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Preface

This book is intended primarily for use in a second-semester course in graduate

econometrics, after a first course at the level of Goldberger (1991) or Greene (1997).

Parts of the book can be used for special-topics courses, and it should serve as a

general reference.

My focus on cross section and panel data methods—in particular, what is often

dubbed microeconometrics—is novel, and it recognizes that, after coverage of the

basic linear model in a first-semester course, an increasingly popular approach is to

treat advanced cross section and panel data methods in one semester and time series

methods in a separate semester. This division reflects the current state of econometric

practice.

Modern empirical research that can be fitted into the classical linear model para-

digm is becoming increasingly rare. For instance, it is now widely recognized that a

student doing research in applied time series analysis cannot get very far by ignoring

recent advances in estimation and testing in models with trending and strongly de-

pendent processes. This theory takes a very di¤erent direction from the classical lin-

ear model than does cross section or panel data analysis. Hamilton’s (1994) time

series text demonstrates this di¤erence unequivocally.

Books intended to cover an econometric sequence of a year or more, beginning

with the classical linear model, tend to treat advanced topics in cross section and

panel data analysis as direct applications or minor extensions of the classical linear

model (if they are treated at all). Such treatment needlessly limits the scope of appli-

cations and can result in poor econometric practice. The focus in such books on the

algebra and geometry of econometrics is appropriate for a first-semester course, but

it results in oversimplification or sloppiness in stating assumptions. Approaches to

estimation that are acceptable under the fixed regressor paradigm so prominent in the

classical linear model can lead one badly astray under practically important depar-

tures from the fixed regressor assumption.

Books on ‘‘advanced’’ econometrics tend to be high-level treatments that focus on

general approaches to estimation, thereby attempting to cover all data configurations—

including cross section, panel data, and time series—in one framework, without giving

special attention to any. A hallmark of such books is that detailed regularity con-

ditions are treated on par with the practically more important assumptions that have

economic content. This is a burden for students learning about cross section and

panel data methods, especially those who are empirically oriented: definitions and

limit theorems about dependent processes need to be included among the regularity

conditions in order to cover time series applications.

In this book I have attempted to find a middle ground between more traditional

approaches and the more recent, very unified approaches. I present each model and



method with a careful discussion of assumptions of the underlying population model.

These assumptions, couched in terms of correlations, conditional expectations, con-

ditional variances and covariances, or conditional distributions, usually can be given

behavioral content. Except for the three more technical chapters in Part III, regularity

conditions—for example, the existence of moments needed to ensure that the central

limit theorem holds—are not discussed explicitly, as these have little bearing on ap-

plied work. This approach makes the assumptions relatively easy to understand, while

at the same time emphasizing that assumptions concerning the underlying population

and the method of sampling need to be carefully considered in applying any econo-

metric method.

A unifying theme in this book is the analogy approach to estimation, as exposited

by Goldberger (1991) and Manski (1988). [For nonlinear estimation methods with

cross section data, Manski (1988) covers several of the topics included here in a more

compact format.] Loosely, the analogy principle states that an estimator is chosen to

solve the sample counterpart of a problem solved by the population parameter. The

analogy approach is complemented nicely by asymptotic analysis, and that is the focus

here.

By focusing on asymptotic properties I do not mean to imply that small-sample

properties of estimators and test statistics are unimportant. However, one typically

first applies the analogy principle to devise a sensible estimator and then derives its

asymptotic properties. This approach serves as a relatively simple guide to doing

inference, and it works well in large samples (and often in samples that are not so

large). Small-sample adjustments may improve performance, but such considerations

almost always come after a large-sample analysis and are often done on a case-by-

case basis.

The book contains proofs or outlines the proofs of many assertions, focusing on the

role played by the assumptions with economic content while downplaying or ignoring

regularity conditions. The book is primarily written to give applied researchers a very

firm understanding of why certain methods work and to give students the background

for developing new methods. But many of the arguments used throughout the book

are representative of those made in modern econometric research (sometimes without

the technical details). Students interested in doing research in cross section or panel

data methodology will find much here that is not available in other graduate texts.

I have also included several empirical examples with included data sets. Most of

the data sets come from published work or are intended to mimic data sets used in

modern empirical analysis. To save space I illustrate only the most commonly used

methods on the most common data structures. Not surprisingly, these overlap con-
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siderably with methods that are packaged in econometric software programs. Other

examples are of models where, given access to the appropriate data set, one could

undertake an empirical analysis.

The numerous end-of-chapter problems are an important component of the book.

Some problems contain important points that are not fully described in the text;

others cover new ideas that can be analyzed using the tools presented in the current

and previous chapters. Several of the problems require using the data sets that are

included with the book.

As with any book, the topics here are selective and reflect what I believe to be the

methods needed most often by applied researchers. I also give coverage to topics that

have recently become important but are not adequately treated in other texts. Part I

of the book reviews some tools that are elusive in mainstream econometrics books—

in particular, the notion of conditional expectations, linear projections, and various

convergence results. Part II begins by applying these tools to the analysis of single-

equation linear models using cross section data. In principle, much of this material

should be review for students having taken a first-semester course. But starting with

single-equation linear models provides a bridge from the classical analysis of linear

models to a more modern treatment, and it is the simplest vehicle to illustrate the

application of the tools in Part I. In addition, several methods that are used often

in applications—but rarely covered adequately in texts—can be covered in a single

framework.

I approach estimation of linear systems of equations with endogenous variables

from a di¤erent perspective than traditional treatments. Rather than begin with simul-

taneous equations models, we study estimation of a general linear system by instru-

mental variables. This approach allows us to later apply these results to models

with the same statistical structure as simultaneous equations models, including

panel data models. Importantly, we can study the generalized method of moments

estimator from the beginning and easily relate it to the more traditional three-stage

least squares estimator.

The analysis of general estimation methods for nonlinear models in Part III begins

with a general treatment of asymptotic theory of estimators obtained from non-

linear optimization problems. Maximum likelihood, partial maximum likelihood,

and generalized method of moments estimation are shown to be generally applicable

estimation approaches. The method of nonlinear least squares is also covered as a

method for estimating models of conditional means.

Part IV covers several nonlinear models used by modern applied researchers.

Chapters 15 and 16 treat limited dependent variable models, with attention given to
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handling certain endogeneity problems in such models. Panel data methods for binary

response and censored variables, including some new estimation approaches, are also

covered in these chapters.

Chapter 17 contains a treatment of sample selection problems for both cross sec-

tion and panel data, including some recent advances. The focus is on the case where

the population model is linear, but some results are given for nonlinear models as

well. Attrition in panel data models is also covered, as are methods for dealing with

stratified samples. Recent approaches to estimating average treatment e¤ects are

treated in Chapter 18.

Poisson and related regression models, both for cross section and panel data, are

treated in Chapter 19. These rely heavily on the method of quasi-maximum likeli-

hood estimation. A brief but modern treatment of duration models is provided in

Chapter 20.

I have given short shrift to some important, albeit more advanced, topics. The

setting here is, at least in modern parlance, essentially parametric. I have not included

detailed treatment of recent advances in semiparametric or nonparametric analysis.

In many cases these topics are not conceptually di‰cult. In fact, many semiparametric

methods focus primarily on estimating a finite dimensional parameter in the presence

of an infinite dimensional nuisance parameter—a feature shared by traditional par-

ametric methods, such as nonlinear least squares and partial maximum likelihood.

It is estimating infinite dimensional parameters that is conceptually and technically

challenging.

At the appropriate point, in lieu of treating semiparametric and nonparametric

methods, I mention when such extensions are possible, and I provide references. A

benefit of a modern approach to parametric models is that it provides a seamless

transition to semiparametric and nonparametric methods. General surveys of semi-

parametric and nonparametric methods are available in Volume 4 of the Handbook

of Econometrics—see Powell (1994) and Härdle and Linton (1994)—as well as in

Volume 11 of the Handbook of Statistics—see Horowitz (1993) and Ullah and Vinod

(1993).

I only briefly treat simulation-based methods of estimation and inference. Com-

puter simulations can be used to estimate complicated nonlinear models when tradi-

tional optimization methods are ine¤ective. The bootstrap method of inference and

confidence interval construction can improve on asymptotic analysis. Volume 4 of

the Handbook of Econometrics and Volume 11 of the Handbook of Statistics contain

nice surveys of these topics (Hajivassilou and Ruud, 1994; Hall, 1994; Hajivassilou,

1993; and Keane, 1993).
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On an organizational note, I refer to sections throughout the book first by chapter

number followed by section number and, sometimes, subsection number. Therefore,

Section 6.3 refers to Section 3 in Chapter 6, and Section 13.8.3 refers to Subsection 3

of Section 8 in Chapter 13. By always including the chapter number, I hope to

minimize confusion.

Possible Course Outlines

If all chapters in the book are covered in detail, there is enough material for two

semesters. For a one-semester course, I use a lecture or two to review the most im-

portant concepts in Chapters 2 and 3, focusing on conditional expectations and basic

limit theory. Much of the material in Part I can be referred to at the appropriate time.

Then I cover the basics of ordinary least squares and two-stage least squares in

Chapters 4, 5, and 6. Chapter 7 begins the topics that most students who have taken

one semester of econometrics have not previously seen. I spend a fair amount of time

on Chapters 10 and 11, which cover linear unobserved e¤ects panel data models.

Part III is technically more di‰cult than the rest of the book. Nevertheless, it is

fairly easy to provide an overview of the analogy approach to nonlinear estimation,

along with computing asymptotic variances and test statistics, especially for maxi-

mum likelihood and partial maximum likelihood methods.

In Part IV, I focus on binary response and censored regression models. If time

permits, I cover the rudiments of quasi-maximum likelihood in Chapter 19, especially

for count data, and give an overview of some important issues in modern duration

analysis (Chapter 20).

For topics courses that focus entirely on nonlinear econometric methods for cross

section and panel data, Part III is a natural starting point. A full-semester course

would carefully cover the material in Parts III and IV, probably supplementing the

parametric approach used here with popular semiparametric methods, some of which

are referred to in Part IV. Parts III and IV can also be used for a half-semester course

on nonlinear econometrics, where Part III is not covered in detail if the course has an

applied orientation.

A course in applied econometrics can select topics from all parts of the book,

emphasizing assumptions but downplaying derivations. The several empirical exam-

ples and data sets can be used to teach students how to use advanced econometric

methods. The data sets can be accessed by visiting the website for the book at MIT

Press: http://mitpress.mit.edu/Wooldridge-EconAnalysis.
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I INTRODUCTION AND BACKGROUND

In this part we introduce the basic approach to econometrics taken throughout the

book and cover some background material that is important to master before reading

the remainder of the text. Students who have a solid understanding of the algebra of

conditional expectations, conditional variances, and linear projections could skip

Chapter 2, referring to it only as needed. Chapter 3 contains a summary of the

asymptotic analysis needed to read Part II and beyond. In Part III we introduce ad-

ditional asymptotic tools that are needed to study nonlinear estimation.



1 Introduction

1.1 Causal Relationships and Ceteris Paribus Analysis

The goal of most empirical studies in economics and other social sciences is to de-

termine whether a change in one variable, say w, causes a change in another variable,

say y. For example, does having another year of education cause an increase in

monthly salary? Does reducing class size cause an improvement in student per-

formance? Does lowering the business property tax rate cause an increase in city

economic activity? Because economic variables are properly interpreted as random

variables, we should use ideas from probability to formalize the sense in which a

change in w causes a change in y.

The notion of ceteris paribus—that is, holding all other (relevant) factors fixed—is

at the crux of establishing a causal relationship. Simply finding that two variables

are correlated is rarely enough to conclude that a change in one variable causes a

change in another. This result is due to the nature of economic data: rarely can we

run a controlled experiment that allows a simple correlation analysis to uncover

causality. Instead, we can use econometric methods to e¤ectively hold other factors

fixed.

If we focus on the average, or expected, response, a ceteris paribus analysis entails

estimating Eðy jw; cÞ, the expected value of y conditional on w and c. The vector c—

whose dimension is not important for this discussion—denotes a set of control vari-

ables that we would like to explicitly hold fixed when studying the e¤ect of w on the

expected value of y. The reason we control for these variables is that we think w is

correlated with other factors that also influence y. If w is continuous, interest centers

on qEðy jw; cÞ=qw, which is usually called the partial e¤ect of w on Eðy jw; cÞ. If w is

discrete, we are interested in Eðy jw; cÞ evaluated at di¤erent values of w, with the

elements of c fixed at the same specified values.

Deciding on the list of proper controls is not always straightforward, and using

di¤erent controls can lead to di¤erent conclusions about a causal relationship be-

tween y and w. This is where establishing causality gets tricky: it is up to us to decide

which factors need to be held fixed. If we settle on a list of controls, and if all ele-

ments of c can be observed, then estimating the partial e¤ect of w on Eðy jw; cÞ is

relatively straightforward. Unfortunately, in economics and other social sciences,

many elements of c are not observed. For example, in estimating the causal e¤ect of

education on wage, we might focus on Eðwage j educ; exper; abilÞ where educ is years

of schooling, exper is years of workforce experience, and abil is innate ability. In this

case, c ¼ ðexper; abil Þ, where exper is observed but abil is not. (It is widely agreed

among labor economists that experience and ability are two factors we should hold

fixed to obtain the causal e¤ect of education on wages. Other factors, such as years



with the current employer, might belong as well. We can all agree that something

such as the last digit of one’s social security number need not be included as a con-

trol, as it has nothing to do with wage or education.)

As a second example, consider establishing a causal relationship between student

attendance and performance on a final exam in a principles of economics class. We

might be interested in Eðscore j attend;SAT ; priGPAÞ, where score is the final exam

score, attend is the attendance rate, SAT is score on the scholastic aptitude test, and

priGPA is grade point average at the beginning of the term. We can reasonably col-

lect data on all of these variables for a large group of students. Is this setup enough

to decide whether attendance has a causal e¤ect on performance? Maybe not. While

SAT and priGPA are general measures reflecting student ability and study habits,

they do not necessarily measure one’s interest in or aptitude for econonomics. Such

attributes, which are di‰cult to quantify, may nevertheless belong in the list of con-

trols if we are going to be able to infer that attendance rate has a causal e¤ect on

performance.

In addition to not being able to obtain data on all desired controls, other problems

can interfere with estimating causal relationships. For example, even if we have good

measures of the elements of c, we might not have very good measures of y or w. A

more subtle problem—which we study in detail in Chapter 9—is that we may only

observe equilibrium values of y and w when these variables are simultaneously de-

termined. An example is determining the causal e¤ect of conviction rates ðwÞ on city

crime rates ðyÞ.
A first course in econometrics teaches students how to apply multiple regression

analysis to estimate ceteris paribus e¤ects of explanatory variables on a response

variable. In the rest of this book, we will study how to estimate such e¤ects in a

variety of situations. Unlike most introductory treatments, we rely heavily on con-

ditional expectations. In Chapter 2 we provide a detailed summary of properties of

conditional expectations.

1.2 The Stochastic Setting and Asymptotic Analysis

1.2.1 Data Structures

In order to give proper treatment to modern cross section and panel data methods,

we must choose a stochastic setting that is appropriate for the kinds of cross section

and panel data sets collected for most econometric applications. Naturally, all else

equal, it is best if the setting is as simple as possible. It should allow us to focus on
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interpreting assumptions with economic content while not having to worry too much

about technical regularity conditions. (Regularity conditions are assumptions in-

volving things such as the number of absolute moments of a random variable that

must be finite.)

For much of this book we adopt a random sampling assumption. More precisely,

we assume that (1) a population model has been specified and (2) an independent,

identically distributed (i.i.d.) sample can be drawn from the population. Specifying a

population model—which may be a model of Eðy jw; cÞ, as in Section 1.1—requires

us first to clearly define the population of interest. Defining the relevant population

may seem to be an obvious requirement. Nevertheless, as we will see in later chapters,

it can be subtle in some cases.

An important virtue of the random sampling assumption is that it allows us to

separate the sampling assumption from the assumptions made on the population

model. In addition to putting the proper emphasis on assumptions that impinge on

economic behavior, stating all assumptions in terms of the population is actually

much easier than the traditional approach of stating assumptions in terms of full data

matrices.

Because we will rely heavily on random sampling, it is important to know what it

allows and what it rules out. Random sampling is often reasonable for cross section

data, where, at a given point in time, units are selected at random from the popula-

tion. In this setup, any explanatory variables are treated as random outcomes along

with data on response variables. Fixed regressors cannot be identically distributed

across observations, and so the random sampling assumption technically excludes the

classical linear model. This result is actually desirable for our purposes. In Section 1.4

we provide a brief discussion of why it is important to treat explanatory variables as

random for modern econometric analysis.

We should not confuse the random sampling assumption with so-called experi-

mental data. Experimental data fall under the fixed explanatory variables paradigm.

With experimental data, researchers set values of the explanatory variables and then

observe values of the response variable. Unfortunately, true experiments are quite

rare in economics, and in any case nothing practically important is lost by treating

explanatory variables that are set ahead of time as being random. It is safe to say that

no one ever went astray by assuming random sampling in place of independent

sampling with fixed explanatory variables.

Random sampling does exclude cases of some interest for cross section analysis.

For example, the identical distribution assumption is unlikely to hold for a pooled

cross section, where random samples are obtained from the population at di¤erent
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points in time. This case is covered by independent, not identically distributed (i.n.i.d.)

observations. Allowing for non-identically distributed observations under indepen-

dent sampling is not di‰cult, and its practical e¤ects are easy to deal with. We will

mention this case at several points in the book after the analyis is done under random

sampling. We do not cover the i.n.i.d. case explicitly in derivations because little is to

be gained from the additional complication.

A situation that does require special consideration occurs when cross section ob-

servations are not independent of one another. An example is spatial correlation

models. This situation arises when dealing with large geographical units that cannot

be assumed to be independent draws from a large population, such as the 50 states in

the United States. It is reasonable to expect that the unemployment rate in one state

is correlated with the unemployment rate in neighboring states. While standard esti-

mation methods—such as ordinary least squares and two-stage least squares—can

usually be applied in these cases, the asymptotic theory needs to be altered. Key sta-

tistics often (although not always) need to be modified. We will briefly discuss some

of the issues that arise in this case for single-equation linear models, but otherwise

this subject is beyond the scope of this book. For better or worse, spatial correlation

is often ignored in applied work because correcting the problem can be di‰cult.

Cluster sampling also induces correlation in a cross section data set, but in most

cases it is relatively easy to deal with econometrically. For example, retirement saving

of employees within a firm may be correlated because of common (often unobserved)

characteristics of workers within a firm or because of features of the firm itself (such

as type of retirement plan). Each firm represents a group or cluster, and we may

sample several workers from a large number of firms. As we will see later, provided

the number of clusters is large relative to the cluster sizes, standard methods can

correct for the presence of within-cluster correlation.

Another important issue is that cross section samples often are, either intentionally

or unintentionally, chosen so that they are not random samples from the population

of interest. In Chapter 17 we discuss such problems at length, including sample

selection and stratified sampling. As we will see, even in cases of nonrandom samples,

the assumptions on the population model play a central role.

For panel data (or longitudinal data), which consist of repeated observations on the

same cross section of, say, individuals, households, firms, or cities, over time, the

random sampling assumption initially appears much too restrictive. After all, any

reasonable stochastic setting should allow for correlation in individual or firm be-

havior over time. But the random sampling assumption, properly stated, does allow

for temporal correlation. What we will do is assume random sampling in the cross
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section dimension. The dependence in the time series dimension can be entirely un-

restricted. As we will see, this approach is justified in panel data applications with

many cross section observations spanning a relatively short time period. We will

also be able to cover panel data sample selection and stratification issues within this

paradigm.

A panel data setup that we will not adequately cover—although the estimation

methods we cover can be usually used—is seen when the cross section dimension and

time series dimensions are roughly of the same magnitude, such as when the sample

consists of countries over the post–World War II period. In this case it makes little

sense to fix the time series dimension and let the cross section dimension grow. The

research on asymptotic analysis with these kinds of panel data sets is still in its early

stages, and it requires special limit theory. See, for example, Quah (1994), Pesaran

and Smith (1995), Kao (1999), and Phillips and Moon (1999).

1.2.2 Asymptotic Analysis

Throughout this book we focus on asymptotic properties, as opposed to finite sample

properties, of estimators. The primary reason for this emphasis is that finite sample

properties are intractable for most of the estimators we study in this book. In fact,

most of the estimators we cover will not have desirable finite sample properties such

as unbiasedness. Asymptotic analysis allows for a unified treatment of estimation

procedures, and it (along with the random sampling assumption) allows us to state all

assumptions in terms of the underlying population. Naturally, asymptotic analysis is

not without its drawbacks. Occasionally, we will mention when asymptotics can lead

one astray. In those cases where finite sample properties can be derived, you are

sometimes asked to derive such properties in the problems.

In cross section analysis the asymptotics is as the number of observations, denoted

N throughout this book, tends to infinity. Usually what is meant by this statement is

obvious. For panel data analysis, the asymptotics is as the cross section dimension

gets large while the time series dimension is fixed.

1.3 Some Examples

In this section we provide two examples to emphasize some of the concepts from the

previous sections. We begin with a standard example from labor economics.

Example 1.1 (Wage O¤er Function): Suppose that the natural log of the wage o¤er,

wageo, is determined as
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logðwageoÞ ¼ b0 þ b1educ þ b2exper þ b3married þ u ð1:1Þ

where educ is years of schooling, exper is years of labor market experience, and

married is a binary variable indicating marital status. The variable u, called the error

term or disturbance, contains unobserved factors that a¤ect the wage o¤er. Interest

lies in the unknown parameters, the bj.

We should have a concrete population in mind when specifying equation (1.1). For

example, equation (1.1) could be for the population of all working women. In this

case, it will not be di‰cult to obtain a random sample from the population.

All assumptions can be stated in terms of the population model. The crucial

assumptions involve the relationship between u and the observable explanatory vari-

ables, educ, exper, and married. For example, is the expected value of u given the

explanatory variables educ, exper, and married equal to zero? Is the variance of u

conditional on the explanatory variables constant? There are reasons to think the

answer to both of these questions is no, something we discuss at some length in

Chapters 4 and 5. The point of raising them here is to emphasize that all such ques-

tions are most easily couched in terms of the population model.

What happens if the relevant population is all women over age 18? A problem

arises because a random sample from this population will include women for whom

the wage o¤er cannot be observed because they are not working. Nevertheless, we

can think of a random sample being obtained, but then wageo is unobserved for

women not working.

For deriving the properties of estimators, it is often useful to write the population

model for a generic draw from the population. Equation (1.1) becomes

logðwageo
i Þ ¼ b0 þ b1educi þ b2experi þ b3marriedi þ ui; ð1:2Þ

where i indexes person. Stating assumptions in terms of ui and xi 1 ðeduci; experi;

marriediÞ is the same as stating assumptions in terms of u and x. Throughout this

book, the i subscript is reserved for indexing cross section units, such as individual,

firm, city, and so on. Letters such as j, g, and h will be used to index variables,

parameters, and equations.

Before ending this example, we note that using matrix notation to write equation

(1.2) for all N observations adds nothing to our understanding of the model or sam-

pling scheme; in fact, it just gets in the way because it gives the mistaken impression

that the matrices tell us something about the assumptions in the underlying popula-

tion. It is much better to focus on the population model (1.1).

The next example is illustrative of panel data applications.
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Example 1.2 (E¤ect of Spillovers on Firm Output): Suppose that the population is

all manufacturing firms in a country operating during a given three-year period. A

production function describing output in the population of firms is

logðoutputtÞ ¼ dt þ b1 logðlabortÞ þ b2 logðcapitaltÞ

þ b3spillovert þ quality þ ut; t ¼ 1; 2; 3 ð1:3Þ

Here, spillovert is a measure of foreign firm concentration in the region containing the

firm. The term quality contains unobserved factors—such as unobserved managerial

or worker quality—which a¤ect productivity and are constant over time. The error ut

represents unobserved shocks in each time period. The presence of the parameters dt,

which represent di¤erent intercepts in each year, allows for aggregate productivity

to change over time. The coe‰cients on labort, capitalt, and spillovert are assumed

constant across years.

As we will see when we study panel data methods, there are several issues in

deciding how best to estimate the bj. An important one is whether the unobserved

productivity factors (quality) are correlated with the observable inputs. Also, can we

assume that spillovert at, say, t ¼ 3 is uncorrelated with the error terms in all time

periods?

For panel data it is especially useful to add an i subscript indicating a generic cross

section observation—in this case, a randomly sampled firm:

logðoutputitÞ ¼ dt þ b1 logðlaboritÞ þ b2 logðcapitalitÞ

þ b3spilloverit þ qualityi þ uit; t ¼ 1; 2; 3 ð1:4Þ

Equation (1.4) makes it clear that qualityi is a firm-specific term that is constant over

time and also has the same e¤ect in each time period, while uit changes across time

and firm. Nevertheless, the key issues that we must address for estimation can be

discussed for a generic i, since the draws are assumed to be randomly made from the

population of all manufacturing firms.

Equation (1.4) is an example of another convention we use throughout the book: the

subscript t is reserved to index time, just as i is reserved for indexing the cross section.

1.4 Why Not Fixed Explanatory Variables?

We have seen two examples where, generally speaking, the error in an equation can

be correlated with one or more of the explanatory variables. This possibility is
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so prevalent in social science applications that it makes little sense to adopt an

assumption—namely, the assumption of fixed explanatory variables—that rules out

such correlation a priori.

In a first course in econometrics, the method of ordinary least squares (OLS) and

its extensions are usually learned under the fixed regressor assumption. This is ap-

propriate for understanding the mechanics of least squares and for gaining experience

with statistical derivations. Unfortunately, reliance on fixed regressors or, more gen-

erally, fixed ‘‘exogenous’’ variables, can have unintended consequences, especially in

more advanced settings. For example, in Chapters 7, 10, and 11 we will see that as-

suming fixed regressors or fixed instrumental variables in panel data models imposes

often unrealistic restrictions on dynamic economic behavior. This is not just a tech-

nical point: estimation methods that are consistent under the fixed regressor as-

sumption, such as generalized least squares, are no longer consistent when the fixed

regressor assumption is relaxed in interesting ways.

To illustrate the shortcomings of the fixed regressor assumption in a familiar con-

text, consider a linear model for cross section data, written for each observation i as

yi ¼ b0 þ xib þ ui; i ¼ 1; 2; . . . ;N

where xi is a 1 � K vector and b is a K � 1 vector. It is common to see the ‘‘ideal’’

assumptions for this model stated as ‘‘The errors fui: i ¼ 1; 2; . . . ;Ng are i.i.d. with

EðuiÞ ¼ 0 and VarðuiÞ ¼ s2.’’ (Sometimes the ui are also assumed to be normally

distributed.) The problem with this statement is that it omits the most important

consideration: What is assumed about the relationship between ui and xi? If the xi are

taken as nonrandom—which, evidently, is very often the implicit assumption—then

ui and xi are independent of one another. In nonexperimental environments this as-

sumption rules out too many situations of interest. Some important questions, such

as e‰ciency comparisons across models with di¤erent explanatory variables, cannot

even be asked in the context of fixed regressors. (See Problems 4.5 and 4.15 of

Chapter 4 for specific examples.)

In a random sampling context, the ui are always independent and identically dis-

tributed, regardless of how they are related to the xi. Assuming that the population

mean of the error is zero is without loss of generality when an intercept is included

in the model. Thus, the statement ‘‘The errors fui: i ¼ 1; 2; . . . ;Ng are i.i.d. with

EðuiÞ ¼ 0 and VarðuiÞ ¼ s2’’ is vacuous in a random sampling context. Viewing the

xi as random draws along with yi forces us to think about the relationship between

the error and the explanatory variables in the population. For example, in the popu-

lation model y ¼ b0 þ xb þ u, is the expected value of u given x equal to zero? Is u

correlated with one or more elements of x? Is the variance of u given x constant, or
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does it depend on x? These are the assumptions that are relevant for estimating b and

for determining how to perform statistical inference.

Because our focus is on asymptotic analysis, we have the luxury of allowing for

random explanatory variables throughout the book, whether the setting is linear

models, nonlinear models, single-equation analysis, or system analysis. An incidental

but nontrivial benefit is that, compared with frameworks that assume fixed explan-

atory variables, the unifying theme of random sampling actually simplifies the

asymptotic analysis. We will never state assumptions in terms of full data matrices,

because such assumptions can be imprecise and can impose unintended restrictions

on the population model.
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2 Conditional Expectations and Related Concepts in Econometrics

2.1 The Role of Conditional Expectations in Econometrics

As we suggested in Section 1.1, the conditional expectation plays a crucial role

in modern econometric analysis. Although it is not always explicitly stated, the goal

of most applied econometric studies is to estimate or test hypotheses about the ex-

pectation of one variable—called the explained variable, the dependent variable, the

regressand, or the response variable, and usually denoted y—conditional on a set of

explanatory variables, independent variables, regressors, control variables, or covari-

ates, usually denoted x ¼ ðx1; x2; . . . ; xKÞ.
A substantial portion of research in econometric methodology can be interpreted

as finding ways to estimate conditional expectations in the numerous settings that

arise in economic applications. As we briefly discussed in Section 1.1, most of the

time we are interested in conditional expectations that allow us to infer causality

from one or more explanatory variables to the response variable. In the setup from

Section 1.1, we are interested in the e¤ect of a variable w on the expected value of

y, holding fixed a vector of controls, c. The conditional expectation of interest is

Eðy jw; cÞ, which we will call a structural conditional expectation. If we can collect

data on y, w, and c in a random sample from the underlying population of interest,

then it is fairly straightforward to estimate Eðy jw; cÞ—especially if we are willing to

make an assumption about its functional form—in which case the e¤ect of w on

Eðy jw; cÞ, holding c fixed, is easily estimated.

Unfortunately, complications often arise in the collection and analysis of economic

data because of the nonexperimental nature of economics. Observations on economic

variables can contain measurement error, or they are sometimes properly viewed as

the outcome of a simultaneous process. Sometimes we cannot obtain a random

sample from the population, which may not allow us to estimate Eðy jw; cÞ. Perhaps

the most prevalent problem is that some variables we would like to control for (ele-

ments of c) cannot be observed. In each of these cases there is a conditional expec-

tation (CE) of interest, but it generally involves variables for which the econometrician

cannot collect data or requires an experiment that cannot be carried out.

Under additional assumptions—generally called identification assumptions—we

can sometimes recover the structural conditional expectation originally of interest,

even if we cannot observe all of the desired controls, or if we only observe equilib-

rium outcomes of variables. As we will see throughout this text, the details di¤er

depending on the context, but the notion of conditional expectation is fundamental.

In addition to providing a unified setting for interpreting economic models, the CE

operator is useful as a tool for manipulating structural equations into estimable

equations. In the next section we give an overview of the important features of the



conditional expectations operator. The appendix to this chapter contains a more ex-

tensive list of properties.

2.2 Features of Conditional Expectations

2.2.1 Definition and Examples

Let y be a random variable, which we refer to in this section as the explained variable,

and let x1 ðx1; x2; . . . ; xKÞ be a 1 � K random vector of explanatory variables. If

EðjyjÞ < y, then there is a function, say m: RK ! R, such that

Eðy j x1; x2; . . . ; xKÞ ¼ mðx1; x2; . . . ; xKÞ ð2:1Þ

or Eðy j xÞ ¼ mðxÞ. The function mðxÞ determines how the average value of y changes

as elements of x change. For example, if y is wage and x contains various individual

characteristics, such as education, experience, and IQ, then Eðwage j educ; exper; IQÞ
is the average value of wage for the given values of educ, exper, and IQ. Technically,

we should distinguish Eðy j xÞ—which is a random variable because x is a random

vector defined in the population—from the conditional expectation when x takes on

a particular value, such as x0: Eðy j x ¼ x0Þ. Making this distinction soon becomes

cumbersome and, in most cases, is not overly important; for the most part we avoid

it. When discussing probabilistic features of Eðy j xÞ, x is necessarily viewed as a

random variable.

Because Eðy j xÞ is an expectation, it can be obtained from the conditional density

of y given x by integration, summation, or a combination of the two (depending on

the nature of y). It follows that the conditional expectation operator has the same

linearity properties as the unconditional expectation operator, and several additional

properties that are consequences of the randomness of mðxÞ. Some of the statements

we make are proven in the appendix, but general proofs of other assertions require

measure-theoretic probabability. You are referred to Billingsley (1979) for a detailed

treatment.

Most often in econometrics a model for a conditional expectation is specified to

depend on a finite set of parameters, which gives a parametric model of Eðy j xÞ. This

considerably narrows the list of possible candidates for mðxÞ.

Example 2.1: For K ¼ 2 explanatory variables, consider the following examples of

conditional expectations:

Eðy j x1; x2Þ ¼ b0 þ b1x1 þ b2x2 ð2:2Þ
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Eðy j x1; x2Þ ¼ b0 þ b1x1 þ b2x2 þ b3x2
2 ð2:3Þ

Eðy j x1; x2Þ ¼ b0 þ b1x1 þ b2x2 þ b3x1x2 ð2:4Þ

Eðy j x1; x2Þ ¼ exp½b0 þ b1 logðx1Þ þ b2x2�; yb 0; x1 > 0 ð2:5Þ

The model in equation (2.2) is linear in the explanatory variables x1 and x2. Equation

(2.3) is an example of a conditional expectation nonlinear in x2, although it is linear

in x1. As we will review shortly, from a statistical perspective, equations (2.2) and

(2.3) can be treated in the same framework because they are linear in the parameters

bj . The fact that equation (2.3) is nonlinear in x has important implications for

interpreting the bj, but not for estimating them. Equation (2.4) falls into this same

class: it is nonlinear in x ¼ ðx1; x2Þ but linear in the bj.

Equation (2.5) di¤ers fundamentally from the first three examples in that it is a

nonlinear function of the parameters bj, as well as of the xj. Nonlinearity in the

parameters has implications for estimating the bj ; we will see how to estimate such

models when we cover nonlinear methods in Part III. For now, you should note that

equation (2.5) is reasonable only if yb 0.

2.2.2 Partial E¤ects, Elasticities, and Semielasticities

If y and x are related in a deterministic fashion, say y ¼ f ðxÞ, then we are often

interested in how y changes when elements of x change. In a stochastic setting we

cannot assume that y ¼ f ðxÞ for some known function and observable vector x be-

cause there are always unobserved factors a¤ecting y. Nevertheless, we can define the

partial e¤ects of the xj on the conditional expectation Eðy j xÞ. Assuming that mð�Þ
is appropriately di¤erentiable and xj is a continuous variable, the partial derivative

qmðxÞ=qxj allows us to approximate the marginal change in Eðy j xÞ when xj is

increased by a small amount, holding x1; . . . ; xj�1; xjþ1; . . . xK constant:

DEðy j xÞA qmðxÞ
qxj

� Dxj; holding x1; . . . ; xj�1; xjþ1; . . . xK fixed ð2:6Þ

The partial derivative of Eðy j xÞ with respect to xj is usually called the partial e¤ect

of xj on Eðy j xÞ (or, to be somewhat imprecise, the partial e¤ect of xj on y). Inter-

preting the magnitudes of coe‰cients in parametric models usually comes from the

approximation in equation (2.6).

If xj is a discrete variable (such as a binary variable), partial e¤ects are computed

by comparing Eðy j xÞ at di¤erent settings of xj (for example, zero and one when xj is

binary), holding other variables fixed.
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Example 2.1 (continued): In equation (2.2) we have

qEðy j xÞ
qx1

¼ b1;
qEðy j xÞ

qx2
¼ b2

As expected, the partial e¤ects in this model are constant. In equation (2.3),

qEðy j xÞ
qx1

¼ b1;
qEðy j xÞ

qx2
¼ b2 þ 2b3x2

so that the partial e¤ect of x1 is constant but the partial e¤ect of x2 depends on the

level of x2. In equation (2.4),

qEðy j xÞ
qx1

¼ b1 þ b3x2;
qEðy j xÞ

qx2
¼ b2 þ b3x1

so that the partial e¤ect of x1 depends on x2, and vice versa. In equation (2.5),

qEðy j xÞ
qx1

¼ expð�Þðb1=x1Þ;
qEðy j xÞ

qx2
¼ expð�Þb2 ð2:7Þ

where expð�Þ denotes the function Eðy j xÞ in equation (2.5). In this case, the partial

e¤ects of x1 and x2 both depend on x ¼ ðx1; x2Þ.

Sometimes we are interested in a particular function of a partial e¤ect, such as an

elasticity. In the determinstic case y ¼ f ðxÞ, we define the elasticity of y with respect

to xj as

qy

qxj

� xj

y
¼ qf ðxÞ

qxj

� xj

f ðxÞ ð2:8Þ

again assuming that xj is continuous. The right-hand side of equation (2.8) shows

that the elasticity is a function of x. When y and x are random, it makes sense to use

the right-hand side of equation (2.8), but where f ðxÞ is the conditional mean, mðxÞ.
Therefore, the (partial) elasticity of Eðy j xÞ with respect to xj, holding x1; . . . ; xj�1;

xjþ1; . . . ; xK constant, is

qEðy j xÞ
qxj

� xj

Eðy j xÞ ¼
qmðxÞ
qxj

� xj

mðxÞ : ð2:9Þ

If Eðy j xÞ > 0 and xj > 0 (as is often the case), equation (2.9) is the same as

q log½Eðy j xÞ�
q logðxjÞ

ð2:10Þ
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This latter expression gives the elasticity its interpretation as the approximate per-

centage change in Eðy j xÞ when xj increases by 1 percent.

Example 2.1 (continued): In equations (2.2) to (2.5), most elasticities are not con-

stant. For example, in equation (2.2), the elasticity of Eðy j xÞ with respect to x1 is

ðb1x1Þ=ðb0 þ b1x1 þ b2x2Þ, which clearly depends on x1 and x2. However, in equa-

tion (2.5) the elasticity with respect to x1 is constant and equal to b1.

How does equation (2.10) compare with the definition of elasticity from a model

linear in the natural logarithms? If y > 0 and xj > 0, we could define the elasticity as

qE½logðyÞ j x�
q logðxjÞ

ð2:11Þ

This is the natural definition in a model such as logðyÞ ¼ gðxÞ þ u, where gðxÞ is

some function of x and u is an unobserved disturbance with zero mean conditional on

x. How do equations (2.10) and (2.11) compare? Generally, they are di¤erent (since

the expected value of the log and the log of the expected value can be very di¤erent).

If u is independent of x, then equations (2.10) and (2.11) are the same, because then

Eðy j xÞ ¼ d � exp½gðxÞ�

where d1E½expðuÞ�. (If u and x are independent, so are expðuÞ and exp½gðxÞ�.) As a

specific example, if

logðyÞ ¼ b0 þ b1 logðx1Þ þ b2x2 þ u ð2:12Þ

where u has zero mean and is independent of ðx1; x2Þ, then the elasticity of y with

respect to x1 is b1 using either definition of elasticity. If Eðu j xÞ ¼ 0 but u and x are

not independent, the definitions are generally di¤erent.

For the most part, little is lost by treating equations (2.10) and (2.11) as the same

when y > 0. We will view models such as equation (2.12) as constant elasticity

models of y with respect to x1 whenever logðyÞ and logðxjÞ are well defined. Defini-

tion (2.10) is more general because sometimes it applies even when logðyÞ is not

defined. (We will need the general definition of an elasticity in Chapters 16 and 19.)

The percentage change in Eðy j xÞ when xj is increased by one unit is approximated

as

100 � qEðy j xÞ
qxj

� 1

Eðy j xÞ ð2:13Þ

which equals
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100 � q log½Eðy j xÞ�
qxj

ð2:14Þ

if Eðy j xÞ > 0. This is sometimes called the semielasticity of Eðy j xÞ with respect to xj.

Example 2.1 (continued): In equation (2.5) the semielasticity with respect to x2

is constant and equal to 100 � b2. No other semielasticities are constant in these

equations.

2.2.3 The Error Form of Models of Conditional Expectations

When y is a random variable we would like to explain in terms of observable vari-

ables x, it is useful to decompose y as

y ¼ Eðy j xÞ þ u ð2:15Þ

Eðu j xÞ ¼ 0 ð2:16Þ

In other words, equations (2.15) and (2.16) are definitional: we can always write y as

its conditional expectation, Eðy j xÞ, plus an error term or disturbance term that has

conditional mean zero.

The fact that Eðu j xÞ ¼ 0 has the following important implications: (1) EðuÞ ¼ 0;

(2) u is uncorrelated with any function of x1; x2; . . . ; xK , and, in particular, u is

uncorrelated with each of x1; x2; . . . ; xK . That u has zero unconditional expectation

follows as a special case of the law of iterated expectations (LIE ), which we cover

more generally in the next subsection. Intuitively, it is quite reasonable that Eðu j xÞ ¼
0 implies EðuÞ ¼ 0. The second implication is less obvious but very important. The

fact that u is uncorrelated with any function of x is much stronger than merely saying

that u is uncorrelated with x1; . . . ; xK .

As an example, if equation (2.2) holds, then we can write

y ¼ b0 þ b1x1 þ b2x2 þ u; Eðu j x1; x2Þ ¼ 0 ð2:17Þ

and so

EðuÞ ¼ 0; Covðx1; uÞ ¼ 0; Covðx2; uÞ ¼ 0 ð2:18Þ

But we can say much more: under equation (2.17), u is also uncorrelated with any

other function we might think of, such as x2
1 ; x2

2 ; x1x2; expðx1Þ, and logðx2
2 þ 1Þ. This

fact ensures that we have fully accounted for the e¤ects of x1 and x2 on the expected

value of y; another way of stating this point is that we have the functional form of

Eðy j xÞ properly specified.
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If we only assume equation (2.18), then u can be correlated with nonlinear func-

tions of x1 and x2, such as quadratics, interactions, and so on. If we hope to estimate

the partial e¤ect of each xj on Eðy j xÞ over a broad range of values for x, we want

Eðu j xÞ ¼ 0. [In Section 2.3 we discuss the weaker assumption (2.18) and its uses.]

Example 2.2: Suppose that housing prices are determined by the simple model

hprice ¼ b0 þ b1sqrft þ b2distance þ u;

where sqrft is the square footage of the house and distance is distance of the house

from a city incinerator. For b2 to represent qEðhprice j sqrft; distanceÞ=q distance, we

must assume that Eðu j sqrft; distanceÞ ¼ 0.

2.2.4 Some Properties of Conditional Expectations

One of the most useful tools for manipulating conditional expectations is the law of

iterated expectations, which we mentioned previously. Here we cover the most gen-

eral statement needed in this book. Suppose that w is a random vector and y is a

random variable. Let x be a random vector that is some function of w, say x ¼ fðwÞ.
(The vector x could simply be a subset of w.) This statement implies that if we know

the outcome of w, then we know the outcome of x. The most general statement of the

LIE that we will need is

Eðy j xÞ ¼ E½Eðy jwÞ j x� ð2:19Þ

In other words, if we write m1ðwÞ1Eðy jwÞ and m2ðxÞ1Eðy j xÞ, we can obtain

m2ðxÞ by computing the expected value of m2ðwÞ given x: m1ðxÞ ¼ E½m1ðwÞ j x�.
There is another result that looks similar to equation (2.19) but is much simpler to

verify. Namely,

Eðy j xÞ ¼ E½Eðy j xÞ jw� ð2:20Þ

Note how the positions of x and w have been switched on the right-hand side of

equation (2.20) compared with equation (2.19). The result in equation (2.20) follows

easily from the conditional aspect of the expection: since x is a function of w, know-

ing w implies knowing x; given that m2ðxÞ ¼ Eðy j xÞ is a function of x, the expected

value of m2ðxÞ given w is just m2ðxÞ.
Some find a phrase useful for remembering both equations (2.19) and (2.20): ‘‘The

smaller information set always dominates.’’ Here, x represents less information than

w, since knowing w implies knowing x, but not vice versa. We will use equations

(2.19) and (2.20) almost routinely throughout the book.
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For many purposes we need the following special case of the general LIE (2.19). If

x and z are any random vectors, then

Eðy j xÞ ¼ E½Eðy j x; zÞ j x� ð2:21Þ

or, defining m1ðx; zÞ1Eðy j x; zÞ and m2ðxÞ1Eðy j xÞ,

m2ðxÞ ¼ E½m1ðx; zÞ j x� ð2:22Þ

For many econometric applications, it is useful to think of m1ðx; zÞ ¼ Eðy j x; zÞ as

a structural conditional expectation, but where z is unobserved. If interest lies in

Eðy j x; zÞ, then we want the e¤ects of the xj holding the other elements of x and z

fixed. If z is not observed, we cannot estimate Eðy j x; zÞ directly. Nevertheless, since

y and x are observed, we can generally estimate Eðy j xÞ. The question, then, is

whether we can relate Eðy j xÞ to the original expectation of interest. (This is a ver-

sion of the identification problem in econometrics.) The LIE provides a convenient

way for relating the two expectations.

Obtaining E½m1ðx; zÞ j x� generally requires integrating (or summing) m1ðx; zÞ
against the conditional density of z given x, but in many cases the form of Eðy j x; zÞ
is simple enough not to require explicit integration. For example, suppose we begin

with the model

Eðy j x1; x2; zÞ ¼ b0 þ b1x1 þ b2x2 þ b3z ð2:23Þ

but where z is unobserved. By the LIE, and the linearity of the CE operator,

Eðy j x1; x2Þ ¼ Eðb0 þ b1x1 þ b2x2 þ b3z j x1; x2Þ

¼ b0 þ b1x1 þ b2x2 þ b3Eðz j x1; x2Þ ð2:24Þ

Now, if we make an assumption about Eðz j x1; x2Þ, for example, that it is linear in x1

and x2,

Eðz j x1; x2Þ ¼ d0 þ d1x1 þ d2x2 ð2:25Þ

then we can plug this into equation (2.24) and rearrange:

¼ b0 þ b1x1 þ b2x2 þ b3ðd0 þ d1x1 þ d2x2Þ

¼ ðb0 þ b3d0Þ þ ðb1 þ b3d1Þx1 þ ðb2 þ b3d2Þx2

This last expression is Eðy j x1; x2Þ; given our assumptions it is necessarily linear in

ðx1; x2Þ.
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Now suppose equation (2.23) contains an interaction in x1 and z:

Eðy j x1; x2; zÞ ¼ b0 þ b1x1 þ b2x2 þ b3z þ b4x1z ð2:26Þ

Then, again by the LIE,

Eðy j x1; x2Þ ¼ b0 þ b1x1 þ b2x2 þ b3Eðz j x1; x2Þ þ b4x1Eðz j x1; x2Þ

If Eðz j x1; x2Þ is again given in equation (2.25), you can show that Eðy j x1; x2Þ has

terms linear in x1 and x2 and, in addition, contains x2
1 and x1x2. The usefulness of

such derivations will become apparent in later chapters.

The general form of the LIE has other useful implications. Suppose that for some

(vector) function fðxÞ and a real-valued function gð�Þ, Eðy j xÞ ¼ g½fðxÞ�. Then

E½y j fðxÞ� ¼ Eðy j xÞ ¼ g½fðxÞ� ð2:27Þ

There is another way to state this relationship: If we define z1 fðxÞ, then Eðy j zÞ ¼
gðzÞ. The vector z can have smaller or greater dimension than x. This fact is illus-

trated with the following example.

Example 2.3: If a wage equation is

Eðwage j educ; experÞ ¼ b0 þ b1educ þ b2exper þ b3exper2 þ b4educ�exper

then

Eðwage j educ; exper; exper2; educ�experÞ

¼ b0 þ b1educ þ b2exper þ b3exper2 þ b4educ�exper:

In other words, once educ and exper have been conditioned on, it is redundant to

condition on exper2 and educ�exper.

The conclusion in this example is much more general, and it is helpful for analyz-

ing models of conditional expectations that are linear in parameters. Assume that, for

some functions g1ðxÞ; g2ðxÞ; . . . ; gMðxÞ,

Eðy j xÞ ¼ b0 þ b1g1ðxÞ þ b2g2ðxÞ þ � � � þ bMgMðxÞ ð2:28Þ

This model allows substantial flexibility, as the explanatory variables can appear in

all kinds of nonlinear ways; the key restriction is that the model is linear in the bj . If

we define z1 1 g1ðxÞ; . . . ; zM 1 gMðxÞ, then equation (2.27) implies that

Eðy j z1; z2; . . . ; zMÞ ¼ b0 þ b1z1 þ b2z2 þ � � � þ bMzM ð2:29Þ
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This equation shows that any conditional expectation linear in parameters can

be written as a conditional expectation linear in parameters and linear in some

conditioning variables. If we write equation (2.29) in error form as y ¼ b0 þ b1z1 þ
b2z2 þ � � � þ bMzM þ u, then, because Eðu j xÞ ¼ 0 and the zj are functions of x, it

follows that u is uncorrelated with z1; . . . ; zM (and any functions of them). As we will

see in Chapter 4, this result allows us to cover models of the form (2.28) in the same

framework as models linear in the original explanatory variables.

We also need to know how the notion of statistical independence relates to condi-

tional expectations. If u is a random variable independent of the random vector x,

then Eðu j xÞ ¼ EðuÞ, so that if EðuÞ ¼ 0 and u and x are independent, then Eðu j xÞ ¼
0. The converse of this is not true: Eðu j xÞ ¼ EðuÞ does not imply statistical inde-

pendence between u and x ( just as zero correlation between u and x does not imply

independence).

2.2.5 Average Partial E¤ects

When we explicitly allow the expectation of the response variable, y, to depend on

unobservables—usually called unobserved heterogeneity—we must be careful in

specifying the partial e¤ects of interest. Suppose that we have in mind the (structural)

conditional mean Eðy j x; qÞ ¼ m1ðx; qÞ, where x is a vector of observable explanatory

variables and q is an unobserved random variable—the unobserved heterogeneity.

(We take q to be a scalar for simplicity; the discussion for a vector is essentially the

same.) For continuous xj, the partial e¤ect of immediate interest is

yjðx; qÞ1 qEðy j x; qÞ=qxj ¼ qm1ðx; qÞ=qxj ð2:30Þ

(For discrete xj, we would simply look at di¤erences in the regression function for xj

at two di¤erent values, when the other elements of x and q are held fixed.) Because

yjðx; qÞ generally depends on q, we cannot hope to estimate the partial e¤ects across

many di¤erent values of q. In fact, even if we could estimate yjðx; qÞ for all x and q,

we would generally have little guidance about inserting values of q into the mean

function. In many cases we can make a normalization such as EðqÞ ¼ 0, and estimate

yjðx; 0Þ, but q ¼ 0 typically corresponds to a very small segment of the population.

(Technically, q ¼ 0 corresponds to no one in the population when q is continuously

distributed.) Usually of more interest is the partial e¤ect averaged across the popu-

lation distribution of q; this is called the average partial e¤ect (APE ).

For emphasis, let xo denote a fixed value of the covariates. The average partial

e¤ect evaluated at xo is

djðxoÞ1Eq½yjðxo; qÞ� ð2:31Þ
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where Eq½ � � denotes the expectation with respect to q. In other words, we simply average

the partial e¤ect yjðxo; qÞ across the population distribution of q. Definition (2.31) holds

for any population relationship between q and x; in particular, they need not be inde-

pendent. But remember, in definition (2.31), xo is a nonrandom vector of numbers.

For concreteness, assume that q has a continuous distribution with density func-

tion gð�Þ, so that

djðxoÞ ¼
ð
R
yjðxo; qÞgðqÞ dq ð2:32Þ

where q is simply the dummy argument in the integration. The question we answer

here is, Is it possible to estimate djðxoÞ from conditional expectations that depend

only on observable conditioning variables? Generally, the answer must be no, as q

and x can be arbitrarily related. Nevertheless, if we appropriately restrict the rela-

tionship between q and x, we can obtain a very useful equivalance.

One common assumption in nonlinear models with unobserved heterogeneity is

that q and x are independent. We will make the weaker assumption that q and x are

independent conditional on a vector of observables, w:

Dðq j x;wÞ ¼ Dðq jwÞ ð2:33Þ

where Dð� j �Þ denotes conditional distribution. (If we take w to be empty, we get the

special case of independence between q and x.) In many cases, we can interpret

equation (2.33) as implying that w is a vector of good proxy variables for q, but

equation (2.33) turns out to be fairly widely applicable. We also assume that w is

redundant or ignorable in the structural expectation

Eðy j x; q;wÞ ¼ Eðy j x; qÞ ð2:34Þ

As we will see in subsequent chapters, many econometric methods hinge on being

able to exclude certain variables from the equation of interest, and equation (2.34)

makes this assumption precise. Of course, if w is empty, then equation (2.34) is trivi-

ally true.

Under equations (2.33) and (2.34), we can show the following important result,

provided that we can interchange a certain integral and partial derivative:

djðxoÞ ¼ Ew½qEðy j xo;wÞ=qxj� ð2:35Þ

where Ew½ � � denotes the expectation with respect to the distribution of w. Before we

verify equation (2.35) for the special case of continuous, scalar q, we must understand

its usefulness. The point is that the unobserved heterogeneity, q, has disappeared en-

tirely, and the conditional expectation Eðy j x;wÞ can be estimated quite generally
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because we assume that a random sample can be obtained on ðy; x;wÞ. [Alternatively,

when we write down parametric econometric models, we will be able to derive

Eðy j x;wÞ.] Then, estimating the average partial e¤ect at any chosen xo amounts to

averaging qm̂m2ðxo;wiÞ=qxj across the random sample, where m2ðx;wÞ1Eðy j x;wÞ.
Proving equation (2.35) is fairly simple. First, we have

m2ðx;wÞ ¼ E½Eðy j x; q;wÞ j x;w� ¼ E½m1ðx; qÞ j x;w� ¼
ð
R
m1ðx; qÞgðq jwÞ dq

where the first equality follows from the law of iterated expectations, the second

equality follows from equation (2.34), and the third equality follows from equation

(2.33). If we now take the partial derivative with respect to xj of the equality

m2ðx;wÞ ¼
ð
R
m1ðx; qÞgðq jwÞ dq ð2:36Þ

and interchange the partial derivative and the integral, we have, for any ðx;wÞ,

qm2ðx;wÞ=qxj ¼
ð
R
yjðx; qÞgðq jwÞ dq ð2:37Þ

For fixed xo, the right-hand side of equation (2.37) is simply E½yjðxo; qÞ jw�, and so

another application of iterated expectations gives, for any xo,

Ew½qm2ðxo;wÞ=qxj� ¼ EfE½yjðxo; qÞ jw�g ¼ djðxoÞ

which is what we wanted to show.

As mentioned previously, equation (2.35) has many applications in models where

unobserved heterogeneity enters a conditional mean function in a nonadditive fash-

ion. We will use this result (in simplified form) in Chapter 4, and also extensively in

Part III. The special case where q is independent of x—and so we do not need the

proxy variables w—is very simple: the APE of xj on Eðy j x; qÞ is simply the partial

e¤ect of xj on m2ðxÞ ¼ Eðy j xÞ. In other words, if we focus on average partial e¤ects,

there is no need to introduce heterogeneity. If we do specify a model with heteroge-

neity independent of x, then we simply find Eðy j xÞ by integrating Eðy j x; qÞ over the

distribution of q.

2.3 Linear Projections

In the previous section we saw some examples of how to manipulate conditional

expectations. While structural equations are usually stated in terms of CEs, making
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linearity assumptions about CEs involving unobservables or auxiliary variables is

undesirable, especially if such assumptions can be easily relaxed.

By using the notion of a linear projection we can often relax linearity assumptions

in auxiliary conditional expectations. Typically this is done by first writing down a

structural model in terms of a CE and then using the linear projection to obtain an

estimable equation. As we will see in Chapters 4 and 5, this approach has many

applications.

Generally, let y; x1; . . . ; xK be random variables representing some population such

that Eðy2Þ < y, Eðx2
j Þ < y, j ¼ 1; 2; . . . ;K. These assumptions place no practical

restrictions on the joint distribution of ðy; x1; x2; . . . ; xKÞ: the vector can contain dis-

crete and continuous variables, as well as variables that have both characteristics. In

many cases y and the xj are nonlinear functions of some underlying variables that

are initially of interest.

Define x1 ðx1; . . . ; xKÞ as a 1 � K vector, and make the assumption that the

K � K variance matrix of x is nonsingular (positive definite). Then the linear projec-

tion of y on 1; x1; x2; . . . ; xK always exists and is unique:

Lðy j 1; x1; . . . xKÞ ¼ Lðy j 1; xÞ ¼ b0 þ b1x1 þ � � � þ bK xK ¼ b0 þ xb ð2:38Þ

where, by definition,

b1 ½VarðxÞ��1 Covðx; yÞ ð2:39Þ

b0 1EðyÞ � EðxÞb ¼ EðyÞ � b1Eðx1Þ � � � � � bK EðxKÞ ð2:40Þ

The matrix VarðxÞ is the K � K symmetric matrix with ð j; kÞth element given by

Covðxj ; xkÞ, while Covðx; yÞ is the K � 1 vector with jth element Covðxj; yÞ. When

K ¼ 1 we have the familiar results b1 1Covðx1; yÞ=Varðx1Þ and b0 1EðyÞ�
b1Eðx1Þ. As its name suggests, Lðy j 1; x1; x2; . . . ; xKÞ is always a linear function of

the xj .

Other authors use a di¤erent notation for linear projections, the most common

being E�ð� j �Þ and Pð� j �Þ. [For example, Chamberlain (1984) and Goldberger (1991)

use E�ð� j �Þ.] Some authors omit the 1 in the definition of a linear projection because

it is assumed that an intercept is always included. Although this is usually the case,

we put unity in explicitly to distinguish equation (2.38) from the case that a zero in-

tercept is intended. The linear projection of y on x1; x2; . . . ; xK is defined as

Lðy j xÞ ¼ Lðy j x1; x2; . . . ; xKÞ ¼ g1x1 þ g2x2 þ � � � þ gK xK ¼ xg

where g1 ðEðx 0xÞÞ�1Eðx 0yÞ. Note that g0 b unless EðxÞ ¼ 0. Later, we will include

unity as an element of x, in which case the linear projection including an intercept

can be written as Lðy j xÞ.
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The linear projection is just another way of writing down a population linear

model where the disturbance has certain properties. Given the linear projection in

equation (2.38) we can always write

y ¼ b0 þ b1x1 þ � � � þ bK xK þ u ð2:41Þ

where the error term u has the following properties (by definition of a linear projec-

tion): Eðu2Þ < y and

EðuÞ ¼ 0; Covðxj; uÞ ¼ 0; j ¼ 1; 2; . . . ;K ð2:42Þ

In other words, u has zero mean and is uncorrelated with every xj. Conversely, given

equations (2.41) and (2.42), the parameters bj in equation (2.41) must be the param-

eters in the linear projection of y on 1; x1; . . . ; xK given by definitions (2.39) and

(2.40). Sometimes we will write a linear projection in error form, as in equations

(2.41) and (2.42), but other times the notation (2.38) is more convenient.

It is important to emphasize that when equation (2.41) represents the linear pro-

jection, all we can say about u is contained in equation (2.42). In particular, it is not

generally true that u is independent of x or that Eðu j xÞ ¼ 0. Here is another way of

saying the same thing: equations (2.41) and (2.42) are definitional. Equation (2.41)

under Eðu j xÞ ¼ 0 is an assumption that the conditional expectation is linear.

The linear projection is sometimes called the minimum mean square linear predictor

or the least squares linear predictor because b0 and b can be shown to solve the fol-

lowing problem:

min
b0;b ARK

E½ðy � b0 � xbÞ2� ð2:43Þ

(see Property LP.6 in the appendix). Because the CE is the minimum mean square

predictor—that is, it gives the smallest mean square error out of all (allowable)

functions (see Property CE.8)—it follows immediately that if Eðy j xÞ is linear in x

then the linear projection coincides with the conditional expectation.

As with the conditional expectation operator, the linear projection operator sat-

isfies some important iteration properties. For vectors x and z,

Lðy j 1; xÞ ¼ L½Lðy j 1; x; zÞ j 1; x� ð2:44Þ

This simple fact can be used to derive omitted variables bias in a general setting as

well as proving properties of estimation methods such as two-stage least squares and

certain panel data methods.

Another iteration property that is useful involves taking the linear projection of a

conditional expectation:
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Lðy j 1; xÞ ¼ L½Eðy j x; zÞ j 1; x� ð2:45Þ

Often we specify a structural model in terms of a conditional expectation Eðy j x; zÞ
(which is frequently linear), but, for a variety of reasons, the estimating equations are

based on the linear projection Lðy j 1; xÞ. If Eðy j x; zÞ is linear in x and z, then

equations (2.45) and (2.44) say the same thing.

For example, assume that

Eðy j x1; x2Þ ¼ b0 þ b1x1 þ b2x2 þ b3x1x2

and define z1 1 x1x2. Then, from Property CE.3,

Eðy j x1; x2; z1Þ ¼ b0 þ b1x1 þ b2x2 þ b3z1 ð2:46Þ

The right-hand side of equation (2.46) is also the linear projection of y on 1; x1; x2,

and z1; it is not generally the linear projection of y on 1; x1; x2.

Our primary use of linear projections will be to obtain estimable equations

involving the parameters of an underlying conditional expectation of interest. Prob-

lems 2.2 and 2.3 show how the linear projection can have an interesting interpreta-

tion in terms of the structural parameters.

Problems

2.1. Given random variables y, x1, and x2, consider the model

Eðy j x1; x2Þ ¼ b0 þ b1x1 þ b2x2 þ b3x2
2 þ b4x1x2

a. Find the partial e¤ects of x1 and x2 on Eðy j x1; x2Þ.
b. Writing the equation as

y ¼ b0 þ b1x1 þ b2x2 þ b3x2
2 þ b4x1x2 þ u

what can be said about Eðu j x1; x2Þ? What about Eðu j x1; x2; x2
2 ; x1x2Þ?

c. In the equation of part b, what can be said about Varðu j x1; x2Þ?

2.2. Let y and x be scalars such that

Eðy j xÞ ¼ d0 þ d1ðx � mÞ þ d2ðx � mÞ2

where m ¼ EðxÞ.
a. Find qEðy j xÞ=qx, and comment on how it depends on x.

b. Show that d1 is equal to qEðy j xÞ=qx averaged across the distribution of x.
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c. Suppose that x has a symmetric distribution, so that E½ðx � mÞ3� ¼ 0. Show that

Lðy j 1; xÞ ¼ a0 þ d1x for some a0. Therefore, the coe‰cient on x in the linear pro-

jection of y on ð1; xÞ measures something useful in the nonlinear model for Eðy j xÞ: it

is the partial e¤ect qEðy j xÞ=qx averaged across the distribution of x.

2.3. Suppose that

Eðy j x1; x2Þ ¼ b0 þ b1x1 þ b2x2 þ b3x1x2 ð2:47Þ

a. Write this expectation in error form (call the error u), and describe the properties

of u.

b. Suppose that x1 and x2 have zero means. Show that b1 is the expected value of

qEðy j x1; x2Þ=qx1 (where the expectation is across the population distribution of x2).

Provide a similar interpretation for b2.

c. Now add the assumption that x1 and x2 are independent of one another. Show

that the linear projection of y on ð1; x1; x2Þ is

Lðy j 1; x1; x2Þ ¼ b0 þ b1x1 þ b2x2 ð2:48Þ

(Hint: Show that, under the assumptions on x1 and x2, x1x2 has zero mean and is

uncorrelated with x1 and x2.)

d. Why is equation (2.47) generally more useful than equation (2.48)?

2.4. For random scalars u and v and a random vector x, suppose that Eðu j x; vÞ is a

linear function of ðx; vÞ and that u and v each have zero mean and are uncorrelated

with the elements of x. Show that Eðu j x; vÞ ¼ Eðu j vÞ ¼ r1v for some r1.

2.5. Consider the two representations

y ¼ m1ðx; zÞ þ u1; Eðu1 j x; zÞ ¼ 0

y ¼ m2ðxÞ þ u2; Eðu2 j xÞ ¼ 0

Assuming that Varðy j x; zÞ and Varðy j xÞ are both constant, what can you say about

the relationship between Varðu1Þ and Varðu2Þ? (Hint: Use Property CV.4 in the

appendix.)

2.6. Let x be a 1 � K random vector, and let q be a random scalar. Suppose that

q can be expressed as q ¼ q� þ e, where EðeÞ ¼ 0 and Eðx 0eÞ ¼ 0. Write the linear

projection of q� onto ð1; xÞ as q� ¼ d0 þ d1x1 þ � � � þ dK xK þ r�, where Eðr�Þ ¼ 0 and

Eðx 0r�Þ ¼ 0.
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a. Show that

Lðq j 1; xÞ ¼ d0 þ d1x1 þ � � � þ dK xK

b. Find the projection error r1 q � Lðq j 1; xÞ in terms of r� and e.

2.7. Consider the conditional expectation

Eðy j x; zÞ ¼ gðxÞ þ zb

where gð�Þ is a general function of x and b is a 1 � M vector. Show that

Eð~yy j~zzÞ ¼ ~zzb

where ~yy1 y � Eðy j xÞ and ~zz1 z � Eðz j xÞ.

Appendix 2A

2.A.1 Properties of Conditional Expectations

property CE.1: Let a1ðxÞ; . . . ; aGðxÞ and bðxÞ be scalar functions of x, and let

y1; . . . ; yG be random scalars. Then

E
XG

j¼1

ajðxÞyj þ bðxÞ j x

 !
¼
XG

j¼1

ajðxÞEðyj j xÞ þ bðxÞ

provided that EðjyjjÞ < y, E½jajðxÞyj j� < y, and E½jbðxÞj� < y. This is the sense in

which the conditional expectation is a linear operator.

property CE.2: EðyÞ ¼ E½Eðy j xÞ�1E½mðxÞ�.

Property CE.2 is the simplest version of the law of iterated expectations. As an

illustration, suppose that x is a discrete random vector taking on values c1; c2; . . . ; cM

with probabilities p1; p2; . . . ; pM . Then the LIE says

EðyÞ ¼ p1Eðy j x ¼ c1Þ þ p2Eðy j x ¼ c2Þ þ � � � þ pMEðy j x ¼ cMÞ ð2:49Þ

In other words, EðyÞ is simply a weighted average of the Eðy j x ¼ cjÞ, where the

weight pj is the probability that x takes on the value cj.

property CE.3: (1) Eðy j xÞ ¼ E½Eðy jwÞ j x�, where x and w are vectors with x ¼
fðwÞ for some nonstochastic function fð�Þ. (This is the general version of the law of

iterated expectations.)

(2) As a special case of part 1, Eðy j xÞ ¼ E½Eðy j x; zÞ j x� for vectors x and z.
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property CE.4: If fðxÞ A RJ is a function of x such that Eðy j xÞ ¼ g½fðxÞ� for some

scalar function gð�Þ, then E½y j fðxÞ� ¼ Eðy j xÞ.

property CE.5: If the vector ðu; vÞ is independent of the vector x, then Eðu j x; vÞ ¼
Eðu j vÞ.

property CE.6: If u1 y � Eðy j xÞ, then E½gðxÞu� ¼ 0 for any function gðxÞ, pro-

vided that E½jgjðxÞuj� < y, j ¼ 1; . . . ; J, and EðjujÞ < y. In particular, EðuÞ ¼ 0 and

Covðxj; uÞ ¼ 0, j ¼ 1; . . . ;K .

Proof: First, note that

Eðu j xÞ ¼ E½ðy � Eðy j xÞÞ j x� ¼ E½ðy � mðxÞÞ j x� ¼ Eðy j xÞ � mðxÞ ¼ 0

Next, by property CE.2, E½gðxÞu� ¼ EðE½gðxÞu j x�Þ ¼ E½gðxÞEðu j xÞ� (by property

CE.1) ¼ 0 because Eðu j xÞ ¼ 0.

property CE.7 (Conditional Jensen’s Inequality): If c: R ! R is a convex function

defined on R and E½jyj� < y, then

c½Eðy j xÞ�aE½cðyÞ j x�

Technically, we should add the statement ‘‘almost surely-Px,’’ which means that the

inequality holds for all x in a set that has probability equal to one. As a special

case, ½EðyÞ�2 aEðy2Þ. Also, if y > 0, then �log½EðyÞ�aE½�logðyÞ�, or E½logðyÞ�a
log½EðyÞ�.

property CE.8: If Eðy2Þ < y and mðxÞ1Eðy j xÞ, then m is a solution to

min
m AM

E½ðy � mðxÞÞ2�

where M is the set of functions m: RK ! R such that E½mðxÞ2� < y. In other words,

mðxÞ is the best mean square predictor of y based on information contained in x.

Proof: By the conditional Jensen’s inequality, if follows that Eðy2Þ < y implies

E½mðxÞ2� < y, so that m A M. Next, for any m A M, write

E½ðy � mðxÞÞ2� ¼ E½fðy � mðxÞÞ þ ðmðxÞ � mðxÞÞg2�

¼ E½ðy � mðxÞÞ2� þ E½ðmðxÞ � mðxÞÞ2� þ 2E½ðmðxÞ � mðxÞÞu�

where u1 y � mðxÞ. Thus, by CE.6,

E½ðy � mðxÞÞ2� ¼ Eðu2Þ þ E½ðmðxÞ � mðxÞÞ2�:

The right-hand side is clearly minimized at m1 m.
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2.A.2 Properties of Conditional Variances

The conditional variance of y given x is defined as

Varðy j xÞ1 s2ðxÞ1E½fy � Eðy j xÞg2 j x� ¼ Eðy2 j xÞ � ½Eðy j xÞ�2

The last representation is often useful for computing Varðy j xÞ. As with the con-

ditional expectation, s2ðxÞ is a random variable when x is viewed as a random

vector.

property CV.1: Var½aðxÞy þ bðxÞ j x� ¼ ½aðxÞ�2 Varðy j xÞ.

property CV.2: VarðyÞ ¼ E½Varðy j xÞ� þ Var½Eðy j xÞ� ¼ E½s2ðxÞ� þ Var½mðxÞ�.

Proof:

VarðyÞ1E½ðy � EðyÞÞ2� ¼ E½ðy � Eðy j xÞ þ Eðy j xÞ þ EðyÞÞ2�

¼ E½ðy � Eðy j xÞÞ2� þ E½ðEðy j xÞ � EðyÞÞ2�

þ 2E½ðy � Eðy j xÞÞðEðy j xÞ � EðyÞÞ�

By CE.6, E½ðy � Eðy j xÞÞðEðy j xÞ � EðyÞÞ� ¼ 0; so

VarðyÞ ¼ E½ðy � Eðy j xÞÞ2� þ E½ðEðy j xÞ � EðyÞÞ2�

¼ EfE½ðy � Eðy j xÞÞ2 j x�g þ E½ðEðy j xÞ � E½Eðy j xÞ�Þ2

by the law of iterated expectations

1E½Varðy j xÞ� þ Var½Eðy j xÞ�

An extension of Property CV.2 is often useful, and its proof is similar:

property CV.3: Varðy j xÞ ¼ E½Varðy j x; zÞ j x� þ Var½Eðy j x; zÞ j x�.

Consequently, by the law of iterated expectations CE.2,

property CV.4: E½Varðy j xÞ�bE½Varðy j x; zÞ�.

For any function mð�Þ define the mean squared error as MSEðy;mÞ1E½ðy � mðxÞÞ2�.
Then CV.4 can be loosely stated as MSE½y;Eðy j xÞ�bMSE½y;Eðy j x; zÞ�. In other

words, in the population one never does worse for predicting y when additional vari-

ables are conditioned on. In particular, if Varðy j xÞ and Varðy j x; zÞ are both con-

stant, then Varðy j xÞbVarðy j x; zÞ.
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2.A.3 Properties of Linear Projections

In what follows, y is a scalar, x is a 1 � K vector, and z is a 1 � J vector. We allow

the first element of x to be unity, although the following properties hold in either

case. All of the variables are assumed to have finite second moments, and the ap-

propriate variance matrices are assumed to be nonsingular.

property LP.1: If Eðy j xÞ ¼ xb, then Lðy j xÞ ¼ xb. More generally, if

Eðy j xÞ ¼ b1g1ðxÞ þ b2g2ðxÞ þ � � � þ bMgMðxÞ

then

Lðy jw1; . . . ;wMÞ ¼ b1w1 þ b2w2 þ � � � þ bMwM

where wj 1 gjðxÞ, j ¼ 1; 2; . . . ;M. This property tells us that, if Eðy j xÞ is known to

be linear in some functions gjðxÞ, then this linear function also represents a linear

projection.

property LP.2: Define u1 y � Lðy j xÞ ¼ y � xb. Then Eðx 0uÞ ¼ 0.

property LP.3: Suppose yj, j ¼ 1; 2; . . . ;G are each random scalars, and a1; . . . ; aG

are constants. Then

L
XG

j¼1

ajyj j x

 !
¼
XG

j¼1

ajLðyj j xÞ

Thus, the linear projection is a linear operator.

property LP.4 (Law of Iterated Projections): Lðy j xÞ ¼ L½Lðy j x; zÞ j x�. More

precisely, let

Lðy j x; zÞ1 xb þ zg and Lðy j xÞ ¼ xd

For each element of z, write Lðzj j xÞ ¼ xpj, j ¼ 1; . . . ; J, where pj is K � 1. Then

Lðz j xÞ ¼ xP where P is the K � J matrix P1 ðp1; p2; . . . ; pJÞ. Property LP.4

implies that

Lðy j xÞ ¼ Lðxb þ zg j xÞ ¼ Lðx j xÞb þ Lðz j xÞg ðby LP:3Þ

¼ xb þ ðxPÞg ¼ xðb þPgÞ ð2:50Þ

Thus, we have shown that d ¼ b þPg. This is, in fact, the population analogue of the

omitted variables bias formula from standard regression theory, something we will

use in Chapter 4.
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Another iteration property involves the linear projection and the conditional

expectation:

property LP.5: Lðy j xÞ ¼ L½Eðy j x; zÞ j x�.

Proof: Write y ¼ mðx; zÞ þ u, where mðx; zÞ ¼ Eðy j x; zÞ. But Eðu j x; zÞ ¼ 0;

so Eðx 0uÞ ¼ 0, which implies by LP.3 that Lðy j xÞ ¼ L½mðx; zÞ j x� þ Lðu j xÞ ¼
L½mðx; zÞ j x� ¼ L½Eðy j x; zÞ j x�.

A useful special case of Property LP.5 occurs when z is empty. Then Lðy j xÞ ¼
L½Eðy j xÞ j x�.

property LP.6: b is a solution to

min
b ARK

E½ðy � xbÞ2� ð2:51Þ

If Eðx 0xÞ is positive definite, then b is the unique solution to this problem.

Proof: For any b, write y � xb ¼ ðy � xbÞ þ ðxb � xbÞ. Then

ðy � xbÞ2 ¼ ðy � xbÞ2 þ ðxb � xbÞ2 þ 2ðxb � xbÞðy � xbÞ

¼ ðy � xbÞ2 þ ðb � bÞ0x 0xðb � bÞ þ 2ðb � bÞ0x 0ðy � xbÞ

Therefore,

E½ðy � xbÞ2� ¼ E½ðy � xbÞ2� þ ðb � bÞ0Eðx 0xÞðb � bÞ

þ 2ðb � bÞ0E½x 0ðy � xbÞ�

¼ E½ðy � xbÞ2� þ ðb � bÞ0Eðx 0xÞðb � bÞ ð2:52Þ

because E½x 0ðy � xbÞ� ¼ 0 by LP.2. When b ¼ b, the right-hand side of equation

(2.52) is minimized. Further, if Eðx 0xÞ is positive definite, ðb � bÞ0Eðx 0xÞðb � bÞ > 0

if b0 b; so in this case b is the unique minimizer.

Property LP.6 states that the linear projection is the minimum mean square linear

predictor. It is not necessarily the minimum mean square predictor: if Eðy j xÞ ¼ mðxÞ
is not linear in x, then

E½ðy � mðxÞÞ2� < E½ðy � xbÞ2� ð2:53Þ

property LP.7: This is a partitioned projection formula, which is useful in a variety

of circumstances. Write

Lðy j x; zÞ ¼ xb þ zg ð2:54Þ

Conditional Expectations and Related Concepts in Econometrics 33



Define the 1 � K vector of population residuals from the projection of x on z as

r1 x � Lðx j zÞ. Further, define the population residual from the projection of y on z

as v1 y � Lðy j zÞ. Then the following are true:

Lðv j rÞ ¼ rb ð2:55Þ

and

Lðy j rÞ ¼ rb ð2:56Þ

The point is that the b in equations (2.55) and (2.56) is the same as that appearing in

equation (2.54). Another way of stating this result is

b ¼ ½Eðr 0rÞ��1Eðr 0vÞ ¼ ½Eðr 0rÞ��1Eðr 0yÞ: ð2:57Þ

Proof: From equation (2.54) write

y ¼ xb þ zgþ u; Eðx 0uÞ ¼ 0; Eðz 0uÞ ¼ 0 ð2:58Þ

Taking the linear projection gives

Lðy j zÞ ¼ Lðx j zÞb þ zg ð2:59Þ

Subtracting equation (2.59) from (2.58) gives y � Lðy j zÞ ¼ ½x � Lðx j zÞ�b þ u, or

v ¼ rb þ u ð2:60Þ

Since r is a linear combination of ðx; zÞ, Eðr 0uÞ ¼ 0. Multiplying equation (2.60)

through by r 0 and taking expectations, it follows that

b ¼ ½Eðr 0rÞ��1Eðr 0vÞ

[We assume that Eðr 0rÞ is nonsingular.] Finally, Eðr 0vÞ ¼ E½r 0ðy � Lðy j zÞÞ� ¼ Eðr 0yÞ,
since Lðy j zÞ is linear in z and r is orthogonal to any linear function of z.
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3 Basic Asymptotic Theory

This chapter summarizes some definitions and limit theorems that are important for

studying large-sample theory. Most claims are stated without proof, as several re-

quire tedious epsilon-delta arguments. We do prove some results that build on fun-

damental definitions and theorems. A good, general reference for background in

asymptotic analysis is White (1984). In Chapter 12 we introduce further asymptotic

methods that are required for studying nonlinear models.

3.1 Convergence of Deterministic Sequences

Asymptotic analysis is concerned with the various kinds of convergence of sequences

of estimators as the sample size grows. We begin with some definitions regarding

nonstochastic sequences of numbers. When we apply these results in econometrics, N

is the sample size, and it runs through all positive integers. You are assumed to have

some familiarity with the notion of a limit of a sequence.

definition 3.1: (1) A sequence of nonrandom numbers faN : N ¼ 1; 2; . . .g con-

verges to a (has limit a) if for all e > 0, there exists Ne such that if N > Ne then

jaN � aj < e. We write aN ! a as N ! y.

(2) A sequence faN : N ¼ 1; 2; . . .g is bounded if and only if there is some b < y
such that jaN ja b for all N ¼ 1; 2; . . . : Otherwise, we say that faNg is unbounded.

These definitions apply to vectors and matrices element by element.

Example 3.1: (1) If aN ¼ 2 þ 1=N, then aN ! 2. (2) If aN ¼ ð�1ÞN , then aN does

not have a limit, but it is bounded. (3) If aN ¼ N 1=4, aN is not bounded. Because aN

increases without bound, we write aN ! y.

definition 3.2: (1) A sequence faNg is OðN lÞ (at most of order N l) if N�laN is

bounded. When l ¼ 0, faNg is bounded, and we also write aN ¼ Oð1Þ (big oh one).

(2) faNg is oðN lÞ if N�laN ! 0. When l ¼ 0, aN converges to zero, and we also

write aN ¼ oð1Þ (little oh one).

From the definitions, it is clear that if aN ¼ oðN lÞ, then aN ¼ OðN lÞ; in particular,

if aN ¼ oð1Þ, then aN ¼ Oð1Þ. If each element of a sequence of vectors or matrices

is OðN lÞ, we say the sequence of vectors or matrices is OðN lÞ, and similarly for

oðN lÞ.

Example 3.2: (1) If aN ¼ logðNÞ, then aN ¼ oðN lÞ for any l > 0. (2) If aN ¼
10 þ

ffiffiffiffiffi
N

p
, then aN ¼ OðN 1=2Þ and aN ¼ oðNð1=2þgÞÞ for any g > 0.



3.2 Convergence in Probability and Bounded in Probability

definition 3.3: (1) A sequence of random variables fxN : N ¼ 1; 2; . . .g converges in

probability to the constant a if for all e > 0,

P½jxN � aj > e� ! 0 as N ! y

We write xN !p
a and say that a is the probability limit (plim) of xN : plim xN ¼ a.

(2) In the special case where a ¼ 0, we also say that fxNg is opð1Þ (little oh p one).

We also write xN ¼ opð1Þ or xN !p
0.

(3) A sequence of random variables fxNg is bounded in probability if and only if

for every e > 0, there exists a be < y and an integer Ne such that

P½jxN jb be� < e for all N bNe

We write xN ¼ Opð1Þ (fxNg is big oh p one).

