satisfy an adding up constraint—such as expenditure shares summing to unity—an
equation must be dropped to ensure that  is nonsingular, a topic we return to in
Section 7.7.3. As a practical matter, Assumption SGLS.2 is not very restrictive. The
assumption that the K x K matrix E(X/Q'X;) has rank K is the analogue of As-
sumption SOLS.2.

The usual motivation for the GLS estimator is to transform a system of equations
where the error has nonscalar variance-covariance matrix into a system where the
error vector has a scalar variance-covariance matrix. We obtain this by multiplying
equation (7.9) by Q~1/%;
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Q y = (@ 2X)p+Q V2, oy =X B+u (7.28)

Simple algebra shows that E(u‘u}’) = I;.

Now we estimate equation (7.28) by system OLS. (As yet, we have no real justifi-
cation for this step, but we know SOLS is consistent under some assumptions.) Call
this estimator #*. Then

N 1/ N N L/ N
B = (Z x;’x;) <Z x:'y,.*> = <Z x;glx,) <Z x;gly,) (7.29)

i=1 i=1 i=1 i=1
This is the generalized least squares (GLS) estimator of f. Under Assumption
SGLS.2, B* exists with probability approaching one as N — 0.

We can write f* using full matrix notation as = [X'(Iy ® @ X]
[X'(Iy ® @7")Y], where X and Y are the data matrices defined in Section 7.3.2 and
Iy is the N x N identity matrix. But for establishing the asymptotic properties of f*,
it is most convenient to work with equation (7.29).

We can establish consistency of f* under Assumptions SGLS.1 and SGLS.2 by
writing

N -1 N
B =p+ <N—1 Zx;glxl) <N‘1 Zx;glu,) (7.30)
i=1 i=1

By the weak law of large numbers (WLLN), N~! ZIZI X/Q7'X; 2 E(XX/Q7'X)). 1By
Assumption SGLS.2 and Slutsky’s theorem (Lemma 3.4), (N Iy, X;Q*IX,») 2

A~!, where A is now defined as

,1.

A = EX/Q'X) (7.31)

Now we must show that plim N~' 3" X/Q 'u; = 0. By the WLLN, it is sufficient
that E(X/Q'u;) = 0. This is where Assumption SGLS.1 comes in. We can argue this
point informally because Q~'X; is a linear combination of X;, and since each element
of X, is uncorrelated with each element of u;, any linear combination of X; is uncor-
related with u;. We can also show this directly using the algebra of Kronecker prod-
ucts and vectorization. For conformable matrices D, E, and F, recall that vec(DEF)
= (F' ® D) vec(E), where vec(C) is the vectorization of the matrix C. [That is, vec(C)
is the column vector obtained by stacking the columns of C from first to last; see
Theil (1983).] Therefore, under Assumption SGLS.1,

vec E(X/Q 'w;) = E[(u] ® X))] vec(Q™") = E[(y; ® X;)'] vec(Q™') =0
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where we have also used the fact that the expectation and vec operators can be
interchanged. We can now read the consistency of the GLS estimator off of equation
(7.30). We do not state this conclusion as a theorem because the GLS estimator itself
is rarely available.

The proof of consistency that we have sketched fails if we only make Assumption
SOLS.1: E(X/u;) = 0 does not imply E(X/Q 'u;) = 0, except when Q and X, have
special structures. If Assumption SOLS.1 holds but Assumption SGLS.1 fails, the
transformation in equation (7.28) generally induces correlation between X and u;".
This can be an important point, especially for certain panel data applications. If we
are willing to make the zero conditional mean assumption (7.13), #* can be shown to
be unbiased conditional on X.

7.4.2 Asymptotic Normality

We now sketch the asymptotic normality of the GLS estimator under Assumptions
SGLS.1 and SGLS.2 and some weak moment conditions. The first step is familiar:

N -1 N
VN - B) = (N‘l ngglx,) (N—l/ZZX;QIu,) (7.32)
i=1 i=1

By the CLT, N2 X/Q 7y, <, Normal(0, B), where
B = EX/Q lyu/Q7'X)) (7.33)

Further, since N-'/23 ) X/Q7'y; = 0,(1) and (N''N X/07'X) ' —A~! =
0,(1), we can write VN(* — ) = A" (N2 N x/Q7w;) + 0,(1). It follows from
the asymptotic equivalence lemma that

VN(B* = p) < Normal(0,A"'BA™") (7.34)
Thus,
Avar(f) = A"'BA”'/N (7.35)

The asymptotic variance in equation (7.35) is not the asymptotic variance usually
derived for GLS estimation of systems of equations. Usually the formula is reported
as A~!/N. But equation (7.35) is the appropriate expression under the assumptions
made so far. The simpler form, which results when B = A, is not generally valid
under Assumptions SGLS.1 and SGLS.2, because we have assumed nothing about
the variance matrix of u; conditional on X;. In Section 7.5.2 we make an assumption
that simplifies equation (7.35).
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7.5 Feasible GLS

7.5.1 Asymptotic Properties

Obtaining the GLS estimator #* requires knowing Q up to scale. That is, we must be
able to write Q = ¢>C where C is a known G x G positive definite matrix and ¢? is
allowed to be an unknown constant. Sometimes C is known (one case is C = I), but
much more often it is unknown. Therefore, we now turn to the analysis of feasible
GLS (FGLS) estimation.

In FGLS estimation we replace the unknown matrix £ with a consistent estimator.
Because the estimator of Q appears highly nonlinearly in the expression for the
FGLS estimator, deriving finite sample properties of FGLS is generally difficult.
[However, under essentially assumption (7.13) and some additional assumptions,
including symmetry of the distribution of u;, Kakwani (1967) showed that the distri-
bution of the FGLS is symmetric about f, a property which means that the FGLS
is unbiased if its expected value exists; see also Schmidt (1976, Section 2.5).] The
asymptotic properties of the FGLS estimator are easily established as N — oo be-
cause, as we will show, its first-order asymptotic properties are identical to those of
the GLS estimator under Assumptions SGLS.1 and SGLS.2. It is for this purpose
that we spent some time on GLS. After establishing the asymptotic equivalence, we
can easily obtain the limiting distribution of the FGLS estimator. Of course, GLS is
trivially a special case of FGLS, where there is no first-stage estimation error.

We assume we have a consistent estimator, fz, of Q:
plim @ =Q (7.36)
N—w
[Because the dimension of Q does not depend on N, equation (7.36) makes sense
when defined element by element.] When Q is allowed to be a general positive definite
matrix, the following estimation approach can be used. First, obtain the system OLS

estimator of f#, which we denote f# in this section to avoid confusion. We already

showed that ﬁ is consistent for f under Assumptions SOLS.1 and SOLS.2, and
therefore under Assumptions SGLS.1 and SOLS.2. (In what follows, we assume that
Assumptions SOLS.2 and SGLS.2 both hold.) By the WLLN, plim (N~ Zl]il uu)) =
Q. and so a natural estimator of Q is

N
Ny
i=1

a (7.37)

=>>

9)
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where ﬁ,- =y, — X,-ﬂ are the SOLS residuals. We can show that this estimator is con-
sistent for Q under Assumptions SGLS.1 and SOLS.2 and standard moment con-
ditions. First, write

b =u,— X,(B—p) (7.38)
so that
W = wul —w(B— B)'X! — X,(B— Py, + X,(B— B)(B— p)'X! (7.39)

Therefore, it suffices to show that the averages of the last three terms converge in
probability to zero. Write the average of the vec of the first termas N ! S (X; @ ;) -
(B — B), which is 0p(1) because plim(f — ) =0 and N~! SV X ®u) 2.0. The
third term is the transpose of the second. For the last term in equation (7.39), note
that the average of its vec can be written as

N N N
Ny (Xi®Xi)-vec{(B-B)(B- )} (7.40)
i=1

Now vec{(ﬁ - ﬁ)(ﬁ —B)'} = 0,(1). Further, assuming that each element of X; has
finite second moment, N~! Zi]i (X ®X;) =0,(1) by the WLLN. This step takes
care of the last term, since O, (1) - 0,(1) = 0,(1). We have shown that

N
Q:N”Zuiu;+o,,(1) (7.41)
i=1

and so equation (7.36) follows immediately. [In fact, a more careful analysis shows
that the 0,(1) in equation (7.41) can be replaced by o,(N~'/2); see Problem 7.4.]

Sometimes the elements of Q are restricted in some way (an important example is
the random effects panel data model that we will cover in Chapter 10). In such cases
a different estimator of € is often used that exploits these restrictions. As with Q
in equation (7.37), such estimators typically use the system OLS residuals in some
fashion and lead to consistent estimators assuming the structure of € is correctly
specified. The advantage of equation (7.37) is that it is consistent for  quite gener-
ally. However, if V is not very large relative to G, equation (7.37) can have poor finite
sample properties.

Given Q, the feasible GLS (FGLS) estimator of f is

~ N A 71 N A
B = (Z x;g—lx,) <Z X,-’Q_lyl) (7.42)
i=1 i=1

or, in full matrix notation, # = [X'(Iy ® @ HX]'[X'(Iy @ @ "Y].
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We have already shown that the (infeasible) GLS estimator is consistent under
Assumptions SGLS.1 and SGLS.2. Because Q converges to €, it is not surprising
that FGLS is also consistent. Rather than show this result separately, we verify the
stronger result that FGLS has the same limiting distribution as GLS.

The limiting distribution of FGLS is obtained by writing

VN —B) = ( IZX’Q 1X> (NWZN:X{QIu,-) (7.43)
i=1

Now

N N N
NN TXQ e - N2 X0 e = [Nl/z > WX
i=1 i=1 i=1

Under Assumption SGLS.1, the CLT implies that N~'/23" Y (0, ® X;) = 0,(1).
Because O,(1) - 0,(1) = 0,(1), it follows that

N N
NN X0 e = N2 X0 g+ o,(1)
i=1 =1

vec(Q — Q)

A similar argument shows that N=' SN X/Q7'X; = N1 SN, X/Q7'X; + 0,(1).
Therefore, we have shown that

N
VN -B) = ( lzxg X) <N1/ZZX;Q-1u,~> +0,(1) (7.44)
i=1
The first term in equation (7.44) is just VVN(B* — f8), where * is the GLS estimator.
We can write equation (7.44) as

VN(B—B") = 0,(1) (7.45)

which shows that ﬁ and p* are v/N-equivalent. Recall from Chapter 3 that this
statement is much stronger than simply saying that f* and ﬁ are both consistent for
p. There are many estimators, such as system OLS, that are consistent for f but are
not v/N-equivalent to .

The asymptotic equivalence of ﬁ and B has practically important consequences. The
most important of these is that, for performing asymptotic inference about # using
ﬁ, we do not have to worry that Q is an estimator of Q. Of course, whether the
asymptotic approximation gives a reasonable approximation to the actual distribu-
tion of ﬁ is difficult to tell. With large N, the approximation is usually pretty good.
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But if N is small relative to G, ignoring estimation of € in performing inference
about f can be misleading.
We summarize the limiting distribution of FGLS with a theorem.

THEOREM 7.3 (Asymptotic Normality of FGLS): Under Assumptions SGLS.1 and
SGLS.2,

VN(B - p) < Normal(0,A"'BA™!) (7.46)
where A is defined in equation (7.31) and B is defined in equation (7.33).

In the FGLS context a consistent estimator of A is

N
A=N"1) XX (7.47)
i=1

A consistent estimator of B is also readily available after FGLS estimation. Define
the FGLS residuals by

o=y —Xp. i=1,2,....,N (7.48)

[The only difference between the FGLS and SOLS residuals is that the FGLS esti-
mator is inserted in place of the SOLS estimator; in particular, the FGLS residuals
are not from the transformed equation (7.28).] Using standard arguments, a consis-
tent estimator of B is

N
B=N"1>"X/Q 'aa/Q'X;
i=1
The estimator of Avar(f) can be written as

-1

N L/ N N
A"'BA!/N = (Z x;frlxi> (Z X{Q"ﬁiﬁ{Q‘1X[> (Z X;Q—‘X,> (7.49)
i=1 i=1 i=1

This is the extension of the White (1980b) heteroskedasticity-robust asymptotic vari-
ance estimator to the case of systems of equations; see also White (1984). This esti-
mator is valid under Assumptions SGLS.1 and SGLS.2; that is, it is completely
robust.

7.5.2 Asymptotic Variance of FGLS under a Standard Assumption

Under the assumptions so far, FGLS really has nothing to offer over SOLS. In ad-
dition to being computationally more difficult, FGLS is less robust than SOLS. So
why is FGLS used? The answer is that, under an additional assumption, FGLS is
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asymptotically more efficient than SOLS (and other estimators). First, we state the
weakest condition that simplifies estimation of the asymptotic variance for FGLS.
For reasons to be seen shortly, we call this a system homoskedasticity assumption.

ASSUMPTION SGLS.3: E(X/Q 'uu/Q7'X;) = E(X/Q7'X;), where Q = E(uu)).

Another way to state this assumption is, B = A, which, from expression (7.46), sim-
plifies the asymptotic variance. As stated, Assumption SGLS.3 is somewhat difficult
to interpret. When G = 1, it reduces to Assumption OLS.3. When Q is diagonal and
X, has either the SUR or panel data structure, Assumption SGLS.3 implies a kind of
conditional homoskedasticity in each equation (or time period). Generally, Assump-
tion SGLS.3 puts restrictions on the conditional variances and covariances of ele-
ments of u;. A sufficient (though certainly not necessary) condition for Assumption
SGLS.3 is easier to interpret:

E(uu; | X;) = E(uu)) (7.50)

If E(w;|X;) =0, then assumption (7.50) is the same as assuming Var(u;|X;) =
Var(u;) = Q, which means that each variance and each covariance of elements
involving u; must be constant conditional on all of X;. This is a very natural way of
stating a system homoskedasticity assumption, but it is sometimes too strong.

When G =2, Q contains three distinct elements, o7 = E(u3), 03 = E(u3), and
012 = E(ujjun). These elements are not restricted by the assumptions we have made.
(The inequality |o}2| < o102 must always hold for © to be a nonsingular covariance
matrix.) However, assumption (7.50) requires E(u} |X;) = o7, E(u} | X;) = 03, and
E(ujjun | X;) = o12: the conditional variances and covariance must not depend on X;.

That assumption (7.50) implies Assumption SGLS.3 is a consequence of iterated
expectations:

E(X/Q 'uu/Q7'X;) = E[EX/Q 'uu/Q'X; | X)]
=EX/Q'E(uu/ | X))@ 'X]] = EX/Q'QQ7'X))
=EX/Q'X))

While assumption (7.50) is easier to intepret, we use Assumption SGLS.3 for stating
the next theorem because there are cases, including some dynamic panel data models,
where Assumption SGLS.3 holds but assumption (7.50) does not.

THEOREM 7.4 (Usual Variance Matrix for FGLS): Under Assumptions SGLS.1-
SGLS.3, the asymptotic variance of the FGLS estimator is Avar(f) = A~!/N =
[EX;Q7'X)]7'/N.
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We obtain an estimator of Avar(ﬁ) by using our consistent estimator of A:

N -1
Avar(f) =A"'/N = (Z x;lexl) (7.51)
i=1

Equation (7.51) is the “usual” formula for the asymptotic variance of FGLS. It is
nonrobust in the sense that it relies on Assumption SGLS.3 in addition to Assump-
tions SGLS.1 and SGLS.2. If heteroskedasticity in w; is suspected, then the robust
estimator (7.49) should be used.

Assumption (7.50) also has important efficiency implications. One consequence of
Problem 7.2 is that, under Assumptions SGLS.1, SOLS.2, SGLS.2, and (7.50), the
FGLS estimator is more efficient than the system OLS estimator. We can actually say
much more: FGLS is more efficient than any other estimator that uses the ortho-
gonality conditions E(X; ® u;) = 0. This conclusion will follow as a special case of
Theorem 8.4 in Chapter §, where we define the class of competing estimators. If
we replace Assumption SGLS.1 with the zero conditional mean assumption (7.13),
then an even stronger efficiency result holds for FGLS, something we treat in
Section 8.6.

7.6 Testing Using FGLS

Asymptotic standard errors are obtained in the usual fashion from the asymptotic
variance estimates. We can use the nonrobust version in equation (7.51) or, even
better, the robust version in equation (7.49), to construct ¢ statistics and confidence
intervals. Testing multiple restrictions is fairly easy using the Wald test, which always
has the same general form. The important consideration lies in choosing the asymp-
totic variance estimate, V. Standard Wald statistics use equation (7.51), and this
approach produces limiting chi-square statistics under the homoskedasticity assump-
tion SGLS.3. Completely robust Wald statistics are obtained by choosing V as in
equation (7.49).

If Assumption SGLS.3 holds under Hy, we can define a statistic based on the
weighted sums of squared residuals. To obtain the statistic, we estimate the model
with and without the restrictions imposed on f, where the same estimator of , usu-
ally based on the unrestricted SOLS residuals, is used in obtaining the restricted and
unrestricted FGLS estimators. Let u; denote the residuals from constrained FGLS
(with Q restrictions imposed on ﬁ) using variance matrix Q. It can be shown that,
under Hy and Assumptions SGLS.1-SGLS.3,
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N N
(Z Qi Zﬁ;g—lﬁ,> 7 (7.52)
i=1 =1

Gallant (1987) shows expression (7.52) for nonlinear models with fixed regressors;
essentially the same proof works here under Assumptions SGLS.1-SGLS.3, as we
will show more generally in Chapter 12.

The statistic in expression (7.52) is the difference between the transformed sum
of squared residuals from the restricted and unrestricted models, but it is just as easy
to calculate expression (7.52) directly. Gallant (1987, Chapter 5) has found that an
F statistic has better finite sample properties. The F statistic in this context is
defined as

<Zu’ﬂ i - ﬁjﬁ,’ﬂ )/(ZN: )

Why can we treat this equation as having an approximate F distribution? First,
for NG — K large, %9 n6-k < yé/ Q. Therefore, dividing expression (7.52) by Q
gives us an approximate Fp yg—x distribution. The presence of the other two
terms in equation (7.53) is to improve the F-approximation. Since E(u/Q 'u;) =
tr{E(Q 'uu))} = tr{E(Q'Q)} = G, it follows that (NG)™' ¥ w/Q 'u; & 1; re-
placing u/Q'u; with &/Q'd; does not affect this consistency result. Subtracting off
K as a degrees-of- freedom adjustment changes nothing asymptotically, and so
(NG — K)™! Z,N L Qg Bl Multiplying expression (7.52) by the inverse of this
quantity does not affect its asymptotic distribution.

[(NG — K))/Q (7.53)

7.7 Seemingly Unrelated Regressions, Revisited

We now return to the SUR system in assumption (7.2). We saw in Section 7.3 how to
write this system in the form (7.9) if there are no cross equation restrictions on the
B,- We also showed that the system OLS estimator corresponds to estimating each
equation separately by OLS.

As mentioned earlier, in most applications of SUR it is reasonable to assume that
E(xjus) =0, g,h=1,2,...,G, which is just Assumption SGLS.I for the SUR
structure. Under this assumption, FGLS will consistently estimate the §,.

OLS equation by equation is simple to use and leads to standard inference for each
B, under the OLS homoskedasticity assumption E(u; o | Xig) = a , which is standard
in SUR contexts. So why bother using FGLS in such apphca‘uons" There are two
answers. First, as mentioned in Section 7.5.2, if we can maintain assumption (7.50) in
addition to Assumption SGLS.1 (and SGLS.2), FGLS is asymptotically at least as
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efficient as system OLS. Second, while OLS equation by equation allows us to easily
test hypotheses about the coefficients within an equation, it does not provide a con-
venient way for testing cross equation restrictions. It is possible to use OLS for testing
cross equation restrictions by using the variance matrix (7.26), but if we are willing to
go through that much trouble, we should just use FGLS.

7.7.1 Comparison between OLS and FGLS for SUR Systems

There are two cases where OLS equation by equation is algebraically equivalent to
FGLS. The first case is fairly straightforward to analyze in our setting.

THEOREM 7.5 (Equivalence of FGLS and OLS, I): If © is a diagonal matrix, then
OLS equation by equation is identical to FGLS.

Proof: 1If Q is diagonal, then Q' = diag(672,...,65%). With X; defined as in the
matrix (7.10), straightforward algebra shows that

X/Q'X, =¥ XX, and XQly, =¥ 'Xly,

where W is the block diagonal matrix with &glkg as its gth block. It follows that the
FGLS estimator can be written as

R N N N /N

p= (Z \Plx;x,) <Z \Plx;y,) - <Z x;x,) (Z Xl-’y,)
=1 i=1 =1 i=1

which is the system OLS estimator.

In applications, Q would not be diagonal unless we impose a diagonal structure.
Nevertheless, we can use Theorem 7.5 to obtain an asymptotic equivalance result
when Q is diagonal. If  is diagonal, then the GLS and OLS are algebraically iden-
tical (because GLS uses Q). We know that FGLS and GLS are v/N-asymptotically
equivalent for any Q. Therefore, OLS and FGLS are v/N-asymptotically equivalent
if Q is diagonal, even though they are not algebraically equivalent (because Q is not
diagonal).

The second algebraic equivalence result holds without any restrictions on €. It is
special in that it assumes that the same regressors appear in each equation.

THEOREM 7.6 (Equivalence of FGLS and OLS, II): If x;; = xp = - -+ = X, for all i,
that is, if the same regressors show up in each equation (for all observations), then
OLS equation by equation and FGLS are identical.

In practice, Theorem 7.6 holds when the population model has the same explanatory
variables in each equation. The usual proof of this result groups all N observations
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for the first equation followed by the N observations for the second equation, and so
on (see, for example, Greene, 1997, Chapter 17). Problem 7.5 asks you to prove
Theorem 7.6 in the current setup, where we have ordered the observations to be
amenable to asymptotic analysis.

It is important to know that when every equation contains the same regressors in an
SUR system, there is still a good reason to use a SUR software routine in obtaining
the estimates: we may be interested in testing joint hypotheses involving parameters
in different equations. In order to do so we need to estimate the variance matrix of ﬁ
(not just the variance matrix of each ﬁg, which only allows tests of the coefficients
within an equation). Estimating each equation by OLS does not directly yield the
covariances between the estimators from different equations. Any SUR routine will
perform this operation automatically, then compute F statistics as in equation (7.53)
(or the chi-square alternative, the Wald statistic).

Example 7.3 (SUR System for Wages and Fringe Benefits): We use the data on
wages and fringe benefits in FRINGE.RAW to estimate a two-equation system for
hourly wage and hourly benefits. There are 616 workers in the data set. The FGLS
estimates are given in Table 7.1, with asymptotic standard errors in parentheses
below estimated coefficients.

The estimated coefficients generally have the signs we expect. Other things equal,
people with more education have higher hourly wage and benefits, males have higher
predicted wages and benefits ($1.79 and 27 cents higher, respectively), and people
with more tenure have higher earnings and benefits, although the effect is diminishing
in both cases. (The turning point for hrearn is at about 10.8 years, while for Arbens it
is 22.5 years.) The coefficients on experience are interesting. Experience is estimated
to have a dimininshing effect for benefits but an increasing effect for earnings, although
the estimated upturn for earnings is not until 9.5 years.

Belonging to a union implies higher wages and benefits, with the benefits coefficient
being especially statistically significant (# ~ 7.5).

The errors across the two equations appear to be positively correlated, with an
estimated correlation of about .32. This result is not surprising: the same unobserv-
ables, such as ability, that lead to higher earnings, also lead to higher benefits.

Clearly there are significant differences between males and females in both earn-
ings and benefits. But what about between whites and nonwhites, and married and
unmarried people? The F-type statistic for joint significance of married and white in
both equations is F = 1.83. We are testing four restrictions (Q = 4), N = 616, G = 2,
and K = 2(13) = 26, so the degrees of freedom in the F distribution are 4 and 1,206.
The p-value is about .121, so these variables are jointly insignificant at the 10 per-
cent level.
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Table 7.1
An Estimated SUR Model for Hourly Wages and Hourly Benefits
Explanatory Variables hrearn hrbens
educ 459 077
(.069) (.008)
exper —.076 .023
(.057) (.007)
exper? .0040 —.0005
(.0012) (.0001)
tenure 110 .054
(.084) (.010)
tenure® —.0051 —.0012
(.0033) (.0004)
union .808 .366
(.408) (.049)
south —.457 —.023
(.552) (.066)
nrtheast —1.151 —.057
(0.606) (.072)
nrthcen —.636 —.038
(.556) (.066)
married 642 .058
(.418) (.050)
white 1.141 .090
(0.612) (.073)
male 1.785 .268
(0.398) (.048)
intercept —2.632 —.890
(1.228) (.147)

If the regressors are different in different equations, € is not diagonal, and the
conditions in Section 7.5.2 hold, then FGLS is generally asymptotically more efficient
than OLS equation by equation. One thing to remember is that the efficiency of
FGLS comes at the price of assuming that the regressors in each equation are
uncorrelated with the errors in each equation. For SOLS and FGLS to be different,
the x, must vary across ¢g. If x, varies across g, certain explanatory variables have
been intentionally omitted from some equations. If we are interested in, say, the first
equation, but we make a mistake in specifying the second equation, FGLS will gen-
erally produce inconsistent estimators of the parameters in all equations. However,
OLS estimation of the first equation is consistent if E(x{u;) = 0.

The previous discussion reflects the trade-off between efficiency and robustness that
we often encounter in estimation problems.
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7.7.2 Systems with Cross Equation Restrictions

So far we have studied SUR under the assumption that the f, are unrelated across
equations. When systems of equations are used in economics, especially for modeling
consumer and producer theory, there are often cross equation restrictions on the
parameters. Such models can still be written in the general form we have covered,
and so they can be estimated by system OLS and FGLS. We still refer to such sys-
tems as SUR systems, even though the equations are now obviously related, and
system OLS is no longer OLS equation by equation.

Example 7.4 (SUR with Cross Equation Restrictions): Consider the two-equation
population model

Y1 =710t X+ ypXi +exi3 4+ eXig +u (7.54)
Y2 =720 F V21 X21 + 01X + 00X23 + YoaX24 + U2 (7.55)

where we have imposed cross equation restrictions on the parameters in the two
equations because «; and o show up in each equation. We can put this model into
the form of equation (7.9) by appropriately defining X; and . For example, define
B = (2105 V115 V125 %15 025 Y205 Va1 5 754)", which we know must be an 8 x 1 vector because
there are 8 parameters in this system. The order in which these elements appear in
is up to us, but once B is defined, X; must be chosen accordingly. For each observa-
tion 7, define the 2 x 8 matrix

X, — <1 xXip Xaz2 Xz xpe 0000 )
L=
0 0 0 x;2 xp3 1 X1 xia

Multiplying X; by # gives the equations (7.54) and (7.55).

In applications such as the previous example, it is fairly straightforward to test the
cross equation restrictions, especially using the sum of squared residuals statistics
[equation (7.52) or (7.53)]. The unrestricted model simply allows each explanatory
variable in each equation to have its own coefficient. We would use the unrestricted
estimates to obtain €, and then obtain the restricted estimates using Q.

7.7.3 Singular Variance Matrices in SUR Systems

In our treatment so far we have assumed that the variance matrix Q of u; is non-
singular. In consumer and producer theory applications this assumption is not always
true in the original structural equations, because of additivity constraints.

Example 7.5 (Cost Share Equations): Suppose that, for a given year, each firm in
a particular industry uses three inputs, capital (K), labor (L), and materials (M ).
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Because of regional variation and differential tax concessions, firms across the United

States face possibly different prices for these inputs: let p,r denote the price of capital

to firm i, p,; be the price of labor for firm 7, and s;5s denote the price of materials for

firm i. For each firm i, let s5;x be the cost share for capital, let s;; be the cost share for

labor, and let s;, be the cost share for materials. By definition, s;x + sip, + sipr = 1.
One popular set of cost share equations is

sik = Y10 + 71 10g(pix) + 712 1og(pir) + 713 1og(piag) + uix (7.56)
SiL = 720 + 712 108(pix) + 722 10g(pir) + 723 1og(pinr) + wir (7.57)
i = 730 + 713 108(pix) + 723 10g(pir) + 733 log(piag) + uin (7.58)

where the symmetry restrictions from production theory have been imposed. The
errors u;,, can be viewed as unobservables affecting production that the economist
cannot observe. For an SUR analysis we would assume that

E(u;[p;) =0 (7.59)

where u; = (uix, uir, uing)' and p; = (pi, Pir, Pias)- Because the cost shares must sum
to unity for each i, yj0 + 720+ 730 =1, 711 + 702+ 713 =0, Yo+ 72+ 723 =0, 713+
v23 + 733 = 0, and u;x + wir, + uipr = 0. This last restriction implies that Q = Var(u;)
has rank two. Therefore, we can drop one of the equations—say, the equation for
materials—and analyze the equations for labor and capital. We can express the
restrictions on the gammas in these first two equations as

713=""n 7’12 (7.60)
V23 = V12— ¥ (7.61)
Using the fact that log(a/b) = log(a) —log(b), we can plug equations (7.60) and
(7.61) into equations (7.56) and (7.57) to get

sik = 710 T 711 108(Pix/ Pine) + 712 108(pir/ Pine) + i

sie = 720 + 712 108(Pixc/ Piar) + 722 108(pir/ Piar) + ir

We now have a two-equation system with variance matrix of full rank, with unknown
parameters o, V20 711, V12> and p,,. To write this in the form (7.9), redefine u; =
(i, uir)" and y; = (six, i)' Take B = (719, 7115 7125 7205 722)" and then X; must be

x-z(l log(pix/pinr)  1og(pir/ Pinr) O 0 )
l 0 0 log(pix/pins) 1 log(pir/piar)

This formulation imposes all the conditions implied by production theory.

(7.62)
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This model could be extended in several ways. The simplest would be to allow the
intercepts to depend on firm characteristics. For each firm i, let z; be a 1 x J vector of
observable firm characteristics, where z,; = 1. Then we can extend the model to

sik = 201 + V11 108(pix/ Ping) + V12 108(Pir/ Ping) + ik (7.63)
sit. = 202 + 712 108(Pix/ Ping) + 722 108(Pir/ Piag) + thir (7.64)
where

E(uig|zivpiK7pivaiM) :0’ g:KaL (765)

Because we have already reduced the system to two equations, theory implies no
restrictions on d; and d;. As an exercise, you should write this system in the form
(7.9). For example, if f = (8],711,712,0% 72) is (2J +3) x 1, how should X; be
defined?

Under condition (7.65), system OLS and FGLS estimators are both consistent.
(In this setup system OLS is not OLS equation by equation because y;, shows up in
both equations). FGLS is asymptotically efficient if Var(u;|z;,p,) is constant. If
Var(u; | z;,p;) depends on (z;, p;)—see Brown and Walker (1995) for a discussion of
why we should expect it to—then we should at least use the robust variance matrix
estimator for FGLS.

We can easily test the symmetry assumption imposed in equations (7.63) and
(7.64). One approach is to first estimate the system without any restrictions on the
parameters, in which case FGLS reduces to OLS estimation of each equation. Then,
compute the ¢ statistic of the difference in the estimates on log(p,; /p;,) in equation
(7.63) and log(p,x/piys) in equation (7.64). Or, the F statistic from equation (7.53)
can be used; Q would be obtained from the unrestricted OLS estimation of each
equation.

System OLS has no robustness advantages over FGLS in this setup because we
cannot relax assumption (7.65) in any useful way.

7.8 The Linear Panel Data Model, Revisited

We now study the linear panel data model in more detail. Having data over time for
the same cross section units is useful for several reasons. For one, it allows us to look
at dynamic relationships, something we cannot do with a single cross section. A panel
data set also allows us to control for unobserved cross section heterogeneity, but we
will not exploit this feature of panel data until Chapter 10.
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7.8.1 Assumptions for Pooled OLS

We now summarize the properties of pooled OLS and feasible GLS for the linear
panel data model

Vv, =Xp+ u, t=12,...,T (7.66)

As always, when we need to indicate a particular cross section observation we include
an i subscript, such as y;,.

This model may appear overly restrictive because f is the same in each time period.
However, by appropriately choosing x;;, we can allow for parameters changing over
time. Also, even though we write x;;, some of the elements of x; may not be time-
varying, such as gender dummies when 7 indexes individuals, or industry dummies
when i indexes firms, or state dummies when i indexes cities.

Example 7.6 ( Wage Equation with Panel Data): Suppose we have data for the years
1990, 1991, and 1992 on a cross section of individuals, and we would like to estimate
the effect of computer usage on individual wages. One possible static model is

log(wage;) = 0y + 01d91, + 02d92, + 6, computer;, + dreduc;,
+ 0zexper; + 04 female; + u;, (7.67)

where d91, and d92, are dummy indicators for the years 1991 and 1992 and com-
puter;, is a measure of how much person i used a computer during year ¢. The inclu-
sion of the year dummies allows for aggregate time effects of the kind discussed in the
Section 7.2 examples. This equation contains a variable that is constant across ¢,
female;, as well as variables that can change across i and ¢, such as educ;; and exper;,.
The variable educ;, is given a t subscript, which indicates that years of education
could change from year to year for at least some people. It could also be the case that
educ;, 1s the same for all three years for every person in the sample, in which case we
could remove the time subscript. The distinction between variables that are time-
constant is not very important here; it becomes much more important in Chapter
10.

As a general rule, with large N and small 7 it is a good idea to allow for separate
intercepts for each time period. Doing so allows for aggregate time effects that have
the same influence on y;, for all 7.

Anything that can be done in a cross section context can also be done in a panel
data setting. For example, in equation (7.67) we can interact female; with the time
dummy variables to see whether productivity of females has changed over time, or we
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can interact educ;; and computer;, to allow the return to computer usage to depend on
level of education.

The two assumptions sufficient for pooled OLS to consistently estimate f§ are as
follows:

AssuMpTION POLS.1: E(x/u,) =0,r=1,2,...,T
ASSUMPTION POLS.2:  rank[Y[, E(x/x,)] = K.

Remember, Assumption POLS.1 says nothing about the relationship between x; and
u; for s # t. Assumption POLS.2 essentially rules out perfect linear dependencies
among the explanatory variables.

To apply the usual OLS statistics from the pooled OLS regression across i and ¢,
we need to add homoskedasticity and no serial correlation assumptions. The weakest
forms of these assumptions are the following:

AsSUMPTION POLS.3: (a) E(u’x/x,) = 0’EB(x/x,), t = 1,2,..., T, where > = E(u?)
for all #; (b) E(uux/x,) =0, # s, t,s=1,...,T

The first part of Assumption POLS.3 is a fairly strong homoskedasticity assumption;
sufficient is E(u? | x,) = o2 for all #. This means not only that the conditional variance
does not depend on x,, but also that the unconditional variance is the same in every
time period. Assumption POLS.3b essentially restricts the conditional covariances of
the errors across different time periods to be zero. In fact, since x, almost always
contains a constant, POLS.3b requires at a minimum that E(uu,) =0, ¢t # s. Suffi-
cient for POLS.3b is E(u,u | x,, %) =0, t #s, t,s=1,..., T

It is important to remember that Assumption POLS.3 implies more than just a
certain form of the unconditional variance matrix of u = (uy,...,ur)’. Assumption
POLS.3 implies E(uu) = 6°I7, which means that the unconditional variances are
constant and the unconditional covariances are zero, but it also effectively restricts
the conditional variances and covariances.

THEOREM 7.7 (Large Sample Properties of Pooled OLS): Under Assumptions POLS.1
and POLS.2, the pooled OLS estimator is consistent and asymptotically normal. If
Assumption POLS.3 holds in addition, then Avar(g) = o> [E(X;X,»)]_1 /N, so that the
appropriate estimator of Avar(f) is

-1
62 (X'X)” (Z zT: ,’x,,> (7.68)

where 67 is the usual OLS variance estimator from the pooled regression
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Vi, on Xy, t=12,....T,i=1,...,N (7.69)

It follows that the usual ¢ statistics and F statistics from regression (7.69) are ap-
proximately valid. Therefore, the F statistic for testing Q linear restrictions on the
K x 1 vector f is

(SSR, —SSR,,) (NT —K)

Pk o (7.70)

where SSR,,, is the sum of squared residuals from regression (7.69), and SSR, is the
regression using the NT observations with the restrictions imposed.

Why is a simple pooled OLS analysis valid under Assumption POLS.3? It is
easy to show that Assumption POLS.3 implies that B =g?A, where B =
S S E(uugx!x,), and A = S, E(x/x,). For the panel data case, these are the
matrices that appear in expression (7.21).

For computing the pooled OLS estimates and standard statistics, it does not matter
how the data are ordered. However, if we put lags of any variables in the equation, it
is easiest to order the data in the same way as is natural for studying asymptotic
properties: the first 7 observations should be for the first cross section unit (ordered
chronologically), the next T observations are for the next cross section unit, and so
on. This procedure gives NT rows in the data set ordered in a very specific way.

Example 7.7 (Effects of Job Training Grants on Firm Scrap Rates): Using the data
from JTRAIN1.RAW (Holzer, Block, Cheatham, and Knott, 1993), we estimate a
model explaining the firm scrap rate in terms of grant receipt. We can estimate the
equation for 54 firms and three years of data (1987, 1988, and 1989). The first grants
were given in 1988. Some firms in the sample in 1989 received a grant only in 1988, so
we allow for a one-year-lagged effect:

log(Scrapy) = 597 — 239 d88, — 497 d89,+ .200 grant;, + .049 grant; ;_,
(.203) (.311) (.338) (.338) (.436)

N = 54, T =3, R?> = .0173

where we have put i and 7 subscripts on the variables to emphasize which ones change
across firm or time. The R-squared is just the usual one computed from the pooled
OLS regression.

In this equation, the estimated grant effect has the wrong sign, and neither the
current nor lagged grant variable is statistically significant. When a lag of log(scrap;,)
is added to the equation, the estimates are notably different. See Problem 7.9.
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7.8.2 Dynamic Completeness

While the homoskedasticity assumption, Assumption POLS.3a, can never be guar-
anteed to hold, there is one important case where Assumption POLS.3b must hold.
Suppose that the explanatory variables x, are such that, for all ¢,

E(yt‘Xtuyt—hxtflw'wyhxl) = E(yt,‘xt) (771)

This assumption means that x, contains sufficient lags of all variables such that
additional lagged values have no partial effect on y,. The inclusion of lagged y in
equation (7.71) is important. For example, if z, is a vector of contemporaneous vari-
ables such that

E(yt‘zhztflw'wzl) = E(yt|zt7zt717-”7zt7L)

and we choose x; = (z;,%,1,...,2_r), then E(y,|x;,X,—1,...,Xx1) = E(y,|x;). But
equation (7.71) need not hold. Generally, in static and FDL models, there is no rea-
son to expect equation (7.71) to hold, even in the absence of specification problems
such as omitted variables.

We call equation (7.71) dynamic completeness of the conditional mean. Often, we
can ensure that equation (7.71) is at least approximately true by putting sufficient lags
of z, and y, into x,.

In terms of the disturbances, equation (7.71) is equivalent to

E(u | Xy thr—1, X1, - u1,X1) =0 (7.72)

and, by iterated expectations, equation (7.72) implies E(uu,|x,,X;) =0, s # 2.
Therefore, equation (7.71) implies Assumption POLS.3b as well as Assumption
POLS.1. If equation (7.71) holds along with the homoskedasticity assumption
Var(y,|x,) = 2, then Assumptions POLS.1 and POLS.3 both hold, and standard
OLS statistics can be used for inference.

The following example is similar in spirit to an analysis of Maloney and McCormick
(1993), who use a large random sample of students (including nonathletes) from
Clemson University in a cross section analysis.

Example 7.8 (Effect of Being in Season on Grade Point Average): The data in
GPA.RAW are on 366 student-athletes at a large university. There are two semesters
of data (fall and spring) for each student. Of primary interest is the “in-season’ effect
on athletes’ GPAs. The model—with i, ¢ subscripts—is

trmgpay; = fo+ B1spring, + frcumgpai, + fycrsgpai + [ frstsemi + fsseasoni + B SAT;
+ poverbmath; + Pshsperc; + fohssize; + poblack; + f, female; + u;
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The variable cumgpa;; is cumulative GPA at the beginning of the term, and this
clearly depends on past-term GPAs. In other words, this model has something akin
to a lagged dependent variable. In addition, it contains other variables that change
over time (such as season;,) and several variables that do not (such as SAT;). We as-
sume that the right-hand side (without u;) represents a conditional expectation, so
that u;, is necessarily uncorrelated with all explanatory variables and any functions of
them. It may or may not be that the model is also dynamically complete in the sense
of equation (7.71); we will show one way to test this assumption in Section 7.8.5. The
estimated equation is

trimgpa;, = —2.07 — 012 spring, + .315 cumgpa; + .984 crsgpa;,

(0.34) (.046) (.040) (.096)
+ .769 frstsem;; — .046 season;; + .00141 SAT; — .113 verbmath;
(.120) (.047) (.00015) (.131)
— .0066 hsperc; — .000058 hssize; — 231 black; + .286 female;
(.0010) (.000099) (.054) (.051)

N = 366, T=2, R? = 519

The in-season effect is small—an athlete’s GPA is estimated to be .046 points lower
when the sport is in season—and it is statistically insignificant as well. The other
coefficients have reasonable signs and magnitudes.

Often, once we start putting any lagged values of y, into x,, then equation (7.71) is
an intended assumption. But this generalization is not always true. In the previous
example, we can think of the variable cumgpa as another control we are using to hold
other factors fixed when looking at an in-season effect on GPA for college athletes:
cumgpa can proxy for omitted factors that make someone successful in college. We
may not care that serial correlation is still present in the error, except that, if equation
(7.71) fails, we need to estimate the asymptotic variance of the pooled OLS estimator
to be robust to serial correlation (and perhaps heteroskedasticity as well).

In introductory econometrics, students are often warned that having serial corre-
lation in a model with a lagged dependent variable causes the OLS estimators to be
inconsistent. While this statement is true in the context of a specific model of serial
correlation, it is not true in general, and therefore it is very misleading. [See Wool-
dridge (2000a, Chapter 12) for more discussion in the context of the AR(1) model.]
Our analysis shows that, whatever is included in x;, pooled OLS provides consis-
tent estimators of # whenever E(y, | x,) = x,$; it does not matter that the u, might be
serially correlated.
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7.8.3 A Note on Time Series Persistence

Theorem 7.7 imposes no restrictions on the time series persistence in the data
{(Xit, ¥): t=1,2,...,T}. In light of the explosion of work in time series economet-
rics on asymptotic theory with persistent processes [often called unit root processes—
see, for example, Hamilton (1994)], it may appear that we have not been careful in
stating our assumptions. However, we do not need to restrict the dynamic behavior
of our data in any way because we are doing fixed-7, large-N asymptotics. It is for
this reason that the mechanics of the asymptotic analysis is the same for the SUR
case and the panel data case. If T is large relative to N, the asymptotics here may be
misleading. Fixing N while 7" grows or letting N and 7 both grow takes us into the
realm of multiple time series analysis: we would have to know about the temporal
dependence in the data, and, to have a general treatment, we would have to assume
some form of weak dependence (see Wooldridge, 1994, for a discussion of weak de-
pendence). Recently, progress has been made on asymptotics in panel data with large
T and N when the data have unit roots; see, for example, Pesaran and Smith (1995)
and Phillips and Moon (1999).
As an example, consider the simple AR(1) model

Ve=PBo+B1yi1 +us E(u| yy,--599) =0

Assumption POLS.1 holds (provided the appropriate moments exist). Also, As-
sumption POLS.2 can be maintained. Since this model is dynamically complete, the
only potential nuisance is heteroskedasticity in u, that changes over time or depends
on y, ;. In any case, the pooled OLS estimator from the regression y, on 1, y;,_ |,
t=1,...,T,i=1,...,N, produces consistent, v/N-asymptotically normal estima-
tors for fixed T'as N — oo, for any values of , and ;.

In a pure time series case, or in a panel data case with T"— oo and N fixed, we
would have to assume || < 1, which is the stability condition for an AR(1) model.
Cases where |f;| > 1 cause considerable complications when the asymptotics is done
along the time series dimension (see Hamilton, 1994, Chapter 19). Here, a large cross
section and relatively short time series allow us to be agnostic about the amount of
temporal persistence.

7.8.4 Robust Asymptotic Variance Matrix

Because Assumption POLS.3 can be restrictive, it is often useful to obtain a ro-
bust estimate of Avar( ﬁ) that is valid without Assumption POLS.3. We have already
seen the general form of the estimator, given in matrix (7.26). In the case of panel
data, this estimator is fully robust to arbitrary heteroskedasticity—conditional or

unconditional-—and arbitrary serial correlation across time (again, conditional or
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unconditional). The residuals @; are the T x 1 pooled OLS residuals for cross sec-
tion observation i. Some statistical packages compute these very easily, although
the command may be disguised. Whether a software package has this capability or
whether it must be programmed by you, the data must be stored as described earlier:
The (y;, X;) should be stacked on top of one another fori=1,..., N.

7.8.5 Testing for Serial Correlation and Heteroskedasticity after Pooled OLS

Testing for Serial Correlation It is often useful to have a simple way to detect serial
correlation after estimation by pooled OLS. One reason to test for serial correlation
is that it should not be present if the model is supposed to be dynamically complete in
the conditional mean. A second reason to test for serial correlation is to see whether
we should compute a robust variance matrix estimator for the pooled OLS estimator.

One interpretation of serial correlation in the errors of a panel data model is that
the error in each time period contains a time-constant omitted factor, a case we cover
explicitly in Chapter 10. For now, we are simply interested in knowing whether or
not the errors are serially correlated.

We focus on the alternative that the error is a first-order autoregressive process;
this will have power against fairly general kinds of serial correlation. Write the AR(1)
model as

Uy = plu,_l + €y (773)
where
E(e[|X[7ut_],Xf_],u[_27...) - 0 (774)

Under the null hypothesis of no serial correlation, p; = 0.
One way to proceed is to write the dynamic model under AR(1) serial correlation
as

Ve =X+ pru1 + ey, t=2,...,T (7.75)

where we lose the first time period due to the presence of u, ;. If we can observe the
uy, it is clear how we should proceed: simply estimate equation (7.75) by pooled OLS
(losing the first time period) and perform a ¢ test on p,. To operationalize this proce-
dure, we replace the u, with the pooled OLS residuals. Therefore, we run the regression

Vi ON Xy, Ui 11, t=2,....T,i=1,...,N (7.76)

and do a standard ¢ test on the coefficient of #; ,_;. A statistic that is robust to arbi-
trary heteroskedasticity in Var(y, | X;, u,—1) is obtained by the usual heteroskedasticity-
robust ¢ statistic in the pooled regression. This includes Engle’s (1982) ARCH model
and any other form of static or dynamic heteroskedasticity.
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Why is a 7 test from regression (7.76) valid? Under dynamic completeness, equation
(7.75) satisfies Assumptions POLS.1-POLS.3 if we also assume that Var(y, | x,, u,—1)
is constant. Further, the presence of the generated regressor #; ,—; does not affect the
limiting distribution of p, under the null because p; = 0. Verifying this claim is sim-
ilar to the pure cross section case in Section 6.1.1.

A nice feature of the statistic computed from regression (7.76) is that it works
whether or not x; is strictly exogenous. A different form of the test is valid if we as-
sume strict exogeneity: use the 7 statistic on #; ,—; in the regression

dyondy,, t=2...,T, i=1,... N (7.77)

or its heteroskedasticity-robust form. That this test is valid follows by applying
Problem 7.4 and the assumptions for pooled OLS with a lagged dependent variable.

Example 7.9 (Athletes’ Grade Point Averages, continued): We apply the test from
regression (7.76) because cumgpa cannot be strictly exogenous (GPA this term affects
cumulative GPA after this term). We drop the variables spring and frstsem from re-
gression (7.76), since these are identically unity and zero, respectively, in the spring
semester. We obtain p; = .194 and 3, = 3.18, and so the null hypothesis is rejected.
Thus there is still some work to do to capture the full dynamics. But, if we assume
that we are interested in the conditional expectation implicit in the estimation, we are
getting consistent estimators. This result is useful to know because we are primarily
interested in the in-season effect, and the other variables are simply acting as controls.
The presence of serial correlation means that we should compute standard errors
robust to arbitrary serial correlation (and heteroskedasticity); see Problem 7.10.

Testing for Heteroskedasticity The primary reason to test for heteroskedasticity
after running pooled OLS is to detect violation of Assumption POLS.3a, which is one
of the assumptions needed for the usual statistics accompanying a pooled OLS
regression to be valid. We assume throughout this section that E(u,|x,) =0, t =
1,2,..., T, which strengthens Assumption POLS.1 but does not require strict exoge-
neity. Then the null hypothesis of homoskedasticity can be stated as E(u? | x,) = o2,
t=1,2,...,T.

Under Hy, u? is uncorrelated with any function of x;; let h; denote a 1 x Q vector
of nonconstant functions of x;. In particular, h; can, and often should, contain
dummy variables for the different time periods.

From the tests for heteroskedasticity in Section 6.2.4. the following procedure is
natural. Let 42 denote the squared pooled OLS residuals. Then obtain the usual R-
squared, R2, from the regression

diz,onl,h,»,, Z:17"'7Tai:17~--7N (778)
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The test statistic is NTR?, which is treated as asymptotically )(ZQ under Hy. (Alter-
natively, we can use the usual F test of joint significance of h; from the pooled
OLS regression. The degrees of freedom are Q and NT — K.) When is this procedure
valid?

Using arguments very similar to the cross sectional tests from Chapter 6, it can be
shown that the statistic has the same distribution if u2 replaces #2; this fact is very
convenient because it allows us to focus on the other features of the test. Effectively,

we are performing a standard LM test of Hy: 6 = 0 in the model
=06 +hd+ay, t=12,....T (7.79)

This test requires that the errors {a;} be appropriately serially uncorrelated and
requires homoskedasticity; that is, Assumption POLS.3 must hold in equation (7.79).
Therefore, the tests based on nonrobust statistics from regression (7.78) essentially re-
quire that E(a2 | x;,) be constant—meaning that E(u} | x;;) must be constant under Hy.
We also need a stronger homoskedasticity assumption; E(ulzt | Xits Ui -1, Xi =15 -+ -) =
o? is sufficient for the {a;} in equation (7.79) to be appropriately serially uncorrelated.

A fully robust test for heteroskedasticity can be computed from the pooled regres-
sion (7.78) by obtaining a fully robust variance matrix estimator for o [see equation
(7.26)]; this can be used to form a robust Wald statistic.

Since violation of Assumption POLS.3a is of primary interest, it makes sense to
include elements of x;; in h;;, and possibly squares and cross products of elements of
X;r. Another useful choice, covered in Chapter 6, is hy = (3, $2), the pooled OLS
fitted values and their squares. Also, Assumption POLS.3a requires the uncondi-
tional variances E(u2) to be the same across 7. Whether they are can be tested directly
by choosing h;, to have T — 1 time dummies.

If heteroskedasticity is detected but serial correlation is not, then the usual
heteroskedasticity-robust standard errors and test statistics from the pooled OLS re-
gression (7.69) can be used.

7.8.6 Feasible GLS Estimation under Strict Exogeneity

When E(uu!) # oI, it is reasonable to consider a feasible GLS analysis rather than
a pooled OLS analysis. In Chapter 10 we will cover a particular FGLS analysis after
we introduce unobserved components panel data models. With large N and small
T, nothing precludes an FGLS analysis in the current setting. However, we must
remember that FGLS is not even guaranteed to produce consistent, let alone efficient,
estimators under Assumptions POLS.1 and POLS.2. Unless = E(uu)) is a diago-
nal matrix, Assumption POLS.1 should be replaced with the strict exogeneity as-
sumption (7.6). (Problem 7.7 covers the case when Q is diagonal.) Sometimes we are
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willing to assume strict exogeneity in static and finite distributed lag models. As we
saw earlier, it cannot hold in models with lagged y,, and it can fail in static models or
distributed lag models if there is feedback from y;, to future z;.

Problems

7.1. Provide the details for a proof of Theorem 7.1.

7.2. In model (7.9), maintain Assumptions SOLS.] and SOLS.2, and assume
E(X/uu/X;) = E(X/QX;), where Q = E(uu!). [The last assumption is a different way
of stating the homoskesdasticity assumption for systems of equations; it always holds
if assumption (7.50) holds.] Let fiyo; s denote the system OLS estimator.

a. Show that Avar(fso;s) = [E(X/X,)] ' [E(X/QX,)][E(X/X,)] ' /N.

b. How would you estimate the asymptotic variance in part a?

c. Now add Assumptions SGLS.1-SGLS.3. Show that Avar(fsors) — Avar(Brgrs)
is positive semidefinite. {Hint: Show that [Avar(frcs)] " — [Avar(fsors)] ' is p.s.d.}

d. If, in addition to the previous assumptions, Q = oI, show that SOLS and FGLS
have the same asymptotic variance.

e. Evaluate the following statement: “Under the assumptions of part ¢, FGLS is
never asymptotically worse than SOLS, even if Q = ¢’I.”

7.3. Consider the SUR model (7.2) under Assumptions SOLS.1, SOLS.2, and
SGLS.3, with Q = diag(a?,...,0%); thus, GLS and OLS estimation equation by
equation are the same. (In the SUR model with diagonal ©, Assumption SOLS.1 is
the same as Assumption SGLS.1, and Assumption SOLS.2 is the same as Assump-
tion SGLS.2.)

a. Show that single-equation OLS estimators from any two equations, say, [?g and ﬁh,
are asymptotically uncorrelated. (That is, show that the asymptotic variance of the
system OLS estimator g is block diagonal.)

b. Under the conditions of part a, assume that f; and f, (the parameter vectors in
the first two equations) have the same dimension. Explain how you would test
Ho: B, = B, against Hy: 8, # p,.

c. Now drop Assumption SGLS.3, maintaining Assumptions SOLS.1 and SOLS.2
and diagonality of €. Suppose that € is estimated in an unrestricted manner, so
that FGLS and OLS are not algebraically equivalent. Show that OLS and FGLS are
V/N-asymptotically equivalent, that is, v/N (fsors — Brgrs) = 0,(1). This is one case
where FGLS is consistent under Assumption SOLS.1.
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7.4. Using the v/N-consistency of the system OLS estimator ﬁ for B, for Q in
equation (7.37) show that

vec[V/N(Q — Q)] = vec lNl/z i(uiu; - Q)| +0,(1)
i=1

under Assumptions SGLS.1 and SOLS.2. (Note: This result does not hold when As-
sumption SGLS.1 is replaced with the weaker Assumption SOLS.1.) Assume that all
moment conditions needed to apply the WLLN and CLT are satisfied. The impor-
tant conclusion is that the asymptotic distribution of vec VN(Q — Q) does not
depend on that of VN (ﬁ — B), and so any asymptotic tests on the elements of Q can
ignore the estimation of B. [Hint: Start from equation (7.39) and use the fact that

VN(B - B) = 0,(1).]

7.5. Prove Theorem 7.6, using the fact that when X; = I ® x;,

N
!

E :Xiyil

i=1

N N N
Y XX =Q'® <Z x;x,) and X0y = (Q'®I)
i=1 i=1

i=1

N

!
E X; Vi
i=1

7.6. Start with model (7.9). Suppose you wish to impose Q linear restrictions of the
form Rf =r, where R is a Q x K matrix and r is a Q x 1 vector. Assume that R is
partitioned as R = [R;|Ry], where R; is a Q X Q nonsingular matrix and R, is a
0 x (K — Q) matrix. Partition X; as X; = [X;; | Xi2], where X;; is G x Q and X, is
G x (K — Q), and partition g as = (B],p5)'. The restrictions R =r can be
expressed as Rif; + Ryf, =r,0r B = R1_1 (r — Ryp,). Show that the restricted model
can be written as

Y = szl)'z +u;

where §;, = y; — X;;R; 'r and X;, = X — Xs R 'Ry.

7.7. Consider the panel data model

y[I:Xifﬂ+uit> t:1727"'aT

E(uit | Xity Ui t—1, Xit—15 -« - 7) =0 (7-80)

E(ul|xi) =E@Wl) =02, t=1,....,T

it
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[Note that E(u,zt | x;) does not depend on x;, but it is allowed to be a different con-
stant in each time period.]

a. Show that Q = E(uu/) is a diagonal matrix. [Hint: The zero conditional mean
assumption (7.80) implies that u;, is uncorrelated with u;, for s < ¢.]

b. Write down the GLS estimator assuming that € is known.

c. Argue that Assumption SGLS.1 does not necessarily hold under the assumptions
made. (Setting x; = y; ,_; might help in answering this part.) Nevertheless, show that
the GLS estimator from part b is consistent for f by showing that E(X{Q”u,’) =0.
[This proof shows that Assumption SGLS.1 is sufficient, but not necessary, for con-
sistency. Sometimes E(X/Q'u;) = 0 even though Assumption SGLS.1 does not hold.]

d. Show that Assumption SGLS.3 holds under the given assumptions.
e. Explain how to consistently estimate each o2 (as N — o).

f. Argue that, under the assumptions made, valid inference is obtained by weighting
each observation ();,X;) by 1/, and then running pooled OLS.

g. What happens if we assume that > = ¢* forall t = 1,..., T?

7.8. Redo Example 7.3, disaggregating the benefits categories into value of vacation
days, value of sick leave, value of employer-provided insurance, and value of pen-
sion. Use hourly measures of these along with hrearn, and estimate an SUR model.
Does marital status appear to affect any form of compensation? Test whether another
year of education increases expected pension value and expected insurance by the
same amount.

7.9. Redo Example 7.7 but include a single lag of log(scrap) in the equation to
proxy for omitted variables that may determine grant receipt. Test for AR(1) serial
correlation. If you find it, you should also compute the fully robust standard errors
that allow for abitrary serial correlation across time and heteroskedasticity.

7.10. In Example 7.9, compute standard errors fully robust to serial correlation and
heteroskedasticity. Discuss any important differences between the robust standard
errors and the usual standard errors.

7.11. Use the data in CORNWELL.RAW for this question; see Problem 4.13.

a. Using the data for all seven years, and using the logarithms of all variables, esti-
mate a model relating the crime rate to prbarr, prbconv, prbpris, avgsen, and polpc.
Use pooled OLS and include a full set of year dummies. Test for serial correlation
assuming that the explanatory variables are strictly exogenous. If there is serial cor-
relation, obtain the fully robust standard errors.
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b. Add a one-year lag of log(crmrte) to the equation from part a, and compare with
the estimates from part a.

c. Test for first-order serial correlation in the errors in the model from part b. If serial
correlation is present, compute the fully robust standard errors.

d. Add all of the wage variables (in logarithmic form) to the equation from part c.
Which ones are statistically and economically significant? Are they jointly significant?
Test for joint significance of the wage variables allowing arbitrary serial correlation
and heteroskedasticity.