If cN is a nonrandom sequence, then cN ¼ Opð1Þ if and only if cN ¼ Oð1Þ; cN ¼ opð1Þ
if and only if cN ¼ oð1Þ. A simple, and very useful, fact is that if a sequence converges

in probability to any real number, then it is bounded in probability.

lemma 3.1: If xN !p
a, then xN ¼ Opð1Þ. This lemma also holds for vectors and

matrices.

The proof of Lemma 3.1 is not di‰cult; see Problem 3.1.

definition 3.4: (1) A random sequence fxN : N ¼ 1; 2; . . .g is opðaNÞ, where faNg is

a nonrandom, positive sequence, if xN=aN ¼ opð1Þ. We write xN ¼ opðaNÞ.
(2) A random sequence fxN : N ¼ 1; 2; . . .g is OpðaNÞ, where faNg is a non-

random, positive sequence, if xN=aN ¼ Opð1Þ. We write xN ¼ OpðaNÞ.

We could have started by defining a sequence fxNg to be opðN dÞ for d A R if

N�dxN !p
0, in which case we obtain the definition of opð1Þ when d ¼ 0. This is where

the one in opð1Þ comes from. A similar remark holds for Opð1Þ.

Example 3.3: If z is a random variable, then xN 1
ffiffiffiffiffi
N

p
z is OpðN 1=2Þ and xN ¼

opðN dÞ for any d > 1
2.

lemma 3.2: If wN ¼ opð1Þ, xN ¼ opð1Þ, yN ¼ Opð1Þ, and zN ¼ Opð1Þ, then (1) wN þ
xN ¼ opð1Þ; (2) yN þ zN ¼ Opð1Þ; (3) yNzN ¼ Opð1Þ; and (4) xNzN ¼ opð1Þ.

In derivations, we will write relationships 1 to 4 as opð1Þ þ opð1Þ ¼ opð1Þ, Opð1Þþ
Opð1Þ ¼ Opð1Þ, Opð1Þ � Opð1Þ ¼ Opð1Þ, and opð1Þ � Opð1Þ ¼ opð1Þ, respectively. Be-
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cause a opð1Þ sequence is Opð1Þ, Lemma 3.2 also implies that opð1Þ þ Opð1Þ ¼ Opð1Þ
and opð1Þ � opð1Þ ¼ opð1Þ.

All of the previous definitions apply element by element to sequences of random

vectors or matrices. For example, if fxNg is a sequence of random K � 1 random

vectors, xN !p
a, where a is a K � 1 nonrandom vector, if and only if xNj !

p
aj,

j ¼ 1; . . . ;K . This is equivalent to kxN � ak !p
0, where kbk1 ðb 0bÞ1=2 denotes the

Euclidean length of the K � 1 vector b. Also, ZN !p
B, where ZN and B are M � K ,

is equivalent to kZN � Bk !p
0, where kAk1 ½trðA 0AÞ�1=2 and trðCÞ denotes the trace

of the square matrix C.

A result that we often use for studying the large-sample properties of estimators for

linear models is the following. It is easily proven by repeated application of Lemma

3.2 (see Problem 3.2).

lemma 3.3: Let fZN : N ¼ 1; 2; . . .g be a sequence of J � K matrices such that ZN ¼
opð1Þ, and let fxNg be a sequence of J � 1 random vectors such that xN ¼ Opð1Þ.
Then Z 0

NxN ¼ opð1Þ.

The next lemma is known as Slutsky’s theorem.

lemma 3.4: Let g: RK ! RJ be a function continuous at some point c A RK . Let

fxN : N ¼ 1; 2; . . .g be sequence of K � 1 random vectors such that xN !p
c. Then

gðxNÞ !
p

gðcÞ as N ! y. In other words,

plim gðxNÞ ¼ gðplim xNÞ ð3:1Þ

if gð�Þ is continuous at plim xN .

Slutsky’s theorem is perhaps the most useful feature of the plim operator: it shows

that the plim passes through nonlinear functions, provided they are continuous. The

expectations operator does not have this feature, and this lack makes finite sample

analysis di‰cult for many estimators. Lemma 3.4 shows that plims behave just like

regular limits when applying a continuous function to the sequence.

definition 3.5: Let ðW;F;PÞ be a probability space. A sequence of events fWN :

N ¼ 1; 2; . . .gHF is said to occur with probability approaching one (w.p.a.1) if and

only if PðWNÞ ! 1 as N ! y.

Definition 3.5 allows that Wc
N , the complement of WN , can occur for each N, but its

chance of occuring goes to zero as N ! y.

corollary 3.1: Let fZN : N ¼ 1; 2; . . .g be a sequence of random K � K matrices,

and let A be a nonrandom, invertible K � K matrix. If ZN !p
A then
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(1) Z�1
N exists w.p.a.1;

(2) Z�1
N !p

A�1 or plim Z�1
N ¼ A�1 (in an appropriate sense).

Proof: Because the determinant is a continuous function on the space of all square

matrices, detðZNÞ !
p

detðAÞ. Because A is nonsingular, detðAÞ0 0. Therefore, it

follows that P½detðZNÞ0 0� ! 1 as N ! y. This completes the proof of part 1.

Part 2 requires a convention about how to define Z�1
N when ZN is nonsingular. Let

WN be the set of o (outcomes) such that ZNðoÞ is nonsingular for o A WN ; we just

showed that PðWNÞ ! 1 as N ! y. Define a new sequence of matrices by

~ZZNðoÞ1ZNðoÞ when o A WN ; ~ZZNðoÞ1 IK when o B WN

Then Pð ~ZZN ¼ ZNÞ ¼ PðWNÞ ! 1 as N ! y. Then, because ZN !p
A, ~ZZN !p

A. The

inverse operator is continuous on the space of invertible matrices, so ~ZZ�1
N !p

A�1.

This is what we mean by Z�1
N !p

A�1; the fact that ZN can be singular with vanishing

probability does not a¤ect asymptotic analysis.

3.3 Convergence in Distribution

definition 3.6: A sequence of random variables fxN : N ¼ 1; 2; . . .g converges in

distribution to the continuous random variable x if and only if

FNðxÞ ! F ðxÞ as N ! y for all x A R

where FN is the cumulative distribution function (c.d.f.) of xN and F is the (continu-

ous) c.d.f. of x. We write xN !d x.

When x@Normalðm; s2Þ we write xN !d Normalðm; s2Þ or xN @
a

Normalðm; s2Þ
(xN is asymptotically normal ).

In Definition 3.6, xN is not required to be continuous for any N. A good example

of where xN is discrete for all N but has an asymptotically normal distribution is

the Demoivre-Laplace theorem (a special case of the central limit theorem given in

Section 3.4), which says that xN 1 ðsN � NpÞ=½Npð1 � pÞ�1=2 has a limiting standard

normal distribution, where sN has the binomial ðN; pÞ distribution.

definition 3.7: A sequence of K � 1 random vectors fxN : N ¼ 1; 2; . . .g converges

in distribution to the continuous random vector x if and only if for any K � 1 non-

random vector c such that c 0c ¼ 1, c 0xN !d c 0x, and we write xN !d x.

When x@Normalðm;VÞ the requirement in Definition 3.7 is that c 0xN !d

Normalðc 0m; c 0VcÞ for every c A RK such that c 0c ¼ 1; in this case we write xN !d

Normalðm;VÞ or xN @
a

Normalðm;VÞ. For the derivations in this book, m ¼ 0.
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lemma 3.5: If xN !d x, where x is any K � 1 random vector, then xN ¼ Opð1Þ.

As we will see throughout this book, Lemma 3.5 turns out to be very useful for

establishing that a sequence is bounded in probability. Often it is easiest to first verify

that a sequence converges in distribution.

lemma 3.6: Let fxNg be a sequence of K � 1 random vectors such that xN !d x. If

g: RK ! RJ is a continuous function, then gðxNÞ !
d

gðxÞ.

The usefulness of Lemma 3.6, which is called the continuous mapping theorem,

cannot be overstated. It tells us that once we know the limiting distribution of xN , we

can find the limiting distribution of many interesting functions of xN . This is espe-

cially useful for determining the asymptotic distribution of test statistics once the

limiting distribution of an estimator is known; see Section 3.5.

The continuity of g is not necessary in Lemma 3.6, but some restrictions are

needed. We will only need the form stated in Lemma 3.6.

corollary 3.2: If fzNg is a sequence of K � 1 random vectors such that zN !d

Normalð0;VÞ then

(1) For any K � M nonrandom matrix A, A 0zN !d Normalð0;A 0VAÞ.
(2) z 0

NV�1zN !d w2
K (or z 0

NV�1zN @
a
w2

K ).

lemma 3.7: Let fxNg and fzNg be sequences of K � 1 random vectors. If zN !d z

and xN � zN !p
0, then xN !d z.

Lemma 3.7 is called the asymptotic equivalence lemma. In Section 3.5.1 we discuss

generally how Lemma 3.7 is used in econometrics. We use the asymptotic equiva-

lence lemma so frequently in asymptotic analysis that after a while we will not even

mention that we are using it.

3.4 Limit Theorems for Random Samples

In this section we state two classic limit theorems for independent, identically dis-

tributed (i.i.d.) sequences of random vectors. These apply when sampling is done

randomly from a population.

theorem 3.1: Let fwi: i ¼ 1; 2; . . .g be a sequence of independent, identically dis-

tributed G � 1 random vectors such that EðjwigjÞ < y, g ¼ 1; . . . ;G. Then the

sequence satisfies the weak law of large numbers (WLLN): N�1
PN

i¼1 wi !
p
mw, where

mw 1EðwiÞ.
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theorem 3.2 (Lindeberg-Levy): Let fwi: i ¼ 1; 2; . . .g be a sequence of independent,

identically distributed G � 1 random vectors such that Eðw2
igÞ < y, g ¼ 1; . . . ;G, and

EðwiÞ ¼ 0. Then fwi: i ¼ 1; 2; . . .g satisfies the central limit theorem (CLT); that is,

N�1=2
XN

i¼1

wi !
d

Normalð0;BÞ

where B ¼ VarðwiÞ ¼ Eðwiw
0
i Þ is necessarily positive semidefinite. For our purposes,

B is almost always positive definite.

3.5 Limiting Behavior of Estimators and Test Statistics

In this section, we apply the previous concepts to sequences of estimators. Because

estimators depend on the random outcomes of data, they are properly viewed as

random vectors.

3.5.1 Asymptotic Properties of Estimators

definition 3.8: Let fŷyN : N ¼ 1; 2; . . .g be a sequence of estimators of the P � 1

vector y A Y, where N indexes the sample size. If

ŷyN !p
y ð3:2Þ

for any value of y, then we say ŷyN is a consistent estimator of y.

Because there are other notions of convergence, in the theoretical literature condi-

tion (3.2) is often referred to as weak consistency. This is the only kind of consistency

we will be concerned with, so we simply call condition (3.2) consistency. (See White,

1984, Chapter 2, for other kinds of convergence.) Since we do not know y, the con-

sistency definition requires condition (3.2) for any possible value of y.

definition 3.9: Let fŷyN : N ¼ 1; 2; . . .g be a sequence of estimators of the P � 1

vector y A Y. Suppose thatffiffiffiffiffi
N

p
ðŷyN � yÞ !d Normalð0;VÞ ð3:3Þ

where V is a P � P positive semidefinite matrix. Then we say that ŷyN is
ffiffiffiffi
N

p
-

asymptotically normally distributed and V is the asymptotic variance of
ffiffiffiffiffi
N

p
ðŷyN � yÞ,

denoted Avar
ffiffiffiffiffi
N

p
ðŷyN � yÞ ¼ V.

Even though V=N ¼ VarðŷyNÞ holds only in special cases, and ŷyN rarely has an exact

normal distribution, we treat ŷyN as if
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ŷyN @Normalðy;V=NÞ ð3:4Þ

whenever statement (3.3) holds. For this reason, V=N is called the asymptotic vari-

ance of ŷyN , and we write

AvarðŷyNÞ ¼ V=N ð3:5Þ

However, the only sense in which ŷyN is approximately normally distributed with

mean y and variance V=N is contained in statement (3.3), and this is what is needed

to perform inference about y. Statement (3.4) is a heuristic statement that leads to the

appropriate inference.

When we discuss consistent estimation of asymptotic variances—a topic that will

arise often—we should technically focus on estimation of V1Avar
ffiffiffiffiffi
N

p
ðŷyN � yÞ. In

most cases, we will be able to find at least one, and usually more than one, consistent

estimator V̂VN of V. Then the corresponding estimator of AvarðŷyNÞ is V̂VN=N, and we

write

AvâarðŷyNÞ ¼ V̂VN=N ð3:6Þ

The division by N in equation (3.6) is practically very important. What we call the

asymptotic variance of ŷyN is estimated as in equation (3.6). Unfortunately, there has

not been a consistent usage of the term ‘‘asymptotic variance’’ in econometrics.

Taken literally, a statement such as ‘‘V̂VN=N is consistent for AvarðŷyNÞ’’ is not very

meaningful because V=N converges to 0 as N ! y; typically, V̂VN=N !p
0 whether

or not V̂VN is not consistent for V. Nevertheless, it is useful to have an admittedly

imprecise shorthand. In what follows, if we say that ‘‘V̂VN=N consistently estimates

AvarðŷyNÞ,’’ we mean that V̂VN consistently estimates Avar
ffiffiffiffiffi
N

p
ðŷyN � yÞ.

definition 3.10: If
ffiffiffiffiffi
N

p
ðŷyN � yÞ @a Normalð0;VÞ where V is positive definite with

jth diagonal vjj, and V̂VN !p
V, then the asymptotic standard error of ŷyNj, denoted

seðŷyNjÞ, is ðv̂vNjj=NÞ1=2.

In other words, the asymptotic standard error of an estimator, which is almost

always reported in applied work, is the square root of the appropriate diagonal ele-

ment of V̂VN=N. The asymptotic standard errors can be loosely thought of as estimating

the standard deviations of the elements of ŷyN , and they are the appropriate quantities

to use when forming (asymptotic) t statistics and confidence intervals. Obtaining

valid asymptotic standard errors (after verifying that the estimator is asymptotically

normally distributed) is often the biggest challenge when using a new estimator.

If statement (3.3) holds, it follows by Lemma 3.5 that
ffiffiffiffiffi
N

p
ðŷyN � yÞ ¼ Opð1Þ, or

ŷyN � y ¼ OpðN�1=2Þ, and we say that ŷyN is a
ffiffiffiffi
N

p
-consistent estimator of y.

ffiffiffiffiffi
N

p
-
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consistency certainly implies that plim ŷyN ¼ y, but it is much stronger because it tells

us that the rate of convergence is almost the square root of the sample size N:

ŷyN � y ¼ opðN�cÞ for any 0a c < 1
2. In this book, almost every consistent estimator

we will study—and every one we consider in any detail—is
ffiffiffiffiffi
N

p
-asymptotically nor-

mal, and therefore
ffiffiffiffiffi
N

p
-consistent, under reasonable assumptions.

If one
ffiffiffiffiffi
N

p
-asymptotically normal estimator has an asymptotic variance that is

smaller than another’s asymptotic variance (in the matrix sense), it makes it easy to

choose between the estimators based on asymptotic considerations.

definition 3.11: Let ŷyN and ~yyN be estimators of y each satisfying statement (3.3),

with asymptotic variances V ¼ Avar
ffiffiffiffiffi
N

p
ðŷyN � yÞ and D ¼ Avar

ffiffiffiffiffi
N

p
ð~yyN � yÞ (these

generally depend on the value of y, but we suppress that consideration here). (1) ŷyN is

asymptotically e‰cient relative to ~yyN if D � V is positive semidefinite for all y; (2) ŷyN

and ~yyN are
ffiffiffiffi
N

p
-equivalent if

ffiffiffiffiffi
N

p
ðŷyN � ~yyNÞ ¼ opð1Þ.

When two estimators are
ffiffiffiffiffi
N

p
-equivalent, they have the same limiting distribution

(multivariate normal in this case, with the same asymptotic variance). This conclu-

sion follows immediately from the asymptotic equivalence lemma (Lemma 3.7).

Sometimes, to find the limiting distribution of, say,
ffiffiffiffiffi
N

p
ðŷyN � yÞ, it is easiest to first

find the limiting distribution of
ffiffiffiffiffi
N

p
ð~yyN � yÞ, and then to show that ŷyN and ~yyN areffiffiffiffiffi

N
p

-equivalent. A good example of this approach is in Chapter 7, where we find the

limiting distribution of the feasible generalized least squares estimator, after we have

found the limiting distribution of the GLS estimator.

definition 3.12: Partition ŷyN satisfying statement (3.3) into vectors ŷyN1 and ŷyN2.

Then ŷyN1 and ŷyN2 are asymptotically independent if

V ¼
V1 0

0 V2

� �

where V1 is the asymptotic variance of
ffiffiffiffiffi
N

p
ðŷyN1 � y1Þ and similarly for V2. In other

words, the asymptotic variance of
ffiffiffiffiffi
N

p
ðŷyN � yÞ is block diagonal.

Throughout this section we have been careful to index estimators by the sample

size, N. This is useful to fix ideas on the nature of asymptotic analysis, but it is cum-

bersome when applying asymptotics to particular estimation methods. After this

chapter, an estimator of y will be denoted ŷy, which is understood to depend on the

sample size N. When we write, for example, ŷy !p
y, we mean convergence in proba-

bility as the sample size N goes to infinity.
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3.5.2 Asymptotic Properties of Test Statistics

We begin with some important definitions in the large-sample analysis of test statistics.

definition 3.13: (1) The asymptotic size of a testing procedure is defined as the

limiting probability of rejecting H0 when it is true. Mathematically, we can write this

as limN!y PN (reject H0 jH0), where the N subscript indexes the sample size.

(2) A test is said to be consistent against the alternative H1 if the null hypothesis

is rejected with probability approaching one when H1 is true: limN!y PN (reject

H0 jH1Þ ¼ 1.

In practice, the asymptotic size of a test is obtained by finding the limiting distribu-

tion of a test statistic—in our case, normal or chi-square, or simple modifications of

these that can be used as t distributed or F distributed—and then choosing a critical

value based on this distribution. Thus, testing using asymptotic methods is practically

the same as testing using the classical linear model.

A test is consistent against alternative H1 if the probability of rejecting H1 tends to

unity as the sample size grows without bound. Just as consistency of an estimator is a

minimal requirement, so is consistency of a test statistic. Consistency rarely allows us

to choose among tests: most tests are consistent against alternatives that they are

supposed to have power against. For consistent tests with the same asymptotic size,

we can use the notion of local power analysis to choose among tests. We will cover

this briefly in Chapter 12 on nonlinear estimation, where we introduce the notion of

local alternatives—that is, alternatives to H0 that converge to H0 at rate 1=
ffiffiffiffiffi
N

p
.

Generally, test statistics will have desirable asymptotic properties when they are

based on estimators with good asymptotic properties (such as e‰ciency).

We now derive the limiting distribution of a test statistic that is used very often in

econometrics.

lemma 3.8: Suppose that statement (3.3) holds, where V is positive definite. Then

for any nonstochastic matrix Q � P matrix R, QaP, with rankðRÞ ¼ Q,ffiffiffiffiffi
N

p
RðŷyN � yÞ @a Normalð0;RVR 0Þ

and

½
ffiffiffiffiffi
N

p
RðŷyN � yÞ� 0½RVR 0��1½

ffiffiffiffiffi
N

p
RðŷyN � yÞ� @a w2

Q

In addition, if plim V̂VN ¼ V then

½
ffiffiffiffiffi
N

p
RðŷyN � yÞ� 0½RV̂VNR 0��1½

ffiffiffiffiffi
N

p
RðŷyN � yÞ�

¼ ðŷyN � yÞ0R 0½RðV̂VN=NÞR 0��1RðŷyN � yÞ @a w2
Q
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For testing the null hypothesis H0: Ry ¼ r, where r is a Q � 1 nonrandom vector,

define the Wald statistic for testing H0 against H1: Ry0 r as

WN 1 ðRŷyN � rÞ0½RðV̂VN=NÞR 0��1ðRŷyN � rÞ ð3:7Þ

Under H0, WN @
a
w2

Q. If we abuse the asymptotics and treat ŷyN as being distributed

as Normalðy; V̂VN=NÞ, we get equation (3.7) exactly.

lemma 3.9: Suppose that statement (3.3) holds, where V is positive definite. Let c: Y

! RQ be a continuously di¤erentiable function on the parameter space YHRP,

where QaP, and assume that y is in the interior of the parameter space. Define

CðyÞ1‘ycðyÞ as the Q � P Jacobian of c. Thenffiffiffiffiffi
N

p
½cðŷyNÞ � cðyÞ� @a Normal½0;CðyÞVCðyÞ0� ð3:8Þ

and

f
ffiffiffiffiffi
N

p
½cðŷyNÞ � cðyÞ�g0½CðyÞVCðyÞ0��1f

ffiffiffiffiffi
N

p
½cðŷyNÞ � cðyÞ�g @

a
w2

Q

Define ĈCN 1CðŷyNÞ. Then plim ĈCN ¼ CðyÞ. If plim V̂VN ¼ V, then

f
ffiffiffiffiffi
N

p
½cðŷyNÞ � cðyÞ�g0½ĈCNV̂VNĈC 0

N �
�1f

ffiffiffiffiffi
N

p
½cðŷyNÞ � cðyÞ�g @

a
w2

Q ð3:9Þ

Equation (3.8) is very useful for obtaining asymptotic standard errors for nonlin-

ear functions of ŷyN . The appropriate estimator of Avar½cðŷyNÞ� is ĈCNðV̂VN=NÞĈC 0
N ¼

ĈCN ½AvarðŷyNÞ�ĈC 0
N . Thus, once AvarðŷyNÞ and the estimated Jacobian of c are ob-

tained, we can easily obtain

Avar½cðŷyNÞ� ¼ ĈCN ½AvarðŷyNÞ�ĈC 0
N ð3:10Þ

The asymptotic standard errors are obtained as the square roots of the diagonal

elements of equation (3.10). In the scalar case ĝgN ¼ cðŷyNÞ, the asymptotic standard

error of ĝgN is ½‘ycðŷyNÞ½AvarðŷyNÞ�‘ycðŷyNÞ0�1=2.

Equation (3.9) is useful for testing nonlinear hypotheses of the form H0: cðyÞ ¼ 0

against H1: cðyÞ0 0. The Wald statistic is

WN ¼
ffiffiffiffiffi
N

p
cðŷyNÞ0½ĈCNV̂VNĈC 0

N �
�1

ffiffiffiffiffi
N

p
cðŷyNÞ ¼ cðŷyNÞ0½ĈCNðV̂VN=NÞĈC 0

N �
�1cðŷyNÞ ð3:11Þ

Under H0, WN @
a
w2

Q.

The method of establishing equation (3.8), given that statement (3.3) holds, is often

called the delta method, and it is used very often in econometrics. It gets its name

from its use of calculus. The argument is as follows. Because y is in the interior of Y,

and because plim ŷyN ¼ y, ŷyN is in an open, convex subset of Y containing y with
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probability approaching one, therefore w.p.a.1 we can use a mean value expansion

cðŷyNÞ ¼ cðyÞ þ €CCN � ðŷyN � yÞ, where €CCN denotes the matrix CðyÞ with rows eval-

uated at mean values between ŷyN and y. Because these mean values are trapped be-

tween ŷyN and y, they converge in probability to y. Therefore, by Slutsky’s theorem,
€CCN !p

CðyÞ, and we can writeffiffiffiffiffi
N

p
½cðŷyNÞ � cðyÞ� ¼ €CCN �

ffiffiffiffiffi
N

p
ðŷyN � yÞ

¼ CðyÞ
ffiffiffiffiffi
N

p
ðŷyN � yÞ þ ½€CCN � CðyÞ�

ffiffiffiffiffi
N

p
ðŷyN � yÞ

¼ CðyÞ
ffiffiffiffiffi
N

p
ðŷyN � yÞ þ opð1Þ � Opð1Þ ¼ CðyÞ

ffiffiffiffiffi
N

p
ðŷyN � yÞ þ opð1Þ

We can now apply the asymptotic equivalence lemma and Lemma 3.8 [with R1
CðyÞ� to get equation (3.8).

Problems

3.1. Prove Lemma 3.1.

3.2. Using Lemma 3.2, prove Lemma 3.3.

3.3. Explain why, under the assumptions of Lemma 3.4, gðxNÞ ¼ Opð1Þ.

3.4. Prove Corollary 3.2.

3.5. Let fyi: i ¼ 1; 2; . . .g be an independent, identically distributed sequence with

Eðy2
i Þ < y. Let m ¼ EðyiÞ and s2 ¼ VarðyiÞ.

a. Let yN denote the sample average based on a sample size of N. Find

Var½
ffiffiffiffiffi
N

p
ðyN � mÞ�.

b. What is the asymptotic variance of
ffiffiffiffiffi
N

p
ðyN � mÞ?

c. What is the asymptotic variance of yN? Compare this with VarðyNÞ.
d. What is the asymptotic standard deviation of yN?

e. How would you obtain the asymptotic standard error of yN?

3.6. Give a careful (albeit short) proof of the following statement: If
ffiffiffiffiffi
N

p
ðŷyN � yÞ ¼

Opð1Þ, then ŷyN � y ¼ opðN�cÞ for any 0a c < 1
2.

3.7. Let ŷy be a
ffiffiffiffiffi
N

p
-asymptotically normal estimator for the scalar y > 0. Let

ĝg ¼ logðŷyÞ be an estimator of g ¼ logðyÞ.
a. Why is ĝg a consistent estimator of g?
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b. Find the asymptotic variance of
ffiffiffiffiffi
N

p
ðĝg� gÞ in terms of the asymptotic variance offfiffiffiffiffi

N
p

ðŷy� yÞ.
c. Suppose that, for a sample of data, ŷy ¼ 4 and seðŷyÞ ¼ 2. What is ĝg and its

(asymptotic) standard error?

d. Consider the null hypothesis H0: y ¼ 1. What is the asymptotic t statistic for

testing H0, given the numbers from part c?

e. Now state H0 from part d equivalently in terms of g, and use ĝg and seðĝgÞ to test

H0. What do you conclude?

3.8. Let ŷy ¼ ðŷy1; ŷy2Þ0 be a
ffiffiffiffiffi
N

p
-asymptotically normal estimator for y ¼ ðy1; y2Þ0,

with y2 0 0. Let ĝg ¼ ŷy1=ŷy2 be an estimator of g ¼ y1=y2.

a. Show that plim ĝg ¼ g.

b. Find AvarðĝgÞ in terms of y and AvarðŷyÞ using the delta method.

c. If, for a sample of data, ŷy ¼ ð�1:5; :5Þ0 and AvarðŷyÞ is estimated as
1 �:4

�:4 2

� �
,

find the asymptotic standard error of ĝg.

3.9. Let ŷy and ~yy be two consistent,
ffiffiffiffiffi
N

p
-asymptotically normal estimators of the

P � 1 parameter vector y, with Avar
ffiffiffiffiffi
N

p
ðŷy � yÞ ¼ V1 and Avar

ffiffiffiffiffi
N

p
ð~yy � yÞ ¼ V2.

Define a Q � 1 parameter vector by g ¼ gðyÞ, where gð�Þ is a continuously di¤er-

entiable function. Show that, if ŷy is asymptotically more e‰cient than ~yy, then ĝg1
gðŷyÞ is asymptotically e‰cient relative to ~gg1 gð~yyÞ.
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II LINEAR MODELS

In this part we begin our econometric analysis of linear models for cross section and

panel data. In Chapter 4 we review the single-equation linear model and discuss

ordinary least squares estimation. Although this material is, in principle, review, the

approach is likely to be di¤erent from an introductory linear models course. In ad-

dition, we cover several topics that are not traditionally covered in texts but that have

proven useful in empirical work. Chapter 5 discusses instrumental variables estima-

tion of the linear model, and Chapter 6 covers some remaining topics to round out

our treatment of the single-equation model.

Chapter 7 begins our analysis of systems of equations. The general setup is that the

number of population equations is small relative to the (cross section) sample size.

This allows us to cover seemingly unrelated regression models for cross section data

as well as begin our analysis of panel data. Chapter 8 builds on the framework from

Chapter 7 but considers the case where some explanatory variables may be uncorre-

lated with the error terms. Generalized method of moments estimation is the unifying

theme. Chapter 9 applies the methods of Chapter 8 to the estimation of simultaneous

equations models, with an emphasis on the conceptual issues that arise in applying

such models.

Chapter 10 explicitly introduces unobserved-e¤ects linear panel data models. Under

the assumption that the explanatory variables are strictly exogenous conditional on

the unobserved e¤ect, we study several estimation methods, including fixed e¤ects,

first di¤erencing, and random e¤ects. The last method assumes, at a minimum,

that the unobserved e¤ect is uncorrelated with the explanatory variables in all time

periods. Chapter 11 considers extensions of the basic panel data model, including

failure of the strict exogeneity assumption.



 



4 The Single-Equation Linear Model and OLS Estimation

4.1 Overview of the Single-Equation Linear Model

This and the next couple of chapters cover what is still the workhorse in empirical

economics: the single-equation linear model. Though you are assumed to be com-

fortable with ordinary least squares (OLS) estimation, we begin with OLS for a

couple of reasons. First, it provides a bridge between more traditional approaches

to econometrics—which treats explanatory variables as fixed—and the current ap-

proach, which is based on random sampling with stochastic explanatory variables.

Second, we cover some topics that receive at best cursory treatment in first-semester

texts. These topics, such as proxy variable solutions to the omitted variable problem,

arise often in applied work.

The population model we study is linear in its parameters,

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bK xK þ u ð4:1Þ

where y; x1; x2; x3; . . . ; xK are observable random scalars (that is, we can observe

them in a random sample of the population), u is the unobservable random distur-

bance or error, and b0; b1; b2; . . . ; bK are the parameters (constants) we would like to

estimate.

The error form of the model in equation (4.1) is useful for presenting a unified

treatment of the statistical properties of various econometric procedures. Neverthe-

less, the steps one uses for getting to equation (4.1) are just as important. Goldberger

(1972) defines a structural model as one representing a causal relationship, as opposed

to a relationship that simply captures statistical associations. A structural equation

can be obtained from an economic model, or it can be obtained through informal

reasoning. Sometimes the structural model is directly estimable. Other times we must

combine auxiliary assumptions about other variables with algebraic manipulations

to arrive at an estimable model. In addition, we will often have reasons to estimate

nonstructural equations, sometimes as a precursor to estimating a structural equation.

The error term u can consist of a variety of things, including omitted variables

and measurement error (we will see some examples shortly). The parameters bj

hopefully correspond to the parameters of interest, that is, the parameters in an un-

derlying structural model. Whether this is the case depends on the application and the

assumptions made.

As we will see in Section 4.2, the key condition needed for OLS to consistently

estimate the bj (assuming we have available a random sample from the population) is

that the error (in the population) has mean zero and is uncorrelated with each of the

regressors:

EðuÞ ¼ 0; Covðxj; uÞ ¼ 0; j ¼ 1; 2; . . . ;K ð4:2Þ



The zero-mean assumption is for free when an intercept is included, and we will

restrict attention to that case in what follows. It is the zero covariance of u with each

xj that is important. From Chapter 2 we know that equation (4.1) and assumption

(4.2) are equivalent to defining the linear projection of y onto ð1; x1; x2; . . . ; xKÞ as

b0 þ b1x1 þ b2x2 þ � � � þ bK xK .

Su‰cient for assumption (4.2) is the zero conditional mean assumption

Eðu j x1; x2; . . . ; xKÞ ¼ Eðu j xÞ ¼ 0 ð4:3Þ

Under equation (4.1) and assumption (4.3) we have the population regression function

Eðy j x1; x2; . . . ; xKÞ ¼ b0 þ b1x1 þ b2x2 þ � � � þ bK xK ð4:4Þ

As we saw in Chapter 2, equation (4.4) includes the case where the xj are nonlinear

functions of underlying explanatory variables, such as

Eðsavings j income; size; age; collegeÞ ¼ b0 þ b1 logðincomeÞ þ b2size þ b3age

þ b4college þ b5college�age

We will study the asymptotic properties of OLS primarily under assumption (4.2),

since it is weaker than assumption (4.3). As we discussed in Chapter 2, assumption

(4.3) is natural when a structural model is directly estimable because it ensures that

no additional functions of the explanatory variables help to explain y.

An explanatory variable xj is said to be endogenous in equation (4.1) if it is corre-

lated with u. You should not rely too much on the meaning of ‘‘endogenous’’ from

other branches of economics. In traditional usage, a variable is endogenous if it is

determined within the context of a model. The usage in econometrics, while related to

traditional definitions, is used broadly to describe any situation where an explanatory

variable is correlated with the disturbance. If xj is uncorrelated with u, then xj is said

to be exogenous in equation (4.1). If assumption (4.3) holds, then each explanatory

variable is necessarily exogenous.

In applied econometrics, endogeneity usually arises in one of three ways:

Omitted Variables Omitted variables appear when we would like to control for one

or more additional variables but, usually because of data unavailability, we cannot

include them in a regression model. Specifically, suppose that Eðy j x; qÞ is the con-

ditional expectation of interest, which can be written as a function linear in parame-

ters and additive in q. If q is unobserved, we can always estimate Eðy j xÞ, but this

need have no particular relationship to Eðy j x; qÞ when q and x are allowed to be

correlated. One way to represent this situation is to write equation (4.1) where q is

part of the error term u. If q and xj are correlated, then xj is endogenous. The cor-
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relation of explanatory variables with unobservables is often due to self-selection: if

agents choose the value of xj, this might depend on factors ðqÞ that are unobservable

to the analyst. A good example is omitted ability in a wage equation, where an indi-

vidual’s years of schooling are likely to be correlated with unobserved ability. We

discuss the omitted variables problem in detail in Section 4.3.

Measurement Error In this case we would like to measure the (partial) e¤ect of a

variable, say x�
K , but we can observe only an imperfect measure of it, say xK . When

we plug xK in for x�
K —thereby arriving at the estimable equation (4.1)—we neces-

sarily put a measurement error into u. Depending on assumptions about how x�
K

and xK are related, u and xK may or may not be correlated. For example, x�
K might

denote a marginal tax rate, but we can only obtain data on the average tax rate. We

will study the measurement error problem in Section 4.4.

Simultaneity Simultaneity arises when at least one of the explanatory variables is

determined simultaneously along with y. If, say, xK is determined partly as a function

of y, then xK and u are generally correlated. For example, if y is city murder rate

and xK is size of the police force, size of the police force is partly determined by the

murder rate. Conceptually, this is a more di‰cult situation to analyze, because we

must be able to think of a situation where we could vary xK exogenously, even though

in the data that we collect y and xK are generated simultaneously. Chapter 9 treats

simultaneous equations models in detail.

The distinctions among the three possible forms of endogeneity are not always

sharp. In fact, an equation can have more than one source of endogeneity. For ex-

ample, in looking at the e¤ect of alcohol consumption on worker productivity (as

typically measured by wages), we would worry that alcohol usage is correlated with

unobserved factors, possibly related to family background, that also a¤ect wage; this

is an omitted variables problem. In addition, alcohol demand would generally de-

pend on income, which is largely determined by wage; this is a simultaneity problem.

And measurement error in alcohol usage is always a possibility. For an illuminating

discussion of the three kinds of endogeneity as they arise in a particular field, see

Deaton’s (1995) survey chapter on econometric issues in development economics.

4.2 Asymptotic Properties of OLS

We now briefly review the asymptotic properties of OLS for random samples from a

population, focusing on inference. It is convenient to write the population equation

of interest in vector form as
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y ¼ xb þ u ð4:5Þ

where x is a 1 � K vector of regressors and b1 ðb1; b2; . . . ; bKÞ
0 is a K � 1 vector.

Since most equations contain an intercept, we will just assume that x1 1 1, as this

assumption makes interpreting the conditions easier.

We assume that we can obtain a random sample of size N from the population in

order to estimate b; thus, fðxi; yiÞ: i ¼ 1; 2; . . . ;Ng are treated as independent, iden-

tically distributed random variables, where xi is 1 � K and yi is a scalar. For each

observation i we have

yi ¼ xib þ ui ð4:6Þ

which is convenient for deriving statistical properties of estimators. As for stating and

interpreting assumptions, it is easiest to focus on the population model (4.5).

4.2.1 Consistency

As discussed in Section 4.1, the key assumption for OLS to consistently estimate b is

the population orthogonality condition:

assumption OLS.1: Eðx 0uÞ ¼ 0.

Because x contains a constant, Assumption OLS.1 is equivalent to saying that u

has mean zero and is uncorrelated with each regressor, which is how we will refer to

Assumption OLS.1. Su‰cient for Assumption OLS.1 is the zero conditional mean

assumption (4.3).

The other assumption needed for consistency of OLS is that the expected outer

product matrix of x has full rank, so that there are no exact linear relationships

among the regressors in the population. This is stated succinctly as follows:

assumption OLS.2: rank Eðx 0xÞ ¼ K .

As with Assumption OLS.1, Assumption OLS.2 is an assumption about the popu-

lation. Since Eðx 0xÞ is a symmetric K � K matrix, Assumption OLS.2 is equivalent

to assuming that Eðx 0xÞ is positive definite. Since x1 ¼ 1, Assumption OLS.2 is also

equivalent to saying that the (population) variance matrix of the K � 1 nonconstant

elements in x is nonsingular. This is a standard assumption, which fails if and only if

at least one of the regressors can be written as a linear function of the other regressors

(in the population). Usually Assumption OLS.2 holds, but it can fail if the population

model is improperly specified [for example, if we include too many dummy variables

in x or mistakenly use something like logðageÞ and logðage2Þ in the same equation].

Under Assumptions OLS.1 and OLS.2, the parameter vector b is identified. In the

context of models that are linear in the parameters under random sampling, identi-
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fication of b simply means that b can be written in terms of population moments

in observable variables. (Later, when we consider nonlinear models, the notion of

identification will have to be more general. Also, special issues arise if we cannot

obtain a random sample from the population, something we treat in Chapter 17.) To

see that b is identified under Assumptions OLS.1 and OLS.2, premultiply equation

(4.5) by x 0, take expectations, and solve to get

b ¼ ½Eðx 0xÞ��1Eðx 0 yÞ

Because ðx; yÞ is observed, b is identified. The analogy principle for choosing an esti-

mator says to turn the population problem into its sample counterpart (see Gold-

berger, 1968; Manski, 1988). In the current application this step leads to the method

of moments: replace the population moments Eðx 0xÞ and Eðx 0 yÞ with the corre-

sponding sample averages. Doing so leads to the OLS estimator:

b̂b ¼ N�1
XN

i¼1

x 0
i xi

 !�1

N�1
XN

i¼1

x 0
i yi

 !
¼ b þ N�1

XN

i¼1

x 0
i xi

 !�1

N�1
XN

i¼1

x 0
i ui

 !

which can be written in full matrix form as ðX 0XÞ�1
X 0Y, where X is the N � K data

matrix of regressors with ith row xi and Y is the N � 1 data vector with ith element

yi. Under Assumption OLS.2, X 0X is nonsingular with probability approaching one

and plim½ðN�1
PN

i¼1 x 0
i xiÞ�1� ¼ A�1, where A1Eðx 0xÞ (see Corollary 3.1). Further,

under Assumption OLS.1, plimðN�1
PN

i¼1 x 0
i uiÞ ¼ Eðx 0uÞ ¼ 0. Therefore, by Slutsky’s

theorem (Lemma 3.4), plim b̂b ¼ b þ A�1 � 0 ¼ b. We summarize with a theorem:

theorem 4.1 (Consistency of OLS): Under Assumptions OLS.1 and OLS.2, the

OLS estimator b̂b obtained from a random sample following the population model

(4.5) is consistent for b.

The simplicity of the proof of Theorem 4.1 should not undermine its usefulness.

Whenever an equation can be put into the form (4.5) and Assumptions OLS.1 and

OLS.2 hold, OLS using a random sample consistently estimates b. It does not matter

where this equation comes from, or what the bj actually represent. As we will see in

Sections 4.3 and 4.4, often an estimable equation is obtained only after manipulating

an underlying structural equation. An important point to remember is that, once

the linear (in parameters) equation has been specified with an additive error and

Assumptions OLS.1 and OLS.2 are verified, there is no need to reprove Theorem 4.1.

Under the assumptions of Theorem 4.1, xb is the linear projection of y on x. Thus,

Theorem 4.1 shows that OLS consistently estimates the parameters in a linear pro-

jection, subject to the rank condition in Assumption OLS.2. This is very general, as it

places no restrictions on the nature of y—for example, y could be a binary variable
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or some other variable with discrete characteristics. Since a conditional expectation

that is linear in parameters is also the linear projection, Theorem 4.1 also shows that

OLS consistently estimates conditional expectations that are linear in parameters. We

will use this fact often in later sections.

There are a few final points worth emphasizing. First, if either Assumption OLS.1

or OLS.2 fails, then b is not identified (unless we make other assumptions, as in

Chapter 5). Usually it is correlation between u and one or more elements of x that

causes lack of identification. Second, the OLS estimator is not necessarily unbiased

even under Assumptions OLS.1 and OLS.2. However, if we impose the zero condi-

tional mean assumption (4.3), then it can be shown that Eð b̂b jXÞ ¼ b if X 0X is non-

singular; see Problem 4.2. By iterated expectations, b̂b is then also unconditionally

unbiased, provided the expected value Eð b̂bÞ exists.

Finally, we have not made the much more restrictive assumption that u and x are

independent. If EðuÞ ¼ 0 and u is independent of x, then assumption (4.3) holds, but

not vice versa. For example, Varðu j xÞ is entirely unrestricted under assumption (4.3),

but Varðu j xÞ is necessarily constant if u and x are independent.

4.2.2 Asymptotic Inference Using OLS

The asymptotic distribution of the OLS estimator is derived by writing

ffiffiffiffiffi
N

p
ð b̂b � bÞ ¼ N�1

XN

i¼1

x 0
i xi

 !�1

N�1=2
XN

i¼1

x 0
i ui

 !

As we saw in Theorem 4.1, ðN�1
PN

i¼1 x 0
i xiÞ�1 � A�1 ¼ opð1Þ. Also, fðx 0

i uiÞ:i ¼
1; 2; . . .g is an i.i.d. sequence with zero mean, and we assume that each element

has finite variance. Then the central limit theorem (Theorem 3.2) implies that

N�1=2
PN

i¼1 x 0
i ui !

d
Normalð0;BÞ, where B is the K � K matrix

B1Eðu2x 0xÞ ð4:7Þ

This implies N�1=2
PN

i¼1 x 0
i ui ¼ Opð1Þ, and so we can write

ffiffiffiffiffi
N

p
ð b̂b � bÞ ¼ A�1 N�1=2

XN

i¼1

x 0
i ui

 !
þ opð1Þ ð4:8Þ

since opð1Þ � Opð1Þ ¼ opð1Þ. We can use equation (4.8) to immediately obtain the

asymptotic distribution of
ffiffiffiffiffi
N

p
ð b̂b � bÞ. A homoskedasticity assumption simplifies the

form of OLS asymptotic variance:

assumption OLS.3: Eðu2x 0xÞ ¼ s2Eðx 0xÞ, where s2 1Eðu2Þ.
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Because EðuÞ ¼ 0, s2 is also equal to VarðuÞ. Assumption OLS.3 is the weakest form

of the homoskedasticity assumption. If we write out the K � K matrices in Assump-

tion OLS.3 element by element, we see that Assumption OLS.3 is equivalent to

assuming that the squared error, u2, is uncorrelated with each xj, x2
j , and all cross

products of the form xjxk. By the law of iterated expectations, su‰cient for As-

sumption OLS.3 is Eðu2 j xÞ ¼ s2, which is the same as Varðu j xÞ ¼ s2 when

Eðu j xÞ ¼ 0. The constant conditional variance assumption for u given x is the easiest

to interpret, but it is stronger than needed.

theorem 4.2 (Asymptotic Normality of OLS): Under Assumptions OLS.1–OLS.3,ffiffiffiffiffi
N

p
ð b̂b � bÞ @a Normalð0; s2A�1Þ ð4:9Þ

Proof: From equation (4.8) and definition of B, it follows from Lemma 3.7 and

Corollary 3.2 thatffiffiffiffiffi
N

p
ð b̂b � bÞ @a Normalð0;A�1BA�1Þ

Under Assumption OLS.3, B ¼ s2A, which proves the result.

Practically speaking, equation (4.9) allows us to treat b̂b as approximately normal

with mean b and variance s2½Eðx 0xÞ��1=N. The usual estimator of s2, ŝs2 1 SSR=

ðN � KÞ, where SSR ¼
PN

i¼1 ûu2
i is the OLS sum of squared residuals, is easily shown

to be consistent. (Using N or N � K in the denominator does not a¤ect consistency.)

When we also replace Eðx 0xÞ with the sample average N�1
PN

i¼1 x 0
i xi ¼ ðX 0X=NÞ, we

get

Avâarð b̂bÞ ¼ ŝs2ðX 0XÞ�1 ð4:10Þ

The right-hand side of equation (4.10) should be familiar: it is the usual OLS variance

matrix estimator under the classical linear model assumptions. The bottom line of

Theorem 4.2 is that, under Assumptions OLS.1–OLS.3, the usual OLS standard

errors, t statistics, and F statistics are asymptotically valid. Showing that the F sta-

tistic is approximately valid is done by deriving the Wald test for linear restrictions of

the form Rb ¼ r (see Chapter 3). Then the F statistic is simply a degrees-of-freedom-

adjusted Wald statistic, which is where the F distribution (as opposed to the chi-

square distribution) arises.

4.2.3 Heteroskedasticity-Robust Inference

If Assumption OLS.1 fails, we are in potentially serious trouble, as OLS is not even

consistent. In the next chapter we discuss the important method of instrumental

variables that can be used to obtain consistent estimators of b when Assumption
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OLS.1 fails. Assumption OLS.2 is also needed for consistency, but there is rarely any

reason to examine its failure.

Failure of Assumption OLS.3 has less serious consequences than failure of As-

sumption OLS.1. As we have already seen, Assumption OLS.3 has nothing to do

with consistency of b̂b. Further, the proof of asymptotic normality based on equation

(4.8) is still valid without Assumption OLS.3, but the final asymptotic variance is

di¤erent. We have assumed OLS.3 for deriving the limiting distribution because it

implies the asymptotic validity of the usual OLS standard errors and test statistics.

All regression packages assume OLS.3 as the default in reporting statistics.

Often there are reasons to believe that Assumption OLS.3 might fail, in which case

equation (4.10) is no longer a valid estimate of even the asymptotic variance matrix.

If we make the zero conditional mean assumption (4.3), one solution to violation

of Assumption OLS.3 is to specify a model for Varðy j xÞ, estimate this model, and

apply weighted least squares (WLS): for observation i, yi and every element of xi

(including unity) are divided by an estimate of the conditional standard deviation

½Varðyi j xiÞ�1=2, and OLS is applied to the weighted data (see Wooldridge, 2000a,

Chapter 8, for details). This procedure leads to a di¤erent estimator of b. We discuss

WLS in the more general context of nonlinear regression in Chapter 12. Lately, it

has become more popular to estimate b by OLS even when heteroskedasticity is sus-

pected but to adjust the standard errors and test statistics so that they are valid in the

presence of arbitrary heteroskedasticity. Since these standard errors are valid whether

or not Assumption OLS.3 holds, this method is much easier than a weighted least

squares procedure. What we sacrifice is potential e‰ciency gains from weighted least

squares (WLS) (see Chapter 14). But, e‰ciency gains from WLS are guaranteed only

if the model for Varðy j xÞ is correct. Further, WLS is generally inconsistent if

Eðu j xÞ0 0 but Assumption OLS.1 holds, so WLS is inappropriate for estimating

linear projections. Especially with large sample sizes, the presence of heteroskeda-

sticity need not a¤ect one’s ability to perform accurate inference using OLS. But we

need to compute standard errors and test statistics appropriately.

The adjustment needed to the asymptotic variance follows from the proof of The-

orem 4.2: without OLS.3, the asymptotic variance of b̂b is Avarð b̂bÞ ¼ A�1BA�1=N,

where the K � K matrices A and B were defined earlier. We already know how

to consistently estimate A. Estimation of B is also straightforward. First, by the law

of large numbers, N�1
PN

i¼1 u2
i x 0

i xi !
p

Eðu2x 0xÞ ¼ B. Now, since the ui are not

observed, we replace ui with the OLS residual ûui ¼ yi � xib̂b. This leads to the con-

sistent estimator B̂B1N�1
PN

i¼1 ûu2
i x 0

i xi. See White (1984) and Problem 4.5.

The heteroskedasticity-robust variance matrix estimator of b̂b is ÂA�1B̂BÂA�1=N or,

after cancellations,
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Avâarð b̂bÞ ¼ ðX 0XÞ�1
XN

i¼1

ûu2
i x 0

i xi

 !
ðX 0XÞ�1 ð4:11Þ

This matrix was introduced in econometrics by White (1980b), although some attri-

bute it to either Eicker (1967) or Huber (1967), statisticians who discovered robust

variance matrices. The square roots of the diagonal elements of equation (4.11) are

often called the White standard errors or Huber standard errors, or some hyphenated

combination of the names Eicker, Huber, and White. It is probably best to just call

them heteroskedasticity-robust standard errors, since this term describes their purpose.

Remember, these standard errors are asymptotically valid in the presence of any kind

of heteroskedasticity, including homoskedasticity.

Robust standard errors are often reported in applied cross-sectional work, espe-

cially when the sample size is large. Sometimes they are reported along with the usual

OLS standard errors; sometimes they are presented in place of them. Several regres-

sion packages now report these standard errors as an option, so it is easy to obtain

heteroskedasticity-robust standard errors.

Sometimes, as a degrees-of-freedom correction, the matrix in equation (4.11) is

multiplied by N=ðN � KÞ. This procedure guarantees that, if the ûu2
i were constant

across i (an unlikely event in practice, but the strongest evidence of homoskedasticity

possible), then the usual OLS standard errors would be obtained. There is some evi-

dence that the degrees-of-freedom adjustment improves finite sample performance.

There are other ways to adjust equation (4.11) to improve its small-sample properties—

see, for example, MacKinnon and White (1985)—but if N is large relative to K, these

adjustments typically make little di¤erence.

Once standard errors are obtained, t statistics are computed in the usual way.

These are robust to heteroskedasticity of unknown form, and can be used to test

single restrictions. The t statistics computed from heteroskedasticity robust standard

errors are heteroskedasticity-robust t statistics. Confidence intervals are also obtained

in the usual way.

When Assumption OLS.3 fails, the usual F statistic is not valid for testing multiple

linear restrictions, even asymptotically. Some packages allow robust testing with a

simple command, while others do not. If the hypotheses are written as

H0: Rb ¼ r ð4:12Þ

where R is Q � K and has rank QaK , and r is Q � 1, then the heteroskedasticity-

robust Wald statistic for testing equation (4.12) is

W ¼ ðRb̂b � rÞ0ðRV̂VR 0Þ�1ðRb̂b � rÞ ð4:13Þ
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where V̂V is given in equation (4.11). Under H0, W @
a
w2

Q. The Wald statistic can be

turned into an approximate FQ;N�K random variable by dividing it by Q (and usu-

ally making the degrees-of-freedom adjustment to V̂V). But there is nothing wrong

with using equation (4.13) directly.

4.2.4 Lagrange Multiplier (Score) Tests

In the partitioned model

y ¼ x1b1 þ x2b2 þ u ð4:14Þ

under Assumptions OLS.1–OLS.3, where x1 is 1 � K1 and x2 is 1 � K2, we know that

the hypothesis H0: b2 ¼ 0 is easily tested (asymptotically) using a standard F test.

There is another approach to testing such hypotheses that is sometimes useful, espe-

cially for computing heteroskedasticity-robust tests and for nonlinear models.

Let ~bb1 be the estimator of b1 under the null hypothesis H0: b2 ¼ 0; this is called

the estimator from the restricted model. Define the restricted OLS residuals as ~uui ¼
yi � xi1

~bb1, i ¼ 1; 2; . . . ;N. Under H0, xi2 should be, up to sample variation, uncor-

related with ~uui in the sample. The Lagrange multiplier or score principle is based on

this observation. It turns out that a valid test statistic is obtained as follows: Run the

OLS regression

~uu on x1; x2 ð4:15Þ

(where the observation index i has been suppressed). Assuming that x1 contains a

constant (that is, the null model contains a constant), let R2
u denote the usual R-

squared from the regression (4.15). Then the Lagrange multiplier (LM) or score sta-

tistic is LM 1NR2
u . These names come from di¤erent features of the constrained

optimization problem; see Rao (1948), Aitchison and Silvey (1958), and Chapter

12. Because of its form, LM is also referred to as an N-R-squared test. Under H0,

LM @
a
w2

K2
, where K2 is the number of restrictions being tested. If NR2

u is su‰-

ciently large, then ~uu is significantly correlated with x2, and the null hypothesis will be

rejected.

It is important to include x1 along with x2 in regression (4.15). In other words, the

OLS residuals from the null model should be regressed on all explanatory variables,

even though ~uu is orthogonal to x1 in the sample. If x1 is excluded, then the resulting

statistic generally does not have a chi-square distribution when x2 and x1 are corre-

lated. If Eðx 0
1x2Þ ¼ 0, then we can exclude x1 from regression (4.15), but this ortho-

gonality rarely holds in applications. If x1 does not include a constant, R2
u should be

the uncentered R-squared: the total sum of squares in the denominator is obtained
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without demeaning the dependent variable, ~uu. When x1 includes a constant, the usual

centered R-squared and uncentered R-squared are identical because
PN

i¼1 ~uui ¼ 0.

Example 4.1 (Wage Equation for Married, Working Women): Consider a wage

equation for married, working women:

logðwageÞ ¼ b0 þ b1exper þ b2exper2 þ b3educ

þ b4age þ b5kidslt6 þ b6kidsge6 þ u ð4:16Þ

where the last three variables are the woman’s age, number of children less than six,

and number of children at least six years of age, respectively. We can test whether,

after the productivity variables experience and education are controlled for, women

are paid di¤erently depending on their age and number of children. The F statistic for

the hypothesis H0: b4 ¼ 0; b5 ¼ 0; b6 ¼ 0 is F ¼ ½ðR2
ur � R2

r Þ=ð1 � R2
urÞ� � ½ðN � 7Þ=3�,

where R2
ur and R2

r are the unrestricted and restricted R-squareds; under H0 (and

homoskedasticity), F @F3;N�7. To obtain the LM statistic, we estimate the equation

without age, kidslt6, and kidsge6; let ~uu denote the OLS residuals. Then, the LM sta-

tistic is NR2
u from the regression ~uu on 1, exper, exper2, educ, age, kidslt6, and kidsge6,

where the 1 denotes that we include an intercept. Under H0 and homoskedasticity,

NR2
u @

a
w2

3 .

Using the data on the 428 working, married women in MROZ.RAW (from Mroz,

1987), we obtain the following estimated equation:

logðŵwageÞ ¼ �:421

ð:317Þ
½:316�

þ :040

ð:013Þ
½:015�

exper � :00078

ð:00040Þ
½:00041�

exper2 þ :108

ð:014Þ
½:014�

educ

� :0015

ð:0053Þ
½:0059�

age � :061

ð:089Þ
½:105�

kidslt6 � :015

ð:028Þ
½:029�

kidsge6; R2 ¼ :158

where the quantities in brackets are the heteroskedasticity-robust standard errors.

The F statistic for joint significance of age, kidslt6, and kidsge6 turns out to be about

.24, which gives p-valueA :87. Regressing the residuals ~uu from the restricted model

on all exogenous variables gives an R-squared of .0017, so LM ¼ 428ð:0017Þ ¼ :728,

and p-valueA :87. Thus, the F and LM tests give virtually identical results.

The test from regression (4.15) maintains Assumption OLS.3 under H0, just like

the usual F test. It turns out to be easy to obtain a heteroskedasticity-robust LM
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statistic. To see how to do so, let us look at the formula for the LM statistic from

regression (4.15) in more detail. After some algebra we can write

LM ¼ N�1=2
XN

i¼1

r̂r 0i ~uui

 !0
~ss2N�1

XN

i¼1

r̂r 0i r̂ri

 !�1

N�1=2
XN

i¼1

r̂r 0i ~uui

 !

where ~ss2 1N�1
PN

i¼1 ~uu
2
i and each r̂ri is a 1 � K2 vector of OLS residuals from the

(multivariate) regression of xi2 on xi1, i ¼ 1; 2; . . . ;N. This statistic is not robust to

heteroskedasticity because the matrix in the middle is not a consistent estimator of

the asymptotic variance of ðN�1=2
PN

i¼1 r̂r 0i ~uuiÞ under heteroskedasticity. Following the

reasoning in Section 4.2.3, a heteroskedasticity-robust statistic is

LM ¼ N�1=2
XN

i¼1

r̂r 0i ~uui

 !0

N�1
XN

i¼1

~uu2
i r̂r 0i r̂ri

 !�1

N�1=2
XN

i¼1

r̂r 0i ~uui

 !

¼
XN

i¼1

r̂r 0i ~uui

 !0 XN

i¼1

~uu2
i r̂r 0i r̂ri

 !�1 XN

i¼1

r̂r 0i ~uui

 !

Dropping the i subscript, this is easily obtained, as N � SSR0 from the OLS regres-

sion (without an intercept)

1 on ~uu � r̂r ð4:17Þ

where ~uu � r̂r ¼ ð~uu � r̂r1; ~uu � r̂r2; . . . ; ~uu � r̂rK2
Þ is the 1 � K2 vector obtained by multiplying ~uu

by each element of r̂r and SSR0 is just the usual sum of squared residuals from re-

gression (4.17). Thus, we first regress each element of x2 onto all of x1 and collect the

residuals in r̂r. Then we form ~uu � r̂r (observation by observation) and run the regression

in (4.17); N � SSR0 from this regression is distributed asymptotically as w2
K2

. (Do not

be thrown o¤ by the fact that the dependent variable in regression (4.17) is unity for

each observation; a nonzero sum of squared residuals is reported when you run OLS

without an intercept.) For more details, see Davidson and MacKinnon (1985, 1993)

or Wooldridge (1991a, 1995b).

Example 4.1 (continued): To obtain the heteroskedasticity-robust LM statistic for

H0: b4 ¼ 0; b5 ¼ 0; b6 ¼ 0 in equation (4.16), we estimate the restricted model as

before and obtain ~uu. Then, we run the regressions (1) age on 1, exper, exper2, educ;

(2) kidslt6 on 1, exper, exper2, educ; (3) kidsge6 on 1, exper, exper2, educ; and obtain

the residuals r̂r1, r̂r2, and r̂r3, respectively. The LM statistic is N � SSR0 from the re-

gression 1 on ~uu � r̂r1, ~uu � r̂r2, ~uu � r̂r3, and N � SSR0 @
a
w2

3 .
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When we apply this result to the data in MROZ.RAW we get LM ¼ :51, which

is very small for a w2
3 random variable: p-valueA :92. For comparison, the hetero-

skedasticity-robust Wald statistic (scaled by Stata9 to have an approximate F distri-

bution) also yields p-valueA :92.

4.3 OLS Solutions to the Omitted Variables Problem

4.3.1 OLS Ignoring the Omitted Variables

Because it is so prevalent in applied work, we now consider the omitted variables

problem in more detail. A model that assumes an additive e¤ect of the omitted vari-

able is

Eðy j x1; x2; . . . ; xK ; qÞ ¼ b0 þ b1x1 þ b2x2 þ � � � þ bK xK þ gq ð4:18Þ

where q is the omitted factor. In particular, we are interested in the bj , which are the

partial e¤ects of the observed explanatory variables holding the other explanatory

variables constant, including the unobservable q. In the context of this additive

model, there is no point in allowing for more than one unobservable; any omitted

factors are lumped into q. Henceforth we simply refer to q as the omitted variable.

A good example of equation (4.18) is seen when y is logðwageÞ and q includes

ability. If xK denotes a measure of education, bK in equation (4.18) measures the

partial e¤ect of education on wages controlling for—or holding fixed—the level of

ability (as well as other observed characteristics). This e¤ect is most interesting from

a policy perspective because it provides a causal interpretation of the return to edu-

cation: bK is the expected proportionate increase in wage if someone from the work-

ing population is exogenously given another year of education.

Viewing equation (4.18) as a structural model, we can always write it in error form

as

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bK xK þ gq þ v ð4:19Þ

Eðv j x1; x2; . . . ; xK ; qÞ ¼ 0 ð4:20Þ

where v is the structural error. One way to handle the nonobservability of q is to put

it into the error term. In doing so, nothing is lost by assuming EðqÞ ¼ 0 because an

intercept is included in equation (4.19). Putting q into the error term means we re-

write equation (4.19) as

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bK xK þ u ð4:21Þ
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u1 gq þ v ð4:22Þ

The error u in equation (4.21) consists of two parts. Under equation (4.20), v has zero

mean and is uncorrelated with x1; x2; . . . ; xK (and q). By normalization, q also has

zero mean. Thus, EðuÞ ¼ 0. However, u is uncorrelated with x1; x2; . . . ; xK if and only

if q is uncorrelated with each of the observable regressors. If q is correlated with any

of the regressors, then so is u, and we have an endogeneity problem. We cannot ex-

pect OLS to consistently estimate any bj. Although Eðu j xÞ0EðuÞ in equation (4.21),

the bj do have a structural interpretation because they appear in equation (4.19).

It is easy to characterize the plims of the OLS estimators when the omitted variable

is ignored; we will call this the OLS omitted variables inconsistency or OLS omitted

variables bias (even though the latter term is not always precise). Write the linear

projection of q onto the observable explanatory variables as

q ¼ d0 þ d1x1 þ � � � þ dK xK þ r ð4:23Þ

where, by definition of a linear projection, EðrÞ ¼ 0, Covðxj; rÞ ¼ 0, j ¼ 1; 2; . . . ;K .

Then we can easily infer the plim of the OLS estimators from regressing y onto

1; x1; . . . ; xK by finding an equation that does satisfy Assumptions OLS.1 and OLS.2.

Plugging equation (4.23) into equation (4.19) and doing simple algrebra gives

y ¼ ðb0 þ gd0Þ þ ðb1 þ gd1Þx1 þ ðb2 þ gd2Þx2 þ � � � þ ðbK þ gdKÞxK þ v þ gr

Now, the error v þ gr has zero mean and is uncorrelated with each regressor. It fol-

lows that we can just read o¤ the plim of the OLS estimators from the regression of y

on 1; x1; . . . ; xK : plim b̂bj ¼ bj þ gdj . Sometimes it is assumed that most of the dj are

zero. When the correlation between q and a particular variable, say xK , is the focus,

a common (usually implicit) assumption is that all dj in equation (4.23) except the

intercept and coe‰cient on xK are zero. Then plim b̂bj ¼ bj, j ¼ 1; . . . ;K � 1, and

plim b̂bK ¼ bK þ g½CovðxK ; qÞ=VarðxKÞ� ð4:24Þ

[since dK ¼ CovðxK ; qÞ=VarðxKÞ in this case]. This formula gives us a simple way

to determine the sign, and perhaps the magnitude, of the inconsistency in b̂bK . If g > 0

and xK and q are positively correlated, the asymptotic bias is positive. The other

combinations are easily worked out. If xK has substantial variation in the population

relative to the covariance between xK and q, then the bias can be small. In the general

case of equation (4.23), it is di‰cult to sign dK because it measures a partial correla-

tion. It is for this reason that dj ¼ 0, j ¼ 1; . . . ;K � 1 is often maintained for deter-

mining the likely asymptotic bias in b̂bK when only xK is endogenous.
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Example 4.2 (Wage Equation with Unobserved Ability): Write a structural wage

equation explicitly as

logðwageÞ ¼ b0 þ b1exper þ b2exper2 þ b3educ þ g abil þ v

where v has the structural error property Eðv j exper; educ; abilÞ ¼ 0. If abil is uncor-

related with exper and exper2 once educ has been partialed out—that is, abil ¼ d0 þ
d3educ þ r with r uncorrelated with exper and exper2—then plim b̂b3 ¼ b3 þ gd3. Un-

der these assumptions the coe‰cients on exper and exper2 are consistently estimated

by the OLS regression that omits ability. If d3 > 0 then plim b̂b3 > b3 (because g > 0

by definition), and the return to education is likely to be overestimated in large samples.

4.3.2 The Proxy Variable–OLS Solution

Omitted variables bias can be eliminated, or at least mitigated, if a proxy variable is

available for the unobserved variable q. There are two formal requirements for a

proxy variable for q. The first is that the proxy variable should be redundant (some-

times called ignorable) in the structural equation. If z is a proxy variable for q, then

the most natural statement of redundancy of z in equation (4.18) is

Eðy j x; q; zÞ ¼ Eðy j x; qÞ ð4:25Þ

Condition (4.25) is easy to interpret: z is irrelevant for explaining y, in a conditional

mean sense, once x and q have been controlled for. This assumption on a proxy

variable is virtually always made (sometimes only implicitly), and it is rarely contro-

versial: the only reason we bother with z in the first place is that we cannot get data

on q. Anyway, we cannot get very far without condition (4.25). In the wage-education

example, let q be ability and z be IQ score. By definition it is ability that a¤ects wage:

IQ would not matter if true ability were known.

Condition (4.25) is somewhat stronger than needed when unobservables appear

additively as in equation (4.18); it su‰ces to assume that v in equation (4.19) is

simply uncorrelated with z. But we will focus on condition (4.25) because it is natu-

ral, and because we need it to cover models where q interacts with some observed

covariates.

The second requirement of a good proxy variable is more complicated. We require

that the correlation between the omitted variable q and each xj be zero once we par-

tial out z. This is easily stated in terms of a linear projection:

Lðq j 1; x1; . . . ; xK ; zÞ ¼ Lðq j 1; zÞ ð4:26Þ

It is also helpful to see this relationship in terms of an equation with an unobserved

error. Write q as a linear function of z and an error term as
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q ¼ y0 þ y1z þ r ð4:27Þ

where, by definition, EðrÞ ¼ 0 and Covðz; rÞ ¼ 0 because y0 þ y1z is the linear pro-

jection of q on 1, z. If z is a reasonable proxy for q, y1 0 0 (and we usually think in

terms of y1 > 0). But condition (4.26) assumes much more: it is equivalent to

Covðxj; rÞ ¼ 0; j ¼ 1; 2; . . . ;K

This condition requires z to be closely enough related to q so that once it is included

in equation (4.27), the xj are not partially correlated with q.

Before showing why these two proxy variable requirements do the trick, we should

head o¤ some possible confusion. The definition of proxy variable here is not uni-

versal. While a proxy variable is always assumed to satisfy the redundancy condition

(4.25), it is not always assumed to have the second property. In Chapter 5 we will use

the notion of an indicator of q, which satisfies condition (4.25) but not the second

proxy variable assumption.

To obtain an estimable equation, replace q in equation (4.19) with equation (4.27)

to get

y ¼ ðb0 þ gy0Þ þ b1x1 þ � � � þ bK xK þ gy1z þ ðgr þ vÞ ð4:28Þ

Under the assumptions made, the composite error term u1 gr þ v is uncorrelated

with xj for all j; redundancy of z in equation (4.18) means that z is uncorrelated with

v and, by definition, z is uncorrelated with r. It follows immediately from Theorem

4.1 that the OLS regression y on 1; x1; x2; . . . ; xK , z produces consistent estimators of

ðb0 þ gy0Þ; b1; b2; . . . ; bK , and gy1. Thus, we can estimate the partial e¤ect of each of

the xj in equation (4.18) under the proxy variable assumptions.

When z is an imperfect proxy, then r in equation (4.27) is correlated with one or

more of the xj . Generally, when we do not impose condition (4.26) and write the

linear projection as

q ¼ y0 þ r1x1 þ � � � þ rK xK þ y1z þ r

the proxy variable regression gives plim b̂bj ¼ bj þ grj. Thus, OLS with an imperfect

proxy is inconsistent. The hope is that the rj are smaller in magnitude than if z were

omitted from the linear projection, and this can usually be argued if z is a reasonable

proxy for q.

If including z induces substantial collinearity, it might be better to use OLS with-

out the proxy variable. However, in making these decisions we must recognize that

including z reduces the error variance if y1 0 0: Varðgr þ vÞ < Varðgq þ vÞ because

VarðrÞ < VarðqÞ, and v is uncorrelated with both r and q. Including a proxy variable

can actually reduce asymptotic variances as well as mitigate bias.
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Example 4.3 (Using IQ as a Proxy for Ability): We apply the proxy variable

method to the data on working men in NLS80.RAW, which was used by Blackburn

and Neumark (1992), to estimate the structural model

logðwageÞ ¼ b0 þ b1exper þ b2tenure þ b3married

þ b4south þ b5urban þ b6black þ b7educ þ g abil þ v ð4:29Þ

where exper is labor market experience, married is a dummy variable equal to unity if

married, south is a dummy variable for the southern region, urban is a dummy vari-

able for living in an SMSA, black is a race indicator, and educ is years of schooling.

We assume that IQ satisfies the proxy variable assumptions: in the linear projection

abil ¼ y0 þ y1IQ þ r, where r has zero mean and is uncorrelated with IQ, we also

assume that r is uncorrelated with experience, tenure, education, and other factors

appearing in equation (4.29). The estimated equations without and with IQ are

logðŵwageÞ ¼ 5:40

ð0:11Þ
þ :014

ð:003Þ
exper þ :012

ð:002Þ
tenure þ :199

ð:039Þ
married

� :091

ð:026Þ
south þ :184

ð:027Þ
urban � :188

ð:038Þ
black þ :065

ð:006Þ
educ

N ¼ 935; R2 ¼ :253

logðŵwageÞ ¼ 5:18

ð0:13Þ
þ :014

ð:003Þ
exper þ :011

ð:002Þ
tenure þ :200

ð:039Þ
married

� :080

ð:026Þ
south þ :182

ð:027Þ
urban � :143

ð:039Þ
black þ :054

ð:007Þ
educ

þ :0036

ð:0010Þ
IQ

N ¼ 935; R2 ¼ :263

Notice how the return to schooling has fallen from about 6.5 percent to about 5.4

percent when IQ is added to the regression. This is what we expect to happen if

ability and schooling are (partially) positively correlated. Of course, these are just

the findings from one sample. Adding IQ explains only one percentage point more of

the variation in logðwageÞ, and the equation predicts that 15 more IQ points (one

standard deviation) increases wage by about 5.4 percent. The standard error on the

return to education has increased, but the 95 percent confidence interval is still fairly

tight.
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Often the outcome of the dependent variable from an earlier time period can be a

useful proxy variable.

Example 4.4 (E¤ects of Job Training Grants on Worker Productivity): The data in

JTRAIN1.RAW are for 157 Michigan manufacturing firms for the years 1987, 1988,

and 1989. These data are from Holzer, Block, Cheatham, and Knott (1993). The goal

is to determine the e¤ectiveness of job training grants on firm productivity. For this

exercise, we use only the 54 firms in 1988 which reported nonmissing values of the

scrap rate (number of items out of 100 that must be scrapped). No firms were

awarded grants in 1987; in 1988, 19 of the 54 firms were awarded grants. If the

training grant has the intended e¤ect, the average scrap rate should be lower among

firms receiving a grant. The problem is that the grants were not randomly assigned:

whether or not a firm received a grant could be related to other factors unobservable

to the econometrician that a¤ect productivity. In the simplest case, we can write (for

the 1988 cross section)

logðscrapÞ ¼ b0 þ b1grant þ gq þ v

where v is orthogonal to grant but q contains unobserved productivity factors that

might be correlated with grant, a binary variable equal to unity if the firm received a

job training grant. Since we have the scrap rate in the previous year, we can use

logðscrap�1Þ as a proxy variable for q:

q ¼ y0 þ y1 logðscrap�1Þ þ r

where r has zero mean and, by definition, is uncorrelated with logðscrap�1Þ. We hope

that r has no or little correlation with grant. Plugging in for q gives the estimable model

logðscrapÞ ¼ d0 þ b1grant þ gy1 logðscrap�1Þ þ r þ v

From this equation, we see that b1 measures the proportionate di¤erence in scrap

rates for two firms having the same scrap rates in the previous year, but where one

firm received a grant and the other did not. This is intuitively appealing. The esti-

mated equations are

logðsĉcrapÞ ¼ :409

ð:240Þ
þ :057

ð:406Þ
grant

N ¼ 54; R2 ¼ :0004

logðsĉcrapÞ ¼ :021

ð:089Þ
� :254

ð:147Þ
grant þ :831

ð:044Þ
logðscrap�1Þ

N ¼ 54; R2 ¼ :873
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Without the lagged scrap rate, we see that the grant appears, if anything, to reduce

productivity (by increasing the scrap rate), although the coe‰cient is statistically in-

significant. When the lagged dependent variable is included, the coe‰cient on grant

changes signs, becomes economically large—firms awarded grants have scrap rates

about 25.4 percent less than those not given grants—and the e¤ect is significant at the

5 percent level against a one-sided alternative. [The more accurate estimate of the

percentage e¤ect is 100 � ½expð�:254Þ � 1� ¼ �22:4%; see Problem 4.1(a).]

We can always use more than one proxy for xK . For example, it might be that

Eðq j x; z1; z2Þ ¼ Eðq j z1; z2Þ ¼ y0 þ y1z1 þ y2z2, in which case including both z1 and

z2 as regressors along with x1; . . . ; xK solves the omitted variable problem. The

weaker condition that the error r in the equation q ¼ y0 þ y1z1 þ y2z2 þ r is uncor-

related with x1; . . . ; xK also su‰ces.

The data set NLS80.RAW also contains each man’s score on the knowledge of

the world of work (KWW ) test. Problem 4.11 asks you to reestimate equation (4.29)

when KWW and IQ are both used as proxies for ability.

4.3.3 Models with Interactions in Unobservables

In some cases we might be concerned about interactions between unobservables and

observable explanatory variables. Obtaining consistent estimators is more di‰cult in

this case, but a good proxy variable can again solve the problem.

Write the structural model with unobservable q as

y ¼ b0 þ b1x1 þ � � � þ bK xK þ g1q þ g2xK q þ v ð4:30Þ

where we make a zero conditional mean assumption on the structural error v:

Eðv j x; qÞ ¼ 0 ð4:31Þ

For simplicity we have interacted q with only one explanatory variable, xK .

Before discussing estimation of equation (4.30), we should have an interpretation

for the parameters in this equation, as the interaction xK q is unobservable. (We dis-

cussed this topic more generally in Section 2.2.5.) If xK is an essentially continuous

variable, the partial e¤ect of xK on Eðy j x; qÞ is

qEðy j x; qÞ
qxK

¼ bK þ g2q ð4:32Þ

Thus, the partial e¤ect of xK actually depends on the level of q. Because q is not

observed for anyone in the population, equation (4.32) can never be estimated, even

if we could estimate g2 (which we cannot, in general). But we can average equation
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(4.32) across the population distribution of q. Assuming EðqÞ ¼ 0, the average partial

e¤ect (APE ) of xK is

EðbK þ g2qÞ ¼ bK ð4:33Þ

A similar interpretation holds for discrete xK . For example, if xK is binary, then

Eðy j x1; . . . ; xK�1; 1; qÞ � Eðy j x1; . . . ; xK�1; 0; qÞ ¼ bK þ g2q, and bK is the average

of this di¤erence over the distribution of q. In this case, bK is called the average

treatment e¤ect (ATE). This name derives from the case where xK represents receiv-

ing some ‘‘treatment,’’ such as participation in a job training program or partici-

pation in an income maintenence program. We will consider the binary treatment

case further in Chapter 18, where we introduce a counterfactual framework for esti-

mating average treatment e¤ects.

It turns out that the assumption EðqÞ ¼ 0 is without loss of generality. Using sim-

ple algebra we can show that, if mq 1EðqÞ0 0, then we can consistently estimate

bK þ g2mq, which is the average partial e¤ect.

If the elements of x are exogenous in the sense that Eðq j xÞ ¼ 0, then we can con-

sistently estimate each of the bj by an OLS regression, where q and xK q are just part

of the error term. This result follows from iterated expectations applied to equation

(4.30), which shows that Eðy j xÞ ¼ b0 þ b1x1 þ � � � þ bK xK if Eðq j xÞ ¼ 0. The

resulting equation probably has heteroskedasticity, but this is easily dealt with. Inci-

dentally, this is a case where only assuming that q and x are uncorrelated would not

be enough to ensure consistency of OLS: xK q and x can be correlated even if q and x

are uncorrelated.

If q and x are correlated, we can consistently estimate the bj by OLS if we have a

suitable proxy variable for q. We still assume that the proxy variable, z, satisfies the

redundancy condition (4.25). In the current model we must make a stronger proxy

variable assumption than we did in Section 4.3.2:

Eðq j x; zÞ ¼ Eðq j zÞ ¼ y1z ð4:34Þ

where now we assume z has a zero mean in the population. Under these two proxy

variable assumptions, iterated expectations gives

Eðy j x; zÞ ¼ b0 þ b1x1 þ � � � þ bK xK þ g1y1z þ g2y1xK z ð4:35Þ

and the parameters are consistently estimated by OLS.

If we do not define our proxy to have zero mean in the population, then estimating

equation (4.35) by OLS does not consistently estimate bK . If EðzÞ0 0, then we would

have to write Eðq j zÞ ¼ y0 þ y1z, in which case the coe‰cient on xK in equation

(4.35) would be bK þ y0g2. In practice, we may not know the population mean of the
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proxy variable, in which case the proxy variable should be demeaned in the sample

before interacting it with xK .

If we maintain homoskedasticity in the structural model—that is, Varðy j x; q; zÞ ¼
Varðy j x; qÞ ¼ s2—then there must be heteroskedasticity in Varðy j x; zÞ. Using

Property CV.3 in Appendix 2A, it can be shown that

Varðy j x; zÞ ¼ s2 þ ðg1 þ g2xKÞ2 Varðq j x; zÞ

Even if Varðq j x; zÞ is constant, Varðy j x; zÞ depends on xK . This situation is most

easily dealt with by computing heteroskedasticity-robust statistics, which allows for

heteroskedasticity of arbitrary form.

Example 4.5 (Return to Education Depends on Ability): Consider an extension of

the wage equation (4.29):

logðwageÞ ¼ b0 þ b1exper þ b2tenure þ b3married þ b4south

þ b5urban þ b6black þ b7educ þ g1abil þ g2educ�abil þ v ð4:36Þ

so that educ and abil have separate e¤ects but also have an interactive e¤ect. In this

model the return to a year of schooling depends on abil: b7 þ g2abil. Normalizing abil

to have zero population mean, we see that the average of the return to education is

simply b7. We estimate this equation under the assumption that IQ is redundant

in equation (4.36) and Eðabil j x; IQÞ ¼ Eðabil j IQÞ ¼ y1ðIQ � 100Þ1 y1IQ0, where

IQ0 is the population-demeaned IQ (IQ is constructed to have mean 100 in the pop-

ulation). We can estimate the bj in equation (4.36) by replacing abil with IQ0 and

educ�abil with educ�IQ0 and doing OLS.

Using the sample of men in NLS80.RAW gives the following:

logðŵwageÞ ¼ � � � þ :052

ð:007Þ
educ � :00094

ð:00516Þ
IQ0 þ :00034

ð:00038Þ
educ � IQ0

N ¼ 935; R2 ¼ :263

where the usual OLS standard errors are reported (if g2 ¼ 0, homoskedasticity may

be reasonable). The interaction term educ�IQ0 is not statistically significant, and the

return to education at the average IQ, 5.2 percent, is similar to the estimate when the

return to education is assumed to be constant. Thus there is little evidence for an in-

teraction between education and ability. Incidentally, the F test for joint significance

of IQ0 and educ�IQ0 yields a p-value of about .0011, but the interaction term is not

needed.
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In this case, we happen to know the population mean of IQ, but in most cases we

will not know the population mean of a proxy variable. Then, we should use the

sample average to demean the proxy before interacting it with xK ; see Problem 4.8.

Technically, using the sample average to estimate the population average should be

reflected in the OLS standard errors. But, as you are asked to show in Problem 6.10

in Chapter 6, the adjustments generally have very small impacts on the standard

errors and can safely be ignored.

In his study on the e¤ects of computer usage on the wage structure in the United

States, Krueger (1993) uses computer usage at home as a proxy for unobservables

that might be correlated with computer usage at work; he also includes an interaction

between the two computer usage dummies. Krueger does not demean the ‘‘uses

computer at home’’ dummy before constructing the interaction, so his estimate on

‘‘uses a computer at work’’ does not have an average treatment e¤ect interpreta-

tion. However, just as in Example 4.5, Krueger found that the interaction term is

insignificant.

4.4 Properties of OLS under Measurement Error

As we saw in Section 4.1, another way that endogenous explanatory variables can

arise in economic applications occurs when one or more of the variables in our model

contains measurement error. In this section, we derive the consequences of measure-

ment error for ordinary least squares estimation.

The measurement error problem has a statistical structure similar to the omitted

variable–proxy variable problem discussed in the previous section. However, they are

conceptually very di¤erent. In the proxy variable case, we are looking for a variable

that is somehow associated with the unobserved variable. In the measurement error

case, the variable that we do not observe has a well-defined, quantitative meaning

(such as a marginal tax rate or annual income), but our measures of it may contain

error. For example, reported annual income is a measure of actual annual income,

whereas IQ score is a proxy for ability.

Another important di¤erence between the proxy variable and measurement error

problems is that, in the latter case, often the mismeasured explanatory variable is the

one whose e¤ect is of primary interest. In the proxy variable case, we cannot estimate

the e¤ect of the omitted variable.

Before we turn to the analysis, it is important to remember that measurement error

is an issue only when the variables on which we can collect data di¤er from the vari-

ables that influence decisions by individuals, families, firms, and so on. For example,
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suppose we are estimating the e¤ect of peer group behavior on teenage drug usage,

where the behavior of one’s peer group is self-reported. Self-reporting may be a mis-

measure of actual peer group behavior, but so what? We are probably more inter-

ested in the e¤ects of how a teenager perceives his or her peer group.

4.4.1 Measurement Error in the Dependent Variable

We begin with the case where the dependent variable is the only variable measured

with error. Let y� denote the variable (in the population, as always) that we would

like to explain. For example, y� could be annual family saving. The regression model

has the usual linear form

y� ¼ b0 þ b1x1 þ � � � þ bK xK þ v ð4:37Þ

and we assume that it satisfies at least Assumptions OLS.1 and OLS.2. Typically, we

are interested in Eðy� j x1; . . . ; xKÞ. We let y represent the observable measure of y�

where y0 y�.

The population measurement error is defined as the di¤erence between the ob-

served value and the actual value:

e0 ¼ y � y� ð4:38Þ

For a random draw i from the population, we can write ei0 ¼ yi � y�
i , but what is

important is how the measurement error in the population is related to other factors.

To obtain an estimable model, we write y� ¼ y � e0, plug this into equation (4.37),

and rearrange:

y ¼ b0 þ b1x1 þ � � � þ bK xK þ v þ e0 ð4:39Þ

Since y; x1; x2; . . . ; xK are observed, we can estimate this model by OLS. In e¤ect, we

just ignore the fact that y is an imperfect measure of y� and proceed as usual.

When does OLS with y in place of y� produce consistent estimators of the bj?

Since the original model (4.37) satisfies Assumption OLS.1, v has zero mean and is

uncorrelated with each xj. It is only natural to assume that the measurement error

has zero mean; if it does not, this fact only a¤ects estimation of the intercept, b0.

Much more important is what we assume about the relationship between the mea-

surement error e0 and the explanatory variables xj. The usual assumption is that

the measurement error in y is statistically independent of each explanatory variable,

which implies that e0 is uncorrelated with x. Then, the OLS estimators from equation

(4.39) are consistent (and possibly unbiased as well). Further, the usual OLS infer-

ence procedures (t statistics, F statistics, LM statistics) are asymptotically valid under

appropriate homoskedasticity assumptions.
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If e0 and v are uncorrelated, as is usually assumed, then Varðv þ e0Þ ¼ s2
v þ s2

0 >

s2
v . Therefore, measurement error in the dependent variable results in a larger error

variance than when the dependent variable is not measured with error. This result is

hardly surprising and translates into larger asymptotic variances for the OLS esti-

mators than if we could observe y�. But the larger error variance violates none of the

assumptions needed for OLS estimation to have its desirable large-sample properties.

Example 4.6 (Saving Function with Measurement Error): Consider a saving function

Eðsav� j inc; size; educ; ageÞ ¼ b0 þ b1inc þ b2size þ b3educ þ b4age

but where actual saving ðsav�Þ may deviate from reported saving (sav). The question

is whether the size of the measurement error in sav is systematically related to the

other variables. It may be reasonable to assume that the measurement error is not

correlated with inc, size, educ, and age, but we might expect that families with higher

incomes, or more education, report their saving more accurately. Unfortunately,

without more information, we cannot know whether the measurement error is cor-

related with inc or educ.

When the dependent variable is in logarithmic form, so that logðy�Þ is the depen-

dent variable, a natural measurement error equation is

logðyÞ ¼ logðy�Þ þ e0 ð4:40Þ

This follows from a multiplicative measurement error for y: y ¼ y�a0 where a0 > 0

and e0 ¼ logða0Þ.

Example 4.7 (Measurement Error in Firm Scrap Rates): In Example 4.4, we might

think that the firm scrap rate is mismeasured, leading us to postulate the model

logðscrap�Þ ¼ b0 þ b1grant þ v, where scrap� is the true scrap rate. The measurement

error equation is logðscrapÞ ¼ logðscrap�Þ þ e0. Is the measurement error e0 inde-

pendent of whether the firm receives a grant? Not if a firm receiving a grant is more

likely to underreport its scrap rate in order to make it look as if the grant had the

intended e¤ect. If underreporting occurs, then, in the estimable equation logðscrapÞ ¼
b0 þ b1grant þ v þ e0, the error u ¼ v þ e0 is negatively correlated with grant. This

result would produce a downward bias in b1, tending to make the training program

look more e¤ective than it actually was.

These examples show that measurement error in the dependent variable can cause

biases in OLS if the measurement error is systematically related to one or more of the

explanatory variables. If the measurement error is uncorrelated with the explanatory

variables, OLS is perfectly appropriate.
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4.4.2 Measurement Error in an Explanatory Variable

Traditionally, measurement error in an explanatory variable has been considered a

much more important problem than measurement error in the response variable. This

point was suggested by Example 4.2, and in this subsection we develop the general

case.

We consider the model with a single explanatory measured with error:

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bK x�
K þ v ð4:41Þ

where y; x1; . . . ; xK�1 are observable but x�
K is not. We assume at a minimum that

v has zero mean and is uncorrelated with x1; x2; . . . ; xK�1, x�
K ; in fact, we usually

have in mind the structural model Eðy j x1; . . . ; xK�1; x�
KÞ ¼ b0 þ b1x1 þ b2x2 þ � � � þ

bK x�
K . If x�

K were observed, OLS estimation would produce consistent estimators.

Instead, we have a measure of x�
K ; call it xK . A maintained assumption is that v

is also uncorrelated with xK . This follows under the redundancy assumption

Eðy j x1; . . . ; xK�1; x�
K ; xKÞ ¼ Eðy j x1; . . . ; xK�1; x�

KÞ, an assumption we used in the

proxy variable solution to the omitted variable problem. This means that xK has

no e¤ect on y once the other explanatory variables, including x�
K , have been con-

trolled for. Since x�
K is assumed to be the variable that a¤ects y, this assumption is

uncontroversial.

The measurement error in the population is simply

eK ¼ xK � x�
K ð4:42Þ

and this can be positive, negative, or zero. We assume that the average measurement

error in the population is zero: EðeKÞ ¼ 0, which has no practical consequences be-

cause we include an intercept in equation (4.41). Since v is assumed to be uncorre-

lated with x�
K and xK , v is also uncorrelated with eK .

We want to know the properties of OLS if we simply replace x�
K with xK and run

the regression of y on 1; x1; x2; . . . ; xK . These depend crucially on the assumptions we

make about the measurement error. An assumption that is almost always maintained

is that eK is uncorrelated with the explanatory variables not measured with error:

EðxjeKÞ ¼ 0, j ¼ 1; . . . ;K � 1.

The key assumptions involve the relationship between the measurement error and

x�
K and xK . Two assumptions have been the focus in the econometrics literature, and

these represent polar extremes. The first assumption is that eK is uncorrelated with

the observed measure, xK :

CovðxK ; eKÞ ¼ 0 ð4:43Þ
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From equation (4.42), if assumption (4.43) is true, then eK must be correlated with

the unobserved variable x�
K . To determine the properties of OLS in this case, we write

x�
K ¼ xK � eK and plug this into equation (4.41):

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bK xK þ ðv � bK eKÞ ð4:44Þ

Now, we have assumed that v and eK both have zero mean and are uncorrelated with

each xj , including xK ; therefore, v � bK eK has zero mean and is uncorrelated with the

xj. It follows that OLS estimation with xK in place of x�
K produces consistent esti-

mators of all of the bj (assuming the standard rank condition Assumption OLS.2).

Since v is uncorrelated with eK , the variance of the error in equation (4.44) is

Varðv � bK eKÞ ¼ s2
v þ b2

Ks
2
eK

. Therefore, except when bK ¼ 0, measurement error

increases the error variance, which is not a surprising finding and violates none of the

OLS assumptions.

The assumption that eK is uncorrelated with xK is analogous to the proxy variable

assumption we made in the Section 4.3.2. Since this assumption implies that OLS has

all its nice properties, this is not usually what econometricians have in mind when

referring to measurement error in an explanatory variable. The classical errors-in-

variables (CEV ) assumption replaces assumption (4.43) with the assumption that the

measurement error is uncorrelated with the unobserved explanatory variable:

Covðx�
K ; eKÞ ¼ 0 ð4:45Þ

This assumption comes from writing the observed measure as the sum of the true

explanatory variable and the measurement error, xK ¼ x�
K þ eK , and then assuming

the two components of xK are uncorrelated. (This has nothing to do with assump-

tions about v; we are always maintaining that v is uncorrelated with x�
K and xK , and

therefore with eK .)

If assumption (4.45) holds, then xK and eK must be correlated:

CovðxK ; eKÞ ¼ EðxK eKÞ ¼ Eðx�
K eKÞ þ Eðe2

KÞ ¼ s2
eK

ð4:46Þ

Thus, under the CEV assumption, the covariance between xK and eK is equal to the

variance of the measurement error.

Looking at equation (4.44), we see that correlation between xK and eK causes

problems for OLS. Because v and xK are uncorrelated, the covariance between

xK and the composite error v � bK eK is CovðxK ; v � bK eKÞ ¼ �bK CovðxK ; eKÞ ¼
�bKs

2
eK

. It follows that, in the CEV case, the OLS regression of y on x1; x2; . . . ; xK

generally gives inconsistent estimators of all of the bj.
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The plims of the b̂bj for j 0K are di‰cult to characterize except under special

assumptions. If x�
K is uncorrelated with xj, all j 0K, then so is xK , and it follows that

plim b̂bj ¼ bj , all j 0K . The plim of b̂bK can be characterized in any case. Problem

4.10 asks you to show that

plimð b̂bKÞ ¼ bK

s2
r�

K

s2
r �

K
þ s2

eK

 !
ð4:47Þ

where r�K is the linear projection error in

x�
K ¼ d0 þ d1x1 þ d2x2 þ � � � þ dK�1xK�1 þ r�K

An important implication of equation (4.47) is that, because the term multiplying bK

is always between zero and one, jplimð b̂bKÞj < jbK j. This is called the attenuation bias

in OLS due to classical errors-in-variables: on average (or in large samples), the esti-

mated OLS e¤ect will be attenuated as a result of the presence of classical errors-in-

variables. If bK is positive, b̂bK will tend to underestimate bK ; if bK is negative, b̂bK will

tend to overestimate bK .

In the case of a single explanatory variable (K ¼ 1) measured with error, equation

(4.47) becomes

plim b̂b1 ¼ b1

s2
x �

1

s2
x �

1
þ s2

e1

 !
ð4:48Þ

The term multiplying b1 in equation (4.48) is Varðx�
1 Þ=Varðx1Þ, which is always less

than unity under the CEV assumption (4.45). As Varðe1Þ shrinks relative to Varðx�
1 Þ,

the attentuation bias disappears.

In the case with multiple explanatory variables, equation (4.47) shows that it is not

s2
x�

K
that a¤ects plimð b̂bKÞ but the variance in x�

K after netting out the other explana-

tory variables. Thus, the more collinear x�
K is with the other explanatory variables,

the worse is the attenuation bias.

Example 4.8 (Measurement Error in Family Income): Consider the problem of

estimating the causal e¤ect of family income on college grade point average, after

controlling for high school grade point average and SAT score:

colGPA ¼ b0 þ b1 faminc� þ b2hsGPA þ b3SAT þ v

where faminc� is actual annual family income. Precise data on colGPA, hsGPA, and

SAT are relatively easy to obtain from school records. But family income, especially
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as reported by students, could be mismeasured. If faminc ¼ faminc� þ e1, and the

CEV assumptions hold, then using reported family income in place of actual family

income will bias the OLS estimator of b1 toward zero. One consequence is that a

hypothesis test of H0: b1 ¼ 0 will have a higher probability of Type II error.

If measurement error is present in more than one explanatory variable, deriving

the inconsistency in the OLS estimators under extensions of the CEV assumptions is

complicated and does not lead to very usable results.

In some cases it is clear that the CEV assumption (4.45) cannot be true. For ex-

ample, suppose that frequency of marijuana usage is to be used as an explanatory

variable in a wage equation. Let smoked � be the number of days, out of the last 30,

that a worker has smoked marijuana. The variable smoked is the self-reported num-

ber of days. Suppose we postulate the standard measurement error model, smoked ¼
smoked � þ e1, and let us even assume that people try to report the truth. It seems

very likely that people who do not smoke marijuana at all—so that smoked � ¼ 0—

will also report smoked ¼ 0. In other words, the measurement error is zero for people

who never smoke marijuana. When smoked � > 0 it is more likely that someone mis-

counts how many days he or she smoked marijuana. Such miscounting almost cer-

tainly means that e1 and smoked � are correlated, a finding which violates the CEV

assumption (4.45).

A general situation where assumption (4.45) is necessarily false occurs when the

observed variable xK has a smaller population variance than the unobserved variable

x�
K . Of course, we can rarely know with certainty whether this is the case, but we

can sometimes use introspection. For example, consider actual amount of schooling

versus reported schooling. In many cases, reported schooling will be a rounded-o¤

version of actual schooling; therefore, reported schooling is less variable than actual

schooling.

Problems

4.1. Consider a standard logðwageÞ equation for men under the assumption that all

explanatory variables are exogenous:

logðwageÞ ¼ b0 þ b1married þ b2educ þ zgþ u ð4:49Þ

Eðu jmarried; educ; zÞ ¼ 0

where z contains factors other than marital status and education that can a¤ect wage.

When b1 is small, 100 � b1 is approximately the ceteris paribus percentage di¤erence
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in wages between married and unmarried men. When b1 is large, it is preferable to

use the exact percentage di¤erence in Eðwage jmarried; educ; zÞ. Call this y1.

a. Show that, if u is independent of all explanatory variables in equation (4.49), then

y1 ¼ 100 � ½expðb1Þ � 1�. [Hint: Find Eðwage jmarried; educ; zÞ for married ¼ 1 and

married ¼ 0, and find the percentage di¤erence.] A natural, consistent, estimator of

y1 is ŷy1 ¼ 100 � ½expð b̂b1Þ � 1�, where b̂b1 is the OLS estimator from equation (4.49).

b. Use the delta method (see Section 3.5.2) to show that asymptotic standard error of

ŷy1 is ½100 � expð b̂b1Þ� � seð b̂b1Þ.
c. Repeat parts a and b by finding the exact percentage change in Eðwage jmarried;

educ; zÞ for any given change in educ, Deduc. Call this y2. Explain how to estimate

y2 and obtain its asymptotic standard error.

d. Use the data in NLS80.RAW to estimate equation (4.49), where z contains the

remaining variables in equation (4.29) (except ability, of course). Find ŷy1 and its

standard error; find ŷy2 and its standard error when Deduc ¼ 4.

4.2. a. Show that, under random sampling and the zero conditional mean as-

sumption Eðu j xÞ ¼ 0, Eð b̂b jXÞ ¼ b if X 0X is nonsingular. (Hint: Use Property CE.5

in the appendix to Chapter 2.)

b. In addition to the assumptions from part a, assume that Varðu j xÞ ¼ s2. Show

that Varð b̂b jXÞ ¼ s2ðX 0XÞ�1.

4.3. Suppose that in the linear model (4.5), Eðx 0uÞ ¼ 0 (where x contains unity),

Varðu j xÞ ¼ s2, but Eðu j xÞ0EðuÞ.
a. Is it true that Eðu2 j xÞ ¼ s2?

b. What relevance does part a have for OLS estimation?

4.4. Show that the estimator B̂B1N�1
PN

i¼1 ûu2
i x 0

i xi is consistent for B ¼ Eðu2x 0xÞ by

showing that N�1
PN

i¼1 ûu2
i x 0

i xi ¼ N�1
PN

i¼1 u2
i x 0

i xi þ opð1Þ. [Hint: Write ûu2
i ¼ u2

i �
2xiuið b̂b � bÞ þ ½xið b̂b � b�2, and use the facts that sample averages are Opð1Þ when

expectations exist and that b̂b � b ¼ opð1Þ. Assume that all necessary expectations

exist and are finite.]

4.5. Let y and z be random scalars, and let x be a 1 � K random vector, where one

element of x can be unity to allow for a nonzero intercept. Consider the population

model

Eðy j x; zÞ ¼ xb þ gz ð4:50Þ

Varðy j x; zÞ ¼ s2 ð4:51Þ
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where interest lies in the K � 1 vector b. To rule out trivialities, assume that g0 0. In

addition, assume that x and z are orthogonal in the population: Eðx 0zÞ ¼ 0.

Consider two estimators of b based on N independent and identically distributed

observations: (1) b̂b (obtained along with ĝg) is from the regression of y on x and z; (2)
~bb is from the regression of y on x. Both estimators are consistent for b under equa-

tion (4.50) and Eðx 0zÞ ¼ 0 (along with the standard rank conditions).

a. Show that, without any additional assumptions (except those needed to apply

the law of large numbers and central limit theorem), Avar
ffiffiffiffiffi
N

p
ð ~bb � bÞ�

Avar
ffiffiffiffiffi
N

p
ð b̂b � bÞ is always positive semidefinite (and usually positive definite).

Therefore—from the standpoint of asymptotic analysis—it is always better under

equations (4.50) and (4.51) to include variables in a regression model that are

uncorrelated with the variables of interest.

b. Consider the special case where z ¼ ðxK � mKÞ
2, where mK 1EðxKÞ, and xK is

symetrically distributed: E½ðxK � mKÞ
3� ¼ 0. Then bK is the partial e¤ect of xK on

Eðy j xÞ evaluated at xK ¼ mK . Is it better to estimate the average partial e¤ect with or

without ðxK � mKÞ
2 included as a regressor?

c. Under the setup in Problem 2.3, with Varðy j xÞ ¼ s2, is it better to estimate b1

and b2 with or without x1x2 in the regression?

4.6. Let the variable nonwhite be a binary variable indicating race: nonwhite ¼ 1 if

the person is a race other than white. Given that race is determined at birth and is

beyond an individual’s control, explain how nonwhite can be an endogenous explan-

atory variable in a regression model. In particular, consider the three kinds of endo-

geneity discussed in Section 4.1.

4.7. Consider estimating the e¤ect of personal computer ownership, as represented

by a binary variable, PC, on college GPA, colGPA. With data on SAT scores and

high school GPA you postulate the model

colGPA ¼ b0 þ b1hsGPA þ b2SAT þ b3PC þ u

a. Why might u and PC be positively correlated?

b. If the given equation is estimated by OLS using a random sample of college

students, is b̂b3 likely to have an upward or downward asymptotic bias?

c. What are some variables that might be good proxies for the unobservables in u

that are correlated with PC ?

4.8. Consider a population regression with two explanatory variables, but where

they have an interactive e¤ect and x2 appears as a quadratic:
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Eðy j x1; x2Þ ¼ b0 þ b1x1 þ b2x2 þ b3x1x2 þ b4x2
2

Let m1 1Eðx1Þ and m2 1Eðx2Þ be the population means of the explanatory variables.

a. Let a1 denote the average partial e¤ect (across the distribution of the explanatory

variables) of x1 on Eðy j x1; x2Þ, and let a2 be the same for x2. Find a1 and a2 in terms

of the bj and mj.

b. Rewrite the regression function so that a1 and a2 appear directly. (Note that m1

and m2 will also appear.)

c. Given a random sample, what regression would you run to estimate a1 and a2

directly? What if you do not know m1 and m2?

d. Apply part c to the data in NLS80.RAW, where y ¼ logðwageÞ, x1 ¼ educ, and

x2 ¼ exper. (You will have to plug in the sample averages of educ and exper.) Com-

pare coe‰cients and standard errors when the interaction term is educ�exper instead,

and discuss.

4.9. Consider a linear model where the dependent variable is in logarithmic form,

and the lag of logðyÞ is also an explanatory variable:

logðyÞ ¼ b0 þ xb þ a1 logðy�1Þ þ u; Eðu j x; y�1Þ ¼ 0

where the inclusion of logðy�1Þ might be to control for correlation between policy

variables in x and a previous value of y; see Example 4.4.

a. For estimating b, why do we obtain the same estimator if the growth in y, logðyÞ�
logðy�1Þ, is used instead as the dependent variable?

b. Suppose that there are no covariates x in the equation. Show that, if the dis-

tributions of y and y�1 are identical, then ja1j < 1. This is the regression-to-the-mean

phenomenon in a dynamic setting. {Hint: Show that a1 ¼ Corr½logðyÞ; logðy�1Þ�.}

4.10. Use Property LP.7 from Chapter 2 [particularly equation (2.56)] and Problem

2.6 to derive equation (4.47). (Hint: First use Problem 2.6 to show that the popula-

tion residual rK , in the linear projection of xK on 1; x1; . . . ; xK�1, is r�K þ eK . Then

find the projection of y on rK and use Property LP.7.)

4.11. a. In Example 4.3, use KWW and IQ simultaneously as proxies for ability

in equation (4.29). Compare the estimated return to education without a proxy for

ability and with IQ as the only proxy for ability.

b. Test KWW and IQ for joint significance in the estimated equation from part a.

c. When KWW and IQ are used as proxies for abil, does the wage di¤erential be-

tween nonblacks and blacks disappear? What is the estimated di¤erential?
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d. Add the interactions educðIQ � 100Þ and educðKWW � KWW Þ to the regression

from part a, where KWW is the average score in the sample. Are these terms jointly

significant using a standard F test? Does adding them a¤ect any important con-

clusions?

4.12. Redo Example 4.4, adding the variable union—a dummy variable indicat-

ing whether the workers at the plant are unionized—as an additional explanatory

variable.

4.13. Use the data in CORNWELL.RAW (from Cornwell and Trumball, 1994) to

estimate a model of county level crime rates, using the year 1987 only.

a. Using logarithms of all variables, estimate a model relating the crime rate to the

deterrent variables prbarr, prbconv, prbpris, and avgsen.

b. Add logðcrmrteÞ for 1986 as an additional explanatory variable, and comment on

how the estimated elasticities di¤er from part a.

c. Compute the F statistic for joint significance of all of the wage variables (again in

logs), using the restricted model from part b.

d. Redo part c but make the test robust to heteroskedasticity of unknown form.

4.14. Use the data in ATTEND.RAW to answer this question.

a. To determine the e¤ects of attending lecture on final exam performance, estimate

a model relating stndfnl (the standardized final exam score) to atndrte (the percent of

lectures attended). Include the binary variables frosh and soph as explanatory vari-

ables. Interpret the coe‰cient on atndrte, and discuss its significance.

b. How confident are you that the OLS estimates from part a are estimating the

causal e¤ect of attendence? Explain.

c. As proxy variables for student ability, add to the regression priGPA (prior cumu-

lative GPA) and ACT (achievement test score). Now what is the e¤ect of atndrte?

Discuss how the e¤ect di¤ers from that in part a.

d. What happens to the significance of the dummy variables in part c as compared

with part a? Explain.

e. Add the squares of priGPA and ACT to the equation. What happens to the co-

e‰cient on atndrte? Are the quadratics jointly significant?

f. To test for a nonlinear e¤ect of atndrte, add its square to the equation from part e.

What do you conclude?

4.15. Assume that y and each xj have finite second moments, and write the linear

projection of y on ð1; x1; . . . ; xKÞ as
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y ¼ b0 þ b1x1 þ � � � þ bK xK þ u ¼ b0 þ xb þ u

EðuÞ ¼ 0; EðxjuÞ ¼ 0; j ¼ 1; 2; . . . ;K

a. Show that s2
y ¼ VarðxbÞ þ s2

u .

b. For a random draw i from the population, write yi ¼ b0 þ xib þ ui. Evaluate the

following assumption, which has been known to appear in econometrics textbooks:

‘‘VarðuiÞ ¼ s2 ¼ VarðyiÞ for all i.’’

c. Define the population R-squared by r2 1 1 � s2
u=s

2
y ¼ VarðxbÞ=s2

y . Show that the

R-squared, R2 ¼ 1 � SSR=SST, is a consistent estimator of r2, where SSR is the OLS

sum of squared residuals and SST ¼
PN

i¼1ðyi � yÞ2 is the total sum of squares.

d. Evaluate the following statement: ‘‘In the presence of heteroskedasticity, the R-

squared from an OLS regression is meaningless.’’ (This kind of statement also tends

to appear in econometrics texts.)
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5 Instrumental Variables Estimation of Single-Equation Linear Models

In this chapter we treat instrumental variables estimation, which is probably second

only to ordinary least squares in terms of methods used in empirical economic re-

search. The underlying population model is the same as in Chapter 4, but we explic-

itly allow the unobservable error to be correlated with the explanatory variables.

5.1 Instrumental Variables and Two-Stage Least Squares

5.1.1 Motivation for Instrumental Variables Estimation

To motivate the need for the method of instrumental variables, consider a linear

population model

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bK xK þ u ð5:1Þ

EðuÞ ¼ 0; Covðxj; uÞ ¼ 0; j ¼ 1; 2; . . . ;K � 1 ð5:2Þ

but where xK might be correlated with u. In other words, the explanatory variables

x1, x2; . . . ; xK�1 are exogenous, but xK is potentially endogenous in equation (5.1).

The endogeneity can come from any of the sources we discussed in Chapter 4. To fix

ideas it might help to think of u as containing an omitted variable that is uncorrelated

with all explanatory variables except xK . So, we may be interested in a conditional

expectation as in equation (4.18), but we do not observe q, and q is correlated with

xK .

As we saw in Chapter 4, OLS estimation of equation (5.1) generally results in in-

consistent estimators of all the bj if CovðxK ; uÞ0 0. Further, without more informa-

tion, we cannot consistently estimate any of the parameters in equation (5.1).

The method of instrumental variables (IV) provides a general solution to the

problem of an endogenous explanatory variable. To use the IV approach with xK

endogenous, we need an observable variable, z1, not in equation (5.1) that satisfies

two conditions. First, z1 must be uncorrelated with u:

Covðz1; uÞ ¼ 0 ð5:3Þ

In other words, like x1; . . . ; xK�1, z1 is exogenous in equation (5.1).

The second requirement involves the relationship between z1 and the endogenous

variable, xK . A precise statement requires the linear projection of xK onto all the

exogenous variables:

xK ¼ d0 þ d1x1 þ d2x2 þ � � � þ dK�1xK�1 þ y1z1 þ rK ð5:4Þ

where, by definition of a linear projection error, EðrKÞ ¼ 0 and rK is uncorrelated

with x1, x2; . . . ; xK�1, and z1. The key assumption on this linear projection is that the



coe‰cient on z1 is nonzero:

y1 0 0 ð5:5Þ

This condition is often loosely described as ‘‘z1 is correlated with xK ,’’ but that

statement is not quite correct. The condition y1 0 0 means that z1 is partially corre-

lated with xK once the other exogenous variables x1; . . . ; xK�1 have been netted out.

If xK is the only explanatory variable in equation (5.1), then the linear projection is

xK ¼ d0 þ y1z1 þ rK , where y1 ¼ Covðz1; xKÞ=Varðz1Þ, and so condition (5.5) and

Covðz1; xKÞ0 0 are the same.

At this point we should mention that we have put no restrictions on the distribu-

tion of xK or z1. In many cases xK and z1 will be both essentially continuous, but

sometimes xK , z1, or both are discrete. In fact, one or both of xK and z1 can be binary

variables, or have continuous and discrete characteristics at the same time. Equation

(5.4) is simply a linear projection, and this is always defined when second moments of

all variables are finite.

When z1 satisfies conditions (5.3) and (5.5), then it is said to be an instrumental

variable (IV) candidate for xK . (Sometimes z1 is simply called an instrument for xK .)

Because x1; . . . ; xK�1 are already uncorrelated with u, they serve as their own instru-

mental variables in equation (5.1). In other words, the full list of instrumental vari-

ables is the same as the list of exogenous variables, but we often just refer to the

instrument for the endogenous explanatory variable.

The linear projection in equation (5.4) is called a reduced form equation for the

endogenous explanatory variable xK . In the context of single-equation linear models,

a reduced form always involves writing an endogenous variable as a linear projection

onto all exogenous variables. The ‘‘reduced form’’ terminology comes from simulta-

neous equations analysis, and it makes more sense in that context. We use it in all IV

contexts because it is a concise way of stating that an endogenous variable has been

linearly projected onto the exogenous variables. The terminology also conveys that

there is nothing necessarily structural about equation (5.4).

From the structural equation (5.1) and the reduced form for xK , we obtain a

reduced form for y by plugging equation (5.4) into equation (5.1) and rearranging:

y ¼ a0 þ a1x1 þ � � � þ aK�1xK�1 þ l1z1 þ v ð5:6Þ

where v ¼ u þ bK rK is the reduced form error, aj ¼ bj þ bK dj , and l1 ¼ bKy1. By our

assumptions, v is uncorrelated with all explanatory variables in equation (5.6), and so

OLS consistently estimates the reduced form parameters, the aj and l1.

Estimates of the reduced form parameters are sometimes of interest in their own

right, but estimating the structural parameters is generally more useful. For example,

at the firm level, suppose that xK is job training hours per worker and y is a measure
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of average worker productivity. Suppose that job training grants were randomly

assigned to firms. Then it is natural to use for z1 either a binary variable indicating

whether a firm received a job training grant or the actual amount of the grant per

worker (if the amount varies by firm). The parameter bK in equation (5.1) is the e¤ect

of job training on worker productivity. If z1 is a binary variable for receiving a job

training grant, then l1 is the e¤ect of receiving this particular job training grant on

worker productivity, which is of some interest. But estimating the e¤ect of an hour of

general job training is more valuable.

We can now show that the assumptions we have made on the IV z1 solve the

identification problem for the bj in equation (5.1). By identification we mean that we

can write the bj in terms of population moments in observable variables. To see how,

write equation (5.1) as

y ¼ xb þ u ð5:7Þ

where the constant is absorbed into x so that x ¼ ð1; x2; . . . ; xKÞ. Write the 1 � K

vector of all exogenous variables as

z1 ð1; x2; . . . ; xK�1; z1Þ

Assumptions (5.2) and (5.3) imply the K population orthogonality conditions

Eðz 0uÞ ¼ 0 ð5:8Þ

Multiplying equation (5.7) through by z 0, taking expectations, and using equation

(5.8) gives

½Eðz 0xÞ�b ¼ Eðz 0yÞ ð5:9Þ

where Eðz 0xÞ is K � K and Eðz 0yÞ is K � 1. Equation (5.9) represents a system of K

linear equations in the K unknowns b1, b2; . . . ; bK . This system has a unique solution

if and only if the K � K matrix Eðz 0xÞ has full rank; that is,

rank Eðz 0xÞ ¼ K ð5:10Þ

in which case the solution is

b ¼ ½Eðz 0xÞ��1Eðz 0yÞ ð5:11Þ

The expectations Eðz 0xÞ and Eðz 0yÞ can be consistently estimated using a random

sample on ðx; y; z1Þ, and so equation (5.11) identifies the vector b.

It is clear that condition (5.3) was used to obtain equation (5.11). But where have

we used condition (5.5)? Let us maintain that there are no linear dependencies among

the exogenous variables, so that Eðz 0zÞ has full rank K; this simply rules out perfect
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collinearity in z in the population. Then, it can be shown that equation (5.10) holds if

and only if y1 0 0. (A more general case, which we cover in Section 5.1.2, is covered

in Problem 5.12.) Therefore, along with the exogeneity condition (5.3), assumption

(5.5) is the key identification condition. Assumption (5.10) is the rank condition for

identification, and we return to it more generally in Section 5.2.1.

Given a random sample fðxi; yi; zi1Þ: i ¼ 1; 2; . . . ;Ng from the population, the in-

strumental variables estimator of b is

b̂b ¼ N�1
XN

i¼1

z 0
i xi

 !�1

N�1
XN

i¼1

z 0
i yi

 !
¼ ðZ 0 XÞ�1Z 0Y

where Z and X are N � K data matrices and Y is the N � 1 data vector on the yi.

The consistency of this estimator is immediate from equation (5.11) and the law of

large numbers. We consider a more general case in Section 5.2.1.

When searching for instruments for an endogenous explanatory variable, con-

ditions (5.3) and (5.5) are equally important in identifying b. There is, however, one

practically important di¤erence between them: condition (5.5) can be tested, whereas

condition (5.3) must be maintained. The reason for this disparity is simple: the

covariance in condition (5.3) involves the unobservable u, and therefore we cannot

test anything about Covðz1; uÞ.
Testing condition (5.5) in the reduced form (5.4) is a simple matter of computing a

t test after OLS estimation. Nothing guarantees that rK satisfies the requisite homo-

skedasticity assumption (Assumption OLS.3), so a heteroskedasticity-robust t statis-

tic for ŷy1 is often warranted. This statement is especially true if xK is a binary variable

or some other variable with discrete characteristics.

A word of caution is in order here. Econometricians have been known to say that

‘‘it is not possible to test for identification.’’ In the model with one endogenous vari-

able and one instrument, we have just seen the sense in which this statement is true:

assumption (5.3) cannot be tested. Nevertheless, the fact remains that condition (5.5)

can and should be tested. In fact, recent work has shown that the strength of the re-

jection in condition (5.5) (in a p-value sense) is important for determining the finite

sample properties, particularly the bias, of the IV estimator. We return to this issue in

Section 5.2.6.

In the context of omitted variables, an instrumental variable, like a proxy variable,

must be redundant in the structural model [that is, the model that explicitly contains

the unobservables; see condition (4.25)]. However, unlike a proxy variable, an IV for

xK should be uncorrelated with the omitted variable. Remember, we want a proxy

variable to be highly correlated with the omitted variable.
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Example 5.1 (Instrumental Variables for Education in a Wage Equation): Consider

a wage equation for the U.S. working population

logðwageÞ ¼ b0 þ b1exper þ b2exper2 þ b3educ þ u ð5:12Þ

where u is thought to be correlated with educ because of omitted ability, as well as

other factors, such as quality of education and family background. Suppose that we

can collect data on mother’s education, motheduc. For this to be a valid instrument

for educ we must assume that motheduc is uncorrelated with u and that y1 0 0 in the

reduced form equation

educ ¼ d0 þ d1exper þ d2exper2 þ y1motheduc þ r

There is little doubt that educ and motheduc are partially correlated, and this corre-

lation is easily tested given a random sample from the population. The potential

problem with motheduc as an instrument for educ is that motheduc might be corre-

lated with the omitted factors in u: mother’s education is likely to be correlated with

child’s ability and other family background characteristics that might be in u.

A variable such as the last digit of one’s social security number makes a poor IV

candidate for the opposite reason. Because the last digit is randomly determined, it is

independent of other factors that a¤ect earnings. But it is also independent of edu-

cation. Therefore, while condition (5.3) holds, condition (5.5) does not.

By being clever it is often possible to come up with more convincing instruments.

Angrist and Krueger (1991) propose using quarter of birth as an IV for education. In

the simplest case, let frstqrt be a dummy variable equal to unity for people born in the

first quarter of the year and zero otherwise. Quarter of birth is arguably independent

of unobserved factors such as ability that a¤ect wage (although there is disagreement

on this point; see Bound, Jaeger, and Baker, 1995). In addition, we must have y1 0 0

in the reduced form

educ ¼ d0 þ d1exper þ d2exper2 þ y1 frstqrt þ r

How can quarter of birth be (partially) correlated with educational attainment?

Angrist and Krueger (1991) argue that compulsory school attendence laws induce a

relationship between educ and frstqrt: at least some people are forced, by law, to at-

tend school longer than they otherwise would, and this fact is correlated with quarter

of birth. We can determine the strength of this association in a particular sample by

estimating the reduced form and obtaining the t statistic for H0: y1 ¼ 0.

This example illustrates that it can be very di‰cult to find a good instrumental

variable for an endogenous explanatory variable because the variable must satisfy
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two di¤erent, often conflicting, criteria. For motheduc, the issue in doubt is whether

condition (5.3) holds. For frstqrt, the initial concern is with condition (5.5). Since

condition (5.5) can be tested, frstqrt has more appeal as an instrument. However, the

partial correlation between educ and frstqrt is small, and this can lead to finite sample

problems (see Section 5.2.6). A more subtle issue concerns the sense in which we are

estimating the return to education for the entire population of working people. As we

will see in Chapter 18, if the return to education is not constant across people, the IV

estimator that uses frstqrt as an IV estimates the return to education only for those

people induced to obtain more schooling because they were born in the first quarter

of the year. These make up a relatively small fraction of the population.

Convincing instruments sometimes arise in the context of program evaluation,

where individuals are randomly selected to be eligible for the program. Examples

include job training programs and school voucher programs. Actual participation is

almost always voluntary, and it may be endogenous because it can depend on unob-

served factors that a¤ect the response. However, it is often reasonable to assume that

eligibility is exogenous. Because participation and eligibility are correlated, the latter

can be used as an IV for the former.

A valid instrumental variable can also come from what is called a natural experi-

ment. A natural experiment occurs when some (often unintended) feature of the setup

we are studying produces exogenous variation in an otherwise endogenous explana-

tory variable. The Angrist and Krueger (1991) example seems, at least initially, to be

a good natural experiment. Another example is given by Angrist (1990), who studies

the e¤ect of serving in the Vietnam war on the earnings of men. Participation in the

military is not necessarily exogenous to unobserved factors that a¤ect earnings, even

after controlling for education, nonmilitary experience, and so on. Angrist used the

following observation to obtain an instrumental variable for the binary Vietnam war

participation indicator: men with a lower draft lottery number were more likely to

serve in the war. Angrist verifies that the probability of serving in Vietnam is indeed

related to draft lottery number. Because the lottery number is randomly determined,

it seems like an ideal IV for serving in Vietnam. There are, however, some potential

problems. It might be that men who were assigned a low lottery number chose to

obtain more education as a way of increasing the chance of obtaining a draft defer-

ment. If we do not control for education in the earnings equation, lottery number

could be endogenous. Further, employers may have been willing to invest in job

training for men who are unlikely to be drafted. Again, unless we can include mea-

sures of job training in the earnings equation, condition (5.3) may be violated. (This

reasoning assumes that we are interested in estimating the pure e¤ect of serving in

Vietnam, as opposed to including indirect e¤ects such as reduced job training.)
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Hoxby (1994) uses topographical features, in particular the natural boundaries

created by rivers, as IVs for the concentration of public schools within a school dis-

trict. She uses these IVs to estimate the e¤ects of competition among public schools

on student performance. Cutler and Glaeser (1997) use the Hoxby instruments, as

well as others, to estimate the e¤ects of segregation on schooling and employment

outcomes for blacks. Levitt (1997) provides another example of obtaining instrumen-

tal variables from a natural experiment. He uses the timing of mayoral and guber-

natorial elections as instruments for size of the police force in estimating the e¤ects of

police on city crime rates. (Levitt actually uses panel data, something we will discuss

in Chapter 11.)

Sensible IVs need not come from natural experiments. For example, Evans and

Schwab (1995) study the e¤ect of attending a Catholic high school on various out-

comes. They use a binary variable for whether a student is Catholic as an IV for

attending a Catholic high school, and they spend much e¤ort arguing that religion is

exogenous in their versions of equation (5.7). [In this application, condition (5.5) is

easy to verify.] Economists often use regional variation in prices or taxes as instru-

ments for endogenous explanatory variables appearing in individual-level equations.

For example, in estimating the e¤ects of alcohol consumption on performance in

college, the local price of alcohol can be used as an IV for alcohol consumption,

provided other regional factors that a¤ect college performance have been appropri-

ately controlled for. The idea is that the price of alcohol, including any taxes, can be

assumed to be exogenous to each individual.

Example 5.2 (College Proximity as an IV for Education): Using wage data for

1976, Card (1995) uses a dummy variable that indicates whether a man grew up in

the vicinity of a four-year college as an instrumental variable for years of schooling.

He also includes several other controls. In the equation with experience and its

square, a black indicator, southern and urban indicators, and regional and urban

indicators for 1966, the instrumental variables estimate of the return to schooling is

.132, or 13.2 percent, while the OLS estimate is 7.5 percent. Thus, for this sample of

data, the IV estimate is almost twice as large as the OLS estimate. This result would

be counterintuitive if we thought that an OLS analysis su¤ered from an upward

omitted variable bias. One interpretation is that the OLS estimators su¤er from the

attenuation bias as a result of measurement error, as we discussed in Section 4.4.2.

But the classical errors-in-variables assumption for education is questionable. Another

interpretation is that the instrumental variable is not exogenous in the wage equation:

location is not entirely exogenous. The full set of estimates, including standard errors

and t statistics, can be found in Card (1995). Or, you can replicate Card’s results in

Problem 5.4.
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5.1.2 Multiple Instruments: Two-Stage Least Squares

Consider again the model (5.1) and (5.2), where xK can be correlated with u. Now,

however, assume that we have more than one instrumental variable for xK . Let z1,

z2; . . . ; zM be variables such that

Covðzh; uÞ ¼ 0; h ¼ 1; 2; . . . ;M ð5:13Þ

so that each zh is exogenous in equation (5.1). If each of these has some partial cor-

relation with xK , we could have M di¤erent IV estimators. Actually, there are many

more than this—more than we can count—since any linear combination of x1,

x2; . . . ; xK�1, z1, z2; . . . ; zM is uncorrelated with u. So which IV estimator should we

use?

In Section 5.2.3 we show that, under certain assumptions, the two-stage least

squares (2SLS) estimator is the most e‰cient IV estimator. For now, we rely on

intuition.

To illustrate the method of 2SLS, define the vector of exogenous variables again by

z1 ð1; x1; x2; . . . ; xK�1; z1; . . . ; zMÞ, a 1 � L vector ðL ¼ K þ MÞ. Out of all possible

linear combinations of z that can be used as an instrument for xK , the method of

2SLS chooses that which is most highly correlated with xK . If xK were exogenous,

then this choice would imply that the best instrument for xK is simply itself. Ruling

this case out, the linear combination of z most highly correlated with xK is given by

the linear projection of xK on z. Write the reduced form for xK as

xK ¼ d0 þ d1x1 þ � � � þ dK�1xK�1 þ y1z1 þ � � � þ yM zM þ rK ð5:14Þ

where, by definition, rK has zero mean and is uncorrelated with each right-hand-side

variable. As any linear combination of z is uncorrelated with u,

x�
K 1 d0 þ d1x1 þ � � � þ dK�1xK�1 þ y1z1 þ � � � þ yM zM ð5:15Þ

is uncorrelated with u. In fact, x�
K is often interpreted as the part of xK that is

uncorrelated with u. If xK is endogenous, it is because rK is correlated with u.

If we could observe x�
K , we would use it as an instrument for xK in equation (5.1)

and use the IV estimator from the previous subsection. Since the dj and yj are pop-

ulation parameters, x�
K is not a usable instrument. However, as long as we make the

standard assumption that there are no exact linear dependencies among the exoge-

nous variables, we can consistently estimate the parameters in equation (5.14) by

OLS. The sample analogues of the x�
iK for each observation i are simply the OLS

fitted values:

x̂xiK ¼ d̂d0 þ d̂d1xi1 þ � � � þ d̂dK�1xi;K�1 þ ŷy1zi1 þ � � � þ ŷyM ziM ð5:16Þ
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Now, for each observation i, define the vector x̂xi 1 ð1; xi1; . . . ; xi;K�1; x̂xiKÞ, i ¼
1; 2; . . . ;N. Using x̂xi as the instruments for xi gives the IV estimator

b̂b ¼
XN

i¼1

x̂x 0
i xi

 !�1 XN

i¼1

x̂x 0
i yi

 !
¼ ðX̂X 0 XÞ�1X̂X 0 Y ð5:17Þ

where unity is also the first element of xi.

The IV estimator in equation (5.17) turns out to be an OLS estimator. To see this

fact, note that the N � ðK þ 1Þ matrix X̂X can be expressed as X̂X ¼ ZðZ 0ZÞ�1Z 0X ¼
PZX, where the projection matrix PZ ¼ ZðZ 0ZÞ�1

Z 0 is idempotent and symmetric.

Therefore, X̂X 0 X ¼ X 0PZX ¼ ðPZXÞ0PZX ¼ X̂X 0 X̂X. Plugging this expression into equa-

tion (5.17) shows that the IV estimator that uses instruments x̂xi can be written as

b̂b ¼ ðX̂X 0 X̂XÞ�1X̂X 0 Y. The name ‘‘two-stage least squares’’ comes from this procedure.

To summarize, b̂b can be obtained from the following steps:

1. Obtain the fitted values x̂xK from the regression

xK on 1; x1; . . . ; xK�1; z1; . . . ; zM ð5:18Þ

where the i subscript is omitted for simplicity. This is called the first-stage regression.

2. Run the OLS regression

y on 1; x1; . . . ; xK�1; x̂xK ð5:19Þ

This is called the second-stage regression, and it produces the b̂bj .

In practice, it is best to use a software package with a 2SLS command rather than

explicitly carry out the two-step procedure. Carrying out the two-step procedure

explicitly makes one susceptible to harmful mistakes. For example, the following,

seemingly sensible, two-step procedure is generally inconsistent: (1) regress xK on

1; z1; . . . ; zM and obtain the fitted values, say ~xxK ; (2) run the regression in (5.19) with

~xxK in place of x̂xK . Problem 5.11 asks you to show that omitting x1; . . . ; xK�1 in the

first-stage regression and then explicitly doing the second-stage regression produces

inconsistent estimators of the bj.

Another reason to avoid the two-step procedure is that the OLS standard errors

reported with regression (5.19) will be incorrect, something that will become clear

later. Sometimes for hypothesis testing we need to carry out the second-stage regres-

sion explicitly—see Section 5.2.4.

The 2SLS estimator and the IV estimator from Section 5.1.1 are identical when

there is only one instrument for xK . Unless stated otherwise, we mean 2SLS whenever

we talk about IV estimation of a single equation.
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What is the analogue of the condition (5.5) when more than one instrument is

available with one endogenous explanatory variable? Problem 5.12 asks you to show

that Eðz 0xÞ has full column rank if and only if at least one of the yj in equation (5.14)

is nonzero. The intuition behind this requirement is pretty clear: we need at least one

exogenous variable that does not appear in equation (5.1) to induce variation in xK

that cannot be explained by x1; . . . ; xK�1. Identification of b does not depend on the

values of the dh in equation (5.14).

Testing the rank condition with a single endogenous explanatory variable and

multiple instruments is straightforward. In equation (5.14) we simply test the null

hypothesis

H0: y1 ¼ 0; y2 ¼ 0; . . . ; yM ¼ 0 ð5:20Þ

against the alternative that at least one of the yj is di¤erent from zero. This test gives

a compelling reason for explicitly running the first-stage regression. If rK in equation

(5.14) satisfies the OLS homoskedasticity assumption OLS.3, a standard F statistic or

Lagrange multiplier statistic can be used to test hypothesis (5.20). Often a hetero-

skedasticity-robust statistic is more appropriate, especially if xK has discrete charac-

teristics. If we cannot reject hypothesis (5.20) against the alternative that at least one

yh is di¤erent from zero, at a reasonably small significance level, then we should have

serious reservations about the proposed 2SLS procedure: the instruments do not pass

a minimal requirement.

The model with a single endogenous variable is said to be overidentified when M >

1 and there are M � 1 overidentifying restrictions. This terminology comes from the

fact that, if each zh has some partial correlation with xK , then we have M � 1 more

exogenous variables than needed to identify the parameters in equation (5.1). For

example, if M ¼ 2, we could discard one of the instruments and still achieve identi-

fication. In Chapter 6 we will show how to test the validity of any overidentifying

restrictions.

5.2 General Treatment of 2SLS

5.2.1 Consistency

We now summarize asymptotic results for 2SLS in a single-equation model with

perhaps several endogenous variables among the explanatory variables. Write the

population model as in equation (5.7), where x is 1 � K and generally includes unity.

Several elements of x may be correlated with u. As usual, we assume that a random

sample is available from the population.
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assumption 2SLS.1: For some 1 � L vector z, Eðz 0uÞ ¼ 0.

Here we do not specify where the elements of z come from, but any exogenous ele-

ments of x, including a constant, are included in z. Unless every element of x is ex-

ogenous, z will have to contain variables obtained from outside the model. The zero

conditional mean assumption, Eðu j zÞ ¼ 0, implies Assumption 2SLS.1.

The next assumption contains the general rank condition for single-equation

analysis.

assumption 2SLS.2: (a) rank Eðz 0zÞ ¼ L; (b) rank Eðz 0xÞ ¼ K.

Technically, part a of this assumption is needed, but it is not especially important,

since the exogenous variables, unless chosen unwisely, will be linearly independent in

the population (as well as in a typical sample). Part b is the crucial rank condition for

identification. In a precise sense it means that z is su‰ciently linearly related to x so

that rank Eðz 0xÞ has full column rank. We discussed this concept in Section 5.1 for

the situation in which x contains a single endogenous variable. When x is exogenous,

so that z ¼ x, Assumption 2SLS.1 reduces to Assumption OLS.1 and Assumption

2SLS.2 reduces to Assumption OLS.2.

Necessary for the rank condition is the order condition, LbK . In other words, we

must have at least as many instruments as we have explanatory variables. If we do

not have as many instruments as right-hand-side variables, then b is not identified.

However, LbK is no guarantee that 2SLS.2b holds: the elements of z might not be

appropriately correlated with the elements of x.

We already know how to test Assumption 2SLS.2b with a single endogenous ex-

planatory variable. In the general case, it is possible to test Assumption 2SLS.2b,

given a random sample on ðx; zÞ, essentially by performing tests on the sample ana-

logue of Eðz 0xÞ, Z 0 X=N. The tests are somewhat complicated; see, for example Cragg

and Donald (1996). Often we estimate the reduced form for each endogenous ex-

planatory variable to make sure that at least one element of z not in x is significant.

This is not su‰cient for the rank condition in general, but it can help us determine if

the rank condition fails.

Using linear projections, there is a simple way to see how Assumptions 2SLS.1 and

2SLS.2 identify b. First, assuming that Eðz 0zÞ is nonsingular, we can always write

the linear projection of x onto z as x� ¼ zP, where P is the L � K matrix P ¼
½Eðz 0zÞ��1Eðz 0xÞ. Since each column of P can be consistently estimated by regressing

the appropriate element of x onto z, for the purposes of identification of b, we can

treat P as known. Write x ¼ x� þ r, where Eðz 0rÞ ¼ 0 and so Eðx�0rÞ ¼ 0. Now, the

2SLS estimator is e¤ectively the IV estimator using instruments x�. Multiplying
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equation (5.7) by x�0, taking expectations, and rearranging gives

Eðx�0xÞb ¼ Eðx�0yÞ ð5:21Þ

since Eðx�0uÞ ¼ 0. Thus, b is identified by b ¼ ½Eðx�0xÞ��1Eðx�0yÞ provided Eðx�0xÞ is

nonsingular. But

Eðx�0xÞ ¼ P 0Eðz 0xÞ ¼ Eðx 0zÞ½Eðz 0zÞ��1Eðz 0xÞ

and this matrix is nonsingular if and only if Eðz 0xÞ has rank K; that is, if and only if

Assumption 2SLS.2b holds. If 2SLS.2b fails, then Eðx�0xÞ is singular and b is not

identified. [Note that, because x ¼ x� þ r with Eðx�0rÞ ¼ 0, Eðx�0xÞ ¼ Eðx�0x�Þ. So b

is identified if and only if rank Eðx�0x�Þ ¼ K .]

The 2SLS estimator can be written as in equation (5.17) or as

b̂b ¼
XN

i¼1

x 0
i zi

 ! XN

i¼1

z 0
i zi

 !�1 XN

i¼1

z 0
i xi

 !2
4

3
5
�1 XN

i¼1

x 0
i zi

 ! XN

i¼1

z 0
i zi

 !�1 XN

i¼1

z 0
i yi

 !

ð5:22Þ

We have the following consistency result.

theorem 5.1 (Consistency of 2SLS): Under Assumptions 2SLS.1 and 2SLS.2, the

2SLS estimator obtained from a random sample is consistent for b.

Proof: Write

b̂b ¼ b þ N�1
XN

i¼1

x 0
i zi

 !
N�1

XN

i¼1

z 0
i zi

 !�1

N�1
XN

i¼1

z 0
i xi

 !2
4

3
5
�1

� N�1
XN

i¼1

x 0
i zi

 !
N�1

XN

i¼1

z 0
i zi

 !�1

N�1
XN

i¼1

z 0
i ui

 !

and, using Assumptions 2SLS.1 and 2SLS.2, apply the law of large numbers to each

term along with Slutsky’s theorem.

5.2.2 Asymptotic Normality of 2SLS

The asymptotic normality of
ffiffiffiffiffi
N

p
ð b̂b � bÞ follows from the asymptotic normality of

N�1=2
PN

i¼1 z 0
i ui, which follows from the central limit theorem under Assumption

2SLS.1 and mild finite second-moment assumptions. The asymptotic variance is

simplest under a homoskedasticity assumption:
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assumption 2SLS.3: Eðu2z 0zÞ ¼ s2Eðz 0zÞ, where s2 ¼ Eðu2Þ.

This assumption is the same as Assumption OLS.3 except that the vector of instru-

ments appears in place of x. By the usual LIE argument, su‰cient for Assumption

2SLS.3 is the assumption

Eðu2 j zÞ ¼ s2 ð5:23Þ

which is the same as Varðu j zÞ ¼ s2 if Eðu j zÞ ¼ 0. [When x contains endogenous

elements, it makes no sense to make assumptions about Varðu j xÞ.]

theorem 5.2 (Asymptotic Normality of 2SLS): Under Assumptions 2SLS.1–2SLS.3,ffiffiffiffiffi
N

p
ð b̂b � bÞ is asymptotically normally distributed with mean zero and variance matrix

s2fEðx 0zÞ½Eðz 0zÞ��1Eðz 0xÞg�1 ð5:24Þ

The proof of Theorem 5.2 is similar to Theorem 4.2 for OLS and is therefore omitted.

The matrix in expression (5.24) is easily estimated using sample averages. To esti-

mate s2 we will need appropriate estimates of the ui. Define the 2SLS residuals as

ûui ¼ yi � xib̂b; i ¼ 1; 2; . . . ;N ð5:25Þ

Note carefully that these residuals are not the residuals from the second-stage OLS

regression that can be used to obtain the 2SLS estimates. The residuals from the

second-stage regression are yi � x̂xib̂b. Any 2SLS software routine will compute equa-

tion (5.25) as the 2SLS residuals, and these are what we need to estimate s2.

Given the 2SLS residuals, a consistent (though not unbiased) estimator of s2 under

Assumptions 2SLS.1–2SLS.3 is

ŝs2 1 ðN � KÞ�1
XN

i¼1

ûu2
i ð5:26Þ

Many regression packages use the degrees of freedom adjustment N � K in place of

N, but this usage does not a¤ect the consistency of the estimator.

The K � K matrix

ŝs2
XN

i¼1

x̂x 0
i x̂xi

 !�1

¼ ŝs2ðX̂X 0 X̂XÞ�1 ð5:27Þ

is a valid estimator of the asymptotic variance of b̂b under Assumptions 2SLS.1–

2SLS.3. The (asymptotic) standard error of b̂bj is just the square root of the jth diag-

onal element of matrix (5.27). Asymptotic confidence intervals and t statistics are

obtained in the usual fashion.
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Example 5.3 (Parents’ and Husband’s Education as IVs): We use the data on the

428 working, married women in MROZ.RAW to estimate the wage equation (5.12).

We assume that experience is exogenous, but we allow educ to be correlated with u.

The instruments we use for educ are motheduc, fatheduc, and huseduc. The reduced

form for educ is

educ ¼ d0 þ d1exper þ d2exper2 þ y1motheduc þ y2 fatheduc þ y3huseduc þ r

Assuming that motheduc, fatheduc, and huseduc are exogenous in the logðwageÞ
equation (a tenuous assumption), equation (5.12) is identified if at least one of y1, y2,

and y3 is nonzero. We can test this assumption using an F test (under homoskedas-

ticity). The F statistic (with 3 and 422 degrees of freedom) turns out to be 104.29,

which implies a p-value of zero to four decimal places. Thus, as expected, educ is

fairly strongly related to motheduc, fatheduc, and huseduc. (Each of the three t sta-

tistics is also very significant.)

When equation (5.12) is estimated by 2SLS, we get the following:

logðŵwageÞ ¼ �:187

ð:285Þ
þ :043

ð:013Þ
exper � :00086

ð:00040Þ
exper2 þ :080

ð:022Þ
educ

where standard errors are in parentheses. The 2SLS estimate of the return to educa-

tion is about 8 percent, and it is statistically significant. For comparison, when

equation (5.12) is estimated by OLS, the estimated coe‰cient on educ is about .107

with a standard error of about .014. Thus, the 2SLS estimate is notably below the

OLS estimate and has a larger standard error.

5.2.3 Asymptotic E‰ciency of 2SLS

The appeal of 2SLS comes from its e‰ciency in a class of IV estimators:

theorem 5.3 (Relative E‰ciency of 2SLS): Under Assumptions 2SLS.1–2SLS.3,

the 2SLS estimator is e‰cient in the class of all instrumental variables estimators

using instruments linear in z.

Proof: Let b̂b be the 2SLS estimator, and let ~bb be any other IV estimator using

instruments linear in z. Let the instruments for ~bb be ~xx1 zG, where G is an L � K

nonstochastic matrix. (Note that z is the 1 � L random vector in the population.)

We assume that the rank condition holds for ~xx. For 2SLS, the choice of IVs is

e¤ectively x� ¼ zP, where P ¼ ½Eðz 0zÞ��1Eðz 0xÞ1D�1C. (In both cases, we can re-

place G and P with
ffiffiffiffiffi
N

p
-consistent estimators without changing the asymptotic vari-

ances.) Now, under Assumptions 2SLS.1–2SLS.3, we know the asymptotic variance
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of
ffiffiffiffiffi
N

p
ð b̂b � bÞ is s2½Eðx�0x�Þ��1, where x� ¼ zP. It is straightforward to show that

Avar½
ffiffiffiffiffi
N

p
ð ~bb � bÞ� ¼ s2½Eð~xx 0xÞ��1½Eð~xx 0~xxÞ�½Eðx 0~xxÞ��1. To show that Avar½

ffiffiffiffiffi
N

p
ð ~bb � bÞ�

�Avar½
ffiffiffiffiffi
N

p
ð b̂b � bÞ� is positive semidefinite (p.s.d.), it su‰ces to show that Eðx�0x�Þ�

Eðx 0~xxÞ½Eð~xx 0~xxÞ��1Eð~xx 0xÞ is p.s.d. But x ¼ x� þ r, where Eðz 0rÞ ¼ 0, and so Eð~xx 0rÞ ¼ 0.

It follows that Eð~xx 0xÞ ¼ Eð~xx 0x�Þ, and so

Eðx�0x�Þ � Eðx 0~xxÞ½Eð~xx 0~xxÞ��1Eð~xx 0xÞ

¼ Eðx�0x�Þ � Eðx�0~xxÞ½Eð~xx 0~xxÞ��1Eð~xx 0x�Þ ¼ Eðs�0s�Þ

where s� ¼ x� � Lðx� j ~xxÞ is the population residual from the linear projection of x�

on ~xx. Because Eðs�0s�Þ is p.s.d, the proof is complete.

Theorem 5.3 is vacuous when L ¼ K because any (nonsingular) choice of G leads

to the same estimator: the IV estimator derived in Section 5.1.1.

When x is exogenous, Theorem 5.3 implies that, under Assumptions 2SLS.1–

2SLS.3, the OLS estimator is e‰cient in the class of all estimators using instruments

linear in exogenous variables z. This statement is true because x is a subset of z and

so Lðx j zÞ ¼ x.

Another important implication of Theorem 5.3 is that, asymptotically, we always

do better by using as many instruments as are available, at least under homo-

skedasticity. This conclusion follows because using a subset of z as instruments cor-

responds to using a particular linear combination of z. For certain subsets we might

achieve the same e‰ciency as 2SLS using all of z, but we can do no better. This ob-

servation makes it tempting to add many instruments so that L is much larger than

K. Unfortunately, 2SLS estimators based on many overidentifying restrictions can

cause finite sample problems; see Section 5.2.6.

Since Assumption 2SLS.3 is assumed for Theorem 5.3, it is not surprising that

more e‰cient estimators are available if Assumption 2SLS.3 fails. If L > K , a more

e‰cient estimator than 2SLS exists, as shown by Hansen (1982) and White (1982b,

1984). In fact, even if x is exogenous and Assumption OLS.3 holds, OLS is not gen-

erally asymptotically e‰cient if, for xH z, Assumptions 2SLS.1 and 2SLS.2 hold but

Assumption 2SLS.3 does not. Obtaining the e‰cient estimator falls under the rubric

of generalized method of moments estimation, something we cover in Chapter 8.

5.2.4 Hypothesis Testing with 2SLS

We have already seen that testing hypotheses about a single bj is straightforward us-

ing an asymptotic t statistic, which has an asymptotic normal distribution under the

null; some prefer to use the t distribution when N is small. Generally, one should be
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aware that the normal and t approximations can be poor if N is small. Hypotheses

about single linear combinations involving the bj are also easily carried out using a t

statistic. The easiest procedure is to define the linear combination of interest, say

y1 a1b1 þ a2b2 þ � � � þ aKbK , and then to write one of the bj in terms of y and the

other elements of b. Then, substitute into the equation of interest so that y appears

directly, and estimate the resulting equation by 2SLS to get the standard error of ŷy.

See Problem 5.9 for an example.

To test multiple linear restrictions of the form H0: Rb ¼ r, the Wald statistic is just

as in equation (4.13), but with V̂V given by equation (5.27). The Wald statistic, as

usual, is a limiting null w2
Q distribution. Some econometrics packages, such as Stata=,

compute the Wald statistic (actually, its F statistic counterpart, obtained by dividing

the Wald statistic by Q) after 2SLS estimation using a simple test command.

A valid test of multiple restrictions can be computed using a residual-based

method, analogous to the usual F statistic from OLS analysis. Any kind of linear re-

striction can be recast as exclusion restrictions, and so we explicitly cover exclusion

restrictions. Write the model as

y ¼ x1b1 þ x2b2 þ u ð5:28Þ

where x1 is 1 � K1 and x2 is 1 � K2, and interest lies in testing the K2 restrictions

H0: b2 ¼ 0 against H1: b2 0 0 ð5:29Þ

Both x1 and x2 can contain endogenous and exogenous variables.

Let z denote the LbK1 þ K2 vector of instruments, and we assume that the rank

condition for identification holds. Justification for the following statistic can be found

in Wooldridge (1995b).

Let ûui be the 2SLS residuals from estimating the unrestricted model using zi as

instruments. Using these residuals, define the 2SLS unrestricted sum of squared

residuals by

SSRur 1
XN

i¼1

ûu2
i ð5:30Þ

In order to define the F statistic for 2SLS, we need the sum of squared residuals from

the second-stage regressions. Thus, let x̂xi1 be the 1 � K1 fitted values from the first-

stage regression xi1 on zi. Similarly, x̂xi2 are the fitted values from the first-stage re-

gression xi2 on zi. Define SŜSRur as the usual sum of squared residuals from the

unrestricted second-stage regression y on x̂x1, x̂x2. Similarly, SŜSRr is the sum of squared

residuals from the restricted second-stage regression, y on x̂x1. It can be shown that,
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under H0: b2 ¼ 0 (and Assumptions 2SLS.1–2SLS.3), N � ðSŜSRr � SŜSRurÞ=SSRur @
a

w2
K2

. It is just as legitimate to use an F-type statistic:

F 1
ðSŜSRr � SŜSRurÞ

SSRur

� ðN � KÞ
K2

ð5:31Þ

is distributed approximately as FK2;N�K .

Note carefully that SŜSRr and SŜSRur appear in the numerator of (5.31). These

quantities typically need to be computed directly from the second-stage regression. In

the denominator of F is SSRur, which is the 2SLS sum of squared residuals. This is

what is reported by the 2SLS commands available in popular regression packages.

For 2SLS it is important not to use a form of the statistic that would work for

OLS, namely,

ðSSRr � SSRurÞ
SSRur

� ðN � KÞ
K2

ð5:32Þ

where SSRr is the 2SLS restricted sum of squared residuals. Not only does expression

(5.32) not have a known limiting distribution, but it can also be negative with positive

probability even as the sample size tends to infinity; clearly such a statistic cannot

have an approximate F distribution, or any other distribution typically associated

with multiple hypothesis testing.

Example 5.4 (Parents’ and Husband’s Education as IVs, continued): We add the

number of young children (kidslt6) and older children (kidsge6) to equation (5.12)

and test for their joint significance using the Mroz (1987) data. The statistic in equa-

tion (5.31) is F ¼ :31; with two and 422 degrees of freedom, the asymptotic p-value is

about .737. There is no evidence that number of children a¤ects the wage for working

women.

Rather than equation (5.31), we can compute an LM-type statistic for testing hy-

pothesis (5.29). Let ~uui be the 2SLS residuals from the restricted model. That is, obtain
~bb1 from the model y ¼ x1b1 þ u using instruments z, and let ~uui 1 yi � xi1

~bb1. Letting

x̂xi1 and x̂xi2 be defined as before, the LM statistic is obtained as NR2
u from the

regression

~uui on x̂xi1; x̂xi2; i ¼ 1; 2; . . . ;N ð5:33Þ

where R2
u is generally the uncentered R-squared. (That is, the total sum of squares in

the denominator of R-squared is not demeaned.) When f~uuig has a zero sample aver-

age, the uncentered R-squared and the usual R-squared are the same. This is the case

when the null explanatory variables x1 and the instruments z both contain unity, the
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typical case. Under H0 and Assumptions 2SLS.1–2SLS.3, LM @
a
w2

K2
. Whether one

uses this statistic or the F statistic in equation (5.31) is primarily a matter of taste;

asymptotically, there is nothing that distinguishes the two.

5.2.5 Heteroskedasticity-Robust Inference for 2SLS

Assumption 2SLS.3 can be restrictive, so we should have a variance matrix estimator

that is robust in the presence of heteroskedasticity of unknown form. As usual, we

need to estimate B along with A. Under Assumptions 2SLS.1 and 2SLS.2 only,

Avarð b̂bÞ can be estimated as

ðX̂X 0 X̂XÞ�1
XN

i¼1

ûu2
i x̂x 0

i x̂xi

 !
ðX̂X 0 X̂XÞ�1 ð5:34Þ

Sometimes this matrix is multiplied by N=ðN � KÞ as a degrees-of-freedom adjust-

ment. This heteroskedasticity-robust estimator can be used anywhere the estimator

ŝs2ðX̂X 0 X̂XÞ�1 is. In particular, the square roots of the diagonal elements of the matrix

(5.34) are the heteroskedasticity-robust standard errors for 2SLS. These can be used

to construct (asymptotic) t statistics in the usual way. Some packages compute these

standard errors using a simple command. For example, using Stata=, rounded to

three decimal places the heteroskedasticity-robust standard error for educ in Example

5.3 is .022, which is the same as the usual standard error rounded to three decimal

places. The robust standard error for exper is .015, somewhat higher than the non-

robust one (.013).

Sometimes it is useful to compute a robust standard error that can be computed

with any regression package. Wooldridge (1995b) shows how this procedure can be

carried out using an auxiliary linear regression for each parameter. Consider com-

puting the robust standard error for b̂bj. Let ‘‘seð b̂bjÞ’’ denote the standard error com-

puted using the usual variance matrix (5.27); we put this in quotes because it is no

longer appropriate if Assumption 2SLS.3 fails. The ŝs is obtained from equation

(5.26), and ûui are the 2SLS residuals from equation (5.25). Let r̂rij be the residuals

from the regression

x̂xij on x̂xi1; x̂xi2; . . . ; x̂xi; j�1; x̂xi; jþ1; . . . ; x̂xiK ; i ¼ 1; 2; . . . ;N

and define m̂mj 1
PN

i¼1 r̂rij ûui. Then, a heteroskedasticity-robust standard error of b̂bj can

be tabulated as

seð b̂bjÞ ¼ ½N=ðN � KÞ�1=2½‘‘seð b̂bjÞ’’=ŝs�
2=ðm̂mjÞ1=2 ð5:35Þ

Many econometrics packages compute equation (5.35) for you, but it is also easy to

compute directly.
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To test multiple linear restrictions using the Wald approach, we can use the usual

statistic but with the matrix (5.34) as the estimated variance. For example, the

heteroskedasticity-robust version of the test in Example 5.4 gives F ¼ :25; asymp-

totically, F can be treated as an F2;422 variate. The asymptotic p-value is .781.

The Lagrange multiplier test for omitted variables is easily made heteroskedasticity-

robust. Again, consider the model (5.28) with the null (5.29), but this time with-

out the homoskedasticity assumptions. Using the notation from before, let r̂ri 1
ðr̂ri1; r̂ri2; . . . ; r̂riK2

Þ be the 1 � K2 vectors of residuals from the multivariate regression

x̂xi2 on x̂xi1, i ¼ 1; 2; . . . ;N. (Again, this procedure can be carried out by regressing

each element of x̂xi2 on all of x̂xi1.) Then, for each observation, form the 1 � K2 vector

~uui � r̂ri 1 ð~uui � r̂ri1; . . . ; ~uui � r̂riK2
Þ. Then, the robust LM test is N � SSR0 from the regres-

sion 1 on ~uui � r̂ri1; . . . ; ~uui � r̂riK2
, i ¼ 1; 2; . . . ;N. Under H0;N � SSR0 @

a
w2

K2
. This pro-

cedure can be justified in a manner similar to the tests in the context of OLS. You are

referred to Wooldridge (1995b) for details.

5.2.6 Potential Pitfalls with 2SLS

When properly applied, the method of instrumental variables can be a powerful tool

for estimating structural equations using nonexperimental data. Nevertheless, there

are some problems that one can encounter when applying IV in practice.

One thing to remember is that, unlike OLS under a zero conditional mean as-

sumption, IV methods are never unbiased when at least one explanatory variable is

endogenous in the model. In fact, under standard distributional assumptions, the

expected value of the 2SLS estimator does not even exist. As shown by Kinal (1980),

in the case when all endogenous variables have homoskedastic normal distributions

with expectations linear in the exogenous variables, the number of moments of the

2SLS estimator that exist is one less than the number of overidentifying restrictions.

This finding implies that when the number of instruments equals the number of ex-

planatory variables, the IV estimator does not have an expected value. This is one

reason we rely on large-sample analysis to justify 2SLS.

Even in large samples IV methods can be ill-behaved if the instruments are weak.

Consider the simple model y ¼ b0 þ b1x1 þ u, where we use z1 as an instrument for

x1. Assuming that Covðz1; x1Þ0 0, the plim of the IV estimator is easily shown to be

plim b̂b1 ¼ b1 þ Covðz1; uÞ=Covðz1; x1Þ ð5:36Þ

When Covðz1; uÞ ¼ 0 we obtain the consistency result from earlier. However, if z1 has

some correlation with u, the IV estimator is, not surprisingly, inconsistent. Rewrite

equation (5.36) as

plim b̂b1 ¼ b1 þ ðsu=sx1
Þ½Corrðz1; uÞ=Corrðz1; x1Þ� ð5:37Þ
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where Corrð� ; �Þ denotes correlation. From this equation we see that if z1 and u are

correlated, the inconsistency in the IV estimator gets arbitrarily large as Corrðz1; x1Þ
gets close to zero. Thus seemingly small correlations between z1 and u can cause

severe inconsistency—and therefore severe finite sample bias—if z1 is only weakly

correlated with x1. In such cases it may be better to just use OLS, even if we only

focus on the inconsistency in the estimators: the plim of the OLS estimator is gen-

erally b1 þ ðsu=sx1
Þ Corrðx1; uÞ. Unfortunately, since we cannot observe u, we can

never know the size of the inconsistencies in IV and OLS. But we should be con-

cerned if the correlation between z1 and x1 is weak. Similar considerations arise with

multiple explanatory variables and instruments.

Another potential problem with applying 2SLS and other IV procedures is that the

2SLS standard errors have a tendency to be ‘‘large.’’ What is typically meant by this

statement is either that 2SLS coe‰cients are statistically insignificant or that the

2SLS standard errors are much larger than the OLS standard errors. Not suprisingly,

the magnitudes of the 2SLS standard errors depend, among other things, on the

quality of the instrument(s) used in estimation.

For the following discussion we maintain the standard 2SLS Assumptions 2SLS.1–

2SLS.3 in the model

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bK xK þ u ð5:38Þ

Let b̂b be the vector of 2SLS estimators using instruments z. For concreteness, we focus

on the asymptotic variance of b̂bK . Technically, we should study Avar
ffiffiffiffiffi
N

p
ð b̂bK � bKÞ,

but it is easier to work with an expression that contains the same information. In

particular, we use the fact that

Avarð b̂bKÞA
s2

SŜSRK

ð5:39Þ

where SŜSRK is the sum of squared residuals from the regression

x̂xK on 1; x̂x1; . . . ; x̂xK�1 ð5:40Þ

(Remember, if xj is exogenous for any j, then x̂xj ¼ xj.) If we replace s2 in regression

(5.39) with ŝs2, then expression (5.39) is the usual 2SLS variance estimator. For the

current discussion we are interested in the behavior of SŜSRK .

From the definition of an R-squared, we can write

SŜSRK ¼ SŜSTKð1 � R̂R2
KÞ ð5:41Þ

where SŜSTK is the total sum of squares of x̂xK in the sample, SŜSTK ¼
PN

i¼1ðx̂xiK � x̂xKÞ,
and R̂R2

K is the R-squared from regression (5.40). In the context of OLS, the term
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ð1 � R̂R2
KÞ in equation (5.41) is viewed as a measure of multicollinearity, whereas SŜSTK

measures the total variation in x̂xK . We see that, in addition to traditional multicol-

linearity, 2SLS can have an additional source of large variance: the total variation in

x̂xK can be small.

When is SŜSTK small? Remember, x̂xK denotes the fitted values from the regression

xK on z ð5:42Þ

Therefore, SŜSTK is the same as the explained sum of squares from the regression

(5.42). If xK is only weakly related to the IVs, then the explained sum of squares from

regression (5.42) can be quite small, causing a large asymptotic variance for b̂bK . If

xK is highly correlated with z, then SŜSTK can be almost as large as the total sum of

squares of xK and SSTK , and this fact reduces the 2SLS variance estimate.

When xK is exogenous—whether or not the other elements of x are—SŜSTK ¼
SSTK . While this total variation can be small, it is determined only by the sample

variation in fxiK : i ¼ 1; 2; . . . ;Ng. Therefore, for exogenous elements appearing

among x, the quality of instruments has no bearing on the size of the total sum of

squares term in equation (5.41). This fact helps explain why the 2SLS estimates

on exogenous explanatory variables are often much more precise than the coe‰-

cients on endogenous explanatory variables.

In addition to making the term SŜSTK small, poor quality of instruments can lead to

R̂R2
K close to one. As an illustration, consider a model in which xK is the only endog-

enous variable and there is one instrument z1 in addition to the exogenous variables

ð1; x1; . . . ; xK�1Þ. Therefore, z1 ð1; x1; . . . ; xK�1; z1Þ. (The same argument works for

multiple instruments.) The fitted values x̂xK come from the regression

xK on 1; x1; . . . ; xK�1; z1 ð5:43Þ

Because all other regressors are exogenous (that is, they are included in z), R̂R2
K comes

from the regression

x̂xK on 1; x1; . . . ; xK�1 ð5:44Þ

Now, from basic least squares mechanics, if the coe‰cient on z1 in regression (5.43) is

exactly zero, then the R-squared from regression (5.44) is exactly unity, in which case

the 2SLS estimator does not even exist. This outcome virtually never happens, but

z1 could have little explanatory value for xK once x1; . . . ; xK�1 have been controlled

for, in which case R̂R2
K can be close to one. Identification, which only has to do with

whether we can consistently estimate b, requires only that z1 appear with nonzero

coe‰cient in the population analogue of regression (5.43). But if the explanatory

power of z1 is weak, the asymptotic variance of the 2SLS estimator can be quite
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large. This is another way to illustrate why nonzero correlation between xK and z1 is

not enough for 2SLS to be e¤ective: the partial correlation is what matters for the

asymptotic variance.

As always, we must keep in mind that there are no absolute standards for deter-

mining when the denominator of equation (5.39) is ‘‘large enough.’’ For example, it

is quite possible that, say, xK and z are only weakly linearly related but the sample

size is su‰ciently large so that the term SŜSTK is large enough to produce a small

enough standard error (in the sense that confidence intervals are tight enough to re-

ject interesting hypotheses). Provided there is some linear relationship between xK

and z in the population, SŜSTK !p y as N ! y. Further, in the preceding example, if

the coe‰cent y1 on z1 in the population regression (5.4) is di¤erent from zero, then

R̂R2
K converges in probability to a number less than one; asymptotically, multicol-

linearity is not a problem.

We are in a di‰cult situation when the 2SLS standard errors are so large that

nothing is significant. Often we must choose between a possibly inconsistent estima-

tor that has relatively small standard errors (OLS) and a consistent estimator that is

so imprecise that nothing interesting can be concluded (2SLS). One approach is to

use OLS unless we can reject exogeneity of the explanatory variables. We show how

to test for endogeneity of one or more explanatory variables in Section 6.2.1.

There has been some important recent work on the finite sample properties of

2SLS that emphasizes the potentially large biases of 2SLS, even when sample sizes

seem to be quite large. Remember that the 2SLS estimator is never unbiased (pro-

vided one has at least one truly endogenous variable in x). But we hope that, with a

very large sample size, we need only weak instruments to get an estimator with small

bias. Unfortunately, this hope is not fulfilled. For example, Bound, Jaeger, and Baker

(1995) show that in the setting of Angrist and Krueger (1991) the 2SLS estimator

can be expected to behave quite poorly, an alarming finding because Angrist and

Krueger use 300,000 to 500,000 observations! The problem is that the instruments—

representing quarters of birth and various interactions of these with year of birth and

state of birth—are very weak, and they are too numerous relative to their contribu-

tion in explaining years of education. One lesson is that, even with a very large sample

size and zero correlation between the instruments and error, we should not use too

many overidentifying restrictions.

Staiger and Stock (1997) provide a theoretical analysis of the 2SLS estimator with

weak instruments and conclude that, even with large sample sizes, instruments that

have small partial correlation with an endogenous explanatory variable can lead to

substantial biases in 2SLS. One lesson that comes out of the Staiger-Stock work is
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that we should always compute the F statistic from the first-stage regression (or the t

statistic with a single instrumental variable). Staiger and Stock (1997) provide some

guidelines about how large this F statistic should be (equivalently, how small the p-

value should be) for 2SLS to have acceptable properties.

5.3 IV Solutions to the Omitted Variables and Measurement Error Problems

In this section, we briefly survey the di¤erent approaches that have been suggested

for using IV methods to solve the omitted variables problem. Section 5.3.2 covers an

approach that applies to measurement error as well.

5.3.1 Leaving the Omitted Factors in the Error Term

Consider again the omitted variable model

y ¼ b0 þ b1x1 þ � � � þ bK xK þ gq þ v ð5:45Þ

where q represents the omitted variable and Eðv j x; qÞ ¼ 0. The solution that would

follow from Section 5.1.1 is to put q in the error term, and then to find instruments

for any element of x that is correlated with q. It is useful to think of the instruments

satisfying the following requirements: (1) they are redundant in the structural model

Eðy j x; qÞ; (2) they are uncorrelated with the omitted variable, q; and (3) they are

su‰ciently correlated with the endogenous elements of x (that is, those elements that

are correlated with q). Then 2SLS applied to equation (5.45) with u1 gq þ v pro-

duces consistent and asymptotically normal estimators.

5.3.2 Solutions Using Indicators of the Unobservables

An alternative solution to the omitted variable problem is similar to the OLS proxy

variable solution but requires IV rather than OLS estimation. In the OLS proxy

variable solution we assume that we have z1 such that q ¼ y0 þ y1z1 þ r1 where r1 is

uncorrelated with z1 (by definition) and is uncorrelated with x1; . . . ; xK (the key proxy

variable assumption). Suppose instead that we have two indicators of q. Like a proxy

variable, an indicator of q must be redundant in equation (5.45). The key di¤erence is

that an indicator can be written as

q1 ¼ d0 þ d1q þ a1 ð5:46Þ

where

Covðq; a1Þ ¼ 0; Covðx; a1Þ ¼ 0 ð5:47Þ
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This assumption contains the classical errors-in-variables model as a special case,

where q is the unobservable, q1 is the observed measurement, d0 ¼ 0, and d1 ¼ 1, in

which case g in equation (5.45) can be identified.

Assumption (5.47) is very di¤erent from the proxy variable assumption. Assuming

that d1 0 0—otherwise q1 is not correlated with q—we can rearrange equation (5.46)

as

q ¼ �ðd0=d1Þ þ ð1=d1Þq1 � ð1=d1Þa1 ð5:48Þ

where the error in this equation, �ð1=d1Þa1, is necessarily correlated with q1; the

OLS–proxy variable solution would be inconsistent.