7.12. If you add wealth at the beginning of year ¢ to the saving equation in Example
7.2, is the strict exogeneity assumption likely to hold? Explain.



8 System Estimation by Instrumental Variables

8.1 Introduction and Examples

In Chapter 7 we covered system estimation of linear equations when the explana-
tory variables satisfy certain exogeneity conditions. For many applications, even the
weakest of these assumptions, Assumption SOLS.1, is violated, in which case instru-
mental variables procedures are indispensable.

The modern approach to system instrumental variables (SIV) estimation is based
on the principle of generalized method of moments (GMM). Mecthod of moments
estimation has a long history in statistics for obtaining simple parameter estimates
when maximum likelihood estimation requires nonlinear optimization. Hansen (1982)
and White (1982b) showed how the method of moments can be generalized to apply to
a variety of econometric models, and they derived the asymptotic properties of GMM.
Hansen (1982), who coined the name ‘““generalized method of moments,” treated time
series data, and White (1982b) assumed independently sampled observations.

Though the models considered in this chapter are more general than those treated
in Chapter 5, the derivations of asymptotic properties of system IV estimators are
mechanically similar to the derivations in Chapters 5 and 7. Therefore, the proofs in
this chapter will be terse, or omitted altogether.

In econometrics, the most familar application of SIV estimation is to a simultane-
ous equations model (SEM). We will cover SEMs specifically in Chapter 9, but it is
useful to begin with a typical SEM example. System estimation procedures have
applications beyond the classical simultaneous equations methods. We will also use
the results in this chapter for the analysis of panel data models in Chapter 11.

Example 8.1 (Labor Supply and Wage Offer Functions): Consider the following
labor supply function representing the hours of labor supply, 4, at any wage, <,
faced by an individual. As usual, we express this in population form:

hs(w) = Y20 + 2101 + w1y (8.1)

where z; is a vector of observed labor supply shifters—including such things as
education, past experience, age, marital status, number of children, and nonlabor
income—and u; contains unobservables affecting labor supply. The labor supply
function can be derived from individual utility-maximizing behavior, and the nota-
tion in equation (8.1) is intended to emphasize that, for given z; and u;, a labor
supply function gives the desired hours worked at any possible wage («~) facing the
worker. As a practical matter, we can only observe equilibrium values of hours
worked and hourly wage. But the counterfactual reasoning underlying equation (8.1)
is the proper way to view labor supply.
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A wage offer function gives the hourly wage that the market will offer as a function
of hours worked. (It could be that the wage offer does not depend on hours worked,
but in general it might.) For observed productivity attributes z, (for example, edu-
cation, experience, and amount of job training) and unobserved attributes u,, we
write the wage offer function as

WO(4) = py/fe + 2202 + un (8.2)

Again, for given z, and u,, w°(#4) gives the wage offer for an individual agreeing to
work 7 hours.

Equations (8.1) and (8.2) explain different sides of the labor market. However,
rarely can we assume that an individual is given an exogenous wage offer and then,
at that wage, decides how much to work based on equation (8.1). A reasonable
approach is to assume that observed hours and wage are such that equations (8.1)
and (8.2) both hold. In other words, letting (4, w) denote the equilibrium values, we
have

h=yw+2101 +uy (8.3)
W= 0+ 220, + U (8.4)

Under weak restrictions on the parameters, these equations can be solved uniquely
for (h,w) as functions of z;, z, u;, up, and the parameters; we consider this topic
generally in Chapter 9. Further, if z; and z, are exogenous in the sense that

E(u1 |Z],Zz) = E(u2 |Z],Zz) =0

then, under identification assumptions, we can consistently estimate the parameters
of the labor supply and wage offer functions. We consider identification of SEMs in
detail in Chapter 9. We also ignore what is sometimes a practically important issue:
the equilibrium hours for an individual might be zero, in which case w is not observed
for such people. We deal with missing data issues in Chapter 17.

For a random draw from the population we can write

hi = y1wi + 2101 + up (8.5)
Wi = prhi + 262 + upp (8.6)

Except under very special assumptions, u;; will be correlated with w;, and u;; will be
correlated with /;. In other words, w; is probably endogenous in equation (8.5), and
h; is probably endogenous in equation (8.6). It is for this reason that we study system
instrumental variables methods.
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An example with the same statistical structure as Example 8.1, but with an omitted
variables interpretation, is motivated by Currie and Thomas (1995).

Example 8.2 (Student Performance and Head Start): Consider an equation to test
the effect of Head Start participation on subsequent student performance:

score; =y HeadStart; + 2;101 + u;| (8.7)

where score; is the outcome on a test when the child is enrolled in school and
HeadStart; is a binary indicator equal to one if child 7 participated in Head Start at
an early age. The vector z;; contains other observed factors, such as income, educa-
tion, and family background variables. The error term u;; contains unobserved fac-
tors that affect score—such as child’s ability—that may also be correlated with
HeadStart. To capture the possible endogeneity of HeadStart, we write a linear
reduced form (linear projection) for HeadStart;:

HeadStart; = 2;0, + up (8.8)

Remember, this projection always exists even though HeadStart; is a binary variable.
The vector z; contains z;; and at least one factor affecting Head Start participation
that does not have a direct effect on score. One possibility is distance to the nearest
Head Start center. In this example we would probably be willing to assume that
E(uj1 |z;) = 0—since the test score equation is structural—but we would only want
to assume E(z/u;;) = 0, since the Head Start equation is a linear projection involving
a binary dependent variable. Correlation between u; and u, means HeadStart is
endogenous in equation (8.7).

Both of the previous examples can be written for observation i as
Yin = Xafy +ui (8.9)
Vio = Xofy +un (8.10)

which looks just like a two-equation SUR system but where x;; and x;, can contain
endogenous as well as exogenous variables. Because x;; and x;; are generally corre-
lated with u; and u;, estimation of these equations by OLS or FGLS, as we studied
in Chapter 7, will generally produce inconsistent estimators.

We already know one method for estimating an equation such as equation (8.9): if
we have sufficient instruments, apply 2SLS. Often 2SLS produces acceptable results,
so why should we go beyond single-equation analysis? Not surprisingly, our interest
in system methods with endogenous explanatory variables has to do with efficiency.
In many cases we can obtain more efficient estimators by estimating f#, and f, jointly,
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that is, by using a system procedure. The efficiency gains are analogous to the gains
that can be realized by using feasible GLS rather than OLS in a SUR system.

8.2 A General Linear System of Equations

We now discuss estimation of a general linear model of the form
yi=Xif+u (8.11)

where y; is a G x 1 vector, X; is a G x K matrix, and u; is the G x 1 vector of errors.
This model is identical to equation (7.9), except that we will use different assump-
tions. In writing out examples, we will often omit the observation subscript 7, but
for the general analysis carrying it along is a useful notational device. As in Chapter
7, the rows of y;, X;, and u; can represent different time periods for the same cross-
sectional unit (so G = T, the total number of time periods). Therefore, the following
analysis applies to panel data models where 7 is small relative to the cross section
sample size, N; for an example, see Problem §8.8. We cover general panel data appli-
cations in Chapter 11. (As in Chapter 7, the label “systems of equations™ is not es-
pecially accurate for basic panel data models because we have only one behavioral
equation over T different time periods.)
The following orthogonality condition is the basis for estimating f:

ASSUMPTION SIV.1:  E(Zu;) = 0, where Z; is a G x L matrix of observable instru-
mental variables.

(The acronym SIV stands for “system instrumental variables.”) For the purposes of
discussion, we assume that E(u;) = 0; this assumption is almost always true in prac-
tice anyway.

From what we know about IV and 2SLS for single equations, Assumption SIV.1
cannot be enough to identify the vector . An assumption sufficient for identification
is the rank condition:

ASSUMPTION SIV.2: rank E(Z'X;) = K.

Assumption SIV.2 generalizes the rank condition from the single-equation case.
(When G = 1, Assumption SIV.2 is the same as Assumption 2SLS.2b.) Since E(Z'X;)
is an L x K matrix, Assumption SIV.2 requires the columns of this matrix to be lin-
early independent. Necessary for the rank condition is the order condition: L > K.
We will investigate the rank condition in detail for a broad class of models in Chapter
9. For now, we just assume that it holds.
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In what follows, it is useful to carry along a particular example that applies to
simultaneous equations models and other models with potentially endogenous ex-
planatory variables. Write a G equation system for the population as

y1=x14; +u
(8.12)
Y6 = XgPs + ug

where, for each equation g, x, is a 1 x K, vector that can contain both exogenous
and endogenous variables. For each g, f8, is K, x 1. Because this looks just like the
SUR system from Chapter 7, we will refer to it as a SUR system, keeping in mind the
crucial fact that some elements of x, are thought to be correlated with u, for at least
some ¢.

For each equation we assume that we have a set of instrumental variables, a 1 x L,
vector z,, that are exogenous in the sense that

E(zjuy) = 0, g=12,....G (8.13)

In most applications unity is an element of z, for each g, so that E(u,) =0, all g. As
we will see, and as we already know from single-equation analysis, if x, contains
some elements correlated with u,, then z, must contain more than just the exogenous
variables appearing in equation g. Much of the time the same instruments, which
consist of all exogenous variables appearing anywhere in the system, are valid for
every equation, so thatz, =z, g = 1,2,..., G. Some applications require us to have
different instruments for different equations, so we allow that possibility here.
Putting an 7 subscript on the variables in equations (8.12), and defining

il xg 0 0 --- 0 Uil

Yi2 0 xp 0 --- 0 Upp
y, = 1, X, = . 1, u = ) (8.14)
Gx1 : GxK : : Gx1 :

Yic 0 0 0 - x5 UG

and B = (B),B5,-.-,B;)', we can write equation (8.12) in the form (8.11). Note that
K =K + K> + -+ + Kg is the total number of parameters in the system.
The matrix of instruments has a structure similar to X;:

zz, 0 0 --- 0

0 zo 0 -~ 0
Zi=| . , (8.15)
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which has dimension G x L, where L = L{ + L, + --- + Lg. Then, for each i,
Zn; = (zpui, Zoup, . . ., ZigUiG) (8.16)

and so E(Z/u;) = 0 reproduces the orthogonality conditions (8.13). Also,

E(z/,x;1) 0 0o - 0
0 E(z,xp) 0 --- 0
BZX)=| . (8.17)
0 0 0 --- E(z/gxic)

where E(z; ;) is Ly x K,. Assumption SIV.2 requires that this matrix have full col-
umn rank, where the number of columns is K = K; + K» + - - - + Kg. A well-known
result from linear algebra says that a block diagonal matrix has full column rank if
and only if each block in the matrix has full column rank. In other words, Assump-
tion SIV.2 holds in this example if and only if

rank E(z;x;) = Ky, g=12,....G (8.18)

This is exactly the rank condition needed for estimating each equation by 2SLS,
which we know is possible under conditions (8.13) and (8.18). Therefore, identifica-
tion of the SUR system is equivalent to identification equation by equation. This
reasoning assumes that the B, are unrestricted across equations. If some prior
restrictions are known, then identification is more complicated, something we cover
explicitly in Chapter 9.

In the important special case where the same instruments, z;, can be used for every
equation, we can write definition (8.15) as Z; = I ® z;.

8.3 Generalized Method of Moments Estimation

8.3.1 A General Weighting Matrix

The orthogonality conditions in Assumption SIV.1 suggest an estimation strategy.
Under Assumptions SIV.1 and SIV.2, g is the unique K x 1 vector solving the linear
set population moment conditions

E[Z/(y; — Xif)] = 0 (8.19)

(That g is a solution follows from Assumption SIV.1; that it is unique follows by
Assumption SIV.2.) In other words, if b is any other K x 1 vector (so that at least one
element of b is different from the corresponding element in f), then
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E[Z](y; — X;b)] #0 (8.20)

This formula shows that g is identified. Because sample averages are consistent esti-
mators of population moments, the analogy principle applied to condition (8.19)
suggests choosing the estimator f to solve

N

NS Zi(y—Xi) - 0 (821)
i1

Equation (8.21) is a set of L linear equations in the K unknowns in B First consider

the case L = K, so that we have exactly enough IVs for the explanatory variables in

the system. Then, if the K x K matrix .~ Z/X; is nonsingular, we can solve for f as

-1
p= (Nl i:z;x,-) (Nl ZN:nyl) (8.22)
i=1 i=1

We can write f8 using full matrix notation as # = (Z'X)"'Z'Y, where Z is the NG x L
matrix obtained by stacking Z; from i=1,2,...,N, X is the NG x K matrix
obtained by stacking X; from i =1,2,..., N, and Y is the NG x 1 vector obtained
from stacking y;, i =1,2,..., N. We call equation (8.22) the system IV (SIV) esti-
mator. Application of the law of large numbers shows that the SIV estimator is con-
sistent under Assumptions SIV.1 and SIV.2.

When L > K—so that we have more columns in the IV matrix Z; than we need for
identification—choosing ﬁ is more complicated. Except in special cases, equation
(8.21) will not have a solution. Instead, we choose f to make the vector in equation
(8.21) as “small” as possible in the sample. One idea is to minimize the squared
Euclidean length of the L x 1 vector in equation (8.21). Dropping the 1/N, this
approach suggests choosing ﬁ to make

/

N
Z Z(y; - Xzﬁ)
i=1

N
Z Z(y; — Xzﬁ)
i1

as small as possible. While this method produces a consistent estimator under
Assumptions SIV.1 and SIV.2, it rarely produces the best estimator, for reasons we
will see in Section 8.3.3.

A more general class of estimators is obtained by using a weighting matrix in the
quadratic form. Let W be an L x L symmetric, positive semidefinite matrix, where
the “~” is included to emphasize that W is generally an estimator. A generalized
method of moments (GMM) estimator of f is a vector ﬁ that solves the problem
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/

W

N

> Zi(y, - Xb)

min
b -
i=1

(8.23)

N
Z Zz/(yz -
i=1

Because expression (8.23) is a quadratic function of b, the solution to it has a closed
form. Using multivariable calculus or direct substitution, we can show that the unique
solution is

B=(XZWZ'X) " (X'ZWZ'Y) (8.24)

assuming that X'ZWZ'X is nonsingular. To show that this estimator is consistent, we
assume that W has a nonsingular probability limit.

ASSUMPTION SIV.3: W2 W as N — o0, where W is a nonrandom, symmetric,
L x L positive definite matrix.

In applications, the convergence in Assumption SIV.3 will follow from the law of
large numbers because W will be a function of sample averages. The fact that W is
assumed to be positive definite means that W is positive definite with probability
approaching one (see Chapter 3). We could relax the assumption of positive defi-
niteness to positive semidefiniteness at the cost of complicating the assumptions. In
most applications, we can assume that W is positive definite.

THEOREM 8.1 (Consistency of GMM): Under Assumptions SIV.1-SIV.3, B 2 p as
N — o0.

Proof: Write

e )] (S5

Plugging in y; = X;f + u; and doing a little algebra gives

(o) (- (e o)

Under Assumption SIV.2, C = E(Z/X;) has rank K, and combining this with As-
sumption SIV.3, C'WC has rank K and is therefore nonsingular. It follows by the
law of large numbers that plim g = g+ (C'WC) 'C'W(plim N=' "N Z/u;) = g+
(C'WC)"'C'W -0 = 8.

p=p+

Theorem 8.1 shows that a large class of estimators is consistent for f under
Assumptions SIV.1 and SIV.2, provided that we choose W to satisfy modest restric-
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tions. When L = K, the GMM estimator in equation (8.24) becomes equation (8.22),
no matter how we choose W, because X'Z is a K x K nonsingular matrix.

We can also show that ﬁ is asymptotically normally distributed under these first
three assumptions.

THEOREM 8.2 (Asymptotic Normality of GMM): Under Assumptions SIV.1-SIV.3,
V/N(B — p) is asymptotically normally distributed with mean zero and

Avar VN(f — ) = (C'WC) 'C'WAWC(C'WC) ™ (8.25)
where
A =E(Zuu'Z,) = Var(Zu,) (8.26)

We will not prove this theorem in detail as it can be reasoned from

VN(B-P)
N R N
= [( - ZX Z) ( - ZZ X) (Nl ZX{Z,»)W(NI/ZZZ,M,)
i=1 i=1
where we use the fact that N~'/23" Y Z/u, <, Normal(0,A). The asymptotic vari-
ance matrix in equation (8.25) looks complicated, but it can be consistently esti-

mated. If A is a consistent estimator of A—more on this later—then equation (8.25)
is consistently estimated by

[(X'Z/NYW(Z'X/N)|"(X'Z/N)WAW(Z'X/N)[(X'Z/N)W(Z'X/N)] ! (8.27)

As usual, we estimate Avar(f) by dividing expression (8.27) by N.

While the general formula (8.27) is occasionally useful, it turns out that it is greatly
simplified by choosing W appropriately. Since this choice also (and not coinciden-
tally) gives the asymptotically efficient estimator, we hold off discussing asymptotic
variances further until we cover the optimal choice of W in Section 8.3.3.

8.3.2 The System 2SLS Estimator

A choice of W that leads to a useful and familiar-looking estimator is

W= ( 1ZZZ> (Z'Z/N)™! (8.28)

which is a consistent estimator of [E(Z{Z[)]_l. Assumption SIV.3 simply requires that
E(Z]Z;) exist and be nonsingular, and these requirements are not very restrictive.
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When we plug equation (8.28) into equation (8.24) and cancel N everywhere, we get
p=X72Z2'2)"'2X"'X'2(2'2)"'2'Y (8.29)

This looks just like the single-equation 2SLS estimator, and so we call it the system
2SLS estimator.

When we apply equation (8.29) to the system of equations (8.12), with definitions
(8.14) and (8.15), we get something very familiar. As an exercise, you should show
that ﬁ produces 2SLS equation by equation. (The proof relies on the block diagonal
structures of Z;Z; and Z;X; for each i.) In other words, we estimate the first equation
by 2SLS using instruments z;;, the second equation by 2SLS using instruments z;,
and so on. When we stack these into one long vector, we get equation (8.29).

Problem 8.8 asks you to show that, in panel data applications, a natural choice of
Z.; makes the system 2SLS estimator a pooled 2SLS estimator.

In the next subsection we will see that the system 2SLS estimator is not necessarily
the asymptotically efficient estimator. Still, it is /N-consistent and easy to compute
given the data matrices X, Y, and Z. This latter feature is important because we need
a preliminary estimator of f# to obtain the asymptotically efficient estimator.

8.3.3 The Optimal Weighting Matrix

Given that a GMM estimator exists for any positive definite weighting matrix, it is
important to have a way of choosing among all of the possibilities. It turns out that
there is a choice of W that produces the GMM estimator with the smallest asymp-
totic variance.

We can appeal to expression (8.25) for a hint as to the optimal choice of W. It is
this expression we are trying to make as small as possible, in the matrix sense. (See
Definition 3.11 for the definition of relative asymptotic efficiency.) The expression
(8.25) simplifies to (C'A~'C)™" if we set W = A~!. Using standard arguments from
matrix algebra, it can be shown that (C'WC)™'C'WAWC(C'WC)™' — (C’'A~'C)™!
is positive semidefinite for any L x L positive definite matrix W. The easiest way to
prove this point is to show that

(C'A7'C) — (C'WC)(C'WAWC) ™ (C'WC) (8.30)

is positive semidefinite, and we leave this proof as an exercise (see Problem 8.5). This
discussion motivates the following assumption and theorem.

ASSUMPTION SIV.4: W = A~! where A is defined by expression (8.26).

THEOREM 8.3 (Optimal Weighting Matrix): Under Assumptions SIV.1-SIV .4, the
resulting GMM estimator is efficient among all GMM estimators of the form (8.24).
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Provided that we can consistently estimate A, we can obtain the asymptotically effi-
cient GMM estimator. Any consistent estimator of A delivers the efficient GMM es-
timator, but one estimator is commonly used that imposes no structure on A.

Procedure 8.1 (GMM with Optimal Weighting Matrix):

a. Let B be an initial consistent estimator of . In most cases this is the system 2SLS
estimator.

b. Obtain the G x 1 residual vectors

fi—y.—Xf, i=12..N (8.31)

Iy

c. A generally consistent estimator of A is A = N~' SN Zbu/Z;.
d. Choose

-1
W=A"'= ( IZz'ﬁ,ﬁ' ) (8.32)
and use this matrix to obtain the asymptotically optimal GMM estimator.

The estimator of A in part ¢ of Procedure 8.1 is consistent for E(Z/u;u/Z;) under
general conditions. When each row of Z; and u, represent different time periods—so
that we have a single-equation panel data model—the estimator A allows for arbi-
trary heteroskedasticity (conditional or unconditional) as well as arbitrary serial de-
pendence (conditional or unconditional). The reason we can allow this generality
is that we fix the row dimension of Z; and u; and let N — oo. Therefore, we are
assuming that N, the size of the cross section, is large enough relative to 7 to make
fixed T asymptotics sensible. (This is the same approach we took in Chapter 7.) With
N very large relative to 7, there is no need to downweight correlations between time
periods that are far apart, as in the Newey and West (1987) estimator applied to time
series problems. Ziliak and Kniesner (1998) do use a Newey-West type procedure in a
panel data application with large N. Theoretically, this is not required, and it is not
completely general because it assumes that the underlying time series are weakly de-
pendent. (See Wooldridge, 1994, for discussion of weak dependence in time series
contexts.) A Newey-West type estimator might improve the finite-sample perfor-
mance of the GMM estimator.

The asymptotic variance of the optimal GMM estimator is estimated as

-1

N -1
'Z) (Z Z;ﬁiﬁ;Zi> (Z'X) (8.33)
i=1
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where ; =y, — Xiﬁ; asymptotically, it makes no difference whether the first-stage
residuals @; are used in place of @;. The square roots of diagonal elements of this
matrix are the asymptotic standard errors of the optimal GMM estimator. This esti-
mator is called a minimum chi-square estimator, for reasons that will become clear in
Section 8.5.2.

When Z; = X; and the @; are the system OLS residuals, expression (8.33) becomes
the robust variance matrix estimator for SOLS [see expression (7.26)]. This expres-
sion reduces to the robust variance matrix estimator for FGLS when Z; = frlx,- and
the @; are the FGLS residuals [see equation (7.49)].

8.3.4 The Three-Stage Least Squares Estimator

The GMM estimator using weighting matrix (8.32) places no restrictions on either
the unconditional or conditional (on Z;) variance matrix of u;: we can obtain the
asymptotically efficient estimator without making additional assumptions. Neverthe-
less, it is still common, especially in traditional simultaneous equations analysis, to
assume that the conditional variance matrix of u; given Z; is constant. This assump-
tion leads to a system estimator that is a middle ground between system 2SLS and the
always-efficient minimum chi-square estimator.

The three-stage least squares (3SLS) estimator is a GMM estimator that uses a
particular weighting matrix. To define the 3SLS estimator, let ; = Y, — X;# be the
residuals from an initial estimation, usually system 2SLS. Define the G x G matrix

N
N! Z
i=1

Using the same arguments as in the FGLS case in Section 7.5.1, @ 2 Q = E(uu)).
The weighting matrix used by 3SLS is

[—233

9)

Y (8.34)

Iy -1

W= (Nl > Z;QZ,> =2 (Ily®Q)Z/N]"' (8.35)
i=1

where Iy is the N x N identity matrix. Plugging this into equation (8.24) gives the

3SLS estimator

B=XZ{Z 1y @Q)Z}'ZX]"'X'Z{Z' 1y @ Q)Z} '2'Y (8.36)

By Theorems 8.1 and 8.2, ,B is consistent and asymptotically normal under Assump-
tions SIV.1-SIV.3. Assumption SIV.3 requires E(Z/QZ;) to be nonsingular, a stan-
dard assumption.
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When is 3SLS asymptotically efficient? First, note that equation (8.35) always
consistently estimates [E(Z;QZ,-)]A. Therefore, from Theorem 8.3, equation (8.35) is
an efficient weighting matrix provided E(Z/QZ;) = A = E(Z/uu/Z,;).

ASSUMPTION SIV.5:  E(Z/uu!Z;) = E(Z!QZ;), where Q = E(usu)).

Assumption SIV.5 is the system extension of the homoskedasticity assumption for
2SLS estimation of a single equation. A sufficient condition for Assumption SIV.5,
and one that is easier to interpret, is

E(uu!|Z;) = E(uu)) (8.37)

We do not take equation (8.37) as the homoskedasticity assumption because there are
interesting applications where Assumption SIV.5 holds but equation (8.37) does not
(more on this topic in Chapters 9 and 11). When

E(w|Z) =0 (8.38)

is assumed in place of Assumption SIV.1, then equation (8.37) is equivalent to
Var(u; | Z;) = Var(u;). Whether we state the assumption as in equation (8.37) or use
the weaker form, Assumption SIV.5, it is important to see that the elements of the
unconditional variance matrix € are not restricted: 05 = Var(u,) can change across
g, and g, = Cov(uy,u;) can differ across g and /.

The system homoskedasticity assumption (8.37) necessarily holds when the instru-
ments Z; are treated as nonrandom and Var(u;) is constant across i. Because we are
assuming random sampling, we are forced to properly focus attention on the variance
of u; conditional on Z,;.

For the system of equations (8.12) with instruments defined in the matrix (8.15),
Assumption SIV.5 reduces to (without the i subscript)

E(uyupzy2)) = E(ugun)E(z2), gh=12..0G (8.39)
Therefore, u,u;, must be uncorrelated with each of the elements of z!’/zh. When g = A,
assumption (8.39) becomes

2 2
E(uyzézg) = E(ug

)E(z,2,) (8.40)

so that u§ is uncorrelated with each element of z, along with the squares and cross
products of the z, elements. This is exactly the homoskedasticity assumption for
single-equation IV analysis (Assumption 2SLS.3). For ¢ # A, assumption (8.39) is
new because it involves covariances across different equations.

Assumption SIV.S implies that Assumption SIV.4 holds [because the matrix (8.35)
consistently estimates A~! under Assumption SIV.5]. Therefore, we have the follow-
ing theorem:
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THEOREM 8.4 (Optimality of 3SLS): Under Assumptions SIV.1, SIV.2, SIV.3, and
SIV.5, the 3SLS estimator is an optimal GMM estimator. Further, the appropriate

estimator of Avar(f) is
-1

-1
(X’Z)( Y Z{QZ,») (Z'X)| =XZ{Z'(IyeQ)Z} '2'X]"’ (8.41)
=1

I

It is important to understand the implications of this theorem. First, without As-
sumption SIV.5, the 3SLS estimator is generally less efficient, asymptotically, than
the minimum chi-square estimator, and the asymptotic variance estimator for 3SLS
in equation (8.41) is inappropriate. Second, even with Assumption SIV.5, the 3SLS
estimator is no more asymptotically efficient than the minimum chi-square estimator:
expressions (8.32) and (8.35) are both consistent estimators of A~! under Assumption
SIV.5. In other words, the estimators based on these two different choices for W are
V/N-equivalent under Assumption SIV.5.

Given the fact that the GMM estimator using expression (8.32) as the weighting
matrix is never worse, asymptotically, than 3SLS, and in some important cases is
strictly better, why is 3SLS ever used? There are at least two reasons. First, 3SLS has
a long history in simultaneous equations models, whereas the GMM approach has
been around only since the early 1980s, starting with the work of Hansen (1982) and
White (1982b). Second, the 3SLS estimator might have better finite sample properties
than the optimal GMM estimator when Assumption SIV.5 holds. However, whether
it does or not must be determined on a case-by-case basis.

There is an interesting corollary to Theorem 8.4. Suppose that in the system (8.11)
we can assume E(X; ® u;) = 0, which is Assumption SGLS.1 from Chapter 7. We
can use a method of moments approach to estimating £, where the instruments for
each equation, x?, is the row vector containing every row of X;. As shown by Im,
Ahn, Schmidt, and Wooldridge (1999), the 3SLS estimator using instruments Z; =
I ® x? is equal to the feasible GLS estimator that uses the same Q. Therefore, if
Assumption SIV.5 holds with Z; = I ® x;/, FGLS is asymptotically efficient in the
class of GMM estimators that use the orthogonality condition in Assumption
SGLS.1. Sufficient for Assumption SIV.5 in the GLS context is the homoskedasticity
assumption E(uu! | X;) = Q.

8.3.5 Comparison between GMM 3SLS and Traditional 3SLS

The definition of the GMM 3SLS estimator in equation (8.36) differs from the defi-
nition of the 3SLS estimator in most textbooks. Using our notation, the expression
for the traditional 3SLS estimator is
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=X'(IyeQ HX] 'X'(IyQ Y (8.42)

where € is given in expression (8.34), X; = Z I, and Il = (Z'Z)"'Z'X. Comparing
equations (8.36) and (8.42) shows that, in general, these are different estimators. To
study equation (8.42) more closely, write it as

Because I 2 IT = [E(Z/Z,)] 'E(Z/X,) and @ &
ond term is the same as

, the probability limit of the sec-

-1
plim lN‘l f:(z,-n)’srl(z,-n) [N‘l EN:(Z,-H)’QIu,-] (8.43)
i=1 i

i=1

The first factor in expression (8.43) generally converges to a positive definite matrix.
Therefore, if equation (8.42) is to be consistent for f, we need

E[(ZX1)'Q v = WE[(Q7'Z) u] =0

Without assuming a special structure for IT, we should have that Q'Z; is uncorre-
lated with u;, an assumption that is not generally implied by Assumption SIV.1. In
other words, the traditional 3SLS estimator generally uses a different set of ortho-
gonality conditions than the GMM 3SLS estimator. The GMM 3SLS estimator is
guaranteed to be consistent under Assumptions SIV.1-SIV.3, while the traditional
3SLS estimator is not.

The best way to illustrate this point is with model (8.12) where Z; is given in matrix
(8.15) and we assume E(zlfyuiy) =0, g=1,2,...,G. Now, unless Q is diagonal,
E[(Q*IZ,-)/U,} # 0 unless z;, is uncorrelated with each uy, for all g,h =1,2,...,G. If
z;; is correlated with uy for some g # h, the transformation of the instruments in
equation (8.42) results in inconsistency. The GMM 3SLS estimator is based on the
original orthogonality conditions, while the traditional 3SLS estimator is not. See
Problem 8.6 for the G = 2 case.

Why, then, does equation (8.42) usually appear as the definition of the 3SLS esti-
mator? The reason is that the 3SLS estimator is typically introduced in simultaneous
equations models where any variable exogenous in one equation is assumed to be
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exogenous in all equations. Consider the model (8.12) again, but assume that the in-
strument matrix is Z; = I ® z;, where z; contains the exogenous variables appearing
anywhere in the system. With this choice of Z;, Assumption SIV.1 is equivalent to
E(zluy) =0,9=1,2,...,G. It follows that any linear combination of Z; is orthog-
onal to w;, including Q7 'Z;. In this important special case, traditional 3SLS is a
consistent estimator. In fact, as shown by Schmidt (1990), the GMM 3SLS estimator
and the traditional 3SLS estimator are algebraically identical.

Because we will encounter cases where we need different instruments for different
equations, the GMM definition of 3SLS in equation (8.36) is preferred: it is more
generally valid, and it reduces to the standard definition in the traditional simulta-
neous equations setting.

8.4 Some Considerations When Choosing an Estimator

We have already discussed the assumptions under which the 3SLS estimator is an
efficient GMM estimator. It follows that, under the assumptions of Theorem 8.4,
3SLS is as efficient asymptotically as the system 2SLS estimator. Nevertheless, it is
useful to know that there are some situations where the system 2SLS and 3SLS esti-
mators are equivalent. First, when the general system (8.11) is just identified, that is,
L =K, all GMM estimators reduce to the instrumental variables estimator in equa-
tion (8.22). In the special (but still fairly general) case of the SUR system (8.12), the
system is just identified if and only if each equation is just identified: L, = K,
g=1,2,...,G and the rank condition holds for each equation. When each equation
is just identified, the system IV estimator is IV equation by equation.

For the remaining discussion, we consider model (8.12) when at least one equation
is overidentified. When € is a diagonal matrix, that is, Q = diag(6?,...,62), 2SLS
equation by equation is algebraically equivalent to 3SLS, regardless of the degree
of overidentification (see Problem 8.7). Therefore, if we force our estimator € to be
diagonal, we obtain 2SLS equation by equation.

The algebraic equivalance between system 2SLS and 3SLS when Q is diagonal
allows us to conclude that 2SLS and 3SLS are asymptotically equivalent if Q is di-
agonal. The reason is simple. If we could use  in the 3SLS estimator, 3SLS would
be identical to 2SLS. The actual 3SLS estimator, which uses Q, is v/N-equivalent to
the hypothetical 3SLS estimator that uses €. Therefore, 3SLS and 2SLS are /N-
equivalent.

Even in cases where the 2SLS estimator is not algebraically or asympotically
equivalent to 3SLS, it is not necessarily true that we should prefer 3SLS (or the
minimum chi-square estimator more generally). Why? Suppose that primary interest
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lies in estimating the parameters in the first equation, ;. On the one hand, we know
that 2SLS estimation of this equation produces consistent estimators under the
orthogonality condition E(z{u#;) =0 and the condition rank E(z{x,) = K;. We do
not care what is happening elsewhere in the system as long as these two assumptions
hold. On the other hand, the system-based 3SLS and minimum chi-square estimators
of B, are generally inconsistent unless E(z;u‘,) = 0 for all g. Therefore, in using a
system method to consistently estimate £, all equations in the system must be prop-
erly specified, which means their instruments must be exogenous. Such is the nature
of system estimation procedures. As with system OLS and FGLS, there is a trade-off
between robustness and efficiency.

8.5 Testing Using GMM

8.5.1 Testing Classical Hypotheses

Testing hypotheses after GMM estimation is straightforward. Let ﬁ denote a GMM
estimator, and let V denote its estimated asymptotic variance. Although the following
analysis can be made more general, in most applications we use an optimal GMM
estimator. Without Assumption SIV.5, the weighting matrix would be expression
(8.32) and V would be as in expression (8.33). This can be used for computing ¢ sta-
tistics by obtaining the asymptotic standard errors (square roots of the diagonal
elements of V) Wald statistics of linear hypotheses of the form Hy: Rf =r, where R
is a Q x K matrix with rank Q, are obtained using the same statistic we have already
seen several times. Under Assumption SIV.5 we can use the 3SLS estimator and its
asymptotic variance estimate in equation (8.41). For testing general system hypoth-
eses we would probably not use the 2SLS estimator because its asymptotic variance is
more complicated unless we make very restrictive assumptions.

An alternative method for testing linear restrictions uses a statistic based on the dif-
ference in the GMM objective function with and without the restrictions imposed. To
apply this statistic, we must assume that the GMM estlmator uses the optimal weighting
matrix, so that W consistently estimates [Var(Z/ u;)] ", Then, from Lemma 3.8,

( VzZZ u,> < WZZ' )ixi (8.44)

since Z/u; is an L x 1 vector with zero mean and variance A. If W does not con-
sistently estimate [Var(Z/u;)]”", then result (8.44) is false, and the following method
does not produce an asymptotically chi-square statistic.
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Let ﬁ again be the GMM estimator, using optimal weighting matrix W, obtained
without imposing the restrictions. Let ﬁ be the GMM estimator using the same
weighting matrix W but obtained with the Q linear restrictions imposed. The restricted
estimator can always be obtained by estimating a linear model with K — Q rather
than K parameters. Define the unrestricted and restricted residuals as @; = y; — X,ﬁ
andu;, =y, — X;B, respectively. It can be shown that, under Hy, the GMM distance
statistic has a limiting chi-square distribution:

(o) (i)

See, for example, Hansen (1982) and Gallant (1987). The GMM distance statistic is
simply the difference in the criterion function (8.23) evaluated at the restricted and
unrestricted estimates, divided by the sample size, N. For this reason, expression
(8.45) is called a criterion function statistic. Because constrained minimization cannot
result in a smaller objective function than unconstrained minimization, expression
(8.45) is always nonnegative and usually strictly positive.

Under Assumption SIV.5 we can use the 3SLS estimator, in which case expression
(8.45) becomes

N /N N/ N I N
<Z Z{ﬁ,-) (Z Z;QZ,-> (Z Z;ﬁ,-> - (Z Z;ﬁ,-> (Z Z;QZ,;> (Z Z}ﬁ,-)
i=1 i=1 i=1 i=1 i=1 i=1

(8.46)

/N ~ 15 (8.45)

where Q would probably be computed using the 2SLS residuals from estimating the
unrestricted model. The division by N has disappeared because of the definition of
W; see equation (8.35).

Testing nonlinear hypotheses is easy once the unrestricted estimator § has been

obtained. Write the null hypothesis as
Hp: ¢(f) =0 (8.47)

where ¢(f) = [c1(B), c2(B), ..., co(B)]" is a Q x 1 vector of functions. Let C(f) de-
note the Q x K Jacobian of ¢(f). Assuming that rank C(f) = Q, the Wald statistic is

W = () (EVEC) e(B) (8.48)

where C = C(f) is the Jacobian evaluated at the GMM estimate . Under Hy, the
Wald statistic has an asymptotic )(2Q distribution.
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8.5.2 Testing Overidentification Restrictions

Just as in the case of single-equation analysis with more exogenous variables than
explanatory variables, we can test whether overidentifying restrictions are valid in a
system context. In the model (8.11) with instrument matrix Z;, where X; is G x K and
Z; is G x L, there are overidentifying restrictions if L > K. Assuming that W is an
optimal weighting matrix, it can be shown that

N ! N
(N—WZz;a,-)vif(N—l/zZZ;ﬁ,-) ks (8.49)
i=1 i=1

under the null hypothesis Ho: E(Z/u;) = 0. The asymptotic y?  distribution is sim-
ilar to result (8.44), but expression (8.44) contains the unobserved errors, u;, whereas
expression (8.49) contains the residuals, #;. Replacing u; with u; causes the degrees of
freedom to fall from L to L — K: in effect, K orthogonality conditions have been used
to compute ﬁ, and L — K are left over for testing.

The overidentification test statistic in expression (8.49) is just the objective function
(8.23) evaluated at the solution # and divided by N. It is because of expression (8.49)
that the GMM estimator using the optimal weighting matrix is called the minimum
chi-square estimator: ﬁ is chosen to make the minimum of the objective function have
an asymptotic chi-square distribution. If W is not optimal, expression (8.49) fails to
hold, making it much more difficult to test the overidentifying restrictions. When
L = K, the left-hand side of expression (8.49) is identically zero; there are no over-
identifying restrictions to be tested.

Under Assumption SIV.5, the 3SLS estimator is a minimum chi-square estimator,
and the overidentification statistic in equation (8.49) can be written as

N "/ N /N
(Z Z;ﬁ,-> <Z Z§§2Z,—> <Z Z;ﬁ,-> (8.50)
i=1 i=1 i=1

Without Assumption SIV.5, the limiting distribution of this statistic is not chi square.

In the case where the model has the form (8.12), overidentification test statistics
can be used to choose between a systems and a single-equation method. For example,
if the test statistic (8.50) rejects the overidentifying restrictions in the entire system,
then the 3SLS estimators of the first equation are generally inconsistent. Assuming
that the single-equation 2SLS estimation passes the overidentification test discussed
in Chapter 6, 2SLS would be preferred. However, in making this judgment it is, as
always, important to compare the magnitudes of the two sets of estimates in addition
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to the statistical significance of test statistics. Hausman (1983, p. 435) shows how to
construct a statistic based directly on the 3SLS and 2SLS estimates of a particular
equation (assuming that 3SLS is asymptotically more efficient under the null), and
this discussion can be extended to allow for the more general minimum chi-square
estimator.

8.6 More Efficient Estimation and Optimal Instruments

In Section 8.3.3 we characterized the optimal weighting matrix given the matrix Z; of
instruments. But this discussion begs the question of how we can best choose Z;. In
this section we briefly discuss two efficiency results. The first has to do with adding
valid instruments.

To be precise, let Z;; be a G x L; submatrix of the G x L matrix Z;, where Z;
satisfies Assumptions SIV.1 and SIV.2. We also assume that Z;; satisfies Assumption
SIV.2; that is, E(Z/,X;) has rank K. This assumption ensures that f is identified using
the smaller set of instruments. (Necessary is L; > K.) Given Z;;, we know that the
efficient GMM estimator uses a weighting matrix that is consistent for Afl, where
Ay = E(Z]juu/Z;1). When we use the full set of instruments Z; = (Z;1, Zz), the op-
timal weighting matrix is a consistent estimator of A given in expression (8.26).
The question is, Can we say that using the full set of instruments (with the optimal
weighting matrix) is better than using the reduced set of instruments (with the opti-
mal weighting matrix)? The answer is that, asymptotically, we can do no worse, and
often we can do better, using a larger set of valid instruments.

The proof that adding orthogonality conditions generally improves efficiency pro-
ceeds by comparing the asymptotic variances of v N (ﬁ —p) and VN (ﬂ — ), where
the former estimator uses the restricted set of IVs and the latter uses the full set.
Then

Avar VN(f — B) — Avar VN(f — p) = (C|A;'C)) ' — (C'A1C) ! (8.51)

where C; = E(Z/,X;). The difference in equation (8.51) is positive semidefinite if and
only if C’A™'C — C|A['C| is p.s.d. The latter result is shown by White (1984, Prop-
osition 4.49) using the formula for partitioned inverse; we will not reproduce it here.

The previous argument shows that we can never do worse asymptotically by add-
ing instruments and computing the minimum chi-square estimator. But we need not
always do better. The proof in White (1984) shows that the asymptotic variances of §
and ﬁ are identical if and only if

C, = E(Z,uu'Z;)AT'C, 8.52
2 i 1
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where C, = E(Z,X;). Generally, this condition is difficult to check. However, if we
assume that E(Z/uu/Z;) = ¢*E(Z]Z;)—the ideal assumption for system 2SLS—then
condition (8.52) becomes

E(Z,X,) = E(Z)Za)[E(Z) Z)] 'B(Z} X))
Straightforward algebra shows that this condition is equivalent to
E[(Z» — ZaD1)'X;] =0 (8.53)

where D = [E(Z,.’IZ”)}_]E(ZQIZQ) is the L; x L, matrix of coefficients from the
population regression of Z; on Z;. Therefore, condition (8.53) has a simple inter-
pretation: X; is orthogonal to the part of Z;, that is left after netting out Z;;. This
statement means that Z;, is not partially correlated with X;, and so it is not useful as
instruments once Z;; has been included.

Condition (8.53) is very intuitive in the context of 2SLS estimation of a single
equation. Under E(u?z]z;) = 0°E(z/z;), 2SLS is the minimum chi-square estimator.
The elements of z; would include all exogenous elements of x;, and then some. If, say,
xik 1s the only endogenous element of x;, condition (8.53) becomes

L(xix | zi1,22) = L(xix | Zi1) (8.54)

so that the linear projection of x;x onto z; depends only on z;;. If you recall how the
IVs for 2SLS are obtained—by estimating the linear projection of x;x on z; in the first
stage—it makes perfectly good sense that z,, can be omitted under condition (8.54)
without affecting efficiency of 2SLS.

In the general case, if the error vector u; contains conditional heteroskedasticity, or
correlation across its elements (conditional or otherwise), condition (8.52) is unlikely
to be true. As a result, we can keep improving asymptotic efficiency by adding
more valid instruments. Whenever the error term satisfies a zero conditional mean
assumption, unlimited IVs are available. For example, consider the linear model
E(y|x) = xp, so that the error u = y — xf has a zero mean given x. The OLS esti-
mator is the IV estimator using Vs z; = x. The preceding efficiency result implies
that, if Var(u|x) # Var(u), there are unlimited minimum chi-square estimators that
are asymptotically more efficient than OLS. Because E(u|x) = 0, h(x) is a valid set
of IVs for any vector function h(-). (Assuming, as always, that the appropriate
moments exist.) Then, the minimum chi-square estimate using IVs z = [x, h(x)] is
generally more asymptotically efficient than OLS. (Chamberlain, 1982, and Cragg,
1983, independently obtained this result.) If Var(y|x) is constant, adding functions
of x to the IV list results in no asymptotic improvement because the linear projection
of x onto x and h(x) obviously does not depend on h(x).
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Under homoskedasticity, adding moment conditions does not reduce the asymp-
totic efficiency of the minimum chi-square estimator. Therefore, it may seem that,
when we have a linear model that represents a conditional expectation, we cannot
lose by adding IVs and performing minimum chi-square. [Plus, we can then test the
functional form E(y|x) = xf by testing the overidentifying restrictions.] Unfortu-
nately, as shown by several authors, including Tauchen (1986), Altonji and Segal
(1996), and Ziliak (1997), GMM estimators that use many overidentifying restric-
tions can have very poor finite sample properties.

The previous discussion raises the following possibility: rather than adding more
and more orthogonality conditions to improve on inefficient estimators, can we find a
small set of optimal IVs? The answer is yes, provided we replace Assumption SIV.1
with a zero conditional mean assumption.

ASSUMPTION SIV.1": E(uy|z;) =0,9=1,...,G for some vector z;.

Assumption SIV.1" implies that z; is exogenous in every equation, and each element
of the instrument matrix Z; can be any function of z;.

THEOREM 8.5 (Optimal Instruments): Under Assumption SIV.1’ (and sufficient reg-
ularity conditions), the optimal choice of instruments is Z" = Q(z;) 'E(X; | z), where
Q(z;) = E(u/u; | z;), provided that rank E(ZX;) = K.

We will not prove Theorem 8.5 here. We discuss a more general case in Section 14.5;
see also Newey and McFadden (1994, Section 5.4). Theorem 8.5 implies that, if the
G x K matrix Z; were available, we would use it in equation (8.22) in place of Z; to
obtain the SIV estimator with the smallest asymptotic variance. This would take the
arbitrariness out of choosing additional functions of z; to add to the IV list: once we
have Z/, all other functions of z; are redundant.

Theorem 8.5 implies that, if the errors in the system satisfy SIV.1’; the homo-
skedasticity assumption (8.37), and E(X; | z;) = Z,I1 for some G x L matrix Z; and an
L x K unknown matrix Il, then the 3SLS estimator is the efficient estimator based on
the orthogonality conditions SIV.1’. Showing this result is easy given the traditional
form of the 3SLS estimator in equation (8.41).

If E(u;|X;) =0 and E(uu/|X;) = Q, then the optimal instruments are Q'X;,
which gives the GLS estimator. Replacing Q by Q has no effect asymptotically, and
so the FGLS is the SIV estimator with optimal choice of instruments.

Without further assumptions, both Q(z;) and E(X;|z;) can be arbitrary functions
of z;, in which case the optimal SIV estimator is not easily obtainable. It is possible
to find an estimator that is asymptotically efficient using nonparametric estimation
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methods to estimate (z;) and E(X;]|z;), but there are many practical hurdles to
overcome in applying such procedures. See Newey (1990) for an approach that
approximates E(X;|z;) by parametric functional forms, where the approximation
gets better as the sample size grows.

Problems

8.1. Show that the GMM estimator that solves the problem (8.23) satisfies the first-
order condition

N " (N .
(Z ZfX:-) w (Z Zi(yi - x,m) =0

i1 =1
Use this expression to obtain formula (8.24).
8.2. Consider the system of equations
Vi=Xif+u

where i indexes the cross section observation, y; and u; are G x 1, X;is G x K, Z; is
the G’ x L matrix of instruments, and f is K x 1. Let Q = E(u;u/). Make the follow-
ing four assumptions: (1) E(Z/w;) = 0; (2) rank E(ZX;) = K; (3) E(Z!Z;) is non-
singular; and (4) E(Z/QZ,;) is nonsingular.

a. What are the properties of the 3SLS estimator?

b. Find the asymptotic variance matrix of v/N( ,33SLS -p.

c. How would you estimate Avar(fig;s)?

8.3. Letxbeal x K random vector and let z be a 1 x M random vector. Suppose
that E(x|z) = L(x|z) = zII, where IT is an M x K matrix; in other words, the ex-
pectation of x given z is linear in z. Let h(z) be any 1 x Q nonlinear function of z, and
define an expanded instrument list as w = [z, h(z)].

Show that rank E(z'x) = rank E(w’x). {Hint: First show that rank E(z'x) =
rank E(z'x*), where x* is the linear projection of x onto z; the same holds with z
replaced by w. Next, show that when E(x|z) = L(x|z), L[x|z,h(z)] = L(x|z) for
any function h(z) of z.}

8.4. Consider the system of equations (8.12), and let z be a row vector of vari-
ables exogenous in every equation. Assume that the exogeneity assumption takes the
stronger form E(u,|z) =0, g = 1,2,..., G. This assumption means that z and non-
linear functions of z are valid instruments in every equation.
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a. Suppose that E(x, | z) is linear in z for all g. Show that adding nonlinear functions
of z to the instrument list cannot help in satisfying the rank condition. (Hint: Apply
Problem 8.3.)

b. What happens if E(x, | z) is a nonlinear function of z for some g?

8.5. Verify that the difference (C’A™'C) — (C'WC)(C'WAWC) ' (C'WC) in ex-
pression (8.30) is positive semidefinite for any symmetric positive definite matrices W
and A. {Hint: Show that the difference can be expressed as

C'A™'2[I, - D(D'D)"'D|A/2C

where D = A!/2WC. Then, note that for any L x K matrix D, I, — D(D'D) 'D’ is a
symmetric, idempotent matrix, and therefore positive semidefinite. }

8.6. Consider the system (8.12) in the G = 2 case, with an i subscript added:
Yir = Xapy + un
Yio = Xppfp + iy

The instrument matrix is

Zj| 0
7 =
! < 0 Ziz)

Let Q be the 2 x 2 variance matrix of u; = (u;1, up)’, and write
ol _ ol g2
o2 g2
a. Find E(Z;Qflu[) and show that it is not necessarily zero under the orthogonality
conditions E(z/,u;1) = 0 and E(z),up) = 0.
b. What happens if Q is diagonal (so that Q' is diagonal)?
c. What if z;; = z;, (without restrictions on Q)?

8.7. With definitions (8.14) and (8.15), show that system 2SLS and 3SLS are
numerically identical whenever  is a diagonal matrix.

8.8. Consider the standard panel data model introduced in Chapter 7:
Vi = X + ui (8.55)

where the 1 x K vector x;, might have some elements correlated with u;. Let z; be a
1 x L vector of instruments, L > K, such that E(z,u;) =0, = 1,2,...,T. (In prac-
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tice, z; would contain some elements of x;;, including a constant and possibly time
dummies.)

a. Write down the system 2SLS estimator if the instrument matrix is Z; =
(z},,2),...,2,7)' (@ T x L matrix). Show that this estimator is a pooled 2SLS esti-
mator. That is, it is the estimator obtained by 2SLS estimation of equation (8.55)
using instruments z;,, pooled across all i and ¢.

b. What is the rank condition for the pooled 2SLS estimator?

c. Without further assumptions, show how to estimate the asymptotic variance of the
pooled 2SLS estimator.

d. Show that the assumptions
E(uir | Zig, i 11,2 11,5 - - - un, 2i1) = 0, t=1,...,T (8.56)
E(w|zy)=0*  t=1,...,T (8.57)

imply that the usual standard errors and test statistics reported from the pooled 2SLS
estimation are valid. These assumptions make implementing 2SLS for panel data
very simple.

e. What estimator would you use under condition (8.56) but where we relax condi-
tion (8.57) to E(u2|z;) = E(u2) = 6?2, t=1,...,T? This approach will involve an
initial pooled 2SLS estimation.

8.9. Consider the single-equation linear model from Chapter 5: y =xf+ u.
Strengthen Assumption 2SLS.1 to E(u|z) = 0 and Assumption 2SLS.3 to E(u? |z) =
o2, and keep the rank condition 2SLS.2. Show that if E(x |z) = zII for some L x K
matrix I1, the 2SLS estimator uses the optimal instruments based on the orthogon-
ality condition E(u|z) = 0. What does this result imply about OLS if E(u|x) =0
and Var(u|x) = ¢%?

8.10. In the model from Problem 8.8, let #;, = y;, — Xi,ﬁ be the residuals after pooled
2SLS estimation.

a. Consider the following test for AR(1) serial correlation in {u;: t=1,...,T}: es-
timate the auxiliary equation

Vi = Xifp + pli; (1 + errory, t=2,....T,i=1,...,N

by 2SLS using instruments (z;, #; ;1 ), and use the ¢ statistic on p. Argue that, if we
strengthen (8.56) to E(ui | Zi, Xi 1—1, Ui =1, Zi -1, Xi,1—2, - - - , Xi1, Ui1, 21) = 0, then the
heteroskedasticity-robust ¢ statistic for p is asymptotically valid as a test for serial
correlation. [Hint: Under the dynamic completeness assumption (8.56), which is
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effectively the null hypothesis, the fact that #; ,_; is used in place of u; ,_; does not
affect the limiting distribution of g; see Section 6.1.3.] What is the homoskedasticity
assumption that justifies the usual 7 statistic?

b. What should be done to obtain a heteroskedasticity-robust test?
8.11. a. Use Theorem 8.5 to show that, in the single-equation model
Y1 =12101 + o1 y2 +u

with E(u | z) = 0—where z; is a strict subset of z—and Var(u; | z) = 7, the optimal
instrumental variables are [z, E(y, | z)].
b. If y, is a binary variable with P(y, = 1 |z) = F(z) for some known function F(-),
0 < F(z) < 1, what are the optimal IVs?



9 Simultaneous Equations Models

9.1 The Scope of Simultaneous Equations Models

The emphasis in this chapter is on situations where two or more variables are jointly
determined by a system of equations. Nevertheless, the population model, the iden-
tification analysis, and the estimation methods apply to a much broader range of
problems. In Chapter 8, we saw that the omitted variables problem described in Ex-
ample 8.2 has the same statistical structure as the true simultaneous equations model
in Example 8.1. In fact, any or all of simultaneity, omitted variables, and measure-
ment error can be present in a system of equations. Because the omitted variable and
measurement error problems are conceptually easier—and it was for this reason that
we discussed them in single-equation contexts in Chapters 4 and 5—our examples
and discussion in this chapter are geared mostly toward true simultaneous equations
models (SEMs).

For effective application of true SEMs, we must understand the kinds of situations
suitable for SEM analysis. The labor supply and wage offer example, Example 8.1,
is a legitimate SEM application. The labor supply function describes individual be-
havior, and it is derivable from basic economic principles of individual utility max-
imization. Holding other factors fixed, the labor supply function gives the hours of
labor supply at any potential wage facing the individual. The wage offer function
describes firm behavior, and, like the labor supply function, the wage offer function is
self-contained.

When an equation in an SEM has economic meaning in isolation from the other
equations in the system, we say that the equation is autonomous. One way to think
about autonomy is in terms of counterfactual reasoning, as in Example 8.1. If we
know the parameters of the labor supply function, then, for any individual, we can
find labor hours given any value of the potential wage (and values of the other
observed and unobserved factors affecting labor supply). In other words, we could, in
principle, trace out the individual labor supply function for given levels of the other
observed and unobserved variables.

Causality is closely tied to the autonomy requirement. An equation in an SEM
should represent a causal relationship; therefore, we should be interested in varying
each of the explanatory variables—including any that are endogenous—while hold-
ing all the others fixed. Put another way, each equation in an SEM should represent
some underlying conditional expectation that has a causal structure. What compli-
cates matters is that the conditional expectations are in terms of counterfactual vari-
ables. In the labor supply example, if we could run a controlled experiment, where we
exogenously vary the wage offer across individuals, then the labor supply function
could be estimated without ever considering the wage offer function. In fact, in the



210 Chapter 9

absence of omitted variables or measurement error, ordinary least squares would be
an appropriate estimation method.

Generally, supply and demand examples satisfy the autonomy requirement, re-
gardless of the level of aggregation (individual, household, firm, city, and so on), and
simultaneous equations systems were originally developed for such applications. [See,
for example, Haavelmo (1943) and Kiefer’s (1989) interview of Arthur S. Goldberger.]
Unfortunately, many recent applications of simultaneous equations methods fail the
autonomy requirement; as a result, it is difficult to interpret what has actually been
estimated. Examples that fail the autonomy requirement often have the same feature:
the endogenous variables in the system are all choice variables of the same economic
unit.

As an example, consider an individual’s choice of weekly hours spent in legal
market activities and hours spent in criminal behavior. An economic model of crime
can be derived from utility maximization; for simplicity, suppose the choice is only
between hours working legally (work) and hours involved in crime (crime). The fac-
tors assumed to be exogenous to the individual’s choice are things like wage in legal
activities, other income sources, probability of arrest, expected punishment, and so
on. The utility function can depend on education, work experience, gender, race, and
other demographic variables.

Two structural equations fall out of the individual’s optimization problem: one has
work as a function of the exogenous factors, demographics, and unobservables; the
other has crime as a function of these same factors. Of course, it is always possible
that factors treated as exogenous by the individual cannot be treated as exogenous by
the econometrician: unobservables that affect the choice of work and crime could
be correlated with the observable factors. But this possibility is an omitted variables
problem. (Measurement error could also be an important issue in this example.)
Whether or not omitted variables or measurement error are problems, each equation
has a causal interpretation.

In the crime example, and many similar examples, it may be tempting to stop be-
fore completely solving the model—or to circumvent economic theory altogether—
and specify a simultaneous equations system consisting of two equations. The first
equation would describe work in terms of crime, while the second would have crime
as a function of work (with other factors appearing in both equations). While it is
often possible to write the first-order conditions for an optimization problem in this
way, these equations are not the structural equations of interest. Neither equation can
stand on its own, and neither has a causal interpretation. For example, what would it
mean to study the effect of changing the market wage on hours spent in criminal
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activity, holding hours spent in legal employment fixed? An individual will generally
adjust the time spent in both activities to a change in the market wage.

Often it is useful to determine how one endogenous choice variable trades off against
another, but in such cases the goal is not—and should not be—to infer causality. For
example, Biddle and Hamermesh (1990) present OLS regressions of minutes spent
per week sleeping on minutes per week working (controlling for education, age, and
other demographic and health factors). Biddle and Hamermesh recognize that there
is nothing “structural”” about such an analysis. (In fact, the choice of the dependent
variable is largely arbitrary.) Biddle and Hamermesh (1990) do derive a structural
model of the demand for sleep (along with a labor supply function) where a key ex-
planatory variable is the wage offer. The demand for sleep has a causal interpreta-
tion, and it does not include labor supply on the right-hand side.

Why are SEM applications that do not satisfy the autonomy requirement so prev-
alent in applied work? One possibility is that there appears to be a general misper-
ception that “structural” and “simultaneous’ are synonymous. However, we already
know that structural models need not be systems of simultaneous equations. And, as
the crime/work example shows, a simultaneous system is not necessarily structural.