To use the indicator assumption (5.47), we need some additional information. One

possibility is to have a second indicator of q:

q2 ¼ r0 þ r1q þ a2 ð5:49Þ

where a2 satisfies the same assumptions as a1 and r1 0 0. We still need one more

assumption:

Covða1; a2Þ ¼ 0 ð5:50Þ

This implies that any correlation between q1 and q2 arises through their common

dependence on q.

Plugging q1 in for q and rearranging gives

y ¼ a0 þ xb þ g1q1 þ ðv � g1a1Þ ð5:51Þ

where g1 ¼ g=d1. Now, q2 is uncorrelated with v because it is redundant in equation

(5.45). Further, by assumption, q2 is uncorrelated with a1 (a1 is uncorrelated with q

and a2). Since q1 and q2 are correlated, q2 can be used as an IV for q1 in equation

(5.51). Of course the roles of q2 and q1 can be reversed. This solution to the omitted

variables problem is sometimes called the multiple indicator solution.

It is important to see that the multiple indicator IV solution is very di¤erent from

the IV solution that leaves q in the error term. When we leave q as part of the error,

we must decide which elements of x are correlated with q, and then find IVs for those

elements of x. With multiple indicators for q, we need not know which elements of x

are correlated with q; they all might be. In equation (5.51) the elements of x serve as

their own instruments. Under the assumptions we have made, we only need an in-

strument for q1, and q2 serves that purpose.

Example 5.5 (IQ and KWW as Indicators of Ability): We apply the indicator

method to the model of Example 4.3, using the 935 observations in NLS80.RAW. In

addition to IQ, we have a knowledge of the working world (KWW ) test score. If we
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write IQ ¼ d0 þ d1abil þ a1, KWW ¼ r0 þ r1abil þ a2, and the previous assumptions

are satisfied in equation (4.29), then we can add IQ to the wage equation and use

KWW as an instrument for IQ. We get

logðŵwageÞ ¼ 4:59

ð0:33Þ
þ :014

ð:003Þ
exper þ :010

ð:003Þ
tenure þ :201

ð:041Þ
married

� :051

ð:031Þ
south þ :177

ð:028Þ
urban � :023

ð:074Þ
black þ :025

ð:017Þ
educ þ :013

ð:005Þ
IQ

The estimated return to education is about 2.5 percent, and it is not statistically sig-

nificant at the 5 percent level even with a one-sided alternative. If we reverse the roles

of KWW and IQ, we get an even smaller return to education: about 1.7 percent with

a t statistic of about 1.07. The statistical insignificance is perhaps not too surprising

given that we are using IV, but the magnitudes of the estimates are surprisingly small.

Perhaps a1 and a2 are correlated with each other, or with some elements of x.

In the case of the CEV measurement error model, q1 and q2 are measures of

q assumed to have uncorrelated measurement errors. Since d0 ¼ r0 ¼ 0 and d1 ¼
r1 ¼ 1, g1 ¼ g. Therefore, having two measures, where we plug one into the equation

and use the other as its instrument, provides consistent estimators of all parameters in

the CEV setup.

There are other ways to use indicators of an omitted variable (or a single mea-

surement in the context of measurement error) in an IV approach. Suppose that only

one indicator of q is available. Without further information, the parameters in the

structural model are not identified. However, suppose we have additional variables

that are redundant in the structural equation (uncorrelated with v), are uncorrelated

with the error a1 in the indicator equation, and are correlated with q. Then, as you

are asked to show in Problem 5.7, estimating equation (5.51) using this additional set

of variables as instruments for q1 produces consistent estimators. This is the method

proposed by Griliches and Mason (1972) and also used by Blackburn and Neumark

(1992).

Problems

5.1. In this problem you are to establish the algebraic equivalence between 2SLS

and OLS estimation of an equation containing an additional regressor. Although the

result is completely general, for simplicity consider a model with a single (suspected)

endogenous variable:
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y1 ¼ z1d1 þ a1y2 þ u1

y2 ¼ zp2 þ v2

For notational clarity, we use y2 as the suspected endogenous variable and z as the

vector of all exogenous variables. The second equation is the reduced form for y2.

Assume that z has at least one more element than z1.

We know that one estimator of ðd1; a1Þ is the 2SLS estimator using instruments x.

Consider an alternative estimator of ðd1; a1Þ: (a) estimate the reduced form by OLS,

and save the residuals v̂v2; (b) estimate the following equation by OLS:

y1 ¼ z1d1 þ a1y2 þ r1v̂v2 þ error ð5:52Þ

Show that the OLS estimates of d1 and a1 from this regression are identical to the

2SLS estimators. [Hint: Use the partitioned regression algebra of OLS. In particular,

if ŷy ¼ x1b̂b1 þ x2b̂b2 is an OLS regression, b̂b1 can be obtained by first regressing x1

on x2, getting the residuals, say €xx1, and then regressing y on €xx1; see, for example,

Davidson and MacKinnon (1993, Section 1.4). You must also use the fact that z1 and

v̂v2 are orthogonal in the sample.]

5.2. Consider a model for the health of an individual:

health ¼ b0 þ b1age þ b2weight þ b3height

þ b4male þ b5work þ b6exercise þ u1 ð5:53Þ

where health is some quantitative measure of the person’s health, age, weight, height,

and male are self-explanatory, work is weekly hours worked, and exercise is the hours

of exercise per week.

a. Why might you be concerned about exercise being correlated with the error term

u1?

b. Suppose you can collect data on two additional variables, disthome and distwork,

the distances from home and from work to the nearest health club or gym. Discuss

whether these are likely to be uncorrelated with u1.

c. Now assume that disthome and distwork are in fact uncorrelated with u1, as are all

variables in equation (5.53) with the exception of exercise. Write down the reduced

form for exercise, and state the conditions under which the parameters of equation

(5.53) are identified.

d. How can the identification assumption in part c be tested?

5.3. Consider the following model to estimate the e¤ects of several variables, in-

cluding cigarette smoking, on the weight of newborns:
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logðbwghtÞ ¼ b0 þ b1male þ b2 parity þ b3 logð famincÞ þ b4 packs þ u ð5:54Þ

where male is a binary indicator equal to one if the child is male; parity is the birth

order of this child; faminc is family income; and packs is the average number of packs

of cigarettes smoked per day during pregnancy.

a. Why might you expect packs to be correlated with u?

b. Suppose that you have data on average cigarette price in each woman’s state of

residence. Discuss whether this information is likely to satisfy the properties of a

good instrumental variable for packs.

c. Use the data in BWGHT.RAW to estimate equation (5.54). First, use OLS. Then,

use 2SLS, where cigprice is an instrument for packs. Discuss any important di¤er-

ences in the OLS and 2SLS estimates.

d. Estimate the reduced form for packs. What do you conclude about identification

of equation (5.54) using cigprice as an instrument for packs? What bearing does this

conclusion have on your answer from part c?

5.4. Use the data in CARD.RAW for this problem.

a. Estimate a logðwageÞ equation by OLS with educ, exper, exper2, black, south,

smsa, reg661 through reg668, and smsa66 as explanatory variables. Compare your

results with Table 2, Column (2) in Card (1995).

b. Estimate a reduced form equation for educ containing all explanatory variables

from part a and the dummy variable nearc4. Do educ and nearc4 have a practically

and statistically significant partial correlation? [See also Table 3, Column (1) in Card

(1995).]

c. Estimate the logðwageÞ equation by IV, using nearc4 as an instrument for educ.

Compare the 95 percent confidence interval for the return to education with that

obtained from part a. [See also Table 3, Column (5) in Card (1995).]

d. Now use nearc2 along with nearc4 as instruments for educ. First estimate the

reduced form for educ, and comment on whether nearc2 or nearc4 is more strongly

related to educ. How do the 2SLS estimates compare with the earlier estimates?

e. For a subset of the men in the sample, IQ score is available. Regress iq on nearc4.

Is IQ score uncorrelated with nearc4?

f. Now regress iq on nearc4 along with smsa66, reg661, reg662, and reg669. Are iq

and nearc4 partially correlated? What do you conclude about the importance of

controlling for the 1966 location and regional dummies in the logðwageÞ equation

when using nearc4 as an IV for educ?
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5.5. One occasionally sees the following reasoning used in applied work for choos-

ing instrumental variables in the context of omitted variables. The model is

y1 ¼ z1d1 þ a1y2 þ gq þ a1

where q is the omitted factor. We assume that a1 satisfies the structural error as-

sumption Eða1 j z1; y2; qÞ ¼ 0, that z1 is exogenous in the sense that Eðq j z1Þ ¼ 0, but

that y2 and q may be correlated. Let z2 be a vector of instrumental variable candi-

dates for y2. Suppose it is known that z2 appears in the linear projection of y2 onto

ðz1; z2Þ, and so the requirement that z2 be partially correlated with y2 is satisfied.

Also, we are willing to assume that z2 is redundant in the structural equation, so that

a1 is uncorrelated with z2. What we are unsure of is whether z2 is correlated with the

omitted variable q, in which case z2 would not contain valid IVs.

To ‘‘test’’ whether z2 is in fact uncorrelated with q, it has been suggested to use

OLS on the equation

y1 ¼ z1d1 þ a1y2 þ z2c1 þ u1 ð5:55Þ

where u1 ¼ gq þ a1, and test H0: c1 ¼ 0. Why does this method not work?

5.6. Refer to the multiple indicator model in Section 5.3.2.

a. Show that if q2 is uncorrelated with xj, j ¼ 1; 2; . . . ;K , then the reduced form of

q1 depends only on q2. [Hint: Use the fact that the reduced form of q1 is the linear

projection of q1 onto ð1; x1; x2; . . . ; xK ; q2Þ and find the coe‰cient vector on x using

Property LP.7 from Chapter 2.]

b. What happens if q2 and x are correlated? In this setting, is it realistic to assume

that q2 and x are uncorrelated? Explain.

5.7. Consider model (5.45) where v has zero mean and is uncorrelated with

x1; . . . ; xK and q. The unobservable q is thought to be correlated with at least some of

the xj. Assume without loss of generality that EðqÞ ¼ 0.

You have a single indicator of q, written as q1 ¼ d1q þ a1, d1 0 0, where a1 has

zero mean and is uncorrelated with each of xj, q, and v. In addition, z1; z2; . . . ; zM is a

set of variables that are (1) redundant in the structural equation (5.45) and (2)

uncorrelated with a1.

a. Suggest an IV method for consistently estimating the bj. Be sure to discuss what is

needed for identification.

b. If equation (5.45) is a logðwageÞ equation, q is ability, q1 is IQ or some other test

score, and z1; . . . ; zM are family background variables, such as parents’ education and

Chapter 5110



number of siblings, describe the economic assumptions needed for consistency of the

the IV procedure in part a.

c. Carry out this procedure using the data in NLS80.RAW. Include among the ex-

planatory variables exper, tenure, educ, married, south, urban, and black. First use IQ

as q1 and then KWW. Include in the zh the variables meduc, feduc, and sibs. Discuss

the results.

5.8. Consider a model with unobserved heterogeneity (q) and measurement error in

an explanatory variable:

y ¼ b0 þ b1x1 þ � � � þ bK x�
K þ q þ v

where eK ¼ xK � x�
K is the measurement error and we set the coe‰cient on q equal to

one without loss of generality. The variable q might be correlated with any of the

explanatory variables, but an indicator, q1 ¼ d0 þ d1q þ a1, is available. The mea-

surement error eK might be correlated with the observed measure, xK . In addition to

q1, you also have variables z1, z2; . . . ; zM , M b 2, that are uncorrelated with v, a1,

and eK .

a. Suggest an IV procedure for consistently estimating the bj. Why is M b 2

required? (Hint: Plug in q1 for q and xK for x�
K , and go from there.)

b. Apply this method to the model estimated in Example 5.5, where actual educa-

tion, say educ�, plays the role of x�
K . Use IQ as the indicator of q ¼ ability, and

KWW, meduc, feduc, and sibs as the elements of z.

5.9. Suppose that the following wage equation is for working high school graduates:

logðwageÞ ¼ b0 þ b1exper þ b2exper2 þ b3twoyr þ b4 fouryr þ u

where twoyr is years of junior college attended and fouryr is years completed at a

four-year college. You have distances from each person’s home at the time of high

school graduation to the nearest two-year and four-year colleges as instruments for

twoyr and fouryr. Show how to rewrite this equation to test H0: b3 ¼ b4 against

H0: b4 > b3, and explain how to estimate the equation. See Kane and Rouse (1995)

and Rouse (1995), who implement a very similar procedure.

5.10. Consider IV estimation of the simple linear model with a single, possibly

endogenous, explanatory variable, and a single instrument:

y ¼ b0 þ b1x þ u

EðuÞ ¼ 0; Covðz; uÞ ¼ 0; Covðz; xÞ0 0; Eðu2 j zÞ ¼ s2
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a. Under the preceding (standard) assumptions, show that Avar
ffiffiffiffiffi
N

p
ð b̂b1 � b1Þ can be

expressed as s2=ðr2
zxs

2
xÞ, where s2

x ¼ VarðxÞ and rzx ¼ Corrðz; xÞ. Compare this result

with the asymptotic variance of the OLS estimator under Assumptions OLS.1–OLS.3.

b. Comment on how each factor a¤ects the asymptotic variance of the IV estimator.

What happens as rzx ! 0?

5.11. A model with a single endogenous explanatory variable can be written as

y1 ¼ z1d1 þ a1y2 þ u1; Eðz 0u1Þ ¼ 0

where z ¼ ðz1; z2Þ. Consider the following two-step method, intended to mimic 2SLS:

a. Regress y2 on z2, and obtain fitted values, ~yy2. (That is, z1 is omitted from the first-

stage regression.)

b. Regress y1 on z1, ~yy2 to obtain ~dd1 and ~aa1. Show that ~dd1 and ~aa1 are generally in-

consistent. When would ~dd1 and ~aa1 be consistent? [Hint: Let y0
2 be the population

linear projection of y2 on z2, and let a2 be the projection error: y0
2 ¼ z2l2 þ a2,

Eðz 0
2a2Þ ¼ 0. For simplicity, pretend that l2 is known, rather than estimated; that is,

assume that ~yy2 is actually y0
2 . Then, write

y1 ¼ z1d1 þ a1y0
2 þ a1a2 þ u1

and check whether the composite error a1a2 þ u1 is uncorrelated with the explanatory

variables.]

5.12. In the setup of Section 5.1.2 with x ¼ ðx1; . . . ; xKÞ and z1 ðx1; x2; . . . ; xK�1;

z1; . . . ; zMÞ (let x1 ¼ 1 to allow an intercept), assume that Eðz 0zÞ is nonsingular.

Prove that rank Eðz 0xÞ ¼ K if and only if at least one yj in equation (5.15) is di¤erent

from zero. [Hint: Write x� ¼ ðx1; . . . ; xK�1; x�
KÞ as the linear projection of each ele-

ment of x on z, where x�
K ¼ d1x1 þ � � � þ dK�1xK�1 þ y1z1 þ � � � þ yM zM . Then x ¼

x� þ r, where Eðz 0rÞ ¼ 0, so that Eðz 0xÞ ¼ Eðz 0x�Þ. Now x� ¼ zP, where P is

the L � K matrix whose first K � 1 columns are the first K � 1 unit vectors in RL—

ð1; 0; 0; . . . ; 0Þ0, ð0; 1; 0; . . . ; 0Þ0; . . . ; ð0; 0; . . . ; 1; 0; . . . ; 0Þ0—and whose last column is

ðd1; d2; . . . ; dK�1; y1; . . . ; yMÞ. Write Eðz 0x�Þ ¼ Eðz 0zÞP, so that, because Eðz 0zÞ is

nonsingular, Eðz 0x�Þ has rank K if and only if P has rank K.]

5.13. Consider the simple regression model

y ¼ b0 þ b1x þ u

and let z be a binary instrumental variable for x.

a. Show that the IV estimator b̂b1 can be written as
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b̂b1 ¼ ðy1 � y0Þ=ðx1 � x0Þ

where y0 and x0 are the sample averages of yi and xi over the part of the sample with

zi ¼ 0, and y1 and x1 are the sample averages of yi and xi over the part of the sample

with zi ¼ 1. This estimator, known as a grouping estimator, was first suggested by

Wald (1940).

b. What is the intepretation of b̂b1 if x is also binary, for example, representing par-

ticipation in a social program?

5.14. Consider the model in (5.1) and (5.2), where we have additional exogenous

variables z1; . . . ; zM . Let z ¼ ð1; x1; . . . ; xK�1; z1; . . . ; zMÞ be the vector of all exoge-

nous variables. This problem essentially asks you to obtain the 2SLS estimator using

linear projections. Assume that Eðz 0zÞ is nonsingular.

a. Find Lðy j zÞ in terms of the bj, x1; . . . ; xK�1, and x�
K ¼ LðxK j zÞ.

b. Argue that, provided x1; . . . ; xK�1; x�
K are not perfectly collinear, an OLS regres-

sion of y on 1, x1; . . . ; xK�1; x�
K —using a random sample—consistently estimates all

bj .

c. State a necessary and su‰cient condition for x�
K not to be a perfect linear combi-

nation of x1; . . . ; xK�1. What 2SLS assumption is this identical to?

5.15. Consider the model y ¼ xb þ u, where x1, x2; . . . ; xK1
, K1 aK , are the

(potentially) endogenous explanatory variables. (We assume a zero intercept just to

simplify the notation; the following results carry over to models with an unknown

intercept.) Let z1; . . . ; zL1
be the instrumental variables available from outside the

model. Let z ¼ ðz1; . . . ; zL1
; xK1þ1; . . . ; xKÞ and assume that Eðz 0zÞ is nonsingular, so

that Assumption 2SLS.2a holds.

a. Show that a necessary condition for the rank condition, Assumption 2SLS.2b, is

that for each j ¼ 1; . . . ;K1, at least one zh must appear in the reduced form of xj.

b. With K1 ¼ 2, give a simple example showing that the condition from part a is not

su‰cient for the rank condition.

c. If L1 ¼ K1, show that a su‰cient condition for the rank condition is that only zj

appears in the reduced form for xj, j ¼ 1; . . . ;K1. [As in Problem 5.12, it su‰ces to

study the rank of the L � K matrix P in Lðx j zÞ ¼ zP.]
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6 Additional Single-Equation Topics

6.1 Estimation with Generated Regressors and Instruments

6.1.1 OLS with Generated Regressors

We often need to draw on results for OLS estimation when one or more of the

regressors have been estimated from a first-stage procedure. To illustrate the issues,

consider the model

y ¼ b0 þ b1x1 þ � � � þ bK xK þ gq þ u ð6:1Þ

We observe x1; . . . ; xK , but q is unobserved. However, suppose that q is related to

observable data through the function q ¼ f ðw; dÞ, where f is a known function and

w is a vector of observed variables, but the vector of parameters d is unknown (which

is why q is not observed). Often, but not always, q will be a linear function of w and

d. Suppose that we can consistently estimate d, and let d̂d be the estimator. For each

observation i, q̂qi ¼ f ðwi; d̂dÞ e¤ectively estimates qi. Pagan (1984) calls q̂qi a generated

regressor. It seems reasonable that, replacing qi with q̂qi in running the OLS regression

yi on 1; xi1; xi2; . . . ; xik; q̂qi; i ¼ 1; . . . ;N ð6:2Þ

should produce consistent estimates of all parameters, including g. The question is,

What assumptions are su‰cient?

While we do not cover the asymptotic theory needed for a careful proof until

Chapter 12 (which treats nonlinear estimation), we can provide some intuition here.

Because plim d̂d ¼ d, by the law of large numbers it is reasonable that

N�1
XN

i¼1

q̂qiui !
p

EðqiuiÞ; N�1
XN

i¼1

xij q̂qi !
p

EðxijqiÞ

From this relation it is easily shown that the usual OLS assumption in the population—

that u is uncorrelated with ðx1; x2; . . . ; xK ; qÞ—su‰ces for the two-step procedure to

be consistent (along with the rank condition of Assumption OLS.2 applied to the

expanded vector of explanatory variables). In other words, for consistency, replacing

qi with q̂qi in an OLS regression causes no problems.

Things are not so simple when it comes to inference: the standard errors and test

statistics obtained from regression (6.2) are generally invalid because they ignore the

sampling variation in d̂d. Since d̂d is also obtained using data—usually the same sample

of data—uncertainty in the estimate should be accounted for in the second step.

Nevertheless, there is at least one important case where the sampling variation of d̂d

can be ignored, at least asymptotically: if



E½‘d f ðw; dÞ0u� ¼ 0 ð6:3Þ

g ¼ 0 ð6:4Þ

then the
ffiffiffiffiffi
N

p
-limiting distribution of the OLS estimators from regression (6.2) is the

same as the OLS estimators when q replaces q̂q. Condition (6.3) is implied by the zero

conditional mean condition

Eðu j x;wÞ ¼ 0 ð6:5Þ

which usually holds in generated regressor contexts.

We often want to test the null hypothesis H0: g ¼ 0 before including q̂q in the final

regression. Fortunately, the usual t statistic on q̂q has a limiting standard normal dis-

tribution under H0, so it can be used to test H0. It simply requires the usual homo-

skedasticity assumption, Eðu2 j x; qÞ ¼ s2. The heteroskedasticity-robust statistic

works if heteroskedasticity is present in u under H0.

Even if condition (6.3) holds, if g0 0, then an adjustment is needed for the

asymptotic variances of all OLS estimators that are due to estimation of d. Thus,

standard t statistics, F statistics, and LM statistics will not be asymptotically valid

when g0 0. Using the methods of Chapter 3, it is not di‰cult to derive an ad-

justment to the usual variance matrix estimate that accounts for the variability in

d̂d (and also allows for heteroskedasticity). It is not true that replacing qi with q̂qi

simply introduces heteroskedasticity into the error term; this is not the correct way

to think about the generated regressors issue. Accounting for the fact that d̂d depends

on the same random sample used in the second-stage estimation is much di¤erent

from having heteroskedasticity in the error. Of course, we might want to use

a heteroskedasticity-robust standard error for testing H0: g ¼ 0 because

heteroskedasticity in the population error u can always be a problem. However, just

as with the usual OLS standard error, this is generally justified only under H0: g ¼ 0.

A general formula for the asymptotic variance of 2SLS in the presence of gen-

erated regressors is given in the appendix to this chapter; this covers OLS with gen-

erated regressors as a special case. A general framework for handling these problems

is given in Newey (1984) and Newey and McFadden (1994), but we must hold o¤

until Chapter 14 to give a careful treatment.

6.1.2 2SLS with Generated Instruments

In later chapters we will need results on 2SLS estimation when the instruments have

been estimated in a preliminary stage. Write the population model as
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y ¼ xb þ u ð6:6Þ

Eðz 0uÞ ¼ 0 ð6:7Þ

where x is a 1 � K vector of explanatory variables and z is a 1 � L ðLbKÞ vector of

intrumental variables. Assume that z ¼ gðw; lÞ, where gð� ; lÞ is a known function but

l needs to be estimated. For each i, define the generated instruments ẑzi 1 gðwi; l̂lÞ.
What can we say about the 2SLS estimator when the ẑzi are used as instruments?

By the same reasoning for OLS with generated regressors, consistency follows

under weak conditions. Further, under conditions that are met in many applications,

we can ignore the fact that the instruments were estimated in using 2SLS for infer-

ence. Su‰cient are the assumptions that l̂l is
ffiffiffiffiffi
N

p
-consistent for l and that

E½‘lgðw; lÞ0u� ¼ 0 ð6:8Þ

Under condition (6.8), which holds when Eðu jwÞ ¼ 0, the
ffiffiffiffiffi
N

p
-asymptotic distribu-

tion of b̂b is the same whether we use l or l̂l in constructing the instruments. This fact

greatly simplifies calculation of asymptotic standard errors and test statistics. There-

fore, if we have a choice, there are practical reasons for using 2SLS with generated

instruments rather than OLS with generated regressors. We will see some examples in

Part IV.

One consequence of this discussion is that, if we add the 2SLS homoskedasticity

assumption (2SLS.3), the usual 2SLS standard errors and test statistics are asymp-

totically valid. If Assumption 2SLS.3 is violated, we simply use the heteroskedasticity-

robust standard errors and test statistics. Of course, the finite sample properties of the

estimator using ẑzi as instruments could be notably di¤erent from those using zi as

instruments, especially for small sample sizes. Determining whether this is the case

requires either more sophisticated asymptotic approximations or simulations on a

case-by-case basis.

6.1.3 Generated Instruments and Regressors

We will encounter examples later where some instruments and some regressors are

estimated in a first stage. Generally, the asymptotic variance needs to be adjusted

because of the generated regressors, although there are some special cases where the

usual variance matrix estimators are valid. As a general example, consider the model

y ¼ xb þ gf ðw; dÞ þ u; Eðu j z;wÞ ¼ 0

and we estimate d in a first stage. If g ¼ 0, then the 2SLS estimator of ðb 0; gÞ0 in the

equation
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yi ¼ xib þ gf̂fi þ errori

using instruments ðzi; f̂fiÞ, has a limiting distribution that does not depend on the

limiting distribution of
ffiffiffiffiffi
N

p
ðd̂d� dÞ under conditions (6.3) and (6.8). Therefore, the

usual 2SLS t statistic for ĝg, or its heteroskedsticity-robust version, can be used to test

H0: g ¼ 0.

6.2 Some Specification Tests

In Chapters 4 and 5 we covered what is usually called classical hypothesis testing for

OLS and 2SLS. In this section we cover some tests of the assumptions underlying

either OLS or 2SLS. These are easy to compute and should be routinely reported in

applications.

6.2.1 Testing for Endogeneity

We start with the linear model and a single possibly endogenous variable. For nota-

tional clarity we now denote the dependent variable by y1 and the potentially endog-

enous explanatory variable by y2. As in all 2SLS contexts, y2 can be continuous or

binary, or it may have continuous and discrete characteristics; there are no restric-

tions. The population model is

y1 ¼ z1d1 þ a1y2 þ u1 ð6:9Þ

where z1 is 1 � L1 (including a constant), d1 is L1 � 1, and u1 is the unobserved dis-

turbance. The set of all exogenous variables is denoted by the 1 � L vector z, where

z1 is a strict subset of z. The maintained exogeneity assumption is

Eðz 0u1Þ ¼ 0 ð6:10Þ

It is important to keep in mind that condition (6.10) is assumed throughout this

section. We also assume that equation (6.9) is identified when Eðy2u1Þ0 0, which

requires that z have at least one element not in z1 (the order condition); the rank

condition is that at least one element of z not in z1 is partially correlated with y2

(after netting out z1). Under these assumptions, we now wish to test the null hypothesis

that y2 is actually exogenous.

Hausman (1978) suggested comparing the OLS and 2SLS estimators of b1 1
ðd 0

1; a1Þ0 as a formal test of endogeneity: if y2 is uncorrelated with u1, the OLS and

2SLS estimators should di¤er only by sampling error. This reasoning leads to the

Hausman test for endogeneity.
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The original form of the statistic turns out to be cumbersome to compute because

the matrix appearing in the quadratic form is singular, except when no exogenous

variables are present in equation (6.9). As pointed out by Hausman (1978, 1983),

there is a regression-based form of the test that turns out to be asymptotically

equivalent to the original form of the Hausman test. In addition, it extends easily to

other situations, including some nonlinear models that we cover in Chapters 15, 16,

and 19.

To derive the regression-based test, write the linear projection of y2 on z in error

form as

y2 ¼ zp2 þ v2 ð6:11Þ

Eðz 0v2Þ ¼ 0 ð6:12Þ

where p2 is L � 1. Since u1 is uncorrelated with z, it follows from equations (6.11)

and (6.12) that y2 is endogenous if and only if Eðu1v2Þ0 0. Thus we can test whether

the structural error, u1, is correlated with the reduced form error, v2. Write the linear

projection of u1 onto v2 in error form as

u1 ¼ r1v2 þ e1 ð6:13Þ

where r1 ¼ Eðv2u1Þ=Eðv2
2Þ, Eðv2e1Þ ¼ 0, and Eðz 0e1Þ ¼ 0 (since u1 and v2 are each

orthogonal to z). Thus, y2 is exogenous if and only if r1 ¼ 0.

Plugging equation (6.13) into equation (6.9) gives the equation

y1 ¼ z1d1 þ a1y2 þ r1v2 þ e1 ð6:14Þ

The key is that e1 is uncorrelated with z1, y2, and v2 by construction. Therefore, a test

of H0: r1 ¼ 0 can be done using a standard t test on the variable v2 in an OLS re-

gression that includes z1 and y2. The problem is that v2 is not observed. Nevertheless,

the reduced form parameters p2 are easily estimated by OLS. Let v̂v2 denote the OLS

residuals from the first-stage reduced form regression of y2 on z—remember that z

contains all exogenous variables. If we replace v2 with v̂v2 we have the equation

y1 ¼ z1d1 þ a1y2 þ r1v̂v2 þ error ð6:15Þ

and d1, a1, and r1 can be consistently estimated by OLS. Now we can use the results

on generated regressors in Section 6.1.1: the usual OLS t statistic for r̂r1 is a valid test

of H0: r1 ¼ 0, provided the homoskedasticity assumption Eðu2
1 j z; y2Þ ¼ s2

1 is sat-

isfied under H0. (Remember, y2 is exogenous under H0.) A heteroskedasticity-robust

t statistic can be used if heteroskedasticity is suspected under H0.
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As shown in Problem 5.1, the OLS estimates of d1 and a1 from equation (6.15) are

in fact identical to the 2SLS estimates. This fact is convenient because, along with

being computationally simple, regression (6.15) allows us to compare the magnitudes

of the OLS and 2SLS estimates in order to determine whether the di¤erences are

practically significant, rather than just finding statistically significant evidence of

endogeneity of y2. It also provides a way to verify that we have computed the statistic

correctly.

We should remember that the OLS standard errors that would be reported from

equation (6.15) are not valid unless r1 ¼ 0, because v̂v2 is a generated regressor. In

practice, if we reject H0: r1 ¼ 0, then, to get the appropriate standard errors and

other test statistics, we estimate equation (6.9) by 2SLS.

Example 6.1 (Testing for Endogeneity of Education in a Wage Equation): Consider

the wage equation

logðwageÞ ¼ d0 þ d1exper þ d2exper2 þ a1educ þ u1 ð6:16Þ

for working women, where we believe that educ and u1 may be correlated. The

instruments for educ are parents’ education and husband’s education. So, we first

regress educ on 1, exper, exper2, motheduc, fatheduc, and huseduc and obtain the

residuals, v̂v2. Then we simply include v̂v2 along with unity, exper, exper2, and educ in

an OLS regression and obtain the t statistic on v̂v2. Using the data in MROZ.RAW

gives the result r̂r1 ¼ :047 and tr̂r1
¼ 1:65. We find evidence of endogeneity of educ at

the 10 percent significance level against a two-sided alternative, and so 2SLS is

probably a good idea (assuming that we trust the instruments). The correct 2SLS

standard errors are given in Example 5.3.

Rather than comparing the OLS and 2SLS estimates of a particular linear combi-

nation of the parameters—as the original Hausman test does—it often makes sense

to compare just the estimates of the parameter of interest, which is usually a1. If,

under H0, Assumptions 2SLS.1–2SLS.3 hold with w replacing z, where w includes

all nonredundant elements in x and z, obtaining the test is straightforward. Under

these assumptions it can be shown that Avarðâa1;2SLS � âa1;OLSÞ ¼ Avarðâa1;2SLSÞ�
Avarðâa1;OLSÞ. [This conclusion essentially holds because of Theorem 5.3; Problem

6.12 asks you to show this result formally. Hausman (1978), Newey and McFadden

(1994, Section 5.3), and Section 14.5.1 contain more general treatments.] Therefore,

the Hausman t statistic is simply ðâa1;2SLS � âa1;OLSÞ=f½seðâa1;2SLSÞ�2 � ½seðâa1;OLSÞ�2g1=2,

where the standard errors are the usual ones computed under homoskedasticity. The

denominator in the t statistic is the standard error of ðâa1;2SLS � âa1;OLSÞ. If there is
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heteroskedasticity under H0, this standard error is invalid because the asymptotic

variance of the di¤erence is no longer the di¤erence in asymptotic variances.

Extending the regression-based Hausman test to several potentially endogenous

explanatory variables is straightforward. Let y2 denote a 1 � G1 vector of possible

endogenous variables in the population model

y1 ¼ z1d1 þ y2a1 þ u1; Eðz 0u1Þ ¼ 0 ð6:17Þ

where a1 is now G1 � 1. Again, we assume the rank condition for 2SLS. Write the

reduced form as y2 ¼ zP2 þ v2, where P2 is L � G1 and v2 is the 1 � G1 vector of

population reduced form errors. For a generic observation let v̂v2 denote the 1 � G1

vector of OLS residuals obtained from each reduced form. (In other words, take each

element of y2 and regress it on z to obtain the RF residuals; then collect these in the

row vector v̂v2.) Now, estimate the model

y1 ¼ z1d1 þ y2a1 þ v̂v2r1 þ error ð6:18Þ

and do a standard F test of H0: r1 ¼ 0, which tests G1 restrictions in the unrestricted

model (6.18). The restricted model is obtained by setting r1 ¼ 0, which means we

estimate the original model (6.17) by OLS. The test can be made robust to hetero-

skedasticity in u1 (since u1 ¼ e1 under H0) by applying the heteroskedasticity-robust

Wald statistic in Chapter 4. In some regression packages, such as Stata=, the robust

test is implemented as an F-type test.

An alternative to the F test is an LM-type test. Let ûu1 be the OLS residuals from

the regression y1 on z1; y2 (the residuals obtained under the null that y2 is exogenous).

Then, obtain the usual R-squared (assuming that z1 contains a constant), say R2
u,

from the regression

ûu1 on z1; y2; v̂v2 ð6:19Þ

and use NR2
u as asymptotically w2

G1
. This test again maintains homoskedasticity under

H0. The test can be made heteroskedasticity-robust using the method described in

equation (4.17): take x1 ¼ ðz1; y2Þ and x2 ¼ v̂v2. See also Wooldridge (1995b).

Example 6.2 (Endogeneity of Education in a Wage Equation, continued): We add

the interaction term black�educ to the log(wage) equation estimated by Card (1995);

see also Problem 5.4. Write the model as

logðwageÞ ¼ a1educ þ a2 black�educ þ z1d1 þ u1 ð6:20Þ

where z1 contains a constant, exper, exper2, black, smsa, 1966 regional dummy vari-

ables, and a 1966 SMSA indicator. If educ is correlated with u1, then we also expect
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black�educ to be correlated with u1. If nearc4, a binary indicator for whether a worker

grew up near a four-year college, is valid as an instrumental variable for educ, then a

natural instrumental variable for black�educ is black�nearc4. Note that black�nearc4 is

uncorrelated with u1 under the conditional mean assumption Eðu1 j zÞ ¼ 0, where z

contains all exogenous variables.

The equation estimated by OLS is

logð̂ðwageÞ ¼ 4:81

ð0:75Þ
þ :071

ð:004Þ
educ þ :018

ð:006Þ
black�educ � :419

ð:079Þ
black þ � � �

Therefore, the return to education is estimated to be about 1.8 percentage points

higher for blacks than for nonblacks, even though wages are substantially lower for

blacks at all but unrealistically high levels of education. (It takes an estimated 23.3

years of education before a black worker earns as much as a nonblack worker.)

To test whether educ is exogenous we must test whether educ and black�educ are

uncorrelated with u1. We do so by first regressing educ on all instrumental variables:

those elements in z1 plus nearc4 and black�nearc4. (The interaction black�nearc4

should be included because it might be partially correlated with educ.) Let v̂v21 be the

OLS residuals from this regression. Similarly, regress black�educ on z1, nearc4, and

black�nearc4, and save the residuals v̂v22. By the way, the fact that the dependent

variable in the second reduced form regression, black�educ, is zero for a large fraction

of the sample has no bearing on how we test for endogeneity.

Adding v̂v21 and v̂v22 to the OLS regression and computing the joint F test yields F ¼
0:54 and p-value ¼ 0.581; thus we do not reject exogeneity of educ and black�educ.

Incidentally, the reduced form regressions confirm that educ is partially corre-

lated with nearc4 (but not black�nearc4) and black�educ is partially correlated with

black�nearc4 (but not nearc4). It is easily seen that these findings mean that the rank

condition for 2SLS is satisfied—see Problem 5.15c. Even though educ does not ap-

pear to be endogenous in equation (6.20), we estimate the equation by 2SLS:

logð̂ðwageÞ ¼ 3:84

ð0:97Þ
þ :127

ð:057Þ
educ þ :011

ð:040Þ
black�educ � :283

ð:506Þ
black þ � � �

The 2SLS point estimates certainly di¤er from the OLS estimates, but the standard

errors are so large that the 2SLS and OLS estimates are not statistically di¤erent.

6.2.2 Testing Overidentifying Restrictions

When we have more instruments than we need to identify an equation, we can test

whether the additional instruments are valid in the sense that they are uncorrelated

with u1. To explain the various procedures, write the equation in the form
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y1 ¼ z1d1 þ y2a1 þ u1 ð6:21Þ

where z1 is 1 � L1 and y2 is 1 � G1. The 1 � L vector of all exogenous variables is

again z; partition this as z ¼ ðz1; z2Þ where z2 is 1 � L2 and L ¼ L1 þ L2. Because the

model is overidentified, L2 > G1. Under the usual identification conditions we could

use any 1 � G1 subset of z2 as instruments for y2 in estimating equation (6.21) (re-

member the elements of z1 act as their own instruments). Following his general

principle, Hausman (1978) suggested comparing the 2SLS estimator using all instru-

ments to 2SLS using a subset that just identifies equation (6.21). If all instruments are

valid, the estimates should di¤er only as a result of sampling error. As with testing for

endogeneity, constructing the original Hausman statistic is computationally cumber-

some. Instead, a simple regression-based procedure is available.

It turns out that, under homoskedasticity, a test for validity of the overidentifi-

cation restrictions is obtained as NR2
u from the OLS regression

ûu1 on z ð6:22Þ

where ûu1 are the 2SLS residuals using all of the instruments z and R2
u is the usual R-

squared (assuming that z1 and z contain a constant; otherwise it is the uncentered R-

squared). In other words, simply estimate regression (6.21) by 2SLS and obtain the

2SLS residuals, ûu1. Then regress these on all exogenous variables (including a con-

stant). Under the null that Eðz 0u1Þ ¼ 0 and Assumption 2SLS.3, NR2
u @

a
w2

Q1
, where

Q1 1L2 � G1 is the number of overidentifying restrictions.

The usefulness of the Hausman test is that, if we reject the null hypothesis, then our

logic for choosing the IVs must be reexamined. If we fail to reject the null, then we

can have some confidence in the overall set of instruments used. Of course, it could also

be that the test has low power for detecting endogeneity of some of the instruments.

A heteroskedasticity-robust version is a little more complicated but is still easy to

obtain. Let ŷy2 denote the fitted values from the first-stage regressions (each element of

y2 onto z). Now, let h2 be any 1 � Q1 subset of z2. (It does not matter which elements

of z2 we choose, as long as we choose Q1 of them.) Regress each element of h2 onto

ðz1; ŷy2Þ and collect the residuals, r̂r2 ð1 � Q1Þ. Then an asymptotic w2
Q1

test statistic is

obtained as N � SSR0 from the regression 1 on ûu1r̂r2. The proof that this method

works is very similar to that for the heteroskedasticity-robust test for exclusion

restrictions. See Wooldridge (1995b) for details.

Example 6.3 (Overidentifying Restrictions in the Wage Equation): In estimating

equation (6.16) by 2SLS, we used (motheduc, fatheduc, huseduc) as instruments for

educ. Therefore, there are two overidentifying restrictions. Letting ûu1 be the 2SLS

residuals from equation (6.16) using all instruments, the test statistic is N times the R-

squared from the OLS regression
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ûu1 on 1; exper; exper2; motheduc; fatheduc; huseduc

Under H0 and homoskedasticity, NR2
u @

a
w2

2 . Using the data on working women in

MROZ.RAW gives R2
u ¼ :0026, and so the overidentification test statistic is about

1.11. The p-value is about .574, so the overidentifying restrictions are not rejected at

any reasonable level.

For the heteroskedasticity-robust version, one approach is to obtain the residuals,

r̂r1 and r̂r2, from the OLS regressions motheduc on 1, exper, exper2, and ed̂duc and

fatheduc on 1, exper, exper2, and ed̂duc, where ed̂duc are the first-stage fitted values

from the regression educ on 1, exper, exper2, motheduc, fatheduc, and huseduc. Then

obtain N � SSR from the OLS regression 1 on ûu1 � r̂r1, ûu1 � r̂r2. Using only the 428

observations on working women to obtain r̂r1 and r̂r2, the value of the robust test sta-

tistic is about 1.04 with p-value ¼ :595, which is similar to the p-value for the non-

robust test.

6.2.3 Testing Functional Form

Sometimes we need a test with power for detecting neglected nonlinearities in models

estimated by OLS or 2SLS. A useful approach is to add nonlinear functions, such as

squares and cross products, to the original model. This approach is easy when all

explanatory variables are exogenous: F statistics and LM statistics for exclusion

restrictions are easily obtained. It is a little tricky for models with endogenous ex-

planatory variables because we need to choose instruments for the additional non-

linear functions of the endogenous variables. We postpone this topic until Chapter 9

when we discuss simultaneous equation models. See also Wooldridge (1995b).

Putting in squares and cross products of all exogenous variables can consume

many degrees of freedom. An alternative is Ramsey’s (1969) RESET, which has

degrees of freedom that do not depend on K. Write the model as

y ¼ xb þ u ð6:23Þ

Eðu j xÞ ¼ 0 ð6:24Þ

[You should convince yourself that it makes no sense to test for functional form if we

only assume that Eðx 0uÞ ¼ 0. If equation (6.23) defines a linear projection, then, by

definition, functional form is not an issue.] Under condition (6.24) we know that any

function of x is uncorrelated with u (hence the previous suggestion of putting squares

and cross products of x as additional regressors). In particular, if condition (6.24)

holds, then ðxbÞp is uncorrelated with u for any integer p. Since b is not observed, we

replace it with the OLS estimator, b̂b. Define ŷyi ¼ xi b̂b as the OLS fitted values and ûui

as the OLS residuals. By definition of OLS, the sample covariance between ûui and ŷyi

is zero. But we can test whether the ûui are su‰ciently correlated with low-order poly-
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nomials in ŷyi, say ŷy2
i , ŷy3

i , and ŷy4
i , as a test for neglected nonlinearity. There are a

couple of ways to do so. Ramsey suggests adding these terms to equation (6.23) and

doing a standard F test [which would have an approximate F3;N�K�3 distribution

under equation (6.23) and the homoskedasticity assumption Eðu2 j xÞ ¼ s2]. Another

possibility is to use an LM test: Regress ûui onto xi, ŷy2
i , ŷy3

i , and ŷy4
i and use N times

the R-squared from this regression as w2
3 . The methods discussed in Chapter 4 for

obtaining heteroskedasticity-robust statistics can be applied here as well. Ramsey’s

test uses generated regressors, but the null is that each generated regressor has zero

population coe‰cient, and so the usual limit theory applies. (See Section 6.1.1.)

There is some misunderstanding in the testing literature about the merits of

RESET. It has been claimed that RESET can be used to test for a multitude of

specification problems, including omitted variables and heteroskedasticity. In fact,

RESET is generally a poor test for either of these problems. It is easy to write down

models where an omitted variable, say q, is highly correlated with each x, but RESET

has the same distribution that it has under H0. A leading case is seen when Eðq j xÞ is

linear in x. Then Eðy j xÞ is linear in x [even though Eðy j xÞ0Eðy j x; qÞ�, and the

asymptotic power of RESET equals its asymptotic size. See Wooldridge (1995b) and

Problem 6.4a. The following is an empirical illustration.

Example 6.4 (Testing for Neglected Nonlinearities in a Wage Equation): We use

OLS and the data in NLS80.RAW to estimate the equation from Example 4.3:

logðwageÞ ¼ b0 þ b1exper þ b2tenure þ b3married þ b4south

þ b5urban þ b6black þ b7educ þ u

The null hypothesis is that the expected value of u given the explanatory variables

in the equation is zero. The R-squared from the regression ûu on x, ŷy2, and ŷy3 yields

R2
u ¼ :0004, so the chi-square statistic is .374 with p-valueA :83. (Adding ŷy4 only

increases the p-value.) Therefore, RESET provides no evidence of functional form

misspecification.

Even though we already know IQ shows up very significantly in the equation

(t statistic ¼ 3.60—see Example 4.3), RESET does not, and should not be expected

to, detect the omitted variable problem. It can only test whether the expected value

of y given the variables actually in the regression is linear in those variables.

6.2.4 Testing for Heteroskedasticity

As we have seen for both OLS and 2SLS, heteroskedasticity does not a¤ect the con-

sistency of the estimators, and it is only a minor nuisance for inference. Nevertheless,

sometimes we want to test for the presence of heteroskedasticity in order to justify use
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of the usual OLS or 2SLS statistics. If heteroskedasticity is present, more e‰cient

estimation is possible.

We begin with the case where the explanatory variables are exogenous in the sense

that u has zero mean given x:

y ¼ b0 þ xb þ u; Eðu j xÞ ¼ 0

The reason we do not assume the weaker assumption Eðx 0uÞ ¼ 0 is that the fol-

lowing class of tests we derive—which encompasses all of the widely used tests for

heteroskedasticity—are not valid unless Eðu j xÞ ¼ 0 is maintained under H0. Thus

we maintain that the mean Eðy j xÞ is correctly specified, and then we test the con-

stant conditional variance assumption. If we do not assume correct specification of

Eðy j xÞ, a significant heteroskedasticity test might just be detecting misspecified

functional form in Eðy j xÞ; see Problem 6.4c.

Because Eðu j xÞ ¼ 0, the null hypothesis can be stated as H0: Eðu2 j xÞ ¼ s2.

Under the alternative, Eðu2 j xÞ depends on x in some way. Thus it makes sense to

test H0 by looking at covariances

Cov½hðxÞ; u2� ð6:25Þ

for some 1 � Q vector function hðxÞ. Under H0, the covariance in expression (6.25)

should be zero for any choice of hð�Þ.
Of course a general way to test zero correlation is to use a regression. Putting i

subscripts on the variables, write the model

u2
i ¼ d0 þ hidþ vi ð6:26Þ

where hi 1 hðxiÞ; we make the standard rank assumption that VarðhiÞ has rank Q, so

that there is no perfect collinearity in hi. Under H0, Eðvi j hiÞ ¼ Eðvi j xiÞ ¼ 0, d ¼ 0,

and d0 ¼ s2. Thus we can apply an F test or an LM test for the null H0: d ¼ 0

in equation (6.26). One thing to notice is that vi cannot have a normal distribution

under H0: because vi ¼ u2
i � s2; vi b�s2. This does not matter for asymptotic anal-

ysis; the OLS regression from equation (6.26) gives a consistent,
ffiffiffiffiffi
N

p
-asymptotically

normal estimator of d whether or not H0 is true. But to apply a standard F or LM

test, we must assume that, under H0, Eðv2
i j xiÞ is constant: that is, the errors in

equation (6.26) are homoskedastic. In terms of the original error ui, this assumption

implies that

Eðu4
i j xiÞ ¼ constant1 k2 ð6:27Þ

under H0. This is called the homokurtosis (constant conditional fourth moment) as-

sumption. Homokurtosis always holds when u is independent of x, but there are
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conditional distributions for which Eðu j xÞ ¼ 0 and Varðu j xÞ ¼ s2 but Eðu4 j xÞ
depends on x.

As a practical matter, we cannot test d ¼ 0 in equation (6.26) directly because ui is

not observed. Since ui ¼ yi � xib and we have a consistent estimator of b, it is natu-

ral to replace u2
i with ûu2

i , where the ûui are the OLS residuals for observation i. Doing

this step and applying, say, the LM principle, we obtain NR2
c from the regression

ûu2
i on 1; hi; i ¼ 1; 2; . . . ;N ð6:28Þ

where R2
c is just the usual centered R-squared. Now, if the u2

i were used in place of

the ûu2
i , we know that, under H0 and condition (6.27), NR2

c @
a
w2

Q, where Q is the di-

mension of hi.

What adjustment is needed because we have estimated u2
i ? It turns out that, be-

cause of the structure of these tests, no adjustment is needed to the asymptotics. (This

statement is not generally true for regressions where the dependent variable has been

estimated in a first stage; the current setup is special in that regard.) After tedious

algebra, it can be shown that

N�1=2
XN

i¼1

h 0
i ðûu2

i � ŝs2Þ ¼ N�1=2
XN

i¼1

ðhi � mhÞ
0ðu2

i � s2Þ þ opð1Þ ð6:29Þ

see Problem 6.5. Along with condition (6.27), this equation can be shown to justify

the NR2
c test from regression (6.28).

Two popular tests are special cases. Koenker’s (1981) version of the Breusch and

Pagan (1979) test is obtained by taking hi 1 xi, so that Q ¼ K . [The original version

of the Breusch-Pagan test relies heavily on normality of the ui, in particular k2 ¼ 3s2,

so that Koenker’s version based on NR2
c in regression (6.28) is preferred.] White’s

(1980b) test is obtained by taking hi to be all nonconstant, unique elements of xi and

x 0
i xi: the levels, squares, and cross products of the regressors in the conditional mean.

The Breusch-Pagan and White tests have degrees of freedom that depend on the

number of regressors in Eðy j xÞ. Sometimes we want to conserve on degrees of free-

dom. A test that combines features of the Breusch-Pagan and White tests, but which

has only two dfs, takes ĥhi 1 ð ŷyi; ŷy2
i Þ, where the ŷyi are the OLS fitted values. (Recall

that these are linear functions of the xi.) To justify this test, we must be able to re-

place hðxiÞ with hðxi; b̂bÞ. We discussed the generated regressors problem for OLS in

Section 6.1.1 and concluded that, for testing purposes, using estimates from earlier

stages causes no complications. This is the case here as well: NR2
c from ûu2

i on 1, ŷyi, ŷy2
i ,

i ¼ 1; 2; . . . ;N has a limiting w2
2 distribution under the null, along with condition

(6.27). This is easily seen to be a special case of the White test because ð ŷyi; ŷy2
i Þ con-

tains two linear combinations of the squares and cross products of all elements in xi.
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A simple modification is available for relaxing the auxiliary homokurtosis as-

sumption (6.27). Following the work of Wooldridge (1990)—or, working directly

from the representation in equation (6.29), as in Problem 6.5—it can be shown that

N � SSR0 from the regression (without a constant)

1 on ðhi � hÞðûu2
i � ŝs2Þ; i ¼ 1; 2; . . . ;N ð6:30Þ

is distributed asymptotically as w2
Q under H0 [there are Q regressors in regression

(6.30)]. This test is very similar to the heteroskedasticity-robust LM statistics derived

in Chapter 4. It is sometimes called a heterokurtosis-robust test for heteroskedasticity.

If we allow some elements of xi to be endogenous but assume we have instruments

zi such that Eðui j ziÞ ¼ 0 and the rank condition holds, then we can test H0: Eðu2
i j ziÞ

¼ s2 (which implies Assumption 2SLS.3). Let hi 1 hðziÞ be a 1 � Q function of the

exogenous variables. The statistics are computed as in either regression (6.28) or

(6.30), depending on whether the homokurtosis is maintained, where the ûui are the

2SLS residuals. There is, however, one caveat. For the validity of the asymptotic

variances that these regressions implicitly use, an additional assumption is needed

under H0: Covðxi; ui j ziÞ must be constant. This covariance is zero when zi ¼ xi, so

there is no additional assumption when the regressors are exogenous. Without the

assumption of constant conditional covariance, the tests for heteroskedasticity are

more complicated. For details, see Wooldridge (1990).

You should remember that hi (or ĥhi) must only be a function of exogenous vari-

ables and estimated parameters; it should not depend on endogenous elements of xi.

Therefore, when xi contains endogenous variables, it is not valid to use xi b̂b and

ðxi b̂bÞ2 as elements of ĥhi. It is valid to use, say, x̂xi b̂b and ðx̂xi b̂bÞ2, where the x̂xi are the

first-stage fitted values from regressing xi on zi.

6.3 Single-Equation Methods under Other Sampling Schemes

So far our treatment of OLS and 2SLS has been explicitly for the case of random

samples. In this section we briefly discuss some issues that arise for other sampling

schemes that are sometimes assumed for cross section data.

6.3.1 Pooled Cross Sections over Time

A data structure that is useful for a variety of purposes, including policy analysis, is

what we will call pooled cross sections over time. The idea is that during each year a

new random sample is taken from the relevant population. Since distributions of

variables tend to change over time, the identical distribution assumption is not usu-

ally valid, but the independence assumption is. This approach gives rise to indepen-
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dent, not identically distributed (i.n.i.d.) observations. It is important not to confuse a

pooling of independent cross sections with a di¤erent data structure, panel data,

which we treat starting in Chapter 7. Briefly, in a panel data set we follow the same

group of individuals, firms, cities, and so on over time. In a pooling of cross sections

over time, there is no replicability over time. (Or, if units appear in more than one

time period, their recurrence is treated as coincidental and ignored.)

Every method we have learned for pure cross section analysis can be applied to

pooled cross sections, including corrections for heteroskedasticity, specification test-

ing, instrumental variables, and so on. But in using pooled cross sections, we should

usually include year (or other time period) dummies to account for aggregate changes

over time. If year dummies appear in a model, and it is estimated by 2SLS, the year

dummies are their own instruments, as the passage of time is exogenous. For an ex-

ample, see Problem 6.8. Time dummies can also appear in tests for heteroskedasticity

to determine whether the unconditional error variance has changed over time.

In some cases we interact some explanatory variables with the time dummies to

allow partial e¤ects to change over time. This procedure can be very useful for policy

analysis. In fact, much of the recent literature in policy analyis using natural experi-

ments can be cast as a pooled cross section analysis with appropriately chosen

dummy variables and interactions.

In the simplest case, we have two time periods, say year 1 and year 2. There are

also two groups, which we will call a control group and an experimental group or

treatment group. In the natural experiment literature, people (or firms, or cities, and

so on) find themselves in the treatment group essentially by accident. For example, to

study the e¤ects of an unexpected change in unemployment insurance on unemploy-

ment duration, we choose the treatment group to be unemployed individuals from a

state that has a change in unemployment compensation. The control group could be

unemployed workers from a neighboring state. The two time periods chosen would

straddle the policy change.

As another example, the treatment group might consist of houses in a city under-

going unexpected property tax reform, and the control group would be houses in a

nearby, similar town that is not subject to a property tax change. Again, the two (or

more) years of data would include the period of the policy change. Treatment means

that a house is in the city undergoing the regime change.

To formalize the discussion, call A the control group, and let B denote the treat-

ment group; the dummy variable dB equals unity for those in the treatment group

and is zero otherwise. Letting d2 denote a dummy variable for the second (post-policy-

change) time period, the simplest equation for analyzing the impact of the policy

change is
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y ¼ b0 þ d0d2 þ b1dB þ d1d2 � dB þ u ð6:31Þ

where y is the outcome variable of interest. The period dummy d2 captures aggregate

factors that a¤ect y over time in the same way for both groups. The presence of dB

by itself captures possible di¤erences between the treatment and control groups be-

fore the policy change occurs. The coe‰cient of interest, d1, multiplies the interaction

term, d2 � dB (which is simply a dummy variable equal to unity for those observations

in the treatment group in the second year).

The OLS estimator, d̂d1, has a very interesting interpretation. Let yA;1 denote the

sample average of y for the control group in the first year, and let yA;2 be the average

of y for the control group in the second year. Define yB;1 and yB;2 similarly. Then d̂d1

can be expressed as

d̂d1 ¼ ðyB;2 � yB;1Þ � ðyA;2 � yA;1Þ ð6:32Þ

This estimator has been labeled the di¤erence-in-di¤erences (DID) estimator in the

recent program evaluation literature, although it has a long history in analysis of

variance.

To see how e¤ective d̂d1 is for estimating policy e¤ects, we can compare it with some

alternative estimators. One possibility is to ignore the control group completely and

use the change in the mean over time for the treatment group, yB;2 � yB;1, to measure

the policy e¤ect. The problem with this estimator is that the mean response can

change over time for reasons unrelated to the policy change. Another possibility is to

ignore the first time period and compute the di¤erence in means for the treatment

and control groups in the second time period, yB;2 � yA;2. The problem with this pure

cross section approach is that there might be systematic, unmeasured di¤erences in

the treatment and control groups that have nothing to do with the treatment; attrib-

uting the di¤erence in averages to a particular policy might be misleading.

By comparing the time changes in the means for the treatment and control groups,

both group-specific and time-specific e¤ects are allowed for. Nevertheless, unbiased-

ness of the DID estimator still requires that the policy change not be systematically

related to other factors that a¤ect y (and are hidden in u).

In most applications, additional covariates appear in equation (6.31); for example,

characteristics of unemployed people or housing characteristics. These account for

the possibility that the random samples within a group have systematically di¤er-

ent characteristics in the two time periods. The OLS estimator of d1 no longer has

the simple representation in equation (6.32), but its interpretation is essentially

unchanged.
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Example 6.5 (Length of Time on Workers’ Compensation): Meyer, Viscusi, and

Durbin (1995) (hereafter, MVD) study the length of time (in weeks) that an injured

worker receives workers’ compensation. On July 15, 1980, Kentucky raised the cap

on weekly earnings that were covered by workers’ compensation. An increase in the

cap has no e¤ect on the benefit for low-income workers, but it makes it less costly

for a high-income worker to stay on workers’ comp. Therefore, the control group is

low-income workers, and the treatment group is high-income workers; high-income

workers are defined as those for whom the pre-policy-change cap on benefits is

binding. Using random samples both before and after the policy change, MVD are

able to test whether more generous workers’ compensation causes people to stay out

of work longer (everything else fixed). MVD start with a di¤erence-in-di¤erences

analysis, using log(durat) as the dependent variable. The variable afchnge is the

dummy variable for observations after the policy change, and highearn is the dummy

variable for high earners. The estimated equation is

logðd̂duratÞ ¼ 1:126

ð0:031Þ
þ :0077

ð:0447Þ
afchnge þ :256

ð:047Þ
highearn

þ :191

ð:069Þ
afchnge�highearn ð6:33Þ

N ¼ 5; 626; R2 ¼ :021

Therefore, d̂d1 ¼ :191 ðt ¼ 2:77Þ, which implies that the average duration on workers’

compensation increased by about 19 percent due to the higher earnings cap. The co-

e‰cient on afchnge is small and statistically insignificant: as is expected, the increase

in the earnings cap had no e¤ect on duration for low-earnings workers. The coe‰-

cient on highearn shows that, even in the absence of any change in the earnings cap,

high earners spent much more time—on the order of 100 � ½expð:256Þ � 1� ¼ 29:2

percent—on workers’ compensation.

MVD also add a variety of controls for gender, marital status, age, industry, and

type of injury. These allow for the fact that the kind of people and type of injuries

di¤er systematically in the two years. Perhaps not surprisingly, controlling for these

factors has little e¤ect on the estimate of d1; see the MVD article and Problem 6.9.

Sometimes the two groups consist of people or cities in di¤erent states in the

United States, often close geographically. For example, to assess the impact of

changing alcohol taxes on alcohol consumption, we can obtain random samples on

individuals from two states for two years. In state A, the control group, there was no
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change in alcohol taxes. In state B, taxes increased between the two years. The out-

come variable would be a measure of alcohol consumption, and equation (6.31) can

be estimated to determine the e¤ect of the tax on alcohol consumption. Other factors,

such as age, education, and gender can be controlled for, although this procedure is

not necessary for consistency if sampling is random in both years and in both states.

The basic equation (6.31) can be easily modified to allow for continuous, or at least

nonbinary, ‘‘treatments.’’ An example is given in Problem 6.7, where the ‘‘treatment’’

for a particular home is its distance from a garbage incinerator site. In other words,

there is not really a control group: each unit is put somewhere on a continuum of

possible treatments. The analysis is similar because the treatment dummy, dB, is

simply replaced with the nonbinary treatment.

For a survey on the natural experiment methodology, as well as several additional

examples, see Meyer (1995).

6.3.2 Geographically Stratified Samples

Various kinds of stratified sampling, where units in the sample are represented with

di¤erent frequencies than they are in the population, are also common in the social

sciences. We treat general kinds of stratification in Chapter 17. Here, we discuss some

issues that arise with geographical stratification, where random samples are taken

from separate geographical units.

If the geographically stratified sample can be treated as being independent but not

identically distributed, no substantive modifications are needed to apply the previous

econometric methods. However, it is prudent to allow di¤erent intercepts across

strata, and even di¤erent slopes in some cases. For example, if people are sampled

from states in the United States, it is often important to include state dummy vari-

ables to allow for systematic di¤erences in the response and explanatory variables

across states.

If we are interested in the e¤ects of variables measured at the strata level, and the

individual observations are correlated because of unobserved strata e¤ects, estima-

tion and inference are much more complicated. A model with strata-level covariates

and within-strata correlation is

yis ¼ xisb þ zsgþ qs þ eis ð6:34Þ

where i is for individual and s is for stratum. The covariates in xis change with the

individual, while zs changes only at the strata level. That is, there is correlation in the

covariates across individuals within the same stratum. The variable qs is an unob-

served stratum e¤ect. We would typically assume that the observations are inde-

pendently distributed across strata, that the eis are independent across i, and that
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Eðeis jXs; zs; qsÞ ¼ 0 for all i and s—where Xs is the set of explanatory variables for

all units in stratum s—and qs is an unobserved stratum e¤ect.

The presence of the unobservable qs induces correlation in the composite error

uis ¼ qs þ eis within each stratum. If we are interested in the coe‰cients on the

individual-specific variables, that is, b, then there is a simple solution: include stra-

tum dummies along with xis. That is, we estimate the model yis ¼ as þ xisb þ eis by

OLS, where as is the stratum-specific intercept.

Things are more interesting when we want to estimate g. The OLS estimators of b

and g in the regression of yis on xis, zs are still unbiased if Eðqs jXs; zsÞ ¼ 0, but

consistency and asymptotic normality are tricky, because, with a small number of

strata and many observations within each stratum, the asymptotic analysis makes

sense only if the number of observations within each stratum grows, usually with the

number of strata fixed. Because the observations within a stratum are correlated, the

usual law of large numbers and central limit theorem cannot be applied. By means of

a simulation study, Moulton (1990) shows that ignoring the within-group correlation

when obtaining standard errors for ĝg can be very misleading. Moulton also gives

some corrections to the OLS standard errors, but it is not clear what kind of asymp-

totic analysis justifies them.

If the strata are, say, states in the United States, and we are interested in the e¤ect

of state-level policy variables on economic behavior, one way to proceed is to use

state-level data on all variables. This avoids the within-stratum correlation in the

composite error in equation (6.34). A drawback is that state policies that can be

taken as exogenous at the individual level are often endogenous at the aggregate

level. However, if zs in equation (6.34) contains policy variables, perhaps we should

question whether these would be uncorrelated with qs. If qs and zs are correlated,

OLS using individual-level data would be biased and inconsistent.

Related issues arise when aggregate-level variables are used as instruments in

equations describing individual behavior. For example, in a birth weight equation,

Currie and Cole (1993) use measures of state-level AFDC benefits as instruments for

individual women’s participation in AFDC. (Therefore, the binary endogenous ex-

planatory variable is at the individual level, while the instruments are at the state

level.) If state-level AFDC benefits are exogenous in the birth weight equation, and

AFDC participation is su‰ciently correlated with state benefit levels—a question

that can be checked using the first-stage regression—then the IV approach will yield

a consistent estimator of the e¤ect of AFDC participation on birth weight.

Mo‰tt (1996) discusses assumptions under which using aggregate-level IVs yields

consistent estimators. He gives the example of using observations on workers from

two cities to estimate the impact of job training programs. In each city, some people
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received some job training while others did not. The key element in xis is a job training

indicator. If, say, city A exogenously o¤ered more job training slots than city B, a

city dummy variable can be used as an IV for whether each worker received training.

See Mo‰tt (1996) and Problem 5.13b for an interpretation of such estimators.

If there are unobserved group e¤ects in the error term, then at a minimum, the

usual 2SLS standard errors will be inappropriate. More problematic is that aggregate-

level variables might be correlated with qs. In the birth weight example, the level of

AFDC benefits might be correlated with unobserved health care quality variables

that are in qs. In the job training example, city A may have spent more on job train-

ing because its workers are, on average, less productive than the workers in city B.

Unfortunately, controlling for qs by putting in strata dummies and applying 2SLS

does not work: by definition, the instruments only vary across strata—not within

strata—and so b in equation (6.34) would be unidentified. In the job training exam-

ple, we would put in a dummy variable for city of residence as an explanatory vari-

able, and therefore we could not use this dummy variable as an IV for job training

participation: we would be short one instrument.

6.3.3 Spatial Dependence

As the previous subsection suggests, cross section data that are not the result of

independent sampling can be di‰cult to handle. Spatial correlation, or, more gen-

erally, spatial dependence, typically occurs when cross section units are large relative

to the population, such as when data are collected at the county, state, province, or

country level. Outcomes from adjacent units are likely to be correlated. If the corre-

lation arises mainly through the explanatory variables (as opposed to unobservables),

then, practically speaking, nothing needs to be done (although the asymptotic anal-

ysis can be complicated). In fact, sometimes covariates for one county or state appear

as explanatory variables in the equation for neighboring units, as a way of capturing

spillover e¤ects. This fact in itself causes no real di‰culties.

When the unobservables are correlated across nearby geographical units, OLS can

still have desirable properties—often unbiasedness, consistency, and asymptotic nor-

mality can be established—but the asymptotic arguments are not nearly as unified as

in the random sampling case, and estimating asymptotic variances becomes di‰cult.

6.3.4 Cluster Samples

Cluster sampling is another case where cross section observations are correlated, but

it is somewhat easier to handle. The key is that we randomly sample a large number

of clusters, and each cluster consists of relatively few units (compared with the overall

sample size). While we allow the units within each cluster to be correlated, we assume
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independence across clusters. An example is studying teenage peer e¤ects using a

large sample of neighborhoods (the clusters) with relatively few teenagers per neigh-

borhood. Or, using siblings in a large sample of families. The asymptotic analysis is

with fixed cluster sizes with the number of clusters getting large. As we will see in

Section 11.5, handling within-cluster correlation in this context is relatively straight-

forward. In fact, when the explanatory variables are exogenous, OLS is consistent

and asymptotically normal, but the asymptotic variance matrix needs to be adjusted.

The same holds for 2SLS.

Problems

6.1. a. In Problem 5.4d, test the null hypothesis that educ is exogenous.

b. Test the the single overidentifying restriction in this example.

6.2. In Problem 5.8b, test the null hypothesis that educ and IQ are exogenous in the

equation estimated by 2SLS.

6.3. Consider a model for individual data to test whether nutrition a¤ects produc-

tivity (in a developing country):

logðproducÞ ¼ d0 þ d1exper þ d2exper2 þ d3educ þ a1calories þ a2 protein þ u1

ð6:35Þ

where produc is some measure of worker productivity, calories is caloric intake per

day, and protein is a measure of protein intake per day. Assume here that exper,

exper2, and educ are all exogenous. The variables calories and protein are possibly

correlated with u1 (see Strauss and Thomas, 1995, for discussion). Possible instru-

mental variables for calories and protein are regional prices of various goods such as

grains, meats, breads, dairy products, and so on.

a. Under what circumstances do prices make good IVs for calories and proteins?

What if prices reflect quality of food?

b. How many prices are needed to identify equation (6.35)?

c. Suppose we have M prices, p1; . . . ; pM . Explain how to test the null hypothesis

that calories and protein are exogenous in equation (6.35).

6.4. Consider a structural linear model with unobserved variable q:

y ¼ xb þ q þ v; Eðv j x; qÞ ¼ 0
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Suppose, in addition, that Eðq j xÞ ¼ xd for some K � 1 vector d; thus, q and x are

possibly correlated.

a. Show that Eðy j xÞ is linear in x. What consequences does this fact have for tests of

functional form to detect the presence of q? Does it matter how strongly q and x are

correlated? Explain.

b. Now add the assumptions Varðv j x; qÞ ¼ s2
v and Varðq j xÞ ¼ s2

q . Show that

Varðy j xÞ is constant. [Hint: Eðqv j xÞ ¼ 0 by iterated expectations.] What does this

fact imply about using tests for heteroskedasticity to detect omitted variables?

c. Now write the equation as y ¼ xb þ u, where Eðx 0uÞ ¼ 0 and Varðu j xÞ ¼ s2. If

Eðu j xÞ0EðuÞ, argue that an LM test of the form (6.28) will detect ‘‘hetero-

skedasticity’’ in u, at least in large samples.

6.5. a. Verify equation (6.29) under the assumptions Eðu j xÞ ¼ 0 and Eðu2 j xÞ ¼ s2.

b. Show that, under the additional assumption (6.27),

E½ðu2
i � s2Þ2ðhi � mhÞ

0ðhi � mhÞ� ¼ h2E½ðhi � mhÞ
0ðhi � mhÞ�

where h2 ¼ E½ðu2 � s2Þ2�.
c. Explain why parts a and b imply that the LM statistic from regression (6.28) has a

limiting w2
Q distribution.

d. If condition (6.27) does not hold, obtain a consistent estimator of

E½ðu2
i � s2Þ2ðhi � mhÞ

0ðhi � mhÞ�. Show how this leads to the heterokurtosis-robust

test for heteroskedasticity.

6.6. Using the test for heteroskedasticity based on the auxiliary regression ûu2 on ŷy,

ŷy2, test the log(wage) equation in Example 6.4 for heteroskedasticity. Do you detect

heteroskedasticity at the 5 percent level?

6.7. For this problem use the data in HPRICE.RAW, which is a subset of the data

used by Kiel and McClain (1995). The file contains housing prices and characteristics

for two years, 1978 and 1981, for homes sold in North Andover, Massachusetts. In

1981 construction on a garbage incinerator began. Rumors about the incinerator

being built were circulating in 1979, and it is for this reason that 1978 is used as the

base year. By 1981 it was very clear that the incinerator would be operating soon.

a. Using the 1981 cross section, estimate a bivariate, constant elasticity model relat-

ing housing price to distance from the incinerator. Is this regression appropriate for

determining the causal e¤ects of incinerator on housing prices? Explain.

b. Pooling the two years of data, consider the model
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logðpriceÞ ¼ d0 þ d1y81 þ d2 logðdistÞ þ d3y81 � logðdistÞ þ u

If the incinerator has a negative e¤ect on housing prices for homes closer to the

incinerator, what sign is d3? Estimate this model and test the null hypothesis that

building the incinerator had no e¤ect on housing prices.

c. Add the variables log(intst), ½logðintstÞ�2, log(area), log(land ), age, age2, rooms,

baths to the model in part b, and test for an incinerator e¤ect. What do you conclude?

6.8. The data in FERTIL1.RAW are a pooled cross section on more than a thou-

sand U.S. women for the even years between 1972 and 1984, inclusive; the data set is

similar to the one used by Sander (1992). These data can be used to study the rela-

tionship between women’s education and fertility.

a. Use OLS to estimate a model relating number of children ever born to a woman

(kids) to years of education, age, region, race, and type of environment reared in.

You should use a quadratic in age and should include year dummies. What is the

estimated relationship between fertility and education? Holding other factors fixed,

has there been any notable secular change in fertility over the time period?

b. Reestimate the model in part a, but use motheduc and fatheduc as instruments for

educ. First check that these instruments are su‰ciently partially correlated with educ.

Test whether educ is in fact exogenous in the fertility equation.

c. Now allow the e¤ect of education to change over time by including interaction

terms such as y74�educ, y76�educ, and so on in the model. Use interactions of time

dummies and parents’ education as instruments for the interaction terms. Test that

there has been no change in the relationship between fertility and education over

time.

6.9. Use the data in INJURY.RAW for this question.

a. Using the data for Kentucky, reestimate equation (6.33) adding as explanatory

variables male, married, and a full set of industry- and injury-type dummy variables.

How does the estimate on afchnge�highearn change when these other factors are

controlled for? Is the estimate still statistically significant?

b. What do you make of the small R-squared from part a? Does this mean the

equation is useless?

c. Estimate equation (6.33) using the data for Michigan. Compare the estimate on the

interaction term for Michigan and Kentucky, as well as their statistical significance.

6.10. Consider a regression model with interactions and squares of some explana-

tory variables: Eðy j xÞ ¼ zb, where z contains a constant, the elements of x, and

quadratics and interactions of terms in x.
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a. Let m ¼ EðxÞ be the population mean of x, and let x be the sample average based

on the N available observations. Let b̂b be the OLS estimator of b using the N obser-

vations on y and z. Show that
ffiffiffiffiffi
N

p
ð b̂b � bÞ and

ffiffiffiffiffi
N

p
ðx � mÞ are asymptotically un-

correlated. [Hint: Write
ffiffiffiffiffi
N

p
ð b̂b � bÞ as in equation (4.8), and ignore the op(1) term.

You will need to use the fact that Eðu j xÞ ¼ 0:]

b. In the model of Problem 4.8, use part a to argue that

Avarðâa1Þ ¼ Avarð~aa1Þ þ b2
3 Avarðx2Þ ¼ Avarð~aa1Þ þ b2

3ðs2
2=NÞ

where a1 ¼ b1 þ b3m2, ~aa1 is the estimator of a1 if we knew m2, and s2
2 ¼ Varðx2Þ.

c. How would you obtain the correct asymptotic standard error of âa1, having run the

regression in Problem 4.8d? [Hint: The standard error you get from the regression is

really seð~aa1Þ. Thus you can square this to estimate Avarð~aa1Þ, then use the preceding

formula. You need to estimate s2
2 , too.]

d. Apply the result from part c to the model in Problem 4.8; in particular, find the

corrected asymptotic standard error for âa1, and compare it with the uncorrected one

from Problem 4.8d. (Both can be nonrobust to heteroskedasticity.) What do you

conclude?

6.11. The following wage equation represents the populations of working people in

1978 and 1985:

logðwageÞ ¼ b0 þ d0y85 þ b1educ þ d1y85�educ þ b2exper

þ b3exper2 þ b4union þ b5 female þ d5y85� female þ u

where the explanatory variables are standard. The variable union is a dummy vari-

able equal to one if the person belongs to a union and zero otherwise. The variable

y85 is a dummy variable equal to one if the observation comes from 1985 and zero if

it comes from 1978. In the file CPS78_85.RAW there are 550 workers in the sample

in 1978 and a di¤erent set of 534 people in 1985.

a. Estimate this equation and test whether the return to education has changed over

the seven-year period.

b. What has happened to the gender gap over the period?

c. Wages are measured in nominal dollars. What coe‰cients would change if we

measure wage in 1978 dollars in both years? [Hint: Use the fact that for all 1985

observations, logðwagei=P85Þ ¼ logðwageiÞ � logðP85Þ, where P85 is the common

deflator; P85 ¼ 1:65 according to the Consumer Price Index.]

d. Is there evidence that the variance of the error has changed over time?
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e. With wages measured nominally, and holding other factors fixed, what is the

estimated increase in nominal wage for a male with 12 years of education? Propose a

regression to obtain a confidence interval for this estimate. (Hint: You must replace

y85�educ with something else.)

6.12. In the linear model y ¼ xb þ u, assume that Assumptions 2SLS.1 and 2SLS.3

hold with w in place of z, where w contains all nonredundant elements of x and z.

Further, assume that the rank conditions hold for OLS and 2SLS. Show that

Avar½
ffiffiffiffiffi
N

p
ð b̂b2SLS � b̂bOLSÞ� ¼ Avar½

ffiffiffiffiffi
N

p
ð b̂b2SLS � bÞ� � Avar½

ffiffiffiffiffi
N

p
ð b̂bOLS � bÞ�

[Hint: First, Avar½
ffiffiffiffiffi
N

p
ð b̂b2SLS � b̂bOLSÞ� ¼ V1 þ V2 � ðC þ C 0Þ, where V1 ¼ Avar �

½
ffiffiffiffiffi
N

p
ð b̂b2SLS � bÞ�, V2 ¼ Avar½

ffiffiffiffiffi
N

p
ð b̂bOLS � bÞ�, and C is the asymptotic covariance

between
ffiffiffiffiffi
N

p
ð b̂b2SLS � bÞ and

ffiffiffiffiffi
N

p
ð b̂bOLS � bÞ. You can stack the formulas for the

2SLS and OLS estimators and show that C ¼ s2½Eðx�0x�Þ��1Eðx�0xÞ½Eðx 0xÞ��1 ¼
s2½Eðx 0xÞ��1 ¼ V2. To show the second equality, it will be helpful to use Eðx�0xÞ ¼
Eðx�0x�Þ:]

Appendix 6A

We derive the asymptotic distribution of the 2SLS estimator in an equation with

generated regressors and generated instruments. The tools needed to make the proof

rigorous are introduced in Chapter 12, but the key components of the proof can be

given here in the context of the linear model. Write the model as

y ¼ xb þ u; Eðu j vÞ ¼ 0

where x ¼ fðw; dÞ, d is a Q � 1 vector, and b is K � 1. Let d̂d be a
ffiffiffiffiffi
N

p
-consistent es-

timator of d. The instruments for each i are ẑzi ¼ gðvi; l̂lÞ where gðv; lÞ is a 1 � L

vector, l is an S � 1 vector of parameters, and l̂l is
ffiffiffiffiffi
N

p
-consistent for l. Let b̂b be the

2SLS estimator from the equation

yi ¼ x̂xib þ errori

where x̂xi ¼ fðwi; d̂dÞ, using instruments ẑzi:

b̂b ¼
XN

i¼1

x̂x 0
i ẑzi

 ! XN

i¼1

ẑz 0
i ẑzi

 !�1 XN

i¼1

ẑz 0
i x̂xi

 !2
4

3
5
�1 XN

i¼1

x̂x 0
i ẑzi

 ! XN

i¼1

ẑz 0
i ẑzi

 !�1 XN

i¼1

ẑz 0
i yi

 !

Write yi ¼ x̂xib þ ðxi � x̂xiÞb þ ui, where xi ¼ fðwi; dÞ. Plugging this in and multi-

plying through by
ffiffiffiffiffi
N

p
gives
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ffiffiffiffiffi
N

p
ð b̂b � bÞ ¼ ðĈC 0D̂D�1ĈCÞ�1

ĈC 0D̂D�1 N�1=2
XN

i¼1

ẑz 0
i ½ðxi � x̂xiÞb þ ui�

( )

where

ĈC1N�1
XN

i¼1

ẑz 0
i x̂xi and D̂D ¼ N�1

XN

i¼1

ẑz 0
i ẑzi

Now, using Lemma 12.1 in Chapter 12, ĈC !p Eðz 0xÞ and D̂D !p Eðz 0zÞ. Further, a

mean value expansion of the kind used in Theorem 12.3 gives

N�1=2
XN

i¼1

ẑz 0
i ui ¼ N�1=2

XN

i¼1

z 0
i ui þ N�1

XN

i¼1

‘l gðvi; lÞui

" # ffiffiffiffiffi
N

p
ðl̂l� lÞ þ opð1Þ

where ‘lgðvi; lÞ is the L � S Jacobian of gðvi; lÞ0. Because Eðui j viÞ ¼ 0,

E½‘lgðvi; lÞ0ui� ¼ 0. It follows that N�1
PN

i¼1 ‘lgðvi; lÞui ¼ opð1Þ and, sinceffiffiffiffiffi
N

p
ðl̂l� lÞ ¼ Opð1Þ, it follows that

N�1=2
XN

i¼1

ẑz 0
i ui ¼ N�1=2

XN

i¼1

z 0
i ui þ opð1Þ

Next, using similar reasoning,

N�1=2
XN

i¼1

ẑz 0
i ðxi � x̂xiÞb ¼ � N�1

XN

i¼1

ðbn ziÞ0‘d fðwi; dÞ
" # ffiffiffiffiffi

N
p

ðd̂d� dÞ þ opð1Þ

¼ �G
ffiffiffiffiffi
N

p
ðd̂d� dÞ þ opð1Þ

where G ¼ E½ðbn ziÞ0‘d fðwi; dÞ� and ‘d fðwi; dÞ is the K � Q Jacobian of fðwi; dÞ0.
We have used a mean value expansion and ẑz 0

i ðxi � x̂xiÞb ¼ ðbn ẑziÞ0ðxi � x̂xiÞ0. Now,

assume that

ffiffiffiffiffi
N

p
ðd̂d� dÞ ¼ N�1=2

XN

i¼1

riðdÞ þ opð1Þ

where E½riðdÞ� ¼ 0. This assumption holds for all estimators discussed so far, and it

also holds for most estimators in nonlinear models; see Chapter 12. Collecting all

terms gives

ffiffiffiffiffi
N

p
ð b̂b � bÞ ¼ ðC 0D�1CÞ�1C 0D�1 N�1=2

XN

i¼1

½z 0
i ui � GriðdÞ�

( )
þ opð1Þ
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By the central limit theorem,ffiffiffiffiffi
N

p
ð b̂b � bÞ@a Normal½0; ðC 0D�1CÞ�1

C 0D�1MD�1CðC 0D�1CÞ�1�

where

M ¼ Var½z 0
i ui � GriðdÞ�

The asymptotic variance of b̂b is estimated as

ðĈC 0D̂D�1ĈCÞ�1ĈC 0D̂D�1M̂MD̂D�1ĈCðĈC 0D̂D�1ĈCÞ�1=N; ð6:36Þ

where

M̂M ¼ N�1
XN

i¼1

ðẑz 0
i ûui � ĜGr̂riÞðẑz 0

i ûui � ĜGr̂riÞ0 ð6:37Þ

ĜG ¼ N�1
XN

i¼1

ð b̂bn ẑziÞ0‘d fðwi; d̂dÞ ð6:38Þ

and

r̂ri ¼ riðd̂dÞ; ûui ¼ yi � x̂xi b̂b ð6:39Þ

A few comments are in order. First, estimation of l does not a¤ect the asymptotic

distribution of b̂b. Therefore, if there are no generated regressors, the usual 2SLS in-

ference procedures are valid [G ¼ 0 in this case and so M ¼ Eðu2
i z 0

i ziÞ]. If G ¼ 0 and

Eðu2z 0zÞ ¼ s2Eðz 0zÞ, then the usual 2SLS standard errors and test statistics are valid.