9.2 Identification in a Linear System

9.2.1 Exclusion Restrictions and Reduced Forms

Write a system of linear simultaneous equations for the population as

Yi=Yura) T zada) +u
9.1)

Yo =YY 269G t uc

where y,) is 1 X Gp, ppy 18 G X 1, 2y is 1 X M, and 9 is My x 1, h=1,2,...,G.
These are structural equations for the endogenous variables y,, y,,..., v We will
assume that, if the system (9.1) represents a true simultaneous equations model, then
equilibrium conditions have been imposed. Hopefully, each equation is autonomous,
but, of course, they do not need to be for the statistical analysis.

The vector y(;, denotes endogenous variables that appear on the right-hand side of
the Ath structural equation. By convention, y, can contain any of the endogenous
variables y|, y,, ..., yg except for y,. The variables in z(,) are the exogenous variables
appearing in equation 4. Usually there is some overlap in the exogenous variables
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across different equations; for example, except in special circumstances each z,
would contain unity to allow for nonzero intercepts. The restrictions imposed in sys-
tem (9.1) are called exclusion restrictions because certain endogenous and exogenous
variables are excluded from some equations.

The 1 x M vector of all exogenous variables z is assumed to satisfy

E(z'uy) = 0, g=12...,G (9.2)

When all of the equations in system (9.1) are truly structural, we are usually willing to
assume

E(uy|z) =0, g=12,....G (9.3)

However, we know from Chapters 5 and 8§ that assumption (9.2) is sufficient for
consistent estimation. Sometimes, especially in omitted variables and measurement
error applications, one or more of the equations in system (9.1) will simply represent
a linear projection onto exogenous variables, as in Example 8.2. It is for this reason
that we use assumption (9.2) for most of our identification and estimation analysis.
We assume throughout that E(z'z) is nonsingular, so that there are no exact linear
dependencies among the exogenous variables in the population.

Assumption (9.2) implies that the exogenous variables appearing anywhere in the
system are orthogonal to all the structural errors. If some elements in, say, z(;), do
not appear in the second equation, then we are explicitly assuming that they do not
enter the structural equation for y,. If there are no reasonable exclusion restrictions
in an SEM, it may be that the system fails the autonomy requirement.

Generally, in the system (9.1), the error u, in equation g will be correlated with y
(we show this correlation explicitly later), and so OLS and GLS will be inconsistent.
Nevertheless, under certain identification assumptions, we can estimate this system
using the instrumental variables procedures covered in Chapter 8.

In addition to the exclusion restrictions in system (9.1), another possible source of
identifying information is on the G x G variance matrix £ = Var(u). For now, X is
unrestricted and therefore contains no identifying information.

To motivate the general analysis, consider specific labor supply and demand func-
tions for some population:

h(e0) =y, log(e) + Z(])&(l) + up
hd(w) =7 log(w) + Z(2)5(2) —+ uy

where <« is the dummy argument in the labor supply and labor demand functions.
We assume that observed hours, /, and observed wage, w, equate supply and demand:
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h=h*(w) = h'(w)

The variables in z( shift the labor supply curve, and z;) contains labor demand
shifters. By defining y, =/ and y, = log(w) we can write the equations in equilib-
rium as a linear simultaneous equations model:

»1 =2 t2nda) +u (9.4)
Y1 =202 +22)00) + uz (9.5)

Nothing about the general system (9.1) rules out having the same variable on the left-
hand side of more than one equation.

What is needed to identify the parameters in, say, the supply curve? Intuitively,
since we observe only the equilibrium quantities of hours and wages, we cannot dis-
tinguish the supply function from the demand function if z(;) and z(;) contain exactly
the same elements. If, however, z(;) contains an element not in z(;)—that is, if there is
some factor that exogenously shifts the demand curve but not the supply curve—then
we can hope to estimate the parameters of the supply curve. To identify the demand
curve, we need at least one element in z(;) that is not also in z(,).

To formally study identification, assume that y; # y,; this assumption just means
that the supply and demand curves have different slopes. Subtracting equation (9.5)
from equation (9.4), dividing by y, — y,, and rearranging gives

V2 = 2(yTa1 + Z()n + 02 (9.6)

where 731 = d1)/ (7, = 71), m2 = —0(2)/ (72 — 1), and vy = (w1 — u2) /(y5 — 71). This
is the reduced form for y, because it expresses y, as a linear function of all of the
exogenous variables and an error v, which, by assumption (9.2), is orthogonal to all
exogenous variables: E(z'v;) = 0. Importantly, the reduced form for y, is obtained
from the two structural equations (9.4) and (9.5).

Given equation (9.4) and the reduced form (9.6), we can now use the identification
condition from Chapter 5 for a linear model with a single right-hand-side endogenous
variable. This condition is easy to state: the reduced form for y, must contain at least
one exogenous variable not also in equation (9.4). This means there must be at least
one element of z;) not in z;) with coefficient in equation (9.6) different from zero.
Now we use the structural equations. Because ny; is proportional to d(;), the condi-
tion is easily restated in terms of the structural parameters: in equation (9.5) at least
one element of z) not in z) must have nonzero coefficient. In the supply and de-
mand example, identification of the supply function requires at least one exogenous
variable appearing in the demand function that does not also appear in the supply
function; this conclusion corresponds exactly with our earlier intuition.
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The condition for identifying equation (9.5) is just the mirror image: there must be
at least one element of z) actually appearing in equation (9.4) that is not also an
element of z5).

Example 9.1 (Labor Supply for Married Women): Consider labor supply and de-
mand equations for married women, with the equilibrium condition imposed:

hours =y, log(wage) + d10 + d11educ + d12age + d13kids + d1a0thine + u;
hours = 7, log(wage) + a9 + da1educ + dpexper + uy

The supply equation is identified because, by assumption, exper appears in the de-
mand function (assuming d,; # 0) but not in the supply equation. The assumption
that past experience has no direct affect on labor supply can be questioned, but it has
been used by labor economists. The demand equation is identified provided that at
least one of the three variables age, kids, and othinc actually appears in the supply
equation.

We now extend this analysis to the general system (9.1). For concreteness, we study
identification of the first equation:

Yi=Yura) T 2oy +ur =Xy + (9.7)
where the notation used for the subscripts is needed to distinguish an equation with
exclusion restrictions from a general equation that we will study in Section 9.2.2.
Assuming that the reduced forms exist, write the reduced form for y as

Yy = 2y +vq) (9.8)

where E[z'v(;)] = 0. Further, define the M x M, matrix selection matrix Sy, which
consists of zeros and ones, such that z(;) = zS;). The rank condition from Chapter 5,
Assumption 2SLS.2b, can be stated as

rank E[z'x()] = K; (9.9)

where K| = G + M. But E[Z/X(l)] = E[Z,(ZH“),ZS(]))] = E(Z,Z)[H“) |S(1)] Since we
always assume that E(z'z) has full rank M, assumption (9.9) is the same as

rank[Hm ‘S(])] =G| + M, (910)

In other words, [I1(;) | S(;)] must have full column rank. If the reduced form for y ;)
has been found, this condition can be checked directly. But there is one thing we can
conclude immediately: because [T}y |S(;)] is an M x (Gi + M) matrix, a necessary
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condition for assumption (9.10) is M > G| + M, or
M- M, > G, (9.11)

We have already encountered condition (9.11) in Chapter 5: the number of exoge-
nous variables not appearing in the first equation, M — M|, must be at least as great
as the number of endogenous variables appearing on the right-hand side of the first
equation, Gy. This is the order condition for identification of equation one. We have
proven the following theorem:

THEOREM 9.1 (Order Condition with Exclusion Restrictions): In a linear system of
equations with exclusion restrictions, a necessary condition for identifying any par-
ticular equation is that the number of excluded exogenous variables from the equa-
tion must be at least as large as the number of included right-hand-side endogenous
variables in the equation.

It is important to remember that the order condition is only necessary, not sufficient,
for identification. If the order condition fails for a particular equation, there is no
hope of estimating the parameters in that equation. If the order condition is met, the
equation might be identified.

9.2.2 General Linear Restrictions and Structural Equations

The identification analysis of the preceding subsection is useful when reduced forms

are appended to structural equations. When an entire structural system has been

specified, it is best to study identification entirely in terms of the structural parameters.
To this end, we now write the G equations in the population as

yy, + 20 +u; =0

: (9.12)
Yy + 206 +ug =0

where y = (yy, ¥,..., yg) 1s the 1 x G vector of all endogenous variables and z =
(z1,...,2zp) is still the 1 x M vector of all exogenous variables, and probably con-

tains unity. We maintain assumption (9.2) throughout this section and also assume
that E(z'z) is nonsingular. The notation here differs from that in Section 9.2.1. Here,
7,18 Gx 1 and d, is M x 1 for all g =1,2,..., G, so that the system (9.12) is the
general linear system without any restrictions on the structural parameters.

We can write this system compactly as

yI'+zA +u=0 (9.13)
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where u = (uy,...,ug) is the 1 x G vector of structural errors, I' is the G x G matrix
with gth column y,, and A is the M x G matrix with gth column 4. So that a reduced
form exists, we assume that I' is nonsingular. Let X = E(u’u) denote the G x G
variance matrix of u, which we assume to be nonsingular. At this point, we have
placed no other restrictions on I', A, or X.

The reduced form is easily expressed as

y=z(—-AT ") +u(-I' ") =zl +v (9.14)

where IT = (—AI''!) and v=u(-I'"!). Define A = E(v'v) =T VE[! as the re-
duced form variance matrix. Because E(z'v) = 0 and E(z’z) is nonsingular, IT and A
are identified because they can be consistently estimated given a random sample on y
and z by OLS equation by equation. The question is, Under what assumptions can
we recover the structural parameters I', A, and X from the reduced form parameters?

It is easy to see that, without some restrictions, we will not be able to identify any
of the parameters in the structural system. Let F be any G x G nonsingular matrix,
and postmultiply equation (9.13) by F:

YIF+zAF+uF=0 or yI'"+zA"+u" =0 (9.15)

where I'* = TF, A" = AF, and u* = uF; note that Var(u*) = F'XF. Simple algebra
shows that equations (9.15) and (9.13) have identical reduced forms. This result
means that, without restrictions on the structural parameters, there are many equiv-
alent structures in the sense that they lead to the same reduced form. In fact, there is
an equivalent structure for each nonsingular F.

r . . .
Let B = (A) be the (G+ M) x G matrix of structural parameters in equation

(9.13). If F is any nonsingular G x G matrix, then F represents an admissible linear
transformation if

1. BF satisfies all restrictions on B.

2. F'ZF satisfies all restrictions on X.

To identify the system, we need enough prior information on the structural param-
eters (B, X) so that F = I is the only admissible linear transformation.

In most applications identification of B is of primary interest, and this identifica-
tion is achieved by putting restrictions directly on B. As we will touch on in Section
9.4.2, it is possible to put restrictions on X in order to identify B, but this approach is
somewhat rare in practice. Until we come to Section 9.4.2, X is an unrestricted G x G
positive definite matrix.
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As before, we consider identification of the first equation:
vy +201 +u; =0 (9.16)

or ypy1+ypy2+ -+ veYe +onz1 +0nz2+ - +0imzm +up = 0. The first re-
striction we make on the parameters in equation (9.16) is the normalization restriction
that one element of p; is —1. Each equation in the system (9.1) has a normalization
restriction because one variable is taken to be the left-hand-side explained variable.
In applications, there is usually a natural normalization for each equation. If there is
not, we should ask whether the system satisfies the autonomy requirement discussed
in Section 9.1. (Even in models that satisfy the autonomy requirement, we often have
to choose between reasonable normalization conditions. For example, in Example
9.1, we could have specified the second equation to be a wage offer equation rather
than a labor demand equation.)

Let B, = (y,07)" be the (G+ M) x 1 vector of structural parameters in the first
equation. With a normalization restriction there are (G + M) — 1 unknown elements
in #,. Assume that prior knowledge about f#; can be expressed as

R, =0 (9.17)

where R; is a J; x (G+ M) matrix of known constants, and J; is the number of
restrictions on f; (in addition to the normalization restriction). We assume that rank
R; = Ji, so that there are no redundant restrictions. The restrictions in assumption
(9.17) are sometimes called homogeneous linear restrictions, but, when coupled with a
normalization assumption, equation (9.17) actually allows for nonhomogeneous
restrictions.

Example 9.2 (A Three-Equation System): Consider the first equation in a system
with G =3 and M = 4:

VI =71V2+ v13YV3 + 01121 + 01222 + 01323 + O1aza + 1y

so that = (_177}12)7)13),9 61 = (51175125513a514)/7 and ﬂl = (_15y127y137511a5127(513a
014)'. (We can set z; = 1 to allow an intercept.) Suppose the restrictions on the
structural parameters are y,, = 0 and Jy3 +J14 = 3. Then J; = 2 and

R _ (0100000
"“\3 000011

Straightforward multiplication gives Rif; = (715,013 +d14 —3)’, and setting this
vector to zero as in equation (9.17) incorporates the restrictions on f;.
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Given the linear restrictions in equation (9.17), when are these and the normaliza-
tion restriction enough to identify f,? Let F again be any G x G nonsingular matrix,
and write it in terms of its columns as F = (f;,f,,...,fs). Define a linear transfor-
mation of B as B* = BF, so that the first column of B* is 7 = Bf;. We need to find a
condition so that equation (9.17) allows us to distinguish f#; from any other . For
the moment, ignore the normalization condition. The vector f; satisfies the linear
restrictions embodied by R; if and only if

Rif; = R(Bfy) = (RiB)f; =0 (9.18)

Naturally, (R;B)f; = 0 is true for f; = e; = (1,0,0,...,0)’, since then f; = Bf; =
B, Since assumption (9.18) holds for f; = e; it clearly holds for any scalar multiple
of e;. The key to identification is that vectors of the form c;e;, for some constant ¢y,
are the only vectors f; satisfying condition (9.18). If condition (9.18) holds for vectors
f; other than scalar multiples of e; then we have no hope of identifying ;.

Stating that condition (9.18) holds only for vectors of the form c;e; just means that
the null space of R;B has dimension unity. Equivalently, because R{B has G columns,

rank R B=G -1 (9.19)

This is the rank condition for identification of #, in the first structural equation under
general linear restrictions. Once condition (9.19) is known to hold, the normalization
restriction allows us to distinguish £, from any other scalar multiple of f,.

THEOREM 9.2 (Rank Condition for Identification): Let f#; be the (G + M) x 1 vector
of structural parameters in the first equation, with the normalization restriction that
one of the coefficients on an endogenous variable is —1. Let the additional informa-
tion on B, be given by restriction (9.17). Then g, is identified if and only if the rank
condition (9.19) holds.

As promised earlier, the rank condition in this subsection depends on the structural
parameters, B. We can determine whether the first equation is identified by studying
the matrix R;B. Since this matrix can depend on a/l structural parameters, we must
generally specify the entire structural model.

The J; x G matrix R;B can be written as RiB = [Rf,, R f,, ..., R fg], where B,
is the (G + M) x | vector of structural parameters in equation g. By assumption
(9.17), the first column of R;B is the zero vector. Therefore, R;B cannot have rank
larger than G — 1. What we must check is whether the columns of R;B other than the
first form a linearly independent set.

Using condition (9.19) we can get a more general form of the order condition.
Because I' is nonsingular, B necessarily has rank G (full column rank). Therefore, for
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condition (9.19) to hold, we must have rank R; > G — 1. But we have assumed that
rank Ry = J;, which is the row dimension of R;.

THEOREM 9.3 (Order Condition for Identification): In system (9.12) under assump-
tion (9.17), a necessary condition for the first equation to be identified is

J1=G—1 (9.20)

where J; is the row dimension of R;. Equation (9.20) is the general form of the order
condition.

We can summarize the steps for checking whether the first equation in the system is
identified.

1. Set one element of y; to —1 as a normalization.

2. Define the J; x (G + M) matrix R; such that equation (9.17) captures all restric-
tions on f;.

3. If J; < G — 1, the first equation is not identified.

4. If J1 = G — 1, the equation might be identified. Let B be the matrix of all struc-

tural parameters with only the normalization restrictions imposed, and compute R|B.
Now impose the restrictions in the entire system and check the rank condition (9.19).

The simplicity of the order condition makes it attractive as a tool for studying
identification. Nevertheless, it is not difficult to write down examples where the order
condition is satisfied but the rank condition fails.

Example 9.3 ( Failure of the Rank Condition): Consider the following three-equation
structural model in the population (G =3, M =4):

Y1 =712y2+713y3 +0nzi + 01323 + u (9.21)
Vo =yuy1 0z +ur (9.22)
V3 = 03121 + 0322 + 03323 + 03424 + U3 (9.23)

where z; = 1, E(u,) =0, g = 1,2, 3, and each z; is uncorrelated with each u,. Note
that the third equation is already a reduced form equation (although it may also have
a structural interpretation). In equation (9.21) we have set y;; = —1, d;2 =0, and
d14 = 0. Since this equation contains two right-hand-side endogenous variables and
there are two excluded exogenous variables, it passes the order condition.

To check the rank condition, let f; denote the 7 x 1 vector of parameters in the
first equation with only the normalization restriction imposed: f; = (=1, y,3, 713,011,
512,5137514)'. The restrictions d;, = 0 and d14 = 0 are obtained by choosing
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R (0000 100
Lo 000001

Let B be the full 7 x 3 matrix of parameters with only the three normalizations

imposed [SO that ﬂ2 = (y217 _17 y23752175227523;524), and ﬂ} = (y317y327 _1753175323
333,034)]. Matrix multiplication gives

O01n 01 03 )
R;B =
: (514 O O34

Now we impose all of the restrictions in the system. In addition to the restrictions
012 =0 and d;4 = 0 from equation (9.21), we also have d,; =0 and d4 = 0 from
equation (9.22). Therefore, with all restrictions imposed,

(0 0 by
RIB—<0 0 534) (9.24)

The rank of this matrix is at most unity, and so the rank condition fails because
G-1=2

Equation (9.22) easily passes the order condition. It is left to you to show that the
rank condition holds if and only if 413 # 0 and at least one of d3, and d34 is different
from zero. The third equation is identified because it contains no endogenous ex-
planatory variables.

When the restrictions on f; consist entirely of normalization and exclusion re-
strictions, the order condition (9.20) reduces to the order condition (9.11), as can be
seen by the following argument. When all restrictions are exclusion restrictions, the
matrix R; consists only of zeros and ones, and the number of rows in R; equals
the number of excluded right-hand-side endogenous variables, G — G| — 1, plus the
number of excluded exogenous variables, M — M. In other words, J;1 = (G— G, — 1) +
(M — M), and so the order condition (9.20) becomes (G — G| — 1) + (M — M) >
G — 1, which, upon rearrangement, becomes condition (9.11).

9.2.3 Unidentified, Just Identified, and Overidentified Equations

We have seen that, for identifying a single equation the rank condition (9.19) is neces-
sary and sufficient. When condition (9.19) fails, we say that the equation is unidentified.

When the rank condition holds, it is useful to refine the sense in which the equation
is identified. If J; = G — 1, then we have just enough identifying information. If we
were to drop one restriction in R;, we would necessarily lose identification of the first
equation because the order condition would fail. Therefore, when J; = G — 1, we say
that the equation is just identified.
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If J1 > G — 1, it is often possible to drop one or more restrictions on the param-
eters of the first equation and still achieve identification. In this case we say the equa-
tion is overidentified. Necessary but not sufficient for overidentification is J; > G — 1.
It is possible that J; is strictly greater than G — 1 but the restrictions are such that drop-
ping one restriction loses identification, in which case the equation is not overidentified.

In practice, we often appeal to the order condition to determine the degree of
overidentification. While in special circumstances this approach can fail to be accu-
rate, for most applications it is reasonable. Thus, for the first equation, J; — (G — 1)
is usually intepreted as the number of overidentifying restrictions.

Example 9.4 ( Overidentifying Restrictions): Consider the two-equation system
Y1 =71y2 +0nz1 + 01222 + 01323 + 01424 + 1y (9.25)
V2 =7y +0221 + 00z +u (9.26)

where E(zju,) = 0, all j and g. Without further restrictions, equation (9.25) fails the
order condition because every exogenous variable appears on the right-hand side,
and the equation contains an endogenous variable. Using the order condition, equa-
tion (9.26) is overidentified, with one overidentifying restriction. If z3 does not actu-
ally appear in equation (9.25), then equation (9.26) is just identified, assuming that
o014 # 0.

9.3 Estimation after Identification

9.3.1 The Robustness-Efficiency Trade-off

All SEMs with linearly homogeneous restrictions within each equation can be written
with exclusion restrictions as in the system (9.1); doing so may require redefining
some of the variables. If we let X(;) = (y(,),Z(y)) and B, = (y<’g>,5ég))/, then the sys-
tem (9.1) is in the general form (8.11) with the slight change in notation. Under as-
sumption (9.2) the matrix of instruments for observation 7 is the G x GM matrix

Z,=l;®z (9.27)

If every equation in the system passes the rank condition, a system estimation
procedure—such as 3SLS or the more general minimum chi-square estimator—can
be used. Alternatively, the equations of interest can be estimated by 2SLS. The bot-
tom line is that the methods studied in Chapters 5 and 8 are directly applicable. All of
the tests we have covered apply, including the tests of overidentifying restrictions in
Chapters 6 and 8, and the single-equation tests for endogeneity in Chapter 6.
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When estimating a simultaneous equations system, it is important to remember the
pros and cons of full system estimation. If all equations are correctly specified, system
procedures are asymptotically more efficient than a single-equation procedure such as
2SLS. But single-equation methods are more robust. If interest lies, say, in the first
equation of a system, 2SLS is consistent and asymptotically normal provided the
first equation is correctly specified and the instruments are exogenous. However, if
one equation in a system is misspecified, the 3SLS or GMM estimates of all the pa-
rameters are generally inconsistent.

Example 9.5 (Labor Supply for Married, Working Women): Using the data in
MROZ.RAW, we estimate a labor supply function for working, married women.
Rather than specify a demand function, we specify the second equation as a wage
offer function and impose the equilibrium condition:

hours =y, log(wage) + d19 + o11educ + d12age + o13kidsit6
+ O14kidsge6 + dysnwifeinc + uy (9.28)
log(wage) = y, hours + 029 + da1educ + onexper + drzexper? + us (9.29)

where kidslt6 is number of children less than 6, kidsge6 is number of children between
6 and 18, and nwifeinc is income other than the woman’s labor income. We assume
that u; and u; have zero mean conditional on educ, age, kidslt6, kidsge6, nwifeinc,
and exper.

The key restriction on the labor supply function is that exper (and exper?) have no
direct effect on current annual hours. This identifies the labor supply function with
one overidentifying restriction, as used by Mroz (1987). We estimate the labor supply
function first by OLS [to see what ignoring the endogeneity of log(wage) does] and
then by 2SLS, using as instruments all exogenous variables in equations (9.28) and
(9.29).

There are 428 women who worked at some time during the survey year, 1975. The
average annual hours are about 1,303 with a minimum of 12 and a maximum of
4,950.

We first estimate the labor supply function by OLS:

hours =2,114.7 — 17.41 log(wage) — 14.44 educ — 7.73 age
(340.1) (54.22) (17.97) (5.53)

— 342.50 kidslt6 — 115.02 kidsge6 — 4.35 nwifeinc
(100.01) (30.83) (3.66)
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The OLS estimates indicate a downward-sloping labor supply function, although the
estimate on log(wage) is statistically insignificant.
The estimates are much different when we use 2SLS:

hotirs = 2,432.2 +1,544.82 log(wage) — 177.45 educ — 10.78 age
(594.2)  (480.74) (58.14) (9.58)

— 210.83 kidslt6 — 47.56 kidsge6 — 9.25 nwifeinc
(176.93) (56.92) (6.48)

The estimated labor supply elasticity is 1,544.82/hours. At the mean hours for work-
ing women, 1,303, the estimated elasticity is about 1.2, which is quite large.

The supply equation has a single overidentifying restriction. The regression of the
2SLS residuals @; on all exogenous variables produces R2 = .002, and so the test
statistic is 428(.002) ~ .856 with p-value ~ .355; the overidentifying restriction is not
rejected.

Under the exclusion restrictions we have imposed, the wage offer function (9.29) is
also identified. Before estimating the equation by 2SLS, we first estimate the reduced
form for hours to ensure that the exogenous variables excluded from equation (9.29)
are jointly significant. The p-value for the F test of joint significance of age, kidsit6,
kidsge6, and nwifeinc is about .0009. Therefore, we can proceed with 2SLS estimation
of the wage offer equation. The coefficient on hours is about .00016 (standard
error &~ .00022), and so the wage offer does not appear to differ by hours worked. The
remaining coefficients are similar to what is obtained by dropping /ours from equa-
tion (9.29) and estimating the equation by OLS. (For example, the 2SLS coefficient
on education is about .111 with se & .015.)

Interestingly, while the wage offer function (9.29) is identified, the analogous labor
demand function is apparently unidentified. (This finding shows that choosing the
normalization—that is, choosing between a labor demand function and a wage offer
function—is not innocuous.) The labor demand function, written in equilibrium,
would look like this:

hours = 7y, log(wage) + 029 + 021 educ + dnexper + dxzexper’ + ur (9.30)

Estimating the reduced form for log(wage) and testing for joint significance of age,
kidslt6, kidsge6, and nwifeinc yields a p-value of about .46, and so the exogenous
variables excluded from equation (9.30) would not seem to appear in the reduced
form for log(wage). Estimation of equation (9.30) by 2SLS would be pointless. [You
are invited to estimate equation (9.30) by 2SLS to see what happens.]
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It would be more efficient to estimate equations (9.28) and (9.29) by 3SLS, since
each equation is overidentified (assuming the homoskedasticity assumption SIV.5). If
heteroskedasticity is suspected, we could use the general minimum chi-square esti-
mator. A system procedure is more efficient for estimating the labor supply function
because it uses the information that age, kidsit6, kidsge6, and nwifeinc do not appear
in the log(wage) equation. If these exclusion restrictions are wrong, the 3SLS esti-
mators of parameters in both equations are generally inconsistent. Problem 9.9 asks
you to obtain the 3SLS estimates for this example.

9.3.2 When Are 2SLS and 3SLS Equivalent?

In Section 8.4 we discussed the relationship between 2SLS and 3SLS for a general
linear system. Applying that discussion to linear SEMs, we can immediately draw the
following conclusions: (1) if each equation is just identified, 2SLS equation by equa-
tion is algebraically identical to 3SLS, which is the same as the IV estimator in
equation (8.22); (2) regardless of the degree of overidentification, 2SLS equation by
equation and 3SLS are identical if X is diagonal.

Another useful equivalence result in the context of linear SEMs is as follows.
Suppose that the first equation in a system is overidentified but every other equation
is just identified. (A special case occurs when the first equation is a structural equa-
tion and all remaining equations are unrestricted reduced forms.) Then the 2SLS es-
timator of the first equation is the same as the 3SLS estimator. This result follows as
a special case of Schmidt (1976, Theorem 5.2.13).

9.3.3 Estimating the Reduced Form Parameters

So far, we have discussed estimation of the structural parameters. The usual justifi-
cations for focusing on the structural parameters are as follows: (1) we are interested
in estimates of “economic parameters’” (such as labor supply elasticities) for curi-
osity’s sake; (2) estimates of structural parameters allow us to obtain the effects of a
variety of policy interventions (such as changes in tax rates); and (3) even if we want
to estimate the reduced form parameters, we often can do so more efficiently by first
estimating the structural parameters. Concerning the second reason, if the goal is to
estimate, say, the equilibrium change in hours worked given an exogenous change in
a marginal tax rate, we must ultimately estimate the reduced form.

As another example, we might want to estimate the effect on county-level alcohol
consumption due to an increase in exogenous alcohol taxes. In other words, we are
interested in JE(y, |z)/0z; = my;, where y, is alcohol consumption and z; is the tax
on alcohol. Under weak assumptions, reduced form equations exist, and each equa-
tion of the reduced form can be estimated by ordinary least squares. Without placing
any restrictions on the reduced form, OLS equation by equation is identical to SUR
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estimation (see Section 7.7). In other words, we do not need to analyze the structural
equations at all in order to consistently estimate the reduced form parameters. Ordi-
nary least squares estimates of the reduced form parameters are robust in the sense
that they do not rely on any identification assumptions imposed on the structural
system.

If the structural model is correctly specified and at least one equation is over-
identified, we obtain asymptotically more efficient estimators of the reduced form
parameters by deriving the estimates from the structural parameter estimates. In
particular, given the structural parameter estimates A and I, we can obtain the re-
duced form estimates as IT = —AI'"! [see equation (9.14)]. These are consistent, v/N-
asymptotically normal estimators (although the asymptotic variance matrix is some-
what complicated). From Problem 3.9, we obtain the most efficient estimator of IT by
using the most efficient estimators of A and I' (minimum chi-square or, under system
homoskedasticity, 3SLS).

Just as in estimating the structural parameters, there is a robustness-efficiency
trade-off in estimating the 7,. As mentioned earlier, the OLS estimators of each
reduced form are robust to misspecification of any restrictions on the structural
equations (although, as always, each element of z should be exogenous for OLS to be
consistent). The estimators of the 7, derived from estimators of A and I'—whether
the latter are 2SLS or system estimators—are generally nonrobust to incorrect
restrictions on the structural system. See Problem 9.11 for a simple illustration.

9.4 Additional Topics in Linear SEMs

9.4.1 Using Cross Equation Restrictions to Achieve Identification

So far we have discussed identification of a single equation using only within-equation
parameter restrictions [see assumption (9.17)]. This is by far the leading case, espe-
cially when the system represents a simultaneous equations model with truly auton-
omous equations. Nevertheless, occasionally economic theory implies parameter
restrictions across different equations in a system that contains endogenous variables.
Not surprisingly, such cross equation restrictions are generally useful for identifying
equations. A general treatment is beyond the scope of our analysis. Here we just give
an example to show how identification and estimation work.
Consider the two-equation system

Y1 =71y2+0nz1 01222 + 01323 + un (9.31)
Va2 =7yuy1 0221 + 002 +up (9.32)
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where each z; is uncorrelated with u; and u, (z; can be unity to allow for an inter-
cept). Without further information, equation (9.31) is unidentified, and equation
(9.32) is just identified if and only if d;3 # 0. We maintain these assumptions in what
follows.

Now suppose that 1, = d». Because 0y, is identified in equation (9.32) we can
treat it as known for studying identification of equation (9.31). But 1, = d2,, and so
we can write

V1 — 01222 = y1oy2 + 01121 + 01323 + Uy (9.33)

where y; — d122; is effectively known. Now the right-hand side of equation (9.33) has
one endogenous variable, y,, and the two exogenous variables z; and z3. Because z;
is excluded from the right-hand side, we can use z; as an instrument for y,, as long as
z, appears in the reduced form for y,. This is the case provided d;5 = d2y # 0.

This approach to showing that equation (9.31) is identified also suggests a consis-
tent estimation procedure: first, estimate equation (9.32) by 2SLS using (zi, 27, z3) as
instruments, and let 522 be the estimator of d»,. Then, estimate

Y1 — 00z = p1oy2 + 01121 + 01323 + error

by 2SLS using (z1, z, z3) as instruments. Since 59 2 012 when 15 = d # 0, this last
step produces consistent estimators of y,,, d11, and d;3. Unfortunately, the usual 2SLS
standard errors obtained from the final estimation would not be valid because of the
preliminary estimation of dy;.

It is easier to use a system procedure when cross equation restrictions are present
because the asymptotic variance can be obtained directly. We can always rewrite the
system in a linear form with the restrictions imposed. For this example, one way to
do so is to write the system as

» Yy z1 z z3 0 0 u
<y2> (0 00 0 Zl)ﬂ+(“2> 034
where f# = (ylz,én,é]z,élg,,y21,521)'. The parameter d,, does not show up in f be-
cause we have imposed the restriction djp = dy by appropriate choice of the matrix
of explanatory variables.

The matrix of instruments is I ® z, meaning that we just use all exogenous vari-
ables as instruments in each equation. Since I, ® z has six columns, the order condi-
tion is exactly satisfied (there are six elements of f#), and we have already seen when
the rank condition holds. The system can be consistently estimated using GMM or
3SLS.
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9.4.2 Using Covariance Restrictions to Achieve Identification

In most applications of linear SEMs, identification is obtained by putting restrictions
on the matrix of structural parameters B. Occasionally, we are willing to put restric-
tions on the variance matrix X of the structural errors. Such restrictions, which are
almost always zero covariance assumptions, can help identify the structural param-
eters in some equations. For general treatments see Hausman (1983) and Hausman,
Newey, and Taylor (1987). We give a couple of examples to show how identification
with covariance restrictions works.
The first example is the two-equation system

Y1 =7ny2+onz +013z3 +u (9.35)
Vo =1+ 02121 + 02022 + 02323 + (9.36)

Equation (9.35) is just identified if 6,5 # 0, which we assume, while equation (9.36) is
unidentified without more information. Suppose that we have one piece of additional
information in terms of a covariance restriction:

Cov(u,uz) = E(uuz) =0 (9.37)

In other words, if X is the 2 x 2 structural variance matrix, we are assuming that X is
diagonal. Assumption (9.37), along with d»; # 0, is enough to identify equation (9.36).

Here is a simple way to see how assumption (9.37) identifies equation (9.36). First,
because y,,, 011, and Jd;3 are identified, we can treat them as known when studying
identification of equation (9.36). But if the parameters in equation (9.35) are known,
uy is effectively known. By assumption (9.37), u; is uncorrelated with u,, and u; is
certainly partially correlated with y,. Thus, we effectively have (zi,z3,z3,u;) as in-
struments available for estimating equation (9.36), and this result shows that equa-
tion (9.36) is identified.

We can use this method for verifying identification to obtain consistent estimators.
First, estimate equation (9.35) by 2SLS using instruments (zj,z,z3) and save the
2SLS residuals, #;. Then estimate equation (9.36) by 2SLS using instruments
(z1,22, 23,4 ). The fact that 4, depends on estimates from a prior stage does not affect
consistency. But inference is complicated because of the estimation of u: condition
(6.8) does not hold because u; depends on y,, which is correlated with u;.

The most efficient way to use covariance restrictions is to write the entire set of
orthogonality conditions as E[z'u; ()] =0, E[z'u»(f,)] = 0, and

Efui(B))u2(B,)] =0 (9.38)
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where the notation u;(f;) emphasizes that the errors are functions of the structural
parameters f;—with normalization and exclusion restrictions imposed—and simi-
larly for u,(f,). For example, from equation (9.35), u;(#,) = y; — ypy2 — 01121 —
013z3. Equation (9.38), because it is nonlinear in #, and f,, takes us outside the realm
of linear moment restrictions. In Chapter 14 we will use nonlinear moment con-
ditions in GMM estimation.

A general example with covariance restrictions is a fully recursive system. First, a
recursive system can be written as

» =120 +u
Y2 =7yuyi + 20 +un
Y3 = V3101 + 732)2 + 203 + us3 (9.39)

Yo =van + - +V66-1V6-1 + 206 + ug

so that in each equation only endogenous variables from previous equations appear
on the right-hand side. We have allowed all exogenous variables to appear in each
equation, and we maintain assumption (9.2).

The first equation in the system (9.39) is clearly identified and can be estimated by
OLS. Without further exclusion restrictions none of the remaining equations is iden-
tified, but each is identified if we assume that the structural errors are pairwise
uncorrelated:

Cov(uy,up) =0, g#h (9.40)

This assumption means that X is a G x G diagonal matrix. Equations (9.39) and
(9.40) define a fully recursive system. Under these assumptions, the right-hand-side
variables in equation g are each uncorrelated with u,; this fact is easily seen by
starting with the first equation and noting that y; is a linear function of z and u,.
Then, in the second equation, y, is uncorrelated with u, under assumption (9.40). But
¥, 1s a linear function of z, u;, and u,, and so y, and y, are both uncorrelated with u3
in the third equation. And so on. It follows that each equation in the system is con-
sistently estimated by ordinary least squares.

It turns out that OLS equation by equation is not necessarily the most efficient
estimator in fully recursive systems, even though X is a diagonal matrix. Generally,
efficiency can be improved by adding the zero covariance restrictions to the ortho-
gonality conditions, as in equation (9.38), and applying nonlinear GMM estimation.
See Lahiri and Schmidt (1978) and Hausman, Newey, and Taylor (1987).
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9.4.3 Subtleties Concerning Identification and Efficiency in Linear Systems

So far we have discussed identification and estimation under the assumption that
each exogenous variable appearing in the system, z;, is uncorrelated with each struc-
tural error, u,. It is important to assume only zero correlation in the general treat-
ment because we often add a reduced form equation for an endogenous variable to a
structural system, and zero correlation is all we should impose in linear reduced
forms.

For entirely structural systems, it is often natural to assume that the structural
errors satisfy the zero conditional mean assumption

E(uy|z) =0, g=12,...,G (9.41)

In addition to giving the parameters in the structural equations the appropriate par-
tial effect interpretations, assumption (9.41) has some interesting statistical impli-
cations: any function of z is uncorrelated with each error u,. Therefore, in the labor
supply example (9.28), age?, log(age), educ-exper, and so on (there are too many
functions to list) are all uncorrelated with u; and u,. Realizing this fact, we might ask,
Why not use nonlinear functions of z as additional instruments in estimation?

We need to break the answer to this question into two parts. The first concerns
identification, and the second concerns efficiency. For identification, the bottom line
is this: adding nonlinear functions of z to the instrument list cannot help with identi-
fication in linear systems. You were asked to show this generally in Problem 8.4, but
the main points can be illustrated with a simple model:

Y1 =7npy2+onzi +0nn +u (9.42)
Vo =y +0az1 +ur (9.43)
E(u|2) = E(us |z) = 0 (9.44)

From the order condition in Section 9.2.2, equation (9.42) is not identified, and
equation (9.43) is identified if and only if d;» # 0. Knowing properties of conditional
expectations, we might try something clever to identify equation (9.42): since, say, z7
is uncorrelated with u; under assumption (9.41), and z? would appear to be corre-
lated with y,, we can use it as an instrument for y, in equation (9.42). Under this
reasoning, we would have enough instruments—zy, z,, z2—to identify equation (9.42).
In fact, any number of functions of z; and z; can be added to the instrument list.
The fact that this argument is faulty is fortunate because our identification analysis
in Section 9.2.2 says that equation (9.42) is not identified. In this example it is clear
that z7 cannot appear in the reduced form for y, because z appears nowhere in the
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system. Technically, because E(y, | z) is linear in z; and z; under assumption (9.44),

the linear projection of y, onto (z1, z2,z7) does not depend on z2:

L(y,|z1,22,21) = L(y5 | 21, 22) = ma121 + w2 (9.45)

In other words, there is no partial correlation between y, and z7 once z; and z; are
included in the projection.

The zero conditional mean assumptions (9.41) can have some relevance for
choosing an efficient estimator, although not always. If assumption (9.41) holds and
Var(u|z) = Var(u) = X, 3SLS using instruments z for each equation is the asymp-
totically efficient estimator that uses the orthogonality conditions in assumption
(9.41); this conclusion follows from Theorem 8.5. In other words, if Var(u|z) is
constant, it does not help to expand the instrument list beyond the functions of the
exogenous variables actually appearing in the system.

However, if assumption (9.41) holds but Var(u| z) is not constant, we can do better
(asymptotically) than 3SLS. If h(z) is some additional functions of the exogenous
variables, the minimum chi-square estimator using [z,h(z)] as instruments in each
equation is, generally, more efficient than 3SLS or minimum chi-square using only
z as IVs. This result was discovered independently by Hansen (1982) and White
(1982b), and it follows from the discussion in Section 8.6. Expanding the IV list to
arbitrary functions of z and applying full GMM is not used very much in practice: it
is usually not clear how to choose h(z), and, if we use too many additional instru-
ments, the finite sample properties of the GMM estimator can be poor, as we dis-
cussed in Section 8.6.

For SEMs linear in the parameters but nonlinear in endogenous variables (in a
sense to be made precise), adding nonlinear functions of the exogenous variables to
the instruments not only is desirable, but is often needed to achieve identification. We
turn to this topic next.

9.5 SEMs Nonlinear in Endogenous Variables

We now study models that are nonlinear in some endogenous variables. While the
general estimation methods we have covered are still applicable, identification and
choice of instruments require special attention.

9.5.1 Identification

The issues that arise in identifying models nonlinear in endogenous variables are
most easily illustrated with a simple example. Suppose that supply and demand are
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given by

log(q) = 71 log(p) + yisllog(p)]* +duiz1 + (9.46)
log(q) = 72 log(p) + 62222 + u (9.47)
E(u |z) =E(u2|2) =0 (9.48)

where the first equation is the supply equation, the second equation is the demand
equation, and the equilibrium condition that supply equals demand has been imposed.
For simplicity, we do not include an intercept in either equation, but no important
conclusions hinge on this omission. The exogenous variable z; shifts the supply
function but not the demand function; z, shifts the demand function but not the
supply function. The vector of exogenous variables appearing somewhere in the sys-
tem is z = (zy, z2).

It is important to understand why equations (9.46) and (9.47) constitute a “non-
linear” system. This system is still linear in parameters, which is important because it
means that the IV procedures we have learned up to this point are still applicable.
Further, it is not the presence of the logarithmic transformations of ¢ and p that
makes the system nonlinear. In fact, if we set y;; = 0, then the model is linear for the
purposes of identification and estimation: defining y, = log(g) and y, = log(p), we
can write equations (9.46) and (9.47) as a standard two-equation system.

When we include [log(p)]* we have the model

V1= 71202+ 71353 +Onzi + u (9.49)

Vi =ynYy2+0nn t+u (9.50)

With this system there is no way to define two endogenous variables such that the
system is a two-equation system in two endogenous variables. The presence of y3 in
equation (9.49) makes this model different from those we have studied up until now.
We say that this is a system nonlinear in endogenous variables. What this statement
really means is that, while the system is still linear in parameters, identification needs
to be treated differently.

If we used equations (9.49) and (9.50) to obtain y, as a function of the z;, z, uy, us,
and the parameters, the result would not be linear in z and u. In this particular case
we can find the solution for y, using the quadratic formula (assuming a real solution
exists). However, E(y, | z) would not be linear in z unless y,5 = 0, and E(y3 | z) would
not be linear in z regardless of the value of y;;. These observations have important
implications for identification of equation (9.49) and for choosing instruments.
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Before considering equations (9.49) and (9.50) further, consider a second example
where closed form expressions for the endogenous variables in terms of the exoge-
nous variables and structural errors do not even exist. Suppose that a system de-
scribing crime rates in terms of law enforcement spending is

crime = yy, log(spending) + 7101y + w1 (9.51)
spending = y,,crime + yy,crime* + 2(2)0(2) + U2 (9.52)

where the errors have zero mean given z. Here, we cannot solve for either crime
or spending (or any other transformation of them) in terms of z, u;, uy, and the
parameters. And there is no way to define y, and y, to yield a linear SEM in two
endogenous variables. The model is still linear in parameters, but E(crime]|z),
E[log(spending) |z, and E(spending|z) are not linear in z (nor can we find closed
forms for these expectations).

One possible approach to identification in nonlinear SEMs is to ignore the fact that
the same endogenous variables show up differently in different equations. In the supply
and demand example, define y; = y7 and rewrite equation (9.49) as

Y1 =7ny2+ 7y +onz +u (9.53)

Or, in equations (9.51) and (9.52) define y, = crime, y, = spending, y;=
log(spending), and y, = crime?, and write

Vi =7ny3tznda) +u (9.54)

V2 = Yab1 +ynya +22)00) + 2 (9.55)

Defining nonlinear functions of endogenous variables as new endogenous variables
turns out to work fairly generally, provided we apply the rank and order conditions
properly. The key question is, What kinds of equations do we add to the system for
the newly defined endogenous variables?

If we add linear projections of the newly defined endogenous variables in terms of
the original exogenous variables appearing somewhere in the system—that is, the
linear projection onto z—then we are being much too restrictive. For example, sup-
pose to equations (9.53) and (9.50) we add the linear equation

V3 = T31Z1 + 322 + 03 (956)

where, by definition, E(zjv3) = E(zov3) = 0. With equation (9.56) to round out the
system, the order condition for identification of equation (9.53) clearly fails: we have
two endogenous variables in equation (9.53) but only one excluded exogenous vari-
able, z».
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The conclusion that equation (9.53) is not identified is too pessimistic. There are
many other possible instruments available for y3. Because E(y? |z) is not linear in z
and z; (even if y;3 = 0), other functions of z; and z, will appear in a linear projection
involving y3 as the dependent variable. To see what the most useful of these are likely
to be, suppose that the structural system actually is linear, so that y;; = 0. Then
Yy = M2121 + T22z2 + vp, where v; is a linear combination of u; and u,. Squaring this
reduced form and using E(v; |z) = 0 gives

E(y% |z) = 7151212 + n%zzg + 2701722122 + E(v% |z) (9.57)

If E(v3|z) is constant, an assumption that holds under homoskedasticity of the
structural errors, then equation (9.57) shows that y3 is correlated with zZ, zZ, and
2123, which makes these functions natural instruments for y3. The only case where no
functions of z are correlated with y% occurs when both 7, and 7, equal zero, in
which case the linear version of equation (9.49) (with y,; = 0) is also unidentified.

Because we derived equation (9.57) under the restrictive assumptions y;; = 0 and
homoskedasticity of v2, we would not want our linear projection for y3 to omit the
exogenous variables that originally appear in the system. In practice, we would aug-
ment equations (9.53) and (9.50) with the linear projection

Y3 = m31Z1 + 322 + ﬂ33212 + 713425 + m352122 + U3 (9.58)

where v3 is, by definition, uncorrelated with z;, z, 212, zg, and zjz;. The system (9.53),
(9.50), and (9.58) can now be studied using the usual rank condition.

Adding equation (9.58) to the original system and then studying the rank condition
of the first two equations is equivalent to studying the rank condition in the smaller
system (9.53) and (9.50). What we mean by this statement is that we do not explicitly
add an equation for y; = y3, but we do include y; in equation (9.53). Therefore,
when applying the rank condition to equation (9.53), we use G = 2 (not G = 3). The
reason this approach is the same as studying the rank condition in the three-equation
system (9.53), (9.50), and (9.58) is that adding the third equation increases the rank of
R;B by one whenever at least one additional nonlinear function of z appears in
equation (9.58). (The functions z7, z3, and z;z, appear nowhere else in the system.)

As a general approach to identification in models where the nonlinear functions of
the endogenous variables depend only on a single endogenous variable—such as the
two examples that we have already covered—Fisher (1965) argues that the following
method is sufficient for identification:

1. Relabel the nonredundant functions of the endogenous variables to be new
endogenous variables, as in equation (9.53) or (9.54) and equation (9.55).
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2. Apply the rank condition to the original system without increasing the number of
equations. If the equation of interest satisfies the rank condition, then it is identified.

The proof that this method works is complicated, and it requires more assumptions
than we have made (such as u being independent of z). Intuitively, we can expect each
additional nonlinear function of the endogenous variables to have a linear projection
that depends on new functions of the exogenous variables. Each time we add another
function of an endogenous variable, it effectively comes with its own instruments.

Fisher’s method can be expected to work in all but the most pathological cases.
One case where it does not work is if E(v?|z) in equation (9.57) is heteroskedastic
in such a way as to cancel out the squares and cross product terms in z; and z;; then
E(y?|z) would be constant. Such unfortunate coincidences are not practically
important.

It is tempting to think that Fisher’s rank condition is also necessary for identifica-
tion, but this is not the case. To see why, consider the two-equation system

V1= Piay2 + 71ap) +Onzn + 0z +uy (9.59)
V2 = )1 + 02121 +up (9.60)

The first equation cleary fails the modified rank condition because it fails the order
condition: there are no restrictions on the first equation except the normalization re-
striction. However, if y,3 # 0 and y,; # 0, then E(y, |z) is a nonlinear function of z
(which we cannot obtain in closed form). The result is that functions such as z7, z3,
and zz; (and others) will appear in the linear projections of y, and y3 even after z;
and z, have been included, and these can then be used as instruments for y, and y3.
But if y,; = 0, the first equation cannot be identified by adding nonlinear functions of
z1 and z; to the instrument list: the linear projection of y, on zj, z;, and any function
of (z1,z,) will only depend on z; and z,.

Equation (9.59) is an example of a poorly identified model because, when it is
identified, it is identified due to a nonlinearity (y,; # 0 in this case). Such identification
is especially tenuous because the hypothesis Hy: 7,3 = 0 cannot be tested by estimating
the structural equation (since the structural equation is not identified when Hy holds).

There are other models where identification can be verified using reasoning similar
to that used in the labor supply example. Models with interactions between exoge-
nous variables and endogenous variables can be shown to be identified when the
model without the interactions is identified (see Example 6.2 and Problem 9.6).
Models with interactions among endogenous variables are also fairly easy to handle.
Generally, it is good practice to check whether the most general /inear version of the
model would be identified. If it is, then the nonlinear version of the model is probably
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identified. We saw this result in equation (9.46): if this equation is identified when
713 = 0, then it is identified for any value of y;5. If the most general linear version of a
nonlinear model is not identified, we should be very wary about proceeding, since
identification hinges on the presence of nonlinearities that we usually will not be able
to test.

9.5.2 Estimation

In practice, it is difficult to know which additional functions we should add to the
instrument list for nonlinear SEMs. Naturally, we must always include the exogenous
variables appearing somewhere in the system instruments in every equation. After
that, the choice is somewhat arbitrary, although the functional forms appearing in
the structural equations can be helpful.

A general approach is to always use some squares and cross products of the exog-
enous variables appearing somewhere in the system. If something like exper? appears
in the system, additional terms such as exper® and exper* would be added to the in-
strument list.

Once we decide on a set of instruments, any equation in a nonlinear SEM can be
estimated by 2SLS. Because each equation satisfies the assumptions of single-equation
analysis, we can use everything we have learned up to now for inference and specifi-
cation testing for 2SLS. A system method can also be used, where linear projections
for the functions of endogenous variables are explicitly added to the system. Then, all
exogenous variables included in these linear projections can be used as the instru-
ments for every equation. The minimum chi-square estimator is generally more ap-
propriate than 3SLS because the homoskedasticity assumption will rarely be satisfied
in the linear projections.

It is important to apply the instrumental variables procedures directly to the
structural equation or equations. In other words, we should directly use the formulas
for 2SLS, 3SLS, or GMM. Trying to mimic 2SLS or 3SLS by substituting fitted
values for some of the endogenous variables inside the nonlinear functions is usually
a mistake: neither the conditional expectation nor the linear projection operator
passes through nonlinear functions, and so such attempts rarely produce consistent
estimators in nonlinear systems.

Example 9.6 ( Nonlinear Labor Supply Function): We add [log(wage)]2 to the labor
supply function in Example 9.5:

hours = y,, log(wage) + y,3[log(wage))* + 610 + dn1educ + d12age
+ O13kidslt6 + O14kidsge6 + 6 snwifeinc + u (9.61)

log(wage) = a9 + a1 educ + dpexper + drzexper’ + uy (9.62)
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where we have dropped hours from the wage offer function because it was insig-
nificant in Example 9.5. The natural assumptions in this system are E(u|z) =
E(u, |z) = 0, where z contains all variables other than hours and log(wage).

There are many possibilities as additional instruments for [log(wage)]z. Here, we
add three quadratic terms to the list—age?, educ’, and nwifeinc>—and we estimate
equation (9.61) by 2SLS. We obtain §;, = 1,873.62 (se = 635.99) and ;3 = —437.29
(se = 350.08). The 1 statistic on [log(wage)]* is about —1.25, so we would be justified
in dropping it from the labor supply function. Regressing the 2SLS residuals #; on all
variables used as instruments in the supply equation gives R-squared = .0061, and so
the N-R-squared statistic is 2.61. With a y3 distribution this gives p-value = .456.
Thus, we fail to reject the overidentifying restrictions.

In the previous example we may be tempted to estimate the labor supply function
using a two-step procedure that appears to mimic 2SLS:

1. Regress log(wage) on all exogenous variables appearing in the system and obtain
the predicted values. For emphasis, call these y,.

2. Estimate the labor supply function from the OLS regression sours on 1, p,, (j/z)z,
educ, . .. ,nwifeinc.

This two-step procedure is not the same as estimating equation (9.61) by 2SLS,
and, except in special circumstances, it does not produce consistent estimators of the
structural parameters. The regression in step 2 is an example of what is sometimes
called a forbidden regression, a phrase that describes replacing a nonlinear function of
an endogenous explanatory variable with the same nonlinear function of fitted values
from a first-stage estimation. In plugging fitted values into equation (9.61), our mis-
take is in thinking that the linear projection of the square is the square of the linear
projection. What the 2SLS estimator does in the first stage is project each of y, and
y3 onto the original exogenous variables and the additional nonlinear functions of
these that we have chosen. The fitted values from the reduced form regression for y3,
say 3, are not the same as the squared fitted values from the reduced form regression
for y,, (7,)*. This distinction is the difference between a consistent estimator and an
inconsistent estimator.

If we apply the forbidden regression to equation (9.61), some of the estimates are
very different from the 2SLS estimates. For example, the coefficient on educ, when
equation (9.61) is properly estimated by 2SLS, is about —87.85 with a ¢ statistic of
—1.32. The forbidden regression gives a coefficient on educ of about —176.68 with a ¢
statistic of —5.36. Unfortunately, the ¢ statistic from the forbidden regression is gen-
erally invalid, even asymptotically. (The forbidden regression will produce consistent
estimators in the special case y,; = 0, if E(u;|z) = 0; see Problem 9.12.)
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Many more functions of the exogenous variables could be added to the instrument
list in estimating the labor supply function. From Chapter 8, we know that efficiency
of GMM never falls by adding more nonlinear functions of the exogenous variables
to the instrument list (even under the homoskedasticity assumption). This statement
is true whether we use a single-equation or system method. Unfortunately, the fact
that we do no worse asymptotically by adding instruments is of limited practical help,
since we do not want to use too many instruments for a given data set. In Example
9.6, rather than using a long list of additional nonlinear functions, we might use ( 5)2)2
as a single IV for y3. (This method is not the same as the forbidden regression!) If it
happens that y;; = 0 and the structural errors are homoskedastic, this would be the
optimal IV. (See Problem 9.12.)

A general system linear in parameters can be written as

1 =q(y,z)p) +u
(9.63)

v =46y, 2)B; + uc

where E(u,|z) =0, g = 1,2,...,G. Among other things this system allows for com-
plicated interactions among endogenous and exogenous variables. We will not give a
general analysis of such systems because identification and choice of instruments are
too abstract to be very useful. Either single-equation or system methods can be used
for estimation.

9.6 Different Instruments for Different Equations

There are general classes of SEMs where the same instruments cannot be used for
every equation. We already encountered one such example, the fully recursive sys-
tem. Another general class of models is SEMs where, in addition to simultaneous
determination of some variables, some equations contain variables that are endoge-
nous as a result of omitted variables or measurement error.

As an example, reconsider the labor supply and wage offer equations (9.28) and
(9.62), respectively. On the one hand, in the supply function it is not unreasonable to
assume that variables other than log(wage) are uncorrelated with #;. On the other
hand, ability is a variable omitted from the log(wage) equation, and so educ might
be correlated with u,. This is an omitted variable, not a simultaneity, issue, but the
statistical problem is the same: correlation between the error and an explanatory
variable.
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Equation (9.28) is still identified as it was before, because educ is exogenous in
equation (9.28). What about equation (9.62)? It satisfies the order condition because
we have excluded four exogenous variables from equation (9.62): age, kidslto,
kidsge6, and nwifeinc. How can we analyze the rank condition for this equation? We
need to add to the system the linear projection of educ on all exogenous variables:

educ = 939 + d31exper + 5328xper2 + d33age
+ O34kidslt6 + O3skidsge6 + dzgnwifeinc + us (9.64)

Provided the variables other than exper and exper? are sufficiently partially corre-
lated with educ, the log(wage) equation is identified. However, the 2SLS estimators
might be poorly behaved if the instruments are not very good. If possible, we would
add other exogenous factors to equation (9.64) that are partially correlated with educ,
such as mother’s and father’s education. In a system procedure, because we have
assumed that educ is uncorrelated with u;, educ can, and should, be included in the
list of instruments for estimating equation (9.28).

This example shows that having different instruments for different equations
changes nothing for single-equation analysis: we simply determine the valid list of
instruments for the endogenous variables in the equation of interest and then estimate
the equations separately by 2SLS. Instruments may be required to deal with simul-
taneity, omitted variables, or measurement error, in any combination.

Estimation is more complicated for system methods. First, if 3SLS is to be used,
then the GMM 3SLS version must be used to produce consistent estimators of any
equation; the more traditional 3SLS estimator discussed in Section 8.3.5 is generally
valid only when all instruments are uncorrelated with all errors. When we have dif-
ferent instruments for different equations, the instrument matrix has the form in
equation (8.15).

There is a more subtle issue that arises in system analysis with different instruments
for different equations. While it is still popular to use 3SLS methods for such prob-
lems, it turns out that the key assumption that makes 3SLS the efficient GMM esti-
mator, Assumption SIV.5, is often violated. In such cases the GMM estimator with
general weighting matrix enhances asymptotic efficiency and simplifies inference.

As a simple example, consider a two-equation system

Y1 =010+ y12y2 +onz +u (9.65)
Yy = 02 + VoY1 + 0227 + 02323 + U (966)

where (u;,u;) has mean zero and variance matrix X. Suppose that zj, z», and z3 are
uncorrelated with u, but we can only assume that z; and z3 are uncorrelated with u;.
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In other words, z; is not exogenous in equation (9.65). Each equation is still identified
by the order condition, and we just assume that the rank conditions also hold. The
instruments for equation (9.65) are (1, z, z3), and the instruments for equation (9.66)
are (1,zy,z2,z3). Write these as z; = (1,z1,z3) and z; = (1,21, 22,23). Assumption
SIV.S5 requires the following three conditions:

E(uiz]z) = 0iE(z|2;) (9.67)
E(132)7;) = 03E(252,) (9.68)
E(uluzlilz) = O']zE(Z{Zz) (969)

The first two conditions hold if E(uj|z) = E(uz|22) =0 and Var(u|z;) = o7,
Var(uy | z2) = 03. These are standard zero conditional mean and homoskedasticity
assumptions. The potential problem comes with condition (9.69). Since u; is corre-
lated with one of the elements in z,, we can hardly just assume condition (9.69).
Generally, there is no conditioning argument that implies condition (9.69). One case
where condition (9.69) holds is if E(u, | u;, z1, 22, z3) = 0, which implies that u, and u;
are uncorrelated. The left-hand side of condition (9.69) is also easily shown to equal
zero. But 3SLS with g, = 0 imposed is just 2SLS equation by equation. If u; and u,
are correlated, we should not expect condition (9.69) to hold, and therefore the gen-
eral minimum chi-square estimator should be used for estimation and inference.