If Assumption 2SLS.3 fails, then the heteroskedasticity-robust statistics are valid.

If G0 0, then the asymptotic variance of b̂b depends on that of d̂d [through

the presence of riðdÞ]. Neither the usual 2SLS variance matrix estimator nor the

heteroskedasticity-robust form is valid in this case. The matrix M̂M should be com-

puted as in equation (6.37).

In some cases, G ¼ 0 under the null hypothesis that we wish to test. The jth row of

G can be written as E½zijb
0‘d fðwi; dÞ�. Now, suppose that x̂xih is the only generated

regressor, so that only the hth row of ‘d fðwi; dÞ is nonzero. But then if bh ¼ 0,

b 0‘d fðwi; dÞ ¼ 0. It follows that G ¼ 0 and M ¼ Eðu2
i z 0

i ziÞ, so that no adjustment for

the preliminary estimation of d is needed. This observation is very useful for a variety

of specification tests, including the test for endogeneity in Section 6.2.1. We will also

use it in sample selection contexts later on.
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7 Estimating Systems of Equations by OLS and GLS

7.1 Introduction

This chapter begins our analysis of linear systems of equations. The first method of

estimation we cover is system ordinary least squares, which is a direct extension of

OLS for single equations. In some important special cases the system OLS estimator

turns out to have a straightforward interpretation in terms of single-equation OLS

estimators. But the method is applicable to very general linear systems of equations.

We then turn to a generalized least squares (GLS) analysis. Under certain as-

sumptions, GLS—or its operationalized version, feasible GLS—will turn out to be

asymptotically more e‰cient than system OLS. However, we emphasize in this chapter

that the e‰ciency of GLS comes at a price: it requires stronger assumptions than

system OLS in order to be consistent. This is a practically important point that is

often overlooked in traditional treatments of linear systems, particularly those which

assume that explanatory variables are nonrandom.

As with our single-equation analysis, we assume that a random sample is available

from the population. Usually the unit of observation is obvious—such as a worker, a

household, a firm, or a city. For example, if we collect consumption data on various

commodities for a sample of families, the unit of observation is the family (not a

commodity).

The framework of this chapter is general enough to apply to panel data models.

Because the asymptotic analysis is done as the cross section dimension tends to in-

finity, the results are explicitly for the case where the cross section dimension is large

relative to the time series dimension. (For example, we may have observations on N

firms over the same T time periods for each firm. Then, we assume we have a random

sample of firms that have data in each of the T years.) The panel data model covered

here, while having many useful applications, does not fully exploit the replicability

over time. In Chapters 10 and 11 we explicitly consider panel data models that con-

tain time-invariant, unobserved e¤ects in the error term.

7.2 Some Examples

We begin with two examples of systems of equations. These examples are fairly gen-

eral, and we will see later that variants of them can also be cast as a general linear

system of equations.

Example 7.1 (Seemingly Unrelated Regressions): The population model is a set of

G linear equations,



y1 ¼ x1b1 þ u1

y2 ¼ x2b2 þ u2

..

.

yG ¼ xGbG þ uG

ð7:1Þ

where xg is 1 � Kg and bg is Kg � 1, g ¼ 1; 2; . . . ;G. In many applications xg is the

same for all g (in which case the bg necessarily have the same dimension), but the

general model allows the elements and the dimension of xg to vary across equations.

Remember, the system (7.1) represents a generic person, firm, city, or whatever from

the population. The system (7.1) is often called Zellner’s (1962) seemingly unrelated

regressions (SUR) model (for cross section data in this case). The name comes from

the fact that, since each equation in the system (7.1) has its own vector bg, it appears

that the equations are unrelated. Nevertheless, correlation across the errors in di¤er-

ent equations can provide links that can be exploited in estimation; we will see this

point later.

As a specific example, the system (7.1) might represent a set of demand functions

for the population of families in a country:

housing ¼ b10 þ b11houseprc þ b12 foodprc þ b13clothprc þ b14income

þ b15size þ b16age þ u1

food ¼ b20 þ b21houseprc þ b22 foodprc þ b23clothprc þ b24income

þ b25size þ b26age þ u2

clothing ¼ b30 þ b31houseprc þ b32 foodprc þ b33clothprc þ b34income

þ b35size þ b36age þ u3

In this example, G ¼ 3 and xg (a 1 � 7 vector) is the same for g ¼ 1; 2; 3.

When we need to write the equations for a particular random draw from the pop-

ulation, yg, xg, and ug will also contain an i subscript: equation g becomes yig ¼
xigbg þ uig. For the purposes of stating assumptions, it does not matter whether or

not we include the i subscript. The system (7.1) has the advantage of being less clut-

tered while focusing attention on the population, as is appropriate for applications.

But for derivations we will often need to indicate the equation for a generic cross

section unit i.

When we study the asymptotic properties of various estimators of the bg, the

asymptotics is done with G fixed and N tending to infinity. In the household demand

example, we are interested in a set of three demand functions, and the unit of obser-

Chapter 7144



vation is the family. Therefore, inference is done as the number of families in the

sample tends to infinity.

The assumptions that we make about how the unobservables ug are related to the

explanatory variables ðx1; x2; . . . ; xGÞ are crucial for determining which estimators of

the bg have acceptable properties. Often, when system (7.1) represents a structural

model (without omitted variables, errors-in-variables, or simultaneity), we can as-

sume that

Eðug j x1; x2; . . . ; xGÞ ¼ 0; g ¼ 1; . . . ;G ð7:2Þ

One important implication of assumption (7.2) is that ug is uncorrelated with the

explanatory variables in all equations, as well as all functions of these explanatory

variables. When system (7.1) is a system of equations derived from economic theory,

assumption (7.2) is often very natural. For example, in the set of demand functions

that we have presented, xg 1 x is the same for all g, and so assumption (7.2) is the

same as Eðug j xgÞ ¼ Eðug j xÞ ¼ 0.

If assumption (7.2) is maintained, and if the xg are not the same across g, then any

explanatory variables excluded from equation g are assumed to have no e¤ect on

expected yg once xg has been controlled for. That is,

Eðyg j x1; x2; . . . xGÞ ¼ Eðyg j xgÞ ¼ xgbg; g ¼ 1; 2; . . . ;G ð7:3Þ

There are examples of SUR systems where assumption (7.3) is too strong, but stan-

dard SUR analysis either explicitly or implicitly makes this assumption.

Our next example involves panel data.

Example 7.2 (Panel Data Model): Suppose that for each cross section unit we ob-

serve data on the same set of variables for T time periods. Let xt be a 1 � K vector

for t ¼ 1; 2; . . . ;T , and let b be a K � 1 vector. The model in the population is

yt ¼ xtb þ ut; t ¼ 1; 2; . . . ;T ð7:4Þ

where yt is a scalar. For example, a simple equation to explain annual family saving

over a five-year span is

savt ¼ b0 þ b1inct þ b2aget þ b3educt þ ut; t ¼ 1; 2; . . . ; 5

where inct is annual income, educt is years of education of the household head, and

aget is age of the household head. This is an example of a linear panel data model. It

is a static model because all explanatory variables are dated contemporaneously with

savt.

The panel data setup is conceptually very di¤erent from the SUR example. In Ex-

ample 7.1, each equation explains a di¤erent dependent variable for the same cross
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section unit. Here we only have one dependent variable we are trying to explain—

sav—but we observe sav, and the explanatory variables, over a five-year period.

(Therefore, the label ‘‘system of equations’’ is really a misnomer for panel data

applications. At this point, we are using the phrase to denote more than one equation

in any context.) As we will see in the next section, the statistical properties of esti-

mators in SUR and panel data models can be analyzed within the same structure.

When we need to indicate that an equation is for a particular cross section unit i

during a particular time period t, we write yit ¼ xitb þ uit. We will omit the i sub-

script whenever its omission does not cause confusion.

What kinds of exogeneity assumptions do we use for panel data analysis? One

possibility is to assume that ut and xt are orthogonal in the conditional mean sense:

Eðut j xtÞ ¼ 0; t ¼ 1; . . . ;T ð7:5Þ

We call this contemporaneous exogeneity of xt because it only restricts the relation-

ship between the disturbance and explanatory variables in the same time period. It is

very important to distinguish assumption (7.5) from the stronger assumption

Eðut j x1; x2; . . . ; xT Þ ¼ 0; t ¼ 1; . . . ;T ð7:6Þ

which, combined with model (7.4), is identical to Eðyt j x1; x2; . . . ; xTÞ ¼ Eðyt j xtÞ.
Assumption (7.5) places no restrictions on the relationship between xs and ut for

s0 t, while assumption (7.6) implies that each ut is uncorrelated with the explanatory

variables in all time periods. When assumption (7.6) holds, we say that the explana-

tory variables fx1; x2; . . . ; xt; . . . ; xTg are strictly exogenous.

To illustrate the di¤erence between assumptions (7.5) and (7.6), let xt 1 ð1; yt�1Þ.
Then assumption (7.5) holds if Eðyt j yt�1; yt�2; . . . ; y0Þ ¼ b0 þ b1 yt�1, which imposes

first-order dynamics in the conditional mean. However, assumption (7.6) must fail

since xtþ1 ¼ ð1; ytÞ, and therefore Eðut j x1; x2; . . . ; xTÞ ¼ Eðut j y0; y1; . . . ; yT�1Þ ¼ ut

for t ¼ 1; 2; . . . ;T � 1 (because ut ¼ yt � b0 � b1 yt�1Þ.
Assumption (7.6) can fail even if xt does not contain a lagged dependent variable.

Consider a model relating poverty rates to welfare spending per capita, at the city

level. A finite distributed lag (FDL) model is

povertyt ¼ yt þ d0welfaret þ d1welfaret�1 þ d2welfaret�2 þ ut ð7:7Þ

where we assume a two-year e¤ect. The parameter yt simply denotes a di¤erent ag-

gregate time e¤ect in each year. It is reasonable to think that welfare spending reacts

to lagged poverty rates. An equation that captures this feedback is

welfaret ¼ ht þ r1povertyt�1 þ rt ð7:8Þ
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Even if equation (7.7) contains enough lags of welfare spending, assumption (7.6)

would be violated if r1 0 0 in equation (7.8) because welfaretþ1 depends on ut and

xtþ1 includes welfaretþ1.

How we go about consistently estimating b depends crucially on whether we

maintain assumption (7.5) or the stronger assumption (7.6). Assuming that the xit are

fixed in repeated samples is e¤ectively the same as making assumption (7.6).

7.3 System OLS Estimation of a Multivariate Linear System

7.3.1 Preliminaries

We now analyze a general multivariate model that contains the examples in Section

7.2, and many others, as special cases. Assume that we have independent, identically

distributed cross section observations fðXi; yiÞ: i ¼ 1; 2; . . . ;Ng, where Xi is a G � K

matrix and yi is a G � 1 vector. Thus, yi contains the dependent variables for all G

equations (or time periods, in the panel data case). The matrix Xi contains the ex-

planatory variables appearing anywhere in the system. For notational clarity we in-

clude the i subscript for stating the general model and the assumptions.

The multivariate linear model for a random draw from the population can be

expressed as

yi ¼ Xib þ ui ð7:9Þ

where b is the K � 1 parameter vector of interest and ui is a G � 1 vector of un-

observables. Equation (7.9) explains the G variables yi1; . . . ; yiG in terms of Xi and

the unobservables ui. Because of the random sampling assumption, we can state all

assumptions in terms of a generic observation; in examples, we will often omit the i

subscript.

Before stating any assumptions, we show how the two examples introduced in

Section 7.2 fit into this framework.

Example 7.1 (SUR, continued): The SUR model (7.1) can be expressed as in

equation (7.9) by defining yi ¼ ðyi1; yi2; . . . ; yiGÞ
0, ui ¼ ðui1; ui2; . . . ; uiGÞ0, and

Xi ¼

xi1 0 0 � � � 0

0 xi2 0

0 0 ..
.

..

.
0

0 0 0 � � � xiG

0
BBBBBBB@

1
CCCCCCCA
; b ¼

b1

b2

..

.

bG

0
BBBB@

1
CCCCA ð7:10Þ
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Note that the dimension of Xi is G � ðK1 þ K2 þ � � � þ KGÞ, so we define K 1
K1 þ � � � þ KG.

Example 7.2 (Panel Data, continued): The panel data model (7.6) can be expressed

as in equation (7.9) by choosing Xi to be the T � K matrix Xi ¼ ðx 0
i1; x 0

i2; . . . ; x 0
iT Þ

0.

7.3.2 Asymptotic Properties of System OLS

Given the model in equation (7.9), we can state the key orthogonality condition for

consistent estimation of b by system ordinary least squares (SOLS).

assumption SOLS.1: EðX 0
i uiÞ ¼ 0.

Assumption SOLS.1 appears similar to the orthogonality condition for OLS analysis

of single equations. What it implies di¤ers across examples because of the multiple-

equation nature of equation (7.9). For most applications, Xi has a su‰cient number

of elements equal to unity so that Assumption SOLS.1 implies that EðuiÞ ¼ 0, and we

assume zero mean for the sake of discussion.

It is informative to see what Assumption SOLS.1 entails in the previous examples.

Example 7.1 (SUR, continued): In the SUR case, X 0
i ui ¼ ðxi1ui1; . . . ; xiGuiGÞ0, and

so Assumption SOLS.1 holds if and only if

Eðx 0
iguigÞ ¼ 0; g ¼ 1; 2; . . . ;G ð7:11Þ

Thus, Assumption SOLS.1 does not require xih and uig to be uncorrelated when

h0 g.

Example 7.2 (Panel Data, continued): For the panel data setup, X 0
i ui ¼

PT
t¼1 x 0

ituit;

therefore, a su‰cient, and very natural, condition for Assumption SOLS.1 is

Eðx 0
ituitÞ ¼ 0; t ¼ 1; 2; . . . ;T ð7:12Þ

Like assumption (7.5), assumption (7.12) allows xis and uit to be correlated when

s0 t; in fact, assumption (7.12) is weaker than assumption (7.5). Therefore, As-

sumption SOLS.1 does not impose strict exogeneity in panel data contexts.

Assumption SOLS.1 is the weakest assumption we can impose in a regression

framework to get consistent estimators of b. As the previous examples show, As-

sumption SOLS.1 allows some elements of Xi to be correlated with elements of ui.

Much stronger is the zero conditional mean assumption

Eðui jXiÞ ¼ 0 ð7:13Þ
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which implies, among other things, that every element of Xi and every element of ui

are uncorrelated. [Of course, assumption (7.13) is not as strong as assuming that ui

and Xi are actually independent.] Even though assumption (7.13) is stronger than

Assumption SOLS.1, it is, nevertheless, reasonable in some applications.

Under Assumption SOLS.1 the vector b satisfies

E½X 0
i ðyi � XibÞ� ¼ 0 ð7:14Þ

or EðX 0
i XiÞb ¼ EðX 0

i yiÞ. For each i, X 0
i yi is a K � 1 random vector and X 0

i Xi is a

K � K symmetric, positive semidefinite random matrix. Therefore, EðX 0
i XiÞ is always

a K � K symmetric, positive semidefinite nonrandom matrix (the expectation here is

defined over the population distribution of Xi). To be able to estimate b we need to

assume that it is the only K � 1 vector that satisfies assumption (7.14).

assumption SOLS.2: A1EðX 0
i XiÞ is nonsingular (has rank K ).

Under Assumptions SOLS.1 and SOLS.2 we can write b as

b ¼ ½EðX 0
i XiÞ��1EðX 0

i yiÞ ð7:15Þ

which shows that Assumptions SOLS.1 and SOLS.2 identify the vector b. The anal-

ogy principle suggests that we estimate b by the sample analogue of assumption

(7.15). Define the system ordinary least squares (SOLS) estimator of b as

b̂b ¼ N�1
XN

i¼1

X 0
i Xi

 !�1

N�1
XN

i¼1

X 0
i yi

 !
ð7:16Þ

For computing b̂b using matrix language programming, it is sometimes useful to write

b̂b ¼ ðX 0XÞ�1X 0Y, where X1 ðX 0
1;X 0

2; . . . ;X 0
NÞ

0 is the NG � K matrix of stacked X

and Y1 ðy 0
1; y 0

2; . . . ; y 0
NÞ

0 is the NG � 1 vector of stacked observations on the yi. For

asymptotic derivations, equation (7.16) is much more convenient. In fact, the con-

sistency of b̂b can be read o¤ of equation (7.16) by taking probability limits. We

summarize with a theorem:

theorem 7.1 (Consistency of System OLS): Under Assumptions SOLS.1 and

SOLS.2, b̂b !p
b.

It is useful to see what the system OLS estimator looks like for the SUR and panel

data examples.

Example 7.1 (SUR, continued): For the SUR model,
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XN

i¼1

X 0
i Xi ¼

XN

i¼1

x 0
i1xi1 0 0 � � � 0

0 x 0
i2xi2 0

0 0 ..
.

..

.
0

0 0 0 � � � x 0
iGxiG

0
BBBBBBB@

1
CCCCCCCA
;

XN

i¼1

X 0
i yi ¼

XN

i¼1

x 0
i1 yi1

x 0
i2 yi2

..

.

x 0
iG yiG

0
BBBB@

1
CCCCA

Straightforward inversion of a block diagonal matrix shows that the OLS estimator

from equation (7.16) can be written as b̂b ¼ ð b̂b 0
1; b̂b

0
2; . . . ; b̂b

0
GÞ

0, where each b̂bg is just the

single-equation OLS estimator from the gth equation. In other words, system OLS

estimation of a SUR model (without restrictions on the parameter vectors bg) is

equivalent to OLS equation by equation. Assumption SOLS.2 is easily seen to hold if

Eðx 0
igxigÞ is nonsingular for all g.

Example 7.2 (Panel Data, continued): In the panel data case,

XN

i¼1

X 0
i Xi ¼

XN

i¼1

XT

t¼1

x 0
itxit;

XN

i¼1

X 0
i yi ¼

XN

i¼1

XT

t¼1

x 0
it yit

Therefore, we can write b̂b as

b̂b ¼
XN

i¼1

XT

t¼1

x 0
itxit

 !�1 XN

i¼1

XT

t¼1

x 0
it yit

 !
ð7:17Þ

This estimator is called the pooled ordinary least squares (POLS) estimator because it

corresponds to running OLS on the observations pooled across i and t. We men-

tioned this estimator in the context of independent cross sections in Section 6.3. The

estimator in equation (7.17) is for the same cross section units sampled at di¤erent

points in time. Theorem 7.1 shows that the POLS estimator is consistent under

the orthogonality conditions in assumption (7.12) and the mild condition rank

Eð
PT

t¼1 x 0
itxitÞ ¼ K .

In the general system (7.9), the system OLS estimator does not necessarily have an

interpretation as OLS equation by equation or as pooled OLS. As we will see in

Section 7.7 for the SUR setup, sometimes we want to impose cross equation restric-

tions on the bg, in which case the system OLS estimator has no simple interpretation.

While OLS is consistent under Assumptions SOLS.1 and SOLS.2, it is not neces-

sarily unbiased. Assumption (7.13), and the finite sample assumption rankðX 0XÞ ¼
K , do ensure unbiasedness of OLS conditional on X. [This conclusion follows be-

cause, under independent sampling, Eðui jX1;X2; . . . ;XNÞ ¼ Eðui jXiÞ ¼ 0 under as-
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sumption (7.13).] We focus on the weaker Assumption SOLS.1 because assumption

(7.13) is often violated in economic applications, something we will see especially in

our panel data analysis.

For inference, we need to find the asymptotic variance of the OLS estimator under

essentially the same two assumptions; technically, the following derivation requires

the elements of X 0
i uiu

0
i Xi to have finite expected absolute value. From (7.16) and (7.9)

write

ffiffiffiffiffi
N

p
ð b̂b � bÞ ¼ N�1

XN

i¼1

X 0
i Xi

 !�1

N�1=2
XN

i¼1

X 0
i ui

 !

Because EðX 0
i uiÞ ¼ 0 under Assumption SOLS.1, the CLT implies that

N�1=2
XN

i¼1

X 0
i ui !

d
Normalð0;BÞ ð7:18Þ

where

B1EðX 0
i uiu

0
i XiÞ1VarðX 0

i uiÞ ð7:19Þ

In particular, N�1=2
PN

i¼1 X 0
i ui ¼ Opð1Þ. But ðX 0X=NÞ�1 ¼ A�1 þ opð1Þ, so

ffiffiffiffiffi
N

p
ð b̂b � bÞ ¼ A�1 N�1=2

XN

i¼1

X 0
i ui

 !
þ ½ðX 0X=NÞ�1 � A�1� N�1=2

XN

i¼1

X 0
i ui

 !

¼ A�1 N�1=2
XN

i¼1

X 0
i ui

 !
þ opð1Þ � Opð1Þ

¼ A�1 N�1=2
XN

i¼1

X 0
i ui

 !
þ opð1Þ ð7:20Þ

Therefore, just as with single-equation OLS and 2SLS, we have obtained an asymp-

totic representation for
ffiffiffiffiffi
N

p
ð b̂b � bÞ that is a nonrandom linear combination of a par-

tial sum that satisfies the CLT. Equations (7.18) and (7.20) and the asymptotic

equivalence lemma implyffiffiffiffiffi
N

p
ð b̂b � bÞ !d Normalð0;A�1BA�1Þ ð7:21Þ

We summarize with a theorem.

theorem 7.2 (Asymptotic Normality of SOLS): Under Assumptions SOLS.1 and

SOLS.2, equation (7.21) holds.
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The asymptotic variance of b̂b is

Avarð b̂bÞ ¼ A�1BA�1=N ð7:22Þ

so that Avarð b̂bÞ shrinks to zero at the rate 1=N, as expected. Consistent estimation of

A is simple:

ÂA1X 0X=N ¼ N�1
XN

i¼1

X 0
i Xi ð7:23Þ

A consistent estimator of B can be found using the analogy principle. First, because

B ¼ EðX 0
i uiu

0
i XiÞ, N�1

PN
i¼1 X 0

i uiu
0
i Xi !

p
B. Since the ui are not observed, we replace

them with the SOLS residuals:

ûui 1 yi � Xib̂b ¼ ui � Xið b̂b � bÞ ð7:24Þ

Using matrix algebra and the law of large numbers, it can be shown that

B̂B1N�1
XN

i¼1

X 0
i ûuiûu

0
i Xi !

p
B ð7:25Þ

[To establish equation (7.25), we need to assume that certain moments involving Xi

and ui are finite.] Therefore, Avar
ffiffiffiffiffi
N

p
ð b̂b � bÞ is consistently estimated by ÂA�1B̂BÂA�1,

and Avarð b̂bÞ is estimated as

V̂V1
XN

i¼1

X 0
i Xi

 !�1 XN

i¼1

X 0
i ûuiûu

0
i Xi

 ! XN

i¼1

X 0
i Xi

 !�1

ð7:26Þ

Under Assumptions SOLS.1 and SOLS.2, we perform inference on b as if b̂b is nor-

mally distributed with mean b and variance matrix (7.26). The square roots of the

diagonal elements of the matrix (7.26) are reported as the asymptotic standard errors.

The t ratio, b̂bj=seð b̂bjÞ, has a limiting normal distribution under the null hypothesis

H0: bj ¼ 0. Sometimes the t statistics are treated as being distributed as tNG�K , which

is asymptotically valid because NG � K should be large.

The estimator in matrix (7.26) is another example of a robust variance matrix esti-

mator because it is valid without any second-moment assumptions on the errors ui

(except, as usual, that the second moments are well defined). In a multivariate setting

it is important to know what this robustness allows. First, the G � G unconditional

variance matrix, W1Eðuiu
0
i Þ, is entirely unrestricted. This fact allows cross equation

correlation in an SUR system as well as di¤erent error variances in each equation.

In panel data models, an unrestricted W allows for arbitrary serial correlation and

Chapter 7152



time-varying variances in the disturbances. A second kind of robustness is that the

conditional variance matrix, Varðui jXiÞ, can depend on Xi in an arbitrary, unknown

fashion. The generality a¤orded by formula (7.26) is possible because of the N ! y
asymptotics.

In special cases it is useful to impose more structure on the conditional and un-

conditional variance matrix of ui in order to simplify estimation of the asymptotic

variance. We will cover an important case in Section 7.5.2. Essentially, the key re-

striction will be that the conditional and unconditional variances of ui are the same.

There are also some special assumptions that greatly simplify the analysis of the

pooled OLS estimator for panel data; see Section 7.8.

7.3.3 Testing Multiple Hypotheses

Testing multiple hypotheses in a very robust manner is easy once V̂V in matrix (7.26)

has been obtained. The robust Wald statistic for testing H0: Rb ¼ r, where R is Q � K

with rank Q and r is Q � 1, has its usual form, W ¼ ðRb̂b � rÞ0ðRV̂VR 0Þ�1ðRb̂b � rÞ.
Under H0, W @

a
w2

Q. In the SUR case this is the easiest and most robust way of

testing cross equation restrictions on the parameters in di¤erent equations using sys-

tem OLS. In the panel data setting, the robust Wald test provides a way of testing

multiple hypotheses about b without assuming homoskedasticity or serial indepen-

dence of the errors.

7.4 Consistency and Asymptotic Normality of Generalized Least Squares

7.4.1 Consistency

System OLS is consistent under fairly weak assumptions, and we have seen how to

perform robust inference using OLS. If we strengthen Assumption SOLS.1 and add

assumptions on the conditional variance matrix of ui, we can do better using a gen-

eralized least squares procedure. As we will see, GLS is not usually feasible because it

requires knowing the variance matrix of the errors up to a multiplicative constant.

Nevertheless, deriving the consistency and asymptotic distribution of the GLS esti-

mator is worthwhile because it turns out that the feasible GLS estimator is asymp-

totically equivalent to GLS.

We start with the model (7.9), but consistency of GLS generally requires a stronger

assumption than Assumption SOLS.1. We replace Assumption SOLS.1 with the as-

sumption that each element of ui is uncorrelated with each element of Xi. We can

state this succinctly using the Kronecker product:

Estimating Systems of Equations by OLS and GLS 153



assumption SGLS.1: EðXi n uiÞ ¼ 0.

Typically, at least one element of Xi is unity, so in practice Assumption SGLS.1

implies that EðuiÞ ¼ 0. We will assume ui has a zero mean for our discussion but not

in proving any results.

Assumption SGLS.1 plays a crucial role in establishing consistency of the GLS

estimator, so it is important to recognize that it puts more restrictions on the ex-

planatory variables than does Assumption SOLS.1. In other words, when we allow

the explanatory variables to be random, GLS requires a stronger assumption than

system OLS in order to be consistent. Su‰cient for Assumption SGLS.1, but not

necessary, is the zero conditional mean assumption (7.13). This conclusion follows

from a standard iterated expectations argument.

For GLS estimation of multivariate equations with i.i.d. observations, the second-

moment matrix of ui plays a key role. Define the G � G symmetric, positive semi-

definite matrix

W1Eðuiu
0
i Þ ð7:27Þ

As mentioned in Section 7.3.2, we call W the unconditional variance matrix of ui. [In

the rare case that EðuiÞ0 0, W is not the variance matrix of ui, but it is always the

appropriate matrix for GLS estimation.] It is important to remember that expression

(7.27) is definitional: because we are using random sampling, the unconditional vari-

ance matrix is necessarily the same for all i.

In place of Assumption SOLS.2, we assume that a weighted version of the expected

outer product of Xi is nonsingular.

assumption SGLS.2: W is positive definite and EðX 0
iW

�1XiÞ is nonsingular.

For the general treatment we assume that W is positive definite, rather than just

positive semidefinite. In applications where the dependent variables across equations

satisfy an adding up constraint—such as expenditure shares summing to unity—an

equation must be dropped to ensure that W is nonsingular, a topic we return to in

Section 7.7.3. As a practical matter, Assumption SGLS.2 is not very restrictive. The

assumption that the K � K matrix EðX 0
iW

�1XiÞ has rank K is the analogue of As-

sumption SOLS.2.

The usual motivation for the GLS estimator is to transform a system of equations

where the error has nonscalar variance-covariance matrix into a system where the

error vector has a scalar variance-covariance matrix. We obtain this by multiplying

equation (7.9) by W�1=2:
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W�1=2yi ¼ ðW�1=2XiÞb þW�1=2ui; or y�
i ¼ X�

i b þ u�
i ð7:28Þ

Simple algebra shows that Eðu�
i u�0

i Þ ¼ IG.

Now we estimate equation (7.28) by system OLS. (As yet, we have no real justifi-

cation for this step, but we know SOLS is consistent under some assumptions.) Call

this estimator b �. Then

b � 1
XN

i¼1

X�0
i X�

i

 !�1 XN

i¼1

X�0
i y�

i

 !
¼

XN

i¼1

X 0
iW

�1Xi

 !�1 XN

i¼1

X 0
iW

�1yi

 !
ð7:29Þ

This is the generalized least squares (GLS) estimator of b. Under Assumption

SGLS.2, b � exists with probability approaching one as N ! y.

We can write b � using full matrix notation as b � ¼ ½X 0ðIN nW�1ÞX��1 �
½X 0ðIN nW�1ÞY�, where X and Y are the data matrices defined in Section 7.3.2 and

IN is the N � N identity matrix. But for establishing the asymptotic properties of b �,

it is most convenient to work with equation (7.29).

We can establish consistency of b � under Assumptions SGLS.1 and SGLS.2 by

writing

b � ¼ b þ N�1
XN

i¼1

X 0
iW

�1Xi

 !�1

N�1
XN

i¼1

X 0
iW

�1ui

 !
ð7:30Þ

By the weak law of large numbers (WLLN), N�1
PN

i¼1 X 0
iW

�1Xi !
p

EðX 0
iW

�1XiÞ. By

Assumption SGLS.2 and Slutsky’s theorem (Lemma 3.4), N�1
PN

i¼1 X 0
iW

�1Xi

� ��1

!p

A�1, where A is now defined as

A1EðX 0
iW

�1XiÞ ð7:31Þ

Now we must show that plim N�1
PN

i¼1 X 0
iW

�1ui ¼ 0. By the WLLN, it is su‰cient

that EðX 0
iW

�1uiÞ ¼ 0. This is where Assumption SGLS.1 comes in. We can argue this

point informally because W�1Xi is a linear combination of Xi, and since each element

of Xi is uncorrelated with each element of ui, any linear combination of Xi is uncor-

related with ui. We can also show this directly using the algebra of Kronecker prod-

ucts and vectorization. For conformable matrices D, E, and F, recall that vecðDEFÞ
¼ ðF 0 nDÞ vecðEÞ, where vecðCÞ is the vectorization of the matrix C. [That is, vecðCÞ
is the column vector obtained by stacking the columns of C from first to last; see

Theil (1983).] Therefore, under Assumption SGLS.1,

vec EðX 0
iW

�1uiÞ ¼ E½ðu 0
i nX 0

i Þ� vecðW�1Þ ¼ E½ðui nXiÞ0� vecðW�1Þ ¼ 0
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where we have also used the fact that the expectation and vec operators can be

interchanged. We can now read the consistency of the GLS estimator o¤ of equation

(7.30). We do not state this conclusion as a theorem because the GLS estimator itself

is rarely available.

The proof of consistency that we have sketched fails if we only make Assumption

SOLS.1: EðX 0
i uiÞ ¼ 0 does not imply EðX 0

iW
�1uiÞ ¼ 0, except when W and Xi have

special structures. If Assumption SOLS.1 holds but Assumption SGLS.1 fails, the

transformation in equation (7.28) generally induces correlation between X�
i and u�

i .

This can be an important point, especially for certain panel data applications. If we

are willing to make the zero conditional mean assumption (7.13), b � can be shown to

be unbiased conditional on X.

7.4.2 Asymptotic Normality

We now sketch the asymptotic normality of the GLS estimator under Assumptions

SGLS.1 and SGLS.2 and some weak moment conditions. The first step is familiar:

ffiffiffiffiffi
N

p
ðb � � bÞ ¼ N�1

XN

i¼1

X 0
iW

�1Xi

 !�1

N�1=2
XN

i¼1

X 0
iW

�1ui

 !
ð7:32Þ

By the CLT, N�1=2
PN

i¼1 X 0
iW

�1ui !
d

Normalð0;BÞ, where

B1EðX 0
iW

�1uiu
0
iW

�1XiÞ ð7:33Þ

Further, since N�1=2
PN

i¼1 X 0
iW

�1ui ¼ Opð1Þ and ðN�1
PN

i¼1 X 0
iW

�1XiÞ�1 � A�1 ¼
opð1Þ, we can write

ffiffiffiffiffi
N

p
ðb � � bÞ ¼ A�1ðN�1=2

PN
i¼1 x 0

iW
�1uiÞ þ opð1Þ. It follows from

the asymptotic equivalence lemma thatffiffiffiffiffi
N

p
ðb � � bÞ @a Normalð0;A�1BA�1Þ ð7:34Þ

Thus,

Avarð b̂bÞ ¼ A�1BA�1=N ð7:35Þ

The asymptotic variance in equation (7.35) is not the asymptotic variance usually

derived for GLS estimation of systems of equations. Usually the formula is reported

as A�1=N. But equation (7.35) is the appropriate expression under the assumptions

made so far. The simpler form, which results when B ¼ A, is not generally valid

under Assumptions SGLS.1 and SGLS.2, because we have assumed nothing about

the variance matrix of ui conditional on Xi. In Section 7.5.2 we make an assumption

that simplifies equation (7.35).
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7.5 Feasible GLS

7.5.1 Asymptotic Properties

Obtaining the GLS estimator b � requires knowing W up to scale. That is, we must be

able to write W ¼ s2C where C is a known G � G positive definite matrix and s2 is

allowed to be an unknown constant. Sometimes C is known (one case is C ¼ IG), but

much more often it is unknown. Therefore, we now turn to the analysis of feasible

GLS (FGLS) estimation.

In FGLS estimation we replace the unknown matrix W with a consistent estimator.

Because the estimator of W appears highly nonlinearly in the expression for the

FGLS estimator, deriving finite sample properties of FGLS is generally di‰cult.

[However, under essentially assumption (7.13) and some additional assumptions,

including symmetry of the distribution of ui, Kakwani (1967) showed that the distri-

bution of the FGLS is symmetric about b, a property which means that the FGLS

is unbiased if its expected value exists; see also Schmidt (1976, Section 2.5).] The

asymptotic properties of the FGLS estimator are easily established as N ! y be-

cause, as we will show, its first-order asymptotic properties are identical to those of

the GLS estimator under Assumptions SGLS.1 and SGLS.2. It is for this purpose

that we spent some time on GLS. After establishing the asymptotic equivalence, we

can easily obtain the limiting distribution of the FGLS estimator. Of course, GLS is

trivially a special case of FGLS, where there is no first-stage estimation error.

We assume we have a consistent estimator, ŴW, of W:

plim
N!y

ŴW ¼ W ð7:36Þ

[Because the dimension of ŴW does not depend on N, equation (7.36) makes sense

when defined element by element.] When W is allowed to be a general positive definite

matrix, the following estimation approach can be used. First, obtain the system OLS

estimator of b, which we denote
^̂
bb̂bb in this section to avoid confusion. We already

showed that
^̂
bb̂bb is consistent for b under Assumptions SOLS.1 and SOLS.2, and

therefore under Assumptions SGLS.1 and SOLS.2. (In what follows, we assume that

Assumptions SOLS.2 and SGLS.2 both hold.) By the WLLN, plimðN�1
PN

i¼1 uiu
0
i Þ ¼

W, and so a natural estimator of W is

ŴW1N�1
XN

i¼1

^̂uûuui
^̂uûuu 0

i ð7:37Þ
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where ^̂uûuui 1 yi � Xi
^̂
bb̂bb are the SOLS residuals. We can show that this estimator is con-

sistent for W under Assumptions SGLS.1 and SOLS.2 and standard moment con-

ditions. First, write

^̂uûuui ¼ ui � Xið ^̂bb̂bb � bÞ ð7:38Þ

so that

^̂uûuui
^̂uûuu 0

i ¼ uiu
0
i � uið ^̂bb̂bb � bÞ0X 0

i � Xið ^̂bb̂bb � bÞu 0
i þ Xið ^̂bb̂bb � bÞð ^̂bb̂bb � bÞ0X 0

i ð7:39Þ

Therefore, it su‰ces to show that the averages of the last three terms converge in

probability to zero. Write the average of the vec of the first term as N�1
PN

i¼1ðXi n uiÞ �
ð ^̂bb̂bb � bÞ, which is opð1Þ because plimð ^̂bb̂bb � bÞ ¼ 0 and N�1

PN
i¼1ðXi n uiÞ !

p
0. The

third term is the transpose of the second. For the last term in equation (7.39), note

that the average of its vec can be written as

N�1
XN

i¼1

ðXi nXiÞ � vecfð ^̂bb̂bb � bÞð ^̂bb̂bb � bÞ0g ð7:40Þ

Now vecfð ^̂bb̂bb � bÞð ^̂bb̂bb � bÞ0g ¼ opð1Þ. Further, assuming that each element of Xi has

finite second moment, N�1
PN

i¼1ðXi nXiÞ ¼ Opð1Þ by the WLLN. This step takes

care of the last term, since Opð1Þ � opð1Þ ¼ opð1Þ. We have shown that

ŴW ¼ N�1
XN

i¼1

uiu
0
i þ opð1Þ ð7:41Þ

and so equation (7.36) follows immediately. [In fact, a more careful analysis shows

that the opð1Þ in equation (7.41) can be replaced by opðN�1=2Þ; see Problem 7.4.]

Sometimes the elements of W are restricted in some way (an important example is

the random e¤ects panel data model that we will cover in Chapter 10). In such cases

a di¤erent estimator of W is often used that exploits these restrictions. As with ŴW

in equation (7.37), such estimators typically use the system OLS residuals in some

fashion and lead to consistent estimators assuming the structure of W is correctly

specified. The advantage of equation (7.37) is that it is consistent for W quite gener-

ally. However, if N is not very large relative to G, equation (7.37) can have poor finite

sample properties.

Given ŴW, the feasible GLS (FGLS) estimator of b is

b̂b ¼
XN

i¼1

X 0
i ŴW

�1Xi

 !�1 XN

i¼1

X 0
i ŴW

�1yi

 !
ð7:42Þ

or, in full matrix notation, b̂b ¼ ½X 0ðIN n ŴW�1ÞX��1½X 0ðIN n ŴW�1ÞY�.
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We have already shown that the (infeasible) GLS estimator is consistent under

Assumptions SGLS.1 and SGLS.2. Because ŴW converges to W, it is not surprising

that FGLS is also consistent. Rather than show this result separately, we verify the

stronger result that FGLS has the same limiting distribution as GLS.

The limiting distribution of FGLS is obtained by writing

ffiffiffiffiffi
N

p
ð b̂b � bÞ ¼ N�1

XN

i¼1

X 0
i ŴW

�1Xi

 !�1

N�1=2
XN

i¼1

X 0
i ŴW

�1ui

 !
ð7:43Þ

Now

N�1=2
XN

i¼1

X 0
i ŴW

�1ui � N�1=2
XN

i¼1

X 0
iW

�1ui ¼ N�1=2
XN

i¼1

ðui nXiÞ0
" #

vecðŴW�1 �W�1Þ

Under Assumption SGLS.1, the CLT implies that N�1=2
PN

i¼1ðui nXiÞ ¼ Opð1Þ.
Because Opð1Þ � opð1Þ ¼ opð1Þ, it follows that

N�1=2
XN

i¼1

X 0
i ŴW

�1ui ¼ N�1=2
XN

i¼1

X 0
iW

�1ui þ opð1Þ

A similar argument shows that N�1
PN

i¼1 X 0
i ŴW

�1Xi ¼ N�1
PN

i¼1 X 0
iW

�1Xi þ opð1Þ.
Therefore, we have shown that

ffiffiffiffiffi
N

p
ð b̂b � bÞ ¼ N�1

XN

i¼1

X 0
iW

�1Xi

 !�1

N�1=2
XN

i¼1

X 0
iW

�1ui

 !
þ opð1Þ ð7:44Þ

The first term in equation (7.44) is just
ffiffiffiffiffi
N

p
ðb � � bÞ, where b � is the GLS estimator.

We can write equation (7.44) asffiffiffiffiffi
N

p
ð b̂b � b �Þ ¼ opð1Þ ð7:45Þ

which shows that b̂b and b � are
ffiffiffiffiffi
N

p
-equivalent. Recall from Chapter 3 that this

statement is much stronger than simply saying that b � and b̂b are both consistent for

b. There are many estimators, such as system OLS, that are consistent for b but are

not
ffiffiffiffiffi
N

p
-equivalent to b �.

The asymptotic equivalence of b̂b and b � has practically important consequences. The

most important of these is that, for performing asymptotic inference about b using

b̂b, we do not have to worry that ŴW is an estimator of W. Of course, whether the

asymptotic approximation gives a reasonable approximation to the actual distribu-

tion of b̂b is di‰cult to tell. With large N, the approximation is usually pretty good.
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But if N is small relative to G, ignoring estimation of W in performing inference

about b can be misleading.

We summarize the limiting distribution of FGLS with a theorem.

theorem 7.3 (Asymptotic Normality of FGLS): Under Assumptions SGLS.1 and

SGLS.2,ffiffiffiffiffi
N

p
ð b̂b � bÞ @a Normalð0;A�1BA�1Þ ð7:46Þ

where A is defined in equation (7.31) and B is defined in equation (7.33).

In the FGLS context a consistent estimator of A is

ÂA1N�1
XN

i¼1

X 0
i ŴW

�1Xi ð7:47Þ

A consistent estimator of B is also readily available after FGLS estimation. Define

the FGLS residuals by

ûui 1 yi � Xib̂b; i ¼ 1; 2; . . . ;N ð7:48Þ

[The only di¤erence between the FGLS and SOLS residuals is that the FGLS esti-

mator is inserted in place of the SOLS estimator; in particular, the FGLS residuals

are not from the transformed equation (7.28).] Using standard arguments, a consis-

tent estimator of B is

B̂B1N�1
XN

i¼1

X 0
i ŴW

�1ûuiûu
0
i ŴW

�1Xi

The estimator of Avarð b̂bÞ can be written as

ÂA�1B̂BÂA�1=N ¼
XN

i¼1

X 0
i ŴW

�1Xi

 !�1 XN

i¼1

X 0
i ŴW

�1ûuiûu
0
i ŴW

�1Xi

 ! XN

i¼1

X 0
i ŴW

�1Xi

 !�1

ð7:49Þ

This is the extension of the White (1980b) heteroskedasticity-robust asymptotic vari-

ance estimator to the case of systems of equations; see also White (1984). This esti-

mator is valid under Assumptions SGLS.1 and SGLS.2; that is, it is completely

robust.

7.5.2 Asymptotic Variance of FGLS under a Standard Assumption

Under the assumptions so far, FGLS really has nothing to o¤er over SOLS. In ad-

dition to being computationally more di‰cult, FGLS is less robust than SOLS. So

why is FGLS used? The answer is that, under an additional assumption, FGLS is
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asymptotically more e‰cient than SOLS (and other estimators). First, we state the

weakest condition that simplifies estimation of the asymptotic variance for FGLS.

For reasons to be seen shortly, we call this a system homoskedasticity assumption.

assumption SGLS.3: EðX 0
iW

�1uiu
0
iW

�1XiÞ ¼ EðX 0
iW

�1XiÞ, where W1Eðuiu
0
i Þ.

Another way to state this assumption is, B ¼ A, which, from expression (7.46), sim-

plifies the asymptotic variance. As stated, Assumption SGLS.3 is somewhat di‰cult

to interpret. When G ¼ 1, it reduces to Assumption OLS.3. When W is diagonal and

Xi has either the SUR or panel data structure, Assumption SGLS.3 implies a kind of

conditional homoskedasticity in each equation (or time period). Generally, Assump-

tion SGLS.3 puts restrictions on the conditional variances and covariances of ele-

ments of ui. A su‰cient (though certainly not necessary) condition for Assumption

SGLS.3 is easier to interpret:

Eðuiu
0
i jXiÞ ¼ Eðuiu

0
i Þ ð7:50Þ

If Eðui jXiÞ ¼ 0, then assumption (7.50) is the same as assuming Varðui jXiÞ ¼
VarðuiÞ ¼ W, which means that each variance and each covariance of elements

involving ui must be constant conditional on all of Xi. This is a very natural way of

stating a system homoskedasticity assumption, but it is sometimes too strong.

When G ¼ 2, W contains three distinct elements, s2
1 ¼ Eðu2

i1Þ, s2
2 ¼ Eðu2

i2Þ, and

s12 ¼ Eðui1ui2Þ. These elements are not restricted by the assumptions we have made.

(The inequality js12j < s1s2 must always hold for W to be a nonsingular covariance

matrix.) However, assumption (7.50) requires Eðu2
i1 jXiÞ ¼ s2

1 , Eðu2
i2 jXiÞ ¼ s2

2 , and

Eðui1ui2 jXiÞ ¼ s12: the conditional variances and covariance must not depend on Xi.

That assumption (7.50) implies Assumption SGLS.3 is a consequence of iterated

expectations:

EðX 0
iW

�1uiu
0
iW

�1XiÞ ¼ E½EðX 0
iW

�1uiu
0
iW

�1Xi jXiÞ�

¼ E½X 0
iW

�1Eðuiu
0
i jXiÞW�1Xi� ¼ EðX 0

iW
�1WW�1XiÞ

¼ EðX 0
iW

�1XiÞ

While assumption (7.50) is easier to intepret, we use Assumption SGLS.3 for stating

the next theorem because there are cases, including some dynamic panel data models,

where Assumption SGLS.3 holds but assumption (7.50) does not.

theorem 7.4 (Usual Variance Matrix for FGLS): Under Assumptions SGLS.1–

SGLS.3, the asymptotic variance of the FGLS estimator is Avarð b̂bÞ ¼ A�1=N 1
½EðX 0

iW
�1XiÞ��1=N.
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We obtain an estimator of Avarð b̂bÞ by using our consistent estimator of A:

Avâarð b̂bÞ ¼ ÂA�1=N ¼
XN

i¼1

X 0
i ŴW

�1Xi

 !�1

ð7:51Þ

Equation (7.51) is the ‘‘usual’’ formula for the asymptotic variance of FGLS. It is

nonrobust in the sense that it relies on Assumption SGLS.3 in addition to Assump-

tions SGLS.1 and SGLS.2. If heteroskedasticity in ui is suspected, then the robust

estimator (7.49) should be used.

Assumption (7.50) also has important e‰ciency implications. One consequence of

Problem 7.2 is that, under Assumptions SGLS.1, SOLS.2, SGLS.2, and (7.50), the

FGLS estimator is more e‰cient than the system OLS estimator. We can actually say

much more: FGLS is more e‰cient than any other estimator that uses the ortho-

gonality conditions EðXi n uiÞ ¼ 0. This conclusion will follow as a special case of

Theorem 8.4 in Chapter 8, where we define the class of competing estimators. If

we replace Assumption SGLS.1 with the zero conditional mean assumption (7.13),

then an even stronger e‰ciency result holds for FGLS, something we treat in

Section 8.6.

7.6 Testing Using FGLS

Asymptotic standard errors are obtained in the usual fashion from the asymptotic

variance estimates. We can use the nonrobust version in equation (7.51) or, even

better, the robust version in equation (7.49), to construct t statistics and confidence

intervals. Testing multiple restrictions is fairly easy using the Wald test, which always

has the same general form. The important consideration lies in choosing the asymp-

totic variance estimate, V̂V. Standard Wald statistics use equation (7.51), and this

approach produces limiting chi-square statistics under the homoskedasticity assump-

tion SGLS.3. Completely robust Wald statistics are obtained by choosing V̂V as in

equation (7.49).

If Assumption SGLS.3 holds under H0, we can define a statistic based on the

weighted sums of squared residuals. To obtain the statistic, we estimate the model

with and without the restrictions imposed on b, where the same estimator of W, usu-

ally based on the unrestricted SOLS residuals, is used in obtaining the restricted and

unrestricted FGLS estimators. Let ~uui denote the residuals from constrained FGLS

(with Q restrictions imposed on ~bb) using variance matrix ŴW. It can be shown that,

under H0 and Assumptions SGLS.1–SGLS.3,
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XN

i¼1

~uu 0
i ŴW

�1~uui �
XN

i¼1

ûu 0
i ŴW

�1ûui

 !
@
a
w2

Q ð7:52Þ

Gallant (1987) shows expression (7.52) for nonlinear models with fixed regressors;

essentially the same proof works here under Assumptions SGLS.1–SGLS.3, as we

will show more generally in Chapter 12.

The statistic in expression (7.52) is the di¤erence between the transformed sum

of squared residuals from the restricted and unrestricted models, but it is just as easy

to calculate expression (7.52) directly. Gallant (1987, Chapter 5) has found that an

F statistic has better finite sample properties. The F statistic in this context is

defined as

F ¼
XN

i¼1

~uu 0
i ŴW

�1~uui �
XN

i¼1

ûu 0
i ŴW

�1ûui

 !� XN

i¼1

ûu 0
i ŴW

�1ûui

 !" #
½ðNG � KÞ�=Q ð7:53Þ

Why can we treat this equation as having an approximate F distribution? First,

for NG � K large, FQ;NG�K @
a
w2

Q=Q. Therefore, dividing expression (7.52) by Q

gives us an approximate FQ;NG�K distribution. The presence of the other two

terms in equation (7.53) is to improve the F-approximation. Since Eðu 0
iW

�1uiÞ ¼
trfEðW�1uiu

0
i Þg ¼ trfEðW�1WÞg ¼ G, it follows that ðNGÞ�1PN

i¼1 u 0
iW

�1ui !
p

1; re-

placing u 0
iW

�1ui with ûu 0
i ŴW

�1ûui does not a¤ect this consistency result. Subtracting o¤

K as a degrees-of-freedom adjustment changes nothing asymptotically, and so

ðNG � KÞ�1PN
i¼1 ûu 0

i ŴW
�1ûui !

p
1. Multiplying expression (7.52) by the inverse of this

quantity does not a¤ect its asymptotic distribution.

7.7 Seemingly Unrelated Regressions, Revisited

We now return to the SUR system in assumption (7.2). We saw in Section 7.3 how to

write this system in the form (7.9) if there are no cross equation restrictions on the

bg. We also showed that the system OLS estimator corresponds to estimating each

equation separately by OLS.

As mentioned earlier, in most applications of SUR it is reasonable to assume that

Eðx 0
iguihÞ ¼ 0, g; h ¼ 1; 2; . . . ;G, which is just Assumption SGLS.1 for the SUR

structure. Under this assumption, FGLS will consistently estimate the bg.

OLS equation by equation is simple to use and leads to standard inference for each

bg under the OLS homoskedasticity assumption Eðu2
ig j xigÞ ¼ s2

g , which is standard

in SUR contexts. So why bother using FGLS in such applications? There are two

answers. First, as mentioned in Section 7.5.2, if we can maintain assumption (7.50) in

addition to Assumption SGLS.1 (and SGLS.2), FGLS is asymptotically at least as
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e‰cient as system OLS. Second, while OLS equation by equation allows us to easily

test hypotheses about the coe‰cients within an equation, it does not provide a con-

venient way for testing cross equation restrictions. It is possible to use OLS for testing

cross equation restrictions by using the variance matrix (7.26), but if we are willing to

go through that much trouble, we should just use FGLS.

7.7.1 Comparison between OLS and FGLS for SUR Systems

There are two cases where OLS equation by equation is algebraically equivalent to

FGLS. The first case is fairly straightforward to analyze in our setting.

theorem 7.5 (Equivalence of FGLS and OLS, I): If ŴW is a diagonal matrix, then

OLS equation by equation is identical to FGLS.

Proof: If ŴW is diagonal, then ŴW�1 ¼ diagðŝs�2
1 ; . . . ; ŝs�2

G Þ. With Xi defined as in the

matrix (7.10), straightforward algebra shows that

X 0
i ŴW

�1Xi ¼ ĈC�1X 0
i Xi and X 0

i ŴW
�1yi ¼ ĈC�1X 0

i yi

where ĈC is the block diagonal matrix with ŝs2
gIkg

as its gth block. It follows that the

FGLS estimator can be written as

b̂b ¼
XN

i¼1

ĈC�1X 0
i Xi

 !�1 XN

i¼1

ĈC�1X 0
i yi

 !
¼

XN

i¼1

X 0
i Xi

 !�1 XN

i¼1

X 0
i yi

 !

which is the system OLS estimator.

In applications, ŴW would not be diagonal unless we impose a diagonal structure.

Nevertheless, we can use Theorem 7.5 to obtain an asymptotic equivalance result

when W is diagonal. If W is diagonal, then the GLS and OLS are algebraically iden-

tical (because GLS uses W). We know that FGLS and GLS are
ffiffiffiffiffi
N

p
-asymptotically

equivalent for any W. Therefore, OLS and FGLS are
ffiffiffiffiffi
N

p
-asymptotically equivalent

if W is diagonal, even though they are not algebraically equivalent (because ŴW is not

diagonal).

The second algebraic equivalence result holds without any restrictions on ŴW. It is

special in that it assumes that the same regressors appear in each equation.

theorem 7.6 (Equivalence of FGLS and OLS, II): If xi1 ¼ xi2 ¼ � � � ¼ xiG for all i,

that is, if the same regressors show up in each equation (for all observations), then

OLS equation by equation and FGLS are identical.

In practice, Theorem 7.6 holds when the population model has the same explanatory

variables in each equation. The usual proof of this result groups all N observations
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for the first equation followed by the N observations for the second equation, and so

on (see, for example, Greene, 1997, Chapter 17). Problem 7.5 asks you to prove

Theorem 7.6 in the current setup, where we have ordered the observations to be

amenable to asymptotic analysis.

It is important to know that when every equation contains the same regressors in an

SUR system, there is still a good reason to use a SUR software routine in obtaining

the estimates: we may be interested in testing joint hypotheses involving parameters

in di¤erent equations. In order to do so we need to estimate the variance matrix of b̂b

(not just the variance matrix of each b̂bg, which only allows tests of the coe‰cients

within an equation). Estimating each equation by OLS does not directly yield the

covariances between the estimators from di¤erent equations. Any SUR routine will

perform this operation automatically, then compute F statistics as in equation (7.53)

(or the chi-square alternative, the Wald statistic).

Example 7.3 (SUR System for Wages and Fringe Benefits): We use the data on

wages and fringe benefits in FRINGE.RAW to estimate a two-equation system for

hourly wage and hourly benefits. There are 616 workers in the data set. The FGLS

estimates are given in Table 7.1, with asymptotic standard errors in parentheses

below estimated coe‰cients.

The estimated coe‰cients generally have the signs we expect. Other things equal,

people with more education have higher hourly wage and benefits, males have higher

predicted wages and benefits ($1.79 and 27 cents higher, respectively), and people

with more tenure have higher earnings and benefits, although the e¤ect is diminishing

in both cases. (The turning point for hrearn is at about 10.8 years, while for hrbens it

is 22.5 years.) The coe‰cients on experience are interesting. Experience is estimated

to have a dimininshing e¤ect for benefits but an increasing e¤ect for earnings, although

the estimated upturn for earnings is not until 9.5 years.

Belonging to a union implies higher wages and benefits, with the benefits coe‰cient

being especially statistically significant ðtA7:5Þ.
The errors across the two equations appear to be positively correlated, with an

estimated correlation of about .32. This result is not surprising: the same unobserv-

ables, such as ability, that lead to higher earnings, also lead to higher benefits.

Clearly there are significant di¤erences between males and females in both earn-

ings and benefits. But what about between whites and nonwhites, and married and

unmarried people? The F-type statistic for joint significance of married and white in

both equations is F ¼ 1:83. We are testing four restrictions ðQ ¼ 4Þ, N ¼ 616, G ¼ 2,

and K ¼ 2ð13Þ ¼ 26, so the degrees of freedom in the F distribution are 4 and 1,206.

The p-value is about .121, so these variables are jointly insignificant at the 10 per-

cent level.
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If the regressors are di¤erent in di¤erent equations, W is not diagonal, and the

conditions in Section 7.5.2 hold, then FGLS is generally asymptotically more e‰cient

than OLS equation by equation. One thing to remember is that the e‰ciency of

FGLS comes at the price of assuming that the regressors in each equation are

uncorrelated with the errors in each equation. For SOLS and FGLS to be di¤erent,

the xg must vary across g. If xg varies across g, certain explanatory variables have

been intentionally omitted from some equations. If we are interested in, say, the first

equation, but we make a mistake in specifying the second equation, FGLS will gen-

erally produce inconsistent estimators of the parameters in all equations. However,

OLS estimation of the first equation is consistent if Eðx 0
1u1Þ ¼ 0.

The previous discussion reflects the trade-o¤ between e‰ciency and robustness that

we often encounter in estimation problems.

Table 7.1
An Estimated SUR Model for Hourly Wages and Hourly Benefits

Explanatory Variables hrearn hrbens

educ .459
(.069)

.077
(.008)

exper �.076
(.057)

.023
(.007)

exper2 .0040
(.0012)

�.0005
(.0001)

tenure .110
(.084)

.054
(.010)

tenure2 �.0051
(.0033)

�.0012
(.0004)

union .808
(.408)

.366
(.049)

south �.457
(.552)

�.023
(.066)

nrtheast �1.151
(0.606)

�.057
(.072)

nrthcen �.636
(.556)

�.038
(.066)

married .642
(.418)

.058
(.050)

white 1.141
(0.612)

.090
(.073)

male 1.785
(0.398)

.268
(.048)

intercept �2.632
(1.228)

�.890
(.147)
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7.7.2 Systems with Cross Equation Restrictions

So far we have studied SUR under the assumption that the bg are unrelated across

equations. When systems of equations are used in economics, especially for modeling

consumer and producer theory, there are often cross equation restrictions on the

parameters. Such models can still be written in the general form we have covered,

and so they can be estimated by system OLS and FGLS. We still refer to such sys-

tems as SUR systems, even though the equations are now obviously related, and

system OLS is no longer OLS equation by equation.

Example 7.4 (SUR with Cross Equation Restrictions): Consider the two-equation

population model

y1 ¼ g10 þ g11x11 þ g12x12 þ a1x13 þ a2x14 þ u1 ð7:54Þ

y2 ¼ g20 þ g21x21 þ a1x22 þ a2x23 þ g24x24 þ u2 ð7:55Þ

where we have imposed cross equation restrictions on the parameters in the two

equations because a1 and a2 show up in each equation. We can put this model into

the form of equation (7.9) by appropriately defining Xi and b. For example, define

b ¼ ðg10; g11; g12; a1; a2; g20; g21; g24Þ
0, which we know must be an 8 � 1 vector because

there are 8 parameters in this system. The order in which these elements appear in b

is up to us, but once b is defined, Xi must be chosen accordingly. For each observa-

tion i, define the 2 � 8 matrix

Xi ¼
1 xi11 xi12 xi13 xi14 0 0 0

0 0 0 xi22 xi23 1 xi21 xi24

� �

Multiplying Xi by b gives the equations (7.54) and (7.55).

In applications such as the previous example, it is fairly straightforward to test the

cross equation restrictions, especially using the sum of squared residuals statistics

[equation (7.52) or (7.53)]. The unrestricted model simply allows each explanatory

variable in each equation to have its own coe‰cient. We would use the unrestricted

estimates to obtain ŴW, and then obtain the restricted estimates using ŴW.

7.7.3 Singular Variance Matrices in SUR Systems

In our treatment so far we have assumed that the variance matrix W of ui is non-

singular. In consumer and producer theory applications this assumption is not always

true in the original structural equations, because of additivity constraints.

Example 7.5 (Cost Share Equations): Suppose that, for a given year, each firm in

a particular industry uses three inputs, capital (K ), labor (L), and materials (M ).
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Because of regional variation and di¤erential tax concessions, firms across the United

States face possibly di¤erent prices for these inputs: let piK denote the price of capital

to firm i, piL be the price of labor for firm i, and siM denote the price of materials for

firm i. For each firm i, let siK be the cost share for capital, let siL be the cost share for

labor, and let siM be the cost share for materials. By definition, siK þ siL þ siM ¼ 1.

One popular set of cost share equations is

siK ¼ g10 þ g11 logðpiKÞ þ g12 logðpiLÞ þ g13 logðpiMÞ þ uiK ð7:56Þ

siL ¼ g20 þ g12 logðpiKÞ þ g22 logðpiLÞ þ g23 logðpiMÞ þ uiL ð7:57Þ

siM ¼ g30 þ g13 logðpiKÞ þ g23 logðpiLÞ þ g33 logðpiMÞ þ uiM ð7:58Þ

where the symmetry restrictions from production theory have been imposed. The

errors uig can be viewed as unobservables a¤ecting production that the economist

cannot observe. For an SUR analysis we would assume that

Eðui j piÞ ¼ 0 ð7:59Þ

where ui 1 ðuiK ; uiL; uiMÞ0 and pi 1 ðpiK ; piL; piMÞ. Because the cost shares must sum

to unity for each i, g10 þ g20 þ g30 ¼ 1, g11 þ g12 þ g13 ¼ 0, g12 þ g22 þ g23 ¼ 0, g13 þ
g23 þ g33 ¼ 0, and uiK þ uiL þ uiM ¼ 0. This last restriction implies that W1VarðuiÞ
has rank two. Therefore, we can drop one of the equations—say, the equation for

materials—and analyze the equations for labor and capital. We can express the

restrictions on the gammas in these first two equations as

g13 ¼ �g11 � g12 ð7:60Þ

g23 ¼ �g12 � g22 ð7:61Þ

Using the fact that logða=bÞ ¼ logðaÞ � logðbÞ, we can plug equations (7.60) and

(7.61) into equations (7.56) and (7.57) to get

siK ¼ g10 þ g11 logðpiK=piMÞ þ g12 logðpiL=piMÞ þ uiK

siL ¼ g20 þ g12 logðpiK=piMÞ þ g22 logðpiL=piMÞ þ uiL

We now have a two-equation system with variance matrix of full rank, with unknown

parameters g10; g20; g11; g12, and g22. To write this in the form (7.9), redefine ui ¼
ðuiK ; uiLÞ0 and yi 1 ðsiK ; siLÞ0. Take b1 ðg10; g11; g12; g20; g22Þ

0 and then Xi must be

Xi 1
1 logðpiK=piMÞ logðpiL=piMÞ 0 0

0 0 logðpiK=piMÞ 1 logðpiL=piMÞ

� �
ð7:62Þ

This formulation imposes all the conditions implied by production theory.
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This model could be extended in several ways. The simplest would be to allow the

intercepts to depend on firm characteristics. For each firm i, let zi be a 1 � J vector of

observable firm characteristics, where zi1 1 1. Then we can extend the model to

siK ¼ zid1 þ g11 logðpiK=piMÞ þ g12 logðpiL=piMÞ þ uiK ð7:63Þ

siL ¼ zid2 þ g12 logðpiK=piMÞ þ g22 logðpiL=piMÞ þ uiL ð7:64Þ

where

Eðuig j zi; piK ; piL; piMÞ ¼ 0; g ¼ K ;L ð7:65Þ

Because we have already reduced the system to two equations, theory implies no

restrictions on d1 and d2. As an exercise, you should write this system in the form

(7.9). For example, if b1 ðd 0
1; g11; g12; d

0
2; g22Þ

0 is ð2J þ 3Þ � 1, how should Xi be

defined?

Under condition (7.65), system OLS and FGLS estimators are both consistent.

(In this setup system OLS is not OLS equation by equation because g12 shows up in

both equations). FGLS is asymptotically e‰cient if Varðui j zi; piÞ is constant. If

Varðui j zi; piÞ depends on ðzi; piÞ—see Brown and Walker (1995) for a discussion of

why we should expect it to—then we should at least use the robust variance matrix

estimator for FGLS.

We can easily test the symmetry assumption imposed in equations (7.63) and

(7.64). One approach is to first estimate the system without any restrictions on the

parameters, in which case FGLS reduces to OLS estimation of each equation. Then,

compute the t statistic of the di¤erence in the estimates on logðpiL=piMÞ in equation

(7.63) and logðpiK=piMÞ in equation (7.64). Or, the F statistic from equation (7.53)

can be used; ŴW would be obtained from the unrestricted OLS estimation of each

equation.

System OLS has no robustness advantages over FGLS in this setup because we

cannot relax assumption (7.65) in any useful way.

7.8 The Linear Panel Data Model, Revisited

We now study the linear panel data model in more detail. Having data over time for

the same cross section units is useful for several reasons. For one, it allows us to look

at dynamic relationships, something we cannot do with a single cross section. A panel

data set also allows us to control for unobserved cross section heterogeneity, but we

will not exploit this feature of panel data until Chapter 10.
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7.8.1 Assumptions for Pooled OLS

We now summarize the properties of pooled OLS and feasible GLS for the linear

panel data model

yt ¼ xtb þ ut; t ¼ 1; 2; . . . ;T ð7:66Þ

As always, when we need to indicate a particular cross section observation we include

an i subscript, such as yit.

This model may appear overly restrictive because b is the same in each time period.

However, by appropriately choosing xit, we can allow for parameters changing over

time. Also, even though we write xit, some of the elements of xit may not be time-

varying, such as gender dummies when i indexes individuals, or industry dummies

when i indexes firms, or state dummies when i indexes cities.

Example 7.6 (Wage Equation with Panel Data): Suppose we have data for the years

1990, 1991, and 1992 on a cross section of individuals, and we would like to estimate

the e¤ect of computer usage on individual wages. One possible static model is

logðwageitÞ ¼ y0 þ y1d91t þ y2d92t þ d1computerit þ d2educit

þ d3experit þ d4 femalei þ uit ð7:67Þ

where d91t and d92t are dummy indicators for the years 1991 and 1992 and com-

puterit is a measure of how much person i used a computer during year t. The inclu-

sion of the year dummies allows for aggregate time e¤ects of the kind discussed in the

Section 7.2 examples. This equation contains a variable that is constant across t,

femalei, as well as variables that can change across i and t, such as educit and experit.

The variable educit is given a t subscript, which indicates that years of education

could change from year to year for at least some people. It could also be the case that

educit is the same for all three years for every person in the sample, in which case we

could remove the time subscript. The distinction between variables that are time-

constant is not very important here; it becomes much more important in Chapter

10.

As a general rule, with large N and small T it is a good idea to allow for separate

intercepts for each time period. Doing so allows for aggregate time e¤ects that have

the same influence on yit for all i.

Anything that can be done in a cross section context can also be done in a panel

data setting. For example, in equation (7.67) we can interact femalei with the time

dummy variables to see whether productivity of females has changed over time, or we
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can interact educit and computerit to allow the return to computer usage to depend on

level of education.

The two assumptions su‰cient for pooled OLS to consistently estimate b are as

follows:

assumption POLS.1: Eðx 0
tutÞ ¼ 0, t ¼ 1; 2; . . . ;T .

assumption POLS.2: rank½
PT

t¼1 Eðx 0
txtÞ� ¼ K .

Remember, Assumption POLS.1 says nothing about the relationship between xs and

ut for s0 t. Assumption POLS.2 essentially rules out perfect linear dependencies

among the explanatory variables.

To apply the usual OLS statistics from the pooled OLS regression across i and t,

we need to add homoskedasticity and no serial correlation assumptions. The weakest

forms of these assumptions are the following:

assumption POLS.3: (a) Eðu2
t x 0

txtÞ ¼ s2Eðx 0
txtÞ, t ¼ 1; 2; . . . ;T , where s2 ¼ Eðu2

t Þ
for all t; (b) Eðutusx

0
txsÞ ¼ 0, t0 s, t; s ¼ 1; . . . ;T .

The first part of Assumption POLS.3 is a fairly strong homoskedasticity assumption;

su‰cient is Eðu2
t j xtÞ ¼ s2 for all t. This means not only that the conditional variance

does not depend on xt, but also that the unconditional variance is the same in every

time period. Assumption POLS.3b essentially restricts the conditional covariances of

the errors across di¤erent time periods to be zero. In fact, since xt almost always

contains a constant, POLS.3b requires at a minimum that EðutusÞ ¼ 0, t0 s. Su‰-

cient for POLS.3b is Eðutus j xt; xsÞ ¼ 0, t0 s, t; s ¼ 1; . . . ;T .

It is important to remember that Assumption POLS.3 implies more than just a

certain form of the unconditional variance matrix of u1 ðu1; . . . ; uTÞ0. Assumption

POLS.3 implies Eðuiu
0
i Þ ¼ s2IT , which means that the unconditional variances are

constant and the unconditional covariances are zero, but it also e¤ectively restricts

the conditional variances and covariances.

theorem 7.7 (Large Sample Properties of Pooled OLS): Under Assumptions POLS.1

and POLS.2, the pooled OLS estimator is consistent and asymptotically normal. If

Assumption POLS.3 holds in addition, then Avarð b̂bÞ ¼ s2½EðX 0
i XiÞ��1=N, so that the

appropriate estimator of Avarð b̂bÞ is

ŝs2ðX 0XÞ�1 ¼ ŝs2
XN

i¼1

XT

t¼1

x 0
itxit

 !�1

ð7:68Þ

where ŝs2 is the usual OLS variance estimator from the pooled regression
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yit on xit; t ¼ 1; 2; . . . ;T ; i ¼ 1; . . . ;N ð7:69Þ

It follows that the usual t statistics and F statistics from regression (7.69) are ap-

proximately valid. Therefore, the F statistic for testing Q linear restrictions on the

K � 1 vector b is

F ¼ ðSSRr � SSRurÞ
SSRur

� ðNT � KÞ
Q

ð7:70Þ

where SSRur is the sum of squared residuals from regression (7.69), and SSRr is the

regression using the NT observations with the restrictions imposed.

Why is a simple pooled OLS analysis valid under Assumption POLS.3? It is

easy to show that Assumption POLS.3 implies that B ¼ s2A, where B1PT
t¼1

PT
s¼1 Eðutusx

0
txsÞ, and A1

PT
t¼1 Eðx 0

txtÞ. For the panel data case, these are the

matrices that appear in expression (7.21).

For computing the pooled OLS estimates and standard statistics, it does not matter

how the data are ordered. However, if we put lags of any variables in the equation, it

is easiest to order the data in the same way as is natural for studying asymptotic

properties: the first T observations should be for the first cross section unit (ordered

chronologically), the next T observations are for the next cross section unit, and so

on. This procedure gives NT rows in the data set ordered in a very specific way.

Example 7.7 (E¤ects of Job Training Grants on Firm Scrap Rates): Using the data

from JTRAIN1.RAW (Holzer, Block, Cheatham, and Knott, 1993), we estimate a

model explaining the firm scrap rate in terms of grant receipt. We can estimate the

equation for 54 firms and three years of data (1987, 1988, and 1989). The first grants

were given in 1988. Some firms in the sample in 1989 received a grant only in 1988, so

we allow for a one-year-lagged e¤ect:

logðŝscrapitÞ ¼ :597

ð:203Þ
� :239

ð:311Þ
d88t � :497

ð:338Þ
d89t þ :200

ð:338Þ
grantit þ :049

ð:436Þ
granti; t�1

N ¼ 54; T ¼ 3; R2 ¼ :0173

where we have put i and t subscripts on the variables to emphasize which ones change

across firm or time. The R-squared is just the usual one computed from the pooled

OLS regression.

In this equation, the estimated grant e¤ect has the wrong sign, and neither the

current nor lagged grant variable is statistically significant. When a lag of logðscrapitÞ
is added to the equation, the estimates are notably di¤erent. See Problem 7.9.
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7.8.2 Dynamic Completeness

While the homoskedasticity assumption, Assumption POLS.3a, can never be guar-

anteed to hold, there is one important case where Assumption POLS.3b must hold.

Suppose that the explanatory variables xt are such that, for all t,

Eðyt j xt; yt�1; xt�1; . . . ; y1; x1Þ ¼ Eðyt j xtÞ ð7:71Þ

This assumption means that xt contains su‰cient lags of all variables such that

additional lagged values have no partial e¤ect on yt. The inclusion of lagged y in

equation (7.71) is important. For example, if zt is a vector of contemporaneous vari-

ables such that

Eðyt j zt; zt�1; . . . ; z1Þ ¼ Eðyt j zt; zt�1; . . . ; zt�LÞ

and we choose xt ¼ ðzt; zt�1; . . . ; zt�LÞ, then Eðyt j xt; xt�1; . . . ; x1Þ ¼ Eðyt j xtÞ. But

equation (7.71) need not hold. Generally, in static and FDL models, there is no rea-

son to expect equation (7.71) to hold, even in the absence of specification problems

such as omitted variables.

We call equation (7.71) dynamic completeness of the conditional mean. Often, we

can ensure that equation (7.71) is at least approximately true by putting su‰cient lags

of zt and yt into xt.

In terms of the disturbances, equation (7.71) is equivalent to

Eðut j xt; ut�1; xt�1; . . . ; u1; x1Þ ¼ 0 ð7:72Þ

and, by iterated expectations, equation (7.72) implies Eðutus j xt; xsÞ ¼ 0, s0 t.

Therefore, equation (7.71) implies Assumption POLS.3b as well as Assumption

POLS.1. If equation (7.71) holds along with the homoskedasticity assumption

Varðyt j xtÞ ¼ s2, then Assumptions POLS.1 and POLS.3 both hold, and standard

OLS statistics can be used for inference.

The following example is similar in spirit to an analysis of Maloney and McCormick

(1993), who use a large random sample of students (including nonathletes) from

Clemson University in a cross section analysis.

Example 7.8 (E¤ect of Being in Season on Grade Point Average): The data in

GPA.RAW are on 366 student-athletes at a large university. There are two semesters

of data (fall and spring) for each student. Of primary interest is the ‘‘in-season’’ e¤ect

on athletes’ GPAs. The model—with i, t subscripts—is

trmgpait ¼ b0þb1springt þb2cumgpait þb3crsgpait þb4 frstsemit þb5seasonit þb6SATi

þb7verbmathi þb8hsperci þb9hssizei þb10blacki þb11 femalei þuit
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The variable cumgpait is cumulative GPA at the beginning of the term, and this

clearly depends on past-term GPAs. In other words, this model has something akin

to a lagged dependent variable. In addition, it contains other variables that change

over time (such as seasonit) and several variables that do not (such as SATi). We as-

sume that the right-hand side (without uit) represents a conditional expectation, so

that uit is necessarily uncorrelated with all explanatory variables and any functions of

them. It may or may not be that the model is also dynamically complete in the sense

of equation (7.71); we will show one way to test this assumption in Section 7.8.5. The

estimated equation is

trm̂mgpait ¼ �2:07

ð0:34Þ
� :012

ð:046Þ
springt þ :315

ð:040Þ
cumgpait þ :984

ð:096Þ
crsgpait

þ :769

ð:120Þ
frstsemit � :046

ð:047Þ
seasonit þ :00141

ð:00015Þ
SATi � :113

ð:131Þ
verbmathi

� :0066

ð:0010Þ
hsperci � :000058

ð:000099Þ
hssizei � :231

ð:054Þ
blacki þ :286

ð:051Þ
femalei

N ¼ 366; T ¼ 2; R2 ¼ :519

The in-season e¤ect is small—an athlete’s GPA is estimated to be .046 points lower

when the sport is in season—and it is statistically insignificant as well. The other

coe‰cients have reasonable signs and magnitudes.

Often, once we start putting any lagged values of yt into xt, then equation (7.71) is

an intended assumption. But this generalization is not always true. In the previous

example, we can think of the variable cumgpa as another control we are using to hold

other factors fixed when looking at an in-season e¤ect on GPA for college athletes:

cumgpa can proxy for omitted factors that make someone successful in college. We

may not care that serial correlation is still present in the error, except that, if equation

(7.71) fails, we need to estimate the asymptotic variance of the pooled OLS estimator

to be robust to serial correlation (and perhaps heteroskedasticity as well).

In introductory econometrics, students are often warned that having serial corre-

lation in a model with a lagged dependent variable causes the OLS estimators to be

inconsistent. While this statement is true in the context of a specific model of serial

correlation, it is not true in general, and therefore it is very misleading. [See Wool-

dridge (2000a, Chapter 12) for more discussion in the context of the AR(1) model.]

Our analysis shows that, whatever is included in xt, pooled OLS provides consis-

tent estimators of b whenever Eðyt j xtÞ ¼ xtb; it does not matter that the ut might be

serially correlated.
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7.8.3 A Note on Time Series Persistence

Theorem 7.7 imposes no restrictions on the time series persistence in the data

fðxit; yitÞ: t ¼ 1; 2; . . . ;Tg. In light of the explosion of work in time series economet-

rics on asymptotic theory with persistent processes [often called unit root processes—

see, for example, Hamilton (1994)], it may appear that we have not been careful in

stating our assumptions. However, we do not need to restrict the dynamic behavior

of our data in any way because we are doing fixed-T, large-N asymptotics. It is for

this reason that the mechanics of the asymptotic analysis is the same for the SUR

case and the panel data case. If T is large relative to N, the asymptotics here may be

misleading. Fixing N while T grows or letting N and T both grow takes us into the

realm of multiple time series analysis: we would have to know about the temporal

dependence in the data, and, to have a general treatment, we would have to assume

some form of weak dependence (see Wooldridge, 1994, for a discussion of weak de-

pendence). Recently, progress has been made on asymptotics in panel data with large

T and N when the data have unit roots; see, for example, Pesaran and Smith (1995)

and Phillips and Moon (1999).

As an example, consider the simple AR(1) model

yt ¼ b0 þ b1 yt�1 þ ut; Eðut j yt�1; . . . ; y0Þ ¼ 0

Assumption POLS.1 holds (provided the appropriate moments exist). Also, As-

sumption POLS.2 can be maintained. Since this model is dynamically complete, the

only potential nuisance is heteroskedasticity in ut that changes over time or depends

on yt�1. In any case, the pooled OLS estimator from the regression yit on 1, yi; t�1,

t ¼ 1; . . . ;T , i ¼ 1; . . . ;N, produces consistent,
ffiffiffiffiffi
N

p
-asymptotically normal estima-

tors for fixed T as N ! y, for any values of b0 and b1.

In a pure time series case, or in a panel data case with T ! y and N fixed, we

would have to assume jb1j < 1, which is the stability condition for an AR(1) model.

Cases where jb1jb 1 cause considerable complications when the asymptotics is done

along the time series dimension (see Hamilton, 1994, Chapter 19). Here, a large cross

section and relatively short time series allow us to be agnostic about the amount of

temporal persistence.

7.8.4 Robust Asymptotic Variance Matrix

Because Assumption POLS.3 can be restrictive, it is often useful to obtain a ro-

bust estimate of Avarð b̂bÞ that is valid without Assumption POLS.3. We have already

seen the general form of the estimator, given in matrix (7.26). In the case of panel

data, this estimator is fully robust to arbitrary heteroskedasticity—conditional or

unconditional—and arbitrary serial correlation across time (again, conditional or
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unconditional). The residuals ûui are the T � 1 pooled OLS residuals for cross sec-

tion observation i. Some statistical packages compute these very easily, although

the command may be disguised. Whether a software package has this capability or

whether it must be programmed by you, the data must be stored as described earlier:

The ðyi;XiÞ should be stacked on top of one another for i ¼ 1; . . . ;N.

7.8.5 Testing for Serial Correlation and Heteroskedasticity after Pooled OLS

Testing for Serial Correlation It is often useful to have a simple way to detect serial

correlation after estimation by pooled OLS. One reason to test for serial correlation

is that it should not be present if the model is supposed to be dynamically complete in

the conditional mean. A second reason to test for serial correlation is to see whether

we should compute a robust variance matrix estimator for the pooled OLS estimator.

One interpretation of serial correlation in the errors of a panel data model is that

the error in each time period contains a time-constant omitted factor, a case we cover

explicitly in Chapter 10. For now, we are simply interested in knowing whether or

not the errors are serially correlated.