Wooldridge (1996) provides a general discussion and contains other examples of
cases in which Assumption SIV.5 can and cannot be expected to hold. Whenever a
system contains linear projections for nonlinear functions of endogenous variables,
we should expect Assumption SIV.5 to fail.

Problems

9.1. Discuss whether each example satisfies the autonomy requirement for true
simultaneous equations analysis. The specification of y, and y, means that each is to
be written as a function of the other in a two-equation system.

a. For an employee, y; = hourly wage, y, = hourly fringe benefits.

b. At the city level, y, = per capita crime rate, y, = per capita law enforcement
expenditures.

c. For a firm operating in a developing country, y; = firm research and development
expenditures, y, = firm foreign technology purchases.

d. For an individual, y; = hourly wage, y, = alcohol consumption.
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e. For a family, y; = annual housing expenditures, y, = annual savings.
f. For a profit maximizing firm, y, = price markup, y, = advertising expenditures.

g. For a single-output firm, y; = quantity demanded of its good, y, = advertising
expenditure.

h. At the city level, y; = incidence of HIV, y, = per capita condom sales.
9.2. Write a two-equation system in the form

Y1 =72 20 +w

Y2 =21 +202)002) + U2

a. Show that reduced forms exist if and only if y,y, # 1.

b. State in words the rank condition for identifying each equation.

9.3. The following model jointly determines monthly child support payments and
monthly visitation rights for divorced couples with children:

support = 019 + Yo visits + 011 finc + 012 fremarr + dy3dist + uy
visits = 0o + Yo Support + dyymremarr + ondist + uy.

For expository purposes, assume that children live with their mothers, so that fathers
pay child support. Thus, the first equation is the father’s “reaction function”: it
describes the amount of child support paid for any given level of visitation rights and
the other exogenous variables finc (father’s income), fremarr (binary indicator if
father remarried), and dist (miles currently between the mother and father). Similarly,
the second equation is the mother’s reaction function: it describes visitation rights for
a given amount of child support; mremarr is a binary indicator for whether the
mother is remarried.

a. Discuss identification of each equation.

b. How would you estimate each equation using a single-equation method?

¢. How would you test for endogeneity of visits in the father’s reaction function?

d. How many overidentification restrictions are there in the mother’s reaction func-
tion? Explain how to test the overidentifying restriction(s).

9.4. Consider the following three-equation structural model:
Y1 =7y 01z + 012z + 01323 +uy

Vi =70Y2+V3ys+0uz +un
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V3 = 03121 + 03222 + 03323 + U3

where z; = 1 (to allow an intercept), E(u,) = 0, all g, and each z; is uncorrelated with
each u,. You might think of the first two equations as demand and supply equations,
where the supply equation depends on a possibly endogenous variable y; (such as
wage costs) that might be correlated with u,. For example, u; might contain mana-
gerial quality.

a. Show that a well-defined reduced form exists as long as y,, # 7.

b. Allowing for the structural errors to be arbitrarily correlated, determine which of
these equations is identified. First consider the order condition, and then the rank
condition.

9.5. The following three-equation structural model describes a population:
Y1 =7Y0y2+ 7133 +onz +01323 + 01424 + g

Yo =pubt +02z1 +

V3 = 03121 + 03222 + 03323 + 03424 + U3

where you may set z; = 1 to allow an intercept. Make the usual assumptions that
E(uy) =0, g =1,2,3, and that each z; is uncorrelated with each u,. In addition to the
exclusion restrictions that have already been imposed, assume that d;3 +d14 = 1.

a. Check the order and rank conditions for the first equation. Determine necessary
and sufficient conditions for the rank condition to hold.

b. Assuming that the first equation is identified, propose a single-equation estimation
method with all restrictions imposed. Be very precise.

9.6. The following two-equation model contains an interaction between an endog-
enous and exogenous variable (see Example 6.2 for such a model in an omitted
variable context):

Y1 =010 + Y12y2 + V13221 + 01121 + 01220 + Uy
Yo =020 + Y21 V1 + 02121 + 02323 + Uz

a. Initially, assume that y;; = 0, so that the model is a linear SEM. Discuss identifi-
cation of each equation in this case.

b. For any value of y,3, find the reduced form for y, (assuming it exists) in terms of
the z;, the u,, and the parameters.

c. Assuming that E(u|z) = E(uy |z) = 0, find E(y, | z).
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d. Argue that, under the conditions in part a, the model is identified regardless of the
value of y,;.

e. Suggest a 2SLS procedure for estimating the first equation.
f. Define a matrix of instruments suitable for 3SLS estimation.

g. Suppose that d»3 = 0, but we also known that y;; # 0. Can the parameters in the
first equation be consistently estimated? If so, how? Can Hy: y,; = 0 be tested?

9.7. Assume that wage and alcohol consumption are determined by the system
wage = yjalcohol + yiseduc + 2101y + uy

alcohol = y, wage + yyseduc + 2(2)0(2) + ua

educ = 73)03) + u3

The third equation is a reduced form for years of education.

Elements in z(;) include a constant, experience, gender, marital status, and amount
of job training. The vector z(;) contains a constant, experience, gender, marital status,
and local prices (including taxes) on various alcoholic beverages. The vector z3) can
contain elements in z(;) and z() and, in addition, exogenous factors affecting educa-
tion; for concreteness, suppose one element of z3) is distance to nearest college at age
16. Let z denote the vector containing all nonredundant elements of zy), (), and z3).
In addition to assuming that z is uncorrelated with each of u;, u,, and u3, assume that
educ is uncorrelated with u,, but educ might be correlated with ;.

a. When does the order condition hold for the first equation?

b. State carefully how you would estimate the first equation using a single-equation
method.

c. For each observation i define the matrix of instruments for system estimation of
all three equations.

d. In a system procedure, how should you choose z3) to make the analysis as robust
as possible to factors appearing in the reduced form for educ?

9.8. a. Extend Problem 5.4b using CARD.RAW to allow educ’ to appear in the
log(wage) equation, without using nearc2 as an instrument. Specifically, use inter-
actions of nearc4 with some or all of the other exogenous variables in the log(wage)
equation as instruments for educ’>. Compute a heteroskedasticity-robust test to be
sure that at least one of these additional instruments appears in the linear projection
of educ? onto your entire list of instruments. Test whether educ’ needs to be in the
log(wage) equation.
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b. Start again with the model estimated in Problem 5.4b, but suppose we add the
interaction black-educ. Explain why black-z; is a potential IV for black-educ, where z;
is any exogenous variable in the system (including nearc4).

c. In Example 6.2 we used black-nearc4 as the 1V for black-educ. Now use 2SLS with
black-educ as the 1V for black-educ, where educ are the fitted values from the first-

stage regression of educ on all exogenous variables (including nearc4). What do you
find?

d. If E(educ|z) is linear and Var(u;|z) = o7, where z is the set of all exogenous
variables and u; is the error in the log(wage) equation, explain why the estimator
using black-educ as the IV is asymptotically more efficient than the estimator using
black-nearc4 as the IV.

9.9. Use the data in MROZ.RAW for this question.

a. Estimate equations (9.28) and (9.29) jointly by 3SLS, and compare the 3SLS esti-
mates with the 2SLS estimates for equations (9.28) and (9.29).

b. Now allow educ to be endogenous in equation (9.29), but assume it is exogenous
in equation (9.28). Estimate a three-equation system using different instruments for
different equations, where motheduc, fatheduc, and huseduc are assumed exogenous in
equations (9.28) and (9.29).

9.10. Consider a two-equation system of the form
Y1 =72+ 1o +u
V) = 12202 + s

Assume that z; contains at least one element not also in z,, and z, contains at least
one element not in z;. The second equation is also the reduced form for y,, but
restrictions have been imposed to make it a structural equation. (For example, it
could be a wage offer equation with exclusion restrictions imposed, whereas the first
equation is a labor supply function.)

a. If we estimate the first equation by 2SLS using all exogenous variables as Vs, are
we imposing the exclusion restrictions in the second equation? (Hint: Does the first-
stage regression in 2SLS impose any restrictions on the reduced form?)

b. Will the 3SLS estimates of the first equation be the same as the 2SLS estimates?
Explain.

c. Explain why 2SLS is more robust than 3SLS for estimating the parameters of the
first equation.
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9.11. Consider a two-equation SEM:
Y1 =7ny2+onz +u

V2 = V)1 + 00222 + 02323 + Un

E(ui| z1,22,23) = E(uz | 21, 22,23) = 0

where, for simplicity, we omit intercepts. The exogenous variable z; is a policy vari-
able, such as a tax rate. Assume that y,,y,; # 1. The structural errors, u; and u,, may
be correlated.

a. Under what assumptions is each equation identified?

b. The reduced form for y, can be written in conditional expectation form as
E(yl |Z) = m121 + T222 + mi32z3, Where z = (21,22723). Find the 7y; in terms of the
7y and dg;.

c. How would you estimate the structural parameters? How would you obtain 7;; in
terms of the structural parameter estimates?

d. Suppose that z; should be in the first equation, but it is left out in the estimation
from part c. What effect does this omission have on estimating 0E(y, |z)/dz;? Does
it matter whether you use single-equation or system estimators of the structural
parameters?

e. If you are only interested in 0E(y, |z)/0z, what could you do instead of estimat-
ing an SEM?

f. Would you say estimating a simultaneous equations model is a robust method for
estimating JE(y, |z)/0z,? Explain.

9.12. The following is a two-equation, nonlinear SEM:

Y1 =010+ 71202 + 71393 + 2161 + Uy

Y2 =020+ o)1 + 2202 +

where u; and u, have zero means conditional on all exogenous variables, z. (For
emphasis, we have included separate intercepts.) Assume that both equations are
identified when y;; = 0.

a. When ;53 =0, E(y,|z) =m0 + zmy. What is E(y3|z) under homoskedasticity
assumptions for u; and u,?

b. Use part a to find E(y, |z) when y,; = 0.

c. Use part b to argue that, when y,; = 0, the forbidden regression consistently esti-
mates the parameters in the first equation, including y,; = 0.
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d. If u; and u, have constant variances conditional on z, and y,; happens to be zero,
show that the optimal instrumental variables for estimating the first equation are
{1,2,[E(»,]2)]*}. (Hint: Use Theorem 8.5; for a similar problem, see Problem 8.11.)

e. Reestimate equation (9.61) using IVs [1,z, (j,)%], where z is all exogenous vari-
ables appearing in equations (9.61) and (9.62) and y, denotes the fitted values from
regressing log(wage) on 1, z. Discuss the results.

9.13. For this question use the data in OPENNESS.RAW, taken from Romer
(1993).

a. A simple simultaneous equations model to test whether “openness” (open) leads to
lower inflation rates (inf') is

inf = d19 + y,0pen + 611 log(peine) + u

open = 0y + yy1inf + 021 log( pcine) + dx log(land) + uy

Assuming that pcinc (per capita income) and /and (land area) are exogenous, under
what assumption is the first equation identified?

b. Estimate the reduced form for open to verify that log(land) is statistically significant.

c. Estimate the first equation from part a by 2SLS. Compare the estimate of y;, with
the OLS estimate.

d. Add the term y,30pen® to the first equation, and propose a way to test whether it is
statistically significant. (Use only one more 1V than you used in part c.)

e. With y,;0pen? in the first equation, use the following method to estimate J1, 7,5,
713, and d1;: (1) Regress open on 1, log( pcinc) and log(land), and obtain the fitted
values, open. (2) Regress inf on 1, open, (open)?, and log( peinc). Compare the results
with those from part d. Which estimates do you prefer?



1 O Basic Linear Unobserved Effects Panel Data Models

In Chapter 7 we covered a class of linear panel data models where, at a minimum, the
error in each time period was assumed to be uncorrelated with the explanatory vari-
ables in the same time period. For certain panel data applications this assumption is
too strong. In fact, a primary motivation for using panel data is to solve the omitted
variables problem.

In this chapter we study population models that explicitly contain a time-constant,
unobserved effect. The treatment in this chapter is “modern’ in the sense that unob-
served effects are treated as random variables, drawn from the population along with
the observed explained and explanatory variables, as opposed to parameters to be
estimated. In this framework, the key issue is whether the unobserved effect is un-
correlated with the explanatory variables.

10.1 Motivation: The Omitted Variables Problem

It is easy to see how panel data can be used, at least under certain assumptions, to
obtain consistent estimators in the presence of omitted variables. Let y and x =
(x1,x2,...,xk) be observable random variables, and let ¢ be an unobservable ran-
dom variable; the vector (y, x1,x2,. .., Xk, ¢) represents the population of interest. As
is often the case in applied econometrics, we are interested in the partial effects of the
observable explanatory variables x; in the population regression function

E(y|xl7x27"'7xK7c) (101)

In words, we would like to hold ¢ constant when obtaining partial effects of the ob-
servable explanatory variables. We follow Chamberlain (1984) in using ¢ to denote
the unobserved variable. Much of the panel data literature uses a Greek letter, such
as o or ¢, but we want to emphasize that the unobservable is a random variable, not a
parameter to be estimated. (We discuss this point further in Section 10.2.1.)
Assuming a linear model, with ¢ entering additively along with the x;, we have

E(y|x,c)=py+xB+¢ (10.2)

where interest lies in the K x 1 vector f. On the one hand, if ¢ is uncorrelated with
each x;, then c is just another unobserved factor affecting y that is not systematically
related to the observable explanatory variables whose effects are of interest. On the
other hand, if Cov(x;,¢) # 0 for some j, putting ¢ into the error term can cause
serious problems. Without additional information we cannot consistently estimate f,
nor will we be able to determine whether there is a problem (except by introspection,
or by concluding that the estimates of f are somehow “‘unreasonable”).
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Under additional assumptions there are ways to address the problem Cov(x,c)
# 0. We have covered at least three possibilities in the context of cross section anal-
ysis: (1) we might be able to find a suitable proxy variable for ¢, in which case we can
estimate an equation by OLS where the proxy is plugged in for ¢; (2) we may be able
to find instruments for the elements of x that are correlated with ¢ and use an in-
strumental variables method, such as 2SLS; or (3) we may be able to find indicators
of ¢ that can then be used in multiple indicator instrumental variables procedure.
These solutions are covered in Chapters 4 and 5.

If we have access to only a single cross section of observations, then the three
remedies listed, or slight variants of them, largely exhaust the possibilities. However,
if we can observe the same cross section units at different points in time—that is, if
we can collect a panel data set—then other possibilties arise.

For illustration, suppose we can observe y and x at two different time periods; call
these y,, X, for t = 1,2. The population now represents two time periods on the same
unit. Also, suppose that the omitted variable ¢ is time constant. Then we are inter-
ested in the population regression function

E(y[‘X[,C):ﬁOJFX,ﬂ—FC, t:152 (103)

where X, = f1x;1 + - - - + fxXix and x;; indicates variable j at time 7. Model (10.3)
assumes that ¢ has the same effect on the mean response in each time period. Without
loss of generality, we set the coefficient on ¢ equal to one. (Because ¢ is unobserved
and virtually never has a natural unit of measurement, it would be meaningless to try
to estimate its partial effect.)

The assumption that ¢ is constant over time (and has a constant partial effect over
time) is crucial to the following analysis. An unobserved, time-constant variable is
called an unobserved effect in panel data analysis. When ¢ represents different time
periods for the same individual, the unobserved effect is often interpreted as captur-
ing features of an individual, such as cognitive ability, motivation, or early family
upbringing, that are given and do not change over time. Similarly, if the unit of ob-
servation is the firm, ¢ contains unobserved firm characteristics—such as managerial
quality or structure—that can be viewed as being (roughly) constant over the period
in question. We cover several specific examples of unobserved effects models in Sec-
tion 10.2.

To discuss the additional assumptions sufficient to estimate B, it is useful to write
model (10.3) in error form as

Vi=Po+xXf+c+u (10.4)

where, by definition,
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E(u, | x,,¢) =0, r=1,2 (10.5)
One implication of condition (10.5) is
E(x;u,) = 0, r=1,2 (10.6)

If we were to assume E(x/c) = 0, we could apply pooled OLS, as we covered in
Section 7.8. If ¢ is correlated with any element of x,, then pooled OLS is biased and
inconsistent.

With two years of data we can difference equation (10.4) across the two time periods
to eliminate the time-constant unobservable, ¢. Define Ay = y, — y;, AX = x5 — x|,
and Au = up — uy. Then, differencing equation (10.4) gives

Ay = Axp + Au (10.7)

which is just a standard linear model in the differences of all variables (although the
intercept has dropped out). Importantly, the parameter vector of interest, ff, appears
directly in equation (10.7), and its presence suggests estimating equation (10.7) by
OLS. Given a panel data set with two time periods, equation (10.7) is just a standard
cross section equation. Under what assumptions will the OLS estimator from equa-
tion (10.7) be consistent?

Because we assume a random sample from the population, we can apply the results
in Chapter 4 directly to equation (10.7). The key conditions for OLS to consistently
estimate f# are the orthogonality condition (Assumption OLS.1)

E(AXx'Au) =0 (10.8)
and the rank condition (Assumption OLS.2)
rank E(Ax'Ax) = K (10.9)

Consider condition (10.8) first. It is equivalent to E[(x2 — x1)'(uy — u1)] = 0 or, after
simple algebra,

E(xjuz) + E(xju1) — E(x{u2) — E(x5u1) = 0 (10.10)

The first two terms in equation (10.10) are zero by condition (10.6), which holds for
t =1,2. But condition (10.5) does not guarantee that x; and u, are uncorrelated or
that x, and u; are uncorrelated. It might be reasonable to assume that condition
(10.8) holds, but we must recognize that it does not follow from condition (10.5).
Assuming that the error u, is uncorrelated with x; and x; for = 1,2 is an example of
a strict exogeneity assumption in unobserved components panel data models. We dis-
cuss strict exogeneity assumptions generally in Section 10.2. For now, we emphasize
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that assuming Cov(x,,u,) = 0 for all ¢ and s puts no restrictions on the correlation
between x, and the unobserved effect, c.

The second assumption, condition (10.9), also deserves some attention now be-
cause the elements of x, appearing in structural equation (10.3) have been differenced
across time. If x, contains a variable that is constant across time for every member of
the population, then Ax contains an entry that is identically zero, and condition
(10.9) fails. This outcome is not surprising: if ¢ is allowed to be arbitrarily correlated
with the elements of x,, the effect of any variable that is constant across time cannot
be distinguished from the effect of ¢. Therefore, we can consistently estimate f; only if
there is some variation in x;; over time.

In the remainder of this chapter, we cover various ways of dealing with the pres-
ence of unobserved effects under different sets of assumptions. We assume we have
repeated observations on a cross section of N individuals, families, firms, school dis-
tricts, cities, or some other economic unit. As in Chapter 7, we assume in this chapter
that we have the same time periods, denoted r =1,2,..., T, for each cross section
observation. Such a data set is usually called a balanced panel because the same time
periods are available for all cross section units. While the mechanics of the unbal-
anced case are similar to the balanced case, a careful treatment of the unbalanced
case requires a formal description of why the panel may be unbalanced, and the
sample selection issues can be somewhat subtle. Therefore, we hold off covering un-
balanced panels until Chapter 17, where we discuss sample selection and attrition
issues.

We still focus on asymptotic properties of estimators, where the time dimension, 7,
is fixed and the cross section dimension, N, grows without bound. With large-N
asymptotics it is convenient to view the cross section observations as independent,
identically distributed draws from the population. For any cross section observation
i—denoting a single individual, firm, city, and so on—we denote the observable
variables for all T time periods by {(y,,X;): t =1,2,..., T}. Because of the fixed T
assumption, the asymptotic analysis is valid for arbitrary time dependence and dis-
tributional heterogeneity across .

When applying asymptotic analysis to panel data methods it is important to re-
member that asymptotics are useful insofar as they provide a reasonable approxi-
mation to the finite sample properties of estimators and statistics. For example, a
priori it is difficult to know whether N — oo asymptotics works well with, say,
N = 50 states in the United States and 7 = 8§ years. But we can be pretty confident
that N — oo asymptotics are more appropriate than 7' — oo asymptotics, even
though N is practically fixed while T can grow. With large geographical regions, the
random sampling assumption in the cross section dimension is conceptually flawed.
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Nevertheless, if N is sufficiently large relative to 7, and we can assume rough inde-
pendence in the cross section, then our asymptotic analysis should provide suitable
approximations.

If T is of the same order as N—for example, N = 60 countries and 7 = 55 post—
World War II years—an asymptotic analysis that makes explicit assumptions about
the nature of the time series dependence is needed. (In special cases, the conclusions
about consistent estimation and approximate normality of ¢ statistics will be the
same, but not generally.) This area is just beginning to receive careful attention. If 7’
is much larger than N, say N =5 companies and T = 40 years, the framework
becomes multiple time series analysis: N can be held fixed while 7 — oo.

10.2 Assumptions about the Unobserved Effects and Explanatory Variables

Before analyzing panel data estimation methods in more detail, it is useful to gener-
ally discuss the nature of the unobserved effects and certain features of the observed
explanatory variables.

10.2.1 Random or Fixed Effects?

The basic unobserved effects model (UEM) can be written, for a randomly drawn
cross section observation i, as

yit:thﬂ+Ci+ui[, 121,2,...,T (1011)

where x;, is I x K and can contain observable variables that change across ¢ but not i,
variables that change across i but not ¢, and variables that change across i and ¢. In
addition to unobserved effect, there are many other names given to ¢; in applications:
unobserved component, latent variable, and unobserved heterogeneity are common. If i
indexes individuals, then ¢; is sometimes called an individual effect or individual het-
erogeneity; analogous terms apply to families, firms, cities, and other cross-sectional
units. The u;, are called the idiosyncratic errors or idiosyncratic disturbances because
these change across ¢ as well as across i.

Especially in methodological papers, but also in applications, one often sees a dis-
cussion about whether ¢; will be treated as a random effect or a fixed effect. Origi-
nally, such discussions centered on whether ¢; is properly viewed as a random variable
or as a parameter to be estimated. In the traditional approach to panel data models,
¢; 1s called a “random effect” when it is treated as a random variable and a “fixed
effect” when it is treated as a parameter to be estimated for each cross section ob-
servation i. Our view is that discussions about whether the ¢; should be treated as
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random variables or as parameters to be estimated are wrongheaded for micro-
econometric panel data applications. With a large number of random draws from the
cross section, it almost always makes sense to treat the unobserved effects, ¢;, as
random draws from the population, along with y;, and x;,. This approach is certainly
appropriate from an omitted variables or neglected heterogeneity perspective. As our
discussion in Section 10.1 suggests, the key issue involving ¢; is whether or not it is
uncorrelated with the observed explanatory variables x;;, t =1,2,..., 7. Mundlak
(1978) made this argument many years ago, and it still is persuasive.

In modern econometric parlance, “random effect” is synonymous with zero cor-
relation between the observed explanatory variables and the unobserved effect:
Cov(x,¢;) =0,t=1,2,...,T. [Actually, a stronger conditional mean independence
assumption, E(c¢; | x;1,...,X;7) = E(¢;), will be needed to fully justify statistical in-
ference; more on this subject in Section 10.4.] In applied papers, when ¢; is referred
to as, say, an “individual random effect,” then ¢; is probably being assumed to be
uncorrelated with the x;;.

In microeconometric applications, the term “fixed effect” does not usually mean
that ¢; is being treated as nonrandom; rather, it means that one is allowing for arbi-
trary correlation between the unobserved effect ¢; and the observed explanatory vari-
ables x;,. So, if ¢; is called an “individual fixed effect” or a “firm fixed effect,” then,
for practical purposes, this terminology means that ¢; is allowed to be correlated with
x;;. In this book, we avoid referring to ¢; as a random effect or a fixed effect. Instead,
we will refer to ¢; as unobserved effect, unobserved heterogeneity, and so on. Never-
theless, later we will label two different estimation methods random effects estimation
and fixed effects estimation. This terminology is so ingrained that it is pointless to try
to change it now.

10.2.2 Strict Exogeneity Assumptions on the Explanatory Variables

Traditional unobserved components panel data models take the x;, as fixed. We will
never assume the x; are nonrandom because potential feedback from y, to x;s for
s > t needs to be addressed explicitly.

In Chapter 7 we discussed strict exogeneity assumptions in panel data models that
did not explicitly contain unobserved effects. We now provide strict exogeneity
assumptions for models with unobserved effects.

In Section 10.1 we stated the strict exogeneity assumption in terms of zero corre-
lation. For inference and efficiency discussions, we need to state the strict exogeneity
assumption in terms of conditional expectations, and this statement also gives the
assumption a clear meaning. With an unobserved effect, the most revealing form of
the strict exogeneity assumption is
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E(y; | Xit,Xi2, ..., X7, ¢i) = E(yy | Xir, ¢i) = X + ¢ (10.12)

for t=1,2,...,T. The second equality is the functional form assumption on
E(y; | xi, ¢;). It is the first equality that gives the strict exogeneity its interpretation. It
means that, once x;; and ¢; are controlled for, x;; has no partial effect on y;, for s # 1.

When assumption (10.12) holds, we say that the {x;: 1 =1,2,..., T} are strictly
exogenous conditional on the unobserved effect ¢;. Assumption (10.12) and the corre-
sponding terminology were introduced and used by Chamberlain (1982). We will
explicitly cover Chamberlain’s approach to estimating unobserved effects models in
the next chapter, but his manner of stating assumptions is instructive even for tradi-
tional panel data analysis.

Assumption (10.12) restricts how the expected value of y;, can depend on explan-
atory variables in other time periods, but it is more reasonable than strict exogeneity
without conditioning on the unobserved effect. Without conditioning on an unob-
served effect, the strict exogeneity assumption is

E(yi | xi1,Xi2, ., Xir) = E(yy, | Xir) = xil8 (10.13)

t=1,...,T. To see that assumption (10.13) is less likely to hold than assumption
(10.12), first consider an example. Suppose that y; is output of soybeans for farm i
during year ¢, and x;, contains capital, labor, materials (such as fertilizer), rainfall,
and other observable inputs. The unobserved effect, ¢;, can capture average quality of
land, managerial ability of the family running the farm, and other unobserved, time-
constant factors. A natural assumption is that, once current inputs have been con-
trolled for along with c¢;, inputs used in other years have no effect on output during
the current year. However, since the optimal choice of inputs in every year generally
depends on ¢;, it is likely that some partial correlation between output in year ¢ and
inputs in other years will exist if ¢; is not controlled for: assumption (10.12) is rea-
sonable while assumption (10.13) is not.

More generally, it is easy to see that assumption (10.13) fails whenever assumption
(10.12) holds and the expected value of ¢; depends on (x;i, ..., X;r). From the law of
iterated expectations, if assumption (10.12) holds, then

E(yi | xit, - xir) = X+ E(ci | Xi1, - -, Xi7)

and so assumption (10.13) fails if E(¢; | Xi1,...,X;r) # E(¢;). In particular, assump-
tion (10.13) fails if ¢; is correlated with any of the x;,.

Given equation (10.11), the strict exogeneity assumption can be stated in terms of
the idiosyncratic errors as

E(Hl',|Xi1,...,X,'T,C,'):O, 121,2,...,T (1014)
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This assumption, in turn, implies that explanatory variables in each time period are
uncorrelated with the idiosyncratic error in each time period:

E(xjuq) =0, st=1,....T (10.15)

This assumption is much stronger than assuming zero contemporaneous correlation:
E(x/u;) =0, ¢t=1,...,T. Nevertheless, assumption (10.15) does allow arbitary cor-
relation between ¢; and x;, for all ¢, something we ruled out in Section 7.8. Later, we
will use the fact that assumption (10.14) implies that u;, and ¢; are uncorrelated.

For examining consistency of panel data estimators, the zero correlation assump-
tion (10.15) generally suffices. Further, assumption (10.15) is often the easiest way to
think about whether strict exogeneity is likely to hold in a particular application. But
standard forms of statistical inference, as well as the efficiency properties of standard
estimators, rely on the stronger conditional mean formulation in assumption (10.14).
Therefore, we focus on assumption (10.14).

10.2.3 Some Examples of Unobserved Effects Panel Data Models

Our discussions in Sections 10.2.1 and 10.2.2 emphasize that in any panel data ap-
plication we should initially focus on two questions: (1) Is the unobserved effect, c;,
uncorrelated with x;, for all #? (2) Is the strict exogeneity assumption (conditional on
¢;) reasonable? The following examples illustrate how we might organize our thinking
on these two questions.

Example 10.1 ( Program Evaluation): A standard model for estimating the effects of
job training or other programs on subsequent wages is

log(wagei) = 0, + 2y + 01progi + ¢; + uy (10.16)

where i indexes individual and ¢ indexes time period. The parameter 6, denotes a
time-varying intercept, and z; is a set of observable characteristics that affect wage
and may also be correlated with program participation.

Evaluation data sets are often collected at two points in time. At £ = 1, no one has
participated in the program, so that prog; = 0 for all i. Then, a subgroup is chosen to
participate in the program (or the individuals choose to participate), and subsequent
wages are observed for the control and treatment groups in ¢ = 2. Model (10.16)
allows for any number of time periods and general patterns of program participation.

The reason for including the individual effect, ¢;, is the usual omitted ability story:
if individuals choose whether or not to participate in the program, that choice could
be correlated with ability. This possibility is often called the self-selection problem.
Alternatively, administrators might assign people based on characteristics that the
econometrician cannot observe.



Basic Linear Unobserved Effects Panel Data Models 255

The other issue is the strict exogeneity assumption of the explanatory variables,
particularly prog;. Typically, we feel comfortable with assuming that u;, is uncorre-
lated with prog;. But what about correlation between u; and, say, prog; ;1?7 Future
program participation could depend on u; if people choose to participate in the
future based on shocks to their wage in the past, or if administrators choose people as
participants at time ¢ + 1 who had a low u;,. Such feedback might not be very im-
portant, since ¢; is being allowed for, but it could be. See, for example, Bassi (1984)
and Ham and Lalonde (1996). Another issue, which is more easily dealt with, is that
the training program could have lasting effects. If so, then we should include lags of
prog;, in model (10.16). Or, the program itself might last more than one period, in
which case prog;, can be replaced by a series of dummy variables for how long unit i
at time ¢ has been subject to the program.

Example 10.2 ( Distributed Lag Model): Hausman, Hall, and Griliches (1984) esti-
mate nonlinear distributed lag models to study the relationship between patents
awarded to a firm and current and past levels of R&D spending. A linear, five-lag
version of their model is

patentsy = 0, + 2y + 0oRDyy + 01 RD; ;-1 + - - +05RD; ;5 + ¢; + uy (10.17)

where RD;, is spending on R&D for firm i at time ¢ and z; contains variables such as
firm size (as measured by sales or employees). The variable ¢; is a firm heterogeneity
term that may influence patents; and that may be correlated with current, past, and
future R&D expenditures. Interest lies in the pattern of the J; coefficients. As with the
other examples, we must decide whether R&D spending is likely to be correlated with
¢;. In addition, if shocks to patents today (changes in u;) influence R&D spending at
future dates, then strict exogeneity can fail, and the methods in this chapter will not

apply.

The next example presents a case where the strict exogeneity assumption is neces-
sarily false, and the unobserved effect and the explanatory variable must be correlated.

Example 10.3 (Lagged Dependent Variable): A simple dynamic model of wage de-
termination with unobserved heterogeneity is

log(ujageil) = ﬂl log(mjagei,tfl) =+ ¢i 4 uy, = 17 25 SRR T (1018)

Often, interest lies in how persistent wages are (as measured by the size of f3,) after
controlling for unobserved heterogeneity (individual productivity), ¢;. Letting y;, =
log(wage;,), a standard assumption would be

E(”it|J/i,z—17~~-7J/i07Ci) =0 (10.19)
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which means that all of the dynamics are captured by the first lag. Let x; = y; ,_;.

Then, under assumption (10.19), u; is uncorrelated with (X, x; /—1,...,Xi1), but u;
cannot be uncorrelated with (x; ;+1,...,X;7), as X; ;41 = ;. In fact,
E(yiuir) = BLE(y; ;1) + E(city) + E(ulzl) = E(ulzl) >0 (10.20)

because E(y; ,_jui) =0 and E(cu;) =0 under assumption (10.19). Therefore, the
strict exogeneity assumption never holds in unobserved effects models with lagged
dependent variables.

In addition, y; ,; and ¢; are necessarily correlated (since at time 7 — 1, y; ,_; is the
left-hand-side variable). Not only must strict exogeneity fail in this model, but the
exogeneity assumption required for pooled OLS estimation of model (10.18) is also
violated. We will study estimation of such models in Chapter 11.

10.3 Estimating Unobserved Effects Models by Pooled OLS

Under certain assumptions, the pooled OLS estimator can be used to obtain a con-
sistent estimator of f# in model (10.11). Write the model as

Vi =Xif+vp, =12, T (10.21)

where v; = ¢; +uy, t = 1,..., T are the composite errors. For each ¢, v, is the sum of
the unobserved effect and an idiosyncratic error. From Section 7.8, we know that
pooled OLS estimation of this equation is consistent if E(x/,v;) =0, ¢=1,2,...,T.
Practically speaking, no correlation between x;; and v; means that we are assuming
E(x/u;) = 0 and

E(X,c) =0, (=12....T (10.22)

Equation (10.22) is the restrictive assumption, since E(x/u;) = 0 holds if we have
successfully modeled E(y;, | X, ¢;).

In static and finite distributed lag models we are sometimes willing to make the
assumption (10.22); in fact, we will do so in the next section on random effects esti-
mation. As seen in Example 10.3, models with lagged dependent variables in x;, must
violate assumption (10.22) because y; ,_; and ¢; must be correlated.

Even if assumption (10.22) holds, the composite errors will be serially correlated
due to the presence of ¢; in each time period. Therefore, inference using pooled OLS
requires the robust variance matrix estimator and robust test statistics from Chapter
7. Because v; depends on ¢; for all ¢, the correlation between v;; and v;; does not
generally decrease as the distance |7 — s| increases; in time-series parlance, the v; are
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not weakly dependent across time. (We show this fact explicitly in the next section
when {u;: t=1,..., T} is homoskedastic and serially uncorrelated.) Therefore, it is
important that we be able to do large-N and fixed-7 asymptotics when applying
pooled OLS.

As we discussed in Chapter 7, each (y;,X;) has T rows and should be ordered
chronologically, and the (y;, X;) should be stacked from i =1,..., N. The order of
the cross section observations is, as usual, irrelevant.

10.4 Random Effects Methods

10.4.1 Estimation and Inference under the Basic Random Effects Assumptions

As with pooled OLS, a random effects analysis puts ¢; into the error term. In fact,
random effects analysis imposes more assumptions than those needed for pooled
OLS: strict exogeneity in addition to orthogonality between ¢; and x;. Stating the
assumption in terms of conditional means, we have

ASSUMPTION RE.1:
(a) E(ui,|xi,ci) :0, = 1,‘..,T.
(b) E(Ci ‘ X,') = E(Ci) =0

where X; = (X1, X2, ..., X;T).

In Section 10.2 we discussed the meaning of the strict exogeneity Assumption
RE.la. Assumption RE.1b is how we will state the orthogonality between ¢; and each
x;,. For obtaining consistent results, we could relax RE.1b to assumption (10.22), but
in practice this approach affords little more generality, and we will use Assumption
RE.1b later to derive the traditional asymptotic variance for the random effects esti-
mator. Assumption RE.1b is always implied by the assumption that the x;, are fixed
and E(¢;) = 0, or by the assumption that ¢; is independent of x;. The important part
is E(c;| x;) = E(¢;); the assumption E(c¢;) = 0 is without loss of generality, provided
an intercept is included in x;, as should almost always be the case.

Why do we maintain Assumption RE.1 when it is more restrictive than needed for
a pooled OLS analysis? The random effects approach exploits the serial correlation in
the composite error, v; = ¢; + u, in a generalized least squares (GLS) framework. In
order to ensure that feasible GLS is consistent, we need some form of strict exoge-
neity between the explanatory variables and the composite error. Under Assumption
RE.1 we can write

Vi = X + Vit (10.23)
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E(U,’t|X,'):0, 121,2,...,T (1024)
where
Vjp = € + Ui (10.25)

Equation (10.24) shows that {x;:¢t=1,...,T} satisfies the strict exogeneity as-
sumption SGLS.1 (see Chapter 7) in the model (10.23). Therefore, we can apply GLS
methods that account for the particular error structure in equation (10.25).

Write the model (10.23) for all 7" time periods as

yi = Xif+vi (10.26)

and v; can be written as v; = ¢;jr + u;, where j; is the 7 x 1 vector of ones. Define the
(unconditional) variance matrix of v; as

Q =E(vv)) (10.27)

a T x T matrix that we assume to be positive definite. Remember, this matrix is
necessarily the same for all i because of the random sampling assumption in the cross
section.

For consistency of GLS, we need the usual rank condition for GLS:

ASSUMPTION RE.2: rank E(X/Q7'X;) = K.

Applying the results from Chapter 7, we know that GLS and feasible GLS are
consistent under Assumptions RE.1 and RE.2. A general FGLS analysis, using an
unrestricted variance estimator €, is consistent and /N-asymptotically normal as
N — oo. But we would not be exploiting the unobserved effects structure of v;,. A
standard random effects analysis adds assumptions on the idiosyncratic errors that
give Q a special form. The first assumption is that the idiosyncratic errors u; have a
constant unconditional variance across ¢:

Eu;) =0y, 1=12,...,T (10.28)
The second assumption is that the idiosyncratic errors are serially uncorrelated:
E(uijuy) =0,  allz#s (10.29)

Under these two assumptions, we can derive the variances and covariances of the
elements of v;. Under Assumption RE.la, E(cju;) =0, 1=1,2,...,T, and so

E(v;) = E(¢}) + 2E(ciuy) + E(u) = 0] + o,

where o2 = E(c?). Also, for all 7 # s,
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E(viviy) = E|(¢; + uir) (¢i + uis)) = E(¢}) = 07
Therefore, under assumptions RE.1, (10.28), and (10.29), Q takes the special form

el ot o
2 2 2
g [ g
Q= E(w) = ¢ st (10.30)
: a?
2 2 2
g, o, + 0,

Because jrj7 is the T x T matrix with unity in every element, we can write the matrix
(10.30) as

Q = d’Ir + iy (10.31)

When Q has the form (10.31), we say it has the random effects structure. Rather
than depending on T(7 + 1)/2 unrestricted variances and covariances, as would be
the case in a general GLS analysis, Q depends only on two parameters, O'CZ and o2,
regardless of the size of 7. The correlation between the composite errors v;; and vj
does not depend on the difference between ¢ and s: Corr (v, vi) = 62 /(6> + 62) > 0,
s # t. This correlation is also the ratio of the variance of ¢; to the variance of the
composite error, and it is useful as a measure of the relative importance of the
unobserved effect ¢;.

Assumptions (10.28) and (10.29) are special to random effects. For efficiency of
feasible GLS, we assume that the variance matrix of v; conditional on x; is constant:

E(viv] | x;) = E(v;v)) (10.32)

Assumptions (10.28), (10.29), and (10.32) are implied by our third random effects
assumption:

AssUMPTION RE.3: () E(uu! | x;, ¢;) = o2I7. (b) E(c? | x;) = o2

c

Under Assumption RE.3a, E(u2 | x;,¢;) = 2, t = 1,..., T, which implies assump-
tion (10.28), and E(uju;s | x;,¢;) =0, t # s, t,s =1,..., T, which implies assumption
(10.29) (both by the usual iterated expectations argument). But Assumption RE.3a is
stronger because it assumes that the conditional variances are constant and the con-
ditional covariances are zero. Along with Assumption RE.1b, Assumption RE.3b is
the same as Var(c; |x;) = Var(c¢;), which is a homoskedasticity assumption on the
unobserved effect ¢;. Under Assumption RE.3, assumption (10.32) holds and € has
the form (10.30).
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To implement an FGLS procedure, define 62 = 2 + ¢2. For now, assume that we
have consistent estimators of 62 and 2. Then we can form

Q =617 + 627§ (10.33)

a T x T matrix that we assume to be positive definite. In a panel data context, the
FGLS estimator that uses the variance matrix (10.33) is what is known as the random
effects estimator:

N 1/ N
Brr = (Z X,ffrlx,) (Z X;fl‘lyl) (10.34)
i=1 i=1

The random effects estimator is clearly motivated by Assumption RE.3. Never-
theless, ﬁRE is consistent whether or not Assumption RE.3 holds. As long as As-
sumption RE.1 and the appropriate rank condition hold, ﬁRE EA p as N — oo. The
argument is almost the same as showing that consistency of the FGLS estimator does
not rely on E(v;v] | X;) = Q. The only difference is that, even if Q does not have the
special form in equation (10.31), Q still has a well-defined probability limit. The fact
that it does not necessarily converge to E(v;v/) does not affect the consistency of the
random effects procedure. (Technically, we need to replace Q with plim(f!) in stating
Assumption RE.2.)

Under Assumption RE.3 the random effects estimator is efficient in the class of
estimators consistent under E(v;|x;) =0, including pooled OLS and a variety of
weighted least squares estimators, because RE is asymptotically equivalent to GLS
under Assumptions RE.1-RE.3. The usual feasible GLS variance matrix—see
equation (7.51)—is valid under Assumptions RE.1-RE.3. The only difference from
the general analysis is that € is chosen as in expression (10.33).

In order to implement the RE procedure, we need to obtain 62 and 2. Actually, it
is easiest to first find 62 = 62 4 62. Under Assumption RE.3a, 62 = 7' S E(12)
for all i; therefore, averaging v> across all i and ¢ would give a consistent estimator of
2. But we need to estimate § to make this method operational. A convenient initial
estimator of g is the pooled OLS estimator, denoted here by ﬁ Let 9; denote the
pooled OLS residuals. A consistent estimator of o2 is

N

. 1
6= NT K)o

i=1 t=1

2 (10.35)

it

(133

which is the usual variance estimator from the OLS regression on the pooled data.
The degrees-of-freedom correction in equation (10.35)—that is, the use of NT — K
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rather than N7—has no effect asymptotically. Under Assumptions RE.1-RE.3,
equation (10.35) is a consistent estimator of 2.

To find a consistent estimator of af, recall that af = E(v;v;5), all ¢ # s. Therefore,
for each 7, there are 7(7T — 1)/2 nonredundant error products that can be used to
estimate 2. If we sum all these combinations and take the expectation, we get, for
each i,

T-1 T T T-1
E (Z
t=1 s

T
E(vivis) = Z Z af = af Z(T —1)
+1

t=1 s=t+1 =1

T-1

T
itVis :5
=1 s

-1
1
=a2(T-1)+(T=2)+--+2+1)=a’T(T—1)/2 (10.36)

v
—1+1

where we have used the fact that the sum of the first 7 — 1 positive integers is
T(T —1)/2. As usual, a consistent estimator is obtained by replacing the expectation
with an average (across i) and replacing v;, with its pooled OLS residual. We also
make a degrees-of-freedom adjustment as a small-sample correction:

T-1

A 1 N & AN
6: = INT(T — 1)/2—1(];2 > vubi (10.37)

t=1 s=t+1

is a consistent estimator of ¢ under Assumptions RE.1-RE.3. Given 62 and 62, we
can form 62 = 62 — 62. [The idiosyncratic error variance, g2, can also be estimated
using the fixed effects method, which we discuss in Section 10.5. Also, there are other
methods of estimating 2. A common estimator of o2 is based on the between esti-
mator of f#, which we touch on in Section 10.5; see Hsiao (1986, Section 3.3) and
Baltagi (1995, Section 2.3). Because the RE estimator is a feasible GLS estimator, all
that we need are consistent estimators of g2 and 4?2 in order to obtain a /N-efficient
estimator of §.]

As a practical matter, equation (10.37) is not guaranteed to be positive, although it
is in the vast majority of applications. A negative value for 62 is indicative of nega-
tive serial correlation in u;;, probably a substantial amount, which means that As-
sumption RE.3a is violated. Alternatively, some other assumption in the model can
be false. We should make sure that time dummies are included in the model if they
are significant; omitting them can induce serial correlation in the implied u;,. If 62 is
negative, unrestricted FGLS may be called for; see Section 10.4.3.

Example 10.4 ( RE Estimation of the Effects of Job Training Grants): We now use
the data in JTRAIN1.RAW to estimate the effect of job training grants on firm scrap
rates, using a random effects analysis. There are 54 firms that reported scrap rates for
each of the years 1987, 1988, and 1989. Grants were not awarded in 1987. Some firms
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received grants in 1988, others received grants in 1989, and a firm could not receive a
grant twice. Since there are firms in 1989 that received a grant only in 1988, it is im-
portant to allow the grant effect to persist one period. The estimated equation is

log(scrap) = 415 — 093 d88 — 270 d89 + .548 wunion
(.243) (.109) (.132) (.411)

— 215 grant — 377 grant_,
(.148) (.205)

The lagged value of grant has the larger impact and is statistically significant at the 5
percent level against a one-sided alternative. You are invited to estimate the equation
without grant_; to verify that the estimated grant effect is much smaller (on the order
of 6.7 percent) and statistically insignificant.

Multiple hypotheses tests are carried out as in any FGLS analysis; see Section 7.6,
where G = T. In computing an F-type statistic based on weighted sums of squared
residuals, € in expression (10.33) should be based on the pooled OLS residuals from
the unrestricted model. Then, obtain the residuals from the unrestricted random
effects estimation as v; =y, — X;fzz. Let B, denote the random effects estimator
with the Q linear restrictions imposed, and define the restricted random effects resid-
uals as ¥; = y; — XiBgp. Insert these into equation (7.52) in place of @; and @; for a
chi-square statistic or into equation (7.53) for an F-type statistic.

In Example 10.4, the Wald test for joint significance of grant and grant_, (against a
two-sided alternative) yields a y3 statistic equal to 3.66, with p-value = .16. (This test
comes from Stata®.)

10.4.2 Robust Variance Matrix Estimator

Because failure of Assumption RE.3 does not cause inconsistency in the RE esti-
mator, it is very useful to be able to conduct statistical inference without this as-
sumption. Assumption RE.3 can fail for two reasons. First, E(v;v/|X;) may not be
constant, so that E(v;v] | x;) # E(v;v}). This outcome is always a possibility with GLS
analysis. Second, E(v;v/) may not have the random effects structure: the idiosyncratic
errors u; may have variances that change over time, or they could be serially corre-
lated. In either case a robust variance matrix is available from the analysis in Chapter
7. We simply use equation (7.49) with @; replaced by v; = y; — Xifrpi=1,2,...,N,
the T x 1 vectors of RE residuals.

Robust standard errors are obtained in the usual way from the robust variance
matrix estimator, and robust Wald statistics are obtained by the usual formula W =



Basic Linear Unobserved Effects Panel Data Models 263

(RB—r1)(RVR') "' (RB —r), where V is the robust variance matrix estimator. Re-
member, if Assumption RE.3 is violated, the sum of squared residuals form of the F
statistic is not valid.

The idea behind using a robust variance matrix is the following. Assumptions
RE.1-RE.3 lead to a well-known estimation technique whose properties are under-
stood under these assumptions. But it is always a good idea to make the analysis
robust whenever feasible. With fixed T and large N asymptotics, we lose nothing in
using the robust standard errors and test statistics even if Assumption RE.3 holds. In
Section 10.7.2, we show how the RE estimator can be obtained from a particular
pooled OLS regression, which makes obtaining robust standard errors and ¢ and F
statistics especially easy.

10.4.3 A General FGLS Analysis

If the idiosyncratic errors {u;: t=1,2,...,T} are generally heteroskedastic and
serially correlated across 7, a more general estimator of € can be used in FGLS:

N
Q=N"1> "V, (10.38)
i=1

where the ¥; would be the pooled OLS residuals. The FGLS estimator is consistent
under Assumptions RE.1 and RE.2, and, if we assume that E(v;v; | x;) = Q, then the
FGLS estimator is asymptotically efficient and its asymptotic variance estimator
takes the usual form.

Using equation (10.38) is more general than the RE analysis. In fact, with large N
asymptotics, the general FGLS estimator is just as efficient as the random effects es-
timator under Assumptions RE.1-RE.3. Using equation (10.38) is asymptotically
more efficient if E(v;v/|x;) = Q, but Q does not have the random effects form. So
why not always use FGLS with Q given in equation (10.38)? There are historical
reasons for using random effects methods rather than a general FGLS analysis. The
structure of Q in the matrix (10.30) was once synonomous with unobserved effects
models: any correlation in the composite errors {v;: t = 1,2,..., T} was assumed to
be caused by the presence of ¢;. The idiosyncratic errors, u;, were, by definition,
taken to be serially uncorrelated and homoskedastic.

If N is not several times larger than 7, an unrestricted FGLS analysis can have
poor finite sample properties because Q has T (T +1)/2 estimated elements. Even
though estimation of Q does not affect the asymptotic distribution of the FGLS
estimator, it certainly affects its finite sample properties. Random effects estimation
requires estimation of only two variance parameters for any 7.
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With very large N, using the general estimate of Q is an attractive alternative, es-
pecially if the estimate in equation (10.38) appears to have a pattern different from
the random effects pattern. As a middle ground between a traditional random effects
analysis and a full-blown FGLS analysis, we might specify a particular structure for
the idiosyncratic error variance matrix E(uu;). For example, if {u;} follows a stable
first-order autoregressive process with autocorrelation coefficient p and variance o2,
then Q = E(uu)) + ¢2j;j7 depends in a known way on only three parameters, 62, 62,
and p. These parameters can be estimated after initial pooled OLS estimation, and
then an FGLS procedure using the particular structure of € is easy to implement. We
do not cover such possibilities explicitly; see, for example, MaCurdy (1982).

10.4.4 Testing for the Presence of an Unobserved Effect

If the standard random effects assumptions RE.1-RE.3 hold but the model does not
actually contain an unobserved effect, pooled OLS is efficient and all associated
pooled OLS statistics are asymptotically valid. The absence of an unobserved effect is
statistically equivalent to Hy: o2 = 0.

To test Hp: 02 = 0, we can use the simple test for AR(1) serial correlation covered
in Chapter 7 [see equation (7.77)]. The AR(1) test is valid because the errors v;, are
serially uncorrelated under the null Hy: 62 = 0 (and we are assuming that {x;} is
strictly exogenous). However, a better test is based directly on the estimator of 2 in
equation (10.37).

Breusch and Pagan (1980) derive a statistic using the Lagrange multiplier principle
in a likelihood setting (something we cover in Chapter 13). We will not derive the
Breusch and Pagan statistic because we are not assuming any particular distribution
for the v;. Instead, we derive a similar test that has the advantage of being valid for
any distribution of v; and only states that the v;, are uncorrelated under the null. (In
particular, the statistic is valid for heteroskedasticity in the v;.)

From equation (10.37), we base a test of Hp: > = 0 on the null asymptotic distri-
bution of

N T-1

N2 Z Z Z B (10.39)

i=1 t=1 s=t+1

which is essentially the estimator 62 scaled up by v/N. Because of strict exogeneity,
this statistic has the same limiting distribution (as N — oo with fixed 7') when
we replace the pooled OLS residuals 9, with the errors v; (see Problem 7.4). For
any distribution of the vy, N2 N ST ESYT L vyvy has a limiting normal
distribution (under the null that the v; are serially uncorrelated) with variance
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E( IT: ]1 ZST:, " v,-tvl;y)z. We can estimate this variance in the usual way (take away
the expectation, average across i, and replace v;, with ;). When we put expression

(10.39) over its asymptotic standard error we get the statistic
N —T-1 T -
Zi:l Zz:l ZS:I+1 VitV
27172
N T-1 T 4 »
|:Z,’:1 ( =1 Zs:t-i,—] Uifvis) i|

Under the null hypothesis that the v;, are serially uncorrelated, this statistic is dis-
tributed asymptotically as standard normal. Unlike the Breusch-Pagan statistic, with
expression (10.40) we can reject Hy for negative estimates of o2, although negative
estimates are rare in practice (unless we have already differenced the data, something
we discuss in Section 10.6).

The statistic in expression (10.40) can detect many kinds of serial correlation in the
composite error v, and so a rejection of the null should not be interpreted as imply-
ing that the random effects error structure must be true. Finding that the v;, are seri-
ally uncorrelated is not very surprising in applications, especially since x;; cannot
contain lagged dependent variables for the methods in this chapter.

It is probably more interesting to test for serial correlation in the {u;}, as this is a
test of the random effects form of Q. Baltagi and Li (1995) obtain a test under nor-
mality of ¢; and {u;}, based on the Lagrange multiplier principle. In Section 10.7.2,
we discuss a simpler test for serial correlation in {u;} using a pooled OLS regression
on transformed data, which does not rely on normality.

(10.40)

10.5 Fixed Effects Methods

10.5.1 Consistency of the Fixed Effects Estimator
Again consider the linear unobserved effects model for T time periods:
yi,:xi,ﬁ+ci+ui,, ZZI,...,T (1041)

The random effects approach to estimating g effectively puts ¢; into the error term,
under the assumption that ¢; is orthogonal to x;, and then accounts for the implied
serial correlation in the composite error v;; = ¢; + u; using a GLS analysis. In many
applications the whole point of using panel data is to allow for ¢; to be arbitrarily
correlated with the x;,. A fixed effects analysis achieves this purpose explicitly.

The T equations in the model (10.41) can be written as

Y = Xif + ciir +u; (10.42)
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where j; is still the T x 1 vector of ones. As usual, equation (10.42) represents a sin-
gle random draw from the cross section.

The first fixed effects (FE) assumption is strict exogeneity of the explanatory vari-
ables conditional on ¢;:

AssUMPTION FE.1:  E(u; |x;,¢;) =0,t=1,2,...,T.

This assumption is identical to the first part of Assumption RE.1. Thus, we maintain
strict exogeneity of {x;;: t = 1,..., T’} conditional on the unobserved effect. The key
difference is that we do not assume RE.1b. In other words, for fixed effects analysis,
E(c;|x;) is allowed to be any function of x;.

By relaxing RE.1b we can consistently estimate partial effects in the presence of
time-constant omitted variables that can be arbitrarily related to the observables x;;.
Therefore, fixed effects analysis is more robust than random effects analysis. As we
suggested in Section 10.1, this robustness comes at a price: without further assump-
tions, we cannot include time-constant factors in x;,. The reason is simple: if ¢; can be
arbitrarily correlated with each element of x;, there is no way to distinguish the
effects of time-constant observables from the time-constant unobservable ¢;. When
analyzing individuals, factors such as gender or race cannot be included in x;. For
analyzing firms, industry cannot be included in x;, unless industry designation changes
over time for at least some firms. For cities, variables describing fixed city attributes,
such as whether or not the city is near a river, cannot be included in x;,.

The fact that x;, cannot include time-constant explanatory variables is a drawback
in certain applications, but when the interest is only on time-varying explanatory
variables, it is convenient not to have to worry about modeling time-constant factors
that are not of direct interest.

In panel data analysis the term ‘“‘time-varying explanatory variables” means that
each element of x;; varies over time for some cross section units. Often there are ele-
ments of x;; that are constant across time for a subset of the cross section. For ex-
ample, if we have a panel of adults and one element of x;, is education, we can allow
education to be constant for some part of the sample. But we must have education
changing for some people in the sample.

As a general specification, let d2,,...,dT, denote time period dummies so that
ds, = 1 if s = ¢, and zero otherwise (often these are defined in terms of specific years,
such as d88;, but at this level we call them time period dummies). Let z; be a vector of
time-constant observables, and let w;; be a vector of time-varying variables. Suppose
Vi 1s determined by
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Vi =01+ 02d2,+ -+ 07dT, + z2;p, + d2,z;p,
+ o+ dTiziyr + Wad + ¢ + (10.43)
E(ui | zi, Wi, Win, ... ,Wir, ¢;) =0, t=12,...,T (10.44)

We hope that this model represents a causal relationship, where the conditioning on
¢; allows us to control for unobserved factors that are time constant. Without further
assumptions, the intercept 0; cannot be identified and the vector y;, on z; cannot
be identified, because 0; + z;y, cannot be distinguished from ¢;. Note that 0; is the
intercept for the base time period, ¢t = 1, and p, measures the effects of z; on y;, in
period ¢ = 1. Even though we cannot identify the effects of the z; in any particular
time period, y,, 73, ...,y are identified, and therefore we can estimate the differences
in the partial effects on time-constant variables relative to a base period. In particu-
lar, we can test whether the effects of time-constant variables have changed over time.
As a specific example, if y, = log(wage;;) and one element of z; is a female binary
variable, then we can estimate how the gender gap has changed over time, even
though we cannot estimate the gap in any particular time period.

The idea for estimating f under Assumption FE.1 is to transform the equations to
eliminate the unobserved effect ¢;. When at least two time periods are available, there
are several transformations that accomplish this purpose. In this section we study the
fixed effects transformation, also called the within transformation. The FE transfor-
mation is obtained by first averaging equation (10.41) over t=1,..., T to get the
cross section equation

Vi=Xif+coi+u (10.45)
where 7, =T"'S" vy, Xi=T 'S %y, and @ =T"'>", uy. Subtracting
equation (10.45) from equation (10.41) for each ¢ gives the FE transformed equation,
Vi = i = Xie — Xi)B + wip — i

or

Vi = X + dii, t=12,...,T (10.46)

where ¥, =y, — 7;, Xy =X —X;, and ii;; = u; — #;. The time demeaning of the
original equation has removed the individual specific effect c;.

With ¢; out of the picture, it is natural to think of estimating equation (10.46) by
pooled OLS. Before investigating this possibility, we must remember that equation
(10.46) is an estimating equation: the interpretation of f# comes from the (structural)
conditional expectation E(y;, | x;, ¢;) = E(y; | Xir, ¢i) = Xuf + ¢i.
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To see whether pooled OLS estimation of equation (10.46) will be consistent, we
need to show that the key pooled OLS assumption (Assumption POLS.1 from
Chapter 7) holds in equation (10.46). That is,

E(&liy) =0, 1=12,....T (10.47)

For each ¢, the left-hand side of equation (10.47) can be written as
E[(x; — i,;)/(u,-z — #;)]. Now, under Assumption FE.1, u; is uncorrelated with x;q,
for all s,t=1,2,...,T. It follows that u; and & are uncorrelated with x;; and X;
for t=1,2,...,T. Therefore, assumption (10.47) holds under Assumption FE.1,
and so pooled OLS applied to equation (10.46) can be expected to produce con-
sistent estimators. We can actually say a lot more than condition (10.47): under
Assumption FE.1, E(ii; | x;) = E(u; | x;) — E(#; | x;) = 0, which in turn implies that
E(diy | Xi1,...,%;7) =0, since each X, is just a function of x; = (x;1,...,X;7). This
result shows that the X;, satisfy the conditional expectation form of the strict exoge-
neity assumption in the model (10.46). Among other things, this conclusion implies
that the fixed effects estimator of # that we will derive is actually unbiased under
Assumption FE.1.