We focus on the alternative that the error is a first-order autoregressive process;

this will have power against fairly general kinds of serial correlation. Write the AR(1)

model as

ut ¼ r1ut�1 þ et ð7:73Þ

where

Eðet j xt; ut�1; xt�1; ut�2; . . .Þ ¼ 0 ð7:74Þ

Under the null hypothesis of no serial correlation, r1 ¼ 0.

One way to proceed is to write the dynamic model under AR(1) serial correlation

as

yt ¼ xtb þ r1ut�1 þ et; t ¼ 2; . . . ;T ð7:75Þ

where we lose the first time period due to the presence of ut�1. If we can observe the

ut, it is clear how we should proceed: simply estimate equation (7.75) by pooled OLS

(losing the first time period) and perform a t test on r̂r1. To operationalize this proce-

dure, we replace the ut with the pooled OLS residuals. Therefore, we run the regression

yit on xit; ûui; t�1; t ¼ 2; . . . ;T ; i ¼ 1; . . . ;N ð7:76Þ

and do a standard t test on the coe‰cient of ûui; t�1. A statistic that is robust to arbi-

trary heteroskedasticity in Varðyt j xt; ut�1Þ is obtained by the usual heteroskedasticity-

robust t statistic in the pooled regression. This includes Engle’s (1982) ARCH model

and any other form of static or dynamic heteroskedasticity.
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Why is a t test from regression (7.76) valid? Under dynamic completeness, equation

(7.75) satisfies Assumptions POLS.1–POLS.3 if we also assume that Varðyt j xt; ut�1Þ
is constant. Further, the presence of the generated regressor ûui; t�1 does not a¤ect the

limiting distribution of r̂r1 under the null because r1 ¼ 0. Verifying this claim is sim-

ilar to the pure cross section case in Section 6.1.1.

A nice feature of the statistic computed from regression (7.76) is that it works

whether or not xt is strictly exogenous. A di¤erent form of the test is valid if we as-

sume strict exogeneity: use the t statistic on ûui; t�1 in the regression

ûuit on ûui; t�1; t ¼ 2; . . . ;T ; i ¼ 1; . . . ;N ð7:77Þ

or its heteroskedasticity-robust form. That this test is valid follows by applying

Problem 7.4 and the assumptions for pooled OLS with a lagged dependent variable.

Example 7.9 (Athletes’ Grade Point Averages, continued): We apply the test from

regression (7.76) because cumgpa cannot be strictly exogenous (GPA this term a¤ects

cumulative GPA after this term). We drop the variables spring and frstsem from re-

gression (7.76), since these are identically unity and zero, respectively, in the spring

semester. We obtain r̂r1 ¼ :194 and tr̂r1
¼ 3:18, and so the null hypothesis is rejected.

Thus there is still some work to do to capture the full dynamics. But, if we assume

that we are interested in the conditional expectation implicit in the estimation, we are

getting consistent estimators. This result is useful to know because we are primarily

interested in the in-season e¤ect, and the other variables are simply acting as controls.

The presence of serial correlation means that we should compute standard errors

robust to arbitrary serial correlation (and heteroskedasticity); see Problem 7.10.

Testing for Heteroskedasticity The primary reason to test for heteroskedasticity

after running pooled OLS is to detect violation of Assumption POLS.3a, which is one

of the assumptions needed for the usual statistics accompanying a pooled OLS

regression to be valid. We assume throughout this section that Eðut j xtÞ ¼ 0, t ¼
1; 2; . . . ;T , which strengthens Assumption POLS.1 but does not require strict exoge-

neity. Then the null hypothesis of homoskedasticity can be stated as Eðu2
t j xtÞ ¼ s2,

t ¼ 1; 2; . . . ;T .

Under H0, u2
it is uncorrelated with any function of xit; let hit denote a 1 � Q vector

of nonconstant functions of xit. In particular, hit can, and often should, contain

dummy variables for the di¤erent time periods.

From the tests for heteroskedasticity in Section 6.2.4. the following procedure is

natural. Let ûu2
it denote the squared pooled OLS residuals. Then obtain the usual R-

squared, R2
c , from the regression

ûu2
it on 1; hit; t ¼ 1; . . . ;T ; i ¼ 1; . . . ;N ð7:78Þ
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The test statistic is NTR2
c , which is treated as asymptotically w2

Q under H0. (Alter-

natively, we can use the usual F test of joint significance of hit from the pooled

OLS regression. The degrees of freedom are Q and NT � K .) When is this procedure

valid?

Using arguments very similar to the cross sectional tests from Chapter 6, it can be

shown that the statistic has the same distribution if u2
it replaces ûu2

it; this fact is very

convenient because it allows us to focus on the other features of the test. E¤ectively,

we are performing a standard LM test of H0: d ¼ 0 in the model

u2
it ¼ d0 þ hitdþ ait; t ¼ 1; 2; . . . ;T ð7:79Þ

This test requires that the errors faitg be appropriately serially uncorrelated and

requires homoskedasticity; that is, Assumption POLS.3 must hold in equation (7.79).

Therefore, the tests based on nonrobust statistics from regression (7.78) essentially re-

quire that Eða2
it j xitÞ be constant—meaning that Eðu4

it j xitÞ must be constant under H0.

We also need a stronger homoskedasticity assumption; Eðu2
it j xit; ui; t�1; xi; t�1; . . .Þ ¼

s2 is su‰cient for the faitg in equation (7.79) to be appropriately serially uncorrelated.

A fully robust test for heteroskedasticity can be computed from the pooled regres-

sion (7.78) by obtaining a fully robust variance matrix estimator for d̂d [see equation

(7.26)]; this can be used to form a robust Wald statistic.

Since violation of Assumption POLS.3a is of primary interest, it makes sense to

include elements of xit in hit, and possibly squares and cross products of elements of

xit. Another useful choice, covered in Chapter 6, is ĥhit ¼ ðŷyit; ŷy2
itÞ, the pooled OLS

fitted values and their squares. Also, Assumption POLS.3a requires the uncondi-

tional variances Eðu2
itÞ to be the same across t. Whether they are can be tested directly

by choosing hit to have T � 1 time dummies.

If heteroskedasticity is detected but serial correlation is not, then the usual

heteroskedasticity-robust standard errors and test statistics from the pooled OLS re-

gression (7.69) can be used.

7.8.6 Feasible GLS Estimation under Strict Exogeneity

When Eðuiu
0
i Þ0 s2IT , it is reasonable to consider a feasible GLS analysis rather than

a pooled OLS analysis. In Chapter 10 we will cover a particular FGLS analysis after

we introduce unobserved components panel data models. With large N and small

T, nothing precludes an FGLS analysis in the current setting. However, we must

remember that FGLS is not even guaranteed to produce consistent, let alone e‰cient,

estimators under Assumptions POLS.1 and POLS.2. Unless W ¼ Eðuiu
0
i Þ is a diago-

nal matrix, Assumption POLS.1 should be replaced with the strict exogeneity as-

sumption (7.6). (Problem 7.7 covers the case when W is diagonal.) Sometimes we are
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willing to assume strict exogeneity in static and finite distributed lag models. As we

saw earlier, it cannot hold in models with lagged yit, and it can fail in static models or

distributed lag models if there is feedback from yit to future zit.

Problems

7.1. Provide the details for a proof of Theorem 7.1.

7.2. In model (7.9), maintain Assumptions SOLS.1 and SOLS.2, and assume

EðX 0
i uiu

0
i XiÞ ¼ EðX 0

iWXiÞ, where W1Eðuiu
0
i Þ. [The last assumption is a di¤erent way

of stating the homoskesdasticity assumption for systems of equations; it always holds

if assumption (7.50) holds.] Let b̂bSOLS denote the system OLS estimator.

a. Show that Avarð b̂bSOLSÞ ¼ ½EðX 0
i XiÞ��1½EðX 0

iWXiÞ�½EðX 0
i XiÞ��1=N.

b. How would you estimate the asymptotic variance in part a?

c. Now add Assumptions SGLS.1–SGLS.3. Show that Avarð b̂bSOLSÞ � Avarð b̂bFGLSÞ
is positive semidefinite. {Hint: Show that ½Avarð b̂bFGLSÞ�

�1 � ½Avarð b̂bSOLSÞ�
�1 is p.s.d.}

d. If, in addition to the previous assumptions, W ¼ s2IG, show that SOLS and FGLS

have the same asymptotic variance.

e. Evaluate the following statement: ‘‘Under the assumptions of part c, FGLS is

never asymptotically worse than SOLS, even if W ¼ s2IG.’’

7.3. Consider the SUR model (7.2) under Assumptions SOLS.1, SOLS.2, and

SGLS.3, with W1 diagðs2
1 ; . . . ; s

2
GÞ; thus, GLS and OLS estimation equation by

equation are the same. (In the SUR model with diagonal W, Assumption SOLS.1 is

the same as Assumption SGLS.1, and Assumption SOLS.2 is the same as Assump-

tion SGLS.2.)

a. Show that single-equation OLS estimators from any two equations, say, b̂bg and b̂bh,

are asymptotically uncorrelated. (That is, show that the asymptotic variance of the

system OLS estimator b̂b is block diagonal.)

b. Under the conditions of part a, assume that b1 and b2 (the parameter vectors in

the first two equations) have the same dimension. Explain how you would test

H0: b1 ¼ b2 against H1: b1 0 b2.

c. Now drop Assumption SGLS.3, maintaining Assumptions SOLS.1 and SOLS.2

and diagonality of W. Suppose that ŴW is estimated in an unrestricted manner, so

that FGLS and OLS are not algebraically equivalent. Show that OLS and FGLS areffiffiffiffiffi
N

p
-asymptotically equivalent, that is,

ffiffiffiffiffi
N

p
ð b̂bSOLS � b̂bFGLSÞ ¼ opð1Þ. This is one case

where FGLS is consistent under Assumption SOLS.1.
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7.4. Using the
ffiffiffiffiffi
N

p
-consistency of the system OLS estimator

^̂
bb̂bb for b, for ŴW in

equation (7.37) show that

vec½
ffiffiffiffiffi
N

p
ðŴW�WÞ� ¼ vec N�1=2

XN

i¼1

ðuiu
0
i �WÞ

" #
þ opð1Þ

under Assumptions SGLS.1 and SOLS.2. (Note: This result does not hold when As-

sumption SGLS.1 is replaced with the weaker Assumption SOLS.1.) Assume that all

moment conditions needed to apply the WLLN and CLT are satisfied. The impor-

tant conclusion is that the asymptotic distribution of vec
ffiffiffiffiffi
N

p
ðŴW�WÞ does not

depend on that of
ffiffiffiffiffi
N

p
ð ^̂bb̂bb � bÞ, and so any asymptotic tests on the elements of W can

ignore the estimation of b. [Hint: Start from equation (7.39) and use the fact thatffiffiffiffiffi
N

p
ð ^̂bb̂bb � bÞ ¼ Opð1Þ.]

7.5. Prove Theorem 7.6, using the fact that when Xi ¼ IG n xi,

XN

i¼1

X 0
i ŴW

�1Xi ¼ ŴW�1 n
XN

i¼1

x 0
i xi

 !
and

XN

i¼1

X 0
i ŴW

�1yi ¼ ðŴW�1 n IKÞ

XN

i¼1

x 0
i yi1

..

.

XN

i¼1

x 0
i yiG

0
BBBBBBB@

1
CCCCCCCA

7.6. Start with model (7.9). Suppose you wish to impose Q linear restrictions of the

form Rb ¼ r, where R is a Q � K matrix and r is a Q � 1 vector. Assume that R is

partitioned as R1 ½R1 jR2�, where R1 is a Q � Q nonsingular matrix and R2 is a

Q � ðK � QÞ matrix. Partition Xi as Xi 1 ½Xi1 jXi2�, where Xi1 is G � Q and Xi2 is

G � ðK � QÞ, and partition b as b1 ðb 0
1; b

0
2Þ

0. The restrictions Rb ¼ r can be

expressed as R1b1 þ R2b2 ¼ r, or b1 ¼ R�1
1 ðr � R2b2Þ. Show that the restricted model

can be written as

~yyi ¼ ~XXi2b2 þ ui

where ~yyi ¼ yi � Xi1R�1
1 r and ~XXi2 ¼ Xi2 � Xi1R�1

1 R2.

7.7. Consider the panel data model

yit ¼ xitb þ uit; t ¼ 1; 2; . . . ;T

Eðuit j xit; ui; t�1; xi; t�1; . . . ; Þ ¼ 0

Eðu2
it j xitÞ ¼ Eðu2

itÞ ¼ s2
t ; t ¼ 1; . . . ;T

ð7:80Þ
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[Note that Eðu2
it j xitÞ does not depend on xit, but it is allowed to be a di¤erent con-

stant in each time period.]

a. Show that W ¼ Eðuiu
0
i Þ is a diagonal matrix. [Hint: The zero conditional mean

assumption (7.80) implies that uit is uncorrelated with uis for s < t.]

b. Write down the GLS estimator assuming that W is known.

c. Argue that Assumption SGLS.1 does not necessarily hold under the assumptions

made. (Setting xit ¼ yi; t�1 might help in answering this part.) Nevertheless, show that

the GLS estimator from part b is consistent for b by showing that EðX 0
iW

�1uiÞ ¼ 0.

[This proof shows that Assumption SGLS.1 is su‰cient, but not necessary, for con-

sistency. Sometimes EðX 0
iW

�1uiÞ ¼ 0 even though Assumption SGLS.1 does not hold.]

d. Show that Assumption SGLS.3 holds under the given assumptions.

e. Explain how to consistently estimate each s2
t (as N ! y).

f. Argue that, under the assumptions made, valid inference is obtained by weighting

each observation ðyit; xitÞ by 1=ŝst and then running pooled OLS.

g. What happens if we assume that s2
t ¼ s2 for all t ¼ 1; . . . ;T?

7.8. Redo Example 7.3, disaggregating the benefits categories into value of vacation

days, value of sick leave, value of employer-provided insurance, and value of pen-

sion. Use hourly measures of these along with hrearn, and estimate an SUR model.

Does marital status appear to a¤ect any form of compensation? Test whether another

year of education increases expected pension value and expected insurance by the

same amount.

7.9. Redo Example 7.7 but include a single lag of logðscrapÞ in the equation to

proxy for omitted variables that may determine grant receipt. Test for AR(1) serial

correlation. If you find it, you should also compute the fully robust standard errors

that allow for abitrary serial correlation across time and heteroskedasticity.

7.10. In Example 7.9, compute standard errors fully robust to serial correlation and

heteroskedasticity. Discuss any important di¤erences between the robust standard

errors and the usual standard errors.

7.11. Use the data in CORNWELL.RAW for this question; see Problem 4.13.

a. Using the data for all seven years, and using the logarithms of all variables, esti-

mate a model relating the crime rate to prbarr, prbconv, prbpris, avgsen, and polpc.

Use pooled OLS and include a full set of year dummies. Test for serial correlation

assuming that the explanatory variables are strictly exogenous. If there is serial cor-

relation, obtain the fully robust standard errors.
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b. Add a one-year lag of logðcrmrteÞ to the equation from part a, and compare with

the estimates from part a.

c. Test for first-order serial correlation in the errors in the model from part b. If serial

correlation is present, compute the fully robust standard errors.

d. Add all of the wage variables (in logarithmic form) to the equation from part c.

Which ones are statistically and economically significant? Are they jointly significant?

Test for joint significance of the wage variables allowing arbitrary serial correlation

and heteroskedasticity.

7.12. If you add wealth at the beginning of year t to the saving equation in Example

7.2, is the strict exogeneity assumption likely to hold? Explain.
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8 System Estimation by Instrumental Variables

8.1 Introduction and Examples

In Chapter 7 we covered system estimation of linear equations when the explana-

tory variables satisfy certain exogeneity conditions. For many applications, even the

weakest of these assumptions, Assumption SOLS.1, is violated, in which case instru-

mental variables procedures are indispensable.

The modern approach to system instrumental variables (SIV) estimation is based

on the principle of generalized method of moments (GMM). Method of moments

estimation has a long history in statistics for obtaining simple parameter estimates

when maximum likelihood estimation requires nonlinear optimization. Hansen (1982)

and White (1982b) showed how the method of moments can be generalized to apply to

a variety of econometric models, and they derived the asymptotic properties of GMM.

Hansen (1982), who coined the name ‘‘generalized method of moments,’’ treated time

series data, and White (1982b) assumed independently sampled observations.

Though the models considered in this chapter are more general than those treated

in Chapter 5, the derivations of asymptotic properties of system IV estimators are

mechanically similar to the derivations in Chapters 5 and 7. Therefore, the proofs in

this chapter will be terse, or omitted altogether.

In econometrics, the most familar application of SIV estimation is to a simultane-

ous equations model (SEM). We will cover SEMs specifically in Chapter 9, but it is

useful to begin with a typical SEM example. System estimation procedures have

applications beyond the classical simultaneous equations methods. We will also use

the results in this chapter for the analysis of panel data models in Chapter 11.

Example 8.1 (Labor Supply and Wage O¤er Functions): Consider the following

labor supply function representing the hours of labor supply, hs, at any wage, w,

faced by an individual. As usual, we express this in population form:

hsðwÞ ¼ g1wþ z1d1 þ u1 ð8:1Þ

where z1 is a vector of observed labor supply shifters—including such things as

education, past experience, age, marital status, number of children, and nonlabor

income—and u1 contains unobservables a¤ecting labor supply. The labor supply

function can be derived from individual utility-maximizing behavior, and the nota-

tion in equation (8.1) is intended to emphasize that, for given z1 and u1, a labor

supply function gives the desired hours worked at any possible wage ðwÞ facing the

worker. As a practical matter, we can only observe equilibrium values of hours

worked and hourly wage. But the counterfactual reasoning underlying equation (8.1)

is the proper way to view labor supply.



A wage o¤er function gives the hourly wage that the market will o¤er as a function

of hours worked. (It could be that the wage o¤er does not depend on hours worked,

but in general it might.) For observed productivity attributes z2 (for example, edu-

cation, experience, and amount of job training) and unobserved attributes u2, we

write the wage o¤er function as

woðhÞ ¼ g2hþ z2d2 þ u2 ð8:2Þ

Again, for given z2 and u2, woðhÞ gives the wage o¤er for an individual agreeing to

work h hours.

Equations (8.1) and (8.2) explain di¤erent sides of the labor market. However,

rarely can we assume that an individual is given an exogenous wage o¤er and then,

at that wage, decides how much to work based on equation (8.1). A reasonable

approach is to assume that observed hours and wage are such that equations (8.1)

and (8.2) both hold. In other words, letting ðh;wÞ denote the equilibrium values, we

have

h ¼ g1w þ z1d1 þ u1 ð8:3Þ

w ¼ g2h þ z2d2 þ u2 ð8:4Þ

Under weak restrictions on the parameters, these equations can be solved uniquely

for ðh;wÞ as functions of z1, z2, u1, u2, and the parameters; we consider this topic

generally in Chapter 9. Further, if z1 and z2 are exogenous in the sense that

Eðu1 j z1; z2Þ ¼ Eðu2 j z1; z2Þ ¼ 0

then, under identification assumptions, we can consistently estimate the parameters

of the labor supply and wage o¤er functions. We consider identification of SEMs in

detail in Chapter 9. We also ignore what is sometimes a practically important issue:

the equilibrium hours for an individual might be zero, in which case w is not observed

for such people. We deal with missing data issues in Chapter 17.

For a random draw from the population we can write

hi ¼ g1wi þ zi1d1 þ ui1 ð8:5Þ

wi ¼ g2hi þ zi2d2 þ ui2 ð8:6Þ

Except under very special assumptions, ui1 will be correlated with wi, and ui2 will be

correlated with hi. In other words, wi is probably endogenous in equation (8.5), and

hi is probably endogenous in equation (8.6). It is for this reason that we study system

instrumental variables methods.
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An example with the same statistical structure as Example 8.1, but with an omitted

variables interpretation, is motivated by Currie and Thomas (1995).

Example 8.2 (Student Performance and Head Start): Consider an equation to test

the e¤ect of Head Start participation on subsequent student performance:

scorei ¼ g1HeadStarti þ zi1d1 þ ui1 ð8:7Þ

where scorei is the outcome on a test when the child is enrolled in school and

HeadStarti is a binary indicator equal to one if child i participated in Head Start at

an early age. The vector zi1 contains other observed factors, such as income, educa-

tion, and family background variables. The error term ui1 contains unobserved fac-

tors that a¤ect score—such as child’s ability—that may also be correlated with

HeadStart. To capture the possible endogeneity of HeadStart, we write a linear

reduced form (linear projection) for HeadStarti:

HeadStarti ¼ zid2 þ ui2 ð8:8Þ

Remember, this projection always exists even though HeadStarti is a binary variable.

The vector zi contains zi1 and at least one factor a¤ecting Head Start participation

that does not have a direct e¤ect on score. One possibility is distance to the nearest

Head Start center. In this example we would probably be willing to assume that

Eðui1 j ziÞ ¼ 0—since the test score equation is structural—but we would only want

to assume Eðz 0
i ui2Þ ¼ 0, since the Head Start equation is a linear projection involving

a binary dependent variable. Correlation between u1 and u2 means HeadStart is

endogenous in equation (8.7).

Both of the previous examples can be written for observation i as

yi1 ¼ xi1b1 þ ui1 ð8:9Þ

yi2 ¼ xi2b2 þ ui2 ð8:10Þ

which looks just like a two-equation SUR system but where xi1 and xi2 can contain

endogenous as well as exogenous variables. Because xi1 and xi2 are generally corre-

lated with ui1 and ui2, estimation of these equations by OLS or FGLS, as we studied

in Chapter 7, will generally produce inconsistent estimators.

We already know one method for estimating an equation such as equation (8.9): if

we have su‰cient instruments, apply 2SLS. Often 2SLS produces acceptable results,

so why should we go beyond single-equation analysis? Not surprisingly, our interest

in system methods with endogenous explanatory variables has to do with e‰ciency.

In many cases we can obtain more e‰cient estimators by estimating b1 and b2 jointly,
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that is, by using a system procedure. The e‰ciency gains are analogous to the gains

that can be realized by using feasible GLS rather than OLS in a SUR system.

8.2 A General Linear System of Equations

We now discuss estimation of a general linear model of the form

yi ¼ Xib þ ui ð8:11Þ

where yi is a G � 1 vector, Xi is a G � K matrix, and ui is the G � 1 vector of errors.

This model is identical to equation (7.9), except that we will use di¤erent assump-

tions. In writing out examples, we will often omit the observation subscript i, but

for the general analysis carrying it along is a useful notational device. As in Chapter

7, the rows of yi, Xi, and ui can represent di¤erent time periods for the same cross-

sectional unit (so G ¼ T , the total number of time periods). Therefore, the following

analysis applies to panel data models where T is small relative to the cross section

sample size, N; for an example, see Problem 8.8. We cover general panel data appli-

cations in Chapter 11. (As in Chapter 7, the label ‘‘systems of equations’’ is not es-

pecially accurate for basic panel data models because we have only one behavioral

equation over T di¤erent time periods.)

The following orthogonality condition is the basis for estimating b:

assumption SIV.1: EðZ 0
i uiÞ ¼ 0, where Zi is a G � L matrix of observable instru-

mental variables.

(The acronym SIV stands for ‘‘system instrumental variables.’’) For the purposes of

discussion, we assume that EðuiÞ ¼ 0; this assumption is almost always true in prac-

tice anyway.

From what we know about IV and 2SLS for single equations, Assumption SIV.1

cannot be enough to identify the vector b. An assumption su‰cient for identification

is the rank condition:

assumption SIV.2: rank EðZ 0
i XiÞ ¼ K .

Assumption SIV.2 generalizes the rank condition from the single-equation case.

(When G ¼ 1, Assumption SIV.2 is the same as Assumption 2SLS.2b.) Since EðZ 0
i XiÞ

is an L � K matrix, Assumption SIV.2 requires the columns of this matrix to be lin-

early independent. Necessary for the rank condition is the order condition: LbK .

We will investigate the rank condition in detail for a broad class of models in Chapter

9. For now, we just assume that it holds.
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In what follows, it is useful to carry along a particular example that applies to

simultaneous equations models and other models with potentially endogenous ex-

planatory variables. Write a G equation system for the population as

y1 ¼ x1b1 þ u1

..

.

yG ¼ xGbG þ uG

ð8:12Þ

where, for each equation g, xg is a 1 � Kg vector that can contain both exogenous

and endogenous variables. For each g, bg is Kg � 1. Because this looks just like the

SUR system from Chapter 7, we will refer to it as a SUR system, keeping in mind the

crucial fact that some elements of xg are thought to be correlated with ug for at least

some g.

For each equation we assume that we have a set of instrumental variables, a 1 � Lg

vector zg, that are exogenous in the sense that

Eðz 0
gugÞ ¼ 0; g ¼ 1; 2; . . . ;G ð8:13Þ

In most applications unity is an element of zg for each g, so that EðugÞ ¼ 0, all g. As

we will see, and as we already know from single-equation analysis, if xg contains

some elements correlated with ug, then zg must contain more than just the exogenous

variables appearing in equation g. Much of the time the same instruments, which

consist of all exogenous variables appearing anywhere in the system, are valid for

every equation, so that zg ¼ z, g ¼ 1; 2; . . . ;G. Some applications require us to have

di¤erent instruments for di¤erent equations, so we allow that possibility here.

Putting an i subscript on the variables in equations (8.12), and defining

yi
G�1

1

yi1

yi2

..

.

yiG

0
BBBB@

1
CCCCA; Xi

G�K
1

xi1 0 0 � � � 0

0 xi2 0 � � � 0

..

. ..
.

0 0 0 � � � xiG

0
BBBB@

1
CCCCA; ui

G�1
1

ui1

ui2

..

.

uiG

0
BBBB@

1
CCCCA ð8:14Þ

and b ¼ ðb 0
1; b

0
2; . . . ; b

0
GÞ

0, we can write equation (8.12) in the form (8.11). Note that

K ¼ K1 þ K2 þ � � � þ KG is the total number of parameters in the system.

The matrix of instruments has a structure similar to Xi:

Zi 1

zi1 0 0 � � � 0

0 zi2 0 � � � 0

..

. ..
.

0 0 0 � � � ziG

0
BBBB@

1
CCCCA ð8:15Þ

System Estimation by Instrumental Variables 187



which has dimension G � L, where L ¼ L1 þ L2 þ � � � þ LG. Then, for each i,

Z 0
i ui ¼ ðzi1ui1; zi2ui2; . . . ; ziGuiGÞ0 ð8:16Þ

and so EðZ 0
i uiÞ ¼ 0 reproduces the orthogonality conditions (8.13). Also,

EðZ 0
i XiÞ ¼

Eðz 0
i1xi1Þ 0 0 � � � 0

0 Eðz 0
i2xi2Þ 0 � � � 0

..

. ..
.

0 0 0 � � � Eðz 0
iGxiGÞ

0
BBBB@

1
CCCCA ð8:17Þ

where Eðz 0
igxigÞ is Lg � Kg. Assumption SIV.2 requires that this matrix have full col-

umn rank, where the number of columns is K ¼ K1 þ K2 þ � � � þ KG. A well-known

result from linear algebra says that a block diagonal matrix has full column rank if

and only if each block in the matrix has full column rank. In other words, Assump-

tion SIV.2 holds in this example if and only if

rank Eðz 0
igxigÞ ¼ Kg; g ¼ 1; 2; . . . ;G ð8:18Þ

This is exactly the rank condition needed for estimating each equation by 2SLS,

which we know is possible under conditions (8.13) and (8.18). Therefore, identifica-

tion of the SUR system is equivalent to identification equation by equation. This

reasoning assumes that the bg are unrestricted across equations. If some prior

restrictions are known, then identification is more complicated, something we cover

explicitly in Chapter 9.

In the important special case where the same instruments, zi, can be used for every

equation, we can write definition (8.15) as Zi ¼ IG n zi.

8.3 Generalized Method of Moments Estimation

8.3.1 A General Weighting Matrix

The orthogonality conditions in Assumption SIV.1 suggest an estimation strategy.

Under Assumptions SIV.1 and SIV.2, b is the unique K � 1 vector solving the linear

set population moment conditions

E½Z 0
i ðyi � XibÞ� ¼ 0 ð8:19Þ

(That b is a solution follows from Assumption SIV.1; that it is unique follows by

Assumption SIV.2.) In other words, if b is any other K � 1 vector (so that at least one

element of b is di¤erent from the corresponding element in b), then
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E½Z 0
i ðyi � XibÞ�0 0 ð8:20Þ

This formula shows that b is identified. Because sample averages are consistent esti-

mators of population moments, the analogy principle applied to condition (8.19)

suggests choosing the estimator b̂b to solve

N�1
XN

i¼1

Z 0
i ðyi � Xib̂bÞ ¼ 0 ð8:21Þ

Equation (8.21) is a set of L linear equations in the K unknowns in b̂b. First consider

the case L ¼ K , so that we have exactly enough IVs for the explanatory variables in

the system. Then, if the K � K matrix
PN

i¼1 Z 0
i Xi is nonsingular, we can solve for b̂b as

b̂b ¼ N�1
XN

i¼1

Z 0
i Xi

 !�1

N�1
XN

i¼1

Z 0
i yi

 !
ð8:22Þ

We can write b̂b using full matrix notation as b̂b ¼ ðZ 0XÞ�1Z 0Y, where Z is the NG � L

matrix obtained by stacking Zi from i ¼ 1; 2; . . . ;N; X is the NG � K matrix

obtained by stacking Xi from i ¼ 1; 2; . . . ;N, and Y is the NG � 1 vector obtained

from stacking yi; i ¼ 1; 2; . . . ;N. We call equation (8.22) the system IV (SIV) esti-

mator. Application of the law of large numbers shows that the SIV estimator is con-

sistent under Assumptions SIV.1 and SIV.2.

When L > K—so that we have more columns in the IV matrix Zi than we need for

identification—choosing b̂b is more complicated. Except in special cases, equation

(8.21) will not have a solution. Instead, we choose b̂b to make the vector in equation

(8.21) as ‘‘small’’ as possible in the sample. One idea is to minimize the squared

Euclidean length of the L � 1 vector in equation (8.21). Dropping the 1=N, this

approach suggests choosing b̂b to make

XN

i¼1

Z 0
i ðyi � Xib̂bÞ

" #0 XN

i¼1

Z 0
i ðyi � Xib̂bÞ

" #

as small as possible. While this method produces a consistent estimator under

Assumptions SIV.1 and SIV.2, it rarely produces the best estimator, for reasons we

will see in Section 8.3.3.

A more general class of estimators is obtained by using a weighting matrix in the

quadratic form. Let ŴW be an L � L symmetric, positive semidefinite matrix, where

the ‘‘5’’ is included to emphasize that ŴW is generally an estimator. A generalized

method of moments (GMM) estimator of b is a vector b̂b that solves the problem
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min
b

XN

i¼1

Z 0
i ðyi � XibÞ

" #0
ŴW

XN

i¼1

Z 0
i ðyi � XibÞ

" #
ð8:23Þ

Because expression (8.23) is a quadratic function of b, the solution to it has a closed

form. Using multivariable calculus or direct substitution, we can show that the unique

solution is

b̂b ¼ ðX 0ZŴWZ 0XÞ�1ðX 0ZŴWZ 0YÞ ð8:24Þ

assuming that X 0ZŴWZ 0X is nonsingular. To show that this estimator is consistent, we

assume that ŴW has a nonsingular probability limit.

assumption SIV.3: ŴW !p W as N ! y, where W is a nonrandom, symmetric,

L � L positive definite matrix.

In applications, the convergence in Assumption SIV.3 will follow from the law of

large numbers because ŴW will be a function of sample averages. The fact that W is

assumed to be positive definite means that ŴW is positive definite with probability

approaching one (see Chapter 3). We could relax the assumption of positive defi-

niteness to positive semidefiniteness at the cost of complicating the assumptions. In

most applications, we can assume that W is positive definite.

theorem 8.1 (Consistency of GMM): Under Assumptions SIV.1–SIV.3, b̂b !p b as

N ! y.

Proof: Write

b̂b ¼ N�1
XN

i¼1

X 0
i Zi

 !
ŴW N�1

XN

i¼1

Z 0
i Xi

 !" #�1

N�1
XN

i¼1

X 0
i Zi

 !
ŴW N�1

XN

i¼1

Z 0
i yi

 !

Plugging in yi ¼ Xib þ ui and doing a little algebra gives

b̂b ¼ b þ N�1
XN

i¼1

X 0
i Zi

 !
ŴW N�1

XN

i¼1

Z 0
i Xi

 !" #�1

N�1
XN

i¼1

X 0
i Zi

 !
ŴW N�1

XN

i¼1

Z 0
i ui

 !

Under Assumption SIV.2, C1EðZ 0
i XiÞ has rank K, and combining this with As-

sumption SIV.3, C 0WC has rank K and is therefore nonsingular. It follows by the

law of large numbers that plim b̂b ¼ b þ ðC 0WCÞ�1C 0Wðplim N�1
PN

i¼1 Z 0
i uiÞ ¼ bþ

ðC 0WCÞ�1
C 0W � 0 ¼ b:

Theorem 8.1 shows that a large class of estimators is consistent for b under

Assumptions SIV.1 and SIV.2, provided that we choose ŴW to satisfy modest restric-
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tions. When L ¼ K , the GMM estimator in equation (8.24) becomes equation (8.22),

no matter how we choose ŴW, because X 0Z is a K � K nonsingular matrix.

We can also show that b̂b is asymptotically normally distributed under these first

three assumptions.

theorem 8.2 (Asymptotic Normality of GMM): Under Assumptions SIV.1–SIV.3,ffiffiffiffiffi
N

p
ð b̂b � bÞ is asymptotically normally distributed with mean zero and

Avar
ffiffiffiffiffi
N

p
ð b̂b � bÞ ¼ ðC 0WCÞ�1C 0WLWCðC 0WCÞ�1 ð8:25Þ

where

L1EðZ 0
i uiu

0
i ZiÞ ¼ VarðZ 0

i uiÞ ð8:26Þ

We will not prove this theorem in detail as it can be reasoned fromffiffiffiffiffi
N

p
ð b̂b � bÞ

¼ N�1
XN

i¼1

X 0
i Zi

 !
ŴW N�1

XN

i¼1

Z 0
i Xi

 !" #�1

N�1
XN

i¼1

X 0
i Zi

 !
ŴW N�1=2

XN

i¼1

Z 0
i ui

 !

where we use the fact that N�1=2
PN

i¼1 Z 0
i ui !

d
Normalð0;LÞ. The asymptotic vari-

ance matrix in equation (8.25) looks complicated, but it can be consistently esti-

mated. If L̂L is a consistent estimator of L—more on this later—then equation (8.25)

is consistently estimated by

½ðX 0Z=NÞŴWðZ 0X=NÞ��1ðX 0Z=NÞŴWL̂LŴWðZ 0X=NÞ½ðX 0Z=NÞŴWðZ 0X=NÞ��1 ð8:27Þ

As usual, we estimate Avarð b̂bÞ by dividing expression (8.27) by N.

While the general formula (8.27) is occasionally useful, it turns out that it is greatly

simplified by choosing ŴW appropriately. Since this choice also (and not coinciden-

tally) gives the asymptotically e‰cient estimator, we hold o¤ discussing asymptotic

variances further until we cover the optimal choice of ŴW in Section 8.3.3.

8.3.2 The System 2SLS Estimator

A choice of ŴW that leads to a useful and familiar-looking estimator is

ŴW ¼ N�1
XN

i¼1

Z 0
i Zi

 !�1

¼ ðZ 0Z=NÞ�1 ð8:28Þ

which is a consistent estimator of ½EðZ 0
i ZiÞ��1. Assumption SIV.3 simply requires that

EðZ 0
i ZiÞ exist and be nonsingular, and these requirements are not very restrictive.
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When we plug equation (8.28) into equation (8.24) and cancel N everywhere, we get

b̂b ¼ ½X 0ZðZ 0ZÞ�1Z 0X��1X 0ZðZ 0ZÞ�1Z 0Y ð8:29Þ

This looks just like the single-equation 2SLS estimator, and so we call it the system

2SLS estimator.

When we apply equation (8.29) to the system of equations (8.12), with definitions

(8.14) and (8.15), we get something very familiar. As an exercise, you should show

that b̂b produces 2SLS equation by equation. (The proof relies on the block diagonal

structures of Z 0
i Zi and Z 0

i Xi for each i.) In other words, we estimate the first equation

by 2SLS using instruments zi1, the second equation by 2SLS using instruments zi2,

and so on. When we stack these into one long vector, we get equation (8.29).

Problem 8.8 asks you to show that, in panel data applications, a natural choice of

Zi makes the system 2SLS estimator a pooled 2SLS estimator.

In the next subsection we will see that the system 2SLS estimator is not necessarily

the asymptotically e‰cient estimator. Still, it is
ffiffiffiffiffi
N

p
-consistent and easy to compute

given the data matrices X, Y, and Z. This latter feature is important because we need

a preliminary estimator of b to obtain the asymptotically e‰cient estimator.

8.3.3 The Optimal Weighting Matrix

Given that a GMM estimator exists for any positive definite weighting matrix, it is

important to have a way of choosing among all of the possibilities. It turns out that

there is a choice of W that produces the GMM estimator with the smallest asymp-

totic variance.

We can appeal to expression (8.25) for a hint as to the optimal choice of W. It is

this expression we are trying to make as small as possible, in the matrix sense. (See

Definition 3.11 for the definition of relative asymptotic e‰ciency.) The expression

(8.25) simplifies to ðC 0L�1CÞ�1 if we set W1L�1. Using standard arguments from

matrix algebra, it can be shown that ðC 0WCÞ�1C 0WLWCðC 0WCÞ�1 � ðC 0L�1CÞ�1

is positive semidefinite for any L � L positive definite matrix W. The easiest way to

prove this point is to show that

ðC 0L�1CÞ � ðC 0WCÞðC 0WLWCÞ�1ðC 0WCÞ ð8:30Þ

is positive semidefinite, and we leave this proof as an exercise (see Problem 8.5). This

discussion motivates the following assumption and theorem.

assumption SIV.4: W ¼ L�1, where L is defined by expression (8.26).

theorem 8.3 (Optimal Weighting Matrix): Under Assumptions SIV.1–SIV.4, the

resulting GMM estimator is e‰cient among all GMM estimators of the form (8.24).
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Provided that we can consistently estimate L, we can obtain the asymptotically e‰-

cient GMM estimator. Any consistent estimator of L delivers the e‰cient GMM es-

timator, but one estimator is commonly used that imposes no structure on L.

Procedure 8.1 (GMM with Optimal Weighting Matrix):

a. Let
^̂
bb̂bb be an initial consistent estimator of b. In most cases this is the system 2SLS

estimator.

b. Obtain the G � 1 residual vectors

^̂uûuui ¼ yi � Xi
^̂
bb̂bb; i ¼ 1; 2; . . . ;N ð8:31Þ

c. A generally consistent estimator of L is L̂L ¼ N�1
PN

i¼1 Z 0
i
^̂uûuui
^̂uûuu 0

i Zi.

d. Choose

ŴW1 L̂L�1 ¼ N�1
XN

i¼1

Z 0
i
^̂uûuui
^̂uûuu 0

i Zi

 !�1

ð8:32Þ

and use this matrix to obtain the asymptotically optimal GMM estimator.

The estimator of L in part c of Procedure 8.1 is consistent for EðZ 0
i uiu

0
i ZiÞ under

general conditions. When each row of Zi and ui represent di¤erent time periods—so

that we have a single-equation panel data model—the estimator L̂L allows for arbi-

trary heteroskedasticity (conditional or unconditional) as well as arbitrary serial de-

pendence (conditional or unconditional). The reason we can allow this generality

is that we fix the row dimension of Zi and ui and let N ! y. Therefore, we are

assuming that N, the size of the cross section, is large enough relative to T to make

fixed T asymptotics sensible. (This is the same approach we took in Chapter 7.) With

N very large relative to T, there is no need to downweight correlations between time

periods that are far apart, as in the Newey and West (1987) estimator applied to time

series problems. Ziliak and Kniesner (1998) do use a Newey-West type procedure in a

panel data application with large N. Theoretically, this is not required, and it is not

completely general because it assumes that the underlying time series are weakly de-

pendent. (See Wooldridge, 1994, for discussion of weak dependence in time series

contexts.) A Newey-West type estimator might improve the finite-sample perfor-

mance of the GMM estimator.

The asymptotic variance of the optimal GMM estimator is estimated as

ðX 0ZÞ
XN

i¼1

Z 0
i ûuiûu

0
i Zi

 !�1

ðZ 0XÞ

2
4

3
5
�1

ð8:33Þ
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where ûui 1 yi � Xib̂b; asymptotically, it makes no di¤erence whether the first-stage

residuals ^̂uûuui are used in place of ûui. The square roots of diagonal elements of this

matrix are the asymptotic standard errors of the optimal GMM estimator. This esti-

mator is called a minimum chi-square estimator, for reasons that will become clear in

Section 8.5.2.

When Zi ¼ Xi and the ûui are the system OLS residuals, expression (8.33) becomes

the robust variance matrix estimator for SOLS [see expression (7.26)]. This expres-

sion reduces to the robust variance matrix estimator for FGLS when Zi ¼ ŴW�1Xi and

the ûui are the FGLS residuals [see equation (7.49)].

8.3.4 The Three-Stage Least Squares Estimator

The GMM estimator using weighting matrix (8.32) places no restrictions on either

the unconditional or conditional (on Zi) variance matrix of ui: we can obtain the

asymptotically e‰cient estimator without making additional assumptions. Neverthe-

less, it is still common, especially in traditional simultaneous equations analysis, to

assume that the conditional variance matrix of ui given Zi is constant. This assump-

tion leads to a system estimator that is a middle ground between system 2SLS and the

always-e‰cient minimum chi-square estimator.

The three-stage least squares (3SLS) estimator is a GMM estimator that uses a

particular weighting matrix. To define the 3SLS estimator, let ^̂uûuui ¼ yi � Xi
^̂
bb̂bb be the

residuals from an initial estimation, usually system 2SLS. Define the G � G matrix

ŴW1N�1
XN

i¼1

^̂uûuui
^̂uûuu 0

i ð8:34Þ

Using the same arguments as in the FGLS case in Section 7.5.1, ŴW !p W ¼ Eðuiu
0
i Þ.

The weighting matrix used by 3SLS is

ŴW ¼ N�1
XN

i¼1

Z 0
i ŴWZi

 !�1

¼ ½Z 0ðIN n ŴWÞZ=N��1 ð8:35Þ

where IN is the N � N identity matrix. Plugging this into equation (8.24) gives the

3SLS estimator

b̂b ¼ ½X 0ZfZ 0ðIN n ŴWÞZg�1Z 0X��1X 0ZfZ 0ðIN n ŴWÞZg�1Z 0Y ð8:36Þ

By Theorems 8.1 and 8.2, b̂b is consistent and asymptotically normal under Assump-

tions SIV.1–SIV.3. Assumption SIV.3 requires EðZ 0
iWZiÞ to be nonsingular, a stan-

dard assumption.
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When is 3SLS asymptotically e‰cient? First, note that equation (8.35) always

consistently estimates ½EðZ 0
iWZiÞ��1. Therefore, from Theorem 8.3, equation (8.35) is

an e‰cient weighting matrix provided EðZ 0
iWZiÞ ¼ L ¼ EðZ 0

i uiu
0
i ZiÞ.

assumption SIV.5: EðZ 0
i uiu

0
i ZiÞ ¼ EðZ 0

iWZiÞ, where W1Eðuiu
0
i Þ.

Assumption SIV.5 is the system extension of the homoskedasticity assumption for

2SLS estimation of a single equation. A su‰cient condition for Assumption SIV.5,

and one that is easier to interpret, is

Eðuiu
0
i jZiÞ ¼ Eðuiu

0
i Þ ð8:37Þ

We do not take equation (8.37) as the homoskedasticity assumption because there are

interesting applications where Assumption SIV.5 holds but equation (8.37) does not

(more on this topic in Chapters 9 and 11). When

Eðui jZiÞ ¼ 0 ð8:38Þ

is assumed in place of Assumption SIV.1, then equation (8.37) is equivalent to

Varðui jZiÞ ¼ VarðuiÞ. Whether we state the assumption as in equation (8.37) or use

the weaker form, Assumption SIV.5, it is important to see that the elements of the

unconditional variance matrix W are not restricted: s2
g ¼ VarðugÞ can change across

g, and sgh ¼ Covðug; uhÞ can di¤er across g and h.

The system homoskedasticity assumption (8.37) necessarily holds when the instru-

ments Zi are treated as nonrandom and VarðuiÞ is constant across i. Because we are

assuming random sampling, we are forced to properly focus attention on the variance

of ui conditional on Zi.

For the system of equations (8.12) with instruments defined in the matrix (8.15),

Assumption SIV.5 reduces to (without the i subscript)

Eðuguhz 0
gzhÞ ¼ EðuguhÞEðz 0

gzhÞ; g; h ¼ 1; 2; . . . ;G ð8:39Þ

Therefore, uguh must be uncorrelated with each of the elements of z 0
gzh. When g ¼ h,

assumption (8.39) becomes

Eðu2
gz 0

gzgÞ ¼ Eðu2
gÞEðz

0
gzgÞ ð8:40Þ

so that u2
g is uncorrelated with each element of zg along with the squares and cross

products of the zg elements. This is exactly the homoskedasticity assumption for

single-equation IV analysis (Assumption 2SLS.3). For g0 h, assumption (8.39) is

new because it involves covariances across di¤erent equations.

Assumption SIV.5 implies that Assumption SIV.4 holds [because the matrix (8.35)

consistently estimates L�1 under Assumption SIV.5]. Therefore, we have the follow-

ing theorem:
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theorem 8.4 (Optimality of 3SLS): Under Assumptions SIV.1, SIV.2, SIV.3, and

SIV.5, the 3SLS estimator is an optimal GMM estimator. Further, the appropriate

estimator of Avarð b̂bÞ is

ðX 0ZÞ
XN

i¼1

Z 0
i ŴWZi

 !�1

ðZ 0XÞ

2
4

3
5
�1

¼ ½X 0ZfZ 0ðIN n ŴWÞZg�1Z 0X��1 ð8:41Þ

It is important to understand the implications of this theorem. First, without As-

sumption SIV.5, the 3SLS estimator is generally less e‰cient, asymptotically, than

the minimum chi-square estimator, and the asymptotic variance estimator for 3SLS

in equation (8.41) is inappropriate. Second, even with Assumption SIV.5, the 3SLS

estimator is no more asymptotically e‰cient than the minimum chi-square estimator:

expressions (8.32) and (8.35) are both consistent estimators of L�1 under Assumption

SIV.5. In other words, the estimators based on these two di¤erent choices for ŴW areffiffiffiffiffi
N

p
-equivalent under Assumption SIV.5.

Given the fact that the GMM estimator using expression (8.32) as the weighting

matrix is never worse, asymptotically, than 3SLS, and in some important cases is

strictly better, why is 3SLS ever used? There are at least two reasons. First, 3SLS has

a long history in simultaneous equations models, whereas the GMM approach has

been around only since the early 1980s, starting with the work of Hansen (1982) and

White (1982b). Second, the 3SLS estimator might have better finite sample properties

than the optimal GMM estimator when Assumption SIV.5 holds. However, whether

it does or not must be determined on a case-by-case basis.

There is an interesting corollary to Theorem 8.4. Suppose that in the system (8.11)

we can assume EðXi n uiÞ ¼ 0, which is Assumption SGLS.1 from Chapter 7. We

can use a method of moments approach to estimating b, where the instruments for

each equation, xo
i , is the row vector containing every row of Xi. As shown by Im,

Ahn, Schmidt, and Wooldridge (1999), the 3SLS estimator using instruments Zi 1
IG n xo

i is equal to the feasible GLS estimator that uses the same ŴW. Therefore, if

Assumption SIV.5 holds with Zi 1 IG n xo
i , FGLS is asymptotically e‰cient in the

class of GMM estimators that use the orthogonality condition in Assumption

SGLS.1. Su‰cient for Assumption SIV.5 in the GLS context is the homoskedasticity

assumption Eðuiu
0
i jXiÞ ¼ W.

8.3.5 Comparison between GMM 3SLS and Traditional 3SLS

The definition of the GMM 3SLS estimator in equation (8.36) di¤ers from the defi-

nition of the 3SLS estimator in most textbooks. Using our notation, the expression

for the traditional 3SLS estimator is
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b̂b ¼
XN

i¼1

X̂X 0
i ŴW

�1X̂Xi

 !�1 XN

i¼1

X̂X 0
i ŴW

�1yi

 !

¼ ½X̂X 0ðIN n ŴW�1ÞX̂X��1
X̂X 0ðIN n ŴW�1ÞY ð8:42Þ

where ŴW is given in expression (8.34), X̂Xi 1ZiP̂P, and P̂P ¼ ðZ 0ZÞ�1Z 0X. Comparing

equations (8.36) and (8.42) shows that, in general, these are di¤erent estimators. To

study equation (8.42) more closely, write it as

b̂b ¼ b þ N�1
XN

i¼1

X̂X 0
i ŴW

�1X̂Xi

 !�1

N�1
XN

i¼1

X̂X 0
i ŴW

�1ui

 !

Because P̂P !p P1 ½EðZ 0
i ZiÞ��1EðZ 0

i XiÞ and ŴW !p W, the probability limit of the sec-

ond term is the same as

plim N�1
XN

i¼1

ðZiPÞ0W�1ðZiPÞ
" #�1

N�1
XN

i¼1

ðZiPÞ0W�1ui

" #
ð8:43Þ

The first factor in expression (8.43) generally converges to a positive definite matrix.

Therefore, if equation (8.42) is to be consistent for b, we need

E½ðZiPÞ0W�1ui� ¼ P 0E½ðW�1ZiÞ0ui� ¼ 0

Without assuming a special structure for P, we should have that W�1Zi is uncorre-

lated with ui, an assumption that is not generally implied by Assumption SIV.1. In

other words, the traditional 3SLS estimator generally uses a di¤erent set of ortho-

gonality conditions than the GMM 3SLS estimator. The GMM 3SLS estimator is

guaranteed to be consistent under Assumptions SIV.1–SIV.3, while the traditional

3SLS estimator is not.

The best way to illustrate this point is with model (8.12) where Zi is given in matrix

(8.15) and we assume Eðz 0
iguigÞ ¼ 0, g ¼ 1; 2; . . . ;G. Now, unless W is diagonal,

E½ðW�1ZiÞ0ui�0 0 unless zig is uncorrelated with each uih for all g; h ¼ 1; 2; . . . ;G. If

zig is correlated with uih for some g0 h, the transformation of the instruments in

equation (8.42) results in inconsistency. The GMM 3SLS estimator is based on the

original orthogonality conditions, while the traditional 3SLS estimator is not. See

Problem 8.6 for the G ¼ 2 case.

Why, then, does equation (8.42) usually appear as the definition of the 3SLS esti-

mator? The reason is that the 3SLS estimator is typically introduced in simultaneous

equations models where any variable exogenous in one equation is assumed to be
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exogenous in all equations. Consider the model (8.12) again, but assume that the in-

strument matrix is Zi ¼ IG n zi, where zi contains the exogenous variables appearing

anywhere in the system. With this choice of Zi, Assumption SIV.1 is equivalent to

Eðz 0
i uigÞ ¼ 0, g ¼ 1; 2; . . . ;G. It follows that any linear combination of Zi is orthog-

onal to ui, including W�1Zi. In this important special case, traditional 3SLS is a

consistent estimator. In fact, as shown by Schmidt (1990), the GMM 3SLS estimator

and the traditional 3SLS estimator are algebraically identical.

Because we will encounter cases where we need di¤erent instruments for di¤erent

equations, the GMM definition of 3SLS in equation (8.36) is preferred: it is more

generally valid, and it reduces to the standard definition in the traditional simulta-

neous equations setting.

8.4 Some Considerations When Choosing an Estimator

We have already discussed the assumptions under which the 3SLS estimator is an

e‰cient GMM estimator. It follows that, under the assumptions of Theorem 8.4,

3SLS is as e‰cient asymptotically as the system 2SLS estimator. Nevertheless, it is

useful to know that there are some situations where the system 2SLS and 3SLS esti-

mators are equivalent. First, when the general system (8.11) is just identified, that is,

L ¼ K , all GMM estimators reduce to the instrumental variables estimator in equa-

tion (8.22). In the special (but still fairly general) case of the SUR system (8.12), the

system is just identified if and only if each equation is just identified: Lg ¼ Kg,

g ¼ 1; 2; . . . ;G and the rank condition holds for each equation. When each equation

is just identified, the system IV estimator is IV equation by equation.

For the remaining discussion, we consider model (8.12) when at least one equation

is overidentified. When ŴW is a diagonal matrix, that is, ŴW ¼ diagðŝs2
1 ; . . . ; ŝs

2
GÞ, 2SLS

equation by equation is algebraically equivalent to 3SLS, regardless of the degree

of overidentification (see Problem 8.7). Therefore, if we force our estimator ŴW to be

diagonal, we obtain 2SLS equation by equation.

The algebraic equivalance between system 2SLS and 3SLS when ŴW is diagonal

allows us to conclude that 2SLS and 3SLS are asymptotically equivalent if W is di-

agonal. The reason is simple. If we could use W in the 3SLS estimator, 3SLS would

be identical to 2SLS. The actual 3SLS estimator, which uses ŴW, is
ffiffiffiffiffi
N

p
-equivalent to

the hypothetical 3SLS estimator that uses W. Therefore, 3SLS and 2SLS are
ffiffiffiffiffi
N

p
-

equivalent.

Even in cases where the 2SLS estimator is not algebraically or asympotically

equivalent to 3SLS, it is not necessarily true that we should prefer 3SLS (or the

minimum chi-square estimator more generally). Why? Suppose that primary interest
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lies in estimating the parameters in the first equation, b1. On the one hand, we know

that 2SLS estimation of this equation produces consistent estimators under the

orthogonality condition Eðz 0
1u1Þ ¼ 0 and the condition rank Eðz 0

1x1Þ ¼ K1. We do

not care what is happening elsewhere in the system as long as these two assumptions

hold. On the other hand, the system-based 3SLS and minimum chi-square estimators

of b1 are generally inconsistent unless Eðz 0
gugÞ ¼ 0 for all g. Therefore, in using a

system method to consistently estimate b1, all equations in the system must be prop-

erly specified, which means their instruments must be exogenous. Such is the nature

of system estimation procedures. As with system OLS and FGLS, there is a trade-o¤

between robustness and e‰ciency.

8.5 Testing Using GMM

8.5.1 Testing Classical Hypotheses

Testing hypotheses after GMM estimation is straightforward. Let b̂b denote a GMM

estimator, and let V̂V denote its estimated asymptotic variance. Although the following

analysis can be made more general, in most applications we use an optimal GMM

estimator. Without Assumption SIV.5, the weighting matrix would be expression

(8.32) and V̂V would be as in expression (8.33). This can be used for computing t sta-

tistics by obtaining the asymptotic standard errors (square roots of the diagonal

elements of V̂V). Wald statistics of linear hypotheses of the form H0: Rb ¼ r, where R

is a Q � K matrix with rank Q, are obtained using the same statistic we have already

seen several times. Under Assumption SIV.5 we can use the 3SLS estimator and its

asymptotic variance estimate in equation (8.41). For testing general system hypoth-

eses we would probably not use the 2SLS estimator because its asymptotic variance is

more complicated unless we make very restrictive assumptions.

An alternative method for testing linear restrictions uses a statistic based on the dif-

ference in the GMM objective function with and without the restrictions imposed. To

apply this statistic, we must assume that the GMM estimator uses the optimal weighting

matrix, so that ŴW consistently estimates ½VarðZ 0
i uiÞ��1. Then, from Lemma 3.8,

N�1=2
XN

i¼1

Z 0
i ui

 !0
ŴW N�1=2

XN

i¼1

Z 0
i ui

 !
@
a
w2

L ð8:44Þ

since Z 0
i ui is an L � 1 vector with zero mean and variance L. If ŴW does not con-

sistently estimate ½VarðZ 0
i uiÞ��1, then result (8.44) is false, and the following method

does not produce an asymptotically chi-square statistic.
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Let b̂b again be the GMM estimator, using optimal weighting matrix ŴW, obtained

without imposing the restrictions. Let ~bb be the GMM estimator using the same

weighting matrix ŴW but obtained with the Q linear restrictions imposed. The restricted

estimator can always be obtained by estimating a linear model with K � Q rather

than K parameters. Define the unrestricted and restricted residuals as ûui 1 yi � Xib̂b

and ~uui 1 yi � Xi
~bb, respectively. It can be shown that, under H0, the GMM distance

statistic has a limiting chi-square distribution:

XN

i¼1

Z 0
i~uui

 !0
ŴW

XN

i¼1

Z 0
i~uui

 !
�

XN

i¼1

Z 0
i ûui

 !0
ŴW

XN

i¼1

Z 0
i ûui

 !" #
=N @

a
w2

Q ð8:45Þ

See, for example, Hansen (1982) and Gallant (1987). The GMM distance statistic is

simply the di¤erence in the criterion function (8.23) evaluated at the restricted and

unrestricted estimates, divided by the sample size, N. For this reason, expression

(8.45) is called a criterion function statistic. Because constrained minimization cannot

result in a smaller objective function than unconstrained minimization, expression

(8.45) is always nonnegative and usually strictly positive.

Under Assumption SIV.5 we can use the 3SLS estimator, in which case expression

(8.45) becomes

XN

i¼1

Z 0
i~uui

 !0 XN

i¼1

Z 0
i ŴWZi

 !�1 XN

i¼1

Z 0
i~uui

 !
�

XN

i¼1

Z 0
i ûui

 !0 XN

i¼1

Z 0
i ŴWZi

 !�1 XN

i¼1

Z 0
i ûui

 !

ð8:46Þ

where ŴW would probably be computed using the 2SLS residuals from estimating the

unrestricted model. The division by N has disappeared because of the definition of

ŴW; see equation (8.35).

Testing nonlinear hypotheses is easy once the unrestricted estimator b̂b has been

obtained. Write the null hypothesis as

H0: cðbÞ ¼ 0 ð8:47Þ

where cðbÞ1 ½c1ðbÞ; c2ðbÞ; . . . ; cQðbÞ� 0 is a Q � 1 vector of functions. Let CðbÞ de-

note the Q � K Jacobian of cðbÞ. Assuming that rank CðbÞ ¼ Q, the Wald statistic is

W ¼ cð b̂bÞ0ðĈCV̂VĈC 0Þ�1cð b̂bÞ ð8:48Þ

where ĈC1Cð b̂bÞ is the Jacobian evaluated at the GMM estimate b̂b. Under H0, the

Wald statistic has an asymptotic w2
Q distribution.
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8.5.2 Testing Overidentification Restrictions

Just as in the case of single-equation analysis with more exogenous variables than

explanatory variables, we can test whether overidentifying restrictions are valid in a

system context. In the model (8.11) with instrument matrix Zi, where Xi is G � K and

Zi is G � L, there are overidentifying restrictions if L > K . Assuming that ŴW is an

optimal weighting matrix, it can be shown that

N�1=2
XN

i¼1

Z 0
i ûui

 !0
ŴW N�1=2

XN

i¼1

Z 0
i ûui

 !
@
a
w2

L�K ð8:49Þ

under the null hypothesis H0: EðZ 0
i uiÞ ¼ 0. The asymptotic w2

L�K distribution is sim-

ilar to result (8.44), but expression (8.44) contains the unobserved errors, ui, whereas

expression (8.49) contains the residuals, ûui. Replacing ui with ûui causes the degrees of

freedom to fall from L to L � K : in e¤ect, K orthogonality conditions have been used

to compute b̂b, and L � K are left over for testing.

The overidentification test statistic in expression (8.49) is just the objective function

(8.23) evaluated at the solution b̂b and divided by N. It is because of expression (8.49)

that the GMM estimator using the optimal weighting matrix is called the minimum

chi-square estimator: b̂b is chosen to make the minimum of the objective function have

an asymptotic chi-square distribution. If ŴW is not optimal, expression (8.49) fails to

hold, making it much more di‰cult to test the overidentifying restrictions. When

L ¼ K , the left-hand side of expression (8.49) is identically zero; there are no over-

identifying restrictions to be tested.

Under Assumption SIV.5, the 3SLS estimator is a minimum chi-square estimator,

and the overidentification statistic in equation (8.49) can be written as

XN

i¼1

Z 0
i ûui

 !0 XN

i¼1

Z 0
i ŴWZi

 !�1 XN

i¼1

Z 0
i ûui

 !
ð8:50Þ

Without Assumption SIV.5, the limiting distribution of this statistic is not chi square.

In the case where the model has the form (8.12), overidentification test statistics

can be used to choose between a systems and a single-equation method. For example,

if the test statistic (8.50) rejects the overidentifying restrictions in the entire system,

then the 3SLS estimators of the first equation are generally inconsistent. Assuming

that the single-equation 2SLS estimation passes the overidentification test discussed

in Chapter 6, 2SLS would be preferred. However, in making this judgment it is, as

always, important to compare the magnitudes of the two sets of estimates in addition
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to the statistical significance of test statistics. Hausman (1983, p. 435) shows how to

construct a statistic based directly on the 3SLS and 2SLS estimates of a particular

equation (assuming that 3SLS is asymptotically more e‰cient under the null), and

this discussion can be extended to allow for the more general minimum chi-square

estimator.

8.6 More E‰cient Estimation and Optimal Instruments

In Section 8.3.3 we characterized the optimal weighting matrix given the matrix Zi of

instruments. But this discussion begs the question of how we can best choose Zi. In

this section we briefly discuss two e‰ciency results. The first has to do with adding

valid instruments.

To be precise, let Zi1 be a G � L1 submatrix of the G � L matrix Zi, where Zi

satisfies Assumptions SIV.1 and SIV.2. We also assume that Zi1 satisfies Assumption

SIV.2; that is, EðZ 0
i1XiÞ has rank K. This assumption ensures that b is identified using

the smaller set of instruments. (Necessary is L1 bK .) Given Zi1, we know that the

e‰cient GMM estimator uses a weighting matrix that is consistent for L�1
1 , where

L1 ¼ EðZ 0
i1uiu

0
i Zi1Þ. When we use the full set of instruments Zi ¼ ðZi1;Zi2Þ, the op-

timal weighting matrix is a consistent estimator of L given in expression (8.26).

The question is, Can we say that using the full set of instruments (with the optimal

weighting matrix) is better than using the reduced set of instruments (with the opti-

mal weighting matrix)? The answer is that, asymptotically, we can do no worse, and

often we can do better, using a larger set of valid instruments.

The proof that adding orthogonality conditions generally improves e‰ciency pro-

ceeds by comparing the asymptotic variances of
ffiffiffiffiffi
N

p
ð ~bb � bÞ and

ffiffiffiffiffi
N

p
ð b̂b � bÞ, where

the former estimator uses the restricted set of IVs and the latter uses the full set.

Then

Avar
ffiffiffiffiffi
N

p
ð ~bb � bÞ � Avar

ffiffiffiffiffi
N

p
ð b̂b � bÞ ¼ ðC 0

1L
�1
1 C1Þ�1 � ðC 0L�1CÞ�1 ð8:51Þ

where C1 ¼ EðZ 0
i1XiÞ. The di¤erence in equation (8.51) is positive semidefinite if and

only if C 0L�1C � C 0
1L

�1
1 C1 is p.s.d. The latter result is shown by White (1984, Prop-

osition 4.49) using the formula for partitioned inverse; we will not reproduce it here.

The previous argument shows that we can never do worse asymptotically by add-

ing instruments and computing the minimum chi-square estimator. But we need not

always do better. The proof in White (1984) shows that the asymptotic variances of ~bb

and b̂b are identical if and only if

C2 ¼ EðZ 0
i2uiu

0
i Zi1ÞL�1

1 C1 ð8:52Þ
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where C2 ¼ EðZ 0
i2XiÞ. Generally, this condition is di‰cult to check. However, if we

assume that EðZ 0
i uiu

0
i ZiÞ ¼ s2EðZ 0

i ZiÞ—the ideal assumption for system 2SLS—then

condition (8.52) becomes

EðZ 0
i2XiÞ ¼ EðZ 0

i2Zi1Þ½EðZ 0
i1Zi1Þ��1EðZ 0

i1XiÞ

Straightforward algebra shows that this condition is equivalent to

E½ðZi2 � Zi1D1Þ0Xi� ¼ 0 ð8:53Þ

where D1 ¼ ½EðZ 0
i1Zi1Þ��1EðZ 0

i1Zi2Þ is the L1 � L2 matrix of coe‰cients from the

population regression of Zi1 on Zi2. Therefore, condition (8.53) has a simple inter-

pretation: Xi is orthogonal to the part of Zi2 that is left after netting out Zi1. This

statement means that Zi2 is not partially correlated with Xi, and so it is not useful as

instruments once Zi1 has been included.

Condition (8.53) is very intuitive in the context of 2SLS estimation of a single

equation. Under Eðu2
i z 0

i ziÞ ¼ s2Eðz 0
i ziÞ, 2SLS is the minimum chi-square estimator.

The elements of zi would include all exogenous elements of xi, and then some. If, say,

xiK is the only endogenous element of xi, condition (8.53) becomes

LðxiK j zi1; zi2Þ ¼ LðxiK j zi1Þ ð8:54Þ

so that the linear projection of xiK onto zi depends only on zi1. If you recall how the

IVs for 2SLS are obtained—by estimating the linear projection of xiK on zi in the first

stage—it makes perfectly good sense that zi2 can be omitted under condition (8.54)

without a¤ecting e‰ciency of 2SLS.

In the general case, if the error vector ui contains conditional heteroskedasticity, or

correlation across its elements (conditional or otherwise), condition (8.52) is unlikely

to be true. As a result, we can keep improving asymptotic e‰ciency by adding

more valid instruments. Whenever the error term satisfies a zero conditional mean

assumption, unlimited IVs are available. For example, consider the linear model

Eðy j xÞ ¼ xb, so that the error u ¼ y � xb has a zero mean given x. The OLS esti-

mator is the IV estimator using IVs z1 ¼ x. The preceding e‰ciency result implies

that, if Varðu j xÞ0VarðuÞ, there are unlimited minimum chi-square estimators that

are asymptotically more e‰cient than OLS. Because Eðu j xÞ ¼ 0, hðxÞ is a valid set

of IVs for any vector function hð�Þ. (Assuming, as always, that the appropriate

moments exist.) Then, the minimum chi-square estimate using IVs z ¼ ½x; hðxÞ� is

generally more asymptotically e‰cient than OLS. (Chamberlain, 1982, and Cragg,

1983, independently obtained this result.) If Varðy j xÞ is constant, adding functions

of x to the IV list results in no asymptotic improvement because the linear projection

of x onto x and hðxÞ obviously does not depend on hðxÞ.
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Under homoskedasticity, adding moment conditions does not reduce the asymp-

totic e‰ciency of the minimum chi-square estimator. Therefore, it may seem that,

when we have a linear model that represents a conditional expectation, we cannot

lose by adding IVs and performing minimum chi-square. [Plus, we can then test the

functional form Eðy j xÞ ¼ xb by testing the overidentifying restrictions.] Unfortu-

nately, as shown by several authors, including Tauchen (1986), Altonji and Segal

(1996), and Ziliak (1997), GMM estimators that use many overidentifying restric-

tions can have very poor finite sample properties.

The previous discussion raises the following possibility: rather than adding more

and more orthogonality conditions to improve on ine‰cient estimators, can we find a

small set of optimal IVs? The answer is yes, provided we replace Assumption SIV.1

with a zero conditional mean assumption.

assumption SIV.1 0: Eðuig j ziÞ ¼ 0, g ¼ 1; . . . ;G for some vector zi.

Assumption SIV.1 0 implies that zi is exogenous in every equation, and each element

of the instrument matrix Zi can be any function of zi.

theorem 8.5 (Optimal Instruments): Under Assumption SIV.1 0 (and su‰cient reg-

ularity conditions), the optimal choice of instruments is Z�
i ¼ WðziÞ�1EðXi j ziÞ, where

WðziÞ1Eðu 0
i ui j ziÞ, provided that rank EðZ�0

i XiÞ ¼ K .

We will not prove Theorem 8.5 here. We discuss a more general case in Section 14.5;

see also Newey and McFadden (1994, Section 5.4). Theorem 8.5 implies that, if the

G � K matrix Z�
i were available, we would use it in equation (8.22) in place of Zi to

obtain the SIV estimator with the smallest asymptotic variance. This would take the

arbitrariness out of choosing additional functions of zi to add to the IV list: once we

have Z�
i , all other functions of zi are redundant.

Theorem 8.5 implies that, if the errors in the system satisfy SIV.1 0, the homo-

skedasticity assumption (8.37), and EðXi j ziÞ ¼ ZiP for some G � L matrix Zi and an

L � K unknown matrix P, then the 3SLS estimator is the e‰cient estimator based on

the orthogonality conditions SIV.1 0. Showing this result is easy given the traditional

form of the 3SLS estimator in equation (8.41).

If Eðui jXiÞ ¼ 0 and Eðuiu
0
i jXiÞ ¼ W, then the optimal instruments are W�1Xi,

which gives the GLS estimator. Replacing W by ŴW has no e¤ect asymptotically, and

so the FGLS is the SIV estimator with optimal choice of instruments.

Without further assumptions, both WðziÞ and EðXi j ziÞ can be arbitrary functions

of zi, in which case the optimal SIV estimator is not easily obtainable. It is possible

to find an estimator that is asymptotically e‰cient using nonparametric estimation
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methods to estimate WðziÞ and EðXi j ziÞ, but there are many practical hurdles to

overcome in applying such procedures. See Newey (1990) for an approach that

approximates EðXi j ziÞ by parametric functional forms, where the approximation

gets better as the sample size grows.

Problems

8.1. Show that the GMM estimator that solves the problem (8.23) satisfies the first-

order condition

XN

i¼1

Z 0
i Xi

 !0
ŴW

XN

i¼1

Z 0
i ðyi � Xib̂bÞ

 !
¼ 0

Use this expression to obtain formula (8.24).

8.2. Consider the system of equations

yi ¼ Xib þ ui

where i indexes the cross section observation, yi and ui are G � 1, Xi is G � K , Zi is

the G � L matrix of instruments, and b is K � 1. Let W ¼ Eðuiu
0
i Þ. Make the follow-

ing four assumptions: (1) EðZ 0
i uiÞ ¼ 0; (2) rank EðZ 0

i XiÞ ¼ K ; (3) EðZ 0
i ZiÞ is non-

singular; and (4) EðZ 0
iWZiÞ is nonsingular.

a. What are the properties of the 3SLS estimator?

b. Find the asymptotic variance matrix of
ffiffiffiffiffi
N

p
ð b̂b3SLS � bÞ.

c. How would you estimate Avarð b̂b3SLSÞ?

8.3. Let x be a 1 � K random vector and let z be a 1 � M random vector. Suppose

that Eðx j zÞ ¼ Lðx j zÞ ¼ zP, where P is an M � K matrix; in other words, the ex-

pectation of x given z is linear in z. Let hðzÞ be any 1 � Q nonlinear function of z, and

define an expanded instrument list as w1 ½z; hðzÞ�.
Show that rank Eðz 0xÞ ¼ rank Eðw 0xÞ. fHint: First show that rank Eðz 0xÞ ¼

rank Eðz 0x�Þ, where x� is the linear projection of x onto z; the same holds with z

replaced by w. Next, show that when Eðx j zÞ ¼ Lðx j zÞ, L½x j z; hðzÞ� ¼ Lðx j zÞ for

any function hðzÞ of z.g

8.4. Consider the system of equations (8.12), and let z be a row vector of vari-

ables exogenous in every equation. Assume that the exogeneity assumption takes the

stronger form Eðug j zÞ ¼ 0, g ¼ 1; 2; . . . ;G. This assumption means that z and non-

linear functions of z are valid instruments in every equation.
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a. Suppose that Eðxg j zÞ is linear in z for all g. Show that adding nonlinear functions

of z to the instrument list cannot help in satisfying the rank condition. (Hint: Apply

Problem 8.3.)

b. What happens if Eðxg j zÞ is a nonlinear function of z for some g?

8.5. Verify that the di¤erence ðC 0L�1CÞ � ðC 0WCÞðC 0WLWCÞ�1ðC 0WCÞ in ex-

pression (8.30) is positive semidefinite for any symmetric positive definite matrices W

and L. fHint: Show that the di¤erence can be expressed as

C 0L�1=2½IL � DðD 0DÞ�1D 0�L�1=2C

where D1L1=2WC. Then, note that for any L � K matrix D, IL � DðD 0DÞ�1
D 0 is a

symmetric, idempotent matrix, and therefore positive semidefinite.g

8.6. Consider the system (8.12) in the G ¼ 2 case, with an i subscript added:

yi1 ¼ xi1b1 þ ui1

yi2 ¼ xi2b2 þ ui2

The instrument matrix is

Zi ¼
zi1 0

0 zi2

� �

Let W be the 2 � 2 variance matrix of ui 1 ðui1; ui2Þ0, and write

W�1 ¼ s11 s12

s12 s22

� �

a. Find EðZ 0
iW

�1uiÞ and show that it is not necessarily zero under the orthogonality

conditions Eðz 0
i1ui1Þ ¼ 0 and Eðz 0

i2ui2Þ ¼ 0.

b. What happens if W is diagonal (so that W�1 is diagonal)?

c. What if zi1 ¼ zi2 (without restrictions on W)?

8.7. With definitions (8.14) and (8.15), show that system 2SLS and 3SLS are

numerically identical whenever ŴW is a diagonal matrix.

8.8. Consider the standard panel data model introduced in Chapter 7:

yit ¼ xitb þ uit ð8:55Þ

where the 1 � K vector xit might have some elements correlated with uit. Let zit be a

1 � L vector of instruments, LbK , such that Eðz 0
ituitÞ ¼ 0, t ¼ 1; 2; . . . ;T . (In prac-
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tice, zit would contain some elements of xit, including a constant and possibly time

dummies.)

a. Write down the system 2SLS estimator if the instrument matrix is Zi ¼
ðz 0

i1; z 0
i2; . . . ; z 0

iT Þ
0 (a T � L matrix). Show that this estimator is a pooled 2SLS esti-

mator. That is, it is the estimator obtained by 2SLS estimation of equation (8.55)

using instruments zit, pooled across all i and t.

b. What is the rank condition for the pooled 2SLS estimator?

c. Without further assumptions, show how to estimate the asymptotic variance of the

pooled 2SLS estimator.

d. Show that the assumptions

Eðuit j zit; ui; t�1; zi; t�1; . . . ; ui1; zi1Þ ¼ 0; t ¼ 1; . . . ;T ð8:56Þ

Eðu2
it j zitÞ ¼ s2; t ¼ 1; . . . ;T ð8:57Þ

imply that the usual standard errors and test statistics reported from the pooled 2SLS

estimation are valid. These assumptions make implementing 2SLS for panel data

very simple.

e. What estimator would you use under condition (8.56) but where we relax condi-

tion (8.57) to Eðu2
it j zitÞ ¼ Eðu2

itÞ1 s2
t , t ¼ 1; . . . ;T? This approach will involve an

initial pooled 2SLS estimation.

8.9. Consider the single-equation linear model from Chapter 5: y ¼ xb þ u.

Strengthen Assumption 2SLS.1 to Eðu j zÞ ¼ 0 and Assumption 2SLS.3 to Eðu2 j zÞ ¼
s2, and keep the rank condition 2SLS.2. Show that if Eðx j zÞ ¼ zP for some L � K

matrix P, the 2SLS estimator uses the optimal instruments based on the orthogon-

ality condition Eðu j zÞ ¼ 0. What does this result imply about OLS if Eðu j xÞ ¼ 0

and Varðu j xÞ ¼ s2?

8.10. In the model from Problem 8.8, let ûuit 1 yit � xitb̂b be the residuals after pooled

2SLS estimation.

a. Consider the following test for AR(1) serial correlation in fuit: t ¼ 1; . . . ;Tg: es-

timate the auxiliary equation

yit ¼ xitb þ rûui; t�1 þ errorit; t ¼ 2; . . . ;T ; i ¼ 1; . . . ;N

by 2SLS using instruments ðzit; ûui; t�1Þ, and use the t statistic on r̂r. Argue that, if we

strengthen (8.56) to Eðuit j zit; xi; t�1; ui; t�1; zi; t�1; xi; t�2; . . . ; xi1; ui1; zi1Þ ¼ 0, then the

heteroskedasticity-robust t statistic for r̂r is asymptotically valid as a test for serial

correlation. [Hint: Under the dynamic completeness assumption (8.56), which is
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e¤ectively the null hypothesis, the fact that ûui; t�1 is used in place of ui; t�1 does not

a¤ect the limiting distribution of r̂r; see Section 6.1.3.] What is the homoskedasticity

assumption that justifies the usual t statistic?

b. What should be done to obtain a heteroskedasticity-robust test?

8.11. a. Use Theorem 8.5 to show that, in the single-equation model

y1 ¼ z1d1 þ a1y2 þ u1

with Eðu1 j zÞ ¼ 0—where z1 is a strict subset of z—and Varðu1 j zÞ ¼ s2
1 , the optimal

instrumental variables are ½z1;Eðy2 j zÞ�.
b. If y2 is a binary variable with Pðy2 ¼ 1 j zÞ ¼ F ðzÞ for some known function F ð�Þ,
0aF ðzÞa 1, what are the optimal IVs?
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9 Simultaneous Equations Models

9.1 The Scope of Simultaneous Equations Models

The emphasis in this chapter is on situations where two or more variables are jointly

determined by a system of equations. Nevertheless, the population model, the iden-

tification analysis, and the estimation methods apply to a much broader range of

problems. In Chapter 8, we saw that the omitted variables problem described in Ex-

ample 8.2 has the same statistical structure as the true simultaneous equations model

in Example 8.1. In fact, any or all of simultaneity, omitted variables, and measure-

ment error can be present in a system of equations. Because the omitted variable and

measurement error problems are conceptually easier—and it was for this reason that

we discussed them in single-equation contexts in Chapters 4 and 5—our examples

and discussion in this chapter are geared mostly toward true simultaneous equations

models (SEMs).

For e¤ective application of true SEMs, we must understand the kinds of situations

suitable for SEM analysis. The labor supply and wage o¤er example, Example 8.1,

is a legitimate SEM application. The labor supply function describes individual be-

havior, and it is derivable from basic economic principles of individual utility max-

imization. Holding other factors fixed, the labor supply function gives the hours of

labor supply at any potential wage facing the individual. The wage o¤er function

describes firm behavior, and, like the labor supply function, the wage o¤er function is

self-contained.

When an equation in an SEM has economic meaning in isolation from the other

equations in the system, we say that the equation is autonomous. One way to think

about autonomy is in terms of counterfactual reasoning, as in Example 8.1. If we

know the parameters of the labor supply function, then, for any individual, we can

find labor hours given any value of the potential wage (and values of the other

observed and unobserved factors a¤ecting labor supply). In other words, we could, in

principle, trace out the individual labor supply function for given levels of the other

observed and unobserved variables.

Causality is closely tied to the autonomy requirement. An equation in an SEM

should represent a causal relationship; therefore, we should be interested in varying

each of the explanatory variables—including any that are endogenous—while hold-

ing all the others fixed. Put another way, each equation in an SEM should represent

some underlying conditional expectation that has a causal structure. What compli-

cates matters is that the conditional expectations are in terms of counterfactual vari-

ables. In the labor supply example, if we could run a controlled experiment, where we

exogenously vary the wage o¤er across individuals, then the labor supply function

could be estimated without ever considering the wage o¤er function. In fact, in the



absence of omitted variables or measurement error, ordinary least squares would be

an appropriate estimation method.

Generally, supply and demand examples satisfy the autonomy requirement, re-

gardless of the level of aggregation (individual, household, firm, city, and so on), and

simultaneous equations systems were originally developed for such applications. [See,

for example, Haavelmo (1943) and Kiefer’s (1989) interview of Arthur S. Goldberger.]

Unfortunately, many recent applications of simultaneous equations methods fail the

autonomy requirement; as a result, it is di‰cult to interpret what has actually been

estimated. Examples that fail the autonomy requirement often have the same feature:

the endogenous variables in the system are all choice variables of the same economic

unit.

As an example, consider an individual’s choice of weekly hours spent in legal

market activities and hours spent in criminal behavior. An economic model of crime

can be derived from utility maximization; for simplicity, suppose the choice is only

between hours working legally (work) and hours involved in crime (crime). The fac-

tors assumed to be exogenous to the individual’s choice are things like wage in legal

activities, other income sources, probability of arrest, expected punishment, and so

on. The utility function can depend on education, work experience, gender, race, and

other demographic variables.

Two structural equations fall out of the individual’s optimization problem: one has

work as a function of the exogenous factors, demographics, and unobservables; the

other has crime as a function of these same factors. Of course, it is always possible

that factors treated as exogenous by the individual cannot be treated as exogenous by

the econometrician: unobservables that a¤ect the choice of work and crime could

be correlated with the observable factors. But this possibility is an omitted variables

problem. (Measurement error could also be an important issue in this example.)