It is important to see that assumption (10.47) fails if we try to relax the strict exo-
geneity assumption to something weaker, such as E(x,u;,) = 0, all 7, because this as-
sumption does not ensure that x;, is uncorrelated with u;,, s # t.

The fixed effects (FE) estimator, denoted by ﬁFE, is the pooled OLS estimator from
the regression

j,onky, t=12....Ti=12..N (10.48)

The FE estimator is simple to compute once the time demeaning has been carried
out. Some econometrics packages have special commands to carry out fixed effects
estimation (and commands to carry out the time demeaning for all ). It is also fairly
easy to program this estimator in matrix-oriented languages.

To study the FE estimator a little more closely, write equation (10.46) for all time
periods as

¥ = X + i (10.49)

where §;is 7' x 1, X;is T x K, and ii; is T x 1. This set of equations can be obtained
by premultiplying equation (10.42) by a time-demeaning matrix. Define Q; = Iy —
jT(j'TjT)flj’T, which is easily seen to be a T x T symmetric, idempotent matrix with
rank 7 — 1. Further, Qrjr =0, Qry;, =¥;, Q7 X; = X;, and Q7u; = ii;, and so pre-
multiplying equation (10.42) by Q; gives the demeaned equations (10.49).
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In order to ensure that the FE estimator is well behaved asymptotically, we need a
standard rank condition on the matrix of time-demeaned explanatory variables:

ASSUMPTION FE.2: rank(zle E(X{,X”)) = rank[B(X/X;)] = K.

If x;; contains an element that does not vary over time for any i, then the corre-
sponding element in X;, is identically zero for all ¢+ and any draw from the cross sec-
tion. Since X; would contain a column of zeros for all i, Assumption FE.2 could not
be true. Assumption FE.2 shows explicitly why time-constant variables are not
allowed in fixed effects analysis (unless they are interacted with time-varying vari-
ables, such as time dummies).

The fixed effects estimator can be expressed as

N T/ N N T -1
o (S3%) (Tx) - (S3ww) (T3wn)  wso
=1 i=1 i=1 =1 i=1 =1
It is also called the within estimator because it uses the time variation within each
cross section. The between estimator, which uses only variation between the cross
section observations, is the OLS estimator applied to the time-averaged equation
(10.45). This estimator is not consistent under Assumption FE.1 because E(X/¢;) is
not necessarily zero. The between estimator is consistent under Assumption RE.1
and a standard rank condition, but it effectively discards the time series information
in the data set. It is more efficient to use the random effects estimator.
Under Assumption FE.1 and the finite sample version of Assumption FE.2,
namely, rank(X'X) = K, f can be shown to be unbiased conditional on X.

10.5.2 Asymptotic Inference with Fixed Effects

Without further assumptions the FE estimator is not necessarily the most efficient
estimator based on Assumption FE.1. The next assumption ensures that FE is efficient.

AssUMPTION FE.3:  E(uu!|x;, ¢;) = o’I7.

Assumption FE.3 is identical to Assumption RE.3a. Since E(u; |x;,¢;) =0 by As-
sumption FE.1, Assumption FE.3 is the same as saying Var(u;|x;,¢;) = o2Ir if
Assumption FE.1 also holds. As with Assumption RE.3a, it is useful to think of
Assumption FE.3 as having two parts. The first is that E(uu/|x;,¢;) = E(uu)),
which is standard in system estimation contexts [see equation (7.50)]. The second is
that the unconditional variance matrix E(u;u;) has the special form ¢217. This implies
that the idiosyncratic errors u; have a constant variance across ¢ and are serially
uncorrelated, just as in assumptions (10.28) and (10.29).
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Assumption FE.3, along with Assumption FE.1, implies that the unconditional
variance matrix of the composite error v; = ¢;jr + w; has the random effects form.
However, without Assumption RE.3b, E(v;v] | x;) # E(v;v]). While this result matters
for inference with the RE estimator, it has no bearing on a fixed effects analysis.

It is not obvious that Assumption FE.3 has the desired consequences of ensuring
efficiency of fixed effects and leading to simple computation of standard errors and
test statistics. Consider the demeaned equation (10.46). Normally, for pooled OLS
to be relatively efficient, we require that the {z;: t =1,2,..., T} be homoskedastic
across ¢ and serially uncorrelated. The variance of i; can be computed as
E(ii;) = E[(uy — ;)?] = E(uy) + (i) — 2E (uyit;)

=0, +0,/T —20;/T =0a;(1-1/T) (10.51)

which verifies (unconditional) homoskedasticity across ¢. However, for ¢ # s, the
covariance between #;, and i, is

E(iliiss) = E[(uir — ;) (s — ;)] = E(ujettis) — E(uit;) — E(ujsit;) + E(@1?)
=0-02/T—02/T+02/T=—-02/T <0

Combining this expression with the variance in equation (10.51) gives, for all 7 # s,

Corr (i, tiy) = —1/(T — 1) (10.52)

which shows that the time-demeaned errors ii;, are negatively serially correlated. (As
T gets large, the correlation tends to zero.)

It turns out that, because of the nature of time demeaning, the serial correlation in
the ; under Assumption FE.3 causes only minor complications. To find the asymp-
totic variance of By, write

-1
VN(Bz — B) = <N1 XN:X;X1> (Nl/z ZN:XI/U,>
i=1 i=1

where we have used the important fact that X/ii; = X/Qzu; = X/u;. Under Assump-
tion FE.3, E(uu! | X;) = ¢2I7. From the system OLS analysis in Chapter 7 it follows
that

\/ﬁ(ﬁFE — B) ~ Normal(0, Uf[E(X;Xi)]_l)
and so

Avar(fy) = o2 [EXX)] /N (10.53)
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Given a consistent estimator 62 of o2, equation (10.53) is easily estimated by also
replacing E(X/X;) with its sample analogue N=' ", X'X;

N T -1
Avar(B;) = (Z X/X; ) =42 (Z > x;,x,»,> (10.54)
i=1 t=1

The asymptotic standard errors of the fixed effects estimates are obtained as the
square roots of the diagonal elements of the matrix (10.54).

Expression (10.54) is very convenient because it looks just like the usual OLS
variance matrix estimator that would be reported from the pooled OLS regression
(10.48). However, there is one catch, and this comes in obtaining the estimator 2 of
03. The errors in the transformed model are #;, and these errors are what the OLS
residuals from regression (10.48) estimate. Since o2 is the variance of u;;, we must use
a little care.

To see how to estimate o2 we use equation (10 51) summed across #: ZITI E(ii2) =
(T —1)a2, and so [N(T )] SN ST EE(i#2) = o2, Now, define the fixed effects
residuals as

Uy = Jy — Xifeg, =12, T:i=12,...,N (10.55)

which are simply the OLS residuals from the pooled regression (10.48). Then a con-
sistent estimator of g2 under Assumptions FE.1-FE.3 is

62 =SSR/[N(T - 1) — K] (10.56)

where SSR = SN, 577 2. The subtraction of K in the denominator of equation
(10.56) does not matter asymptotically, but it is standard to make such a correction.
In fact, under Assumptions FE.1-FE.3, it can be shown that 6'5 is actually an un-
biased estimator of ¢ conditional on X (and therefore unconditionally as well).

Pay careful attention to the denominator in equation (10.56). This is not the
degrees of freedom that would be obtained from regression (10.48). In fact, the usual
variance estimate from regression (10.48) would be SSR/(NT — K), which has a
probability limit less than o2 as N gets large. The difference between SSR/(NT — K)
and equation (10.56) can be substantial when 7 is small.

The upshot of all this is that the usual standard errors reported from the regression
(10.48) will be too small on average because they use the incorrect estimate of 2. Of
course, computing equation (10.56) directly is pretty trivial. But, if a standard re-
gression package is used after time demeaning, it is perhaps easiest to adjust the usual
standard errors directly. Since 6, appears in the standard errors, each standard error
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is simply multiplied by the factor {(NT — K)/[N(T — 1) — K]}'/?. As an example, if
N =500, T =3, and K = 10, the correction factor is about 1.227.

If an econometrics package has an option for explicitly obtaining fixed effects
estimates using panel data, o2 will be properly estimated, and you do not have to
worry about adjusting the standard errors. Many software packages also compute
an estimate of o2, which is useful to determine how large the variance of the unob-
served component is to the variance of the idiosyncratic component. Given ﬁFE, 62 =
(NT = K YN ST (9 — XiBep)? is a consistent estimator of 62 = 2 + o2, and
s0 a consistent estimator of o2 is 62 — 62. (See Problem 10.14 for a discussion of why
the estimated variance of the unobserved effect in a fixed effects analysis is generally
larger than that for a random effects analysis.)

Example 10.5 ( FE Estimation of the Effects of Job Training Grants): Using the data
in JTRAIN1.RAW, we estimate the effect of job training grants using the fixed effects
estimator. The variable union has been dropped because it does not vary over time for
any of the firms in the sample. The estimated equation with standard errors is

log(scrap) = —.080 d88 — 247 d89 — 252 grant — 422 grant_,
(.109) (.133) (.151) (.210)

Compared with the random effects, the grant is estimated to have a larger effect, both
contemporancously and lagged one year. The ¢ statistics are also somewhat more
significant with fixed effects.

Under Assumptions FE.1-FE.3, multiple restrictions are most easily tested using
an F statistic, provided the degrees of freedom are appropriately computed. Let
SSR,, be the unrestricted SSR from regression (10.48), and let SSR, denote the
restricted sum of squared residuals from a similar regression, but with Q restrictions
imposed on f. Then

(SSR, — SSR,,) [N(T — 1) — K]

F="4r, 0

is approximately F distributed with Q and N(7 — 1) — K degrees of freedom. (The
precise statement is that Q- F ~ ){é as N — oo under Hy.) When this equation is
applied to Example 10.5, the F statistic for joint significance of grant and grant_; is
F =2.23, with p-value = .113.

10.5.3 The Dummy Variable Regression

So far we have viewed the ¢; as being unobservable random variables, and for most
applications this approach gives the appropriate interpretation of f. Traditional
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approaches to fixed effects estimation view the c¢; as parameters to be estimated
along with f. In fact, if Assumption FE.2 is changed to its finite sample version,
rank(X'X) = K, then the model under Assumptions FE.1-FE.3 satisfies the Gauss-
Markov assumptions conditional on X.

If the ¢; are parameters to estimate, how would we estimate each ¢; along with f#?
One possibility is to define N dummy variables, one for each cross section observa-
tion: dn; =1 if n =i, dn; = 0 if n # i. Then, run the pooled OLS regression

y[,Ol’ld],‘,dZ,’,...,de,X[,, l:1,2,...,T;i:1,2,...,N (1057)

Then, ¢; is the coefficient on d1;, ¢, is the coefficient on d2;, and so on.

It is a nice exercise in least squares mechanics—in particular, partitioned regres-
sion (see Davidson and MacKinnon, 1993, Section 1.4)—to show that the estimator
of B obtained from regression (10.57) is, in fact, the fixed effects estimator. This is
why 5 is sometimes referred to as the dummy variable estimator. Also, the residuals
from regression (10.57) are identical to the residuals from regression (10.48). One
benefit of regression (10.57) is that it produces the appropriate estimate of o2 because
it uses NT — N — K = N(T — 1) — K as the degrees of freedom. Therefore, if it can
be done, regression (10.57) is a convenient way to carry out fixed effects analysis
under Assumptions FE.1-FE.3.

There is an important difference between the ¢; and ;. We already know that
is consistent with fixed 77as N — oo. This is not the case with the ¢;. Each time a new
cross section observation is added, another ¢; is added, and information does not
accumulate on the ¢; as N — oo. Each ¢; is an unbiased estimator of ¢; when the ¢;
are treated as parameters, at least if we maintain Assumption FE.1 and the finite
sample analogue of Assumption FE.2. When we add Assumption FE.3, the Gauss-
Markov assumptions hold (conditional on X), and é;,¢é,,...,¢éy are best linear
unbiased conditional on X. (The ¢ give practical examples of estimators that are
unbiased but not consistent.)

Econometric software that employs fixed effects usually suppresses the “estimates”
of the ¢;, although an overall intercept is often reported. The overall intercept is
either for an arbitrary cross section unit or, more commonly, for the average of the ¢;
across i.

Sometimes it is useful to obtain the ¢; even when regression (10.57) is infeasible.
Using the OLS first-order conditions, each ¢; can be shown to be

é =3, —XiPpz, i=12,...,N (10.58)

After obtaining the ¢;, the sample average, sample standard deviation, and quantiles
can be obtained to get some idea of how much heterogeneity is in the population.
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(For example: Is the population distribution of ¢; spread out or tightly centered about
its mean? Is the distribution symmetric?) With large 7, the ¢; can be precise enough to
learn something about the distribution of ¢;. With small 7, the ¢; can contain sub-
stantial noise. Under the classical linear model assumptions (which require, in addi-
tion to Assumptions FE.1-FE.3, normality of the u;), we can test the equality of the
¢; using a standard F test for T of any size. [The degrees of freedom are N — 1 and
N(T — 1) — K.] Unfortunately, the properties of this test as N — oo with T fixed are
unknown without the normality assumption.

Generally, we should view the fact that the dummy variable regression (10.57)
produces B as the coefficient vector on x;, as a coincidence. While there are other
unobserved effects models where “estimating’ the unobserved effects along with the
vector B results in a consistent estimator of B, there are many cases where this
approach leads to trouble. As we will see in Part IV, many nonlinear panel data
models with unobserved effects suffer from an incidental parameters problem, where
estimating the incidental parameters, ¢;, along with # produces an inconsistent esti-
mator of f.

10.5.4 Serial Correlation and the Robust Variance Matrix Estimator

Recall that the FE estimator is consistent and asymptotically normal under
Assumptions FE.1 and FE.2. But without Assumption FE.3, expression (10.54) gives
an improper variance matrix estimator. While heteroskedasticity in u; is always a
potential problem, serial correlation is likely to be more important in certain appli-
cations. When applying the FE estimator, it is important to remember that nothing
rules out serial correlation in {w;: t =1,...,T}. While it is true that the observed
serial correlation in the composite errors, v; = ¢; + u;, is dominated by the presence
of ¢;, there can also be serial correlation that dies out over time. Sometimes, {u;} can
have very strong serial dependence, in which case the usual FE standard errors
obtained from expression (10.54) can be very misleading. This possibility tends to be
a bigger problem with large 7. (As we will see, there is no reason to worry about
serial correlation in u;; when 7' = 2.)

Testing the idiosyncratic errors, {u;}, for serial correlation is somewhat tricky. A
key point is that we cannot estimate the u;; because of the time demeaning used
in FE, we can only estimate the time-demeaned errors, ;. As shown in equation
(10.52), the time-demeaned errors are negatively correlated if the u;, are uncorrelated.
When T =2, ui;; = —ii;; for all i, and so there is perfect negative correlation. This
result shows that for 7 = 2 it is pointless to use the ii;; to test for any kind of serial
correlation pattern.
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When T > 3, we can use equation (10.52) to determine if there is serial correlation
in {u; }. Naturally, we use the fixed effects residuals, i;;. One simplification is obtained
by applying Problem 7.4: we can ignore the estimation error in # in obtaining the
asymptotic distribution of any test statistic based on sample covariances and vari-
ances. In other words, it is as if we are using the i;,, rather than the ;. The test is
complicated by the fact that the {;, } are serially correlated under the null hypothesis.
There are two simple possibilities for dealing with this. First, we can just use any two
time periods (say, the last two), to test equation (10.52) using a simple regression. In
other words, run the regression

T on iy 7, i=1,...,N

and use 5, the coefficient on #; r_;, along with its standard error, to test Hy: 6 =
—1/(T — 1), where 6 = Corr(#i; 7_1, #;7). Under Assumptions FE.1-FE.3, the usual ¢
statistic has an asymptotic normal distribution. (It is trivial to make this test robust
to heteroskedasticity.)

Alternatively, we can use more time periods if we make the 7 statistic robust to
arbitrary serial correlation. In other words, run the pooled OLS regression

ﬁ[,Onﬁ[7,_1, t:3,7T,l:1,7N

and use the fully robust standard error for pooled OLS; see equation (7.26). It may
seem a little odd that we make a test for serial correlation robust to serial correlation,
but this need arises because the null hypothesis is that the time-demeaned errors are
serially correlated. This approach clearly does not produce an optimal test against,
say, AR(1) correlation in the u;, but it is very simple and may be good enough to
indicate a problem.

If we find serial correlation, we should, at a minimum, adjust the asymptotic vari-
ance matrix estimator and test statistics. Fortunately, we can apply the results from
Chapter 7 directly to obtain a fully robust asymptotic variance matrix estimator. Let
W=y, — XiﬁFE, i=1,2,...,N denote the T x 1 vectors fixed effects residuals.
Applying equation (7.26), the robust variance matrix estimator of B is

N

Avai(B;) = (X'X)™! (Z X;ﬁﬁ{&) X'X)™! (10.59)
i=1

which was suggested by Arellano (1987) and follows from the general results of

White (1984, Chapter 6). The robust variance matrix estimator is valid in the pres-
ence of any heteroskedasticity or serial correlation in {u;: 1 =1,..., T}, provided



276 Chapter 10

that 7' is small relative to N. [Remember, equation (7.26) is justified for fixed 7,
N — oo asymptotics.] The robust standard errors are obtained as the square roots
of the diagonal elements of the matrix (10.59), and matrix (10.59) can be used as the
V matrix in constructing Wald statistics. Unfortunately, the sum of squared resid-
uals form of the F statistic is no longer asymptotically valid when Assumption FE.3
fails.

Example 10.5 (continued): We now report the robust standard errors for the
log(scrap) equation along with the usual FE standard errors:

log(3crap) = —.080 d88 — 247 d89 — 252 grant — 422 grant_;
(.109) (.133) (.151) (.210)
[.096] [.193] [.140] [.276]

The robust standard error on grant is actually smaller than the usual standard error,
while the robust standard error on grant_; is larger than the usual one. As a result,
the absolute value of the ¢ statistic on grant_; drops from about 2 to just over 1.5.

Remember, with fixed 7 as N — oo, the robust standard errors are just as valid
asymptotically as the nonrobust ones when Assumptions FE.1-FE.3 hold. But the
usual standard errors and test statistics may be better behaved under Assumptions
FE.1-FE.3 if N is not very large relative to 7, especially if u;; is normally distributed.

10.5.5 Fixed Effects GLS

Recall that Assumption FE.3 can fail for two reasons. The first is that the conditional
variance matrix does not equal the unconditional variance matrix: E(uu; | x;,¢;) #
E(uu}). Even if E(uu!|x;, ¢;) = E(u;u)), the unconditional variance matrix may not
be scalar: E(uu)) # o2Ir, which means either that the variance of u; changes with ¢
or, probably more importantly, that there is serial correlation in the idiosyncratic
errors. The robust variance matrix (10.59) is valid in any case.

Rather than compute a robust variance matrix for the FE estimator, we can in-
stead relax Assumption FE.3 to allow for an unrestricted, albeit constant, conditional
covariance matrix. This is a natural route to follow if the robust standard errors of
the fixed effects estimator are too large to be useful and if there is evidence of serial
dependence or a time-varying variance in the u;,.

AssuMPTION FEGLS.3:  E(wu!|x;,¢;) = A, a T x T positive definite matrix.
Under Assumption FEGLS.3, E(ii;ii} | X;) = E(ii;ii}). Further, using ii, = Qru;,
E(iijii}) = Q7E(uu))Q7 = QrAQr (10.60)
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which has rank 7" — 1. The deficient rank in expression (10.60) causes problems for
the usual approach to GLS, because the variance matrix cannot be inverted. One way
to proceed is to use a generalized inverse. A much easier approach—and one that
turns out to be algebraically identical—is to drop one of the time periods from the
analysis. It can be shown (see Im, Ahn, Schmidt, and Wooldridge, 1999) that it does
not matter which of these time periods is dropped: the resulting GLS estimator is the
same.
For concreteness, suppose we drop time period 7, leaving the equations

Vi =Xap +iin

(10.61)
Viro1 =Xi 7B+ i m
So that we do not have to introduce new notation, we write the system (10.61) as
equation (10.49), with the understanding that now y; is (7' — 1) x 1, X; is (T — 1) x
K, and ii; is (T — 1) x 1. Define the (T — 1) x (T — 1) positive definite matrix Q =
E(ii;ii/). We do not need to make the dependence of Q on A and Qr explicit; the key

point is that, if no restrictions are made on A, then  is also unrestricted.
To estimate Q, we estimate f by fixed effects in the first stage. After dropping

the last time period for each i, define the (7" — 1) x 1 residuals o, =y, — Xifrp, i =
1,2,..., N. A consistent estimator of Q is
N A A
= Z au (10.62)

The fixed effects GLS (FEGLS) estimator is defined by
~ N .. A . 71 N .. A
Brecrs = (Z X;Q_1Xi> (Z ng_lyi>

i=1 i=1

where X; and ¥; are defined with the last time period dropped. For consistency of
FEGLS, we replace Assumption FE.2 with a new rank condition:

AssumpTION FEGLS.2: rank E(X/Q7'X,) =

Under Assumptions FE.1 and FEGLS.2, the FEGLS estimator is consistent. When
we add Assumption FEGLS.3, the asymptotic variance is easy to estimate:

Avar(Brpors) = (Z X/Q- 1X>
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The sum of squared residual statistics from FGLS can be used to test multiple
restrictions. Note that G = T — 1 in the F statistic in equation (7.53).

The FEGLS estimator was proposed by Kiefer (1980) when the ¢; are treated as
parameters. As we just showed, the procedure consistently estimates ff when we view
¢; as random and allow it to be arbitrarily correlated with x;;.

The FEGLS estimator is asymptotically no less efficient than the FE estimator
under Assumption FEGLS.3, even when A = ¢2I7. Generally, if A # 217, FEGLS
is more efficient than FE, but this conclusion relies on the large-N, fixed-7 asymp-
totics. Unfortunately, because FEGLS still uses the fixed effects transformation to
remove ¢;, it can have large asymptotic standard errors if the matrices X; have col-
umns close to zero.

Rather than allowing Q to be an unrestricted matrix, we can impose restrictions on
A that imply Q has a restricted form. For example, Bhargava, Franzini, and Naren-
dranatahn (1982) (BFN) assume that {u;} follows a stable, homoskedastic AR(1)
model. This assumption implies that © depends on only three parameters, o2, o2, and
the AR coefficient, p, no matter how large 7 is. BFN obtain a transformation that
eliminates the unobserved effect, ¢;, and removes the serial correlation in u;. They
also propose estimators of p, so that feasible GLS is possible. Modeling {u;} as a
specific time series process is attractive when N is not very large relative to 7, as
estimating an unrestricted covariance matrix for i; [the (7" — 1) x 1 vector of time-
demeaned errors] without large N can lead to poor finite-sample performance of the
FGLS estimator. However, the only general statements we can make concern fixed-
T, N — oo asymptotics. In this scenario, the FGLS estimator that uses unrestricted
Q is no less asymptotically efficient than an FGLS estimator that puts restrictions on
Q. And, if the restrictions on Q are incorrect, the estimator that imposes the restric-
tions is less asymptotically efficient. Therefore, on theoretical grounds, we prefer an
estimator of the type in equation (10.62).

10.5.6 Using Fixed Effects Estimation for Policy Analysis

There are other ways to interpret the fixed effects transformation to illustrate why
fixed effects is useful for policy analysis and program evaluation. Consider the model

Yie = Xilf +vii = 2y + Oowi + vy

where v; may or may not contain an unobserved effect. Let w;; be the policy variable
of interest; it could be continuous or discrete. The vector z; contains other controls
that might be correlated with w;,, including time-period dummy variables.

As an exercise, you can show that sufficient for consistency of fixed effects, along
with the rank condition FE.2, is
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EX,(v; —5)] =0, t=1,2,...,T

This assumption shows that each element of x;,, and in particular the policy variable
w;;, can be correlated with o;. What fixed effects requires for consistency is that w;, be
uncorrelated with deviations of v;, from the average over the time period. So a policy
variable, such as program participation, can be systematically related to the persistent
component in the error v; as measured by #;. It is for this reason that FE is often
superior to be pooled OLS or random effects for applications where participation in a
program is determined by preprogram attributes that also affect y;,.

10.6 First Differencing Methods

10.6.1 Inference

In Section 10.1 we used differencing to eliminate the unobserved effect ¢; with 7' = 2.
We now study the differencing transformation in the general case of model (10.41).
For completeness, we state the first assumption as follows:

ASSUMPTION FD.1: Same as Assumption FE.I.

We emphasize that the model and the interpretation of f are exactly as in Section
10.5. What differs is our method for estimating f.
Lagging the model (10.41) one period and subtracting gives

Ayy =M + Ay, 1=2,3,...,T (10.63)

where Ay, = v, — yi 1, AXir = X — X; -1, and Auy = w; — u; 1. As with the FE
transformation, this first-differencing transformation eliminates the unobserved effect
¢;. In differencing we lose the first time period for each cross section: we now have
T — 1 time periods for each i, rather than 7. If we start with T = 2, then, after dif-
ferencing, we arrive at one time period for each cross section: Ay;, = Ax;2f + Au;s.
Equation (10.63) makes it clear that the elements of x;, must be time varying (for at
least some cross section units); otherwise Ax; has elements that are identically zero
for all i and ¢. Also, while the intercept in the original equation gets differenced away,
equation (10.63) contains changes in time dummies if X;, contains time dummies. In
the T = 2 case, the coefficient on the second-period time dummy becomes the inter-
cept in the differenced equation. If we difference the general equation (10.43) we get

Ay = 0>(Ad2,) + - -+ 0r(AdT,) + (Ad2,)zp,
+ o+ (AdT)ziyr + Awid + Auy (10.64)
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The parameters 0; and p, are not identified because they disappear from the trans-
formed equation, just as with fixed effects.

The first-difference (FD) estimator, ﬁFD, is the pooled OLS estimator from the
regression

Ay, on Axy, t=2,....T;i=1,2,...,N (10.65)

Under Assumption FD.1, pooled OLS estimation of the first-differenced equations
will be consistent because

E(AX/Auy) =0,  t=23,...,T (10.66)

Therefore, Assumption POLS.1 from Section 7.8 holds. In fact, strict exogeneity
holds in the first-differenced equation:

E(Auit|AX1'2,AX,'3,...7AX,'T) :O, [:2,37...,T

which means the FD estimator is actually unbiased conditional on X.

To arrive at assumption (10.66) we clearly can get by with an assumption weaker
than Assumption FD.1. The key point is that assumption (10.66) fails if u; is corre-
lated with x; ;_1, Xy, or X; ;+1, and so we just assume that x;, is uncorrelated with u;,
for all ¢ and s.

For completeness, we state the rank condition for the FD estimator:

ASSUMPTION FD.2:  rank (Z;z E(Ax,ftAx,»,)) =K.

In practice, Assumption FD.2 rules out time-constant explanatory variables and
perfect collinearity among the time-varying variables.

Assuming the data have been ordered as we discussed earlier, first differencing is
easy to implement provided we keep track of which transformed observations are
valid and which are not. Differences for observation numbers 1, 7+ 1, 27 + 1,
3T +1,...,and (N —1)T + 1 should be set to missing. These observations corre-
spond to the first time period for every cross section unit in the original data set; by
definition, there is no first difference for the z = 1 observations. A little care is needed
so that differences between the first time period for unit i + 1 and the last time period
for unit 7 are not treated as valid observations. Making sure these are set to missing
is easy when a year variable or time period dummies have been included in the data
set.

One reason to prefer the FD estimator to the FE estimator is that FD is easier to
implement without special software. Are there statistical reasons to prefer FD to FE?
Recall that, under Assumptions FE.1-FE.3, the fixed effects estimator is asymp-
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totically efficient in the class of estimators using the strict exogeneity assumption
FE.1. Therefore, the first difference estimator is less efficient than fixed effects under
Assumptions FE.1-FE.3. Assumption FE.3 is key to the efficiency of FE. It assumes
homoskedasticity and no serial correlation in u;. Assuming that the {u;: =
1,2,... T} are serially uncorrelated may be too strong. An alternative assumption is
that the first difference of the idiosyncratic errors, {e; = Auy, t = 2,..., T}, are seri-
ally uncorrelated (and have constant variance):

ASSUMPTION FD.3: E(ee|X;,...,X;r,¢;) = aIr_1, where e is the (T —1) x 1
vector containing e, t =2,...,T.

Under Assumption FD.3 we can write u;; = u; ,_1 + e;;, so that no serial correlation
in the e;; implies that u;, is a random walk. A random walk has substantial serial de-
pendence, and so Assumption FD.3 represents an opposite extreme from Assumption
FE.3.

Under Assumptions FD.1-FD.3 it can be shown that the FD estimator is most
efficient in the class of estimators using the strict exogeneity assumption FE.1. Fur-
ther, from the pooled OLS analysis in Section 7.8,

Avar(frp) = 62(AX'AX) ! (10.67)

where 62 is a consistent estimator of 2. The simplest estimator is obtained by com-
puting the OLS residuals

er = Ay, — AXizﬁFD (10.68)
from the pooled regression (10.65). A consistent estimator of 2 is

N T

G;=[IN(T-1)-K"'> > e (10.69)
i—1 =2

which is the usual error variance estimator from regression (10.65). These equations

show that, under Assumptions FD.1-FD.3, the usual OLS standard errors from the

first difference regression (10.65) are asymptotically valid.

Unlike in the FE regression (10.48), the denominator in equation (10.69) is cor-
rectly obtained from regression (10.65). Dropping the first time period appropriately
captures the lost degrees of freedom (N of them).

Under Assumption FD.3, all statistics reported from the pooled regression on the
first-differenced data are asymptotically valid, including F statistics based on sums of
squared residuals.
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10.6.2 Robust Variance Matrix

If Assumption FD.3 is violated, then, as usual, we can compute a robust variance
matrix. The estimator in equation (7.26) applied in this context is

N
Avar(Bep) = (AX'AX) ™! (Z Ax;é,-é;Axi> (AX'AX) ™! (10.70)
i=1

where AX denotes the N(7 — 1) x K matrix of stacked first differences of x;;.

Example 10.6 (FD Estimation of the Effects of Job Training Grants): We now esti-
mate the effect of job training grants on log(scrap) using first differencing. Specifi-
cally, we use pooled OLS on

Alog(scrap;;) = 01 + 02d89, + f,Agrant;, + f,Agrant; . + Au;

Rather than difference the year dummies and omit the intercept, we simply include an
intercept and a dummy variable for 1989 to capture the aggregate time effects. If we
were specifically interested in the year effects from the structural model (in levels),
then we should difference those as well.

The estimated equation is

Alog(scrap) = —.091 — .096 d89 — .223 Agrant — .351 Agrant_,
(.091) (.125) (.131) (.235)
[.088] [.111] [.128] [.265]

R?> =.037

where the usual standard errors are in parentheses and the robust standard errors are
in brackets. We report R? here because it has a useful interpretation: it measures the
amount of variation in the growth in the scrap rate that is explained by Agrant and
Agrant_; (and d89). The estimates on grant and grant_, are fairly similar to the fixed
effects estimates, although grant is now statistically more significant than grant_,.
The usual F test for joint significance of Agrant and Agrant_; is 1.53 with p-
value = .222.

10.6.3 Testing for Serial Correlation

Under Assumption FD.3; the errors e¢;; = Au;; should be serially uncorrelated. We
can easily test this assumption given the pooled OLS residuals from regression
(10.65). Since the strict exogeneity assumption holds, we can apply the simple form of
the test in Section 7.8. The regression is based on 7" — 2 time periods:
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i = P16i.—1 + errory, t=3,4,....T;i=1,2,....N (10.71)

The test statistic is the usual 7 statistic on p,. With 7" = 2 this test is not available, nor
is it necessary. With T = 3, regression (10.71) is just a cross section regression be-
cause we lose the r = 1 and ¢ = 2 time periods.

If the idiosyncratic errors {u;: t=1,2,...,T} are uncorrelated to begin with,
{es: t=12,3,..., T} will be autocorrelated. In fact, under Assumption FE.3 it is easily
shown that Corr(e;, e;—1) = —.5. In any case, a finding of significant serial correla-
tion in the e; warrants computing the robust variance matrix for the FD estimator.

Example 10.6 ( continued): We test for AR(1) serial correlation in the first-differenced
equation by regressing é; on é; ,_; using the year 1989. We get p; = .237 with ¢ statistic
= 1.76. There is marginal evidence of positive serial correlation in the first differences
Auj,. Further, p; = .237 is very different from p; = —.5, which is implied by the stan-
dard random and fixed effects assumption that the u;, are serially uncorrelated.

An alternative to computing robust standard errors and test statistics is to use
an FDGLS analysis under the assumption that E(e;e!|x;) is a constant (7 — 1) x
(T — 1) matrix. We omit the details, as they are similar to the FEGLS case in Section
10.5.5. As with FEGLS, we could impose structure on E(uu/), such as a stable, homo-
skedastic AR(1) model, and then derive E(e;e!) in terms of a small set of parameters.

10.6.4 Policy Analysis Using First Differencing

First differencing a structural equation with an unobserved effect is a simple yet
powerful method of program evaluation. Many questions can be addressed by having
a two-year panel data set with control and treatment groups available at two points
in time.

In applying first differencing, we should difference all variables appearing in the
structural equation to obtain the estimating equation, including any binary indicators
indicating participation in the program. The estimates should be interpreted in the
orginal equation because it allows us to think of comparing different units in the cross
section at any point in time, where one unit receives the treatment and the other does
not.

In one special case it does not matter whether the policy variable is differenced.
Assume that 7 = 2, and let prog;, denote a binary indicator set to one if person i was
in the program at time . For many programs, prog;; = 0 for all i: no one participated
in the program in the initial time period. In the second time period, prog;, is unity for
those who participate in the program and zero for those who do not. In this one case,
Aprog; = progi», and the first-differenced equation can be written as
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Ayiy = 02+ Azjpy +01progin + Aujr (10.72)

The effect of the policy can be obtained by regressing the change in y on the
change in z and the policy indicator. When Az;, is omitted, the estimate of J; from
equation (10.72) is the difference-in-differences (DID) estimator (see Problem 10.4):
01 = AY,ruar — DVooniror- This is similar to the DID estimator from Section 6.3—see
equation (6.32)—but there is an important difference: with panel data, the differences
over time are for the same cross section units.

If some people participated in the program in the first time period, or if more than
two periods are involved, equation (10.72) can give misleading answers. In general,
the equation that should be estimated is

Ay = &+ Aziiy + 01 Aprogis + Auy (10.73)

where the program participation indicator is differenced along with everything else,
and the &; are new period intercepts. Example 10.6 is one such case. Extensions of the
model, where prog;, appears in other forms, are discussed in Chapter 11.

10.7 Comparison of Estimators

10.7.1 Fixed Effects versus First Differencing

When we have only two time periods, fixed effects estimation and first differencing
produce identical estimates and inference, as you are asked to show in Problem 10.3.
First differencing is easier to implement, and all procedures that can be applied to
a single cross section—such as heteroskedasticity-robust inference—can be applied
directly.

When T > 2, the choice between FD and FE hinges on the assumptions about the
idiosyncratic errors, u;. In particular, the FE estimator is more efficient under As-
sumption FE.3—the u;; are serially uncorrelated—while the FD estimator is more
efficient when u;, follows a random walk. In many cases, the truth is likely to lie
somewhere in between.

If FE and FD estimates differ in ways that cannot be attributed to sampling error,
we should worry about the strict exogeneity assumption. If u;, is correlated with x;,
for any ¢ and s, FE and FD generally have different probability limits. Any of the
standard endogeneity problems, including measurement error, time-varying omitted
variables, and simultaneity, generally cause correlation between x;, and u;,—that is,
contemporaneous correlation—which then causes both FD and FE to be inconsistent
and to have different probability limits. (We explicitly consider these problems in
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Chapter 11.) In addition, correlation between u; and x;, for s # ¢ causes FD and FE
to be inconsistent. When lagged x;, is correlated with u;;, we can solve lack of strict
exogeneity by including lags and interpreting the equation as a distributed lag model.
More problematical is when u;; is correlated with future x;;: only rarely does putting
future values of explanatory variables in an equation lead to an interesting economic
model. In Chapter 11 we show how to estimate the parameters consistently when
there is feedback from u;; to x;, s > t.

We can formally test the assumptions underlying the consistency of the FE and FD
estimators by using a Hausman test. It might be important to use a robust form of
the Hausman test that maintains neither Assumption FE.3 nor Assumption FD.3
under the null hypothesis. This approach is not difficult—see Problem 10.6—but we
focus here on regression-based tests, which are easier to compute.

If T =2, it is easy to test for strict exogeneity. In the equation Ay, = Ax;f + Au;,
neither x;; nor Xx;; should be significant as additional explanatory variables in the
first-differenced equation. We simply add, say, x;» to the FD equation and carry out
an F test for significance of x;;. With more than two time periods, a test of strict
exogeneity is a test of Hy: y = 0 in the expanded equation

Ay, = A, + wy + Auy, t=2,....,T

where w, is a subset of x, (that would exclude time dummies). Using the Wald
approach, this test can be made robust to arbitrary serial correlation or hetero-
skedasticity; under Assumptions FD.1-FD.3 the usual F statistic is asymptotically
valid.

A test of strict exogeneity using fixed effects, when T" > 2, is obtained by specifying
the equation

Vi = X + Wi 10 + ¢; + uyy, t=12,...,T—1

where w; 41 is again a subset of x; .. Under strict exogeneity, 6 = 0, and we can
carry out the test using fixed effects estimation. (We lose the last time period by
leading w;,.) An example is given in Problem 10.12.

Under strict exogeneity, we can use a GLS procedure on either the time-demeaned
equation or the first-differenced equation. If the variance matrix of u; is unrestricted,
it does not matter which transformation we use. Intuitively, this point is pretty clear,
since allowing E(u;u/) to be unrestricted places no restrictions on E(ii;ii;) or E(Au;Au}).
Im, Ahn, Schmidt, and Wooldridge (1999) show formally that the FEGLS and
FDGLS estimators are asymptotically equivalent under Assumptions FE.l and
FEGLS.3 and the appropriate rank conditions.
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10.7.2 The Relationship between the Random Effects and Fixed Effects Estimators

In cases where the key variables in x;, do not vary much over time, fixed effects and
first-differencing methods can lead to imprecise estimates. We may be forced to use
random effects estimation in order to learn anything about the population param-
eters. If a random effects analysis is appropriate—that is, if ¢; is orthogonal to x;,—
then the random effects estimators can have much smaller variances than the FE or
FD estimators. We now obtain an expression for the RE estimator that allows us to
compare it with the FE estimator.

Using the fact that jy.j, = T, we can write Q under the random effects structure as

Q = o217 + oligiy = ollr + Tolir(irir)if
= oy + To;Pr = (0] + To,)(Pr + 1Qr)

where Py =17 — Qr = j(ivir) iy and  =02/(62+ To?2). Next, define Sy =
Pr +#7Qy. Then S}l =Pr+ (1/7)Q7, as can be seen by direct matrix multiplica-
tion. Further, S}l/ P=Pr+ (1/4/m)Qr, because multiplying this matrix by itself
gives S}l (the matrix is clearly symmetric, since Py and Qy are symmetric). After
simple algebra, it can be shown that S}l/z =(1—=2)""Iy — JP7], where A =1 — V-
Therefore,

Q12 = (62 + T62) (1 = ) 1y — IP7) = (1/a,)[Ir — 2P7]

where A = 1 — [62/(a2 + To?)] 12 Assume for the moment that we know 4. Then the
RE estimator is obtained by estimating the transformed equation Cry, = CrX;f +
Crv; by system OLS, where Cr = [I;7 — AP7]. Write the transformed equation as

Vi =Xip+V; (10.74)

The variance matrix of V; is E(V;v/) = CrQCr = oI, which verifies that v; has
variance matrix ideal for system OLS estimation.

The rth element of ¥, is easily seen to be y, — Ay, and similarly for X;. Therefore,
system OLS estimation of equation (10.74) is just pooled OLS estimation of

Vit — /1.)71 = (Xil‘ - j~’_(l>ﬂ + (Ui[ — )j),’)

over all ¢ and i. The errors in this equation are serially uncorrelated and homo-
skedastic under Assumption RE.3; therefore, they satisfy the key conditions for
pooled OLS analy51s The feasible RE estimator replaces the unknown A with its es-
timator, i so that ﬂR £ can be computed from the pooled OLS regression

P, on Xy, t=1,....T;i=1,...,N (10.75)
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where now X, = X;; — AX; and Vi =Y — iﬁi, all # and i. Therefore, we can write

N T -1 T

BRE = <Z Z X;ri‘it> (Z Z ifzﬁit) (10.76)
i=1 =1 =1 =1

The usual variance estimate from the pooled OLS regression (10.75), SSR/(NT — K),

is a consistent estimator of 2. The usual ¢ statistics and F statistics from the pooled

regression are asymptotically valid under Assumptions RE.1-RE.3. For F tests, we

obtain / from the unrestricted model.

Equation (10.76) shows that the random effects estimator is obtained by a quasi-
time demeaning: rather than removing the time average from the explanatory and
dependent variables at each ¢, random effects removes a fraction of the time average.
If J is close to unity, the random effects and fixed effects estimates tend to be close.
To see when this result occurs, write J as

A=1—{1/[1 +T(&2/62)}"> (10.77)

where 62 and 62 are consistent estimators of g2 and o2 (see Section 10.4). When
T(62/62) is large, the second term in Z is small, in which case 4 is close to unity. In
fact, J—1as T — oo or as 63/65 — o0. For large T, it is not surprising to find
similar estimates from fixed effects and random effects. Even with small 7, random
effects can be close to fixed effects if the estimated variance of ¢; is large relative to the
estimated variance of u;, a case often relevant for applications. (As 4 approaches
unity, the precision of the random effects estimator approaches that of the fixed
effects estimator, and the effects of time-constant explanatory variables become
harder to estimate.)

Example 10.7 (Job Training Grants): In Example 104, T =3, (3"3 ~ .248, and
62 ~ 1.932, which gives 4~ .797. This helps explain why the RE and FE estimates
are reasonably close.

Equations (10.76) and (10.77) also show how random effects and pooled OLS are
related. Pooled OLS is obtained by setting J= 0, which is never exactly true but
could be close. In practice, J is not usually close to zero because this outcome would
require 62 to be large relative to 2.

In Section 10.4 we emphasized that consistency of random effects hinges on the
orthogonality between ¢; and x;. In fact, Assumption POLS.1 is weaker than As-
sumption RE.1. We now see, because of the particular transformation used by the
RE estimator, that its inconsistency when Assumption RE.1b is violated can be small
relative to pooled OLS if o2 is large relative to o2 or if T is large.
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If we are primarily interested in the effect of a time-constant variable in a panel
data study, the robustness of the FE estimator to correlation between the unobserved
effect and the x; is practically useless. Without using an instrumental variables
approach—something we take up in Chapter 11—random effects is probably our
only choice. Sometimes, applications of the RE estimator attempt to control for the
part of ¢; correlated with x; by including dummy variables for various groups,
assuming that we have many observations within each group. For example, if we
have panel data on a group of working people, we might include city dummy vari-
ables in a wage equation. Or, if we have panel data at the student level, we might in-
clude school dummy variables. Including dummy variables for groups controls for a
certain amount of heterogeneity that might be correlated with the (time-constant)
elements of x;,. By using RE, we can efficiently account for any remaining serial
correlation due to unobserved time-constant factors. (Unfortunately, the language
used in empirical work can be confusing. It is not uncommon to see school dummy
variables referred to as “school fixed effects” even though they appear in a random
effects analysis at the individual level.)

Regression (10.75) using the quasi-time-demeaned data has several other practical
uses. Since it is just a pooled OLS regression that is asymptotically the same as using
A in place of i, we can easily obtain standard errors that are robust to arbitrary het-
eroskedasticity in ¢; and u;, as well as arbitrary serial correlation in the {u;}. All that
is required is an econometrics package that computes robust standard errors, ¢, and F
statistics for pooled OLS regression, such as Stata®. Further, we can use the residuals
from regression (10.75), say 7, to test for serial correlation in r; = v; — A9;, which
are serially uncorrelated under Assumption RE.3a. If we detect serial correlation in
{ri}, we conclude that Assumption RE.3a is false, and this result means that the u;
are serially correlated. Although the arguments are tedious, it can be shown that es-
timation of A and f# has no effect on the null limiting distribution of the usual (or
heteroskedasticity-robust) ¢ statistic from the pooled OLS regression 7; on 7, i,
t=2,...,T,i=1,...,N.

10.7.3 The Hausman Test Comparing the RE and FE Estimators

Since the key consideration in choosing between a random effects and fixed effects
approach is whether ¢; and x;, are correlated, it is important to have a method for
testing this assumption. Hausman (1978) proposed a test based on the difference be-
tween the random effects and fixed effects estimates. Since FE is consistent when ¢;
and x;; are correlated, but RE is inconsistent, a statistically significant difference is
interpreted as evidence against the random effects assumption RE.1b.
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Before we obtain the Hausman test, there are two caveats. First, strict exogeneity,
Assumption RE.la, is maintained under the null and the alternative. Correlation
between x;; and u; for any s and ¢ causes both FE and RE to be inconsistent, and
generally their plims will differ.

A second caveat is that the test is usually implemented assuming that Assumption
RE.3 holds under the null. As we will see, this setup implies that the random effects
estimator is more efficient than the FE estimator, and it simplifies computation of the
test statistic. But we must emphasize that Assumption RE.3 is an auxiliary assump-
tion, and it is not being tested by the Hausman statistic: the Hausman test has no
systematic power against the alternative that Assumption RE.1 is true but Assump-
tion RE.3 is false. Failure of Assumption RE.3 causes the usual Hausman test to
have a nonstandard limiting distribution, which means the resulting test could have
asymptotic size larger or smaller than the nominal size.

Assuming that Assumptions RE.1-RE.3 hold, consider the case where x;, contains
only time-varying elements, since these are the only coefficients that we can estimate
using fixed effects. Then

AVaf(ﬁFE) = Ui[E(X;Xi)]_I/N and Avar(ﬁRE) = Jz[E(X;Xi)]_I/N
where the 7th row of X; is x;, — X; and the 7th row of X; is x;, — AX;. Now
E(X/X;) — E(X/X;) = E[X/(I7 — AP7)X;] — E[X/(I7 — P7)X|]

— (1= )E(X/PrX,) = (1 - ) TE(R/X,)

from which it follows that [Avar(fg;)] " — [Avar(fyz)] " is positive definite, imply-
ing that Avar(By;) — Avar(fgz) is positive definite. Since 2 — 1 as T — o, these
expressions show that the asymptotic variance of the RE estimator tends to that of
FE as T gets large.

The original form of the Hausman statistic can be computed as follows. Let oz
denote the vector of random effects estimates without the coefficients on time-constant
variables or aggregate time variables, and let or denote the corresponding fixed
effects estimates; let these each be M x 1 vectors. Then

H = (6pp — 6re) [Avar(dp) — Avar(dge)] " (0rz — Ori) (10.78)

is distributed asymptotically as y2, under Assumptions RE.1-RE.3. A key to estab-
lishing the limiting chi-square distribution of H is to show that Avar[v/N (érz — ore)]
= Avar[V/N(0pz — 6)] — Avar[V'N(ége — 6)]. Newey and McFadden (1994, Section
5.3) provide general sufficient conditions, which are met by the FE and RE estimators
under Assumptions RE.1-RE.3. (We cover these conditions in Chapter 14 in our
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discussion of general efficiency issues; see Lemma 14.1 and the surrounding discus-
sion.) The usual estimators of Avar(dsz) and Avar(dgg) can be used in equation
(10.78), but if different estimates of o2 are used, the matrix Avar(dzz) — Avar(dgz)
need not be positive definite. Thus it is best to use either the fixed effects estimate or
the random effects estimate of ¢ in both places.

Often, we are primarly interested in a single parameter, in which case we can use a
¢ statistic that ignores the other parameters. (For example, if one element of x;, is a
policy variable, and the other elements of x; are just controls or aggregrate time
dummies, we may only care about the coefficient on the policy variable.) Let 6 be
the element of g that we wish to use in the test. The Hausman test can be computed
as a 7 statistic version of (10.78), (3zz — drr)/{[se(0r£)]* — [se(Sre)])*}"/%, where the
standard errors are computed under the usual assumptions. Under Assumptions
RE.1-RE.3, the 7 statistic has an asymptotic standard normal distribution.

For testing more than one parameter, it is often easier to use an F statistic version
of the Hausman test. Let X;; and y, be the quasi-demeaned data defined previously.
Let w;, denote a 1 x M subset of time-varying elements of x;, (excluding time dum-
mies); one can include all elements of x;; that vary across i and ¢ or a subset. Let w;,
denote the time-demeaned version of w;;, and consider the extended model

Py = Xy + Wié + errory, t=1,....T;i=1,...,N (10.79)

where & is an M x 1 vector. The error terms are complicated because 4 replaces / in
obtaining the quasi-demeaned data, but they can be treated as being homoskedastic
and serially uncorrelated because replacing 4 with J does not matter asymptotically.
(This comment is just the usual observation that, in feasible GLS analysis, replacing
Q with © has no effect on the asymptotic distribution of the feasible GLS estimator
as N — oo under strict exogeneity.) Now, the Hausman test can be implemented by
testing Ho: & = 0 using standard pooled OLS analysis. The simplest approach is to
compute the F statistic. The restricted SSR is obtained from the pooled regression
that can be used to obtain fz, namely regression (10.75). Call this sum of squared
residuals SSR,. The unrestricted SSR comes from the pooled estimation of (10.79).
Then the F statistic is

(SSR, — SSR,,) (NT — K — M)

F= SSR,, ’ M

(10.80)

Under Hy (which is Assumptions RE.1-RE.3 in this case), F can be treated as an
Fu, NT-k—u Tandom variable (because M - F = ){%,,)

This statistic turns out to be identical to a statistic derived by Mundlak (1978), who
suggested putting w; in place of w;;. Mundlak’s motivation is to test an alternative to
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Assumption RE.1b of the form E(c¢; | x;) = E(¢; | w;) =y, + W;p. The equivalence of
the two approaches follows because the regressors (X;,W;) are just a nonsingular
linear transformation of the regressors (X;, W;), and so the SSRs in the unrestricted
regression are the same; the restricted SSRs are clearly the same.

If Assumption RE.3 fails, then a robust form of the Hausman statistic is needed.
Probably the easiest approach is to test Hy: £ = 0 via a robust Wald statistic in the
context of pooled OLS estimation of (10.79), or with W; in place of W;. The robust test
should account for serial correlation across time as well as general heteroskedasticity.

As in any other context that uses statistical inference, it is possible to get a statis-
tical rejection of RE.1b (say, at the 5 percent level) with the differences between the
RE and FE estimates being practically small. The opposite case is also possible: there
can be seemingly large differences between the random effects and fixed effects esti-
mates but, due to large standard errors, the Hausman statistic fails to reject. What
should be done in this case? A typical response is to conclude that the random effects
assumptions hold and to focus on the RE estimates. Unfortunately, we may be
committing a Type II error: failing to reject Assumption RE.1b when it is false.

Problems

10.1. Consider a model for new capital investment in a particular industry (say,
manufacturing), where the cross section observations are at the county level and there
are T years of data for each county:

log(invest;) = 6, + z;;y + O1tax;, + drdisaster; + ¢; + uy

The variable fax;, is a measure of the marginal tax rate on capital in the county, and
disaster;, is a dummy indicator equal to one if there was a significant natural disaster
in county 7 at time period ¢ (for example, a major flood, a hurricane, or an earth-
quake). The variables in z; are other factors affecting capital investment, and the 6,
represent different time intercepts.

a. Why is allowing for aggregate time effects in the equation important?
b. What kinds of variables are captured in ¢;?

c. Interpreting the equation in a causal fashion, what sign does economic reasoning
suggest for ,?

d. Explain in detail how you would estimate this model; be specific about the
assumptions you are making.
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e. Discuss whether strict exogeneity is reasonable for the two variables zax;
and disaster;;; assume that neither of these variables has a lagged effect on capital
investment.

10.2. Suppose you have T = 2 years of data on the same group of N working indi-
viduals. Consider the following model of wage determination:

log(wage;;) = 01 + 62d2, + 2,y + 01 female; + 6,d2, - female; + ¢; + uj,

The unobserved effect ¢; is allowed to be correlated with z;; and female;. The variable
d2, is a time period indicator, where d2, =1 if t =2 and d2, =0 if t = 1. In what
follows, assume that

E(uy; | female;, 2,1, 215, ¢;) = 0, t=1,2

a. Without further assumptions, what parameters in the log wage equation can be
consistently estimated?

b. Interpret the coefficients ¢, and J,.

c. Write the log wage equation explicitly for the two time periods. Show that the
differenced equation can be written as

Alog(wage;) = 02 + Az;y + 9, female; + Au;

where Alog(wage;) = log(wage;») — log(wage;1 ), and so on.

10.3. For T = 2 consider the standard unoberved effects model

Yie = Xl + ¢i + ip, 1=1,2

Let B and By, denote the fixed effects and first difference estimators, respectively.
a. Show that the FE and FD estimates are numerically identical.

b. Show that the error variance estimates from the FE and FD methods are numer-

ically identical.

10.4. A common setup for program evaluation with two periods of panel data is the
following. Let y,, denote the outcome of interest for unit 7 in period ¢. At ¢t =1, no
one is in the program; at = 2, some units are in the control group, and others are in
the experimental group. Let prog;, be a binary indicator equal to one if unit i is in the
program in period #; by the program design, prog; = 0 for all i. An unobserved
effects model without additional covariates is

Vi = 01 + 0,d2, + 61prog;; + ¢; + uyy, E(u; | progin, ¢i) =0
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where d2, is a dummy variable equal to unity if z = 2, and zero if = 1, and ¢; is the
unobserved effect.

a. Explain why including 42, is important in these contexts. In particular, what
problems might be caused by leaving it out?

b. Why is it important to include ¢; in the equation?

c. Using the first differencing method, show that 0, = Ay.,,.,; and 6, = Ay, —
AY o1 Where Ay, is the average change in y over the two periods for the group
with prog;» = 0, and Ay,,,,, is the average change in y for the group where prog» =
1. This formula shows that d,, the difference-in-differences estimator, arises out of an
unobserved effects panel data model.

d. Write down the extension of the model for 7" time periods.

e. A common way to obtain the DID estimator for two years of panel data is from
the model

Vi = o1 + aastart, + azprog; + 1 start,prog; + uj (10.81)

where E(uy | start,, prog;) = 0, prog; denotes whether unit i is in the program in the
second period, and start; is a binary variable indicating when the program starts. In
the two-period setup, start, = d2, and prog;, = start,prog;. The pooled OLS estimator
of 61 is the DID estimator from part c. With 7 > 2, the unobserved effects model
from part d and pooled estimation of equation (10.81) no longer generally give the
same estimate of the program effect. Which approach do you prefer, and why?

10.5. Assume that Assumptions RE.1 and RE.3a hold, but Var(¢; | x;) # Var(c¢;).
a. Describe the general nature of E(v;v/|x;).
b. What are the asymptotic properties of the random effects estimator and the asso-

ciated test statistics? How should the random effects statistics be modified?

10.6. Define the K x K symmetric matrices A; = E(AX/AX;) and A, = E(X/X)),
and assume both are positive definite. Define 8 = (B}, B;z)’ and 8 = (B, f')', both
2K x 1 vectors.

a. Under Assumption FE.1 (and the rank conditions we have given), find v/N (6 — 6)
in terms of Aj, Ay, N™'/23° ¥ AX/Aw;, and N='/2 5N X'ii; [with a 0,(1) remainder].
b. Explain how to consistently estimate Avar v/N (é — 0) without further assumptions.

c. Use parts a and b to obtain a robust Hausman statistic comparing the FD and FE
estimators. What is the limiting distribution of your statistic under Hg?
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10.7. Use the two terms of data in GPA.RAW to estimate an unobserved effects
version of the model in Example 7.8. You should drop the variable cumgpa (since this
variable violates strict exogeneity).

a. Estimate the model by random effects, and interpret the coefficient on the in-season
variable.

b. Estimate the model by fixed effects; informally compare the estimates to the RE
estimates, in particular that on the in-season effect.

c. Construct the nonrobust Hausman test comparing RE and FE. Include all vari-
ables in w;; that have some variation across i and ¢, except for the term dummy.

10.8. Use the data in NORWAY.RAW for the years 1972 and 1978 for a two-year
panel data analysis. The model is a simple distributed lag model:

log(crime;) = 0o + 01d78; + fclrprei -1 + Paclrprei 2 + ¢ + i

The variable clrpre is the clear-up percentage (the percentage of crimes solved). The
data are stored for two years, with the needed lags given as variables for each year.

a. First estimate this equation using a pooled OLS analysis. Comment on the deter-
rent effect of the clear-up percentage, including interpreting the size of the coeffi-
cients. Test for serial correlation in the composite error v;, assuming strict exogeneity
(see Section 7.8).

b. Estimate the equation by fixed effects, and compare the estimates with the
pooled OLS estimates. Is there any reason to test for serial correlation? Obtain
heteroskedasticity-robust standard errors for the FE estimates.

c. Using FE analysis, test the hypothesis Hy: f; = f,. What do you conclude? If the
hypothesis is not rejected, what would be a more parsimonious model? Estimate this
model.

10.9. Use the data in CORNWELL.RAW for this problem.

a. Estimate both a random effects and a fixed effects version of the model in Problem
7.11a. Compute the regression-based version of the Hausman test comparing RE and
FE.

b. Add the wage variables (in logarithmic form), and test for joint significance after
estimation by fixed effects.

c. Estimate the equation by first differencing, and comment on any notable changes.
Do the standard errors change much between fixed effects and first differencing?

d. Test the first-differenced equation for AR(1) serial correlation.
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10.10. An unobserved effects model explaining current murder rates in terms of the
number of executions in the last three years is

mrdrte; = 0, + pexeci; + funem;; + ¢; + uy

where mrdrte;; is the number of murders in state i during year ¢, per 10,000 people;
exec;; is the total number of executions for the current and prior two years; and
unem;, is the current unemployment rate, included as a control.

a. Using the data in MURDER.RAW, estimate this model by first differencing.
Notice that you should allow different year intercepts. Test the errors in the first-
differenced equation for serial correlation.

b. Estimate the model by fixed effects. Are there any important differences from the
FD estimates?

c. Under what circumstances would exec;; not be strictly exogenous (conditional on
C,')?

10.11. Use the data in LOWBIRTH.RAW for this question.

a. For 1987 and 1990, consider the state-level equation
lowbrthy, = 0, + 0,d90, + f,afdcpre;, + 5, log(phypci;)
+ B3 log(bedspcit) + B4 log(pcincei) + Bs log(populi) + ¢; + uir

where the dependent variable is percentage of births that are classified as low birth
weight and the key explanatory variable is afdcpre, the percentage of the population
in the welfare program, Aid to Families with Dependent Children (AFDC). The
other variables, which act as controls for quality of health care and income levels, are
physicians per capita, hospital beds per capita, per capita income, and population.
Interpretating the equation causally, what sign should each f; have? (Note: Partici-
pation in AFDC makes poor women eligible for nutritional programs and prenatal
care.)

b. Estimate the preceding equation by pooled OLS, and discuss the results. You
should report the usual standard errors and serial correlation—robust standard errors.

c. Difference the equation to eliminate the state fixed effects, ¢;, and reestimate the
equation. Interpret the estimate of f; and compare it to the estimate from part b.
What do you make of §3,?

d. Add afdcpre® to the model, and estimate it by FD. Are the estimates on afdcprc
and afdcprc? sensible? What is the estimated turning point in the quadratic?
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10.12. The data in WAGEPAN.RAW are from Vella and Verbeek (1998) for 545
men who worked every year from 1980 to 1987. Consider the wage equation

log(wage;;) = 0, + peduc; + p,black; + pyhispan; + Psexper;,
+ ﬁsexper,% + pemarried;, + founioni; + ¢; + uy

The variables are described in the data set. Notice that education does not change
over time.

a. Estimate this equation by pooled OLS, and report the results in standard form.
Are the usual OLS standard errors reliable, even if ¢; is uncorrelated with all ex-
planatory variables? Explain. Compute appropriate standard errors.

b. Estimate the wage equation by random effects. Compare your estimates with the
pooled OLS estimates.

c. Now estimate the equation by fixed effects. Why is exper;, redundant in the model
even though it changes over time? What happens to the marriage and union pre-
miums as compared with the random effects estimates?

d. Now add interactions of the form d81-educ, d82-educ, ... ,d87-educ and estimate
the equation by fixed effects. Has the return to education increased over time?

e. Return to the original model estimated by fixed effects in part c. Add a lead of the
union variable, union; .1 to the equation, and estimate the model by fixed effects
(note that you lose the data for 1987). Is union; ;. significant? What does this result
say about strict exogeneity of union membership?

10.13. Consider the standard linear unobserved effects model (10.11), under the
assumptions

E(Mﬂ | X, h,‘, C,‘) = 07 Var(u[, | X, h,‘, C,‘) = 0'3/’1[,, = 1, ey T

where h; = (h1,..., ). In other words, the errors display heteroskedasticity that
depends on /;. (In the leading case, /;, is a function of x;.) Suppose you estimate f
by minimizing the weighted sum of squared residuals

N T
SN i —adl;— - — aydN; — x;b)* /hy

i—1 =1

with respect to the a;, i = 1,..., N and b, where dn; = 1 if i = n. (This would seem to
be the natural analogue of the dummy variable regression, modified for known het-
eroskedasticity.) Can you justify this procedure with fixed 7'as N — o0?
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10.14. Suppose that we have the unobserved effects model
Vi =0+ X + 2y + hi + ui

where the x;(1 x K) are time-varying, the z;(1 x M) are time-constant,
E(ui | xiyzi,hi) =0, t=1,..., T, and E(h;|x;,2;) = 0. Let 67 = Var(h;) and o2 =
Var(u;). If we estimate f by fixed effects, we are estimating the equation
YVir = Xitﬁ + ¢ + Uiz, where Ci = o + Z;y + /’li.

a. Find o2 = Var(c;). Show that o2 is at least as large as o7, and usually strictly
larger.

b. Explain why estimation of the model by fixed effects will lead to a larger estimated

variance of the unobserved effect than if we estimate the model by random effects.
Does this result make intuitive sense?






1 1 More Topics in Linear Unobserved Effects Models

This chapter continues our treatment of linear, unobserved effects panel data models.
We first cover estimation of models where the strict exogeneity Assumption FE.1
fails but sequential moment conditions hold. A simple approach to consistent esti-
mation involves differencing combined with instrumental variables methods. We also
cover models with individual slopes, where unobservables can interact with explana-
tory variables, and models where some of the explanatory variables are assumed to
be orthogonal to the unobserved effect while others are not.

The final section in this chapter briefly covers some non-panel-data settings where
unobserved effects models and panel data estimation methods can be used.

11.1 Unobserved Effects Models without the Strict Exogeneity Assumption

11.1.1 Models under Sequential Moment Restrictions

In Chapter 10 all the estimation methods we studied assumed that the explanatory
variables were strictly exogenous (conditional on an unobserved effect in the case of
fixed effects and first differencing). As we saw in the examples in Section 10.2.3, strict
exogeneity rules out certain kinds of feedback from y, to future values of x;,. Gen-
erally, random effects, fixed effects, and first differencing are inconsistent if an ex-
planatory variable in some time period is correlated with u;;. While the size of the
inconsistency might be small—something we will investigate further—in other cases
it can be substantial. Therefore, we should have general ways of obtaining consistent
estimators as N — oo with T fixed when the explanatory variables are not strictly
exogenous.
The model of interest can still be written as

yit:Xitﬂ+Ci+uit7 Z:1727"‘7T (111)

but, in addition to allowing ¢; and x;; to be arbitrarily correlated, we now allow u;; to
be correlated with future values of the explanatory variables, (X; 1+1,X; 142, - - ., XiT)-
We saw in Example 10.3 that u; and x; .. must be correlated because x; ;11 = ;.
Nevertheless, there are many models, including the AR(1) model, for which it is
reasonable to assume that u; is uncorrelated with current and past values of x;.
Following Chamberlain (1992b), we introduce sequential moment restrictions:

E(uit|Xit7XiAt717--~7xil7cl'):Oa t:1125"'7T (112)

When assumption (11.2) holds, we will say that the x; are sequentially exogenous
conditional on the unobserved effect.
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Given model (11.1), assumption (11.2) is equivalent to
E(i [ Xty Xi 115 - Xi1, €) = E(y, [ Xir, i) = X + ¢ (11.3)

which makes it clear what sequential exogeneity implies about the explanatory vari-
ables: after x;; and ¢; have been controlled for, no past values of x;; affect the expected
value of y,,. This condition is more natural than the strict exogeneity assumption,
which requires conditioning on future values of x;; as well.

Example 11.1 (Dynamic Unobserved Effects Model): An AR(1) model with addi-
tional explanatory variables is

Yie =2y +P1Vi—1 + ¢+ (11.4)

and so X; = (2, y; ,_1)- Therefore, (Xir, Xi 115+ -+, Xi1) = (Zity Vi 15 Zi,t—15 - - - > Zily Vi)
and the sequential exogeneity assumption (11.3) requires

E(yi | Zity Viro15Zii—1s - - -5 Zits Yios €i) = B(Yig | Zity Yi 15 €i)
=Ziy +P1YVi—1 TG (11.5)

An interesting hypothesis in this model is Hy: p; = 0, which means that, after unob-
served heterogeneity, ¢;, has been controlled for (along with current and past z;),
¥:—1 does not help to predict y;. When p; # 0, we say that {y,} exhibits state de-
pendence: the current state depends on last period’s state, even after controlling for ¢;
and (z, ..., 2Z1)-

In this example, assumption (11.5) is an example of dynamic completeness condi-
tional on ¢;; we covered the unconditional version of dynamic completeness in Section
7.8.2. It means that one lag of y;, is sufficient to capture the dynamics in the con-
ditional expectation; neither further lags of y; nor lags of z; are important once
(Zit, yi 1—1,¢i) have been controlled for. In general, if x;; contains y; , ;, then as-
sumption (11.3) implies dynamic completeness conditional on ¢;. '

Assumption (11.3) does not require that z; .4, ...,z be uncorrelated with u;, so
that feedback is allowed from y;, to (z; +1,...,Z7). If we think that z; is uncorre-
lated with u;, for all s, then additional orthogonality conditions can be used. Finally,
we do not need to restrict the value of p, in any way because we are doing fixed-T
asymptotics; the arguments from Section 7.8.3 are also valid here.

Example 11.2 (Static Model with Feedback): Consider a static panel data model
Vie = Zity + O0wir + ¢i + ujy (11.6)

where z;; is strictly exogenous and w;, is sequentially exogenous:
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E(ui | 2is Wi, Wi =1, - ., Wit ¢)) =0 (11.7)
However, w; is influenced by past y;, as in this case:
Wit = Zu€ + 1Y o1 T YC + 1 (11.8)

For example, let y; be per capita condom sales in city i during year #, and let w;, be
the HIV infection rate for year £. Model (11.6) can be used to test whether condom
usage is influenced by the spread of HIV. The unobserved effect ¢; contains city-
specific unobserved factors that can affect sexual conduct, as well as the incidence of
HIV. Equation (11.8) is one way of capturing the fact that the spread of HIV is in-
fluenced by past condom usage. Generally, if E(r; ;+1u;) = 0, it is easy to show that
E(wj 1) = p1B(pyui) = pyE(u?) > 0 under equations (11.7) and (11.8), and so
strict exogeneity fails unless p; = 0.

Lagging variables that are thought to violate strict exogeneity can mitigate but
does not usually solve the problem. Suppose we use w; ,_1 in place of w;, in equation
(11.6) because we think w; might be correlated with u;;. For example, let y;, be the
percentage of flights canceled by airline 7 during year ¢, and let w; ,_; be airline profits
during the previous year. In this case X; .+1 = (Z; 141, Wi), and so X; 4 is correlated
with u;,; this fact results in failure of strict exogeneity. In the airline example this issue
may be important: poor airline performance this year (as measured by canceled
flights) can affect profits in subsequent years. Nevertheless, the sequential exogeneity
condition (11.2) is reasonable.

Keane and Runkle (1992) argue that panel data models for testing rational
expectations using individual-level data generally do not satisfy the strict exogeneity
requirement. But they do satisfy sequential exogeneity: in fact, in the conditioning set
in assumption (11.2), we can include all variables observed at time ¢ — 1.

What happens if we apply the standard fixed effects estimator when the strict exo-
geneity assumption fails? Generally,

-1
T
Ty E(i,ftii,)]

=1

plim(Bz) = B+

T
Ty E(i{,ui,)]
=1

where X;; = X;; — X;, as in Chapter 10 (i is a random draw from the cross section).
Now, under sequential exogeneity, E(Xu;) = E[(x; — X;)'u;] = —E(Xu;;) because
E(x,u;) =0, and so T-' S E(XLu;) = —T 'S E(Xiuy) = —E(Xiii;). We can
bound the size of the inconsistency as a function of 7 if we assume that the time series
process is appropriately stable and weakly dependent. Under such assumptions,
T-'S° 1 E(x/%,;) is bounded. Further, Var(x;) and Var(&) are of order 7~ By the
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Cauchy-Schwartz inequality (for example, Davidson, 1994, Chapter 9), |E(X;i;)| <
[Var()‘c,-j)Var(ﬁ,-)}l/ 2= O(T"). Therefore, under bounded moments and weak de-
pendence assumptions, the inconsistency from using fixed effects when the strict
exogeneity assumption fails is of order 7~!'. With large T the bias may be minimal.
See Hamilton (1994) and Wooldridge (1994) for general discussions of weak depen-
dence for time series processes.

Hsiao (1986, Section 4.2) works out the inconsistency in the FE estimator for the
AR(1) model. The key stability condition sufficient for the bias to be of order 7! is
|p1] < 1. However, for p, close to unity, the bias in the FE estimator can be sizable,
even with fairly large 7. Generally, if the process {x; } has very persistent elements—
which is often the case in panel data sets—the FE estimator can have substantial
bias.

If our choice were between fixed effects and first differencing, we would tend to
prefer fixed effects because, when T > 2, FE can have less bias as N — 0. To see
this point, write

T -1

! Z E(Ax/,Ax;)

t=1

T
! Z E(AX!,Auj)

t=1

plim(Bzp) = B+ (11.9)

If {x;} is weakly dependent, so is {Ax;}, and so the first average in equation (11.9) is
bounded as a function of 7. (In fact, under stationarity, this average does not depend
on 7.) Under assumption (11.2), we have

E(Axi/tA”it) = E(Xz{tuit) + E(X;,tflui,ffl) - E(Xz{,t—luit) - E(Xz{zul}tfl) = _E(Xz‘/t”i-tfl)

which is generally different from zero. Under stationarity, E(xu; ;1) does not de-
pend on ¢, and so the second average in equation (11.9) is constant. This result shows
not only that the FD estimator is inconsistent, but also that its inconsistency does not
depend on T. As we showed previously, the time demeaning underlying FE results in
its bias being on the order of 7~'. But we should caution that this analysis assumes
that the original series, {(x;, y;,):t=1,...,T}, is weakly dependent. Without this
assumption, the inconsistency in the FE estimator cannot be shown to be of order
T

If we make certain assumptions, we do not have to settle for estimators that are
inconsistent with fixed 7. A general approach to estimating equation (11.1) under
assumption (11.2) is to use a transformation to remove c¢;, but then search for in-
strumental variables. The FE transformation can be used provided that strictly ex-
ogenous instruments are available (see Problem 11.9). For models under sequential
exogeneity assumptions, first differencing is more attractive.
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First differencing equation (11.1) gives
Ay, = Axyf + Auy, t=2,3,...,T (11.10)
Now, under assumption (11.2),
E(xju;) =0, s=1,2,...,¢ (11.11)
Assumption (11.11) implies the orthogonality conditions
E(x Au;) = 0, s=1,2,...;t—1 (11.12)
S0 at time ¢ we can use X/, | as potential instruments for Ax;,, where
X) = (X1, X2, -+, Xig) (11.13)

The fact that x,_; is uncorrelated with Aw; opens up a variety of estimation
procedures. For example, a simple estimator uses Ax;, ; as the instruments for
Ax;;: E(AX], jAu;) = 0 under assumption (11.12), and the rank condition rank

E(Ax;, ;Ax;) = K is usually reasonable. Then, the equation

Ay = Axif + Auyy,  1=3,...,T (11.14)

can be estimated by pooled 2SLS using instruments Ax;,;. This choice of instru-
ments loses an additional time period. If 7 = 3, estimation of equation (11.14)
becomes 2SLS on a cross section: (X, — X;1) is used as instruments for (X3 — Xp).
When T > 3, equation (11.14) is a pooled 2SLS procedure. There is a set of
assumptions—the sequential exogeneity analogues of Assumptions FD.1-FD.3—
under which the usual 2SLS statistics obtained from the pooled 2SLS estimation are
valid; see Problem 11.8 for details. With Ax; ,_; as the instruments, equation (11.14)
is just identified.

Rather than use changes in lagged x;; as instruments, we can use lagged levels of
x;;. For example, choosing (x; ,1,X;,—2) as instruments at time ¢ is no less efficient
than the procedure that uses Ax;,_i, as the latter is a linear combination of the for-
mer. It also gives K overidentifying restrictions that can be used to test assumption
(11.2). (There will be fewer than X if x;, contains time dummies.)

When T =2, f may be poorly identified. The equation is Ay, = Axpf + Aup,
and, under assumption (11.2), x;; is uncorrelated with Au,. This is a cross section
equation that can be estimated by 2SLS using x;; as instruments for Ax;. The esti-
mator in this case may have a large asymptotic variance because the correlations
between x;, the levels of the explanatory variables, and the differences Ax; =
X;» — X;1 are often small. Of course, whether the correlation is sufficient to yield small
enough standard errors depends on the application.
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Even with large 7, the available IVs may be poor in the sense that they are
not highly correlated with Ax;. As an example, consider the AR(1) model (11.4)
without ;i y;, = pyy; ;-1 + ¢+ i, E(wie | yi 15+ -5 Vigy¢i) =0, t = 1,2,..., T. Dif-
ferencing to eliminate ¢; gives Ay;, = piAy; ,_; + Auy, t > 2. At time ¢, all elements of
(¥i1-25--+>Yio) are IV candidates because Au; is uncorrelated with y;, ,, h > 2.
Anderson and Hsiao (1982) suggested pooled IV with instruments y; t_z, or Ay; , 5,
whereas Arellano and Bond (1991) proposed using the entire set of instruments in
a GMM procedure. Now, suppose that p; = 1 and, in fact, there is no unobserved
effect. Then Ay, ,_; is uncorrelated with any variable dated at time ¢ — 2 or earlier,
and so the elements of ( Vii2s---, Vi) cannot be used as IVs for Ay, ,_;. What this
conclusion shows is that we cannot use IV methods to test Ho: p, = 1 in the absence
of an unobserved effect.

Even if p; <1, IVs from (y; , ,,...,¥;) tend to be weak if p; is close to one.
Recently, Arellano and Bover (1995) and Ahn and Schmidt (1995) suggested addi-
tional orthogonality conditions that improve the efficiency of the GMM estimator,
but these are nonlinear in the parameters. (In Chapter 14 we will see how to use these
kinds of moment restrictions.) Blundell and Bond (1998) obtained additional linear
moment restrictions in the levels equation y;, = p, Viit—1 t Viey, Vit = € + Ui The ad-
ditional restrictions are based on y,, being drawn from a steady-state distribution,
and they are especially helpful in improving the efficiency of GMM for p, close to
one. (Actually, the Blundell-Bond orthogonality conditions are valid under weaker
assumptions.) See also Hahn (1999). Of course, when p; = 1, it makes no sense to
assume that there is a steady-state distribution. In Chapter 13 we cover conditional
maximum likelihood methods that can be applied to the AR(1) model.

A general feature of pooled 2SLS procedures where the dimension of the I'Vs is
constant across ¢ is that they do not use all the instruments available in each time
period; therefore, they cannot be expected to be efficient. The optimal procedure is to
use expression (11.13) as the instruments at time z in a GMM procedure. Write the
system of equations as

Ay, = AX;f + Au; (11.15)

using the same definitions as in Section 10.6. Define the matrix of instruments as

X 0 0 -~ 0
0 x5 0 -~ 0

Z.— | . (11.16)
0 0 0 - x{p,

where x{) is defined in expression (11.13). Note that Z; has 7' — 1 rows to correspond
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with the 7' — 1 time periods in the system (11.15). Since each row contains different
instruments, different instruments are used for different time periods.

Efficient estimation of # now proceeds in the GMM framework from Chapter 8
with instruments (11.16). Without further assumptions, the unrestricted weighting
matrix should be used. In most applications there is a reasonable set of assumptions
under which

where e; = Au; and Q = E(e;e;/). Recall from Chapter 8 that assumption (11.17) is the
assumption under which the GMM 3SLS estimator is the asymptotically efficient
GMM estimator (see Assumption SIV.5). The full GMM analysis is not much more
difficult. The traditional form of 3SLS estimator that first transforms the instruments
should not be used because it is not consistent under assumption (11.2).

As a practical matter, the column dimension of Z; can be very large, making GMM
estimation difficult. In addition, GMM estimators—including 2SLS and 3SLS—using
many overidentifying restrictions are known to have poor finite sample properties (see,
for example, Tauchen, 1986; Altonji and Segal, 1996; and Ziliak, 1997). In practice, it
may be better to use a couple of lags rather than lags back to t = 1.

Example 11.3 (Testing for Persistence in County Crime Rates): We use the data in
CORNWELL.RAW to test for state dependence in county crime rates, after allow-
ing for unobserved county effects. Thus, the model is equation (11.4) with y, =
log(crmrte;;) but without any other explanatory variables. As instruments for Ay, ,_y,
we use (y; ,_», ¥; ,_3). Further, so that we do not have to worry about correcting the
standard error for possible serial correlation in Au;, we use just the 1986-1987 dif-
ferenced equation. The F statistic for joint significance of y; , ,, y; , 5 in the reduced
form for Ay;,_; yields p-value = .023, although the R-squared is only .083. The
2SLS estimates of the first-differenced equation are

Alog(ctmrte) = .065 + 212 Alog(crmrte) ,, N =90
(.040)  (.497)

so that we cannot reject Ho: p; = 0 (1 = .427).
11.1.2 Models with Strictly and Sequentially Exogenous Explanatory Variables

Estimating models with both strictly exogenous and sequentially exogenous variables
is not difficult. For r = 1,2,..., T, suppose that

Yir = Zi) + Wigd + ¢ + Ui (11.18)

Assume that z;; is uncorrelated with u;, for all s and ¢, but that u;, is uncorrelated with
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w;; only for s < #; sufficient is E(uy | z;, Wi, Wi —1,...,W;) = 0. This model covers
many cases of interest, including when w;, contains a lagged dependent variable.
After first differencing we have

Ayi)‘ = AZ,'[}’ + AW[,5 + Au,-t (1 119)

and the instruments available at time ¢ are (z;, w;,_1,...,W;). In practice, so that
there are not so many overidentifying restrictions, we might replace z; with Az;; and
choose something like (Az;, w; ,_1,W; ,—2) as the instruments at time z. Or, z; and a
couple of lags of z; can be used. In the AR(1) model (11.4), this approach would
mean something like (z;,z; 1,2 -2, ¥; ;2 Vi 3)- We can even use leads of z;, such
as z; 141, when z; is strictly exogenous. Such choices are amenable to a pooled 2SLS
procedure to estimate y and d. Of course, whether or not the usual 2SLS standard
errors are valid depends on serial correlation and variance properties of Au;,. Never-
theless, assuming that the changes in the errors are (conditionally) homoskedastic
and serially uncorrelated is a reasonable start.

Example 11.4 (Effects of Enterprise Zones): Papke (1994) uses several different
panel data models to determine the effect of enterprise zone designation on economic
outcomes for 22 communities in Indiana. One model she uses is

Yie =0+ p1yi 1 +01€zi + i + ujy (11.20)

where y;, is the log of unemployment claims. The coefficient of interest is on the
binary indicator ez;, which is unity if community i in year ¢ was designated as an
enterprise zone. The model holds for the years 1981 to 1988, with y,, corresponding
to 1980, the first year of data. Differencing gives

Ayy =&+ p1Ay; g +018ezi + Ay (11.21)

The differenced equation has new time intercepts, but as we are not particularly
interested in these, we just include year dummies in equation (11.21).

Papke estimates equation (11.21) by 2SLS, using Ay;, , as an instrument for
Ay; ,_y; because of the lags used, equation (11.21) can be estimated for six years of
data. The enterprise zone indicator is assumed to be strictly exogenous in equation
(11.20), and so Aez; acts as its own instrument. Strict exogeneity of ez;, is valid be-
cause, over the years in question, each community was a zone in every year following
initial designation: future zone designation did not depend on past performance.

The estimated equation in first differences is

Alog(uclms) = &, + 165 Alog(uclms) | — 219 Aez
(.288) (.106)
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where the intercept and year dummies are supressed for brevity. Based on the usual
pooled 2SLS standard errors, p; is not significant (or practially very large), while Sy is
economically large and statistically significant at the 5 percent level.

If the u;, in equation (11.20) are serially uncorrelated, then, as we saw in Chapter
10, Au;; must be serially correlated. Papke found no important differences when the
standard error for &; was adjusted for serial correlation and heteroskedasticity.

In the pure AR(1) model, using lags of y; as an instrument for Ay, , ; means that
we are assuming the AR(1) model captures all of the dynamics. If further lags of
v;; are added to the structural model, then we must go back even further to obtain
instruments. If strictly exogenous variables appear in the model along with y; , ;—
such as in equation (11.4)—then lags of z; are good candidates as instruments for
Ay; ,—1- Much of the time inclusion of y; , ; (or additional lags) in a model with other
explanatory variables is intended to simply control for another source of omitted
variables bias; Example 11.4 falls into this class.

Things are even trickier in finite distributed lag models. Consider the patents-R&D
model of Example 10.2: after first differencing, we have

Apatents;, = AO; + Azyyy + 60ARDj; + - - - + 6sARD; ;_s + Auy (11.22)

If we are concerned that strict exogeneity fails because of feedback from u;, to future
R&D expenditures, then ARD;, and Au;, are potentially correlated (because u; ,_; and
RD;, are correlated). Assuming that the distributed lag dynamics are correct—and
assuming strict exogeneity of z;,—all other explanatory variables in equation (11.22)
are uncorrelated with Au;. What can we use as an instrument for ARD;, in equation
(11.22)? We can include RD; i, RD; »,... in the instrument list at time ¢ (along
with all of z;).

This approach identifies the parameters under the assumptions made, but it is
problematic. What if we have the distributed lag dynamics wrong, so that six lags,
rather than five, belong in the structural model? Then choosing additional lags of
RD;, as instruments fails. If ARD), is sufficiently correlated with the elements of z;; for
some s, then using all of z; as instruments can help. Generally, some exogenous factors
either in z;; or from outside the structural equation are needed for a convincing analysis.

11.1.3 Models with Contemporaneous Correlation between Some Explanatory
Variables and the Idiosyncratic Error

Consider again model (11.18), where z; is strictly exogenous in the sense that

E(z u;) =0, all s, (11.23)
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but where we allow w;; to be contemporaneously correlated with u;,. This correlation
can be due to any of the three problems that we studied earlier: omission of an im-
portant time-varying explanatory variable, measurement error in some clements of
w;;, or simultaneity between y; and one or more elements of w;. We assume that
equation (11.18) is the equation of interest. In a simultaneous equations model with
panel data, equation (11.18) represents a single equation. A system approach is also
possible. See, for example, Baltagi (1981); Cornwell, Schmidt, and Wyhowski (1992);
and Kinal and Labhiri (1993).

Example 11.5 (Effects of Smoking on Earnings): A panel data model to examine
the effects of cigarette smoking on earnings is

log(wagei) = ziy + d1cigsic + ¢; + uy (11.24)

(For an empirical analysis, see Levine, Gustafson, and Velenchik, 1997.) As always,
we would like to know the causal effect of smoking on hourly wage. For concrete-
ness, assume cigs;, is measured as average packs per day. This equation has a causal
interpretation: holding fixed the factors in z; and ¢;, what is the effect of an exoge-
nous change in cigarette smoking on wages? Thus equation (11.24) is a structural
equation.

The presence of the individual heterogeneity, ¢;, in equation (11.24) recognizes that
cigarette smoking might be correlated with individual characteristics that also affect
wage. An additional problem is that cigs; might also be correlated with u;,, some-
thing we have not allowed so far. In this example the correlation could be from a
variety of sources, but simultaneity is one possibility: if cigarettes are a normal good,
then, as income increases—holding everything else fixed—cigarette consumption
increases. Therefore, we might add another equation to equation (11.24) that reflects
that cigs;, may depend on income, which clearly depends on wage. If equation (11.24)
is of interest, we do not need to add equations explicitly, but we must find some in-
strumental variables.

To get an estimable model, we must first deal with the presence of ¢;, since it might
be correlated with z; as well as cigs;. In the general model (11.18), either the FE or
FD transformations can be used to eliminate ¢; before addressing the correlation be-
tween w;, and u;,. If we first difference, as in equation (11.19), we can use the entire
vector z; as valid instruments in equation (11.19) because z; is strictly exogenous.
Neither w; nor w; ,_; is valid as instruments at time ¢, but it could be that w; ,_, is
valid, provided we assume that u;, is uncorrelated with w;, for s < ¢. This assumption
means that w; has only a contemporaneous effect on y,,, something that is likely to
be false in example 11.5. [If smoking affects wages, the effects are likely to be deter-
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mined by prior smoking behavior as well as current smoking behavior. If we include
a measure of past smoking behavior in equation (11.24), then this must act as its own
instrument in a differenced equation, and so using cigs;, for s < ¢t as IVs becomes
untenable.

Another thought is to use lagged values of y; as instruments, but this approach
effectively rules out serial correlation in u;. In the wage equation (11.24), it would
mean that lagged wage does not predict current wage, once ¢; and the other variables
are controlled for. If this assumption is false, using lags of y;, is not a valid way of
identifying the parameters.

If z; is the only valid set of instruments for equation (11.18), the analysis probably
will not be convincing: it relies on Aw;; being correlated with some linear combina-
tion of z; other than Az;. Such partial correlation is likely to be small, resulting in
poor IV estimators; see Problem 11.2.

Perhaps the most convincing possibility for obtaining additional instruments is to
follow the standard SEM approach from Chapter 9: use exclusion restrictions in the
structural equations. For example, we can hope to find exogenous variables that do
not appear in equation (11.24) but that do affect cigarette smoking. The local price of
cigarettes (or level of cigarette taxes) is one possibility. Such variables can usually be
considered strictly exogenous, unless we think people change their residence based on
the price of cigarettes.

If we difference equation (11.24) we get

Alog(wage;;) = Az;y + 01Acigsy + Auy (11.25)

Now, for each ¢, we can study identification of this equation just as in the cross sec-
tional case: we must first make sure the order condition holds, and then argue (or
test) that the rank condition holds. Equation (11.25) can be estimated using a pooled
2SLS analysis, where corrections to standard errors and test statistics for hetero-
skedasticity or serial correlation might be warranted. With a large cross section, a
GMM system procedure that exploits general heteroskedasticity and serial correla-
tion in Au;; can be used instead.

Example 11.6 (Effects of Prison Population on Crime Rates): In order to estimate
the causal effect of prison population increases on crime rates at the state level, Levitt
(1996) uses instances of prison overcrowding litigation as instruments for the growth
in prison population. The equation Levitt estimates is in first differences. We can
write an underlying unobserved effects model as

log(crime;) = 0, + f, log( prison;) + Xuy + ¢; + uy (11.26)
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where 6, denotes different time intercepts and crime and prison are measured per
100,000 people. (The prison population variable is measured on the last day of the
previous year.) The vector x;, contains other controls listed in Levitt, including mea-
sures of police per capita, income per capita, unemployment rate, and race, metro-
politan, and age distribution proportions.

Differencing equation (11.26) gives the equation estimated by Levitt:

Alog(crime;) = &, + By Alog(prisony) + Axyy + Auy (11.27)

Simultaneity between crime rates and prison population, or, more precisely, in the
growth rates, makes OLS estimation of equation (11.27) generally inconsistent. Using
the violent crime rate and a subset of the data from Levitt (in PRISON.RAW, for the
years 1980 to 1993, for 51 - 14 = 714 total observations), the OLS estimate of f§; is
—.181 (se = .048). We also estimate the equation by 2SLS, where the instruments for
Alog( prison) are two binary variables, one for whether a final decision was reached
on overcrowding litigation in the current year and one for whether a final decision
was reached in the previous two years. The 2SLS estimate of 5, is —1.032 (se = .370).
Therefore, the 2SLS estimated effect is much larger; not surprisingly, it is much less
precise, too. Levitt (1996) found similar results when using a longer time period and
more instruments.

A different approach to estimating SEMs with panel data is to use the fixed effects
transformation and then to apply an IV technique such as pooled 2SLS. A simple
procedure is to estimate the time-demeaned equation (10.46) by pooled 2SLS, where
the instruments are also time demeaned. This is equivalent to using 2SLS in the
dummy variable formulation, where the unit-specific dummy variables act as their
own instruments. See Problem 11.9 for a careful analysis of this approach. Foster and
Rosenzweig (1995) use the within transformation along with I'V to estimate household-
level profit functions for adoption of high-yielding seed varieties in rural India. Ayres
and Levitt (1998) apply 2SLS to a time-demeaned equation to estimate the effect of
Lojack electronic theft prevention devices on city car-theft rates.

The FE transformation precludes the use of lagged values of w; among the
instruments, for essentially the same reasons discussed for models with sequentially
exogenous explanatory variables: u;, will be correlated with the time-demeaned in-
struments. Therefore, if we make assumptions on the dynamics in the model that
ensure that u; is uncorrelated with w;, s < ¢, differencing is preferred in order to use
the extra instruments.

Differencing or time demeaning followed by some sort of IV procedure is useful
when u; contains an important, time-varying omitted variable that is correlated with
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u;;. The same considerations for choosing instruments in the simultaneity context are
relevant in the omitted variables case as well. In some cases, w;;, s < ¢t — 1, can be
used as instruments at time # in a first-differenced equation (11.18); in other cases, we
might not want identification to hinge on using lagged exploratory variables as IVs.
For example, suppose that we wish to study the effects of per student spending on test
scores, using three years of data, say 1980, 1985, and 1990. A structural model at the
school level is

avgscorey, = 0, + 2y + d1spending;, + ¢; + u; (11.28)

where z;; contains other school and student characteristics. In addition to worrying
about the school fixed effect ¢;, u;; contains average family income for school i at time
t (unless we are able to collect data on income); average family income is likely to be
correlated with spending;,. After differencing away ¢;, we need an instrument for
Aspending;;. One possibility is to use exogenous changes in property taxes that arose
because of an unexpected change in the tax laws. [Such changes occurred in California
in 1978 (Proposition 13) and in Michigan in 1994 (Proposal A).] Using lagged spend-
ing changes as I'Vs is probably not a good idea, as spending might affect test scores
with a lag.

The third form of endogeneity, measurement error, can also be solved by elimi-
nating ¢; and finding appropriate IVs. Measurement error in panel data was studied
by Solon (1985) and Griliches and Hausman (1986). It is widely believed in econo-
metrics that the differencing and FE transformations exacerbate measurement error
bias (even though they eliminate heterogeneity bias). However, it is important to
know that this conclusion rests on the classical errors-in-variables model under strict
exogeneity, as well as on other assumptions.

To illustrate, consider a model with a single explanatory variable,

Yie = Bx; + ci + ui (11.29)
under the strict exogeneity assumption
E(ui | X7, x;,¢) =0, t=12,....T (11.30)

where x;; denotes the observed measure of the unobservable x;;. Condition (11.30)
embodies the standard redundancy condition—that x; does not matter once x;; is
controlled for—in addition to strict exogeneity of the unmeasured and measured
regressors. Denote the measurement error as r;; = xj; — x;;. Assuming that r; is un-
correlated with x;—the key CEV assumption—and that variances and covariances
are all constant across ¢, it is easily shown that, as N — oo, the plim of the pooled
OLS estimator is
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o Cov(xy, ¢; + uiy — Pri)
lim =)+
BHOO Brors =B Var( xit)
Cov(xi, ¢;) — o’
Var(x;)

=p+ (11.31)
where af = Var(r;) = Cov(xy, r;); this is essentially the formula derived by Solon
(1985).

From equation (11.31), we see that there are two sources of asymptotic bias in the
POLS estimator: correlation between x;; and the unobserved effect, ¢;, and a mea-
surement error bias term, —fa>. If x; and ¢; are positively correlated and § > 0, the
two sources of bias tend to cancel each other out.

Now assume that r;, is uncorrelated with x;, for all 7 and s, and for simplicity sup-
pose that T' = 2. If we first difference to remove ¢; before performing OLS we obtain

Cov(Axis, Auy — PAry) Cov(Ax;, Ary)

Blir;l Pro =P+ Var(Ax;) =h=F Var(Ax;)
_ [03 - COV(V”,}’L,,I)]
=h=2 Var(Ax;)
_ _ O-rz(l B p;)
‘ﬁ<1 a§*<1—pxy>+ae<1—pr>> (11.32)

where p,.. = Corr(x}, x;,_,) and p, = Corr(ry, r; ;—1), where we have used the fact that
Cov(ry, ri—1) = o2p, and Var(Ax;) = 2[o2.(1 — p,.) + (1 — p,)]; see also Solon
(1985) and Hsiao (1986, p. 64). Equation (11.32) shows that, in addition to the ratio
o’ /ai* being important in determining the size of the measurement error bias, the
ratio (1 — p,)/(1 — p,.) is also important. As the autocorrelation in x; increases rel-
ative to that in r;, the measurement error bias in fp increases. In fact, as p_. — 1,
the measurement error bias approaches —f.

Of course, we can never know whether the bias in equation (11.31) is larger than
that in equation (11.32), or vice versa. Also, both expressions are based on the CEV
assumptions, and then some. If there is little correlation between Ax; and Ar;, the
measurement error bias from first differencing may be small, but the small correlation
is offset by the fact that differencing can considerably reduce the variation in the
explanatory variables.

Consistent estimation in the presence of measurement error is possible under cer-
tain assumptions. Consider the more general model

Vit = Zigy + 0w}, + ¢; + uy, t=12,....T (11.33)
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*

where w}; is measured with error. Write r;, = w;; — w/;, and assume strict exogeneity

along with redundancy of w;;:

E(uy | zi, w5, Wi, ¢;) =0, t=1,2,....T (11.34)
Replacing w;;, with w;, and first differencing gives

Ay, = Azyy + 0Aw; + Auyy — 0Ary, (11.35)
The standard CEV assumption in the current context can be stated as
E(ri|zi,w),c;) =0, t=12,....T (11.36)

which implies that r;, is uncorrelated with z;, w}, for all ¢ and 5. (As always in the
context of linear models, assuming zero correlation is sufficient for consistency, but
not for usual standard errors and test statistics to be valid.) Under assumption (11.36)
(and other measurement error assumptions), Ar;, is correlated with Aw;,. To apply an
IV method to equation (11.35), we need at least one instrument for Aw;,. As in the
omitted variables and simultaneity contexts, we may have additional variables out-
side the model that can be used as instruments. Analogous to the cross section case
(as in Chapter 5), one possibility is to use another measure on w}, say h;. If the
measurement error in /; is orthogonal to the measurement error in wy, all 7 and s,
then A/, is a natural instrument for Aw;, in equation (11.35). Of course, we can use
many more instruments in equation (11.35), as any linear combination of z; and h; is
uncorrelated with the composite error under the given assumptions.

Alternatively, a vector of variables h;; may exist that are known to be redundant
in equation (11.33), strictly exogenous, and uncorrelated with r;; for all s. If Ah; is
correlated with Aw;,, then an IV procedure, such as pooled 2SLS, is easy to apply. It
may be that in applying something like pooled 2SLS to equation (11.35) results in
asymptotically valid statistics; this imposes serial independence and homoskedasticity
assumptions on Au;,. Generally, however, it is a good idea to use standard errors and
test statistics robust to arbitrary serial correlation and heteroskedasticity, or to use a
full GMM approach that efficiently accounts for these. An alternative is to use the
FE transformation, as explained in Problem 11.9. Ziliak, Wilson, and Stone (1999)
find that, for a model explaining cyclicality of real wages, the FD and FE estimates
are different in important ways. The differences largely disappear when IV methods
are used to account for measurement error in the local unemployment rate.

So far, the solutions to measurement error in the context of panel data have
assumed nothing about the serial correlation in r;. Suppose that, in addition to as-
sumption (11.34), we assume that the measurement error is serially uncorrelated:

E(ryrs) =0, s #t (11.37)
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Assumption (11.37) opens up a solution to the measurement error problem with
panel data that is not available with a single cross section or independently pooled
cross sections. Under assumption (11.36), r; is uncorrelated with w/, for all ¢ and s.
Thus, if we assume that the measurement error r; is serially uncorrelated, then r;; is
uncorrelated with w;, for all 7 # s. Since, by the strict exogeneity assumption, Au; is
uncorrelated with all leads and lags of z;; and w;, we have instruments readily avail-
able. For example, w; > and w;,_3 are valid as instruments for Aw; in equation
(11.35); so is w; 1. Again, pooled 2SLS or some other IV procedure can be used
once the list of instruments is specified for each time period. However, it is important
to remember that this approach requires the r;, to be serially uncorrelated, in addition
to the other CEV assumptions.

The methods just covered for solving measurement error problems all assume strict
exogeneity of all explanatory variables. Naturally, things get harder when measure-
ment error is combined with models with only sequentially exogenous explanatory
variables. Nevertheless, differencing away the unobserved effect and then selecting
instruments—based on the maintained assumptions—generally works in models with
a variety of problems.

11.1.4 Summary of Models without Strictly Exogenous Explanatory Variables

Before leaving this section, it is useful to summarize the general approach we have
taken to estimate models that do not satisfy strict exogeneity: first, a transformation
is used to eliminate the unobserved effect; next, instruments are chosen for the endog-
enous variables in the transformed equation. In the previous subsections we have
stated various assumptions, but we have not catalogued them as in Chapter 10,
largely because there are so many variants. For example, in Section 11.1.3 we saw
that different assumptions lead to different sets of instruments. The importance of
carefully stating assumptions—such as (11.2), (11.34), (11.36), and (11.37)—cannot
be overstated.

First differencing, which allows for more general violations of strict exogeneity
than the within transformation, has an additional benefit: it is easy to test the first-
differenced equation for serial correlation after pooled 2SLS estimation. The test
suggested in Problem 8.10 is immediately applicable with the change in notation that
all variables are in first differences. Arellano and Bond (1991) propose tests for serial
correlation in the original errors, {u;: 1t =1,..., T}; the tests are based on GMM
estimation. When the original model has a lagged dependent variable, it makes more
sense to test for serial correlation in {u;}: models with lagged dependent variables
are usually taken to have errors that are serially uncorrelated, in which case the first-
differenced errors must be serially correlated. As Arellano and Bond point out, serial
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correlation in {u;} generally invalidates using lags of y,, as IVs in the first-differenced
equation. Of course, one might ask why we would be interested in p; in model (11.4)
if {u;} is generally serially correlated.

11.2 Models with Individual-Specific Slopes

The unobserved effects models we have studied up to this point all have an additive
unobserved effect that has the same partial effect on y; in all time periods. This
assumption may be too strong for some applications. We now turn to models that
allow for individual-specific slopes.

11.2.1 A Random Trend Model
Consider the following extension of the standard unobserved effects model:
Vi = ¢+ git + X + uyy, t=12,....,T (11.38)

This is sometimes called a random trend model, as each individual, firm, city, and so
on is allowed to have its own time trend. The individual-specific trend is an additional
source of heterogeneity. If y;, is the natural log of a variable, as is often the case in
economic studies, then g; is (roughly) the average growth rate over a period (holding
the explanatory variables fixed). Then equation (11.38) is referred to a random growth
model; see, for example, Heckman and Hotz (1989).

In many applications of equation (11.38) we want to allow (¢;, g;) to be arbitrarily
correlated with x;. (Unfortunately, allowing this correlation makes the name “‘ran-
dom trend model” conflict with our previous usage of random versus fixed effects.)
For example, if one element of x;; is an indicator of program participation, equation
(11.38) allows program participation to depend on individual-specific trends (or
growth rates) in addition to the level effect, ¢;. We proceed without imposing restric-
tions on correlations among (c;, g;, X;ir), so that our analysis is of the fixed effects
variety. A random effects approach is also possible, but it is more cumbersome; see
Problem 11.5.

For the random trend model, the strict exogeneity assumption on the explanatory
variables is

E(u,-,|x,-1,...,X,-T,c,-,g,-) =0 (1139)
which follows definitionally from the conditional mean specification
E(ya X, ..o, Xir, i, i) = E(py [ X, €1, 91) = ¢i + git + Xief (11.40)

We are still primarily interested in consistently estimating f.
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One approach to estimating f is to difference away c;:
Ay,-,zgi—&-AX,-,ﬁ’—i—Aui,, t:2,3,...,T (1141)

where we have used the fact that g;z — g;(t — 1) = g;. Now equation (11.41) is just
the standard unobserved effects model we studied in Chapter 10. The key strict exo-
geneity assumption, E(Au;|gi,AXpn,...,Ax;r) =0, t=2,3,..., T, holds under as-
sumption (11.39). Therefore, we can apply fixed effects or first-differencing methods
to equation (11.41) in order to estimate f.

In differencing the equation to eliminate ¢; we lose one time period, so that equa-
tion (11.41) applies to T — 1 time periods. To apply FE or FD methods to equation
(11.41) we must have T'— 1 = 2, or T > 3. In other words, f can be estimated con-
sistently in the random trend model only if 7" > 3.

Whether we prefer FE or FD estimation of equation (11.41) depends on the
properties of {Auw;: t =2,3,...,T}. As we argued in Section 10.6, in some cases it is
reasonable to assume that the first difference of {u;,} is serially uncorrelated, in which
case the FE method applied to equation (11.41) is attractive. If we make the as-
sumption that the u;, are serially uncorrelated and homoskedastic (conditional on x;,
¢, gi), then FE applied to equation (11.41) is still consistent and asymptotically nor-
mal, but not efficient. The next subsection covers that case explicitly.

Example 11.7 (Random Growth Model for Analyzing Enterprise Zones): Papke
(1994) estimates a random growth model to examine the effects of enterprise zones on
unemployment claims:

log(ucims;,) = 0, + ¢; + g;t + o1ezi + uy

so that aggregate time effects are allowed in addition to a jurisdiction-specific growth
rate, g;. She first differences the equation to eliminate ¢; and then applies fixed effects
to the differences. The estimate of §; is &; = —.192 with se(&) = .085. Thus enter-
prise zone designation is predicted to lower unemployment claims by about 19.2
percent, and the effect is statistically significant at the 5 percent level.

Friedberg (1998) provides an example, using state-level panel data on divorce rates
and divorce laws, that shows how important it can be to allow for state-specific
trends. Without state-specific trends, she finds no effect of unilateral divorce laws on
divorce rates; with state-specific trends, the estimated effect is large and statistically
significant. The estimation method Friedberg uses is the one we discuss in the next
subsection.

In using the random trend or random growth model for program evaluation, it
may make sense to allow the trend or growth rate to depend on program participa-
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tion: in addition to shifting the level of y, program participation may also affect the
rate of change. In addition to prog;,, we would include prog;, - t in the model:

Vi = 00+ ¢i + git + 2igy + 01progi + 02progi -  + uy
Differencing once, as before, removes ¢;,
Ayy = &+ gi + Azyy + 61A progi, + A progiy - 1) + Auy

We can estimate this differenced equation by fixed effects. An even more flexible
specification is to replace prog; and prog; -t with a series of program indicators,
progly, ..., progM;, where progj;; is one if unit i in time ¢ has been in the program
exactly j years, and M is the maximum number of years the program has been
around.

If {u;} contains substantial serial correlation—more than a random walk—then
differencing equation (11.41) might be more attractive. Denote the second difference
of y; by

Azyit =AYy = Ay = Vi =2t Vi
with similar expressions for A?x;, and A%u;,. Then
Azyit:Azxifﬂ—’_Azuih t:37"’aT (1142)

As with the FE transformation applied to equation (11.41), second differencing also
eliminates g;. Because A’u;, is uncorrelated with Azxm, for all ¢ and s, we can estimate
equation (11.42) by pooled OLS or a GLS procedure.

When T = 3, second differencing is the same as first differencing and then apply-
ing fixed effects. Second differencing results in a single cross section on the second-
differenced data, so that if the second-difference error is homoskedastic conditional
on X;, the standard OLS analysis on the cross section of second differences is appro-
priate. Hoxby (1996) uses this method to estimate the effect of teachers’ unions on
education production using three years of census data.

If x;; contains a time trend, then Ax; contains the same constant for 7=
2,3,..., T, which then gets swept away in the FE or FD transformation applied to
equation (11.41). Therefore, x;, cannot have time-constant variables or variables that
have exact linear time trends for all cross section units.

11.2.2 General Models with Individual-Specific Slopes

We now consider a more general model with interactions between time-varying ex-
planatory variables and some unobservable, time-constant variables:
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y,-tzz,-ta,-—&-x,-,ﬂ—i—u,-,, IZI,Z,...7T (1143)

where z;; is | x J, a;is J x 1, x;;is 1 x K, and f is K x 1. The standard unobserved
effects model is a special case with z; = 1; the random trend model is a special case
with z; =z, = (1,1).

Equation (11.43) allows some time-constant unobserved heterogeneity, contained
in the vector a;, to interact with some of the observable explanatory variables. For
example, suppose that prog;, is a program participation indicator and y;, is an out-
come variable. The model

Yie = Xu + aj + ap - progi + uyq

allows the effect of the program to depend on the unobserved effect a;; (which may or
may not be tied to a;;). While we are interested in estimating ff, we are also interested
in the average effect of the program, x4, = E(a;). We cannot hope to get good esti-
mators of the a; in the usual case of small T. Polachek and Kim (1994) study such
models, where the return to experience is allowed to be person-specific. Lemieux
(1998) estimates a model where unobserved heterogeneity is rewarded differently in
the union and nonunion sectors.

In the general model, we initially focus on estimating f and then turn to estimation
of @ = E(a;), which is the vector of average partial effects for the covariates z;,. The
strict exogeneity assumption is the natural extension of assumption (11.39):

AssuMmpPTION FE.1": E(uw;y|z;,x;,a;)=0,t=1,2,...,T.
Along with equation (11.43), Assumption FE.1’ is equivalent to
E(yi |z, zirs Xit, - Xir, i) = B(yy | 2, Xir, 2i) = zia; + X

which says that, once z;, x;;, and a; have been controlled for, (z;, X;s) for s # ¢ do not
help to explain y,,.

Define Z; as the T x J matrix with 7th row z;, and similarly for the 7" x K matrix
X;. Then equation (11.43) can be written as

y, = Z,-a,~ + X,ﬂ +u; (1144)
Assuming that ZZ,; is nonsingular (technically, with probability one), define
M; =1y — Z,(Z]Z7,)'Z! (11.45)

the projection matrix onto the null space of Z; [the matrix Z,«(ZZZ[)_IZ; is the pro-
jection matrix onto the column space of Z;]. In other words, for each cross section
observation i, My, is the 7' x 1 vector of residuals from the time series regression
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Vi on Zy, t=1,2,....T (11.46)

In the basic fixed effects case, regression (11.46) is the regression y;, on 1,1 =1,2,...,
T, and the residuals are simply the time-demeaned variables. In the random trend
case, the regressionis y;, on 1, ¢, t =1,2,..., T, which linearly detrends y;, for each i.

The T x K matrix M;X; contains as its rows the 1 x K vectors of residuals from
the regression x;; onz;, t = 1,2,..., T. The usefulness of premultiplying by M; is that
it allows us to eliminate the unobserved effect a; by premultiplying equation (11.44)
through by M; and noting that M;Z; = 0:

¥ = Xif + i (11.47)

where y;, = Myy,, X; = M;X;, and ii; = Myu;. This is an extension of the within
transformation used in basic fixed effects estimation.

To consistently estimate f by system OLS on equation (11.47), we make the fol-
lowing assumption:

AssumpTION FE.2':  rank E(X/X;) = K, where X; = M;X;.

The rank of M; is T — J, so a necessary condition for Assumption FE.2'is J < T. In
other words, we must have at least one more time period than the number of ele-
ments in a;. In the basic unobserved effects model, J = 1, and we know that T > 2 is
needed. In the random trend model, J = 2, and we need T > 3 to estimate f.

The system OLS estimator of equation (11.47) is

A N . . _1 N .. N .. .. _l N .
Bre = (Z X;x,) (Z Xy> =B+ <N—1 Zx,fx,) (N-l Zx;u,)
i=1 i=1 i=1 i=1

Under Assumption FE.1", E(X/w;) = 0, and under Assumption FE.2’, rank E(X/X;)
= K, and so the usual consistency argument goes through. Generally, it is possible
that for some observations, XZ’X, has rank less than K. For example, this result occurs
in the standard fixed effects case when x;, does not vary over time for unit ;. However,
under Assumption FE.2’, B should be well defined unless our cross section sample
size is small or we are unlucky in obtaining the sample.

Naturally, the FE estimator is v/N-asymptotically normally distributed. To obtain
the simplest expression for its asymptotic variance, we add the assumptions of con-
stant conditional variance and no (conditional) serial correlation on the idiosyncratic
errors {u;: t =1,2,...,T}.

AssuMPTION FE.3”:  E(uu!|z;,x;,2;) = o>I7.
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Under Assumption FE.3', iterated expectations implies
E(X,’u,u,’X,) = E[X,’E(u,u,’ | Z,’, X,)X,] = UgE(X:X,)

Using essentially the same argument as in Section 10.5.2, under Assumptions FE.1’,
FE.2/, and FE.3/, Avar VN (B — f) = ai[E(X;X,-)]fl, and so Avar(fgg) is con-
sistently estimated by

Avai(Byp) = (Z XX, ) (11.48)

where 67 is a consistent estimator for 2. As with the standard FE analysis, we must
use some care in obtaining 62. We have

T
Z E ll lll) = E[E(u,{Miui | Zl', X,)] = E{tr[E(u{u,-Mi | Zi, Xl)]}
=1

= E{tr[E(u/u;| Z;, X;)M|]} = E[tr(¢>M,)] = (T — J)o> (11.49)
since tr(M;) = T —J. Let iy = J,, — %yfrz. Then equation (11.49) and standard
arguments imply that an unbiased and consistent estimator of o2 is

&ﬁz[N(T—J)—K]”ZXT:aﬁ:ssm [N(T —J) — K] (11.50)

=1 =1
The SSR in equation (11.50) is from the pooled regression
Jponky, t=12,....T;i=12,...,N (11.51)

which can be used to obtain f,,. Division of the SSR from regression (11.51) by
N(T —J) — K produces 62. The standard errors reported from regression (11.51)
will be off because the SSR is only divided by NT — K; the adjustment factor is
{(NT = K)/IN(T = J) — K]},

A standard F statistic for testing hypotheses about f is also asymptotically valid.
Let Q be the number of restrictions on f under Hy, and let SSR, be the restricted sum
of squared residuals from a regression like regression (11.51) but with the restrictions
on f imposed. Let SSR,, be the unrestricted sum of squared residuals. Then

(SSR, — SSR,,) [N(T —J) — K]

F="%r, 0

(11.52)

can be treated as having an F distribution with Q and N(T — J) — K degrees of
freedom. Unless we add a (conditional) normality assumption on u;, equation (11.52)
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does not have an exact F distribution, but it is asymptotically valid because
0 -F X Xé

Without Assumption FE.3’, equation (11.48) is no longer valid as the variance esti-
mator and equation (11.52) is not a valid test statistic. But the robust variance matrix
estimator (10.59) can be used with the new definitions for X; and #;. This step leads
directly to robust Wald statistics for multiple restrictions.

To obtain a consistent estimator of @ = E(a;), premultiply equation (11.44) by
(Z!Z;)"'Z! and rearrange to get

= (Z;Z)"'Z](y; - XiB) — (Z{Z,)"' Z}u, (11.53)

Under Assumption FE.1’, E(u; | Z;) = 0, and so the second term in equation (11.53)
has a zero expected value. Therefore, assuming that the expected value exists,

= E[(Z/Z,)"'Z](y; — XB)]
So a consistent, v/ N-asymptotically normal estimator of a is

N
=N"! Z(Z;Zi)_lllf(yi - XiﬁFE) (11.54)

i=1

N>

With fixed 7 we cannot consistently estimate the a, when they are viewed as
parameters. However, for each i, the term in the summand in equation (11.54), call
it 4;, is an unbiased estimator of a; under Assumptions FE.1’ and FE.2’. This con-
clusion is easy to show: E(a;|Z,X) = (Z/Z,) ' Z![E(y;| Z,X) — X;E(r | Z,X)] =
(Z,2,)'Z![Z;a; + X, — X;f] = a;, where we have used the fact that E(f; | Z,X) =
p. The estimator & simply averages the a; over all cross section observations.

The asymptotic variance of v/N(a — a) can be obtained by expanding equation
(11.54) and plugging in VN (B — B) = [EX/X)] (N2, Xw) +0,(1). A
consistent estimator of Avar v/N(a — a) can be shown to be

- Z “IX')[(8 — a) — CA'X/ay]’ (11.55)
where § = (Z/Z:) "' Z](y, — XiB), C=N"' Y1 (Z/Z)7'2)X;, A= N7 Y, XX,
anda; =y, — ,,BFE ThlS estimator is fully robust in the sense that it does not rely on

Assumption FE.3’. As usual, asymptotic standard errors of the elements of a are
obtained by multiplying expression (11.55) by N and taking the square roots of the
diagonal elements. As special cases, expression (11.55) can be applied to the tradi-
tional unobserved effects and random trend models.
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The estimator @ in equation (11.54) is not necessarily the most efficient. A better
approach is to use the moment conditions for ﬁFE and a simultaneously. This leads
to nonlinear instrumental variables methods, something we take up in Chapter 14.
Chamberlain (1992a) covers the efficient method of moments approach to estimating
a and f; see also Lemieux (1998).

11.3 GMM Approaches to Linear Unobserved Effects Models

11.3.1 Equivalence between 3SLS and Standard Panel Data Estimators

Random effects, fixed effects, and first differencing are still the most popular ap-
proaches to estimating unobserved effects panel data models under strict exogeneity
of the explanatory variables. As we saw in Chapter 10, each of these is efficient under
a particular set of assumptions. If these assumptions fail, we can do worse than using
an optimal GMM approach. We have already seen how to generalize Assumption
RE.3, FE.3, or FD.3 by allowing the idiosyncratic error variance matrix, Var(u;), to
be unrestricted. But we still assumed that either Var(c;j; + u; | X;) (random effects) or
Var(u; | x;, ¢;) was constant.

Suppose first that Assumption RE.1 holds, so that E(c; |x;) = 0. Write the model
in composite error form as

yi =Xif+vi (11.56)

Under Assumption RE.1, x; is uncorrelated with v for all s and ¢. [In fact, any
function of x; = (X;1, ..., X;7) is uncorrelated with v;, for all ¢, but we will only use the
x;; themselves.] Let x? denote the row vector of nonredundant elements of x;, so that
any time constant element appears only once in x?. Then E(x?'v;,) =0,t=1,2,...,T.
This orthogonality condition suggests a system instrumental variables procedure,
with matrix of instruments

Zi=I; ®x’ (11.57)

In other words, use instruments Z; to estimate equation (11.56) by 3SLS or, more
generally, by minimum chi-square.

The matrix (11.57) can contain many instruments. If x;; contains only time-varying
variables, then Z; is T x TK. With only K parameters to estimate, this choice of
instruments implies many overidentifying restrictions even for moderately sized 7.
Even if computation is not an issue, using many overidentifying restrictions can result
in poor finite sample properties.

In some cases, we can reduce the number of moment conditions without sacrificing
efficiency. Im, Ahn, Schmidt, and Wooldridge (1999) (IASW) show the following
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result. If Q has the random effects structure—which means we impose the RE struc-
ture in estimating Q—then 3SLS applied to equation (11.56), using instruments

Z; = (PrX;, Q7 W;) (11.58)

where Pr = jr(irir) 'irs Qr =Ir —Pr, jr = (1,1,...,1)", and W, is the T x M
submatrix of X; obtained by removing the time-constant variables, is identical to the
random effects estimator. The column dimension of matrix (11.58) is only K + M, so
there are only M overidentifying restrictions in using the 3SLS estimator.