Whether or not omitted variables or measurement error are problems, each equation

has a causal interpretation.

In the crime example, and many similar examples, it may be tempting to stop be-

fore completely solving the model—or to circumvent economic theory altogether—

and specify a simultaneous equations system consisting of two equations. The first

equation would describe work in terms of crime, while the second would have crime

as a function of work (with other factors appearing in both equations). While it is

often possible to write the first-order conditions for an optimization problem in this

way, these equations are not the structural equations of interest. Neither equation can

stand on its own, and neither has a causal interpretation. For example, what would it

mean to study the e¤ect of changing the market wage on hours spent in criminal
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activity, holding hours spent in legal employment fixed? An individual will generally

adjust the time spent in both activities to a change in the market wage.

Often it is useful to determine how one endogenous choice variable trades o¤ against

another, but in such cases the goal is not—and should not be—to infer causality. For

example, Biddle and Hamermesh (1990) present OLS regressions of minutes spent

per week sleeping on minutes per week working (controlling for education, age, and

other demographic and health factors). Biddle and Hamermesh recognize that there

is nothing ‘‘structural’’ about such an analysis. (In fact, the choice of the dependent

variable is largely arbitrary.) Biddle and Hamermesh (1990) do derive a structural

model of the demand for sleep (along with a labor supply function) where a key ex-

planatory variable is the wage o¤er. The demand for sleep has a causal interpreta-

tion, and it does not include labor supply on the right-hand side.

Why are SEM applications that do not satisfy the autonomy requirement so prev-

alent in applied work? One possibility is that there appears to be a general misper-

ception that ‘‘structural’’ and ‘‘simultaneous’’ are synonymous. However, we already

know that structural models need not be systems of simultaneous equations. And, as

the crime/work example shows, a simultaneous system is not necessarily structural.

9.2 Identification in a Linear System

9.2.1 Exclusion Restrictions and Reduced Forms

Write a system of linear simultaneous equations for the population as

y1 ¼ yð1Þgð1Þ þ zð1Þdð1Þ þ u1

..

.

yG ¼ yðGÞgðGÞ þ zðGÞdðGÞ þ uG

ð9:1Þ

where yðhÞ is 1 � Gh, gðhÞ is Gh � 1, zðhÞ is 1 � Mh, and dðhÞ is Mh � 1, h ¼ 1; 2; . . . ;G.

These are structural equations for the endogenous variables y1; y2; . . . ; yG. We will

assume that, if the system (9.1) represents a true simultaneous equations model, then

equilibrium conditions have been imposed. Hopefully, each equation is autonomous,

but, of course, they do not need to be for the statistical analysis.

The vector yðhÞ denotes endogenous variables that appear on the right-hand side of

the hth structural equation. By convention, yðhÞ can contain any of the endogenous

variables y1; y2; . . . ; yG except for yh. The variables in zðhÞ are the exogenous variables

appearing in equation h. Usually there is some overlap in the exogenous variables
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across di¤erent equations; for example, except in special circumstances each zðhÞ
would contain unity to allow for nonzero intercepts. The restrictions imposed in sys-

tem (9.1) are called exclusion restrictions because certain endogenous and exogenous

variables are excluded from some equations.

The 1 � M vector of all exogenous variables z is assumed to satisfy

Eðz 0ugÞ ¼ 0; g ¼ 1; 2; . . . ;G ð9:2Þ

When all of the equations in system (9.1) are truly structural, we are usually willing to

assume

Eðug j zÞ ¼ 0; g ¼ 1; 2; . . . ;G ð9:3Þ

However, we know from Chapters 5 and 8 that assumption (9.2) is su‰cient for

consistent estimation. Sometimes, especially in omitted variables and measurement

error applications, one or more of the equations in system (9.1) will simply represent

a linear projection onto exogenous variables, as in Example 8.2. It is for this reason

that we use assumption (9.2) for most of our identification and estimation analysis.

We assume throughout that Eðz 0zÞ is nonsingular, so that there are no exact linear

dependencies among the exogenous variables in the population.

Assumption (9.2) implies that the exogenous variables appearing anywhere in the

system are orthogonal to all the structural errors. If some elements in, say, zð1Þ, do

not appear in the second equation, then we are explicitly assuming that they do not

enter the structural equation for y2. If there are no reasonable exclusion restrictions

in an SEM, it may be that the system fails the autonomy requirement.

Generally, in the system (9.1), the error ug in equation g will be correlated with yðgÞ
(we show this correlation explicitly later), and so OLS and GLS will be inconsistent.

Nevertheless, under certain identification assumptions, we can estimate this system

using the instrumental variables procedures covered in Chapter 8.

In addition to the exclusion restrictions in system (9.1), another possible source of

identifying information is on the G � G variance matrix S1VarðuÞ. For now, S is

unrestricted and therefore contains no identifying information.

To motivate the general analysis, consider specific labor supply and demand func-

tions for some population:

hsðwÞ ¼ g1 logðwÞ þ zð1Þdð1Þ þ u1

hdðwÞ ¼ g2 logðwÞ þ zð2Þdð2Þ þ u2

where w is the dummy argument in the labor supply and labor demand functions.

We assume that observed hours, h, and observed wage, w, equate supply and demand:
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h ¼ hsðwÞ ¼ hdðwÞ

The variables in zð1Þ shift the labor supply curve, and zð2Þ contains labor demand

shifters. By defining y1 ¼ h and y2 ¼ logðwÞ we can write the equations in equilib-

rium as a linear simultaneous equations model:

y1 ¼ g1y2 þ zð1Þdð1Þ þ u1 ð9:4Þ

y1 ¼ g2y2 þ zð2Þdð2Þ þ u2 ð9:5Þ

Nothing about the general system (9.1) rules out having the same variable on the left-

hand side of more than one equation.

What is needed to identify the parameters in, say, the supply curve? Intuitively,

since we observe only the equilibrium quantities of hours and wages, we cannot dis-

tinguish the supply function from the demand function if zð1Þ and zð2Þ contain exactly

the same elements. If, however, zð2Þ contains an element not in zð1Þ—that is, if there is

some factor that exogenously shifts the demand curve but not the supply curve—then

we can hope to estimate the parameters of the supply curve. To identify the demand

curve, we need at least one element in zð1Þ that is not also in zð2Þ.

To formally study identification, assume that g1 0 g2; this assumption just means

that the supply and demand curves have di¤erent slopes. Subtracting equation (9.5)

from equation (9.4), dividing by g2 � g1, and rearranging gives

y2 ¼ zð1Þp21 þ zð2Þp22 þ v2 ð9:6Þ

where p21 1 dð1Þ=ðg2 � g1Þ, p22 ¼ �dð2Þ=ðg2 � g1Þ, and v2 1 ðu1 � u2Þ=ðg2 � g1Þ. This

is the reduced form for y2 because it expresses y2 as a linear function of all of the

exogenous variables and an error v2 which, by assumption (9.2), is orthogonal to all

exogenous variables: Eðz 0v2Þ ¼ 0. Importantly, the reduced form for y2 is obtained

from the two structural equations (9.4) and (9.5).

Given equation (9.4) and the reduced form (9.6), we can now use the identification

condition from Chapter 5 for a linear model with a single right-hand-side endogenous

variable. This condition is easy to state: the reduced form for y2 must contain at least

one exogenous variable not also in equation (9.4). This means there must be at least

one element of zð2Þ not in zð1Þ with coe‰cient in equation (9.6) di¤erent from zero.

Now we use the structural equations. Because p22 is proportional to dð2Þ, the condi-

tion is easily restated in terms of the structural parameters: in equation (9.5) at least

one element of zð2Þ not in zð1Þ must have nonzero coe‰cient. In the supply and de-

mand example, identification of the supply function requires at least one exogenous

variable appearing in the demand function that does not also appear in the supply

function; this conclusion corresponds exactly with our earlier intuition.
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The condition for identifying equation (9.5) is just the mirror image: there must be

at least one element of zð1Þ actually appearing in equation (9.4) that is not also an

element of zð2Þ.

Example 9.1 (Labor Supply for Married Women): Consider labor supply and de-

mand equations for married women, with the equilibrium condition imposed:

hours ¼ g1 logðwageÞ þ d10 þ d11educ þ d12age þ d13kids þ d14othinc þ u1

hours ¼ g2 logðwageÞ þ d20 þ d21educ þ d22exper þ u2

The supply equation is identified because, by assumption, exper appears in the de-

mand function (assuming d22 0 0) but not in the supply equation. The assumption

that past experience has no direct a¤ect on labor supply can be questioned, but it has

been used by labor economists. The demand equation is identified provided that at

least one of the three variables age, kids, and othinc actually appears in the supply

equation.

We now extend this analysis to the general system (9.1). For concreteness, we study

identification of the first equation:

y1 ¼ yð1Þgð1Þ þ zð1Þdð1Þ þ u1 ¼ xð1Þbð1Þ þ u1 ð9:7Þ

where the notation used for the subscripts is needed to distinguish an equation with

exclusion restrictions from a general equation that we will study in Section 9.2.2.

Assuming that the reduced forms exist, write the reduced form for yð1Þ as

yð1Þ ¼ zPð1Þ þ vð1Þ ð9:8Þ

where E½z 0vð1Þ� ¼ 0. Further, define the M � M1 matrix selection matrix Sð1Þ, which

consists of zeros and ones, such that zð1Þ ¼ zSð1Þ. The rank condition from Chapter 5,

Assumption 2SLS.2b, can be stated as

rank E½z 0xð1Þ� ¼ K1 ð9:9Þ

where K1 1G1 þ M1. But E½z 0xð1Þ� ¼ E½z 0ðzPð1Þ; zSð1ÞÞ� ¼ Eðz 0zÞ½Pð1Þ jSð1Þ�. Since we

always assume that Eðz 0zÞ has full rank M, assumption (9.9) is the same as

rank½Pð1Þ jSð1Þ� ¼ G1 þ M1 ð9:10Þ

In other words, ½Pð1Þ jSð1Þ� must have full column rank. If the reduced form for yð1Þ
has been found, this condition can be checked directly. But there is one thing we can

conclude immediately: because ½Pð1Þ jSð1Þ� is an M � ðG1 þ M1Þ matrix, a necessary
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condition for assumption (9.10) is M bG1 þ M1, or

M � M1 bG1 ð9:11Þ

We have already encountered condition (9.11) in Chapter 5: the number of exoge-

nous variables not appearing in the first equation, M � M1, must be at least as great

as the number of endogenous variables appearing on the right-hand side of the first

equation, G1. This is the order condition for identification of equation one. We have

proven the following theorem:

theorem 9.1 (Order Condition with Exclusion Restrictions): In a linear system of

equations with exclusion restrictions, a necessary condition for identifying any par-

ticular equation is that the number of excluded exogenous variables from the equa-

tion must be at least as large as the number of included right-hand-side endogenous

variables in the equation.

It is important to remember that the order condition is only necessary, not su‰cient,

for identification. If the order condition fails for a particular equation, there is no

hope of estimating the parameters in that equation. If the order condition is met, the

equation might be identified.

9.2.2 General Linear Restrictions and Structural Equations

The identification analysis of the preceding subsection is useful when reduced forms

are appended to structural equations. When an entire structural system has been

specified, it is best to study identification entirely in terms of the structural parameters.

To this end, we now write the G equations in the population as

yg1 þ zd1 þ u1 ¼ 0

..

.

ygG þ zdG þ uG ¼ 0

ð9:12Þ

where y1 ðy1; y2; . . . ; yGÞ is the 1 � G vector of all endogenous variables and z1
ðz1; . . . ; zMÞ is still the 1 � M vector of all exogenous variables, and probably con-

tains unity. We maintain assumption (9.2) throughout this section and also assume

that Eðz 0zÞ is nonsingular. The notation here di¤ers from that in Section 9.2.1. Here,

gg is G � 1 and dg is M � 1 for all g ¼ 1; 2; . . . ;G, so that the system (9.12) is the

general linear system without any restrictions on the structural parameters.

We can write this system compactly as

yGþ zDþ u ¼ 0 ð9:13Þ
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where u1 ðu1; . . . ; uGÞ is the 1 � G vector of structural errors, G is the G � G matrix

with gth column gg, and D is the M � G matrix with gth column dg. So that a reduced

form exists, we assume that G is nonsingular. Let S1Eðu 0uÞ denote the G � G

variance matrix of u, which we assume to be nonsingular. At this point, we have

placed no other restrictions on G, D, or S.

The reduced form is easily expressed as

y ¼ zð�DG�1Þ þ uð�G�1Þ1 zPþ v ð9:14Þ

where P1 ð�DG�1Þ and v1 uð�G�1Þ. Define L1Eðv 0vÞ ¼ G�10SG�1 as the re-

duced form variance matrix. Because Eðz 0vÞ ¼ 0 and Eðz 0zÞ is nonsingular, P and L

are identified because they can be consistently estimated given a random sample on y

and z by OLS equation by equation. The question is, Under what assumptions can

we recover the structural parameters G, D, and S from the reduced form parameters?

It is easy to see that, without some restrictions, we will not be able to identify any

of the parameters in the structural system. Let F be any G � G nonsingular matrix,

and postmultiply equation (9.13) by F:

yGF þ zDF þ uF ¼ 0 or yG� þ zD� þ u� ¼ 0 ð9:15Þ

where G� 1GF, D� 1DF, and u� 1 uF; note that Varðu�Þ ¼ F 0SF. Simple algebra

shows that equations (9.15) and (9.13) have identical reduced forms. This result

means that, without restrictions on the structural parameters, there are many equiv-

alent structures in the sense that they lead to the same reduced form. In fact, there is

an equivalent structure for each nonsingular F.

Let B1
G

D

� �
be the ðG þ MÞ � G matrix of structural parameters in equation

(9.13). If F is any nonsingular G � G matrix, then F represents an admissible linear

transformation if

1. BF satisfies all restrictions on B.

2. F 0SF satisfies all restrictions on S.

To identify the system, we need enough prior information on the structural param-

eters ðB;SÞ so that F ¼ IG is the only admissible linear transformation.

In most applications identification of B is of primary interest, and this identifica-

tion is achieved by putting restrictions directly on B. As we will touch on in Section

9.4.2, it is possible to put restrictions on S in order to identify B, but this approach is

somewhat rare in practice. Until we come to Section 9.4.2, S is an unrestricted G � G

positive definite matrix.
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As before, we consider identification of the first equation:

yg1 þ zd1 þ u1 ¼ 0 ð9:16Þ

or g11y1 þ g12y2 þ � � � þ g1GyG þ d11z1 þ d12z2 þ � � � þ d1MzM þ u1 ¼ 0. The first re-

striction we make on the parameters in equation (9.16) is the normalization restriction

that one element of g1 is �1. Each equation in the system (9.1) has a normalization

restriction because one variable is taken to be the left-hand-side explained variable.

In applications, there is usually a natural normalization for each equation. If there is

not, we should ask whether the system satisfies the autonomy requirement discussed

in Section 9.1. (Even in models that satisfy the autonomy requirement, we often have

to choose between reasonable normalization conditions. For example, in Example

9.1, we could have specified the second equation to be a wage o¤er equation rather

than a labor demand equation.)

Let b1 1 ðg 01; d
0
1Þ

0 be the ðG þ MÞ � 1 vector of structural parameters in the first

equation. With a normalization restriction there are ðG þ MÞ � 1 unknown elements

in b1. Assume that prior knowledge about b1 can be expressed as

R1b1 ¼ 0 ð9:17Þ

where R1 is a J1 � ðG þ MÞ matrix of known constants, and J1 is the number of

restrictions on b1 (in addition to the normalization restriction). We assume that rank

R1 ¼ J1, so that there are no redundant restrictions. The restrictions in assumption

(9.17) are sometimes called homogeneous linear restrictions, but, when coupled with a

normalization assumption, equation (9.17) actually allows for nonhomogeneous

restrictions.

Example 9.2 (A Three-Equation System): Consider the first equation in a system

with G ¼ 3 and M ¼ 4:

y1 ¼ g12 y2 þ g13y3 þ d11z1 þ d12z2 þ d13z3 þ d14z4 þ u1

so that g1 ¼ ð�1; g12; g13Þ
0, d1 ¼ ðd11; d12; d13; d14Þ0, and b1 ¼ ð�1; g12; g13; d11; d12; d13;

d14Þ0. (We can set z1 ¼ 1 to allow an intercept.) Suppose the restrictions on the

structural parameters are g12 ¼ 0 and d13 þ d14 ¼ 3. Then J1 ¼ 2 and

R1 ¼
0 1 0 0 0 0 0

3 0 0 0 0 1 1

� �

Straightforward multiplication gives R1b1 ¼ ðg12; d13 þ d14 � 3Þ0, and setting this

vector to zero as in equation (9.17) incorporates the restrictions on b1.
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Given the linear restrictions in equation (9.17), when are these and the normaliza-

tion restriction enough to identify b1? Let F again be any G � G nonsingular matrix,

and write it in terms of its columns as F ¼ ðf1; f2; . . . ; fGÞ. Define a linear transfor-

mation of B as B� ¼ BF, so that the first column of B� is b �
1 1Bf1. We need to find a

condition so that equation (9.17) allows us to distinguish b1 from any other b �
1 . For

the moment, ignore the normalization condition. The vector b �
1 satisfies the linear

restrictions embodied by R1 if and only if

R1b
�
1 ¼ R1ðBf1Þ ¼ ðR1BÞf1 ¼ 0 ð9:18Þ

Naturally, ðR1BÞf1 ¼ 0 is true for f1 ¼ e1 1 ð1; 0; 0; . . . ; 0Þ0, since then b �
1 ¼ Bf1 ¼

b1. Since assumption (9.18) holds for f1 ¼ e1 it clearly holds for any scalar multiple

of e1. The key to identification is that vectors of the form c1e1, for some constant c1,

are the only vectors f1 satisfying condition (9.18). If condition (9.18) holds for vectors

f1 other than scalar multiples of e1 then we have no hope of identifying b1.

Stating that condition (9.18) holds only for vectors of the form c1e1 just means that

the null space of R1B has dimension unity. Equivalently, because R1B has G columns,

rank R1B ¼ G � 1 ð9:19Þ

This is the rank condition for identification of b1 in the first structural equation under

general linear restrictions. Once condition (9.19) is known to hold, the normalization

restriction allows us to distinguish b1 from any other scalar multiple of b1.

theorem 9.2 (Rank Condition for Identification): Let b1 be the ðG þ MÞ � 1 vector

of structural parameters in the first equation, with the normalization restriction that

one of the coe‰cients on an endogenous variable is �1. Let the additional informa-

tion on b1 be given by restriction (9.17). Then b1 is identified if and only if the rank

condition (9.19) holds.

As promised earlier, the rank condition in this subsection depends on the structural

parameters, B. We can determine whether the first equation is identified by studying

the matrix R1B. Since this matrix can depend on all structural parameters, we must

generally specify the entire structural model.

The J1 � G matrix R1B can be written as R1B ¼ ½R1b1;R1b2; . . . ;R1bG�, where bg

is the ðG þ MÞ � 1 vector of structural parameters in equation g. By assumption

(9.17), the first column of R1B is the zero vector. Therefore, R1B cannot have rank

larger than G � 1. What we must check is whether the columns of R1B other than the

first form a linearly independent set.

Using condition (9.19) we can get a more general form of the order condition.

Because G is nonsingular, B necessarily has rank G (full column rank). Therefore, for
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condition (9.19) to hold, we must have rank R1 bG � 1. But we have assumed that

rank R1 ¼ J1, which is the row dimension of R1.

theorem 9.3 (Order Condition for Identification): In system (9.12) under assump-

tion (9.17), a necessary condition for the first equation to be identified is

J1 bG � 1 ð9:20Þ

where J1 is the row dimension of R1. Equation (9.20) is the general form of the order

condition.

We can summarize the steps for checking whether the first equation in the system is

identified.

1. Set one element of g1 to �1 as a normalization.

2. Define the J1 � ðG þ MÞ matrix R1 such that equation (9.17) captures all restric-

tions on b1.

3. If J1 < G � 1, the first equation is not identified.

4. If J1 bG � 1, the equation might be identified. Let B be the matrix of all struc-

tural parameters with only the normalization restrictions imposed, and compute R1B.

Now impose the restrictions in the entire system and check the rank condition (9.19).

The simplicity of the order condition makes it attractive as a tool for studying

identification. Nevertheless, it is not di‰cult to write down examples where the order

condition is satisfied but the rank condition fails.

Example 9.3 (Failure of the Rank Condition): Consider the following three-equation

structural model in the population ðG ¼ 3;M ¼ 4Þ:

y1 ¼ g12 y2 þ g13y3 þ d11z1 þ d13z3 þ u1 ð9:21Þ

y2 ¼ g21y1 þ d21z1 þ u2 ð9:22Þ

y3 ¼ d31z1 þ d32z2 þ d33z3 þ d34z4 þ u3 ð9:23Þ

where z1 1 1, EðugÞ ¼ 0, g ¼ 1; 2; 3, and each zj is uncorrelated with each ug. Note

that the third equation is already a reduced form equation (although it may also have

a structural interpretation). In equation (9.21) we have set g11 ¼ �1, d12 ¼ 0, and

d14 ¼ 0. Since this equation contains two right-hand-side endogenous variables and

there are two excluded exogenous variables, it passes the order condition.

To check the rank condition, let b1 denote the 7 � 1 vector of parameters in the

first equation with only the normalization restriction imposed: b1 ¼ ð�1; g12; g13; d11;

d12; d13; d14Þ0. The restrictions d12 ¼ 0 and d14 ¼ 0 are obtained by choosing
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R1 ¼
0 0 0 0 1 0 0

0 0 0 0 0 0 1

� �

Let B be the full 7 � 3 matrix of parameters with only the three normalizations

imposed [so that b2 ¼ ðg21;�1; g23; d21; d22; d23; d24Þ0 and b3 ¼ ðg31; g32;�1; d31; d32;

d33; d34Þ0]. Matrix multiplication gives

R1B ¼
d12 d22 d32

d14 d24 d34

� �

Now we impose all of the restrictions in the system. In addition to the restrictions

d12 ¼ 0 and d14 ¼ 0 from equation (9.21), we also have d22 ¼ 0 and d24 ¼ 0 from

equation (9.22). Therefore, with all restrictions imposed,

R1B ¼
0 0 d32

0 0 d34

� �
ð9:24Þ

The rank of this matrix is at most unity, and so the rank condition fails because

G � 1 ¼ 2.

Equation (9.22) easily passes the order condition. It is left to you to show that the

rank condition holds if and only if d13 0 0 and at least one of d32 and d34 is di¤erent

from zero. The third equation is identified because it contains no endogenous ex-

planatory variables.

When the restrictions on b1 consist entirely of normalization and exclusion re-

strictions, the order condition (9.20) reduces to the order condition (9.11), as can be

seen by the following argument. When all restrictions are exclusion restrictions, the

matrix R1 consists only of zeros and ones, and the number of rows in R1 equals

the number of excluded right-hand-side endogenous variables, G � G1 � 1, plus the

number of excluded exogenous variables, M � M1. In other words, J1 ¼ ðG�G1 � 1Þþ
ðM � M1Þ, and so the order condition (9.20) becomes ðG � G1 � 1Þ þ ðM � M1Þb
G � 1, which, upon rearrangement, becomes condition (9.11).

9.2.3 Unidentified, Just Identified, and Overidentified Equations

We have seen that, for identifying a single equation the rank condition (9.19) is neces-

sary and su‰cient. When condition (9.19) fails, we say that the equation is unidentified.

When the rank condition holds, it is useful to refine the sense in which the equation

is identified. If J1 ¼ G � 1, then we have just enough identifying information. If we

were to drop one restriction in R1, we would necessarily lose identification of the first

equation because the order condition would fail. Therefore, when J1 ¼ G � 1, we say

that the equation is just identified.
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If J1 > G � 1, it is often possible to drop one or more restrictions on the param-

eters of the first equation and still achieve identification. In this case we say the equa-

tion is overidentified. Necessary but not su‰cient for overidentification is J1 > G � 1.

It is possible that J1 is strictly greater than G � 1 but the restrictions are such that drop-

ping one restriction loses identification, in which case the equation is not overidentified.

In practice, we often appeal to the order condition to determine the degree of

overidentification. While in special circumstances this approach can fail to be accu-

rate, for most applications it is reasonable. Thus, for the first equation, J1 � ðG � 1Þ
is usually intepreted as the number of overidentifying restrictions.

Example 9.4 (Overidentifying Restrictions): Consider the two-equation system

y1 ¼ g12 y2 þ d11z1 þ d12z2 þ d13z3 þ d14z4 þ u1 ð9:25Þ

y2 ¼ g21y1 þ d21z1 þ d22z2 þ u2 ð9:26Þ

where EðzjugÞ ¼ 0, all j and g. Without further restrictions, equation (9.25) fails the

order condition because every exogenous variable appears on the right-hand side,

and the equation contains an endogenous variable. Using the order condition, equa-

tion (9.26) is overidentified, with one overidentifying restriction. If z3 does not actu-

ally appear in equation (9.25), then equation (9.26) is just identified, assuming that

d14 0 0.

9.3 Estimation after Identification

9.3.1 The Robustness-E‰ciency Trade-o¤

All SEMs with linearly homogeneous restrictions within each equation can be written

with exclusion restrictions as in the system (9.1); doing so may require redefining

some of the variables. If we let xðgÞ ¼ ðyðgÞ; zðgÞÞ and bðgÞ ¼ ðg 0ðgÞ; d
0
ðgÞÞ

0, then the sys-

tem (9.1) is in the general form (8.11) with the slight change in notation. Under as-

sumption (9.2) the matrix of instruments for observation i is the G � GM matrix

Zi 1 IG n zi ð9:27Þ

If every equation in the system passes the rank condition, a system estimation

procedure—such as 3SLS or the more general minimum chi-square estimator—can

be used. Alternatively, the equations of interest can be estimated by 2SLS. The bot-

tom line is that the methods studied in Chapters 5 and 8 are directly applicable. All of

the tests we have covered apply, including the tests of overidentifying restrictions in

Chapters 6 and 8, and the single-equation tests for endogeneity in Chapter 6.
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When estimating a simultaneous equations system, it is important to remember the

pros and cons of full system estimation. If all equations are correctly specified, system

procedures are asymptotically more e‰cient than a single-equation procedure such as

2SLS. But single-equation methods are more robust. If interest lies, say, in the first

equation of a system, 2SLS is consistent and asymptotically normal provided the

first equation is correctly specified and the instruments are exogenous. However, if

one equation in a system is misspecified, the 3SLS or GMM estimates of all the pa-

rameters are generally inconsistent.

Example 9.5 (Labor Supply for Married, Working Women): Using the data in

MROZ.RAW, we estimate a labor supply function for working, married women.

Rather than specify a demand function, we specify the second equation as a wage

o¤er function and impose the equilibrium condition:

hours ¼ g12 logðwageÞ þ d10 þ d11educ þ d12age þ d13kidslt6

þ d14kidsge6 þ d15nwifeinc þ u1 ð9:28Þ

logðwageÞ ¼ g21hours þ d20 þ d21educ þ d22exper þ d23exper2 þ u2 ð9:29Þ

where kidslt6 is number of children less than 6, kidsge6 is number of children between

6 and 18, and nwifeinc is income other than the woman’s labor income. We assume

that u1 and u2 have zero mean conditional on educ, age, kidslt6, kidsge6, nwifeinc,

and exper.

The key restriction on the labor supply function is that exper (and exper2) have no

direct e¤ect on current annual hours. This identifies the labor supply function with

one overidentifying restriction, as used by Mroz (1987). We estimate the labor supply

function first by OLS [to see what ignoring the endogeneity of logðwageÞ does] and

then by 2SLS, using as instruments all exogenous variables in equations (9.28) and

(9.29).

There are 428 women who worked at some time during the survey year, 1975. The

average annual hours are about 1,303 with a minimum of 12 and a maximum of

4,950.

We first estimate the labor supply function by OLS:

hoûurs ¼ 2;114:7

ð340:1Þ
� 17:41

ð54:22Þ
logðwageÞ � 14:44

ð17:97Þ
educ � 7:73

ð5:53Þ
age

� 342:50

ð100:01Þ
kidslt6 � 115:02

ð30:83Þ
kidsge6 � 4:35

ð3:66Þ
nwifeinc
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The OLS estimates indicate a downward-sloping labor supply function, although the

estimate on logðwageÞ is statistically insignificant.

The estimates are much di¤erent when we use 2SLS:

hoûurs ¼ 2;432:2

ð594:2Þ
þ 1;544:82

ð480:74Þ
logðwageÞ � 177:45

ð58:14Þ
educ � 10:78

ð9:58Þ
age

� 210:83

ð176:93Þ
kidslt6 � 47:56

ð56:92Þ
kidsge6 � 9:25

ð6:48Þ
nwifeinc

The estimated labor supply elasticity is 1;544:82=hours. At the mean hours for work-

ing women, 1,303, the estimated elasticity is about 1.2, which is quite large.

The supply equation has a single overidentifying restriction. The regression of the

2SLS residuals ûu1 on all exogenous variables produces R2
u ¼ :002, and so the test

statistic is 428ð:002ÞA :856 with p-valueA :355; the overidentifying restriction is not

rejected.

Under the exclusion restrictions we have imposed, the wage o¤er function (9.29) is

also identified. Before estimating the equation by 2SLS, we first estimate the reduced

form for hours to ensure that the exogenous variables excluded from equation (9.29)

are jointly significant. The p-value for the F test of joint significance of age, kidslt6,

kidsge6, and nwifeinc is about .0009. Therefore, we can proceed with 2SLS estimation

of the wage o¤er equation. The coe‰cient on hours is about .00016 (standard

errorA :00022), and so the wage o¤er does not appear to di¤er by hours worked. The

remaining coe‰cients are similar to what is obtained by dropping hours from equa-

tion (9.29) and estimating the equation by OLS. (For example, the 2SLS coe‰cient

on education is about .111 with seA :015.)

Interestingly, while the wage o¤er function (9.29) is identified, the analogous labor

demand function is apparently unidentified. (This finding shows that choosing the

normalization—that is, choosing between a labor demand function and a wage o¤er

function—is not innocuous.) The labor demand function, written in equilibrium,

would look like this:

hours ¼ g22 logðwageÞ þ d20 þ d21educ þ d22exper þ d23exper2 þ u2 ð9:30Þ

Estimating the reduced form for logðwageÞ and testing for joint significance of age,

kidslt6, kidsge6, and nwifeinc yields a p-value of about .46, and so the exogenous

variables excluded from equation (9.30) would not seem to appear in the reduced

form for logðwageÞ. Estimation of equation (9.30) by 2SLS would be pointless. [You

are invited to estimate equation (9.30) by 2SLS to see what happens.]

Simultaneous Equations Models 223



It would be more e‰cient to estimate equations (9.28) and (9.29) by 3SLS, since

each equation is overidentified (assuming the homoskedasticity assumption SIV.5). If

heteroskedasticity is suspected, we could use the general minimum chi-square esti-

mator. A system procedure is more e‰cient for estimating the labor supply function

because it uses the information that age, kidslt6, kidsge6, and nwifeinc do not appear

in the logðwageÞ equation. If these exclusion restrictions are wrong, the 3SLS esti-

mators of parameters in both equations are generally inconsistent. Problem 9.9 asks

you to obtain the 3SLS estimates for this example.

9.3.2 When Are 2SLS and 3SLS Equivalent?

In Section 8.4 we discussed the relationship between 2SLS and 3SLS for a general

linear system. Applying that discussion to linear SEMs, we can immediately draw the

following conclusions: (1) if each equation is just identified, 2SLS equation by equa-

tion is algebraically identical to 3SLS, which is the same as the IV estimator in

equation (8.22); (2) regardless of the degree of overidentification, 2SLS equation by

equation and 3SLS are identical if ŜS is diagonal.

Another useful equivalence result in the context of linear SEMs is as follows.

Suppose that the first equation in a system is overidentified but every other equation

is just identified. (A special case occurs when the first equation is a structural equa-

tion and all remaining equations are unrestricted reduced forms.) Then the 2SLS es-

timator of the first equation is the same as the 3SLS estimator. This result follows as

a special case of Schmidt (1976, Theorem 5.2.13).

9.3.3 Estimating the Reduced Form Parameters

So far, we have discussed estimation of the structural parameters. The usual justifi-

cations for focusing on the structural parameters are as follows: (1) we are interested

in estimates of ‘‘economic parameters’’ (such as labor supply elasticities) for curi-

osity’s sake; (2) estimates of structural parameters allow us to obtain the e¤ects of a

variety of policy interventions (such as changes in tax rates); and (3) even if we want

to estimate the reduced form parameters, we often can do so more e‰ciently by first

estimating the structural parameters. Concerning the second reason, if the goal is to

estimate, say, the equilibrium change in hours worked given an exogenous change in

a marginal tax rate, we must ultimately estimate the reduced form.

As another example, we might want to estimate the e¤ect on county-level alcohol

consumption due to an increase in exogenous alcohol taxes. In other words, we are

interested in qEðyg j zÞ=qzj ¼ pgj , where yg is alcohol consumption and zj is the tax

on alcohol. Under weak assumptions, reduced form equations exist, and each equa-

tion of the reduced form can be estimated by ordinary least squares. Without placing

any restrictions on the reduced form, OLS equation by equation is identical to SUR
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estimation (see Section 7.7). In other words, we do not need to analyze the structural

equations at all in order to consistently estimate the reduced form parameters. Ordi-

nary least squares estimates of the reduced form parameters are robust in the sense

that they do not rely on any identification assumptions imposed on the structural

system.

If the structural model is correctly specified and at least one equation is over-

identified, we obtain asymptotically more e‰cient estimators of the reduced form

parameters by deriving the estimates from the structural parameter estimates. In

particular, given the structural parameter estimates D̂D and ĜG, we can obtain the re-

duced form estimates as P̂P ¼ �D̂DĜG�1 [see equation (9.14)]. These are consistent,
ffiffiffiffiffi
N

p
-

asymptotically normal estimators (although the asymptotic variance matrix is some-

what complicated). From Problem 3.9, we obtain the most e‰cient estimator of P by

using the most e‰cient estimators of D and G (minimum chi-square or, under system

homoskedasticity, 3SLS).

Just as in estimating the structural parameters, there is a robustness-e‰ciency

trade-o¤ in estimating the pgj . As mentioned earlier, the OLS estimators of each

reduced form are robust to misspecification of any restrictions on the structural

equations (although, as always, each element of z should be exogenous for OLS to be

consistent). The estimators of the pgj derived from estimators of D and G—whether

the latter are 2SLS or system estimators—are generally nonrobust to incorrect

restrictions on the structural system. See Problem 9.11 for a simple illustration.

9.4 Additional Topics in Linear SEMs

9.4.1 Using Cross Equation Restrictions to Achieve Identification

So far we have discussed identification of a single equation using only within-equation

parameter restrictions [see assumption (9.17)]. This is by far the leading case, espe-

cially when the system represents a simultaneous equations model with truly auton-

omous equations. Nevertheless, occasionally economic theory implies parameter

restrictions across di¤erent equations in a system that contains endogenous variables.

Not surprisingly, such cross equation restrictions are generally useful for identifying

equations. A general treatment is beyond the scope of our analysis. Here we just give

an example to show how identification and estimation work.

Consider the two-equation system

y1 ¼ g12 y2 þ d11z1 þ d12z2 þ d13z3 þ u1 ð9:31Þ

y2 ¼ g21y1 þ d21z1 þ d22z2 þ u2 ð9:32Þ
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where each zj is uncorrelated with u1 and u2 (z1 can be unity to allow for an inter-

cept). Without further information, equation (9.31) is unidentified, and equation

(9.32) is just identified if and only if d13 0 0. We maintain these assumptions in what

follows.

Now suppose that d12 ¼ d22. Because d22 is identified in equation (9.32) we can

treat it as known for studying identification of equation (9.31). But d12 ¼ d22, and so

we can write

y1 � d12z2 ¼ g12y2 þ d11z1 þ d13z3 þ u1 ð9:33Þ

where y1 � d12z2 is e¤ectively known. Now the right-hand side of equation (9.33) has

one endogenous variable, y2, and the two exogenous variables z1 and z3. Because z2

is excluded from the right-hand side, we can use z2 as an instrument for y2, as long as

z2 appears in the reduced form for y2. This is the case provided d12 ¼ d22 0 0.

This approach to showing that equation (9.31) is identified also suggests a consis-

tent estimation procedure: first, estimate equation (9.32) by 2SLS using ðz1; z2; z3Þ as

instruments, and let d̂d22 be the estimator of d22. Then, estimate

y1 � d̂d22z2 ¼ g12y2 þ d11z1 þ d13z3 þ error

by 2SLS using ðz1; z2; z3Þ as instruments. Since d̂d22 !p d12 when d12 ¼ d22 0 0, this last

step produces consistent estimators of g12, d11, and d13. Unfortunately, the usual 2SLS

standard errors obtained from the final estimation would not be valid because of the

preliminary estimation of d22.

It is easier to use a system procedure when cross equation restrictions are present

because the asymptotic variance can be obtained directly. We can always rewrite the

system in a linear form with the restrictions imposed. For this example, one way to

do so is to write the system as

y1

y2

� �
¼

y2 z1 z2 z3 0 0

0 0 z2 0 y1 z1

� �
b þ

u1

u2

� �
ð9:34Þ

where b ¼ ðg12; d11; d12; d13; g21; d21Þ0. The parameter d22 does not show up in b be-

cause we have imposed the restriction d12 ¼ d22 by appropriate choice of the matrix

of explanatory variables.

The matrix of instruments is I2 n z, meaning that we just use all exogenous vari-

ables as instruments in each equation. Since I2 n z has six columns, the order condi-

tion is exactly satisfied (there are six elements of b), and we have already seen when

the rank condition holds. The system can be consistently estimated using GMM or

3SLS.
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9.4.2 Using Covariance Restrictions to Achieve Identification

In most applications of linear SEMs, identification is obtained by putting restrictions

on the matrix of structural parameters B. Occasionally, we are willing to put restric-

tions on the variance matrix S of the structural errors. Such restrictions, which are

almost always zero covariance assumptions, can help identify the structural param-

eters in some equations. For general treatments see Hausman (1983) and Hausman,

Newey, and Taylor (1987). We give a couple of examples to show how identification

with covariance restrictions works.

The first example is the two-equation system

y1 ¼ g12 y2 þ d11z1 þ d13z3 þ u1 ð9:35Þ

y2 ¼ g21y1 þ d21z1 þ d22z2 þ d23z3 þ u2 ð9:36Þ

Equation (9.35) is just identified if d22 0 0, which we assume, while equation (9.36) is

unidentified without more information. Suppose that we have one piece of additional

information in terms of a covariance restriction:

Covðu1; u2Þ ¼ Eðu1u2Þ ¼ 0 ð9:37Þ

In other words, if S is the 2 � 2 structural variance matrix, we are assuming that S is

diagonal. Assumption (9.37), along with d22 0 0, is enough to identify equation (9.36).

Here is a simple way to see how assumption (9.37) identifies equation (9.36). First,

because g12, d11, and d13 are identified, we can treat them as known when studying

identification of equation (9.36). But if the parameters in equation (9.35) are known,

u1 is e¤ectively known. By assumption (9.37), u1 is uncorrelated with u2, and u1 is

certainly partially correlated with y1. Thus, we e¤ectively have ðz1; z2; z3; u1Þ as in-

struments available for estimating equation (9.36), and this result shows that equa-

tion (9.36) is identified.

We can use this method for verifying identification to obtain consistent estimators.

First, estimate equation (9.35) by 2SLS using instruments ðz1; z2; z3Þ and save the

2SLS residuals, ûu1. Then estimate equation (9.36) by 2SLS using instruments

ðz1; z2; z3; ûu1Þ. The fact that ûu1 depends on estimates from a prior stage does not a¤ect

consistency. But inference is complicated because of the estimation of u1: condition

(6.8) does not hold because u1 depends on y2, which is correlated with u2.

The most e‰cient way to use covariance restrictions is to write the entire set of

orthogonality conditions as E½z 0u1ðb1Þ� ¼ 0, E½z 0u2ðb2Þ� ¼ 0, and

E½u1ðb1Þu2ðb2Þ� ¼ 0 ð9:38Þ
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where the notation u1ðb1Þ emphasizes that the errors are functions of the structural

parameters b1—with normalization and exclusion restrictions imposed—and simi-

larly for u2ðb2Þ. For example, from equation (9.35), u1ðb1Þ ¼ y1 � g12 y2 � d11z1 �
d13z3. Equation (9.38), because it is nonlinear in b1 and b2, takes us outside the realm

of linear moment restrictions. In Chapter 14 we will use nonlinear moment con-

ditions in GMM estimation.

A general example with covariance restrictions is a fully recursive system. First, a

recursive system can be written as

y1 ¼ zd1 þ u1

y2 ¼ g21y1 þ zd2 þ u2

y3 ¼ g31y1 þ g32y2 þ zd3 þ u3

..

.

yG ¼ gG1y1 þ � � � þ gG;G�1yG�1 þ zdG þ uG

ð9:39Þ

so that in each equation only endogenous variables from previous equations appear

on the right-hand side. We have allowed all exogenous variables to appear in each

equation, and we maintain assumption (9.2).

The first equation in the system (9.39) is clearly identified and can be estimated by

OLS. Without further exclusion restrictions none of the remaining equations is iden-

tified, but each is identified if we assume that the structural errors are pairwise

uncorrelated:

Covðug; uhÞ ¼ 0; g0 h ð9:40Þ

This assumption means that S is a G � G diagonal matrix. Equations (9.39) and

(9.40) define a fully recursive system. Under these assumptions, the right-hand-side

variables in equation g are each uncorrelated with ug; this fact is easily seen by

starting with the first equation and noting that y1 is a linear function of z and u1.

Then, in the second equation, y1 is uncorrelated with u2 under assumption (9.40). But

y2 is a linear function of z, u1, and u2, and so y2 and y1 are both uncorrelated with u3

in the third equation. And so on. It follows that each equation in the system is con-

sistently estimated by ordinary least squares.

It turns out that OLS equation by equation is not necessarily the most e‰cient

estimator in fully recursive systems, even though S is a diagonal matrix. Generally,

e‰ciency can be improved by adding the zero covariance restrictions to the ortho-

gonality conditions, as in equation (9.38), and applying nonlinear GMM estimation.

See Lahiri and Schmidt (1978) and Hausman, Newey, and Taylor (1987).
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9.4.3 Subtleties Concerning Identification and E‰ciency in Linear Systems

So far we have discussed identification and estimation under the assumption that

each exogenous variable appearing in the system, zj , is uncorrelated with each struc-

tural error, ug. It is important to assume only zero correlation in the general treat-

ment because we often add a reduced form equation for an endogenous variable to a

structural system, and zero correlation is all we should impose in linear reduced

forms.

For entirely structural systems, it is often natural to assume that the structural

errors satisfy the zero conditional mean assumption

Eðug j zÞ ¼ 0; g ¼ 1; 2; . . . ;G ð9:41Þ

In addition to giving the parameters in the structural equations the appropriate par-

tial e¤ect interpretations, assumption (9.41) has some interesting statistical impli-

cations: any function of z is uncorrelated with each error ug. Therefore, in the labor

supply example (9.28), age2, logðageÞ, educ�exper, and so on (there are too many

functions to list) are all uncorrelated with u1 and u2. Realizing this fact, we might ask,

Why not use nonlinear functions of z as additional instruments in estimation?

We need to break the answer to this question into two parts. The first concerns

identification, and the second concerns e‰ciency. For identification, the bottom line

is this: adding nonlinear functions of z to the instrument list cannot help with identi-

fication in linear systems. You were asked to show this generally in Problem 8.4, but

the main points can be illustrated with a simple model:

y1 ¼ g12 y2 þ d11z1 þ d12z2 þ u1 ð9:42Þ

y2 ¼ g21y1 þ d21z1 þ u2 ð9:43Þ

Eðu1j zÞ ¼ Eðu2 j zÞ ¼ 0 ð9:44Þ

From the order condition in Section 9.2.2, equation (9.42) is not identified, and

equation (9.43) is identified if and only if d12 0 0. Knowing properties of conditional

expectations, we might try something clever to identify equation (9.42): since, say, z2
1

is uncorrelated with u1 under assumption (9.41), and z2
1 would appear to be corre-

lated with y2, we can use it as an instrument for y2 in equation (9.42). Under this

reasoning, we would have enough instruments—z1; z2; z2
1 —to identify equation (9.42).

In fact, any number of functions of z1 and z2 can be added to the instrument list.

The fact that this argument is faulty is fortunate because our identification analysis

in Section 9.2.2 says that equation (9.42) is not identified. In this example it is clear

that z2
1 cannot appear in the reduced form for y2 because z2

1 appears nowhere in the
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system. Technically, because Eðy2 j zÞ is linear in z1 and z2 under assumption (9.44),

the linear projection of y2 onto ðz1; z2; z2
1Þ does not depend on z2

1 :

Lðy2 j z1; z2; z2
1Þ ¼ Lðy2 j z1; z2Þ ¼ p21z1 þ p22z2 ð9:45Þ

In other words, there is no partial correlation between y2 and z2
1 once z1 and z2 are

included in the projection.

The zero conditional mean assumptions (9.41) can have some relevance for

choosing an e‰cient estimator, although not always. If assumption (9.41) holds and

Varðu j zÞ ¼ VarðuÞ ¼ S, 3SLS using instruments z for each equation is the asymp-

totically e‰cient estimator that uses the orthogonality conditions in assumption

(9.41); this conclusion follows from Theorem 8.5. In other words, if Varðu j zÞ is

constant, it does not help to expand the instrument list beyond the functions of the

exogenous variables actually appearing in the system.

However, if assumption (9.41) holds but Varðu j zÞ is not constant, we can do better

(asymptotically) than 3SLS. If hðzÞ is some additional functions of the exogenous

variables, the minimum chi-square estimator using ½z; hðzÞ� as instruments in each

equation is, generally, more e‰cient than 3SLS or minimum chi-square using only

z as IVs. This result was discovered independently by Hansen (1982) and White

(1982b), and it follows from the discussion in Section 8.6. Expanding the IV list to

arbitrary functions of z and applying full GMM is not used very much in practice: it

is usually not clear how to choose hðzÞ, and, if we use too many additional instru-

ments, the finite sample properties of the GMM estimator can be poor, as we dis-

cussed in Section 8.6.

For SEMs linear in the parameters but nonlinear in endogenous variables (in a

sense to be made precise), adding nonlinear functions of the exogenous variables to

the instruments not only is desirable, but is often needed to achieve identification. We

turn to this topic next.

9.5 SEMs Nonlinear in Endogenous Variables

We now study models that are nonlinear in some endogenous variables. While the

general estimation methods we have covered are still applicable, identification and

choice of instruments require special attention.

9.5.1 Identification

The issues that arise in identifying models nonlinear in endogenous variables are

most easily illustrated with a simple example. Suppose that supply and demand are

Chapter 9230



given by

logðqÞ ¼ g12 logðpÞ þ g13½logðpÞ�2 þ d11z1 þ u1 ð9:46Þ

logðqÞ ¼ g22 logðpÞ þ d22z2 þ u2 ð9:47Þ

Eðu1 j zÞ ¼ Eðu2 j zÞ ¼ 0 ð9:48Þ

where the first equation is the supply equation, the second equation is the demand

equation, and the equilibrium condition that supply equals demand has been imposed.

For simplicity, we do not include an intercept in either equation, but no important

conclusions hinge on this omission. The exogenous variable z1 shifts the supply

function but not the demand function; z2 shifts the demand function but not the

supply function. The vector of exogenous variables appearing somewhere in the sys-

tem is z ¼ ðz1; z2Þ.
It is important to understand why equations (9.46) and (9.47) constitute a ‘‘non-

linear’’ system. This system is still linear in parameters, which is important because it

means that the IV procedures we have learned up to this point are still applicable.

Further, it is not the presence of the logarithmic transformations of q and p that

makes the system nonlinear. In fact, if we set g13 ¼ 0, then the model is linear for the

purposes of identification and estimation: defining y1 1 logðqÞ and y2 1 logðpÞ, we

can write equations (9.46) and (9.47) as a standard two-equation system.

When we include ½logðpÞ�2 we have the model

y1 ¼ g12 y2 þ g13y2
2 þ d11z1 þ u1 ð9:49Þ

y1 ¼ g22 y2 þ d22z2 þ u2 ð9:50Þ

With this system there is no way to define two endogenous variables such that the

system is a two-equation system in two endogenous variables. The presence of y2
2 in

equation (9.49) makes this model di¤erent from those we have studied up until now.

We say that this is a system nonlinear in endogenous variables. What this statement

really means is that, while the system is still linear in parameters, identification needs

to be treated di¤erently.

If we used equations (9.49) and (9.50) to obtain y2 as a function of the z1; z2; u1; u2,

and the parameters, the result would not be linear in z and u. In this particular case

we can find the solution for y2 using the quadratic formula (assuming a real solution

exists). However, Eðy2 j zÞ would not be linear in z unless g13 ¼ 0, and Eðy2
2 j zÞ would

not be linear in z regardless of the value of g13. These observations have important

implications for identification of equation (9.49) and for choosing instruments.
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Before considering equations (9.49) and (9.50) further, consider a second example

where closed form expressions for the endogenous variables in terms of the exoge-

nous variables and structural errors do not even exist. Suppose that a system de-

scribing crime rates in terms of law enforcement spending is

crime ¼ g12 logðspendingÞ þ zð1Þdð1Þ þ u1 ð9:51Þ

spending ¼ g21crime þ g22crime2 þ zð2Þdð2Þ þ u2 ð9:52Þ

where the errors have zero mean given z. Here, we cannot solve for either crime

or spending (or any other transformation of them) in terms of z, u1, u2, and the

parameters. And there is no way to define y1 and y2 to yield a linear SEM in two

endogenous variables. The model is still linear in parameters, but Eðcrime j zÞ,
E½logðspendingÞ j z�, and Eðspending j zÞ are not linear in z (nor can we find closed

forms for these expectations).

One possible approach to identification in nonlinear SEMs is to ignore the fact that

the same endogenous variables show up di¤erently in di¤erent equations. In the supply

and demand example, define y3 1 y2
2 and rewrite equation (9.49) as

y1 ¼ g12 y2 þ g13y3 þ d11z1 þ u1 ð9:53Þ

Or, in equations (9.51) and (9.52) define y1 ¼ crime, y2 ¼ spending, y3 ¼
logðspendingÞ, and y4 ¼ crime2, and write

y1 ¼ g12 y3 þ zð1Þdð1Þ þ u1 ð9:54Þ

y2 ¼ g21y1 þ g22 y4 þ zð2Þdð2Þ þ u2 ð9:55Þ

Defining nonlinear functions of endogenous variables as new endogenous variables

turns out to work fairly generally, provided we apply the rank and order conditions

properly. The key question is, What kinds of equations do we add to the system for

the newly defined endogenous variables?

If we add linear projections of the newly defined endogenous variables in terms of

the original exogenous variables appearing somewhere in the system—that is, the

linear projection onto z—then we are being much too restrictive. For example, sup-

pose to equations (9.53) and (9.50) we add the linear equation

y3 ¼ p31z1 þ p32z2 þ v3 ð9:56Þ

where, by definition, Eðz1v3Þ ¼ Eðz2v3Þ ¼ 0. With equation (9.56) to round out the

system, the order condition for identification of equation (9.53) clearly fails: we have

two endogenous variables in equation (9.53) but only one excluded exogenous vari-

able, z2.
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The conclusion that equation (9.53) is not identified is too pessimistic. There are

many other possible instruments available for y2
2 . Because Eðy2

2 j zÞ is not linear in z1

and z2 (even if g13 ¼ 0), other functions of z1 and z2 will appear in a linear projection

involving y2
2 as the dependent variable. To see what the most useful of these are likely

to be, suppose that the structural system actually is linear, so that g13 ¼ 0. Then

y2 ¼ p21z1 þ p22z2 þ v2, where v2 is a linear combination of u1 and u2. Squaring this

reduced form and using Eðv2 j zÞ ¼ 0 gives

Eðy2
2 j zÞ ¼ p2

21z2
1 þ p2

22z2
2 þ 2p21p22z1z2 þ Eðv2

2 j zÞ ð9:57Þ

If Eðv2
2 j zÞ is constant, an assumption that holds under homoskedasticity of the

structural errors, then equation (9.57) shows that y2
2 is correlated with z2

1 , z2
2 , and

z1z2, which makes these functions natural instruments for y2
2 . The only case where no

functions of z are correlated with y2
2 occurs when both p21 and p22 equal zero, in

which case the linear version of equation (9.49) (with g13 ¼ 0) is also unidentified.

Because we derived equation (9.57) under the restrictive assumptions g13 ¼ 0 and

homoskedasticity of v2, we would not want our linear projection for y2
2 to omit the

exogenous variables that originally appear in the system. In practice, we would aug-

ment equations (9.53) and (9.50) with the linear projection

y3 ¼ p31z1 þ p32z2 þ p33z2
1 þ p34z2

2 þ p35z1z2 þ v3 ð9:58Þ

where v3 is, by definition, uncorrelated with z1, z2, z2
1 , z2

2 , and z1z2. The system (9.53),

(9.50), and (9.58) can now be studied using the usual rank condition.

Adding equation (9.58) to the original system and then studying the rank condition

of the first two equations is equivalent to studying the rank condition in the smaller

system (9.53) and (9.50). What we mean by this statement is that we do not explicitly

add an equation for y3 ¼ y2
2 , but we do include y3 in equation (9.53). Therefore,

when applying the rank condition to equation (9.53), we use G ¼ 2 (not G ¼ 3). The

reason this approach is the same as studying the rank condition in the three-equation

system (9.53), (9.50), and (9.58) is that adding the third equation increases the rank of

R1B by one whenever at least one additional nonlinear function of z appears in

equation (9.58). (The functions z2
1 , z2

2 , and z1z2 appear nowhere else in the system.)

As a general approach to identification in models where the nonlinear functions of

the endogenous variables depend only on a single endogenous variable—such as the

two examples that we have already covered—Fisher (1965) argues that the following

method is su‰cient for identification:

1. Relabel the nonredundant functions of the endogenous variables to be new

endogenous variables, as in equation (9.53) or (9.54) and equation (9.55).
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2. Apply the rank condition to the original system without increasing the number of

equations. If the equation of interest satisfies the rank condition, then it is identified.

The proof that this method works is complicated, and it requires more assumptions

than we have made (such as u being independent of z). Intuitively, we can expect each

additional nonlinear function of the endogenous variables to have a linear projection

that depends on new functions of the exogenous variables. Each time we add another

function of an endogenous variable, it e¤ectively comes with its own instruments.

Fisher’s method can be expected to work in all but the most pathological cases.

One case where it does not work is if Eðv2
2 j zÞ in equation (9.57) is heteroskedastic

in such a way as to cancel out the squares and cross product terms in z1 and z2; then

Eðy2
2 j zÞ would be constant. Such unfortunate coincidences are not practically

important.

It is tempting to think that Fisher’s rank condition is also necessary for identifica-

tion, but this is not the case. To see why, consider the two-equation system

y1 ¼ g12 y2 þ g13y2
2 þ d11z1 þ d12z2 þ u1 ð9:59Þ

y2 ¼ g21y1 þ d21z1 þ u2 ð9:60Þ

The first equation cleary fails the modified rank condition because it fails the order

condition: there are no restrictions on the first equation except the normalization re-

striction. However, if g13 0 0 and g21 0 0, then Eðy2 j zÞ is a nonlinear function of z

(which we cannot obtain in closed form). The result is that functions such as z2
1 , z2

2 ,

and z1z2 (and others) will appear in the linear projections of y2 and y2
2 even after z1

and z2 have been included, and these can then be used as instruments for y2 and y2
2 .

But if g13 ¼ 0, the first equation cannot be identified by adding nonlinear functions of

z1 and z2 to the instrument list: the linear projection of y2 on z1, z2, and any function

of ðz1; z2Þ will only depend on z1 and z2.

Equation (9.59) is an example of a poorly identified model because, when it is

identified, it is identified due to a nonlinearity (g13 0 0 in this case). Such identification

is especially tenuous because the hypothesis H0: g13 ¼ 0 cannot be tested by estimating

the structural equation (since the structural equation is not identified when H0 holds).

There are other models where identification can be verified using reasoning similar

to that used in the labor supply example. Models with interactions between exoge-

nous variables and endogenous variables can be shown to be identified when the

model without the interactions is identified (see Example 6.2 and Problem 9.6).

Models with interactions among endogenous variables are also fairly easy to handle.

Generally, it is good practice to check whether the most general linear version of the

model would be identified. If it is, then the nonlinear version of the model is probably
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identified. We saw this result in equation (9.46): if this equation is identified when

g13 ¼ 0, then it is identified for any value of g13. If the most general linear version of a

nonlinear model is not identified, we should be very wary about proceeding, since

identification hinges on the presence of nonlinearities that we usually will not be able

to test.

9.5.2 Estimation

In practice, it is di‰cult to know which additional functions we should add to the

instrument list for nonlinear SEMs. Naturally, we must always include the exogenous

variables appearing somewhere in the system instruments in every equation. After

that, the choice is somewhat arbitrary, although the functional forms appearing in

the structural equations can be helpful.

A general approach is to always use some squares and cross products of the exog-

enous variables appearing somewhere in the system. If something like exper2 appears

in the system, additional terms such as exper3 and exper4 would be added to the in-

strument list.

Once we decide on a set of instruments, any equation in a nonlinear SEM can be

estimated by 2SLS. Because each equation satisfies the assumptions of single-equation

analysis, we can use everything we have learned up to now for inference and specifi-

cation testing for 2SLS. A system method can also be used, where linear projections

for the functions of endogenous variables are explicitly added to the system. Then, all

exogenous variables included in these linear projections can be used as the instru-

ments for every equation. The minimum chi-square estimator is generally more ap-

propriate than 3SLS because the homoskedasticity assumption will rarely be satisfied

in the linear projections.

It is important to apply the instrumental variables procedures directly to the

structural equation or equations. In other words, we should directly use the formulas

for 2SLS, 3SLS, or GMM. Trying to mimic 2SLS or 3SLS by substituting fitted

values for some of the endogenous variables inside the nonlinear functions is usually

a mistake: neither the conditional expectation nor the linear projection operator

passes through nonlinear functions, and so such attempts rarely produce consistent

estimators in nonlinear systems.

Example 9.6 (Nonlinear Labor Supply Function): We add ½logðwageÞ�2 to the labor

supply function in Example 9.5:

hours ¼ g12 logðwageÞ þ g13½logðwageÞ�2 þ d10 þ d11educ þ d12age

þ d13kidslt6 þ d14kidsge6 þ d15nwifeinc þ u1 ð9:61Þ

logðwageÞ ¼ d20 þ d21educ þ d22exper þ d23exper2 þ u2 ð9:62Þ
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where we have dropped hours from the wage o¤er function because it was insig-

nificant in Example 9.5. The natural assumptions in this system are Eðu1j zÞ ¼
Eðu2 j zÞ ¼ 0, where z contains all variables other than hours and logðwageÞ.

There are many possibilities as additional instruments for ½logðwageÞ�2. Here, we

add three quadratic terms to the list—age2, educ2, and nwifeinc2—and we estimate

equation (9.61) by 2SLS. We obtain ĝg12 ¼ 1;873:62 (se ¼ 635:99) and ĝg13 ¼ �437:29

(se ¼ 350:08). The t statistic on ½logðwageÞ�2 is about �1:25, so we would be justified

in dropping it from the labor supply function. Regressing the 2SLS residuals ûu1 on all

variables used as instruments in the supply equation gives R-squared ¼ :0061, and so

the N-R-squared statistic is 2.61. With a w2
3 distribution this gives p-value ¼ :456.

Thus, we fail to reject the overidentifying restrictions.

In the previous example we may be tempted to estimate the labor supply function

using a two-step procedure that appears to mimic 2SLS:

1. Regress logðwageÞ on all exogenous variables appearing in the system and obtain

the predicted values. For emphasis, call these ŷy2.

2. Estimate the labor supply function from the OLS regression hours on 1, ŷy2, ðŷy2Þ
2,

educ; . . . ; nwifeinc.

This two-step procedure is not the same as estimating equation (9.61) by 2SLS,

and, except in special circumstances, it does not produce consistent estimators of the

structural parameters. The regression in step 2 is an example of what is sometimes

called a forbidden regression, a phrase that describes replacing a nonlinear function of

an endogenous explanatory variable with the same nonlinear function of fitted values

from a first-stage estimation. In plugging fitted values into equation (9.61), our mis-

take is in thinking that the linear projection of the square is the square of the linear

projection. What the 2SLS estimator does in the first stage is project each of y2 and

y2
2 onto the original exogenous variables and the additional nonlinear functions of

these that we have chosen. The fitted values from the reduced form regression for y2
2 ,

say ŷy3, are not the same as the squared fitted values from the reduced form regression

for y2, ðŷy2Þ
2. This distinction is the di¤erence between a consistent estimator and an

inconsistent estimator.

If we apply the forbidden regression to equation (9.61), some of the estimates are

very di¤erent from the 2SLS estimates. For example, the coe‰cient on educ, when

equation (9.61) is properly estimated by 2SLS, is about �87:85 with a t statistic of

�1:32. The forbidden regression gives a coe‰cient on educ of about �176:68 with a t

statistic of �5:36. Unfortunately, the t statistic from the forbidden regression is gen-

erally invalid, even asymptotically. (The forbidden regression will produce consistent

estimators in the special case g13 ¼ 0, if Eðu1j zÞ ¼ 0; see Problem 9.12.)
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Many more functions of the exogenous variables could be added to the instrument

list in estimating the labor supply function. From Chapter 8, we know that e‰ciency

of GMM never falls by adding more nonlinear functions of the exogenous variables

to the instrument list (even under the homoskedasticity assumption). This statement

is true whether we use a single-equation or system method. Unfortunately, the fact

that we do no worse asymptotically by adding instruments is of limited practical help,

since we do not want to use too many instruments for a given data set. In Example

9.6, rather than using a long list of additional nonlinear functions, we might use ðŷy2Þ
2

as a single IV for y2
2 . (This method is not the same as the forbidden regression!) If it

happens that g13 ¼ 0 and the structural errors are homoskedastic, this would be the

optimal IV. (See Problem 9.12.)

A general system linear in parameters can be written as

y1 ¼ q1ðy; zÞb1 þ u1

..

.

yG ¼ qGðy; zÞbG þ uG

ð9:63Þ

where Eðug j zÞ ¼ 0, g ¼ 1; 2; . . . ;G. Among other things this system allows for com-

plicated interactions among endogenous and exogenous variables. We will not give a

general analysis of such systems because identification and choice of instruments are

too abstract to be very useful. Either single-equation or system methods can be used

for estimation.

9.6 Di¤erent Instruments for Di¤erent Equations

There are general classes of SEMs where the same instruments cannot be used for

every equation. We already encountered one such example, the fully recursive sys-

tem. Another general class of models is SEMs where, in addition to simultaneous

determination of some variables, some equations contain variables that are endoge-

nous as a result of omitted variables or measurement error.

As an example, reconsider the labor supply and wage o¤er equations (9.28) and

(9.62), respectively. On the one hand, in the supply function it is not unreasonable to

assume that variables other than logðwageÞ are uncorrelated with u1. On the other

hand, ability is a variable omitted from the logðwageÞ equation, and so educ might

be correlated with u2. This is an omitted variable, not a simultaneity, issue, but the

statistical problem is the same: correlation between the error and an explanatory

variable.

Simultaneous Equations Models 237



Equation (9.28) is still identified as it was before, because educ is exogenous in

equation (9.28). What about equation (9.62)? It satisfies the order condition because

we have excluded four exogenous variables from equation (9.62): age, kidslt6,

kidsge6, and nwifeinc. How can we analyze the rank condition for this equation? We

need to add to the system the linear projection of educ on all exogenous variables:

educ ¼ d30 þ d31exper þ d32exper2 þ d33age

þ d34kidslt6 þ d35kidsge6 þ d36nwifeinc þ u3 ð9:64Þ

Provided the variables other than exper and exper2 are su‰ciently partially corre-

lated with educ, the logðwageÞ equation is identified. However, the 2SLS estimators

might be poorly behaved if the instruments are not very good. If possible, we would

add other exogenous factors to equation (9.64) that are partially correlated with educ,

such as mother’s and father’s education. In a system procedure, because we have

assumed that educ is uncorrelated with u1, educ can, and should, be included in the

list of instruments for estimating equation (9.28).

This example shows that having di¤erent instruments for di¤erent equations

changes nothing for single-equation analysis: we simply determine the valid list of

instruments for the endogenous variables in the equation of interest and then estimate

the equations separately by 2SLS. Instruments may be required to deal with simul-

taneity, omitted variables, or measurement error, in any combination.

Estimation is more complicated for system methods. First, if 3SLS is to be used,

then the GMM 3SLS version must be used to produce consistent estimators of any

equation; the more traditional 3SLS estimator discussed in Section 8.3.5 is generally

valid only when all instruments are uncorrelated with all errors. When we have dif-

ferent instruments for di¤erent equations, the instrument matrix has the form in

equation (8.15).

There is a more subtle issue that arises in system analysis with di¤erent instruments

for di¤erent equations. While it is still popular to use 3SLS methods for such prob-

lems, it turns out that the key assumption that makes 3SLS the e‰cient GMM esti-

mator, Assumption SIV.5, is often violated. In such cases the GMM estimator with

general weighting matrix enhances asymptotic e‰ciency and simplifies inference.

As a simple example, consider a two-equation system

y1 ¼ d10 þ g12y2 þ d11z1 þ u1 ð9:65Þ

y2 ¼ d20 þ g21y1 þ d22z2 þ d23z3 þ u2 ð9:66Þ

where ðu1; u2Þ has mean zero and variance matrix S. Suppose that z1, z2, and z3 are

uncorrelated with u2 but we can only assume that z1 and z3 are uncorrelated with u1.
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In other words, z2 is not exogenous in equation (9.65). Each equation is still identified

by the order condition, and we just assume that the rank conditions also hold. The

instruments for equation (9.65) are ð1; z1; z3Þ, and the instruments for equation (9.66)

are ð1; z1; z2; z3Þ. Write these as z1 1 ð1; z1; z3Þ and z2 1 ð1; z1; z2; z3Þ. Assumption

SIV.5 requires the following three conditions:

Eðu2
1z 0

1z1Þ ¼ s2
1Eðz 0

1z1Þ ð9:67Þ

Eðu2
2z 0

2z2Þ ¼ s2
2 Eðz 0

2z2Þ ð9:68Þ

Eðu1u2z 0
1z2Þ ¼ s12Eðz 0

1z2Þ ð9:69Þ

The first two conditions hold if Eðu1j z1Þ ¼ Eðu2 j z2Þ ¼ 0 and Varðu1j z1Þ ¼ s2
1 ,

Varðu2 j z2Þ ¼ s2
2 . These are standard zero conditional mean and homoskedasticity

assumptions. The potential problem comes with condition (9.69). Since u1 is corre-

lated with one of the elements in z2, we can hardly just assume condition (9.69).

Generally, there is no conditioning argument that implies condition (9.69). One case

where condition (9.69) holds is if Eðu2 j u1; z1; z2; z3Þ ¼ 0, which implies that u2 and u1

are uncorrelated. The left-hand side of condition (9.69) is also easily shown to equal

zero. But 3SLS with s12 ¼ 0 imposed is just 2SLS equation by equation. If u1 and u2

are correlated, we should not expect condition (9.69) to hold, and therefore the gen-

eral minimum chi-square estimator should be used for estimation and inference.

Wooldridge (1996) provides a general discussion and contains other examples of

cases in which Assumption SIV.5 can and cannot be expected to hold. Whenever a

system contains linear projections for nonlinear functions of endogenous variables,

we should expect Assumption SIV.5 to fail.

Problems

9.1. Discuss whether each example satisfies the autonomy requirement for true

simultaneous equations analysis. The specification of y1 and y2 means that each is to

be written as a function of the other in a two-equation system.

a. For an employee, y1 ¼ hourly wage, y2 ¼ hourly fringe benefits.

b. At the city level, y1 ¼ per capita crime rate, y2 ¼ per capita law enforcement

expenditures.

c. For a firm operating in a developing country, y1 ¼ firm research and development

expenditures, y2 ¼ firm foreign technology purchases.

d. For an individual, y1 ¼ hourly wage, y2 ¼ alcohol consumption.
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e. For a family, y1 ¼ annual housing expenditures, y2 ¼ annual savings.

f. For a profit maximizing firm, y1 ¼ price markup, y2 ¼ advertising expenditures.

g. For a single-output firm, y1 ¼ quantity demanded of its good, y2 ¼ advertising

expenditure.

h. At the city level, y1 ¼ incidence of HIV, y2 ¼ per capita condom sales.

9.2. Write a two-equation system in the form

y1 ¼ g1y2 þ zð1Þdð1Þ þ u1

y2 ¼ g2y1 þ zð2Þdð2Þ þ u2

a. Show that reduced forms exist if and only if g1g2 0 1.

b. State in words the rank condition for identifying each equation.

9.3. The following model jointly determines monthly child support payments and

monthly visitation rights for divorced couples with children:

support ¼ d10 þ g12visits þ d11 finc þ d12 fremarr þ d13dist þ u1

visits ¼ d20 þ g21support þ d21mremarr þ d22dist þ u2:

For expository purposes, assume that children live with their mothers, so that fathers

pay child support. Thus, the first equation is the father’s ‘‘reaction function’’: it

describes the amount of child support paid for any given level of visitation rights and

the other exogenous variables finc (father’s income), fremarr (binary indicator if

father remarried), and dist (miles currently between the mother and father). Similarly,

the second equation is the mother’s reaction function: it describes visitation rights for

a given amount of child support; mremarr is a binary indicator for whether the

mother is remarried.

a. Discuss identification of each equation.

b. How would you estimate each equation using a single-equation method?

c. How would you test for endogeneity of visits in the father’s reaction function?

d. How many overidentification restrictions are there in the mother’s reaction func-

tion? Explain how to test the overidentifying restriction(s).

9.4. Consider the following three-equation structural model:

y1 ¼ g12 y2 þ d11z1 þ d12z2 þ d13z3 þ u1

y1 ¼ g22 y2 þ g23y3 þ d21z1 þ u2
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y3 ¼ d31z1 þ d32z2 þ d33z3 þ u3

where z1 1 1 (to allow an intercept), EðugÞ ¼ 0, all g, and each zj is uncorrelated with

each ug. You might think of the first two equations as demand and supply equations,

where the supply equation depends on a possibly endogenous variable y3 (such as

wage costs) that might be correlated with u2. For example, u2 might contain mana-

gerial quality.

a. Show that a well-defined reduced form exists as long as g12 0 g22.

b. Allowing for the structural errors to be arbitrarily correlated, determine which of

these equations is identified. First consider the order condition, and then the rank

condition.

9.5. The following three-equation structural model describes a population:

y1 ¼ g12 y2 þ g13y3 þ d11z1 þ d13z3 þ d14z4 þ u1

y2 ¼ g21y1 þ d21z1 þ u2

y3 ¼ d31z1 þ d32z2 þ d33z3 þ d34z4 þ u3

where you may set z1 ¼ 1 to allow an intercept. Make the usual assumptions that

EðugÞ ¼ 0, g ¼ 1; 2; 3, and that each zj is uncorrelated with each ug. In addition to the

exclusion restrictions that have already been imposed, assume that d13 þ d14 ¼ 1.

a. Check the order and rank conditions for the first equation. Determine necessary

and su‰cient conditions for the rank condition to hold.

b. Assuming that the first equation is identified, propose a single-equation estimation

method with all restrictions imposed. Be very precise.

9.6. The following two-equation model contains an interaction between an endog-

enous and exogenous variable (see Example 6.2 for such a model in an omitted

variable context):

y1 ¼ d10 þ g12y2 þ g13y2z1 þ d11z1 þ d12z2 þ u1

y2 ¼ d20 þ g21 y1 þ d21z1 þ d23z3 þ u2

a. Initially, assume that g13 ¼ 0, so that the model is a linear SEM. Discuss identifi-

cation of each equation in this case.

b. For any value of g13, find the reduced form for y1 (assuming it exists) in terms of

the zj, the ug, and the parameters.

c. Assuming that Eðu1j zÞ ¼ Eðu2 j zÞ ¼ 0, find Eðy1 j zÞ.
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d. Argue that, under the conditions in part a, the model is identified regardless of the

value of g13.

e. Suggest a 2SLS procedure for estimating the first equation.

f. Define a matrix of instruments suitable for 3SLS estimation.

g. Suppose that d23 ¼ 0, but we also known that g13 0 0. Can the parameters in the

first equation be consistently estimated? If so, how? Can H0: g13 ¼ 0 be tested?

9.7. Assume that wage and alcohol consumption are determined by the system

wage ¼ g12alcohol þ g13educ þ zð1Þdð1Þ þ u1

alcohol ¼ g21wage þ g23educ þ zð2Þdð2Þ þ u2

educ ¼ zð3Þdð3Þ þ u3

The third equation is a reduced form for years of education.

Elements in zð1Þ include a constant, experience, gender, marital status, and amount

of job training. The vector zð2Þ contains a constant, experience, gender, marital status,

and local prices (including taxes) on various alcoholic beverages. The vector zð3Þ can

contain elements in zð1Þ and zð2Þ and, in addition, exogenous factors a¤ecting educa-

tion; for concreteness, suppose one element of zð3Þ is distance to nearest college at age

16. Let z denote the vector containing all nonredundant elements of zð1Þ, zð2Þ, and zð3Þ.

In addition to assuming that z is uncorrelated with each of u1, u2, and u3, assume that

educ is uncorrelated with u2, but educ might be correlated with u1.

a. When does the order condition hold for the first equation?

b. State carefully how you would estimate the first equation using a single-equation

method.

c. For each observation i define the matrix of instruments for system estimation of

all three equations.

d. In a system procedure, how should you choose zð3Þ to make the analysis as robust

as possible to factors appearing in the reduced form for educ?

9.8. a. Extend Problem 5.4b using CARD.RAW to allow educ2 to appear in the

logðwageÞ equation, without using nearc2 as an instrument. Specifically, use inter-

actions of nearc4 with some or all of the other exogenous variables in the logðwageÞ
equation as instruments for educ2. Compute a heteroskedasticity-robust test to be

sure that at least one of these additional instruments appears in the linear projection

of educ2 onto your entire list of instruments. Test whether educ2 needs to be in the

logðwageÞ equation.
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b. Start again with the model estimated in Problem 5.4b, but suppose we add the

interaction black�educ. Explain why black�zj is a potential IV for black�educ, where zj

is any exogenous variable in the system (including nearc4).

c. In Example 6.2 we used black�nearc4 as the IV for black�educ. Now use 2SLS with

black� ^educeduc as the IV for black�educ, where ^educeduc are the fitted values from the first-

stage regression of educ on all exogenous variables (including nearc4). What do you

find?

d. If Eðeduc j zÞ is linear and Varðu1j zÞ ¼ s2
1 , where z is the set of all exogenous

variables and u1 is the error in the logðwageÞ equation, explain why the estimator

using black�ed̂duc as the IV is asymptotically more e‰cient than the estimator using

black�nearc4 as the IV.

9.9. Use the data in MROZ.RAW for this question.

a. Estimate equations (9.28) and (9.29) jointly by 3SLS, and compare the 3SLS esti-

mates with the 2SLS estimates for equations (9.28) and (9.29).

b. Now allow educ to be endogenous in equation (9.29), but assume it is exogenous

in equation (9.28). Estimate a three-equation system using di¤erent instruments for

di¤erent equations, where motheduc, fatheduc, and huseduc are assumed exogenous in

equations (9.28) and (9.29).

9.10. Consider a two-equation system of the form

y1 ¼ g1y2 þ z1d1 þ u1

y2 ¼ z2d2 þ u2

Assume that z1 contains at least one element not also in z2, and z2 contains at least

one element not in z1. The second equation is also the reduced form for y2, but

restrictions have been imposed to make it a structural equation. (For example, it

could be a wage o¤er equation with exclusion restrictions imposed, whereas the first

equation is a labor supply function.)

a. If we estimate the first equation by 2SLS using all exogenous variables as IVs, are

we imposing the exclusion restrictions in the second equation? (Hint: Does the first-

stage regression in 2SLS impose any restrictions on the reduced form?)

b. Will the 3SLS estimates of the first equation be the same as the 2SLS estimates?

Explain.

c. Explain why 2SLS is more robust than 3SLS for estimating the parameters of the

first equation.
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9.11. Consider a two-equation SEM:

y1 ¼ g12 y2 þ d11z1 þ u1

y2 ¼ g21y1 þ d22z2 þ d23z3 þ u2

Eðu1j z1; z2; z3Þ ¼ Eðu2 j z1; z2; z3Þ ¼ 0

where, for simplicity, we omit intercepts. The exogenous variable z1 is a policy vari-

able, such as a tax rate. Assume that g12g21 0 1. The structural errors, u1 and u2, may

be correlated.

a. Under what assumptions is each equation identified?

b. The reduced form for y1 can be written in conditional expectation form as

Eðy1 j zÞ ¼ p11z1 þ p12z2 þ p13z3, where z ¼ ðz1; z2; z3Þ. Find the p11 in terms of the

ggj and dgj .

c. How would you estimate the structural parameters? How would you obtain p̂p11 in

terms of the structural parameter estimates?

d. Suppose that z2 should be in the first equation, but it is left out in the estimation

from part c. What e¤ect does this omission have on estimating qEðy1 j zÞ=qz1? Does

it matter whether you use single-equation or system estimators of the structural

parameters?

e. If you are only interested in qEðy1 j zÞ=qz1, what could you do instead of estimat-

ing an SEM?

f. Would you say estimating a simultaneous equations model is a robust method for

estimating qEðy1 j zÞ=qz1? Explain.

9.12. The following is a two-equation, nonlinear SEM:

y1 ¼ d10 þ g12y2 þ g13y2
2 þ z1d1 þ u1

y2 ¼ d20 þ g12y1 þ z2d2 þ u2

where u1 and u2 have zero means conditional on all exogenous variables, z. (For

emphasis, we have included separate intercepts.) Assume that both equations are

identified when g13 ¼ 0.

a. When g13 ¼ 0, Eðy2 j zÞ ¼ p20 þ zp2. What is Eðy2
2 j zÞ under homoskedasticity

assumptions for u1 and u2?

b. Use part a to find Eðy1 j zÞ when g13 ¼ 0.

c. Use part b to argue that, when g13 ¼ 0, the forbidden regression consistently esti-

mates the parameters in the first equation, including g13 ¼ 0.
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d. If u1 and u2 have constant variances conditional on z, and g13 happens to be zero,

show that the optimal instrumental variables for estimating the first equation are

f1; z; ½Eðy2 j zÞ�2g. (Hint: Use Theorem 8.5; for a similar problem, see Problem 8.11.)

e. Reestimate equation (9.61) using IVs ½1; z; ðŷy2Þ
2�, where z is all exogenous vari-

ables appearing in equations (9.61) and (9.62) and ŷy2 denotes the fitted values from

regressing logðwageÞ on 1, z. Discuss the results.

9.13. For this question use the data in OPENNESS.RAW, taken from Romer

(1993).

a. A simple simultaneous equations model to test whether ‘‘openness’’ (open) leads to

lower inflation rates (inf ) is

inf ¼ d10 þ g12open þ d11 logðpcincÞ þ u1

open ¼ d20 þ g21inf þ d21 logðpcincÞ þ d22 logðlandÞ þ u2

Assuming that pcinc (per capita income) and land (land area) are exogenous, under

what assumption is the first equation identified?

b. Estimate the reduced form for open to verify that logðlandÞ is statistically significant.

c. Estimate the first equation from part a by 2SLS. Compare the estimate of g12 with

the OLS estimate.

d. Add the term g13open2 to the first equation, and propose a way to test whether it is

statistically significant. (Use only one more IV than you used in part c.)

e. With g13open2 in the first equation, use the following method to estimate d10, g12,

g13, and d11: (1) Regress open on 1, logðpcincÞ and logðlandÞ, and obtain the fitted

values, op̂pen. (2) Regress inf on 1, op̂pen, ðop̂penÞ2, and logðpcincÞ. Compare the results

with those from part d. Which estimates do you prefer?
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10 Basic Linear Unobserved E¤ects Panel Data Models

In Chapter 7 we covered a class of linear panel data models where, at a minimum, the

error in each time period was assumed to be uncorrelated with the explanatory vari-

ables in the same time period. For certain panel data applications this assumption is

too strong. In fact, a primary motivation for using panel data is to solve the omitted

variables problem.

In this chapter we study population models that explicitly contain a time-constant,

unobserved e¤ect. The treatment in this chapter is ‘‘modern’’ in the sense that unob-

served e¤ects are treated as random variables, drawn from the population along with

the observed explained and explanatory variables, as opposed to parameters to be

estimated. In this framework, the key issue is whether the unobserved e¤ect is un-

correlated with the explanatory variables.