The algebraic equivalence between 3SLS and random effects has some useful ap-
plications. First, it provides a different way of testing the orthogonality between ¢;
and x;, for all #: after 3SLS estimation, we simply apply the GMM overidentification
statistic from Chapter 8. (We discussed regression-based tests in Section 10.7.3.)
Second, it provides a way to obtain a more efficient estimator when Assumption
RE.3 does not hold. If  does not have the random effects structure [see equation
(10.30)], then the 3SLS estimator that imposes this structure is inefficient; an unre-
stricted estimator of € should be used instead. Because an unrestricted estimator of
Q is consistent with or without the random effects structure, 3SLS with unrestricted
Q and Vs in matrix (11.58) is no less efficient than the RE estimator. Further, if
E(v;v; | x;) # E(viv]), any 3SLS estimator is inefficient relative to GMM with the op-
timal weighting matrix. Therefore, if Assumption RE.3 fails, minimum chi-square
estimation with IVs in matrix (11.58) generally improves on the random effects esti-
mator. In other words, we can gain asymptotic efficiency by using only M < K ad-
ditional moment conditions.

A different 3SLS estimator can be shown to be equivalent to the fixed effects esti-
mator. In particular, IASW (1999, Theorem 4.1) verify an assertion of Arellano and
Bover (1995): when © has the random effects form, the 3SLS estimator applied to
equation (11.56) using instruments Ly ® x?—where Ly is the T x (T — 1) differ-
encing matrix defined in IASW [1999, equation (4.1)]—is identical to the fixed effects
estimator. Therefore, we might as well use fixed effects.

11.3.2 Chamberlain’s Approach to Unobserved Effects Models

We now study an approach to estimating the linear unobserved effects model (11.1)
due to Chamberlain (1982, 1984) and related to Mundlak (1978). We maintain the
strict exogeneity assumption on x;, conditional on ¢; (see Assumption FE.1), but we
allow arbitrary correlation between ¢; and x;;. Thus we are in the fixed effects envi-
ronment, and x;; contains only time-varying explanatory variables.

In Chapter 10 we saw that the FE and FD transformations eliminate ¢; and pro-
duce consistent estimators under strict exogeneity. Chamberlain’s approach is to re-
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place the unobserved effect ¢; with its linear projection onto the explanatory variables
in all time periods (plus the projection error). Assuming ¢; and all elements of x; have
finite second moments, we can always write

Ci = lp—f—X,']}.] +Xi2/12+---+x,-TiT—|—ai (1159)
where  is a scalar and 4y, ..., 47 are 1 x K vectors. The projection error a;, by def-
inition, has zero mean and is uncorrelated with x;;,...,x;7. This equation assumes

nothing about the conditional distribution of ¢; given x;. In particular, E(c¢; | x;) is
unrestricted, as in the usual fixed effects analysis.

Plugging equation (11.59) into equation (11.1) gives, for each ¢,
Vie =Y+ Xt + -+ Xa(B+ ) + -+ Xirdr + 1 (11.60)
where, under Assumption FE.1, the errors r; = a; + u;, satisfy

E(ri) =0, E(x/r;) =0, t=12,....T (11.61)

However, unless we assume that E(c; | x;) is linear, it is not the case that E(r; | x;) =
0. Nevertheless, assumption (11.61) suggests a variety of methods for estimating f
(along with ¥, 41,. .., 47).

Write the system (11.60) for all time periods ¢ as

v
Vil 1 xp Xp - Xir Xj A1 Til
Y2 1 xa Xp - Xir Xp A2 Fi2
= . . + . (11.62)
Yir I xq Xp - Xir Xir At rir
p
or
yi =Wl +r (11.63)

where W; is T x (1 + TK + K) and 0 is (1 + TK + K) x 1. From equation (11.61),
E(W/r;) =0, and so system OLS is one way to consistently estimate #. The rank
condition requires that rank E(W;W;) = 1 + TK + K; essentially, it suffices that the
elements of x;; are not collinear and that they vary sufficiently over time. While sys-
tem OLS is consistent, it is very unlikely to be the most efficient estimator. Not only
is the scalar variance assumption E(r;r/) = Iz highly unlikely, but also the homo-
skedasticity assumption

E(r;r}|x;) = E(r;r}) (11.64)
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fails unless we impose further assumptions. Generally, assumption (11.64) is violated if
E(uu/ | ¢;,x;) # E(uu)), if E(c; | x;) is not linear in x;, or if Var(c¢; | x;) is not constant.

If assumption (11.64) does happen to hold, feasible GLS is a natural approach.
The matrix Q = E(r;r/) can be consistently estimated by first estimating by system
OLS, and then proceeding with FGLS as in Section 7.5.

If assumption (11.64) fails, a more efficient estimator is obtained by applying GMM
to equation (11.63) with the optimal weighting matrix. Because r; is orthogonal to
x{ = (1,X1,...,X;T), X/ can be used as instruments for each time period, and so we
choose the matrix of instruments (11.57). Interestingly, the 3SLS estimator, which
uses [Z'(Iy ® ©)Z/N]™" as the weighting matrix—see Section 8.3.4—is numerically
identical to FGLS with the same . Arellano and Bover (1995) showed this result in
the special case that Q has the random effects structure, and IASW (1999, Theorem
3.1) obtained the general case.

In expression (11.63) there are 1 + TK + K parameters, and the matrix of instru-
ments is 7 x T(1 + TK); there are T(1 + TK) — (1+ TK + K) = (T — 1)(1 + TK)
— K overidentifying restrictions. Testing these restrictions is precisely a test of the
strict exogeneity Assumption FE.1, and it is a fully robust test when full GMM is
used because no additional assumptions are used.

Chamberlain (1982) works from the system (11.62) under assumption (11.61), but
he uses a different estimation approach, known as minimum distance estimation. We
cover this approach to estimation in Chapter 14.

11.4 Hausman and Taylor-Type Models

In the panel data methods we covered in Chapter 10, and so far in this chapter,
coefficients on time-constant explanatory variables are not identified unless we make
Assumption RE.1. In some cases the explanatory variable of primary interest is time
constant, yet we are worried that ¢; is correlated with some explanatory variables.
Random effects will produce inconsistent estimators of all parameters if such cor-
relation exists, while fixed effects or first differencing eliminates the time-constant
variables.

When all time-constant variables are assumed to be uncorrelated with the unob-
served effect, but the time-varying variables are possibly correlated with ¢;, consistent
estimation is fairly simple. Write the model as

Vie = iy + X + ¢ + ujy, t=12,....T (11.65)

where all elements of x;, display some time variation, and it is convenient to include
unity in z; and assume that E(¢;) = 0. We assume strict exogeneity conditional on ¢;:
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E(uit|Zi,X,'1,...,XiT,Ci):0, t=1,...,T (1166)

Estimation of # can proceed by fixed effects: the FE transformation eliminates z;y
and ¢;. As usual, this approach places no restrictions on the correlation between c¢;

and (z;, X;).
What about estimation of y? If, in addition to assumption (11.66) we assume
E(z/c;) =0 (11.67)

then a +/N-consistent estimator is easy to obtain: average equation (11.65) across
t, premultiply by z/, take expectations, use the fact that E[z/(c; + #;)] =0, and re-
arrange to get

E(zjz))y = E[z{(y; — ;)]

Now, making the standard assumption that E(z/z;) is nonsingular, it follows by the
usual analogy principle argument that

v -1
= (Nl szz,) [ - ZZ —Xifr)
=1

is consistent for . The asymptotic variance of v/N( — y) can be obtained by stan-
dard arguments for two-step estimators. Rather than derive this asymptotic variance,
we turn to a more general model.

Hausman and Taylor (1981) (HT) partition z; and x;, as z; = (z;1,Zp), Xi =
(Xir1, Xin)—where z; is 1 X Jy, zp is 1 X Jy, X1 i 1 X K, X;2 is 1 x Kr—and assume
that

E(zjc;)=0 and  E(xj,¢) =0, all ¢ (11.68)

We still maintain assumption (11.66), so that z; and x;, are uncorrelated with u;, for
all ¢ and s.

Assumptions (11.66) and (11.68) provide orthogonality conditions that can be used
in a method of moments procedure. HT actually imposed enough assumptions so
that the variance matrix © of the composite error v; = ¢;jr + u; has the random
effects structure and Assumption SIV.5 from Section 8.3.4 holds. Neither of these is
necessary, but together they afford some simplifications.

Write equation (11.65) for all 7" time periods as

Yi=Ziy + Xif +vi (11.69)

Since x; is strictly exogenous and Qzv; = Qzu; [where Q7 = Iy — j;(i7ir) iy is
again the T x T time-demeaning matrix], it follows that E[(Q7X,)'v;] = 0. Thus, the



More Topics in Linear Unobserved Effects Models 327

T x K matrix Q7X; can be used as instruments in estimating equation (11.69). If
these were the only instruments available, then we would be back to fixed effects
estimation of f without being able to estimate 7.

Additional instruments come from assumption (11.68). In particular, z;; is orthog-

onal to v for all ¢, and so is x{}, the 1 x TKj vector containing x;; forallz=1,...,T.
Thus, define a set of instruments for equation (11.69) by
[QrXi, i ® (zi1,x}))] (11.70)

whichisa T x (K + J; + TK;) matrix. Simply put, the vector of IVs for time period ¢
is (Xi,zi1,X;). With this set of instruments, the order condition for identification of
(y,p)isthat K + J, + TK; > J + K, or TK; > J,. In effect, we must have a sufficient
number of elements in x{} to act as instruments for z;. (X;, are the IVs for x;,, and z;
act as their own IVs.) Whether we do depends on the number of time periods, as well
as on Kj.

Actually, matrix (11.70) does not include all possible instruments under assump-
tions (11.66) and (11.68), even when we only focus on zero covariances. However,
under the full set of Hausman-Taylor assumptions mentioned earlier—including the
assumption that Q has the random effects structure—it can be shown that all in-
struments other than those in matrix (11.70) are redundant in the sense of Section 8.6;
see IJASW (1999, Theorem 4.4) for details. In fact, a very simple estimation strategy is
available. First, estimate equation (11.65) by pooled 2SLS, using IVs (X, z;,X]}).
Use the pooled 2SLS residuals, say bir, in the formulas from Section 10.4.1, namely,
equations (10.35) and (10.37), to obtain 62 and 62, which can then be used to obtain
A in equation (10.77). Then, perform quasi—time demeaning on all the dependent
variables, explanatory variables, and IVs, and use these in a pooled 2SLS estimation.
Under the Hausman-Taylor assumptions, this estimator—sometimes called a gener-
alized IV (GIV) estimator—is the efficient GMM estimator, and all statistics from
pooled 2SLS on the quasi-demeaned data are asymptotically valid.

If Q is not of the random effects form, or if Assumption SIV.5 fails, many more
instruments than are in matrix (11.70) can help improve efficiency. Unfortunately,
the value of these additional IVs is unclear. For practical purposes, 3SLS with € of the
RE form, 3SLS with  unrestricted, or GMM with optimal weighting matrix—using
the instruments in matrix (11.70)—should be sufficient, with the latter being the most
efficient in the presence of conditional heteroskedasticity. The first-stage estimator can
be the system 2SLS estimator using matrix (11.70) as instruments. The GMM over-
identification test statistic can be used to test the TK; — J, overidentifying restrictions.

In cases where K| > J,, we can reduce the instrument list even further and still
achieve identification: we use X;; as the instruments for z,,. Then, the I'Vs at time ¢ are
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(Xir, 21, X1 ). We can then use the pooled 2SLS estimators described previously with
this new set of IVs. Quasi-demeaning leads to an especially simple analysis. Although
it generally reduces asymptotic efficiency, replacing x{} with X;; is a reasonable way to
reduce the instrument list because much of the partial correlation between z;; and x|
is likely to be through the time average, X;i.

HT provide an application of their model to estimating the return to education,
where education levels do not vary over the two years in their sample. Initially, HT
include as the elements of x;;; all time-varying explanatory variables: experience, an
indicator for bad health, and a previous-year unemployment indicator. Race and
union status are assumed to be uncorrelated with ¢;, and, because these do not
change over time, they comprise z;;. The only element of z;; is years of schooling. HT
apply the GIV estimator and obtain a return to schooling that is almost twice as large
as the pooled OLS estimate. When they allow some of the time-varying explanatory
variables to be correlated with ¢;, the estimated return to schooling gets even larger.
It is difficult to know what to conclude, as the identifying assumptions are not espe-
cially convincing. For example, assuming that experience and union status are un-
correlated with the unobserved effect and then using this information to identify the
return to schooling seems tenuous.

Breusch, Mizon, and Schmidt (1989) studied the Hausman-Taylor model under the
additional assumption that E(x/,c;) is constant across . This adds more orthogonality
conditions that can be exploited in estimation. See IASW (1999) for a recent analysis.

It is easy to bring in outside, exogenous variables in the Hausman-Taylor frame-
work. For example, if the model (11.65) is an equation in a simultaneous equations
model, and if elements of x;, are simultaneously determined with y,, then we can use
exogenous variables appearing elsewhere in the system as IVs. If such variables do
not vary over time, we need to assume that they are uncorrelated with ¢; as well as
with u;, for all ¢. If they do vary over time and are correlated with ¢;, we can use their
deviations from means as Vs, provided these instruments are strictly exogenous with
respect to u;;. The time averages can be added to the instrument list if the external
variables are uncorrelated with ¢;. For example, in a wage equation containing alco-
hol consumption, which is determined simultaneously with the wage, we can, under
reasonable assumptions, use the time-demeaned local price of alcohol as an IV for
alcohol consumption.

11.5 Applying Panel Data Methods to Matched Pairs and Cluster Samples

Unobserved effects structures arise in contexts other than repeated cross sections over
time. One simple data structure is a matched pairs sample. To illustrate, we consider
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the case of sibling data, which are often used in the social sciences in order to control
for the effect of unobserved family background variables. For each family 7 in the
population, there are two siblings, described by

Y =XaB + f; +un (11.71)
Yo = Xof + fi +ui (11.72)

where the equations are for siblings 1 and 2, respectively, and f; is an unobserved
family effect. The strict exogeneity assumption now means that the idiosyncratic error
u;s in each sibling’s equation is uncorrelated with the explanatory variables in both
equations. For example, if y denotes log(wage) and x contains years of schooling as
an explanatory variable, then we must assume that sibling’s schooling has no effect
on wage after controlling for the family effect, own schooling, and other observed
covariates. Such assumptions are often reasonable, although the condition should be
studied in each application.

If f; is assumed to be uncorrelated with x;; and x5, then a random effects analysis
can be used. The mechanics of random effects for matched pairs are identical to the
case of two time periods.

More commonly, f; is allowed to be arbitrarily correlated with the observed factors
in x;; and x;, in which case differencing across siblings to remove f; is the appropri-
ate strategy. Under this strategy, x cannot contain common observable family back-
ground variables, as these are indistinguishable from f;. The IV methods developed
in Section 11.1 to account for omitted variables, measurement error, and simulta-
neity, can be applied directly to the differenced equation. Examples of where sibling
(in some cases twin) differences have been used in economics include Geronimus and
Korenman (1992), Ashenfelter and Krueger (1994), Bronars and Grogger (1994), and
Ashenfelter and Rouse (1998).

A matched pairs sample is a special case of a cluster sample, which we touched
on in Section 6.3.4. A cluster sample is typically a cross section on individuals (or
families, firms, and so on), where each individual is part of a cluster. For example,
students may be clustered by the high school they attend, or workers may be clus-
tered by employer. Observations within a cluster are thought to be correlated as a
result of an unobserved cluster effect.

The unobserved effects model

Vis = XisP + ¢i + ujs (11.73)

is often reasonable, where i indexes the group or cluster and s indexes units within a
cluster. In some fields, an unobserved effects model for a cluster sample is called a
hierarchical model.
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One complication that arises in cluster samples, which we have not yet addressed,
is that the number of observations within a cluster usually differs across clusters.
Nevertheless, for cluster i, we can write

yi = Xif + cijg, + W (11.74)

where the row dimension of y;, X;, js., and u; is G;, the number of units in cluster i.
The dimension of #is K x 1.

To apply the panel data methods we have discussed so far, we assume that the
number of clusters, &, is large, because we fix the number of units within each cluster
in analyzing the asymptotic properties of the estimators. Because the dimension of the
vectors and matrix in equation (11.74) changes with i, we cannot assume an identical
distribution across i. However, in most cases it is reasonable to assume that the
observations are independent across cluster. The fact that they are not also identically
distributed makes the theory more complicated but has no practical consequences.

The strict exogeneity assumption in the model (11.73) requires that the error u;, be
uncorrelated with the explanatory variables for all units within cluster i. This as-
sumption is often reasonable when a cluster effect ¢; is explicitly included. (In other
words, we assume strict exogeneity conditional on ¢;.) If we also assume that ¢; is
uncorrelated with x; for all s=1,...,G;, then pooled OLS across all clusters and
units is consistent as N — oo. However, the composite error will be correlated within
cluster, just as in a random effects analysis. Even with different cluster sizes a valid
variance matrix for pooled OLS is easy to obtain: just use formula (7.26) but where
V;, the G; x 1 vector of pooled OLS residuals for cluster i, replaces u;. The resulting
variance matrix estimator is robust to any kind of intracluster correlation and arbi-
trary heteroskedasticity, provided N is large relative to the G;.

In the hierarchical models literature, ¢; is often allowed to depend on cluster-level
covariates, for example, ¢; = dyp + w;d + @;, where a; is assumed to be independent
of (or at least uncorrelated with) w; and x;, s = 1,..., G;. But this is equivalent to
simply adding cluster-level observables to the original model and relabeling the
unobserved cluster effect.

The fixed effects transformation can be used to eliminate ¢; in equation (11.74) when
¢; 1s thought to be correlated with x;;. The different cluster sizes cause no problems
here: demeaning is done within each cluster. Any explanatory variable that is con-
stant within each cluster for all clusters—for example, the gender of the teacher if
the clusters are elementary school classrooms—is eliminated, just as in the panel
data case. Pooled OLS can be applied to the demeaned data, just as with panel data.
Under the immediate generalizations of Assumptions FE.1-FE.3 to allow for differ-
ent cluster sizes, the variance matrix of the FE estimator for cluster samples can be
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estimated as in expression (10.54), but ¢2 must be estimated with care. A consistent
estimator is 2 = SSR/[Y Y, (G; — 1) — K], which is exactly the estimator that would
be obtained from the pooled regression that includes a dummy variable for each
cluster. The robust variance matrix (10.59) is valid very generally, where 4; =y, —
XB:p, as usual.

The 2SLS estimator described in Section 11.1.3 can also be applied to cluster sam-
ples, once we adjust for different cluster sizes in doing the within-cluster demeaning.

Rather than include a cluster effect, ¢;, sometimes the goal is to see whether person
s within cluster i is affected by the characteristics of other people within the cluster.
One way to estimate the importance of peer effects is to specify

Vis = Xisf + Wi(s)é =+ Uis (1175)

where W;(;) indicates averages of a subset of elements of x;s across all other people in
the cluster. If equation (11.75) represents E(y; | X;) = E(; | Xis, Wy(y)) for each s, then
the strict exogeneity assumption E(v; | x;) = 0,5 = 1,..., G;, necessarily holds. Pooled
OLS will consistently estimate f and d, although a robust variance matrix may be
needed to account for correlation in v;, across s, and possibly for heteroskedasticity.
If Cov(viy, vir | X;) = 0, s # r, and Var(v | x;) = o2 are assumed, then pooled OLS is
efficient, and the usual test standard errors and test statistics are valid. It is also easy
to allow the unconditional variance to change across cluster using a simple weighting;
for a similar example, see Problem 7.7.

We can also apply the more general models from Section 11.2.2, where unobserved
cluster effects interact with some of the explanatory variables. If we allow arbitrary
dependence between the cluster effects and the explanatory variables, the transfor-
mations in Section 11.2.2 should be used. In the hierarchical models literature, the
unobserved cluster effects are assumed to be either independent of the covariates x;q
or independent of the covariates after netting out observed cluster covariates. This
assumption results in a particular form of heteroskedasticity that can be exploited
for efficiency. However, it makes as much sense to include cluster-level covariates,
individual-level covariates, and possibly interactions of these in an initial model, and
then to make inference in pooled OLS robust to arbitrary heteroskedasticity and
cluster correlation. (See Problem 11.5 for a related analysis in the context of panel
data.)

We should remember that the methods described in this section are known to have
good properties only when the number of clusters is large relative to the number of
units within a cluster. Case and Katz (1991) and Evans, Oates, and Schwab (1992)
apply cluster-sampling methods to the problem of estimating peer effects.
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Problems

11.1. Let y, denote the unemployment rate for city 7 at time 7. You are interested in
studying the effects of a federally funded job training program on city unemployment
rates. Let z; denote a vector of time-constant city-specific variables that may influence
the unemployment rate (these could include things like geographic location). Let x;
be a vector of time-varying factors that can affect the unemployment rate. The vari-
able prog;; is the dummy indicator for program participation: prog; = 1 if city i par-
ticipated at time 7. Any sequence of program participation is possible, so that a city
may participate in one year but not the next.

a. Discuss the merits of including y; ,_; in the model
Vi = 00+ 2y + X + p1y; -1 +01prog + ui, t=12,...,T

State an assumption that allows you to consistently estimate the parameters by
pooled OLS.

b. Evaluate the following statement: “The model in part a is of limited value because
the pooled OLS estimators are inconsistent if the {u;,} are serially correlated.”

c. Suppose that it is more realistic to assume that program participation depends on
time-constant, unobservable city heterogeneity, but not directly on past unemploy-
ment. Write down a model that allows you to estimate the effectiveness of the pro-
gram in this case. Explain how to estimate the parameters, describing any minimal
assumptions you need.

d. Write down a model that allows the features in parts a and c. In other words,
prog;, can depend on unobserved city heterogeneity as well as the past unemployment
history. Explain how to consistently estimate the effect of the program, again stating
minimal assumptions.

11.2. Consider the following unobserved components model:
Vie = Zigy +0wir + ¢i + uig, t=12,...,T

where z;; is a 1 x K vector of time-varying variables (which could include time-period
dummies), w;, is a time-varying scalar, ¢; is a time-constant unobserved effect, and u;,
is the idiosyncratic error. The z;; are strictly exogenous in the sense that

E(zjuz) =0,  alls, t=1,2,...,T (11.76)

but ¢; is allowed to be arbitrarily correlated with each z;. The variable w;, is endog-
enous in the sense that it can be correlated with u;, (as well as with ¢;).
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a. Suppose that 7'=2, and that assumption (11.76) contains the only available
orthogonality conditions. What are the properties of the OLS estimators of y and J on
the differenced data? Support your claim (but do not include asymptotic derivations).

b. Under assumption (11.76), still with 7" = 2, write the linear reduced form for the
difference Aw; as Aw; = z;1m; + zpm, + r;, where, by construction, r; is uncorrelated
with both z;; and z,,. What condition on (7}, 7,) is needed to identify y and 6? (Hint:
It is useful to rewrite the reduced form of Aw; in terms of Az; and, say, z;;.) How can
you test this condition?

c. Now consider the general T case, where we add to assumption (11.76) the as-
sumption E(w;u;;) = 0, s < t, so that previous values of w;, are uncorrelated with u;,.
Explain carefully, including equations where appropriate, how you would estimate y
and 6.

d. Again consider the general T case, but now use the fixed effects transformation to
eliminate ¢;:

Vie = Ligy + Wi + iy

What are the properties of the IV estimators if you use Z; and w;,_,, p > 1, as
instruments in estimating this equation by pooled IV? (You can only use time periods
p+1,..., T after the initial demeaning.)

11.3. Show that, in the simple model (11.29) with 7 > 2, under the assumptions
(11.30), E(ri | X/, ¢;) = 0 for all ¢, and Var(r;, — 7;) and Var(x; — X;) constant across
t, the plim of the FE estimator is

o Var(ry — 7;)
1 = 1 -
/13_12 Bre ﬁ{ [Var(x} — x) + Var(r; — fi)]}

Thus, there is attenuation bias in the FE estimator under these assumptions.

11.4. a. Show that, in the fixed effects model, a consistent estimator of x1, = E(¢;) is
N -1 N — -

e =N 32 (0 — Xifgg).

b. In the random trend model, how would you estimate u, = E(g;)?

11.5. A random effects analysis of model (11.43) would add E(a, | z;, x;) = E(a;) =
a to Assumption FE.1’ and, to Assumption FE.3’, Var(a, |z;,x;) = A, where A is a
J x J positive semidefinite matrix. (This approach allows the elements of a; to be
arbitrarily correlated.)

a. Define the T x 1 composite error vector v; = Z;(a; — ) + u;. Find E(v; | z;,x;) and
Var(v; | z;,x;). Comment on the conditional variance.
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b. If you apply the usual RE procedure to the equation

Vi = Zi0 + Xitfd + Vig, t=12,...,T

what are the asymptotic properties of the RE estimator and the usual RE standard
errors and test statistics?

¢. How could you modify your inference from part b to be asymptotically valid?

11.6. Does the measurement error model in equations (11.33) to (11.37) apply when
wj is a lagged dependent variable? Explain.

11.7. In the Chamberlain model in Section 11.3.2, suppose that 1, = 4/T for all ¢.
Show that the pooled OLS coefficient on x;, in the regression y, on 1, x;, X;, t =
l,...,T;i=1,...,N, is the FE estimator. (Hint: Use partitioned regression.)

11.8. In model (11.1), first difference to remove c;:

Ay = Axif + Auy,  1=2,...,T (11.77)

Assume that a vector of instruments, z;, satisfies E(Au; |z;) =0, t =2,...,T. Typi-
cally, several elements in Ax;, would be included in z;, provided they are appropri-
ately exogenous. Of course the elements of z;, can be arbitrarily correlated with ¢;.

a. State the rank condition that is necessary and sufficient for pooled 2SLS estima-
tion of equation (11.77) using instruments z;, to be consistent (for fixed 7).

b. Under what additional assumptions are the usual pooled 2SLS standard errors
and test statistics asymptotically valid? (Hint: See Problem 8.8.)

c. How would you test for first-order serial correlation in Au;? (Hint: See Problem
8.10.)

11.9. Consider model (11.1) under the assumption

E(Z/l,‘,|Z,‘,C,‘)=07 12172,...,T (1178)
where z; = (z;, ..., z7) and each z; is 1 x L. Typically, z;, would contain some ele-
ments of x;. However, {z;: t=1,2,..., T} is assumed to be strictly exogenous

(conditional on ¢;). All elements of z; are allowed to be correlated with ¢;.

a. Use the fixed effects transformation to eliminate ¢;:
Vi = X + iy, t=1,....T;i=1,...,N (11.79)

Let Z; denote the time-demeaned IVs. State the rank condition that is necessary and
sufficient for pooled 2SLS estimation of equation (11.79) using instruments Z; to be
consistent (for fixed 7).
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b. Show that, under the additional assumption

E(uu! |z, ;) = a1y (11.80)
the asymptotic variance of v N(f — p) is

o{E(X|Z)[E(Z]Z,)] 'E(Z;X;)}™

where the notation should be clear from Chapter 10.

c. Propose a consistent estimator of 2.

d. Show that the 2SLS estimator of # from part a can be obtained by means of a
dummy variable approach: estimate

Vi =crdli+ -+ ey dNi + X + uy (11.81)

by pooled 2SLS, using instruments (d1;,d2;,...,dN;, z;). (Hint: Use the obvious ex-
tension of Problem 5.1 to pooled 2SLS, and repeatedly apply the algebra of partial
regression.) This is another case where, even though we cannot estimate the ¢; con-
sistently with fixed 7, we still get a consistent estimator of f.

e. In using the 2SLS approach from part d, explain why the usually reported stan-
dard errors are valid under assumption (11.80).

f. How would you obtain valid standard errors for 2SLS without assumption (11.80)?

g. If some elements of z;, are not strictly exogenous, but we perform the procedure in
part ¢, what are the asymptotic (N — oo, T fixed) properties of f?

11.10. Consider the general model (11.43) where unobserved heterogeneity interacts
with possibly several variables. Show that the fixed effects estimator of g is also
obtained by running the regression

Vit 01’1CZ],‘Z,'I,dZ,‘Z,'17...,d]\f,'Z,‘hX,‘[7 t=12,...,T;i=1,2,...,N (1182)

where dn; = 1 if and only if n = i. In other words, we interact z; in each time period
with a full set of cross section dummies, and then include all of these terms in a
pooled OLS regression with x;;. You should also verify that the residuals from re-
gression (11.82) are identical to those from regression (11.51), and that regression
(11.82) yields equation (11.50) directly. This proof extends the material on the basic
dummy variable regression from Section 10.5.3.

11.11. Apply the random growth model to the data in JTRAIN1.RAW (see Ex-
ample 10.6):

log(scrapi;) = 0, + ¢; + git + figranti; + frgrant; ;1 + u;
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Specifically, difference once and then either difference again or apply fixed effects to
the first-differenced equation. Discuss the results.

11.12. An unobserved effects model explaining current murder rates in terms of the
number of executions in the last three years is

mrdrte;, = 0, + fexeci + Prunemj; + ¢; + uy

where mrdrte;; is the number of murders in state i during year ¢, per 10,000 people;
exec;; is the total number of executions for the current and prior two years; and
unemy, is the current unemployment rate, included as a control.

a. Using the data for 1990 and 1993 in MURDER.RAW, estimate this model by
first differencing. Notice that you should allow different year intercepts.

b. Under what circumstances would exec;, not be strictly exogenous (conditional on
¢;)? Assuming that no further lags of exec appear in the model and that unem is
strictly exogenous, propose a method for consistently estimating f when exec is not
strictly exogenous.

c. Apply the method from part b to the data in MURDER.RAW. Be sure to also
test the rank condition. Do your results differ much from those in part a?

d. What happens to the estimates from parts a and c if Texas is dropped from the
analysis?

11.13. Use the data in PRISON.RAW for this question to estimate model (11.26).

a. Estimate the reduced form equation for Alog(prison) to ensure that finall and
final2 are partially correlated with Alog(prison). Test whether the parameters on
finall and final2 are equal. What does this finding say about choosing an IV for
A log( prison)? The elements of Ax should be the changes in the following variables:
log( polpc), log(incpc), unem, black, metro, ag0_14, agl5_17, agl8_24, and ag25_34.
Is there serial correlation in this reduced form?

b. Use Problem 11.8c to test for serial correlation in Au;;. What do you conclude?

c. Add a fixed effect to equation (11.27). [ This procedure is appropriate if we add a
random growth term to equation (11.26).] Estimate the equation in first differences
using the method of Problem 11.9. (Since N is only 51, you might be able to include
51 state dummies and use them as their own IVs.)

d. Estimate equation (11.26) using the property crime rate, and test for serial corre-
lation in Au;. Are there important differences compared with the violent crime rate?

11.14. An extension of the model in Example 11.7 that allows enterprise zone des-
ignation to affect the growth of unemployment claims is
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log(uclmsi;) = 0, + ¢; + git + d1eziy + drezyr - t + Uy

Notice that each jurisdiction also has a separate growth rate g;.

a. Use the data in EZUNEM.RAW to estimate this model by first differencing fol-
lowed by fixed effects on the differenced equation. Interpret your estimate of d,. Is it
statistically significant?

b. Reestimate the model setting ; = 0. Does this model fit better than the basic
model in Example 11.7?

c. Let w; be an observed, time-constant variable, and suppose we add f,w; + f,w; - ¢
to the random growth model. Can either f; or 8, be estimated? Explain.
11.15. Use the data in JTRAIN1.RAW for this question.

a. Consider the simple equation
log(scrap;) = 0, + [, hrsemp;; + ¢; + w;

where scrap;, is the scrap rate for firm i in year ¢, and hrsemp;, is hours of training per
employee. Suppose that you difference to remove c¢;, but you still think that Ahrsemp;,
and Alog(scrap;,) are simultaneously determined. Under what assumption is Agrant;
a valid IV for Ahrsemp;?

b. Using the differences from 1987 to 1988 only, test the rank condition for identifi-
cation for the method described in part a.

c. Estimate the first-differenced equation by IV, and discuss the results.

d. Compare the IV estimates on the first differences with the OLS estimates on the
first differences.

e. Use the IV method described in part a, but use all three years of data. How does
the estimate of ff; compare with only using two years of data?

11.16. Consider a Hausman and Taylor—type model with a single time-constant
explanatory variable:

Yie = vzi + X + i + uy
E(uit | ziy i, ¢i) = 0, t=1,....,T

where x;; is 1 x K vector of time-varying explanatory variables.

a. If we are interested only in estimating f, how should we proceed, without making
additional assumptions (other than a standard rank assumption)?

b. Let w; be a time-constant proxy variable for ¢; in the sense that
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E(C,’ | Wi, Zi, X,') = E(Ci | Wi, Xl') = 50 +51Wl' =+ Y,’éz

The key assumption is that, once we condition on w; and X;, z; is not partially related
to ¢;. Assuming the standard proxy variable redundancy assumption E(uy | z;, x;, ¢;,
w;) =0, find E(y;, | z;, Xi, wi).

c. Using part b, argue that y is identified. Suggest a pooled OLS estimator.

d. Assume now that (1) Var(uy |z, x;,ci,w;) =02, t =1,...,T; (2) Cov(ui,u;s |z,
X;, ¢i,wi) = 0, all ¢ # s; (3) Var(c; |z, x;, w;) = 2. How would you efficiently estimate
y (along with g, do, J1, and d,)? [Hint: It might be helpful to write ¢; = dp +1w; +

X0, + a;, where E(a; | z;, x;, w;) = 0 and Var(a; | z;, x;, w;) = 72.]

11.17. Derive equation (11.55).



III GENERAL APPROACHES TO NONLINEAR ESTIMATION

In this part we begin our study of nonlinear econometric methods. What we mean
by nonlinear needs some explanation because it does not necessarily mean that the
underlying model is what we would think of as nonlinear. For example, suppose the
population model of interest can be written as y = xf + u, but, rather than assuming
E(u|x) = 0, we assume that the median of u given x is zero for all x. This assumption
implies Med(y|x) = xf, which is a linear model for the conditional median of y
given x. [The conditional mean, E(y|x), may or may not be linear in x.] The stan-
dard estimator for a conditional median turns out to be least absolute deviations
(LAD), not ordinary least squares. Like OLS, the LAD estimator solves a minimi-
zation problem: it minimizes the sum of absolute residuals. However, there is a key
difference between LAD and OLS: the LAD estimator cannot be obtained in closed
form. The lack of a closed-form expression for LAD has implications not only for
obtaining the LAD estimates from a sample of data, but also for the asymptotic
theory of LAD.

All the estimators we studied in Part II were obtained in closed form, a fact which
greatly facilitates asymptotic analysis: we needed nothing more than the weak law of
large numbers, the central limit theorem, and the basic algebra of probability limits.
When an estimation method does not deliver closed-form solutions, we need to use
more advanced asymptotic theory. In what follows, “nonlinear” describes any prob-
lem in which the estimators cannot be obtained in closed form.

The three chapters in this part provide the foundation for asymptotic analysis of
most nonlinear models encountered in applications with cross section or panel data.
We will make certain assumptions concerning continuity and differentiability, and so
problems violating these conditions will not be covered. In the general development
of M-estimators in Chapter 12, we will mention some of the applications that are
ruled out and provide references.

This part of the book is by far the most technical. We will not dwell on the some-
times intricate arguments used to establish consistency and asymptotic normality in
nonlinear contexts. For completeness, we do provide some general results on consis-
tency and asymptotic normality for general classes of estimators. However, for specific
estimation methods, such as nonlinear least squares, we will only state assumptions
that have real impact for performing inference. Unless the underlying regularity
conditions—which involve assuming that certain moments of the population random
variables are finite, as well as assuming continuity and differentiability of the regres-
sion function or log-likelihood function—are obviously false, they are usually just
assumed. Where possible, the assumptions will correspond closely with those given
previously for linear models.
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The analysis of maximum likelihood methods in Chapter 13 is greatly simplified
once we have given a general treatment of M-estimators. Chapter 14 contains results
for generalized method of moments estimators for models nonlinear in parameters.
We also briefly discuss the related topic of minimum distance estimation in Chapter
14.

Readers who are not interested in general approaches to nonlinear estimation
might use these chapters only when needed for reference in Part IV.



1 2 M-Estimation

12.1 Introduction

We begin our study of nonlinear estimation with a general class of estimators known
as M-estimators, a term introduced by Huber (1967). (You might think of the “M”
as standing for minimization or maximization.) M-estimation methods include max-
imum likelihood, nonlinear least squares, least absolute deviations, quasi-maximum
likelihood, and many other procedures used by econometricians.

This chapter is somewhat abstract and technical, but it is useful to develop a uni-
fied theory early on so that it can be applied in a variety of situations. We will carry
along the example of nonlinear least squares for cross section data to motivate the
general approach.

In a nonlinear regression model, we have a random variable, y, and we would like
to model E(y |x) as a function of the explanatory variables x, a K-vector. We already
know how to estimate models of E(y|x) when the model is linear in its parameters:
OLS produces consistent, asymptotically normal estimators. What happens if the re-
gression function is nonlinear in its parameters?

Generally, let m(x,0) be a parametric model for E(y|x), where m is a known
function of x and 6, and @ is a P x 1 parameter vector. [This is a parametric model
because m(-,0) is assumed to be known up to a finite number of parameters.] The
dimension of the parameters, P, can be less than or greater than K. The parameter
space, @, is a subset of R”. This is the set of values of @ that we are willing to con-
sider in the regression function. Unlike in linear models, for nonlinear models the
asymptotic analysis requires explicit assumptions on the parameter space.

An example of a nonlinear regression function is the exponential regression func-
tion, m(x, 0) = exp(x#), where x is a row vector and contains unity as its first ele-
ment. This is a useful functional form whenever y > 0. A regression model suitable
when the response y is restricted to the unit interval is the logistic function, m(x, 6) =
exp(x0)/[1 + exp(x@)]. Both the exponential and logistic functions are nonlinear in 6.

In any application, there is no guarantee that our chosen model is adequate for
E(y|x). We say that we have a correctly specified model for the conditional mean,
E(y|x), if, for some 6, € O,

E(y[x) = m(x,0,) (12.1)

We introduce the subscript ““0”” on theta to distinguish the parameter vector appear-
ing in E(y|x) from other candidates for that vector. (Often, the value 6, is called
“the true value of theta,” a phrase that is somewhat loose but still useful as short-
hand.) As an example, for y > 0 and a single explanatory variable x, consider the
model m(x, ) = 0;x%. If the population regression function is E(y|x) = 4x', then
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0,1 =4 and 0,, = 1.5. We will never know the actual 6, and 6,, (unless we some-
how control the way the data have been generated), but, if the model is correctly
specified, then these values exist, and we would like to estimate them. Generic can-
didates for 0, and 6, are labeled 0; and 0,, and, without further information, 6,
is any positive number and 6, is any real number: the parameter space is @ =
{(6y,0,): 0, > 0,0, € R}. For an exponential regression model, m(x, 8) = exp(x0) is
a correctly specified model for E(y|x) if and only if there is some K-vector 6, such
that E(y | x) = exp(x0,).

In our analysis of linear models, there was no need to make the distinction between
the parameter vector in the population regression function and other candidates for
this vector, because the estimators in linear contexts are obtained in closed form, and
so their asymptotic properties can be studied directly. As we will see, in our theoret-
ical development we need to distinguish the vector appearing in E(y | x) from a generic
element of @. We will often drop the subscripting by “0”” when studying particular
applications because the notation can be cumbersome.

Equation (12.1) is the most general way of thinking about what nonlinear least
squares is intended to do: estimate models of conditional expectations. But, as a sta-
tistical matter, equation (12.1) is equivalent to a model with an additive, unobserv-
able error with a zero conditional mean:

y=m(x,0,) + u, E(ulx)=0 (12.2)

Given equation (12.2), equation (12.1) clearly holds. Conversely, given equation
(12.1), we obtain equation (12.2) by defining the error to be u =y — m(x,6,). In
interpreting the model and deciding on appropriate estimation methods, we should
not focus on the error form in equation (12.2) because, evidently, the additivity of u
has some unintended connotations. In particular, we must remember that, in writing
the model in error form, the only thing implied by equation (12.1) is E(u|x) = 0.
Depending on the nature of y, the error # may have some unusual properties. For
example, if y > 0 then u > —m(x, 6, ), in which case u and x cannot be independent.
Heteroskedasticity in the error—that is, Var(u|x) # Var(u)—is present whenever
Var(y|x) depends on x, as is very common when y takes on a restricted range
of values. Plus, when we introduce randomly sampled observations {(x;, y;):
i=1,2,...,N}, it is too tempting to write the model and its assumptions as
“y; = m(x;,0,) + u; where the u; are i.i.d. errors.” As we discussed in Section 1.4 for
the linear model, under random sampling the {u;} are always i.i.d. What is usually
meant is that u; and x; are independent, but, for the reasons we just gave, this as-
sumption is often much too strong. The error form of the model does turn out to be
useful for defining estimators of asymptotic variances and for obtaining test statistics.
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For later reference, we formalize the first nonlinear least squares (NLS) assumption
as follows:

ASSUMPTION NLS.1:  For some 0, € ©, E(y|x) = m(x,0,).

This form of presentation represents the level at which we will state assumptions for
particular econometric methods. In our general development of M-estimators that
follows, we will need to add conditions involving moments of m(x,#) and y, as well
as continuity assumptions on m(X, -).

If we let w = (x, y), then 6, indexes a feature of the population distribution of w,
namely, the conditional mean of y given x. More generally, let w be an M-vector of
random variables with some distribution in the population. We let #” denote the
subset of RM representing the possible values of w. Let 6, denote a parameter vector
describing some feature of the distribution of w. This could be a conditional mean, a
conditional mean and conditional variance, a conditional median, or a conditional
distribution. As shorthand, we call 6, “the true parameter” or “the true value of
theta.” These phrases simply mean that 6, is the parameter vector describing the
underlying population, something we will make precise later. We assume that 6,
belongs to a known parameter space @ — R”.

We assume that our data come as a random sample of size N from the population;
we label this random sample {w;: i = 1,2,...}, where each w; is an M-vector. This
assumption is much more general than it may initially seem. It covers cross section
models with many equations, and it also covers panel data settings with small time
series dimension. The extension to independently pooled cross sections is almost im-
mediate. In the NLS example, w; consists of x; and y;, the ith draw from the popu-
lation on x and y.

What allows us to estimate 6, when it indexes E(y|x)? It is the fact that 6, is the
value of 0 that minimizes the expected squared error between y and m(x, #). That is,
0, solves the population problem

min E{[y — m(x,0))*} (12.3)
0O
where the expectation is over the joint distribution of (x, y). This conclusion follows

immediately from basic properties of conditional expectations (in particular, condi-
tion CE.8 in Chapter 2). We will give a slightly different argument here. Write

[y —m(x,0)]> = [y — m(x,00)]” + 2[m(x, 05) — m(x,0)]u
+ [m(x, 0,) — m(x, 0)]* (12.4)
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where u is defined in equation (12.2). Now, since E(u|x) = 0, u is uncorrelated with
any function of x, including m(x, 6,) — m(x,#). Thus, taking the expected value of
equation (12.4) gives

E{[y = m(x,0))"} = E{[y — m(x.00)"} + E{[m(x,00) — m(x,0)]"} (12.5)
Since the last term in equation (12.5) is nonnegative, it follows that
E{[y — m(x,0))*} > E{[y — m(x,0,)]*}, alloc® (12.6)

The inequality is strict when @ # 0, unless E{[m(x, 0,) — m(x, 0)]*} = 0; for 0, to be
identified, we will have to rule this possibility out.

Because 6, solves the population problem in expression (12.3), the analogy
principle—which we introduced in Chapter 4—suggests estimating 6, by solving the
sample analogue. In other words, we replace the population moment E{[(y —m(x, 8)*}
with the sample average. The nonlinear least squares (NLS) estimator of 6,, 9, solves

N
: ~1 _ ) 2
min N ?:1 [y = m(x;, 0)] (12.7)

For now, we assume that a solution to this problem exists.

The NLS objective function in expression (12.7) is a special case of a more general
class of estimators. Let ¢(w, ) be a function of the random vector w and the parameter
vector . An M-estimator of 6, solves the problem

N
in N~ 10 12.8
min ; q(w;, 0) (12.8)
assuming that a solution, call it 0, exists. The estimator clearly depends on the sample
{w;:i=1,2,..., N}, but we suppress that fact in the notation.

The objective function for an M-estimator is a sample average of a function of
w; and 6. The division by N, while needed for the theoretical development, does not
affect the minimization problem. Also, the focus on minimization, rather than maxi-
mization, is without loss of generality because maximiziation can be trivially turned
into minimization.

The parameter vector 6, is assumed to uniquely solve the population problem

in E 0 12.9
min E[g(w, 0)] (12.9)
Comparing equations (12.8) and (12.9), we see that M-estimators are based on the
analogy principle. Once 0, has been defined, finding an appropriate function ¢ that
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delivers 6, as the solution to problem (12.9) requires basic results from probability
theory. Usually there is more than one choice of ¢ such that 6, solves problem (12.9),
in which case the choice depends on efficiency or computational issues. In this chap-
ter we carry along the NLS example; we treat maximum likelihood estimation in
Chapter 13.

How do we translate the fact that 6, solves the population problem (12.9) into
consistency of the M-estimator @ that solves problem (12.8)? Heuristically, the argu-
ment is as follows. Since foreach @ € ® {g(w;,0): i = 1,2,...} isjust ani.i.d. sequence,
the law of large numbers implies that

N~! iq(wi,ﬁ) L Elg(w, 0)] (12.10)
i=1

under very weak finite moment assumptions. Since # minimizes the function on the
left side of equation (12.10) and 6, minimizes the function on the right, it seems
plausible that 0L 0,. This informal argument turns out to be correct, except in
pathological cases. There are essentially two issues to address. The first is identifi-
ability of 8,, which is purely a population issue. The second is the sense in which the
convergence in equation (12.10) happens across different values of 6 in ©.

12.2 Identification, Uniform Convergence, and Consistency

We now present a formal consistency result for M-estimators under fairly weak
assumptions. As mentioned previously, the conditions can be broken down into two
parts. The first part is the identification or identifiability of ,. For nonlinear regres-
sion, we showed how @, solves the population problem (12.3). However, we did not
argue that 6, is always the unique solution to problem (12.3). Whether or not this is
the case depends on the distribution of x and the nature of the regression function:

ASSUMPTION NLS.2:  E{[m(x,0,) — m(x,0)]*} > 0, all 0 € ®, 0 # 0,.

Assumption NLS.2 plays the same role as Assumption OLS.2 in Chapter 4. It can
fail if the explanatory variables x do not have sufficient variation in the population.
In fact, in the linear case m(x,#) = x6, Assumption NLS.2 holds if and only if rank
E(x'x) = K, which is just Assumption OLS.2 from Chapter 4. In nonlinear models,
Assumption NLS.2 can fail if m(x, 8,) depends on fewer parameters than are actually
in 0. For example, suppose that we choose as our model m(x,0) = 0; + O,x; + ()3x§)4,
but the true model is linear: 6,3 = 0. Then E[(y — m(x, 0))]* is minimized for any 0
with 0 = 6,1, 0, = 0y, 03 =0, and 0, any value. If 0,3 # 0, Assumption NLS.2
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would typically hold provided there is sufficient variation in x, and x3. Because
identification fails for certain values of 6,, this is an example of a poorly identified
model. (See Section 9.5 for other examples of poorly identified models.)
Identification in commonly used nonlinear regression models, such as exponential
and logistic regression functions, holds under weak conditions, provided perfect col-
linearity in x can be ruled out. For the most part, we will just assume that, when the
model is correctly specified, 6, is the unique solution to problem (12.3). For the
general M-estimation case, we assume that g(w, #) has been chosen so that 8, is a
solution to problem (12.9). Identification requires that 8, be the unique solution:

Elg(w,8,)] < E[g(w,0)], all0e®, 0+#0, (12.11)

The second component for consistency of the M-estimator is convergence of
the sample average N ! EZZ 1 9(w;,0) to its expected value. It turns out that point-
wise convergence in probability, as stated in equation (12.10), is not sufficient for
consistency. That is, it is not enough to simply invoke the usual weak law of large
numbers at each 6 € @. Instead, uniform convergence in probability is sufficient.
Mathematically,

N
—1 p
max| N ;q(wi,ﬂ) —E[g(w,0)]| 50 (12.12)
Uniform convergence clearly implies pointwise convergence, but the converse is not
true: it is possible for equation (12.10) to hold but equation (12.12) to fail. Never-
theless, under certain regularity conditions, the pointwise convergence in equation
(12.10) translates into the uniform convergence in equation (12.12).

To state a formal result concerning uniform convergence, we need to be more
careful in stating assumptions about the function ¢(-,-) and the parameter space ©.
Since we are taking expected values of g(w,#) with respect to the distribution of w,
g(w,0) must be a random variable for each 8 € @. Technically, we should assume
that ¢(- , @) is a Borel measurable function on ¥ for each @ € ®. Since it is very diffi-
cult to write down a function that is not Borel measurable, we spend no further time
on it. Rest assured that any objective function that arises in econometrics is Borel
measurable. You are referred to Billingsley (1979) and Davidson (1994, Chapter 3).

The next assumption concerning ¢ is practically more important. We assume that,
for each w e %", q(w, ) is a continuous function over the parameter space @. All of
the problems we treat in detail have objective functions that are continuous in the
parameters, but these do not cover all cases of interest. For example, Manski’s (1975)
maximum score estimator for binary response models has an objective function that
is not continuous in §. (We cover binary response models in Chapter 15.) It is possi-
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ble to somewhat relax the continuity assumption in order to handle such cases, but
we will not need that generality. See Manski (1988, Section 7.3) and Newey and
McFadden (1994).

Obtaining uniform convergence is generally difficult for unbounded parameter sets,
such as ® = IR”. Tt is easiest to assume that @ is a compact subset of R”, which
means that ® is closed and bounded (see Rudin, 1976, Theorem 2.41). Because the
natural parameter spaces in most applications are not bounded (and sometimes not
closed), the compactness assumption is unattractive for developing a general theory
of estimation. However, for most applications it is not an assumption to worry about:
O can be defined to be such a large closed and bounded set as to always contain 6,,.
Some consistency results for nonlinear estimation without compact parameter spaces
are available; see the discussion and references in Newey and McFadden (1994).

We can now state a theorem concerning uniform convergence appropriate for the
random sampling environment. This result, known as the uniform weak law of large
numbers (UWLLN), dates back to LeCam (1953). See also Newey and McFadden
(1994, Lemma 2.4).

THEOREM 12.1 (Uniform Weak Law of Large Numbers): Let w be a random vector
taking values in %" < R let @ be a subset of R”, and let ¢:#" x ® — IR be a real-
valued function. Assume that (a) @ is compact; (b) for each 8 € @, ¢(-, 0) is Borel
measurable on #; (c) for each w € #, g(w, -) is continuous on @; and (d) |¢(w, 8)| <
b(w) for all 8 € ®, where b is a nonnegative function on #" such that E[h(w)] < co.
Then equation (12.12) holds.

The only assumption we have not discussed is assumption d, which requires the
expected absolute value of g(w,#) to be bounded across . This kind of moment
condition is rarely verified in practice, although, with some work, it can be; see
Newey and McFadden (1994) for examples.

The continuity and compactness assumptions are important for establishing uni-
form convergence, and they also ensure that both the sample minimization problem
(12.8) and the population minimization problem (12.9) actually have solutions. Con-
sider problem (12.8) first. Under the assumptions of Theorem 12.1, the sample average
is a continuous function of 8, since ¢(w;, #) is continuous for each w;. Since a continu-
ous function on a compact space always achieves its minimum, the M-estimation
problem is well defined (there could be more than one solution). As a technical mat-
ter, it can be shown that  is actually a random variable under the measurability as-
sumption on ¢(-,#). See, for example, Gallant and White (1988).

It can also be shown that, under the assumptions of Theorem 12.1, the function
E[g(w, 0)] is continuous as a function of @. Therefore, problem (12.9) also has at least
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one solution; identifiability ensures that it has only one solution, and this fact implies
consistency of the M-estimator.

THEOREM 12.2 (Consistency of M-Estimators): Under the assumptions of Theorem
12.1, assume that the identification assumption (12.11) holds. Then a random vector,
0, solves problem (12.8), and 6 L 0,.

A proof of Theorem 12.2 is given in Newey and McFadden (1994). For nonlinear
least squares, once Assumptions NLS.1 and NLS.2 are maintained, the practical re-
quirement is that m(x,-) be a continuous function over @. Since this assumption is
almost always true in applications of NLS, we do not list it as a separate assumption.
Noncompactness of ® is not much of a concern for most applications.

Theorem 12.2 also applies to median regression. Suppose that the conditional
median of y given x is Med(y|x) = m(x, 0,), where m(x, 8) is a known function of x
and 6. The leading case is a linear model, m(x,0) = x0, where x contains unity. The
least absolute deviations (LAD) estimator of 8, solves

N

. 1 _ )
511613 N zl:‘yl m(x,,0)|

=

If ® is compact and m(x, -) is continuous over @ for each x, a solution always exists.
The LAD estimator is motivated by the fact that 8, minimizes E[|y — m(x, 8)|] over
the parameter space ; this follows by the fact that for each x, the conditional median
is the minimum absolute loss predictor conditional on x. (See, for example, Bassett
and Koenker, 1978, and Manski, 1988, Section 4.2.2.) If we assume that @, is the
unique solution—a standard identification assumption—then the LAD estimator is
consistent very generally. In addition to the continuity, compactness, and identifica-
tion assumptions, it suffices that E[|y|] < oo and |m(x,0)| < a(x) for some function
a(-) such that E[a(x)] < oo. [To see this point, take b(w) = |y| + a(x) in Theorem
12.2.]

Median regression is a special case of quantile regression, where we model quantiles
in the distribution of y given x. For example, in addition to the median, we can es-
timate how the first and third quartiles in the distribution of y given x change with x.
Except for the median (which leads to LAD), the objective function that identifies a
conditional quantile is asymmetric about zero. See, for example, Koenker and Bassett
(1978) and Manski (1988, Section 4.2.4). Buchinsky (1994) applies quantile regression
methods to examine factors affecting the distribution of wages in the United States
over time.

We end this section with a lemma that we use repeatedly in the rest of this chapter.
It follows from Lemma 4.3 in Newey and McFadden (1994).
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LEMMA 12.1: Suppose that 6 2 @,, and assume that r(w,0) satisfies the same
assumptions on ¢(w, #) in Theorem 12.2. Then

-1 Zr(wi,é) L Elr(w, 0,)] (12.13)

That is, N~' S_V, r(w;, 0) is a consistent estimator of E[r(w, 6,)].

Intuitively, Lemma 12.1 is quite reasonable. We know that N~ Z;il r(w;, 8,) gen-
erally converges in probability to E[r(w,0,)] by the law of large numbers. Lemma
12.1 shows that, if we replace 6, with a consistent estimator, the convergence still
holds, at least under standard regularity conditions.

12.3 Asymptotic Normality

Under additional assumptions on the objective function, we can also show that M-
estimators are asymptotically normally distributed (and converge at the rate v/N). It
turns out that continuity over the parameter space does not ensure asymptotic nor-
mality. We will assume more than is needed because all of the problems we cover in
this book have objective functions with many continuous derivatives.

The simplest asymptotic normality proof proceeds as follows. Assume that 8, is in
the interior of ®, which means that ® must have nonempty interior; this assumption
is true in most applications. Then, since [N 0, 0 is in the interior of ® with prob-
ability approaching one. If g(w, -) is continuously differentiable on the interior of @,
then (with probability approaching one) 0 solves the first-order condition

is(w[,é) =0 (12.14)
i=1

where s(w,0) is the P x 1 vector of partial derivatives of g(w,8): s(w,0) =
[0g(w,0)/00,,0q(w,0)/00,,...,0q(w,8)/00p]. [Or, s(w,0) is the transpose of the
gradient of g(w, #).] We call s(w, 8) the score of the objective function, ¢(w, #). While
condition (12.14) can only be guaranteed to hold with probability approaching one,
usually it holds exactly; at any rate, we will drop the qualifier, as it does not affect the
derivation of the limiting distribution.

If g(w, -) is twice continuously differentiable, then each row of the left-hand side of
equation (12.14) can be expanded about 6, in a mean-value expansion:

Y s(wi, 0) = "s(wi, 0,) + (zN: H) 0 —0,) (12.15)
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The notation H; denotes the P x P Hessian of the objective function, ¢(w;, #), with
respect to 6, but with each row of H(w;, 8) = d>q(w;,0)/0000" = V3q(w;, 0) evaluated
at a different mean value. Each of the P mean values is on the line segment between
0, and 0. We cannot know what these mean values are, but we do know that each
must converge in probability to 6, (since each is “trapped” between 6 and a,).
Combining equations (12.14) and (12.15) and multiplying through by 1/v/N gives

0=N"'2 zN:s(w,-, 0,) + <N1 EN:H> VN(O - 0,)
i=1 i=1

Now, we can apply Lemma 12.1 to get N~ Z H ~ E[H(w, 0 o)] (under some
moment conditions). If A, = E[ (w 0 )] 18 nonsmgular then N~ Z H; is non-
singular w.p.a.1 and (N~! Z H;,)! AO . Therefore, we can write

VN6 - 0,) ( 1ZH> [NI/ZZN:si((IO)]
i=1

where s;(0,) = s(W;,0,). As we will show, E[s;(8,)] = 0. Therefore, N~'/2 3"~ 's,(8,)
generally satisfies the central limit theorem because it is the average of i.i.d. random
vectors with zero mean, multiplied by the usual v/N. Since 0,(1) - O,(1) = 0,(1), we
have

VN(O-0,) = I/ZZs,

This is an important equation. It shows that v/N(@ — 6,) inherits its limiting distri-
bution from the average of the scores, evaluated at 8,. The matrix Agl simply acts as
a linear transformation. If we absorb this linear transformation into s;(6,), we can
write

+0,(1) (12.16)

VN0 - 0,) I/ZZr, )+ 0,(1 (12.17)

where r;(0,) = —Aglsi(ﬂo); this is sometimes called the influence function representa-
tion of @, where r(w, 0) is the influence function.

Equation (12.16) [or (12.17)] allows us to derive the first-order asymptotic distribu-
tion of 6. Higher order representations attempt to reduce the error in the o,(1) term
in equation (12.16); such derivations are much more complicated than equation
(12.16) and are beyond the scope of this book.
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We have essentially proven the following result:

THEOREM 12.3 (Asymptotic Normality of M-estimators): In addition to the assump-
tions in Theorem 12.2, assume (a) 6, is in the interior of @; (b) s(w, ) is continu-
ously differentiable on the interior of ® for all we #"; (c) Each element of H(w, 8)
is bounded in absolute value by a function b(w), where E[b(w)] < o0; (d) A, =
E[H(w, 0,)] is positive definite; (e) E[s(w,0,)] = 0; and (f) each element of s(w, 8,)
has finite second moment.

Then

VN(0 - 0,) % Normal(0, A 'B,A_ ") (12.18)
where

A, = E[H(w,0,)] (12.19)
and

B, = E[s(w, 0,)s(w,0,)'] = Var[s(w,0,)] (12.20)
Thus,

Avar 0 = A;'B,A; /N (12.21)

Theorem 12.3 implies asymptotic normality of most of the estimators we study in
the remainder of the book. A leading example that is not covered by Theorem 12.3 is
the LAD estimator. Even if m(x, 8) is twice continuously differentiable in @, the ob-
jective function for each i, g(w;,0) = |y, — m(x;, 8)|, is not twice continuously differ-
entiable because the absolute value function is nondifferentiable at zero. By itself, this
limitation is a minor nuisance. More importantly, by any reasonable definition, the
Hessian of the LAD objective function is the zero matrix in the leading case of a
linear conditional median function, and this fact violates assumption d of Theorem
12.3. It turns out that the LAD estimator is generally v/N-asymptotically normal, but
Theorem 12.3 cannot be applied. Newey and McFadden (1994) contains results that
can be used.

A key component of Theorem 12.3 is that the score evaluated at 8, has expected
value zero. In many applications, including NLS, we can show this result directly.
But it is also useful to know that it holds in the abstract M-estimation framework, at
least if we can interchange the expectation and the derivative. To see this point, note
that, if @, is in the interior of @, and E[g(w, 6)] is differentiable for @ € int @, then

VoE[g(w,0)]lg—g, =0 (12.22)
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where Vy denotes the gradient with respect to #. Now, if the derivative and expec-
tations operator can be interchanged (which is the case quite generally), then equation
(12.22) implies

E[Vag(w, 0o)] = E[s(w,0,)] = 0 (12.23)

A similar argument shows that, in general, E[H(w, 0,)] is positive semidefinite. If 6,
is identified, E[H(w, 6,)] is positive definite.

For the remainder of this chapter, it is convenient to divide the original NLS ob-
jective function by two:

g(w,0) = [y — m(x,0) /2 (12.24)
The score of equation (12.24) can be written as
S(W,0) = —Vom(x,0)'[y — m(x, 0) (12.25)

where Vym(x, 0) is the 1 x P gradient of m(x,8), and therefore Vym(x,0)" is P x 1.
We can show directly that this expression has an expected value of zero at 8 = 6, by
showing that expected value of s(w, 8,) conditional on x is zero:

E[s(w,0,) | x] = —Vom(x,0)'[E(y|x) — m(x,0,)] = 0 (12.26)
The variance of s(w, 6,) is
B, = E[s(w, 0,)s(w,0,)'] = E[u>Vym(x,0,) Vom(x, 0,)] (12.27)

where the error u = y — m(x, 6,) is the difference between y and E(y|x).
The Hessian of ¢(w, 8) is

H(w, 0) = Vym(x,0)'Vom(x, 0) — Vim(x, 0)[y — m(x, 0)] (12.28)

where Vim(x,0) is the P x P Hessian of m(x,0) with respect to #. To find the
expected value of H(w, ) at § = 8,, we first find the expectation conditional on x.
When evaluated at 6,, the second term in equation (12.28) is Vim(x,0,)u, and it
therefore has a zero mean conditional on x [since E(u|x) = 0]. Therefore,

E[H(w,0,) | x] = Vym(x, 0,) ' Vym(x, 0,) (12.29)
Taking the expected value of equation (12.29) over the distribution of x gives
Ao = E[Vom(x, 0,)'Vam(x, 0,)] (12.30)

This matrix plays a fundamental role in nonlinear regression. When 0, is identified,
A, is generally positive definite. In the linear case m(x, #) = x0, A, = E(x'x). In the
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exponential case m(x, ) = exp(x0), A, = E[exp(2x0,)x'x], which is generally posi-
tive definite whenever E(x’x) is. In the example m(x, ) = 0; + O,x; + 03x30“ with
0.3 = 0, it is easy to show that matrix (12.30) has rank less than four.

For nonlinear regression, A, and B, are similar in that they both depend on
Vom(x, 0,)'Vom(x, 0,). Generally, though, there is no simple relationship between A,
and B, because the latter depends on the distribution of »?, the squared population
error. In Section 12.5 we will show that a homoskedasticity assumption implies that
B, is proportional to A,.

12.4 Two-Step M-Estimators

Sometimes applications of M-estimators involve a first-stage estimation (an example
is OLS with generated regressors, as in Chapter 6). Let 7 be a preliminary estimator,
usually based on the random sample {w;:i=1,2,...,N}. Where this estimator
comes from must be vague at this point.

A two-step M-estimator 0 of @, solves the problem

mm Zq w;, 0;9) (12.31)

where ¢ is now defined on %" x ® x I', and T is a subset of IR. We will see several
examples of two-step M-estimators in the applications in Part IV. An example of a
two-step M-estimator is the weighted nonlinear least squares (WNLS) estimator,
where the weights are estimated in a first stage. The WNLS estimator solves

min Z m(x;, 0)) /h(x;, ) (12.32)

0c®

where the weighting function, A(x,y), depends on the explanatory variables and a
parameter vector. As with NLS, m(x, #) is a model of E(y | x). The function A(x, y) is
chosen to be a model of Var(y|x). The estimator § comes from a problem used to
estimate the conditional variance. We list the key assumptions needed for WNLS to
have desirable properties here, but several of the derivations are left for the problems.

ASSUMPTION WNLS.1:  Same as Assumption NLS.1.
12.4.1 Consistency

For the general two-step M-estimator, when will 6 be consistent for 6,? In practice,
the important condition is the identification assumption. To state the identification
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condition, we need to know about the asymptotic behavior of . A general assump-
tion is that 2 y*, where y* is some element in I'. We label this value p* to allow for
the possibility that  does not converge to a parameter indexing some interesting
feature of the distribution of w. In some cases, the plim of  will be of direct interest.
In the weighted regression case, if we assume that /(x, p) is a correctly specified model
for Var(y|x), then it is possible to choose an estimator such that y L Y., Where
Var(y|x) = h(x,p,). (For an example, see Problem 12.2.) If the variance model is
misspecified, plim j is generally well defined, but Var(y|x) # A(x,y*); it is for this
reason that we use the notation p*.
The identification condition for the two-step M-estimator is

Elg(w,00;7%)] < E[g(w,8;77)],  all6e€®, 6 +6,

The consistency argument is essentially the same as that underlying Theorem 12.2. If
q(w;, 0; ) satisfies the UWLLN over ® x I' then expression (12.31) can be shown to
converge to E[g(w, 8; y*)] uniformly over ®. Along with identification, this result can
be shown to imply consistency of 0 for 6,.

In some applications of two-step M-estimation, identification of 6, holds for any
y € I'. This result can be shown for the WNLS estimator (see Problem 12.4). It is for
this reason that WNLS is still consistent even if the function A(x,y) is not correctly
specified for Var(y|x). The weakest version of the identification assumption for
WNLS is the following:

ASSUMPTION WNLS.2:  E{[m(x,0,) — m(x,0)]*/h(x,7*)} > 0, all 6@, 0 #0,,
where p* = plim .

As with the case of NLS, we know that weak inequality holds in Assumption
WNLS.2 under Assumption WNLS.1. The strict inequality in Assumption WNLS.2
puts restrictions on the distribution of x and the functional forms of m and h.

In other cases, including several two-step maximum likelihood estimators we en-
counter in Part IV, the identification condition for 6, holds only for y = y* =y,,
where p, also indexes some feature of the distribution of w.

12.4.2 Asymptotic Normality

With the two-step M-estimator, there are two cases worth distinguishing. The first
occurs when the asymptotic variance of /N (é — 6,) does not depend on the asymp-
totic variance of v/N(y — y*), and the second occurs when the asymptotic variance of
V/N (0 — 0,) must be adjusted to account for the first-stage estimation of y*. We first
derive conditions under which we can ignore the first-stage estimation error.
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Using arguments similar to those in Section 12.3, it can be shown that, under
standard regularity conditions,

VN (O - 0,) :A01<—N1/2isi(00;?)> +0,(1) (12.33)
i=1

where now A, = E[H(w, 0,;y")]. In obtaining the score and the Hessian, we take
derivatives only with respect to #; y* simply appears as an extra argument. Now, if

N N
N7I2 Zsi(ﬂo; y)=N"1? Zsi(ao; ") +0p(1) (12.34)
i=1 i=1

then VN (é — 6,) behaves the same asymptotically whether we used 7 or its plim in
defining the M-estimator.

When does equation (12.34) hold? Assuming that v/N(§ — y*) = O,(1), which is
standard, a mean value expansion similar to the one in Section 12.3 gives

N N
NN si(00:9) = N7 si(00i97) + FoVN (7 = 7') + 0y(1) (12.35)
i=1 i=1

where F, is the P x J matrix

Fo = E[V,s(W, 00:7°)] (12.36)
(Remember, J is the dimension of p.) Therefore, if

E[V,s(w,0,;7")] =0 (12.37)

then equation (12.34) holds, and the asymptotic variance of the two-step M-estimator
is the same as if p* were plugged in. In other words, under assumption (12.37), we
conclude that equation (12.18) holds, where A, and B, are given in expressions
(12.19) and (12.20), respectively, except that y* appears as an argument in the score
and Hessian. For deriving the asymptotic distribution of v/N(@ — 6,), we can ignore
the fact that  was obtained in a first-stage estimation.

One case where assumption (12.37) holds is weighted nonlinear least squares,
something you are asked to show in Problem 12.4. Naturally, we must assume that
the conditional mean is correctly specified, but, interestingly, assumption (12.37)
holds whether or not the conditional variance is correctly specified.

There are many problems for which assumption (12.37) does not hold, including
some of the methods for correcting for endogeneity in probit and Tobit models in Part
IV. In Chapter 17 we will see that two-step methods for correcting sample selection
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bias are two-step M-estimators, but assumption (12.37) fails. In such cases we need to
make an adjustment to the asymptotic variance of v N (é —6,). The adjustment is
easily obtained from equation (12.35), once we have a first-order representation for
V/N(§ — y*). We assume that

VNG —p%) I/ZZr, )+ 0,(1 (12.38)

where r;(y*) isa J x 1 vector with E[r;(y*)] = 0 (in practice, r; depends on parameters
other than p*, but we suppress those here for simplicity). Therefore, $ could itself be
an M-estimator or, as we will see in Chapter 14, a generalized method of moments
estimator. In fact, every estimator considered in this book has a representation as in
equation (12.38).

Now we can write

N

VNO—05) = A, NS g,(06i7")] + 0p(1) (12.39)
=1

where g;(0,;7") = s;(0o;y") + Fori(*). Since g;(0,;y*) has zero mean, the standard-

ized partial sum in equation (12.39) can be assumed to satisfy the central limit theorem.
Define the P x P matrix

D, = E[gi(acﬂ 7*)gi(005 7*),] = Var[gi(00§ 7*)] (12-40)
Then
Avar VN(0 — 0,) = A;'D,A]! (12.41)

We will discuss estimation of this matrix in the next section.

12.5 Estimating the Asymptotic Variance

12.5.1 Estimation without Nuisance Parameters

We first consider estimating the asymptotic variance of 0 in the case where there are
no nuisance parameters. This task requires consistently estimating the matrices A,
and B,. One thought is to solve for the expected values of H(w,8,) and s(w,8,)
s(w,0,)" over the distribution of w, and then to plug in @ for #,. When we have
completely specified the distribution of w, obtaining closed-form expressions for A,
and B, is, in principle, possible. However, except in simple cases, it would be difficult.
More importantly, we rarely specify the entire distribution of w. Even in a maximum
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likelihood setting, w is almost always partitioned into two parts: a set of endogenous
variables, y, and conditioning variables, x. Rarely do we wish to specify the distri-
bution of x, and so the expected values needed to obtain A, and B, are not available.

We can always estimate A, consistently by taking away the expectation and
replacing 0, with 6. Under regularity conditions that ensure uniform converge of the
Hessian, the estimator

N N
N'> H(w,0)=N"'> H; (12.42)
i1 i1

is consistent for A,, by Lemma 12.1. The advantage of the estimator (12.42) is that it
is always available in problems with a twice continuously differentiable objective
function. The drawbacks are that it requires calculation of the second derivatives—a
nontrivial task for some problems—and it is not guaranteed to be positive definite, or
even positive semidefinite, for the particular sample we are working with. As we will
see shortly, in some cases the asymptotic variance of v/ N (é —0,) is proportional to
A;', in which case using the estimator (12.42) to estimate A, can result in a non-
positive definite variance matrix estimator. Without a positive definite variance matrix
estimator, some asymptotic standard errors need not even be defined, and test statis-
tics that have limiting chi-square distributions could actually be negative.

In most econometric applications, more structure is available that allows a differ-
ent estimator. Suppose we can partition w into x and y, and that 6, indexes some
feature of the distribution of y given x (such as the conditional mean or, in the case of
maximum likelihood, the conditional distribution). Define

A(x,0,) = E[H(w, 0,) | x] (12.43)

While H(w, 8,) is generally a function of x and y, A(x, 8,) is a function only of x. By
the law of iterated expectations, E[A(x,8,)] = E[H(w,8,)] = A,. From Lemma 12.1
and standard regularity conditions it follows that

N N
NS A0 =N"'D A LA, (12.44)
i=1 i=1

The estimator (12.44) of A, is useful in cases where E[H(w, 8,) | x] can be obtained in
closed form or is easily approximated. In some leading cases, including NLS and
certain maximum likelihood problems, A(x, 6,) depends only on the first derivatives
of the conditional mean function.

When the estimator (12.44) is available, it is usually the case that 8, actually min-
imizes E[g(w, @) | x] for any value of x; this is easily seen to be the case for NLS from
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equation (12.4). Under assumptions that allow the interchange of derivative and ex-
pectation, this result implies that A(x, 8,) is positive semidefinite. The expected value
of A(x,0,) over the distribution of x is positive definite provided 6, is identified.
Therefore, the estimator (12.44) is usually positive definite in the sample; as a result,
it is more attractive than the estimator (12.42).

Obtaining a positive semidefinite estimator of B, is straightforward. By Lemma
12.1, under standard regularity conditions we have

N N
NS s(wiO)s(wi,0) = N> s8] 5 B, (12.45)
i=1 i=1

Combining the estimator (12.45) with the consistent estimators for A,, we can con-
sistently estimate Avar v/N(6 — 0,) by
Avar VN(6 - 0,) = A'BA™! (12.46)

where A is one of the estimators (12.42) or (12.44). The asymptotic standard errors
are obtained from the matrix

V = Avar(9) = AT'BA"!/N (12.47)

which can be expressed as

@ H>1 (i SS) (i H>1 (12.48)

i=1

or

(ZNI: Af>_l (ZNI: §,-§;> <ZN; Af>_l (12.49)

depending on the estimator used for A,. Expressions (12.48) and (12.49) are both at
least positive semidefinite when they are well defined.

In the case of nonlinear least squares, the estimator of A, in equation (12.44) is
always available and always used:

N

N
> A= Vi Vo
i=1 i=1

where Vo, = Vym(x;, 8) for every observation i. Also, the estimated score for NLS
can be written as



M-Estimation 359

$i = —Vort[y; — m(x;,0)] = —Vorn]iy; (12.50)

where the nonlinear least squares residuals, #;, are defined as

ilj Eyi—m(xi,ﬂ) (1251)
The estimated asymptotic variance of the NLS estimator is

N 1/ N N -1
Avar(9) = (Z V,;rh{Von%> (Z a,?v(,m;v(,mi> (Z Vgrh{V(;rhi> (12.52)
=1 i=1 i=1

This is called the heteroskedasticity-robust variance matrix estimator for NLS
because it places no restrictions on Var(y | x). It was first proposed by White (1980a).
[Sometimes the expression is multiplied by N/(N — P) as a degrees-of-freedom ad-
justment, where P is the dimension of 6.] As always, the asymptotic standard error of
each element of @ is the square root of the appropriate diagonal element of matrix
(12.52).

As a specific example, suppose that m(x,0) =exp(x#). Then VymVyrir; =

exp(2x;0)x/x;, which has dimension K x K. We can plug this equation into expres-
sion (12.52) along with i; = y; — exp(x,8).

In many contexts, including nonlinear least squares and certain quasi-likelihood
methods, the asymptotic variance estimator can be simplified under additional as-

sumptions. For our purposes, we state the assumption as follows: For some a2 > 0,
E[s(w, 0,)s(w,0,)'] = c2E[H(w, 0,)] (12.53)

This assumption simply says that the expected outer product of the score, evaluated
at @,, is proportional to the expected value of the Hessian (evaluated at 6,): B, =
a2A,. Shortly we will provide an assumption under which assumption (12.53) holds
for NLS. In the next chapter we will show that assumption (12.53) holds for 62 = 1 in
the context of maximum likelihood with a correctly specified conditional density. For
reasons we will see in Chapter 13, we refer to assumption (12.53) as the generalized
information matrix equality (GIME).

LEMMA 12.2:  Under regularity conditions of the type contained in Theorem 12.3 and
assumption (12.53), Avar(0) = 62A,!/N. Therefore, under assumption (12.53), the
asymptotic variance of # can be estimated as

N -1
V=42 <Zﬂi> (12.54)
i=1
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or

N —1
V=¢> <2Ai> (12.55)

i=1

2
o°

where H; and A, are defined as before, and 62 L

In the case of nonlinear regression, the parameter o2 is the variance of y given x, or
equivalently Var(u | x), under homoskedasticity:

ASSUMPTION NLS.3:  Var(y|x) = Var(u|x) = 2.

Under Assumption NLS.3, we can show that assumption (12.53) holds with ¢2 =
Var(y|x). First, since s(w, 0,)s(w,0,)" = u?Vom(x, 0,) Vom(x, 0,,), it follows that

E[s(w,0,)s(w,0,)" | x] = E(u? | x)Vom(x, 0,) Vom(x, 0,)
= a2Vpm(x, 0,)'Vom(x, 0,) (12.56)

under Assumptions NLS.1 and NLS.3. Taking the expected value with respect to x
gives equation (12.53).

Under Assumption NLS.3, a simplified estimator of the asymptotic variance of the
NLS estimator exists from equation (12.55). Let

L1
“IN-P)

XN:a,? =SSR/(N — P) (12.57)
i=1

where the #; are the NLS residuals (12.51) and SSR is the sum of squared NLS
residuals. Using Lemma 12.1, 6% can be shown to be consistent very generally. The
subtraction of P in the denominator of equation (12.57) is an adjustment that is
thought to improve the small sample properties of 7.

Under Assumptions NLS.1-NLS.3, the asymptotic variance of the NLS estimator
is estimated as

-1
N
az< V(;rhfvon“ai> (12.58)
=1
This is the default asymptotic variance estimator for NLS, but it is valid only
under homoskedasticity; the estimator (12.52) is valid with or without Assump-

tion NLS.3. For an exponential regression function, expression (12.58) becomes
(N exp(2x,0)x/x;) .
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12.5.2 Adjustments for Two-Step Estimation

In the case of the two-step M-estimator, we may or may not need to adjust the
asymptotic variance. If assumption (12.37) holds, estimation is very simple. The most
general estimators are expressions (12.48) and (12.49), where §;, H;, and A; depend on
7y, but we only compute derivatives with respect to 6.

In some cases under assumption (12.37), the analogue of assumption (12.53) holds
(with y, = plim 9 appearing in H and s). If so, the simpler estimators (12.54) and
(12.55) are available. In Problem 12.4 you are asked to show this result for weighted
NLS when Var(y|x) = a2h(x,y,) and y, = plim . The natural third assumption for
WNLS is that the variance function is correctly specified:

AsSUMPTION WNLS.3:  For some yp, e I' and o2, Var(y|x) = ¢2h(x,y,). Further,

VN@G = 1,) = Op(1).

Under Assumption WNLS.3, the asymptotic variance of the WNLS estimator is
estimated as

N -1
6’ <Z(v,,m;v9na,-) /ﬁ,) (12.59)
i1
where h; = h(x;,7) and 62 is as in equation (12.57) except that the residual #; is
replaced with the standardized residual, i; /\/717 . The sum in expression (12.59) is
simply the outer product of the weighted gradients, V()ITA’Z,'/\/}AI',‘ . Thus the NLS for-
mulas can be used but with all quantities weighted by 1 /\/}T, . It is important to re-
member that expression (12.59) is not valid without Assumption WNLS.3.

When assumption (12.37) is violated, the asymptotic variance estimator of 6 must
account for the asymptotic variance of ; we must estimate equation (12.41). We
already know how to consistently estimate A,: use expression (12.42) or (12.44)
where § is also plugged in. Estimation of D, is also straightforward. First, we need to
estimate F,. An estimator that is always available is

N
F=N"Y"V,s(60;7) (12.60)
i=1

In cases with conditioning variables, such as nonlinear least squares, a simpler esti-
mator can be obtained by computing E[V,s(w;,8,,7*)|x;], replacing (,,y*) with

(0,%), and using this in place of V,si(0; $). Next, replace r;(y*) with ; = r;(). Then



362 Chapter 12

N

D=N"'} g4 (12.61)
i1

is consistent for D,, where g; = §; + Ft;. The asymptotic variance of the two-step M-

estimator can be obtained as in expression (12.48) or (12.49), but where §; is replaced

with g,.

12.6 Hypothesis Testing

12.6.1 Wald Tests

Wald tests are easily obtained once we choose a form of the asymptotic variance. To
test the Q restrictions

Hy: ¢(6,) =0 (12.62)
we can form the Wald statistic
W =¢(0) (CVC')'c(0) (12.63)

where V is an asymptotic variance matrix estimator of @, C = C(6), and C(#) is the
O x P Jacobian of ¢(#). The estimator V can be chosen to be fully robust, as in ex-
pression (12.48) or (12.49); under assumption (12.53), the simpler forms in Lemma
12.2 are available. Also, V can be chosen to account for two-step estimation, when
necessary. Provided V has been chosen appropriately, W ~ )(ZQ under Hy.

A couple of practical restrictions are needed for W to have a limiting ){é distribu-
tion. First, 8, must be in the interior of ®; that is, 8, cannot be on the boundary. If,
for example, the first element of @ must be nonnegative—and we impose this restric-
tion in the estimation—then expression (12.63) does not have a limiting chi-square
distribution under Hy: 8, = 0. The second condition is that C(6,) = Vyc(6,) must
have rank Q. This rules out cases where 6, is unidentified under the null hypothesis,
such as the NLS example where m(x, 8) = 6, + 6,x, + ngg)“ and 0,3 = 0 under Hy.

One drawback to the Wald statistic is that it is not invariant to how the nonlinear
restrictions are imposed. We can change the outcome of a hypothesis test by rede-
fining the constraint function, ¢(-). We can illustrate the lack of invariance by study-
ing an asymptotic ¢ statistic (since a ¢ statistic is a special case of a Wald statistic).
Suppose that for a parameter ¢; > 0, the null hypothesis is Hy: 0,1 = 1. The asymp-
totic 7 statistic is (0, — 1)/se(6;), where se(0)) is the asymptotic standard error of 0.
Now define ¢, = log(6)), so that ¢, = log(0o1) and ¢, = log(0;). The null hypothe-
sis can be stated as Hy : ¢,, = 0. Using the delta method (see Chapter 3), se(¢,) =
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éfl se(;), and so the 7 statistic based on ¢, is ¢, /se(d,) = log(6,)0; /se(0;) #
(01 —1)/se(60y).

The lack of invariance of the Wald statistic is discussed in more detail by Gregory
and Veall (1985), Phillips and Park (1988), and Davidson and MacKinnon (1993,
Section 13.6). The lack of invariance is a cause for concern because it suggests that
the Wald statistic can have poor finite sample properties for testing nonlinear hypoth-
eses. What is much less clear is that the lack of invariance has led empirical researchers
to search over different statements of the null hypothesis in order to obtain a desired
result.

12.6.2 Score (or Lagrange Multiplier) Tests

In cases where the unrestricted model is difficult to estimate but the restricted model
is relatively simple to estimate, it is convenient to have a statistic that only requires
estimation under the null. Such a statistic is Rao’s (1948) score statistic, also called
the Lagrange multiplier statistic in econometrics, based on the work of Aitchison and
Silvey (1958). We will focus on Rao’s original motivation for the statistic because it
leads more directly to test statistics that are used in econometrics. An important point
is that, even though Rao, Aitchison and Silvey, Engle (1984), and many others focused
on the maximum likelihood setup, the score principle is applicable to any problem
where the estimators solve a first-order condition, including the general class of M-
estimators.

The score approach is ideally suited for specification testing. Typically, the first step
in specification testing is to begin with a popular model—one that is relatively easy to
estimate and interpret—and nest it within a more complicated model. Then the
popular model is tested against the more general alternative to determine if the orig-
inal model is misspecified. We do not want to estimate the more complicated model
unless there is significant evidence against the restricted form of the model. In stating
the null and alternative hypotheses, there is no difference between specification test-
ing and classical tests of parameter restrictions. However, in practice, specification
testing gives primary importance to the restricted model, and we may have no in-
tention of actually estimating the general model even if the null model is rejected.

We will derive the score test only in the case where no correction is needed for
preliminary estimation of nuisance parameters: either there are no such parameters
present, or assumption (12.37) holds under Hy. If nuisance parameters are present,
we do not explicitly show the score and Hessian depending on 3.

We again assume that there are Q continuously differentiable restrictions imposed
on 6, under Hy, as in expression (12.62). However, we must also assume that the
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restrictions define a mapping from R”~? to R”?, say, d: R"~¢ — R”. In particular,
under the null hypothesis, we can write 8, = d(/,), where 4, isa (P — Q) x 1 vector.
We must assume that A, is in the interior of its parameter space, A, under Hy. We
also assume that d is twice continuously differentiable on the interior of A.

Let 4 be the solution to the constrained minimization problem

rlneilr& iq[w,—, d(2)] (12.64)
i=1

The constrained estimator of @, is simply 6 = d(i). In practice, we do not have to
explicitly find the function d; solving problem (12.64) is easily done just by directly
imposing the restrictions, especially when the restrictions set certain parameters to
hypothesized values (such as zero). Then, we just minimize the resulting objective
function over the free parameters.

As an example, consider the nonlinear regression model

m(x,0) = exp[xp + 01 (xB)* + 02(xpB)’]

where x is 1 x K and contains unity as its first element. The null hypthosis is
Hy: 61 = 9, = 0, so that the model with the restrictions imposed is just an exponential
regression function, m(x, f) = exp(xf).

The simplest method for deriving the LM test is to use Rao’s score principle
extended to the M-estimator case. The LM statistic is based on the limiting distribu-
tion of

N7I2 isi(é) (12.65)
i=1

under Hy. This is the score with respect to the entire vector 6, but we are evaluating it
at the restricted estimates. If @ were replaced by 6, then expression (12.65) would be
identically zero, which would make it useless as a test statistic. If the restrictions
imposed by the null hypothesis are true, then expression (12.65) will not be statisti-
cally different from zero.

Assume initially that 6, is in the interior of @ under Hy; we will discuss how to
relax this assumption later. Now /N (6 — 8,) = O,(1) by the delta method because
VN(A =) = O, (1) under the given assumptions. A standard mean value expansion
yields

N-12 XN: s:(0) = N~/ zNj si(05) + AoVN(0 — 0,) + 0,(1) (12.66)
i=1 i=1
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under Hy, where A, is given in expression (12.19). But 0 = v/N¢(0) = v/Ne(6,) +
CVN(0 —0,), where C is the Q x P Jacobian matrix C(#) with rows evaluated at
mean values between 8 and 6,. Under Hy, c(0,) =0, and plim C= Cc(6,) = C,.
Therefore, under Hy, Cov/N(0 — 0,) = 0,(1), and so multiplying equation (12.66)
through by C(,Ag1 gives

N

CoA,'NT2Y "si(0) = CoA'N™ I/ZZS, )4 0,(1) (12.67)
i=1 i=1

By the CLT, C,A;'N"123°¥ s,(0,) gNormal(O,CoAngoAgng), where B, is

defined in expression (12.20). Under our assumptions, CoA,'BoA,'C. has full rank

0, and so

N-12 Zsl

The score or LM statistic is given by

<Zs,> A"'C/(CA'BA'C')” (Zs,) /N (12.68)

where all quantities are evaluated at 8. For example C= C(é) B is given in expres-
sion (12.45) but with @ in place of 8, and A is one of the estlmators in expression
(12.42) or (12.44), again evaluated at §. Under Hy, LM 4 ,(

For the Wald statistic we assumed that 0, € int(®) under Ho; this assumption is
crucial for the statistic to have a limiting chi-square distribution. We will not consider
the Wald statistic when 6, is on the boundary of ® under Hy; see Wolak (1991) for
some results. The general derivation of the LM statistic also assumed that 6, € int(@®)
under Hy. Nevertheless, for certain applications of the LM test we can drop the
requirement that 6, is in the interior of @ under Hy. A leading case occurs when 6
can be partitioned as 8 = (0],03)’, where 0, is (P — Q) x 1 and 6, is Q x 1. The null
hypothesis is Hy: 8, = 0, so that ¢(f) = 6,. It is easy to see that the mean value
expansion used to derive the LM statistic is valid provided 4, = 6, is in the interior
of its parameter space under Hy; 8, = (6.,,0)’ can be on the boundary of @. This
observation is useful especially when testing hypotheses about parameters that must
be either nonnegative or nonpositive.

If we assume the generalized information matrix equality (12.53) with 62 = 1, the
LM statistic simplifies. The simplification results from the following reasoning: (1)
CD = 0 by the chain rule, where D = V,d(4), since c[d(4)] = 0 for 4 in A. (2) If E is

A;'Cl[C.AT'BASCl) !

d
SRR NCIEY
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a P x Q matrix E with rank Q, F is a P x (P — Q) matrix with rank P — Q, and
E'F =0, then E(E'E)"'E' =Ip — F(F'F)"'F’. (This is simply a statement about
projections onto orthogonal subspaces.) Choosing E = A"'’C'and F = A'’D gives
A2C(CAT'C)'CAT2 =1, — AV’D(D'AD) 'D'A'?. Now, pre- and post-
multiply this equality by A™"/? to get A"'C'(CA™'C)'CA~'=A~' —D(D'AD)"'D".
(3) Plug B = A into expression (12.68) and use step 2, along with the first-order con-
dition D’(Y,§:) = 0, to get

LM = (f: s) M-! (zN: s) (12.69)

where M can be chosen as >_, A;, S H;, or .Y 55/, (Each of these expressions
consistently estimates A, = B, when divided by N.) The last choice of M results in a
statistic that is N times the uncentered R-squared, say RZ, from the regression

1 ons, i=1,2...,N (12.70)

(Recall that §/ is a 1 x P vector.) Because the dependent variable in regression (12.70)
is unity, NR% is equivalent to N — SSR, where SSRj is the sum of squared residuals
from regression (12.70). This is often called the outer product of the score LM statistic
because of the estimator it uses for A,. While this statistic is simple to compute, there
is ample evidence that it can have severe size distortions (typically, the null hypothe-
sis is rejected much more often than the nominal size of the test). See, for example,
Davidson and MacKinnon (1993), Bera and McKenzie (1986), Orme (1990), and
Chesher and Spady (1991).

The Hessian form of the LM statistic uses M = >~ H;, and it has a few draw-
backs: (1) the LM statistic can be negative if the average estimated Hessian is not
positive definite; (2) it requires computation of the second derivatives; and (3) it is not
invariant to reparameterizations. We will discuss the last problem later.

A statistic that always avoids the first problem, and often the second and third
problems, is based on E[H(w,#,)|x], assuming that w partitions into endogenous
variables y and exogenous variables x. We call the LM statistic that uses M =
SN A, the expected Hessian form of the LM statistic. This name comes from the fact
that the statistic is based on the conditional expectation of H(w, 6,) given x. When it
can be computed, the expected Hessian form is usually preferred because it tends to
have the best small sample properties.

The LM statistic in equation (12.69) is valid only when B, = A,, and therefore it is
not robust to failures of auxiliary assumptions in some important models. If B, # A,,
the limiting distribution of equation (12.69) is not chi-square and is not suitable for
testing.
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In the context of NLS, the expected Hessian form of the LM statistic needs to be
modified for the presence of ag, assuming that Assumption NLS.3 holds under Hy.
Letg? = N~! le | 7 be the estimate of o2 using the restricted estimator of 6,: #; =
yi —m(X;, 5), i=1,2,...,N. It is customary not to make a degrees-of-freedom ad-
justment when estimating the variance using the null estimates, partly because the
sum of squared residuals for the restricted model is always larger than for the un-
restricted model. The score evaluated at the restricted estimates can be written as

§; = Vor/u;. Thus the LM statistic that imposes homoskedasticity is

N ! N -1 N
LM = (Z VW%) (Z Voﬁ#%ﬁu> (Z Verh,fﬁ,) /& (12.71)
i=l i=1 i=1

A little algebra shows that this expression is identical to N times the uncentered R-
squared, R,f, from the auxiliary regression

i on Vs, i=12...,N (12.72)

In other words, just regress the residuals from the restricted model on the gradient
with respect to the unrestricted mean function but evaluated at the restricted esti-
mates. Under Hy and Assumption NLS.3, LM = NR2 < z},.

In the nonlinear regression example with m(x,8) = exp[xp + 0 (xB)* + 62(xp)°],
let ﬁ be the restricted NLS estimator with ; = 0 and d, = 0; in other words, ﬁ is from
a nonlinear regression with an exponential regression function. The restricted resid-
uals are u; = y; — exp(x,ﬁ), and the gradient of m(x, #) with respect to all parameters,

evaluated at the null, is

Vng(X,',ﬂO,O) = {Xi exp(xiﬁo)7 (Xl'ﬁo)2 GXp(X[ﬂO), (Xl'ﬁo)3 exp(xfﬂo)}

Plugging in ﬁ gives Vym; = [x;m;, (x,ﬁ)zrhi, (X,-ﬁ)3rh,-], where m; = exp(x,ﬁ). Regres-
sion (12.72) becomes

i; on Xy, (xif)m, (xif)’m;, i=1,2,....N (12.73)

Under Hy and homoskedasticity, NR? ~ 3, since there are two restrictions being
tested. This is a fairly simple way to test the exponential functional form without ever
estimating the more complicated alternative model. Other models that nest the ex-
ponential model are discussed in Wooldridge (1992).

This example illustrates an important point: even though SV, (xi#;) i; is identi-
cally zero by the first-order condition for NLS, the term x;#1; must generally be
included in regression (12.73). The R-squared from the regression without x;7#; will
be different because the remaining regressors in regression (12.73) are usually corre-
lated with x;#7; in the sample. [More importantly, for 4 = 2 and 3, (x;5) h exp(x;f) is
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probably correlated with x;f in the population.] As a general rule, the entire gradient
Vym; must appear in the auxiliary regression.

In order to be robust against failure of Assumption NLS.3, the more general form
of the statistic in expression (12.68) should be used. Fortunately, this statistic also
can be easily computed for most hypotheses. Partition @ into the (P — Q) x 1 vector
p and the Q vector 4. Assume that the null hypothesis is Hy: d, = 4, where o
is a prespecified vector (often containing all zeros, but not always). Let Vgm;
[l X (P— Q)] and Vsm; (1 x Q) denote the gradients with respect to f and d, respec-
tively, evaluated at f and 6. After tedious algebra, and using the special structure
C(0) =[0]Ip], where 0is a Q x (P — Q) matrix of zero, the following procedure can
be shown to produce expression (12.68):

1. Run a multivariate regression
Vsmi; on Vg, i=12,...,N (12.74)

and save the 1 x Q vector residuals, say F;. Then, for each i, form #;¥;. (That is, mul-
tiply #@; by each element of ¥;.)

2. LM = N — SSR( = NR} from the regression
lonaf, i=12...N (12.75)

where SSRj is the usual sum of squared residuals. This step produces a statistic
that has a limiting ){é distribution whether or not Assumption NLS.3 holds. See
Wooldridge (1991a) for more discussion.

We can illustrate the heteroskedasticity-robust test using the preceding exponential
model. Regression (12.74) is the same as regressing each of (x;8)*m; and (x;8)°m;
onto x;7;, and saving the residuals 7;; and 7, respectively (N each). Then, regression
(12.75) is simply 1 on #;#;1, #;Fn. The number of regressors in the final regression of
the robust test is always the same as the degrees of freedom of the test.

Finally, these procedures are easily modified for WNLS. Simply multiply both #;
and Vemy; by 1/ \/}Ti, where the variance estimates /; are based on the null model (so
we use a ~ rather than a A). The nonrobust LM statistic that maintains Assumption
WNLS.3 is obtained as in regression (12.72). The robust form, which allows
Var(y|x) # a2h(x, ,), follows exactly as in regressions (12.74) and (12.75).

The invariance issue for the score statistic is somewhat complicated, but several
results are known. First, it is easy to see that the outer product form of the statistic is
invariant to differentiable reparameterizations. Write ¢ = g(#) as a twice continu-
ously differentiable, invertible reparameterization; thus the P x P Jacobian of g,
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G(0), is nonsingular for all @ € ®. The objective function in terms of ¢ is ¢?(w, ¢),
and we must have ¢?[w, g(0)] = ¢g(w, @) for all 8 € ®. Differentiating and transposing
gives s(w,0) = G(6)'s9[w, g(0)], where s9(w, ) is the score of ¢9[w,¢]. If ¢ is the
restricted estimator of ¢, then ¢ = g(8), and so, for each observation i, §/ = (G)7's
Plugging this equation into the LM statistic in equation (12.69), with M chosen as the
outer product form, shows that the statistic based on 8! is identical to that based on §;.
Score statistics based on the estimated Hessian are not generally invariant to re-
parameterization because they can involve second derivatives of the function g(0); see
Davidson and MacKinnon (1993, Section 13.6) for details. However, when w parti-
tions as (x,y), score statistics based on the expected Hessian (conditional on x),
A(x, 0), are often invariant. In Chapter 13 we will see that this is always the case for
conditional maximum likelihood estimation. Invariance also holds for NLS and
WNLS for both the usual and robust LM statistics because any reparameterization
comes through the conditional mean. Predicted values and residuals are invariant to
reparameterization, and the statistics obtained from regressions (12.72) and (12.75)
only involve the residuals and first derivatives of the conditional mean function. As in
the usual outer product LM statistic, the Jacobian in the first derivative cancels out.

12.6.3 Tests Based on the Change in the Objective Function

When both the restricted and unrestricted models are easy to estimate, a test based on
the change in the objective function can greatly simplify the mechanics of obtaining
a test statistic: we only need to obtain the value of the objective function with and
without the restrictions imposed. However, the computational simplicity comes at
a price in terms of robustness. Unlike the Wald and score tests, a test based on the
change in the objective function cannot be made robust to general failure of as-
sumption (12.53). Therefore, throughout this subsection we assume that the general-
ized information matrix equality holds. Because the minimized objective function is
invariant with respect to any reparameterization, the test statistic is invariant.

In the context of two-step estimators, we must also assume that $ has no effect on
the asymptotic distribution of the M-estimator. That is, we maintain assumption
(12.37) when nuisance parameter estimates appear in the objective function (see
Problem 12.8).

We first consider the case where ag =1, so that B, = A,. Using a second-order
Taylor expansion,

N

Sz

N . N
D atmi0) =3 q(wi0) =3
i1 i=1

i=1

+(1/2)(6 — 6) (ZH)
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where H; is the P x P Hessian evaluate at mean values between 8 and . Therefore,
under Hy (using the first-order condition for 8), we have

N N

) [zqm,-,é) . zqmé)] N VAN D) o) (1276
i=1 i=1

since N"' SN H; = A, + 0, (1) and vN(@ — 8) = O,(1). In fact, it follows from

equations (12.33) (without ) and (12.66) that v/N(8 — 6) = 1N 25N si(0) +
0p(1). Plugging this equation into equation (12.76) shows that

N N
Z Wu quh ‘|

N ! N
- (N—I/ZZ§,-> A <N"/2Z§,-> +0,(1) (12.77)
i=1 i=1

so that QLR has the same limiting distribution, yQ, as the LM statistic under Hy. [See
equation (12.69), remembering that plim(M/N) = A,.] We call statistic (12.77) the
quasi-likelihood ratio (QLR) statistic, which comes from the fact that the leading ex-
ample of equation (12.77) is the likelihood ratio statistic in the context of maximum
likelihood estimation, as we will see in Chapter 13. We could also call equation
(12.77) a criterion function statistic, as it is based on the difference in the criterion or
objective function with and without the restrictions imposed.

When nuisance parameters are present, the same estimate, say 9, should be used in
obtaining the restricted and unrestricted estimates. This is to ensure that QLR is
nonnegative given any sample. Typically,  would be based on initial estimation of
the unrestricted model.

If 62 # 1, we simply divide QLR by 6%, which is a consistent estimator of o2
obtained from the unrestricted estimation. For example, consider NLS under
Assumptions NLS.1-NLS.3. When equation (12.77) is divided by 6 in equation
(12.57), we obtain (SSR, — SSR,,,)/[SSR,/(N — P)], where SSR, and SSR,, are the
restricted and unrestricted sums of squared residuals. Sometimes an F version of this
statistic is used instead, which is obtained by dividing the chi-square version by Q:

(SSR, — SSR,,) (N — P)

F="sRr, 0

(12.78)

This has exactly the same form as the F statistic from classical linear regression
analysis. Under the null hypothesis and homoskedasticity, F can be treated as having
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an approximate ¢ y_p distribution. (As always, this treatment is justified because
Q Fon-p ~ ){é as N — P — o0.) Some authors (for example, Gallant, 1987) have
found that F has better finite sample properties than the chi-square version of the
statistic.

For weighted NLS, the same statistic works under Assumption WNLS.3 provided
the residuals (both restricted and unrestricted) are weighted by 1/\/2 , where the %
are obtained from estimation of the unrestricted model.

12.6.4 Behavior of the Statistics under Alternatives

To keep the notation and assumptions as simple as possible, and to focus on the
computation of valid test statistics under various assumptions, we have only derived
the limiting distribution of the classical test statistics under the null hypothesis. It is
also important to know how the tests behave under alternative hypotheses in order to
choose a test with the highest power.

All the tests we have discussed are consistent against the alternatives they are spe-
cifically designed against. While this consistency is desirable, it tells us nothing about
the likely finite sample power that a statistic will have against particular alternatives.
A framework that allows us to say more uses the notion of a sequence of local alter-
natives. Specifying a local alternative is a device that can approximate the finite
sample power of test statistics for alternatives “close” to Hy. If the null hypothesis is
Hy: ¢(8,) = 0 then a sequence of local alternatives is

HY: ¢(0,, n) = 0o/ VN (12.79)

where 4, is a given Q x 1 vector. As N — oo, H' approaches Hy, since d,/v/N — 0.
The division by v/N means that the alternatives are local: for given N, equation
(12.79) is an alternative to Hy, but as N — oo, the alternative gets closer to Hy.
Dividing d, by v/N ensures that each of the statistics has a well-defined limiting dis-
tribution under the alternative that differs from the limiting distribution under Hy.

It can be shown that, under equation (12.79), the general forms of the Wald and
LM statistics have a limiting noncentral chi-square distribution with Q degrees of
freedom under the regularity conditions used to obtain their null limiting distribu-
tions. The noncentrality parameter depends on A,, B,, C,, and d,, and can be esti-
mated by using consistent estimators of Ay, B,, and C,. When we add assumption
(12.53), then the special versions of the Wald and LM statistics and the QLR statis-
tics have limiting noncentral chi-square distributions. For various d,, we can estimate
what is known as the asymptotic local power of the test statistics by computing
probabilities from noncentral chi-square distributions.
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Consider the Wald statistic where B, = A,. Denote by 0, the limit of 8, 5 as
N — oo. The usual mean value expansion under HIN gives

VNe() = o + C(0,)VN( — 0, x) + 0,(1)

and, under standard assumptions, VN(0 — 0, ) ~ Normal(0,A_"'). Therefore,
VNe(8) < Normal(d,, C,AZ'C!) under the sequence (12.79). This result implies that
the Wald statistic has a limiting noncentral chi-square distribution with Q degrees of
freedom and noncentrality parameter éé(CoAgng)fléo. This turns out to be the
same noncentrality parameter for the LM and QLR statistics when B, = A,. The
details are similar to those under Hy; see, for example, Gallant (1987, Section 3.6).

The statistic with the largest noncentrality parameter has the largest asymptotic
local power. For choosing among the Wald, LM, and QLR statistics, this criterion
does not help: they all have the same noncentrality parameters under equation
(12.79). [For the QLR statistic, assumption (12.53) must also be maintained.]

The notion of local alternatives is useful when choosing among statistics based on
different estimators. Not surprisingly, the more efficient estimator produces tests with
the best asymptotic local power under standard assumptions. But we should keep in
mind the efficiency-robustness trade-off, especially when efficient test statistics are
computed under tenuous assumptions.

General analyses under local alternatives are available in Gallant (1987), Gallant
and White (1988), and White (1994). See Andrews (1989) for innovative suggestions
for using local power analysis in applied work.

12.7 Optimization Methods

In this section we briefly discuss three iterative schemes that can be used to solve the
general minimization problem (12.8) or (12.31). In the latter case, the minimization
is only over @, so the presence of § changes nothing. If 9 is present, the score and
Hessian with respect to 6 are simply evaluated at $. These methods are closely related
to the asymptotic variance matrix estimators and test statistics we discussed in Sec-
tions 12.5 and 12.6.

12.7.1 The Newton-Raphson Method

Iterative methods are defined by an algorithm for going from one iteration to the
next. Let @19 be the P x 1 vector on the gth iteration, and let 819"} be the value on
the next iteration. To motivate how we get from 0'9 to 191}, use a mean value ex-
pansion (row by row) to write
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N

Z g{9+1} XN:S’ g{g}

i=1 i=1

N
+1> Hi(a{g})l (09 — 919}y 4 9} (12.80)

where s;(0) is the P x 1 score with respect to 6, evaluated at observation i, H;(0) is
the P x P Hessian, and ri%} is a P x 1 vector of remainder terms. We are trying to
find the solution @ to equation (12.14). If 9%9*!} = @, then the left-hand side of equa-
tion (12.80) is zero. Setting the left-hand side to zero, ignoring r'9}, and assuming that
the Hessian evaluated at 89} is nonsingular, we can write

-1
olotl — glo} _ liv: H[(H{"})] [i si(g{g})] (12.81)
i=1

i=1

Equation (12.81) provides an iterative method for finding 8. To begin the iterations
we must choose a vector of starting values; call this vector 0!, Good starting values
are often difficult to come by, and sometimes we must experiment with several
choices before the problem converges. Ideally, the iterations wind up at the same
place regardless of the starting values, but this outcome is not guaranteed. Given the
starting values, we plug 0'* into the right-hand side of equation (12.81) to get %!}
Then, we plug 0! into equation (12.81) to get #!*, and so on.

If the iterations are proceeding toward the minimum, the increments @191} — g{9}
will eventually become very small: as we near the solution, Elz 1 5:(019%) gets close to
zero. Some use as a stopping rule the requirement that the largest absolute change
|H{J“} 0{"}| for j =1,2,..., P, is smaller than some small constant; others prefer
to look at the largest percentage change in the parameter values.

Another popular stopping rule is based on the quadratic form

[XN:S, 0{4}] [i:H[(a{g})l [XN:S 0{‘7}] (12.82)

i=1 i=1

where the iterations stop when expression (12.82) is less than some suitably small
number, say .0001.

The iterative scheme just outlined is usually called the Newton-Raphson method.
It is known to work in a variety of circumstances. Our motivation here has been
heuristic, and we will not investigate situations under which the Newton-Raphson
method does not work well. (See, for example, Quandt, 1983, for some theoretical
results.) The Newton-Raphson method has some drawbacks. First, it requires com-
puting the second derivatives of the objective function at every iteration. These cal-
culations are not very taxing if closed forms for the second partials are available, but
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in many cases they are not. A second problem is that, as we saw for the case of
nonlinear least squares, the sum of the Hessians evaluated at a particular value of 8
may not be positive definite. If the inverted Hessian in expression (12.81) is not pos-
itive definite, the procedure may head in the wrong direction.

We should always check that progress is being made from one iteration to the next
by computing the difference in the values of the objective function from one iteration
to the next:

N N
S a ) = 3,01 (12.8)
i=1 i=1

Because we are minimizing the objective function, we should not take the step from g
to g + 1 unless expression (12.83) is negative. [If we are maximizing the function, the
iterations in equation (12.81) can still be used because the expansion in equation
(12.80) is still appropriate, but then we want expression (12.83) to be positive.]

A slight modification of the Newton-Raphson method is sometimes useful to speed
up convergence: multiply the Hessian term in expression (12.81) by a positive num-
ber, say r, known as the step size. Sometimes the step size r = 1 produces too large a
change in the parameters. If the objective function does not decrease using r = 1,
then try, say, r = % Again, check the value of the objective function. If it has now
decreased, go on to the next iteration (where r = 1 is usually used at the beginning of
each iteration); if the objective function still has not decreased, replace r with, say, %.
Continue halving r until the objective function decreases. If you have not succeeded
in decreasing the objective function after several choices of r, new starting values
might be needed. Or, a different optimization method might be needed.

12.7.2 The Berndt, Hall, Hall, and Hausman Algorithm

In the context of maximum likelihood estimation, Berndt, Hall, Hall, and Hausman
(1974) (hereafter, BHHH) proposed using the outer product of the score in place of
the Hessian. This method can be applied in the general M-estimation case [even
though the information matrix equality (12.53) that motivates the method need not
hold]. The BHHH iteration for a minimization problem is

-1
ottt — glot _ [i Si(g{g})si(g{y})’l li si(ﬂ{"})] (12.84)

i=1 i=1

where r is the step size. [If we want to maximize Zi]i 1 ¢(w;,0), the minus sign in
equation (12.84) should be replaced with a plus sign.] The term multiplying r, some-
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times called the direction for the next iteration, can be obtained as the P x 1 OLS
coefficients from the regression

lons; (0¥,  i=12,...,N (12.85)

The BHHH procedure is easy to implement because it requires computation of the
score only; second derivatives are not needed. Further, since the sum of the outer
product of the scores is always at least positive semidefinite, it does not suffer from
the potential nonpositive definiteness of the Hessian.

A convenient stopping rule for the BHHH method is obtained as in expression
(12.82), but with the sum of the outer products of the score replacing the sum of the
Hessians. This is identical to N times the uncentered R-squared from regression
(12.85). Interestingly, this is the same regression used to obtain the outer product of
the score form of the LM statistic when B, = A,, and this fact suggests a natural
method for estimating a complicated model after a simpler version of the model has
been estimated. Set the starting value, 0%, equal to the vector of restricted estimates,
0. Then NR} from the regression used to obtain the first iteration can be used to test
the restricted model against the more general model to be estimated; if the restrictions
are not rejected, we could just stop the iterations. Of course, as we discussed in Sec-
tion 12.6.2, this form of the LM statistic is often ill-behaved even with fairly large
sample sizes.

12.7.3 The Generalized Gauss-Newton Method

The final iteration scheme we cover is closely related to the estimator of the expected
value of the Hessian in expression (12.44). Let A(x,6,) be the expected value of
H(w, 6,) conditional on x, where w is partitioned into y and x. Then the generalized
Gauss-Newton method uses the updating equation

_ lzN: si(ﬁ{"})] (12.86)

i=1

glo+1l — gla} _

N
> A0
i=1

where 619} replaces 0, in A(x;,0,). (As before, A; and s; might also depend on $.)
This scheme works well when A(x, 6,) can be obtained in closed form.

In the special case of nonlinear least squares, we obtain what is traditionally
called the Gauss-Newton method (for example, Quandt, 1983). Since s;(0) =
—Vym;(0)'[y; — m;(0)], the iteration step is

N 1/ N
0{g+l} _ 0{g} + r( ng;{G}lVHm;{ﬁl}> ( ng;.{g}/ul{!]}>

i=1
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The term multiplying the step size r is obtained as the OLS coefficients of the re-
gression of the resididuals on the gradient, both evaluated at 0'9}. The stopping rule
can be based on N times the uncentered R-squared from this regression. Note how
closely the Gauss-Newton method of optimization is related to the regression used to
obtain the nonrobust LM statistic [see regression (12.72)].

12.7.4 Concentrating Parameters out of the Objective Function

In some cases, it is computationally convenient to concentrate one set of parameters
out of the objective function. Partition @ into the vectors f and y. Then the first-order
conditions that define 4 are

N N
Zvﬂq(wiaﬂ7 7’) = 07 Zqu(whﬂa J’) =0 (1287)
i=1 i=1

Rather than solving these for # and , suppose that the second set of equations can be
solved for y as a function of W = (w;,w,,...,wy) and # for any outcomes W and
any f in the parameter set y = g(W, #). Then, by construction,

N
> Vydlwi B.g(W,8)] =0 (12.88)
i=1

When we plug g(W,p) into the original objective function, we obtain the con-
centrated objective function,

N
i=1

Under standard differentiability assumptions, the minimizer of equation (12.89) is
identical to the g that solves equations (12.87) (along with $), as can be seen by dif-
ferentiating equation (12.89) with respect to f using the chain rule, setting the result
to zero, and using equation (12.88); then $ can be obtained as g(W, ﬁ)

As a device for studying asymptotic properties, the concentrated objective function
is of limited value because g(W,f) generally depends on all of W, in which case
the objective function cannot be written as the sum of independent, identically dis-
tributed summands. One setting where equation (12.89) is a sum of i.i.d. functions
occurs when we concentrate out individual-specific effects from certain nonlinear
panel data models. In addition, the concentrated objective function can be useful for
establishing the equivalence of seemingly different estimation approaches.
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12.8 Simulation and Resampling Methods

So far we have focused on the asymptotic properties of M-estimators, as these pro-
vide a unified framework for inference. But there are a few good reasons to go be-
yond asymptotic results, at least in some cases. First, the asymptotic approximations
need not be very good, especially with small sample sizes, highly nonlinear models,
or unusual features of the population distribution of w;. Simulation methods, while
always special, can help determine how well the asymptotic approximations work.
Resampling methods can allow us to improve on the asymptotic distribution
approximations.

Even if we feel comfortable with asymptotic approximations to the distribution of
0, we may not be as confident in the approximations for estimating a nonlinear
function of the parameters, say y, = g(,). Under the assumptions in Section 3.5.2,
we can use the delta method to approximate the variance of § = g(6). Depending on
the nature of g(-), applying the delta method might be difficult, and it might not re-
sult in a very good approximation. Resampling methods can simplify the calculation
of standard errors, confidence intervals, and p-values for test statistics, and we can
get a good idea of the amount of finite-sample bias in the estimation method. In ad-
dition, under certain assumptions and for certain statistics, resampling methods can
provide quantifiable improvements to the usual asymptotics.

12.8.1 Monte Carlo Simulation

In a Monte Carlo simulation, we attempt to estimate the mean and variance—
assuming that these exist—and possibly other features of the distribution of the M-
estimator, 6. The idea is usually to determine how much bias 0 has for estimating 6,
or to determine the efficiency of 0 compared with other estimators of 6,. In addition,
we often want to know how well the asymptotic standard errors approximate the
standard deviations of the éj.

To conduct a simulation, we must choose a population distribution for w, which
depends on the finite dimensional vector #,. We must set the values of 6, and decide
on a sample size, N. We then draw a random sample of size N from this distribution
and use the sample to obtain an estimate of #,. We draw a new random sample
and compute another estimate of 8,. We repeat the process for several iterations, say
M. Let 8™ be the estimate of @, based on the mth iteration. Given {8"): m =
1,2,..., M}, we can compute the sample average and sample variance to estimate
E(6) and Var(), respectively. We might also form ¢ statistics or other test statistics to
see how well the asymptotic distributions approximate the finite sample distributions.
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We can also see how well asymptotic confidence intervals cover the population
parameter relative to the nominal confidence level.

A good Monte Carlo study varies the value of 6,, the sample size, and even the
general form of the distribution of w. Obtaining a thorough study can be very chal-
lenging, especially for a complicated, nonlinear model. First, to get good estimates of
the distribution of 8, we would like M to be large (perhaps several thousand). But for
each Monte Carlo iteration, we must obtain é<’”), and this step can be computation-
ally expensive because it often requires the iterative methods we discussed in Section
12.7. Repeating the simulations for many different sample sizes N, values of 6,, and
distributional shapes can be very time-consuming.

In most economic applications, w; is partitioned as (x;,y;). While we can draw the
full vector w; randomly in the Monte Carlo iterations, more often the x; are fixed at
the beginning of the iterations, and then y, is drawn from the conditional distribution
given x;. This method simplifies the simulations because we do not need to vary the
distribution of x; along with the distribution of interest, the distribution of y; given x;.
If we fix the x; at the beginning of the simulations, the distributional features of @ that
we estimate from the Monte Carlo simulations are conditional on {xj,Xa,...,Xy}.
This conditional approach is especially common in linear and nonlinear regression
contexts, as well as conditional maximum likelihood.

It is important not to rely too much on Monte Carlo simulations. Many estimation
methods, including OLS, TV, and panel data estimators, have asymptotic properties
that do not depend on underlying distributions. In the nonlinear regression model,
the NLS estimator is v/N-asymptotically normal, and the usual asymptotic variance
matrix (12.58) is valid under Assumptions NLS.1-NLS.3. However, in a typical
Monte Carlo simulation, the implied error, u, is assumed to be independent of x, and
the distribution of # must be specified. The Monte Carlo results then pertain to this
distribution, and it can be misleading to extrapolate to different settings. In addition,
we can never try more than just a small part of the parameter space. Since we never
know the population value §,, we can never be sure how well our Monte Carlo study
describes the underlying population. Hendry (1984) discusses how response surface
analysis can be used to reduce the specificity of Monte Carlo studies. See also
Davidson and MacKinnon (1993, Chapter 21).

12.8.2 Bootstrapping

A Monte Carlo simulation, although it is informative about how well the asymptotic
approximations can be expected to work in specific situations, does not generally help
us refine our inference given a particular sample. (Since we do not know 6,, we
cannot know whether our Monte Carlo findings apply to the population we are
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studying. Nevertheless, researchers sometimes use the results of a Monte Carlo sim-
ulation to obtain rules of thumb for adjusting standard errors or for adjusting critical
values for test statistics.) The method of bootstrapping, which is a popular resampling
method, can be used as an alternative to asymptotic approximations for obtaining
standard errors, confidence intervals, and p-values for test statistics.

Though there are several variants of the bootstrap, we begin with one that can
be applied to general M-estimation. The goal is to approximate the distribution of
0 without relying on the usual first-order asymptotic theory. Let {w;,wa,...,wy}
denote the outcome of the random sample used to obtain the estimate. The non-
parametric bootstrap is essentially a Monte Carlo s