10.1 Motivation: The Omitted Variables Problem

It is easy to see how panel data can be used, at least under certain assumptions, to

obtain consistent estimators in the presence of omitted variables. Let y and x1
ðx1; x2; . . . ; xKÞ be observable random variables, and let c be an unobservable ran-

dom variable; the vector ðy; x1; x2; . . . ; xK ; cÞ represents the population of interest. As

is often the case in applied econometrics, we are interested in the partial e¤ects of the

observable explanatory variables xj in the population regression function

Eðy j x1; x2; . . . ; xK ; cÞ ð10:1Þ

In words, we would like to hold c constant when obtaining partial e¤ects of the ob-

servable explanatory variables. We follow Chamberlain (1984) in using c to denote

the unobserved variable. Much of the panel data literature uses a Greek letter, such

as a or f, but we want to emphasize that the unobservable is a random variable, not a

parameter to be estimated. (We discuss this point further in Section 10.2.1.)

Assuming a linear model, with c entering additively along with the xj, we have

Eðy j x; cÞ ¼ b0 þ xb þ c ð10:2Þ

where interest lies in the K � 1 vector b. On the one hand, if c is uncorrelated with

each xj, then c is just another unobserved factor a¤ecting y that is not systematically

related to the observable explanatory variables whose e¤ects are of interest. On the

other hand, if Covðxj; cÞ0 0 for some j, putting c into the error term can cause

serious problems. Without additional information we cannot consistently estimate b,

nor will we be able to determine whether there is a problem (except by introspection,

or by concluding that the estimates of b are somehow ‘‘unreasonable’’).



Under additional assumptions there are ways to address the problem Covðx; cÞ
0 0. We have covered at least three possibilities in the context of cross section anal-

ysis: (1) we might be able to find a suitable proxy variable for c, in which case we can

estimate an equation by OLS where the proxy is plugged in for c; (2) we may be able

to find instruments for the elements of x that are correlated with c and use an in-

strumental variables method, such as 2SLS; or (3) we may be able to find indicators

of c that can then be used in multiple indicator instrumental variables procedure.

These solutions are covered in Chapters 4 and 5.

If we have access to only a single cross section of observations, then the three

remedies listed, or slight variants of them, largely exhaust the possibilities. However,

if we can observe the same cross section units at di¤erent points in time—that is, if

we can collect a panel data set—then other possibilties arise.

For illustration, suppose we can observe y and x at two di¤erent time periods; call

these yt, xt for t ¼ 1; 2. The population now represents two time periods on the same

unit. Also, suppose that the omitted variable c is time constant. Then we are inter-

ested in the population regression function

Eðyt j xt; cÞ ¼ b0 þ xtb þ c; t ¼ 1; 2 ð10:3Þ

where xtb ¼ b1xt1 þ � � � þ bK xtK and xtj indicates variable j at time t. Model (10.3)

assumes that c has the same e¤ect on the mean response in each time period. Without

loss of generality, we set the coe‰cient on c equal to one. (Because c is unobserved

and virtually never has a natural unit of measurement, it would be meaningless to try

to estimate its partial e¤ect.)

The assumption that c is constant over time (and has a constant partial e¤ect over

time) is crucial to the following analysis. An unobserved, time-constant variable is

called an unobserved e¤ect in panel data analysis. When t represents di¤erent time

periods for the same individual, the unobserved e¤ect is often interpreted as captur-

ing features of an individual, such as cognitive ability, motivation, or early family

upbringing, that are given and do not change over time. Similarly, if the unit of ob-

servation is the firm, c contains unobserved firm characteristics—such as managerial

quality or structure—that can be viewed as being (roughly) constant over the period

in question. We cover several specific examples of unobserved e¤ects models in Sec-

tion 10.2.

To discuss the additional assumptions su‰cient to estimate b, it is useful to write

model (10.3) in error form as

yt ¼ b0 þ xtb þ c þ ut ð10:4Þ

where, by definition,
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Eðut j xt; cÞ ¼ 0; t ¼ 1; 2 ð10:5Þ

One implication of condition (10.5) is

Eðx 0
tutÞ ¼ 0; t ¼ 1; 2 ð10:6Þ

If we were to assume Eðx 0
tcÞ ¼ 0, we could apply pooled OLS, as we covered in

Section 7.8. If c is correlated with any element of xt, then pooled OLS is biased and

inconsistent.

With two years of data we can di¤erence equation (10.4) across the two time periods

to eliminate the time-constant unobservable, c. Define Dy ¼ y2 � y1, Dx ¼ x2 � x1,

and Du ¼ u2 � u1. Then, di¤erencing equation (10.4) gives

Dy ¼ Dxb þ Du ð10:7Þ

which is just a standard linear model in the di¤erences of all variables (although the

intercept has dropped out). Importantly, the parameter vector of interest, b, appears

directly in equation (10.7), and its presence suggests estimating equation (10.7) by

OLS. Given a panel data set with two time periods, equation (10.7) is just a standard

cross section equation. Under what assumptions will the OLS estimator from equa-

tion (10.7) be consistent?

Because we assume a random sample from the population, we can apply the results

in Chapter 4 directly to equation (10.7). The key conditions for OLS to consistently

estimate b are the orthogonality condition (Assumption OLS.1)

EðDx 0DuÞ ¼ 0 ð10:8Þ

and the rank condition (Assumption OLS.2)

rank EðDx 0DxÞ ¼ K ð10:9Þ

Consider condition (10.8) first. It is equivalent to E½ðx2 � x1Þ0ðu2 � u1Þ� ¼ 0 or, after

simple algebra,

Eðx 0
2u2Þ þ Eðx 0

1u1Þ � Eðx 0
1u2Þ � Eðx 0

2u1Þ ¼ 0 ð10:10Þ

The first two terms in equation (10.10) are zero by condition (10.6), which holds for

t ¼ 1; 2. But condition (10.5) does not guarantee that x1 and u2 are uncorrelated or

that x2 and u1 are uncorrelated. It might be reasonable to assume that condition

(10.8) holds, but we must recognize that it does not follow from condition (10.5).

Assuming that the error ut is uncorrelated with x1 and x2 for t ¼ 1; 2 is an example of

a strict exogeneity assumption in unobserved components panel data models. We dis-

cuss strict exogeneity assumptions generally in Section 10.2. For now, we emphasize
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that assuming Covðxt; usÞ ¼ 0 for all t and s puts no restrictions on the correlation

between xt and the unobserved e¤ect, c.

The second assumption, condition (10.9), also deserves some attention now be-

cause the elements of xt appearing in structural equation (10.3) have been di¤erenced

across time. If xt contains a variable that is constant across time for every member of

the population, then Dx contains an entry that is identically zero, and condition

(10.9) fails. This outcome is not surprising: if c is allowed to be arbitrarily correlated

with the elements of xt, the e¤ect of any variable that is constant across time cannot

be distinguished from the e¤ect of c. Therefore, we can consistently estimate bj only if

there is some variation in xtj over time.

In the remainder of this chapter, we cover various ways of dealing with the pres-

ence of unobserved e¤ects under di¤erent sets of assumptions. We assume we have

repeated observations on a cross section of N individuals, families, firms, school dis-

tricts, cities, or some other economic unit. As in Chapter 7, we assume in this chapter

that we have the same time periods, denoted t ¼ 1; 2; . . . ;T , for each cross section

observation. Such a data set is usually called a balanced panel because the same time

periods are available for all cross section units. While the mechanics of the unbal-

anced case are similar to the balanced case, a careful treatment of the unbalanced

case requires a formal description of why the panel may be unbalanced, and the

sample selection issues can be somewhat subtle. Therefore, we hold o¤ covering un-

balanced panels until Chapter 17, where we discuss sample selection and attrition

issues.

We still focus on asymptotic properties of estimators, where the time dimension, T,

is fixed and the cross section dimension, N, grows without bound. With large-N

asymptotics it is convenient to view the cross section observations as independent,

identically distributed draws from the population. For any cross section observation

i—denoting a single individual, firm, city, and so on—we denote the observable

variables for all T time periods by fðyit; xitÞ: t ¼ 1; 2; . . . ;Tg. Because of the fixed T

assumption, the asymptotic analysis is valid for arbitrary time dependence and dis-

tributional heterogeneity across t.

When applying asymptotic analysis to panel data methods it is important to re-

member that asymptotics are useful insofar as they provide a reasonable approxi-

mation to the finite sample properties of estimators and statistics. For example, a

priori it is di‰cult to know whether N ! y asymptotics works well with, say,

N ¼ 50 states in the United States and T ¼ 8 years. But we can be pretty confident

that N ! y asymptotics are more appropriate than T ! y asymptotics, even

though N is practically fixed while T can grow. With large geographical regions, the

random sampling assumption in the cross section dimension is conceptually flawed.
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Nevertheless, if N is su‰ciently large relative to T, and we can assume rough inde-

pendence in the cross section, then our asymptotic analysis should provide suitable

approximations.

If T is of the same order as N—for example, N ¼ 60 countries and T ¼ 55 post–

World War II years—an asymptotic analysis that makes explicit assumptions about

the nature of the time series dependence is needed. (In special cases, the conclusions

about consistent estimation and approximate normality of t statistics will be the

same, but not generally.) This area is just beginning to receive careful attention. If T

is much larger than N, say N ¼ 5 companies and T ¼ 40 years, the framework

becomes multiple time series analysis: N can be held fixed while T ! y.

10.2 Assumptions about the Unobserved E¤ects and Explanatory Variables

Before analyzing panel data estimation methods in more detail, it is useful to gener-

ally discuss the nature of the unobserved e¤ects and certain features of the observed

explanatory variables.

10.2.1 Random or Fixed E¤ects?

The basic unobserved e¤ects model (UEM) can be written, for a randomly drawn

cross section observation i, as

yit ¼ xitb þ ci þ uit; t ¼ 1; 2; . . . ;T ð10:11Þ

where xit is 1 � K and can contain observable variables that change across t but not i,

variables that change across i but not t, and variables that change across i and t. In

addition to unobserved e¤ect, there are many other names given to ci in applications:

unobserved component, latent variable, and unobserved heterogeneity are common. If i

indexes individuals, then ci is sometimes called an individual e¤ect or individual het-

erogeneity; analogous terms apply to families, firms, cities, and other cross-sectional

units. The uit are called the idiosyncratic errors or idiosyncratic disturbances because

these change across t as well as across i.

Especially in methodological papers, but also in applications, one often sees a dis-

cussion about whether ci will be treated as a random e¤ect or a fixed e¤ect. Origi-

nally, such discussions centered on whether ci is properly viewed as a random variable

or as a parameter to be estimated. In the traditional approach to panel data models,

ci is called a ‘‘random e¤ect’’ when it is treated as a random variable and a ‘‘fixed

e¤ect’’ when it is treated as a parameter to be estimated for each cross section ob-

servation i. Our view is that discussions about whether the ci should be treated as
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random variables or as parameters to be estimated are wrongheaded for micro-

econometric panel data applications. With a large number of random draws from the

cross section, it almost always makes sense to treat the unobserved e¤ects, ci, as

random draws from the population, along with yit and xit. This approach is certainly

appropriate from an omitted variables or neglected heterogeneity perspective. As our

discussion in Section 10.1 suggests, the key issue involving ci is whether or not it is

uncorrelated with the observed explanatory variables xit, t ¼ 1; 2; . . . ;T . Mundlak

(1978) made this argument many years ago, and it still is persuasive.

In modern econometric parlance, ‘‘random e¤ect’’ is synonymous with zero cor-

relation between the observed explanatory variables and the unobserved e¤ect:

Covðxit; ciÞ ¼ 0, t ¼ 1; 2; . . . ;T . [Actually, a stronger conditional mean independence

assumption, Eðci j xi1; . . . ; xiT Þ ¼ EðciÞ, will be needed to fully justify statistical in-

ference; more on this subject in Section 10.4.] In applied papers, when ci is referred

to as, say, an ‘‘individual random e¤ect,’’ then ci is probably being assumed to be

uncorrelated with the xit.

In microeconometric applications, the term ‘‘fixed e¤ect’’ does not usually mean

that ci is being treated as nonrandom; rather, it means that one is allowing for arbi-

trary correlation between the unobserved e¤ect ci and the observed explanatory vari-

ables xit. So, if ci is called an ‘‘individual fixed e¤ect’’ or a ‘‘firm fixed e¤ect,’’ then,

for practical purposes, this terminology means that ci is allowed to be correlated with

xit. In this book, we avoid referring to ci as a random e¤ect or a fixed e¤ect. Instead,

we will refer to ci as unobserved e¤ect, unobserved heterogeneity, and so on. Never-

theless, later we will label two di¤erent estimation methods random e¤ects estimation

and fixed e¤ects estimation. This terminology is so ingrained that it is pointless to try

to change it now.

10.2.2 Strict Exogeneity Assumptions on the Explanatory Variables

Traditional unobserved components panel data models take the xit as fixed. We will

never assume the xit are nonrandom because potential feedback from yit to xis for

s > t needs to be addressed explicitly.

In Chapter 7 we discussed strict exogeneity assumptions in panel data models that

did not explicitly contain unobserved e¤ects. We now provide strict exogeneity

assumptions for models with unobserved e¤ects.

In Section 10.1 we stated the strict exogeneity assumption in terms of zero corre-

lation. For inference and e‰ciency discussions, we need to state the strict exogeneity

assumption in terms of conditional expectations, and this statement also gives the

assumption a clear meaning. With an unobserved e¤ect, the most revealing form of

the strict exogeneity assumption is
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Eðyit j xi1; xi2; . . . ; xiT ; ciÞ ¼ Eðyit j xit; ciÞ ¼ xitb þ ci ð10:12Þ

for t ¼ 1; 2; . . . ;T . The second equality is the functional form assumption on

Eðyit j xit; ciÞ. It is the first equality that gives the strict exogeneity its interpretation. It

means that, once xit and ci are controlled for, xis has no partial e¤ect on yit for s0 t.

When assumption (10.12) holds, we say that the fxit: t ¼ 1; 2; . . . ;Tg are strictly

exogenous conditional on the unobserved e¤ect ci. Assumption (10.12) and the corre-

sponding terminology were introduced and used by Chamberlain (1982). We will

explicitly cover Chamberlain’s approach to estimating unobserved e¤ects models in

the next chapter, but his manner of stating assumptions is instructive even for tradi-

tional panel data analysis.

Assumption (10.12) restricts how the expected value of yit can depend on explan-

atory variables in other time periods, but it is more reasonable than strict exogeneity

without conditioning on the unobserved e¤ect. Without conditioning on an unob-

served e¤ect, the strict exogeneity assumption is

Eðyit j xi1; xi2; . . . ; xiTÞ ¼ Eðyit j xitÞ ¼ xitb ð10:13Þ

t ¼ 1; . . . ;T . To see that assumption (10.13) is less likely to hold than assumption

(10.12), first consider an example. Suppose that yit is output of soybeans for farm i

during year t, and xit contains capital, labor, materials (such as fertilizer), rainfall,

and other observable inputs. The unobserved e¤ect, ci, can capture average quality of

land, managerial ability of the family running the farm, and other unobserved, time-

constant factors. A natural assumption is that, once current inputs have been con-

trolled for along with ci, inputs used in other years have no e¤ect on output during

the current year. However, since the optimal choice of inputs in every year generally

depends on ci, it is likely that some partial correlation between output in year t and

inputs in other years will exist if ci is not controlled for: assumption (10.12) is rea-

sonable while assumption (10.13) is not.

More generally, it is easy to see that assumption (10.13) fails whenever assumption

(10.12) holds and the expected value of ci depends on ðxi1; . . . ; xiT Þ. From the law of

iterated expectations, if assumption (10.12) holds, then

Eðyit j xi1; . . . ; xiTÞ ¼ xitb þ Eðci j xi1; . . . ; xiT Þ

and so assumption (10.13) fails if Eðci j xi1; . . . ; xiT Þ0EðciÞ. In particular, assump-

tion (10.13) fails if ci is correlated with any of the xit.

Given equation (10.11), the strict exogeneity assumption can be stated in terms of

the idiosyncratic errors as

Eðuit j xi1; . . . ; xiT ; ciÞ ¼ 0; t ¼ 1; 2; . . . ;T ð10:14Þ
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This assumption, in turn, implies that explanatory variables in each time period are

uncorrelated with the idiosyncratic error in each time period:

Eðx 0
isuitÞ ¼ 0; s; t ¼ 1; . . . ;T ð10:15Þ

This assumption is much stronger than assuming zero contemporaneous correlation:

Eðx 0
ituitÞ ¼ 0, t ¼ 1; . . . ;T . Nevertheless, assumption (10.15) does allow arbitary cor-

relation between ci and xit for all t, something we ruled out in Section 7.8. Later, we

will use the fact that assumption (10.14) implies that uit and ci are uncorrelated.

For examining consistency of panel data estimators, the zero correlation assump-

tion (10.15) generally su‰ces. Further, assumption (10.15) is often the easiest way to

think about whether strict exogeneity is likely to hold in a particular application. But

standard forms of statistical inference, as well as the e‰ciency properties of standard

estimators, rely on the stronger conditional mean formulation in assumption (10.14).

Therefore, we focus on assumption (10.14).

10.2.3 Some Examples of Unobserved E¤ects Panel Data Models

Our discussions in Sections 10.2.1 and 10.2.2 emphasize that in any panel data ap-

plication we should initially focus on two questions: (1) Is the unobserved e¤ect, ci,

uncorrelated with xit for all t? (2) Is the strict exogeneity assumption (conditional on

ci) reasonable? The following examples illustrate how we might organize our thinking

on these two questions.

Example 10.1 (Program Evaluation): A standard model for estimating the e¤ects of

job training or other programs on subsequent wages is

logðwageitÞ ¼ yt þ zitgþ d1progit þ ci þ uit ð10:16Þ

where i indexes individual and t indexes time period. The parameter yt denotes a

time-varying intercept, and zit is a set of observable characteristics that a¤ect wage

and may also be correlated with program participation.

Evaluation data sets are often collected at two points in time. At t ¼ 1, no one has

participated in the program, so that progi1 ¼ 0 for all i. Then, a subgroup is chosen to

participate in the program (or the individuals choose to participate), and subsequent

wages are observed for the control and treatment groups in t ¼ 2. Model (10.16)

allows for any number of time periods and general patterns of program participation.

The reason for including the individual e¤ect, ci, is the usual omitted ability story:

if individuals choose whether or not to participate in the program, that choice could

be correlated with ability. This possibility is often called the self-selection problem.

Alternatively, administrators might assign people based on characteristics that the

econometrician cannot observe.
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The other issue is the strict exogeneity assumption of the explanatory variables,

particularly progit. Typically, we feel comfortable with assuming that uit is uncorre-

lated with progit. But what about correlation between uit and, say, progi; tþ1? Future

program participation could depend on uit if people choose to participate in the

future based on shocks to their wage in the past, or if administrators choose people as

participants at time t þ 1 who had a low uit. Such feedback might not be very im-

portant, since ci is being allowed for, but it could be. See, for example, Bassi (1984)

and Ham and Lalonde (1996). Another issue, which is more easily dealt with, is that

the training program could have lasting e¤ects. If so, then we should include lags of

progit in model (10.16). Or, the program itself might last more than one period, in

which case progit can be replaced by a series of dummy variables for how long unit i

at time t has been subject to the program.

Example 10.2 (Distributed Lag Model): Hausman, Hall, and Griliches (1984) esti-

mate nonlinear distributed lag models to study the relationship between patents

awarded to a firm and current and past levels of R&D spending. A linear, five-lag

version of their model is

patentsit ¼ yt þ zitgþ d0RDit þ d1RDi; t�1 þ � � � þ d5RDi; t�5 þ ci þ uit ð10:17Þ

where RDit is spending on R&D for firm i at time t and zit contains variables such as

firm size (as measured by sales or employees). The variable ci is a firm heterogeneity

term that may influence patentsit and that may be correlated with current, past, and

future R&D expenditures. Interest lies in the pattern of the dj coe‰cients. As with the

other examples, we must decide whether R&D spending is likely to be correlated with

ci. In addition, if shocks to patents today (changes in uit) influence R&D spending at

future dates, then strict exogeneity can fail, and the methods in this chapter will not

apply.

The next example presents a case where the strict exogeneity assumption is neces-

sarily false, and the unobserved e¤ect and the explanatory variable must be correlated.

Example 10.3 (Lagged Dependent Variable): A simple dynamic model of wage de-

termination with unobserved heterogeneity is

logðwageitÞ ¼ b1 logðwagei; t�1Þ þ ci þ uit; t ¼ 1; 2; . . . ;T ð10:18Þ

Often, interest lies in how persistent wages are (as measured by the size of b1) after

controlling for unobserved heterogeneity (individual productivity), ci. Letting yit ¼
logðwageitÞ, a standard assumption would be

Eðuit j yi; t�1; . . . ; yi0; ciÞ ¼ 0 ð10:19Þ
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which means that all of the dynamics are captured by the first lag. Let xit ¼ yi; t�1.

Then, under assumption (10.19), uit is uncorrelated with ðxit; xi; t�1; . . . ; xi1Þ, but uit

cannot be uncorrelated with ðxi; tþ1; . . . ; xiT Þ, as xi; tþ1 ¼ yit. In fact,

EðyituitÞ ¼ b1Eðyi; t�1uitÞ þ EðciuitÞ þ Eðu2
itÞ ¼ Eðu2

itÞ > 0 ð10:20Þ

because Eðyi; t�1uitÞ ¼ 0 and EðciuitÞ ¼ 0 under assumption (10.19). Therefore, the

strict exogeneity assumption never holds in unobserved e¤ects models with lagged

dependent variables.

In addition, yi; t�1 and ci are necessarily correlated (since at time t � 1, yi; t�1 is the

left-hand-side variable). Not only must strict exogeneity fail in this model, but the

exogeneity assumption required for pooled OLS estimation of model (10.18) is also

violated. We will study estimation of such models in Chapter 11.

10.3 Estimating Unobserved E¤ects Models by Pooled OLS

Under certain assumptions, the pooled OLS estimator can be used to obtain a con-

sistent estimator of b in model (10.11). Write the model as

yit ¼ xitb þ vit; t ¼ 1; 2; . . . ;T ð10:21Þ

where vit 1 ci þ uit, t ¼ 1; . . . ;T are the composite errors. For each t, vit is the sum of

the unobserved e¤ect and an idiosyncratic error. From Section 7.8, we know that

pooled OLS estimation of this equation is consistent if Eðx 0
itvitÞ ¼ 0, t ¼ 1; 2; . . . ;T .

Practically speaking, no correlation between xit and vit means that we are assuming

Eðx 0
ituitÞ ¼ 0 and

Eðx 0
itciÞ ¼ 0; t ¼ 1; 2; . . . ;T ð10:22Þ

Equation (10.22) is the restrictive assumption, since Eðx 0
ituitÞ ¼ 0 holds if we have

successfully modeled Eðyit j xit; ciÞ.
In static and finite distributed lag models we are sometimes willing to make the

assumption (10.22); in fact, we will do so in the next section on random e¤ects esti-

mation. As seen in Example 10.3, models with lagged dependent variables in xit must

violate assumption (10.22) because yi; t�1 and ci must be correlated.

Even if assumption (10.22) holds, the composite errors will be serially correlated

due to the presence of ci in each time period. Therefore, inference using pooled OLS

requires the robust variance matrix estimator and robust test statistics from Chapter

7. Because vit depends on ci for all t, the correlation between vit and vis does not

generally decrease as the distance jt � sj increases; in time-series parlance, the vit are
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not weakly dependent across time. (We show this fact explicitly in the next section

when fuit: t ¼ 1; . . . ;Tg is homoskedastic and serially uncorrelated.) Therefore, it is

important that we be able to do large-N and fixed-T asymptotics when applying

pooled OLS.

As we discussed in Chapter 7, each ðyi;XiÞ has T rows and should be ordered

chronologically, and the ðyi;XiÞ should be stacked from i ¼ 1; . . . ;N. The order of

the cross section observations is, as usual, irrelevant.

10.4 Random E¤ects Methods

10.4.1 Estimation and Inference under the Basic Random E¤ects Assumptions

As with pooled OLS, a random e¤ects analysis puts ci into the error term. In fact,

random e¤ects analysis imposes more assumptions than those needed for pooled

OLS: strict exogeneity in addition to orthogonality between ci and xit. Stating the

assumption in terms of conditional means, we have

assumption RE.1:

(a) Eðuit j xi; ciÞ ¼ 0, t ¼ 1; . . . ;T .

(b) Eðci j xiÞ ¼ EðciÞ ¼ 0

where xi 1 ðxi1; xi2; . . . ; xiTÞ:

In Section 10.2 we discussed the meaning of the strict exogeneity Assumption

RE.1a. Assumption RE.1b is how we will state the orthogonality between ci and each

xit. For obtaining consistent results, we could relax RE.1b to assumption (10.22), but

in practice this approach a¤ords little more generality, and we will use Assumption

RE.1b later to derive the traditional asymptotic variance for the random e¤ects esti-

mator. Assumption RE.1b is always implied by the assumption that the xit are fixed

and EðciÞ ¼ 0, or by the assumption that ci is independent of xi. The important part

is Eðci j xiÞ ¼ EðciÞ; the assumption EðciÞ ¼ 0 is without loss of generality, provided

an intercept is included in xit, as should almost always be the case.

Why do we maintain Assumption RE.1 when it is more restrictive than needed for

a pooled OLS analysis? The random e¤ects approach exploits the serial correlation in

the composite error, vit ¼ ci þ uit, in a generalized least squares (GLS) framework. In

order to ensure that feasible GLS is consistent, we need some form of strict exoge-

neity between the explanatory variables and the composite error. Under Assumption

RE.1 we can write

yit ¼ xitb þ vit ð10:23Þ
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Eðvit j xiÞ ¼ 0; t ¼ 1; 2; . . . ;T ð10:24Þ

where

vit ¼ ci þ uit ð10:25Þ

Equation (10.24) shows that fxit: t ¼ 1; . . . ;Tg satisfies the strict exogeneity as-

sumption SGLS.1 (see Chapter 7) in the model (10.23). Therefore, we can apply GLS

methods that account for the particular error structure in equation (10.25).

Write the model (10.23) for all T time periods as

yi ¼ Xib þ vi ð10:26Þ

and vi can be written as vi ¼ cijT þ ui, where jT is the T � 1 vector of ones. Define the

(unconditional) variance matrix of vi as

W1Eðviv
0
i Þ ð10:27Þ

a T � T matrix that we assume to be positive definite. Remember, this matrix is

necessarily the same for all i because of the random sampling assumption in the cross

section.

For consistency of GLS, we need the usual rank condition for GLS:

assumption RE.2: rank EðX 0
iW

�1XiÞ ¼ K .

Applying the results from Chapter 7, we know that GLS and feasible GLS are

consistent under Assumptions RE.1 and RE.2. A general FGLS analysis, using an

unrestricted variance estimator W, is consistent and
ffiffiffiffiffi
N

p
-asymptotically normal as

N ! y. But we would not be exploiting the unobserved e¤ects structure of vit. A

standard random e¤ects analysis adds assumptions on the idiosyncratic errors that

give W a special form. The first assumption is that the idiosyncratic errors uit have a

constant unconditional variance across t:

Eðu2
itÞ ¼ s2

u ; t ¼ 1; 2; . . . ;T ð10:28Þ

The second assumption is that the idiosyncratic errors are serially uncorrelated:

EðuituisÞ ¼ 0; all t0 s ð10:29Þ

Under these two assumptions, we can derive the variances and covariances of the

elements of vi. Under Assumption RE.1a, EðciuitÞ ¼ 0, t ¼ 1; 2; . . . ;T , and so

Eðv2
itÞ ¼ Eðc2

i Þ þ 2EðciuitÞ þ Eðu2
itÞ ¼ s2

c þ s2
u

where s2
c ¼ Eðc2

i Þ. Also, for all t0 s,
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EðvitvisÞ ¼ E½ðci þ uitÞðci þ uisÞ� ¼ Eðc2
i Þ ¼ s2

c

Therefore, under assumptions RE.1, (10.28), and (10.29), W takes the special form

W ¼ Eðviv
0
i Þ ¼

s2
c þ s2

u s2
c � � � s2

c

s2
c s2

c þ s2
u � � � ..

.

..

. . .
.

s2
c

s2
c s2

c þ s2
u

0
BBBBB@

1
CCCCCA ð10:30Þ

Because jT j 0T is the T � T matrix with unity in every element, we can write the matrix

(10.30) as

W ¼ s2
u IT þ s2

c jT j 0T ð10:31Þ

When W has the form (10.31), we say it has the random e¤ects structure. Rather

than depending on TðT þ 1Þ=2 unrestricted variances and covariances, as would be

the case in a general GLS analysis, W depends only on two parameters, s2
c and s2

u ,

regardless of the size of T. The correlation between the composite errors vit and vis

does not depend on the di¤erence between t and s: Corrðvis; vitÞ ¼ s2
c =ðs2

c þ s2
u Þb 0;

s0 t. This correlation is also the ratio of the variance of ci to the variance of the

composite error, and it is useful as a measure of the relative importance of the

unobserved e¤ect ci.

Assumptions (10.28) and (10.29) are special to random e¤ects. For e‰ciency of

feasible GLS, we assume that the variance matrix of vi conditional on xi is constant:

Eðviv
0
i j xiÞ ¼ Eðviv

0
i Þ ð10:32Þ

Assumptions (10.28), (10.29), and (10.32) are implied by our third random e¤ects

assumption:

assumption RE.3: (a) Eðuiu
0
i j xi; ciÞ ¼ s2

u IT . (b) Eðc2
i j xiÞ ¼ s2

c .

Under Assumption RE.3a, Eðu2
it j xi; ciÞ ¼ s2

u , t ¼ 1; . . . ;T , which implies assump-

tion (10.28), and Eðuituis j xi; ciÞ ¼ 0, t0 s, t; s ¼ 1; . . . ;T , which implies assumption

(10.29) (both by the usual iterated expectations argument). But Assumption RE.3a is

stronger because it assumes that the conditional variances are constant and the con-

ditional covariances are zero. Along with Assumption RE.1b, Assumption RE.3b is

the same as Varðci j xiÞ ¼ VarðciÞ, which is a homoskedasticity assumption on the

unobserved e¤ect ci. Under Assumption RE.3, assumption (10.32) holds and W has

the form (10.30).
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To implement an FGLS procedure, define s2
v ¼ s2

c þ s2
u . For now, assume that we

have consistent estimators of s2
u and s2

c . Then we can form

ŴW1 ŝs2
u IT þ ŝs2

c jT j 0T ð10:33Þ

a T � T matrix that we assume to be positive definite. In a panel data context, the

FGLS estimator that uses the variance matrix (10.33) is what is known as the random

e¤ects estimator:

b̂bRE ¼
XN

i¼1

X 0
i ŴW

�1Xi

 !�1 XN

i¼1

X 0
i ŴW

�1yi

 !
ð10:34Þ

The random e¤ects estimator is clearly motivated by Assumption RE.3. Never-

theless, b̂bRE is consistent whether or not Assumption RE.3 holds. As long as As-

sumption RE.1 and the appropriate rank condition hold, b̂bRE !p
b as N ! y. The

argument is almost the same as showing that consistency of the FGLS estimator does

not rely on Eðviv
0
i jXiÞ ¼ W. The only di¤erence is that, even if W does not have the

special form in equation (10.31), ŴW still has a well-defined probability limit. The fact

that it does not necessarily converge to Eðviv
0
i Þ does not a¤ect the consistency of the

random e¤ects procedure. (Technically, we need to replace W with plimðŴWÞ in stating

Assumption RE.2.)

Under Assumption RE.3 the random e¤ects estimator is e‰cient in the class of

estimators consistent under Eðvi j xiÞ ¼ 0, including pooled OLS and a variety of

weighted least squares estimators, because RE is asymptotically equivalent to GLS

under Assumptions RE.1–RE.3. The usual feasible GLS variance matrix—see

equation (7.51)—is valid under Assumptions RE.1–RE.3. The only di¤erence from

the general analysis is that ŴW is chosen as in expression (10.33).

In order to implement the RE procedure, we need to obtain ŝs2
c and ŝs2

u . Actually, it

is easiest to first find ŝs2
v ¼ ŝs2

c þ ŝs2
u . Under Assumption RE.3a, s2

v ¼ T�1
PT

t¼1 Eðv2
itÞ

for all i; therefore, averaging v2
it across all i and t would give a consistent estimator of

s2
v . But we need to estimate b to make this method operational. A convenient initial

estimator of b is the pooled OLS estimator, denoted here by
^̂
bb̂bb. Let ^̂vv̂vvit denote the

pooled OLS residuals. A consistent estimator of s2
v is

ŝs2
v ¼ 1

ðNT � KÞ
XN

i¼1

XT

t¼1

^̂vv̂vv2
it ð10:35Þ

which is the usual variance estimator from the OLS regression on the pooled data.

The degrees-of-freedom correction in equation (10.35)—that is, the use of NT � K
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rather than NT—has no e¤ect asymptotically. Under Assumptions RE.1–RE.3,

equation (10.35) is a consistent estimator of s2
v .

To find a consistent estimator of s2
c , recall that s2

c ¼ EðvitvisÞ, all t0 s. Therefore,

for each i, there are TðT � 1Þ=2 nonredundant error products that can be used to

estimate s2
c . If we sum all these combinations and take the expectation, we get, for

each i,

E
XT�1

t¼1

XT

s¼tþ1

vitvis

 !
¼
XT�1

t¼1

XT

s¼tþ1

EðvitvisÞ ¼
XT�1

t¼1

XT

s¼tþ1

s2
c ¼ s2

c

XT�1

t¼1

ðT � tÞ

¼ s2
c ððT � 1Þ þ ðT � 2Þ þ � � � þ 2 þ 1Þ ¼ s2

c TðT � 1Þ=2 ð10:36Þ

where we have used the fact that the sum of the first T � 1 positive integers is

TðT � 1Þ=2. As usual, a consistent estimator is obtained by replacing the expectation

with an average (across i) and replacing vit with its pooled OLS residual. We also

make a degrees-of-freedom adjustment as a small-sample correction:

ŝs2
c ¼ 1

½NTðT � 1Þ=2 � K �
XN

i¼1

XT�1

t¼1

XT

s¼tþ1

^̂vv̂vvit
^̂vv̂vvis ð10:37Þ

is a consistent estimator of s2
c under Assumptions RE.1–RE.3. Given ŝs2

v and ŝs2
c , we

can form ŝs2
u ¼ ŝs2

v � ŝs2
c . [The idiosyncratic error variance, s2

u , can also be estimated

using the fixed e¤ects method, which we discuss in Section 10.5. Also, there are other

methods of estimating s2
c . A common estimator of s2

c is based on the between esti-

mator of b, which we touch on in Section 10.5; see Hsiao (1986, Section 3.3) and

Baltagi (1995, Section 2.3). Because the RE estimator is a feasible GLS estimator, all

that we need are consistent estimators of s2
c and s2

u in order to obtain a
ffiffiffiffiffi
N

p
-e‰cient

estimator of b.]

As a practical matter, equation (10.37) is not guaranteed to be positive, although it

is in the vast majority of applications. A negative value for ŝs2
c is indicative of nega-

tive serial correlation in uit, probably a substantial amount, which means that As-

sumption RE.3a is violated. Alternatively, some other assumption in the model can

be false. We should make sure that time dummies are included in the model if they

are significant; omitting them can induce serial correlation in the implied uit. If ŝs2
c is

negative, unrestricted FGLS may be called for; see Section 10.4.3.

Example 10.4 (RE Estimation of the E¤ects of Job Training Grants): We now use

the data in JTRAIN1.RAW to estimate the e¤ect of job training grants on firm scrap

rates, using a random e¤ects analysis. There are 54 firms that reported scrap rates for

each of the years 1987, 1988, and 1989. Grants were not awarded in 1987. Some firms
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received grants in 1988, others received grants in 1989, and a firm could not receive a

grant twice. Since there are firms in 1989 that received a grant only in 1988, it is im-

portant to allow the grant e¤ect to persist one period. The estimated equation is

logðŝscrapÞ ¼ :415

ð:243Þ
� :093

ð:109Þ
d88 � :270

ð:132Þ
d89 þ :548

ð:411Þ
union

� :215

ð:148Þ
grant � :377

ð:205Þ
grant�1

The lagged value of grant has the larger impact and is statistically significant at the 5

percent level against a one-sided alternative. You are invited to estimate the equation

without grant�1 to verify that the estimated grant e¤ect is much smaller (on the order

of 6.7 percent) and statistically insignificant.

Multiple hypotheses tests are carried out as in any FGLS analysis; see Section 7.6,

where G ¼ T . In computing an F-type statistic based on weighted sums of squared

residuals, ŴW in expression (10.33) should be based on the pooled OLS residuals from

the unrestricted model. Then, obtain the residuals from the unrestricted random

e¤ects estimation as v̂vi 1 yi � Xib̂bRE . Let ~bbRE denote the random e¤ects estimator

with the Q linear restrictions imposed, and define the restricted random e¤ects resid-

uals as ~vvi 1 yi � Xi
~bbRE . Insert these into equation (7.52) in place of ûui and ~uui for a

chi-square statistic or into equation (7.53) for an F-type statistic.

In Example 10.4, the Wald test for joint significance of grant and grant�1 (against a

two-sided alternative) yields a w2
2 statistic equal to 3.66, with p-value ¼ :16. (This test

comes from Stata9.)

10.4.2 Robust Variance Matrix Estimator

Because failure of Assumption RE.3 does not cause inconsistency in the RE esti-

mator, it is very useful to be able to conduct statistical inference without this as-

sumption. Assumption RE.3 can fail for two reasons. First, Eðviv
0
i j xiÞ may not be

constant, so that Eðviv
0
i j xiÞ0Eðviv

0
i Þ. This outcome is always a possibility with GLS

analysis. Second, Eðviv
0
i Þ may not have the random e¤ects structure: the idiosyncratic

errors uit may have variances that change over time, or they could be serially corre-

lated. In either case a robust variance matrix is available from the analysis in Chapter

7. We simply use equation (7.49) with ûui replaced by v̂vi ¼ yi � Xib̂bRE , i ¼ 1; 2; . . . ;N,

the T � 1 vectors of RE residuals.

Robust standard errors are obtained in the usual way from the robust variance

matrix estimator, and robust Wald statistics are obtained by the usual formula W ¼
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ðRb̂b � rÞ0ðRV̂VR 0Þ�1ðRb̂b � rÞ, where V̂V is the robust variance matrix estimator. Re-

member, if Assumption RE.3 is violated, the sum of squared residuals form of the F

statistic is not valid.

The idea behind using a robust variance matrix is the following. Assumptions

RE.1–RE.3 lead to a well-known estimation technique whose properties are under-

stood under these assumptions. But it is always a good idea to make the analysis

robust whenever feasible. With fixed T and large N asymptotics, we lose nothing in

using the robust standard errors and test statistics even if Assumption RE.3 holds. In

Section 10.7.2, we show how the RE estimator can be obtained from a particular

pooled OLS regression, which makes obtaining robust standard errors and t and F

statistics especially easy.

10.4.3 A General FGLS Analysis

If the idiosyncratic errors fuit: t ¼ 1; 2; . . . ;Tg are generally heteroskedastic and

serially correlated across t, a more general estimator of W can be used in FGLS:

ŴW ¼ N�1
XN

i¼1

^̂vv̂vvi
^̂vv̂vv 0

i ð10:38Þ

where the ^̂vv̂vvi would be the pooled OLS residuals. The FGLS estimator is consistent

under Assumptions RE.1 and RE.2, and, if we assume that Eðviv
0
i j xiÞ ¼ W, then the

FGLS estimator is asymptotically e‰cient and its asymptotic variance estimator

takes the usual form.

Using equation (10.38) is more general than the RE analysis. In fact, with large N

asymptotics, the general FGLS estimator is just as e‰cient as the random e¤ects es-

timator under Assumptions RE.1–RE.3. Using equation (10.38) is asymptotically

more e‰cient if Eðviv
0
i j xiÞ ¼ W, but W does not have the random e¤ects form. So

why not always use FGLS with ŴW given in equation (10.38)? There are historical

reasons for using random e¤ects methods rather than a general FGLS analysis. The

structure of W in the matrix (10.30) was once synonomous with unobserved e¤ects

models: any correlation in the composite errors fvit: t ¼ 1; 2; . . . ;Tg was assumed to

be caused by the presence of ci. The idiosyncratic errors, uit, were, by definition,

taken to be serially uncorrelated and homoskedastic.

If N is not several times larger than T, an unrestricted FGLS analysis can have

poor finite sample properties because ŴW has TðT þ 1Þ=2 estimated elements. Even

though estimation of W does not a¤ect the asymptotic distribution of the FGLS

estimator, it certainly a¤ects its finite sample properties. Random e¤ects estimation

requires estimation of only two variance parameters for any T.
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With very large N, using the general estimate of W is an attractive alternative, es-

pecially if the estimate in equation (10.38) appears to have a pattern di¤erent from

the random e¤ects pattern. As a middle ground between a traditional random e¤ects

analysis and a full-blown FGLS analysis, we might specify a particular structure for

the idiosyncratic error variance matrix Eðuiu
0
i Þ. For example, if fuitg follows a stable

first-order autoregressive process with autocorrelation coe‰cient r and variance s2
u ,

then W ¼ Eðuiu
0
i Þ þ s2

c jT j 0T depends in a known way on only three parameters, s2
u , s2

c ,

and r. These parameters can be estimated after initial pooled OLS estimation, and

then an FGLS procedure using the particular structure of W is easy to implement. We

do not cover such possibilities explicitly; see, for example, MaCurdy (1982).

10.4.4 Testing for the Presence of an Unobserved E¤ect

If the standard random e¤ects assumptions RE.1–RE.3 hold but the model does not

actually contain an unobserved e¤ect, pooled OLS is e‰cient and all associated

pooled OLS statistics are asymptotically valid. The absence of an unobserved e¤ect is

statistically equivalent to H0: s2
c ¼ 0.

To test H0: s2
c ¼ 0, we can use the simple test for AR(1) serial correlation covered

in Chapter 7 [see equation (7.77)]. The AR(1) test is valid because the errors vit are

serially uncorrelated under the null H0: s2
c ¼ 0 (and we are assuming that fxitg is

strictly exogenous). However, a better test is based directly on the estimator of s2
c in

equation (10.37).

Breusch and Pagan (1980) derive a statistic using the Lagrange multiplier principle

in a likelihood setting (something we cover in Chapter 13). We will not derive the

Breusch and Pagan statistic because we are not assuming any particular distribution

for the vit. Instead, we derive a similar test that has the advantage of being valid for

any distribution of vi and only states that the vit are uncorrelated under the null. (In

particular, the statistic is valid for heteroskedasticity in the vit.)

From equation (10.37), we base a test of H0: s2
c ¼ 0 on the null asymptotic distri-

bution of

N�1=2
XN

i¼1

XT�1

t¼1

XT

s¼tþ1

v̂vitv̂vis ð10:39Þ

which is essentially the estimator ŝs2
c scaled up by

ffiffiffiffiffi
N

p
. Because of strict exogeneity,

this statistic has the same limiting distribution (as N ! y with fixed T ) when

we replace the pooled OLS residuals v̂vit with the errors vit (see Problem 7.4). For

any distribution of the vit, N�1=2
PN

i¼1

PT�1
t¼1

PT
s¼tþ1 vitvis has a limiting normal

distribution (under the null that the vit are serially uncorrelated) with variance
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Eð
PT�1

t¼1

PT
s¼tþ1 vitvisÞ2. We can estimate this variance in the usual way (take away

the expectation, average across i, and replace vit with v̂vit). When we put expression

(10.39) over its asymptotic standard error we get the statisticPN
i¼1

PT�1
t¼1

PT
s¼tþ1 v̂vitv̂vishPN

i¼1

PT�1
t¼1

PT
s¼tþ1 v̂vitv̂vis

� �2i1=2
ð10:40Þ

Under the null hypothesis that the vit are serially uncorrelated, this statistic is dis-

tributed asymptotically as standard normal. Unlike the Breusch-Pagan statistic, with

expression (10.40) we can reject H0 for negative estimates of s2
c , although negative

estimates are rare in practice (unless we have already di¤erenced the data, something

we discuss in Section 10.6).

The statistic in expression (10.40) can detect many kinds of serial correlation in the

composite error vit, and so a rejection of the null should not be interpreted as imply-

ing that the random e¤ects error structure must be true. Finding that the vit are seri-

ally uncorrelated is not very surprising in applications, especially since xit cannot

contain lagged dependent variables for the methods in this chapter.

It is probably more interesting to test for serial correlation in the fuitg, as this is a

test of the random e¤ects form of W. Baltagi and Li (1995) obtain a test under nor-

mality of ci and fuitg, based on the Lagrange multiplier principle. In Section 10.7.2,

we discuss a simpler test for serial correlation in fuitg using a pooled OLS regression

on transformed data, which does not rely on normality.

10.5 Fixed E¤ects Methods

10.5.1 Consistency of the Fixed E¤ects Estimator

Again consider the linear unobserved e¤ects model for T time periods:

yit ¼ xitb þ ci þ uit; t ¼ 1; . . . ;T ð10:41Þ

The random e¤ects approach to estimating b e¤ectively puts ci into the error term,

under the assumption that ci is orthogonal to xit, and then accounts for the implied

serial correlation in the composite error vit ¼ ci þ uit using a GLS analysis. In many

applications the whole point of using panel data is to allow for ci to be arbitrarily

correlated with the xit. A fixed e¤ects analysis achieves this purpose explicitly.

The T equations in the model (10.41) can be written as

yi ¼ Xib þ cijT þ ui ð10:42Þ
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where jT is still the T � 1 vector of ones. As usual, equation (10.42) represents a sin-

gle random draw from the cross section.

The first fixed e¤ects (FE) assumption is strict exogeneity of the explanatory vari-

ables conditional on ci:

assumption FE.1: Eðuit j xi; ciÞ ¼ 0, t ¼ 1; 2; . . . ;T .

This assumption is identical to the first part of Assumption RE.1. Thus, we maintain

strict exogeneity of fxit: t ¼ 1; . . . ;Tg conditional on the unobserved e¤ect. The key

di¤erence is that we do not assume RE.1b. In other words, for fixed e¤ects analysis,

Eðci j xiÞ is allowed to be any function of xi.

By relaxing RE.1b we can consistently estimate partial e¤ects in the presence of

time-constant omitted variables that can be arbitrarily related to the observables xit.

Therefore, fixed e¤ects analysis is more robust than random e¤ects analysis. As we

suggested in Section 10.1, this robustness comes at a price: without further assump-

tions, we cannot include time-constant factors in xit. The reason is simple: if ci can be

arbitrarily correlated with each element of xit, there is no way to distinguish the

e¤ects of time-constant observables from the time-constant unobservable ci. When

analyzing individuals, factors such as gender or race cannot be included in xit. For

analyzing firms, industry cannot be included in xit unless industry designation changes

over time for at least some firms. For cities, variables describing fixed city attributes,

such as whether or not the city is near a river, cannot be included in xit.

The fact that xit cannot include time-constant explanatory variables is a drawback

in certain applications, but when the interest is only on time-varying explanatory

variables, it is convenient not to have to worry about modeling time-constant factors

that are not of direct interest.

In panel data analysis the term ‘‘time-varying explanatory variables’’ means that

each element of xit varies over time for some cross section units. Often there are ele-

ments of xit that are constant across time for a subset of the cross section. For ex-

ample, if we have a panel of adults and one element of xit is education, we can allow

education to be constant for some part of the sample. But we must have education

changing for some people in the sample.

As a general specification, let d2t; . . . ; dTt denote time period dummies so that

dst ¼ 1 if s ¼ t, and zero otherwise (often these are defined in terms of specific years,

such as d88t, but at this level we call them time period dummies). Let zi be a vector of

time-constant observables, and let wit be a vector of time-varying variables. Suppose

yit is determined by
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yit ¼ y1 þ y2d2t þ � � � þ yT dTt þ zig1 þ d2tzig2

þ � � � þ dTtzigT þ witdþ ci þ uit ð10:43Þ

Eðuit j zi;wi1;wi2; . . . ;wiT ; ciÞ ¼ 0; t ¼ 1; 2; . . . ;T ð10:44Þ

We hope that this model represents a causal relationship, where the conditioning on

ci allows us to control for unobserved factors that are time constant. Without further

assumptions, the intercept y1 cannot be identified and the vector g1 on zi cannot

be identified, because y1 þ zig1 cannot be distinguished from ci. Note that y1 is the

intercept for the base time period, t ¼ 1, and g1 measures the e¤ects of zi on yit in

period t ¼ 1. Even though we cannot identify the e¤ects of the zi in any particular

time period, g2; g3; . . . ; gT are identified, and therefore we can estimate the di¤erences

in the partial e¤ects on time-constant variables relative to a base period. In particu-

lar, we can test whether the e¤ects of time-constant variables have changed over time.

As a specific example, if yit ¼ logðwageitÞ and one element of zi is a female binary

variable, then we can estimate how the gender gap has changed over time, even

though we cannot estimate the gap in any particular time period.

The idea for estimating b under Assumption FE.1 is to transform the equations to

eliminate the unobserved e¤ect ci. When at least two time periods are available, there

are several transformations that accomplish this purpose. In this section we study the

fixed e¤ects transformation, also called the within transformation. The FE transfor-

mation is obtained by first averaging equation (10.41) over t ¼ 1; . . . ;T to get the

cross section equation

yi ¼ xib þ ci þ ui ð10:45Þ

where yi ¼ T�1
PT

t¼1 yit, xi ¼ T�1
PT

t¼1 xit, and ui ¼ T�1
PT

t¼1 uit. Subtracting

equation (10.45) from equation (10.41) for each t gives the FE transformed equation,

yit � yi ¼ ðxit � xiÞb þ uit � ui

or

€yyit ¼ €xxitb þ €uuit; t ¼ 1; 2; . . . ;T ð10:46Þ

where €yyit 1 yit � yi, €xxit 1 xit � xi, and €uuit 1 uit � ui. The time demeaning of the

original equation has removed the individual specific e¤ect ci.

With ci out of the picture, it is natural to think of estimating equation (10.46) by

pooled OLS. Before investigating this possibility, we must remember that equation

(10.46) is an estimating equation: the interpretation of b comes from the (structural)

conditional expectation Eðyit j xi; ciÞ ¼ Eðyit j xit; ciÞ ¼ xitb þ ci.
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To see whether pooled OLS estimation of equation (10.46) will be consistent, we

need to show that the key pooled OLS assumption (Assumption POLS.1 from

Chapter 7) holds in equation (10.46). That is,

Eð€xx 0
it€uuitÞ ¼ 0; t ¼ 1; 2; . . . ;T ð10:47Þ

For each t, the left-hand side of equation (10.47) can be written as

E½ðxit � xiÞ0ðuit � uiÞ�. Now, under Assumption FE.1, uit is uncorrelated with xis,

for all s; t ¼ 1; 2; . . . ;T . It follows that uit and ui are uncorrelated with xit and xi

for t ¼ 1; 2; . . . ;T . Therefore, assumption (10.47) holds under Assumption FE.1,

and so pooled OLS applied to equation (10.46) can be expected to produce con-

sistent estimators. We can actually say a lot more than condition (10.47): under

Assumption FE.1, Eð€uuit j xiÞ ¼ Eðuit j xiÞ � Eðui j xiÞ ¼ 0, which in turn implies that

Eð€uuit j €xxi1; . . . ; €xxiTÞ ¼ 0, since each €xxit is just a function of xi ¼ ðxi1; . . . ; xiT Þ. This

result shows that the €xxit satisfy the conditional expectation form of the strict exoge-

neity assumption in the model (10.46). Among other things, this conclusion implies

that the fixed e¤ects estimator of b that we will derive is actually unbiased under

Assumption FE.1.

It is important to see that assumption (10.47) fails if we try to relax the strict exo-

geneity assumption to something weaker, such as Eðx 0
ituitÞ ¼ 0, all t, because this as-

sumption does not ensure that xis is uncorrelated with uit, s0 t.

The fixed e¤ects (FE) estimator, denoted by b̂bFE , is the pooled OLS estimator from

the regression

€yyit on €xxit; t ¼ 1; 2; . . . ;T ; i ¼ 1; 2; . . . ;N ð10:48Þ

The FE estimator is simple to compute once the time demeaning has been carried

out. Some econometrics packages have special commands to carry out fixed e¤ects

estimation (and commands to carry out the time demeaning for all i). It is also fairly

easy to program this estimator in matrix-oriented languages.

To study the FE estimator a little more closely, write equation (10.46) for all time

periods as

€yyi ¼ €XXib þ €uui ð10:49Þ

where €yyi is T � 1, €XXi is T � K , and €uui is T � 1. This set of equations can be obtained

by premultiplying equation (10.42) by a time-demeaning matrix. Define QT 1 IT �
jT ðj 0T jTÞ

�1j 0T , which is easily seen to be a T � T symmetric, idempotent matrix with

rank T � 1. Further, QT jT ¼ 0, QT yi ¼ €yyi, QT Xi ¼ €XXi, and QT ui ¼ €uui, and so pre-

multiplying equation (10.42) by QT gives the demeaned equations (10.49).
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In order to ensure that the FE estimator is well behaved asymptotically, we need a

standard rank condition on the matrix of time-demeaned explanatory variables:

assumption FE.2: rank
PT

t¼1 Eð€xx 0
it€xxitÞ

� �
¼ rank½Eð€XX 0

i
€XXiÞ� ¼ K .

If xit contains an element that does not vary over time for any i, then the corre-

sponding element in €xxit is identically zero for all t and any draw from the cross sec-

tion. Since €XXi would contain a column of zeros for all i, Assumption FE.2 could not

be true. Assumption FE.2 shows explicitly why time-constant variables are not

allowed in fixed e¤ects analysis (unless they are interacted with time-varying vari-

ables, such as time dummies).

The fixed e¤ects estimator can be expressed as

b̂bFE ¼
XN

i¼1

€XX 0
i
€XXi

 !�1 XN

i¼1

€XX 0
i€yyi

 !
¼

XN

i¼1

XT

t¼1

€xx 0
it€xxit

 !�1 XN

i¼1

XT

t¼1

€xx 0
it €yyit

 !
ð10:50Þ

It is also called the within estimator because it uses the time variation within each

cross section. The between estimator, which uses only variation between the cross

section observations, is the OLS estimator applied to the time-averaged equation

(10.45). This estimator is not consistent under Assumption FE.1 because Eðx 0
i ciÞ is

not necessarily zero. The between estimator is consistent under Assumption RE.1

and a standard rank condition, but it e¤ectively discards the time series information

in the data set. It is more e‰cient to use the random e¤ects estimator.

Under Assumption FE.1 and the finite sample version of Assumption FE.2,

namely, rankð€XX 0 €XXÞ ¼ K , b̂bFE can be shown to be unbiased conditional on X.

10.5.2 Asymptotic Inference with Fixed E¤ects

Without further assumptions the FE estimator is not necessarily the most e‰cient

estimator based on Assumption FE.1. The next assumption ensures that FE is e‰cient.

assumption FE.3: Eðuiu
0
i j xi; ciÞ ¼ s2

u IT .

Assumption FE.3 is identical to Assumption RE.3a. Since Eðui j xi; ciÞ ¼ 0 by As-

sumption FE.1, Assumption FE.3 is the same as saying Varðui j xi; ciÞ ¼ s2
u IT if

Assumption FE.1 also holds. As with Assumption RE.3a, it is useful to think of

Assumption FE.3 as having two parts. The first is that Eðuiu
0
i j xi; ciÞ ¼ Eðuiu

0
i Þ,

which is standard in system estimation contexts [see equation (7.50)]. The second is

that the unconditional variance matrix Eðuiu
0
i Þ has the special form s2

u IT . This implies

that the idiosyncratic errors uit have a constant variance across t and are serially

uncorrelated, just as in assumptions (10.28) and (10.29).
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Assumption FE.3, along with Assumption FE.1, implies that the unconditional

variance matrix of the composite error vi ¼ cijT þ ui has the random e¤ects form.

However, without Assumption RE.3b, Eðviv
0
i j xiÞ0Eðviv

0
i Þ. While this result matters

for inference with the RE estimator, it has no bearing on a fixed e¤ects analysis.

It is not obvious that Assumption FE.3 has the desired consequences of ensuring

e‰ciency of fixed e¤ects and leading to simple computation of standard errors and

test statistics. Consider the demeaned equation (10.46). Normally, for pooled OLS

to be relatively e‰cient, we require that the f€uuit: t ¼ 1; 2; . . . ;Tg be homoskedastic

across t and serially uncorrelated. The variance of €uuit can be computed as

Eð€uu2
itÞ ¼ E½ðuit � uiÞ2� ¼ Eðu2

itÞ þ Eðu2
i Þ � 2EðuituiÞ

¼ s2
u þ s2

u=T � 2s2
u=T ¼ s2

u ð1 � 1=TÞ ð10:51Þ

which verifies (unconditional) homoskedasticity across t. However, for t0 s, the

covariance between €uuit and €uuis is

Eð€uuit€uuisÞ ¼ E½ðuit � uiÞðuis � uiÞ� ¼ EðuituisÞ � EðuituiÞ � EðuisuiÞ þ Eðu2
i Þ

¼ 0 � s2
u=T � s2

u=T þ s2
u=T ¼ �s2

u=T < 0

Combining this expression with the variance in equation (10.51) gives, for all t0 s,

Corrð€uuit; €uuisÞ ¼ �1=ðT � 1Þ ð10:52Þ

which shows that the time-demeaned errors €uuit are negatively serially correlated. (As

T gets large, the correlation tends to zero.)

It turns out that, because of the nature of time demeaning, the serial correlation in

the €uuit under Assumption FE.3 causes only minor complications. To find the asymp-

totic variance of b̂bFE , write

ffiffiffiffiffi
N

p
ð b̂bFE � bÞ ¼ N�1

XN

i¼1

€XX 0
i
€XXi

 !�1

N�1=2
XN

i¼1

€XX 0
i ui

 !

where we have used the important fact that €XX 0
i€uui ¼ X 0

i QT ui ¼ €XX 0
i ui. Under Assump-

tion FE.3, Eðuiu
0
i j €XXiÞ ¼ s2

u IT . From the system OLS analysis in Chapter 7 it follows

thatffiffiffiffiffi
N

p
ð b̂bFE � bÞ@Normalð0; s2

u ½Eð€XX
0
i
€XXiÞ��1Þ

and so

Avarð b̂bFEÞ ¼ s2
u ½Eð€XX

0
i
€XXiÞ��1=N ð10:53Þ

Chapter 10270



Given a consistent estimator ŝs2
u of s2

u , equation (10.53) is easily estimated by also

replacing Eð€XX 0
i
€XXiÞ with its sample analogue N�1

PN
i¼1

€XX 0
i
€XXi:

A ^varvarð b̂bFEÞ ¼ ŝs2
u

XN

i¼1

€XX 0
i
€XXi

 !�1

¼ ŝs2
u

XN

i¼1

XT

t¼1

€xx 0
it€xxit

 !�1

ð10:54Þ

The asymptotic standard errors of the fixed e¤ects estimates are obtained as the

square roots of the diagonal elements of the matrix (10.54).

Expression (10.54) is very convenient because it looks just like the usual OLS

variance matrix estimator that would be reported from the pooled OLS regression

(10.48). However, there is one catch, and this comes in obtaining the estimator ŝs2
u of

s2
u . The errors in the transformed model are €uuit, and these errors are what the OLS

residuals from regression (10.48) estimate. Since s2
u is the variance of uit, we must use

a little care.

To see how to estimate s2
u , we use equation (10.51) summed across t:

PT
t¼1 Eð€uu2

itÞ ¼
ðT � 1Þs2

u , and so ½NðT � 1Þ��1PN
i¼1

PT
t¼1 Eð€uu2

itÞ ¼ s2
u . Now, define the fixed e¤ects

residuals as

ûuit ¼ €yyit � €xxitb̂bFE ; t ¼ 1; 2; . . . ;T ; i ¼ 1; 2; . . . ;N ð10:55Þ

which are simply the OLS residuals from the pooled regression (10.48). Then a con-

sistent estimator of s2
u under Assumptions FE.1–FE.3 is

ŝs2
u ¼ SSR=½NðT � 1Þ � K � ð10:56Þ

where SSR ¼
PN

i¼1

PT
t¼1 ûu2

it. The subtraction of K in the denominator of equation

(10.56) does not matter asymptotically, but it is standard to make such a correction.

In fact, under Assumptions FE.1–FE.3, it can be shown that ŝs2
u is actually an un-

biased estimator of s2
u conditional on X (and therefore unconditionally as well).

Pay careful attention to the denominator in equation (10.56). This is not the

degrees of freedom that would be obtained from regression (10.48). In fact, the usual

variance estimate from regression (10.48) would be SSR/ðNT � KÞ, which has a

probability limit less than s2
u as N gets large. The di¤erence between SSR/ðNT � KÞ

and equation (10.56) can be substantial when T is small.

The upshot of all this is that the usual standard errors reported from the regression

(10.48) will be too small on average because they use the incorrect estimate of s2
u . Of

course, computing equation (10.56) directly is pretty trivial. But, if a standard re-

gression package is used after time demeaning, it is perhaps easiest to adjust the usual

standard errors directly. Since ŝsu appears in the standard errors, each standard error
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is simply multiplied by the factor fðNT � KÞ=½NðT � 1Þ � K �g1=2. As an example, if

N ¼ 500, T ¼ 3, and K ¼ 10, the correction factor is about 1.227.

If an econometrics package has an option for explicitly obtaining fixed e¤ects

estimates using panel data, s2
u will be properly estimated, and you do not have to

worry about adjusting the standard errors. Many software packages also compute

an estimate of s2
c , which is useful to determine how large the variance of the unob-

served component is to the variance of the idiosyncratic component. Given b̂bFE , ŝs2
v ¼

ðNT � K�1Þ
PN

i¼1

PT
t¼1ðyit � xitb̂bFEÞ

2 is a consistent estimator of s2
v ¼ s2

c þ s2
u , and

so a consistent estimator of s2
c is ŝs2

v � ŝs2
u . (See Problem 10.14 for a discussion of why

the estimated variance of the unobserved e¤ect in a fixed e¤ects analysis is generally

larger than that for a random e¤ects analysis.)

Example 10.5 (FE Estimation of the E¤ects of Job Training Grants): Using the data

in JTRAIN1.RAW, we estimate the e¤ect of job training grants using the fixed e¤ects

estimator. The variable union has been dropped because it does not vary over time for

any of the firms in the sample. The estimated equation with standard errors is

logðŝscrapÞ ¼ �:080

ð:109Þ
d88 � :247

ð:133Þ
d89 � :252

ð:151Þ
grant � :422

ð:210Þ
grant�1

Compared with the random e¤ects, the grant is estimated to have a larger e¤ect, both

contemporaneously and lagged one year. The t statistics are also somewhat more

significant with fixed e¤ects.

Under Assumptions FE.1–FE.3, multiple restrictions are most easily tested using

an F statistic, provided the degrees of freedom are appropriately computed. Let

SSRur be the unrestricted SSR from regression (10.48), and let SSRr denote the

restricted sum of squared residuals from a similar regression, but with Q restrictions

imposed on b. Then

F ¼ ðSSRr � SSRurÞ
SSRur

� ½NðT � 1Þ � K �
Q

is approximately F distributed with Q and NðT � 1Þ � K degrees of freedom. (The

precise statement is that Q � F @ w2
Q as N ! y under H0.) When this equation is

applied to Example 10.5, the F statistic for joint significance of grant and grant�1 is

F ¼ 2:23, with p-value ¼ :113.

10.5.3 The Dummy Variable Regression

So far we have viewed the ci as being unobservable random variables, and for most

applications this approach gives the appropriate interpretation of b. Traditional
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approaches to fixed e¤ects estimation view the ci as parameters to be estimated

along with b. In fact, if Assumption FE.2 is changed to its finite sample version,

rankð€XX 0 €XXÞ ¼ K , then the model under Assumptions FE.1–FE.3 satisfies the Gauss-

Markov assumptions conditional on X.

If the ci are parameters to estimate, how would we estimate each ci along with b ?

One possibility is to define N dummy variables, one for each cross section observa-

tion: dni ¼ 1 if n ¼ i, dni ¼ 0 if n0 i. Then, run the pooled OLS regression

yit on d1i; d2i; . . . ; dNi; xit; t ¼ 1; 2; . . . ;T ; i ¼ 1; 2; . . . ;N ð10:57Þ

Then, ĉc1 is the coe‰cient on d1i, ĉc2 is the coe‰cient on d2i, and so on.

It is a nice exercise in least squares mechanics—in particular, partitioned regres-

sion (see Davidson and MacKinnon, 1993, Section 1.4)—to show that the estimator

of b obtained from regression (10.57) is, in fact, the fixed e¤ects estimator. This is

why b̂bFE is sometimes referred to as the dummy variable estimator. Also, the residuals

from regression (10.57) are identical to the residuals from regression (10.48). One

benefit of regression (10.57) is that it produces the appropriate estimate of s2
u because

it uses NT � N � K ¼ NðT � 1Þ � K as the degrees of freedom. Therefore, if it can

be done, regression (10.57) is a convenient way to carry out fixed e¤ects analysis

under Assumptions FE.1–FE.3.

There is an important di¤erence between the ĉci and b̂bFE . We already know that b̂bFE

is consistent with fixed T as N ! y. This is not the case with the ĉci. Each time a new

cross section observation is added, another ci is added, and information does not

accumulate on the ci as N ! y. Each ĉci is an unbiased estimator of ci when the ci

are treated as parameters, at least if we maintain Assumption FE.1 and the finite

sample analogue of Assumption FE.2. When we add Assumption FE.3, the Gauss-

Markov assumptions hold (conditional on X ), and ĉc1; ĉc2; . . . ; ĉcN are best linear

unbiased conditional on X. (The ĉci give practical examples of estimators that are

unbiased but not consistent.)

Econometric software that employs fixed e¤ects usually suppresses the ‘‘estimates’’

of the ci, although an overall intercept is often reported. The overall intercept is

either for an arbitrary cross section unit or, more commonly, for the average of the ĉci

across i.

Sometimes it is useful to obtain the ĉci even when regression (10.57) is infeasible.

Using the OLS first-order conditions, each ĉci can be shown to be

ĉci ¼ yi � xib̂bFE ; i ¼ 1; 2; . . . ;N ð10:58Þ

After obtaining the ĉci, the sample average, sample standard deviation, and quantiles

can be obtained to get some idea of how much heterogeneity is in the population.
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(For example: Is the population distribution of ci spread out or tightly centered about

its mean? Is the distribution symmetric?) With large T, the ĉci can be precise enough to

learn something about the distribution of ci. With small T, the ĉci can contain sub-

stantial noise. Under the classical linear model assumptions (which require, in addi-

tion to Assumptions FE.1–FE.3, normality of the uit), we can test the equality of the

ci using a standard F test for T of any size. [The degrees of freedom are N � 1 and

NðT � 1Þ � K .] Unfortunately, the properties of this test as N ! y with T fixed are

unknown without the normality assumption.

Generally, we should view the fact that the dummy variable regression (10.57)

produces b̂bFE as the coe‰cient vector on xit as a coincidence. While there are other

unobserved e¤ects models where ‘‘estimating’’ the unobserved e¤ects along with the

vector b results in a consistent estimator of b, there are many cases where this

approach leads to trouble. As we will see in Part IV, many nonlinear panel data

models with unobserved e¤ects su¤er from an incidental parameters problem, where

estimating the incidental parameters, ci, along with b produces an inconsistent esti-

mator of b.

10.5.4 Serial Correlation and the Robust Variance Matrix Estimator

Recall that the FE estimator is consistent and asymptotically normal under

Assumptions FE.1 and FE.2. But without Assumption FE.3, expression (10.54) gives

an improper variance matrix estimator. While heteroskedasticity in uit is always a

potential problem, serial correlation is likely to be more important in certain appli-

cations. When applying the FE estimator, it is important to remember that nothing

rules out serial correlation in fuit: t ¼ 1; . . . ;Tg. While it is true that the observed

serial correlation in the composite errors, vit ¼ ci þ uit, is dominated by the presence

of ci, there can also be serial correlation that dies out over time. Sometimes, fuitg can

have very strong serial dependence, in which case the usual FE standard errors

obtained from expression (10.54) can be very misleading. This possibility tends to be

a bigger problem with large T. (As we will see, there is no reason to worry about

serial correlation in uit when T ¼ 2.)

Testing the idiosyncratic errors, fuitg, for serial correlation is somewhat tricky. A

key point is that we cannot estimate the uit; because of the time demeaning used

in FE, we can only estimate the time-demeaned errors, €uuit. As shown in equation

(10.52), the time-demeaned errors are negatively correlated if the uit are uncorrelated.

When T ¼ 2, €uui1 ¼ �€uui2 for all i, and so there is perfect negative correlation. This

result shows that for T ¼ 2 it is pointless to use the €uuit to test for any kind of serial

correlation pattern.
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When T b 3, we can use equation (10.52) to determine if there is serial correlation

in fuitg. Naturally, we use the fixed e¤ects residuals, ûuit. One simplification is obtained

by applying Problem 7.4: we can ignore the estimation error in b in obtaining the

asymptotic distribution of any test statistic based on sample covariances and vari-

ances. In other words, it is as if we are using the €uuit, rather than the ûuit. The test is

complicated by the fact that the f€uuitg are serially correlated under the null hypothesis.

There are two simple possibilities for dealing with this. First, we can just use any two

time periods (say, the last two), to test equation (10.52) using a simple regression. In

other words, run the regression

ûuiT on ûui;T�1; i ¼ 1; . . . ;N

and use d̂d, the coe‰cient on ûui;T�1, along with its standard error, to test H0: d ¼
�1=ðT � 1Þ, where d ¼ Corrð€uui;T�1; €uuiT Þ. Under Assumptions FE.1–FE.3, the usual t

statistic has an asymptotic normal distribution. (It is trivial to make this test robust

to heteroskedasticity.)

Alternatively, we can use more time periods if we make the t statistic robust to

arbitrary serial correlation. In other words, run the pooled OLS regression

ûuit on ûui; t�1; t ¼ 3; . . . ;T ; i ¼ 1; . . . ;N

and use the fully robust standard error for pooled OLS; see equation (7.26). It may

seem a little odd that we make a test for serial correlation robust to serial correlation,

but this need arises because the null hypothesis is that the time-demeaned errors are

serially correlated. This approach clearly does not produce an optimal test against,

say, AR(1) correlation in the uit, but it is very simple and may be good enough to

indicate a problem.

If we find serial correlation, we should, at a minimum, adjust the asymptotic vari-

ance matrix estimator and test statistics. Fortunately, we can apply the results from

Chapter 7 directly to obtain a fully robust asymptotic variance matrix estimator. Let

ûui 1 €yyi � €XXib̂bFE , i ¼ 1; 2; . . . ;N denote the T � 1 vectors fixed e¤ects residuals.

Applying equation (7.26), the robust variance matrix estimator of b̂bFE is

Avar̂rð b̂bFEÞ ¼ ð€XX 0 €XXÞ�1
XN

i¼1

€XX 0
i ûuiûu

0
i
€XXi

 !
ð€XX 0 €XXÞ�1 ð10:59Þ

which was suggested by Arellano (1987) and follows from the general results of

White (1984, Chapter 6). The robust variance matrix estimator is valid in the pres-

ence of any heteroskedasticity or serial correlation in fuit: t ¼ 1; . . . ;Tg, provided

Basic Linear Unobserved E¤ects Panel Data Models 275



that T is small relative to N. [Remember, equation (7.26) is justified for fixed T,

N ! y asymptotics.] The robust standard errors are obtained as the square roots

of the diagonal elements of the matrix (10.59), and matrix (10.59) can be used as the

V̂V matrix in constructing Wald statistics. Unfortunately, the sum of squared resid-

uals form of the F statistic is no longer asymptotically valid when Assumption FE.3

fails.

Example 10.5 (continued): We now report the robust standard errors for the

logðscrapÞ equation along with the usual FE standard errors:

logðŝscrapÞ ¼ �:080

ð:109Þ
½:096�

d88 � :247

ð:133Þ
½:193�

d89 � :252

ð:151Þ
½:140�

grant � :422

ð:210Þ
½:276�

grant�1

The robust standard error on grant is actually smaller than the usual standard error,

while the robust standard error on grant�1 is larger than the usual one. As a result,

the absolute value of the t statistic on grant�1 drops from about 2 to just over 1.5.

Remember, with fixed T as N ! y, the robust standard errors are just as valid

asymptotically as the nonrobust ones when Assumptions FE.1–FE.3 hold. But the

usual standard errors and test statistics may be better behaved under Assumptions

FE.1–FE.3 if N is not very large relative to T, especially if uit is normally distributed.

10.5.5 Fixed E¤ects GLS

Recall that Assumption FE.3 can fail for two reasons. The first is that the conditional

variance matrix does not equal the unconditional variance matrix: Eðuiu
0
i j xi; ciÞ0

Eðuiu
0
i Þ. Even if Eðuiu

0
i j xi; ciÞ ¼ Eðuiu

0
i Þ, the unconditional variance matrix may not

be scalar: Eðuiu
0
i Þ0 s2

u IT , which means either that the variance of uit changes with t

or, probably more importantly, that there is serial correlation in the idiosyncratic

errors. The robust variance matrix (10.59) is valid in any case.

Rather than compute a robust variance matrix for the FE estimator, we can in-

stead relax Assumption FE.3 to allow for an unrestricted, albeit constant, conditional

covariance matrix. This is a natural route to follow if the robust standard errors of

the fixed e¤ects estimator are too large to be useful and if there is evidence of serial

dependence or a time-varying variance in the uit.

assumption FEGLS.3: Eðuiu
0
i j xi; ciÞ ¼ L, a T � T positive definite matrix.

Under Assumption FEGLS.3, Eð€uui€uu
0
i j €xxiÞ ¼ Eð€uui€uu

0
i Þ. Further, using €uui ¼ QT ui,

Eð€uui€uu
0
i Þ ¼ QT Eðuiu

0
i ÞQT ¼ QTLQT ð10:60Þ
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which has rank T � 1. The deficient rank in expression (10.60) causes problems for

the usual approach to GLS, because the variance matrix cannot be inverted. One way

to proceed is to use a generalized inverse. A much easier approach—and one that

turns out to be algebraically identical—is to drop one of the time periods from the

analysis. It can be shown (see Im, Ahn, Schmidt, and Wooldridge, 1999) that it does

not matter which of these time periods is dropped: the resulting GLS estimator is the

same.

For concreteness, suppose we drop time period T, leaving the equations

€yyi1 ¼ €xxi1b þ €uui1

..

.

€yyi;T�1 ¼ €xxi;T�1b þ €uui;T�1

ð10:61Þ

So that we do not have to introduce new notation, we write the system (10.61) as

equation (10.49), with the understanding that now €yyi is ðT � 1Þ � 1, €XXi is ðT � 1Þ�
K , and €uui is ðT � 1Þ � 1. Define the ðT � 1Þ � ðT � 1Þ positive definite matrix W1
Eð€uui€uu

0
i Þ. We do not need to make the dependence of W on L and QT explicit; the key

point is that, if no restrictions are made on L, then W is also unrestricted.

To estimate W, we estimate b by fixed e¤ects in the first stage. After dropping

the last time period for each i, define the ðT � 1Þ � 1 residuals ^̂uûuui ¼ €yyi � €XXib̂bFE , i ¼
1; 2; . . . ;N. A consistent estimator of W is

ŴW ¼ N�1
XN

i¼1

^̂uûuui
^̂uûuu 0

i ð10:62Þ

The fixed e¤ects GLS (FEGLS) estimator is defined by

b̂bFEGLS ¼
XN

i¼1

€XX 0
i ŴW

�1 €XXi

 !�1 XN

i¼1

€XX 0
i ŴW

�1€yyi

 !

where €XXi and €yyi are defined with the last time period dropped. For consistency of

FEGLS, we replace Assumption FE.2 with a new rank condition:

assumption FEGLS.2: rank Eð€XX 0
iW

�1 €XXiÞ ¼ K :

Under Assumptions FE.1 and FEGLS.2, the FEGLS estimator is consistent. When

we add Assumption FEGLS.3, the asymptotic variance is easy to estimate:

A ^varvarð b̂bFEGLSÞ ¼
XN

i¼1

€XX 0
i ŴW

�1 €XXi

 !�1
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The sum of squared residual statistics from FGLS can be used to test multiple

restrictions. Note that G ¼ T � 1 in the F statistic in equation (7.53).

The FEGLS estimator was proposed by Kiefer (1980) when the ci are treated as

parameters. As we just showed, the procedure consistently estimates b when we view

ci as random and allow it to be arbitrarily correlated with xit.

The FEGLS estimator is asymptotically no less e‰cient than the FE estimator

under Assumption FEGLS.3, even when L ¼ s2
u IT . Generally, if L0 s2

u IT , FEGLS

is more e‰cient than FE, but this conclusion relies on the large-N, fixed-T asymp-

totics. Unfortunately, because FEGLS still uses the fixed e¤ects transformation to

remove ci, it can have large asymptotic standard errors if the matrices €XXi have col-

umns close to zero.

Rather than allowing W to be an unrestricted matrix, we can impose restrictions on

L that imply W has a restricted form. For example, Bhargava, Franzini, and Naren-

dranatahn (1982) (BFN) assume that fuitg follows a stable, homoskedastic AR(1)

model. This assumption implies that W depends on only three parameters, s2
c , s2

u , and

the AR coe‰cient, r, no matter how large T is. BFN obtain a transformation that

eliminates the unobserved e¤ect, ci, and removes the serial correlation in uit. They

also propose estimators of r, so that feasible GLS is possible. Modeling fuitg as a

specific time series process is attractive when N is not very large relative to T, as

estimating an unrestricted covariance matrix for €uui [the ðT � 1Þ � 1 vector of time-

demeaned errors] without large N can lead to poor finite-sample performance of the

FGLS estimator. However, the only general statements we can make concern fixed-

T, N ! y asymptotics. In this scenario, the FGLS estimator that uses unrestricted

W is no less asymptotically e‰cient than an FGLS estimator that puts restrictions on

W. And, if the restrictions on W are incorrect, the estimator that imposes the restric-

tions is less asymptotically e‰cient. Therefore, on theoretical grounds, we prefer an

estimator of the type in equation (10.62).

10.5.6 Using Fixed E¤ects Estimation for Policy Analysis

There are other ways to interpret the fixed e¤ects transformation to illustrate why

fixed e¤ects is useful for policy analysis and program evaluation. Consider the model

yit ¼ xitb þ vit ¼ zitgþ dwit þ vit

where vit may or may not contain an unobserved e¤ect. Let wit be the policy variable

of interest; it could be continuous or discrete. The vector zit contains other controls

that might be correlated with wit, including time-period dummy variables.

As an exercise, you can show that su‰cient for consistency of fixed e¤ects, along

with the rank condition FE.2, is
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E½x 0
itðvit � viÞ� ¼ 0; t ¼ 1; 2; . . . ;T

This assumption shows that each element of xit, and in particular the policy variable

wit, can be correlated with vi. What fixed e¤ects requires for consistency is that wit be

uncorrelated with deviations of vit from the average over the time period. So a policy

variable, such as program participation, can be systematically related to the persistent

component in the error vit as measured by vi. It is for this reason that FE is often

superior to be pooled OLS or random e¤ects for applications where participation in a

program is determined by preprogram attributes that also a¤ect yit.

10.6 First Di¤erencing Methods

10.6.1 Inference

In Section 10.1 we used di¤erencing to eliminate the unobserved e¤ect ci with T ¼ 2.

We now study the di¤erencing transformation in the general case of model (10.41).

For completeness, we state the first assumption as follows:

assumption FD.1: Same as Assumption FE.1.

We emphasize that the model and the interpretation of b are exactly as in Section

10.5. What di¤ers is our method for estimating b.

Lagging the model (10.41) one period and subtracting gives

Dyit ¼ Dxitb þ Duit; t ¼ 2; 3; . . . ;T ð10:63Þ

where Dyit ¼ yit � yi; t�1, Dxit ¼ xit � xi; t�1, and Duit ¼ uit � ui; t�1. As with the FE

transformation, this first-di¤erencing transformation eliminates the unobserved e¤ect

ci. In di¤erencing we lose the first time period for each cross section: we now have

T � 1 time periods for each i, rather than T. If we start with T ¼ 2, then, after dif-

ferencing, we arrive at one time period for each cross section: Dyi2 ¼ Dxi2b þ Dui2.

Equation (10.63) makes it clear that the elements of xit must be time varying (for at

least some cross section units); otherwise Dxit has elements that are identically zero

for all i and t. Also, while the intercept in the original equation gets di¤erenced away,

equation (10.63) contains changes in time dummies if xit contains time dummies. In

the T ¼ 2 case, the coe‰cient on the second-period time dummy becomes the inter-

cept in the di¤erenced equation. If we di¤erence the general equation (10.43) we get

Dyit ¼ y2ðDd2tÞ þ � � � þ yTðDdTtÞ þ ðDd2tÞzig2

þ � � � þ ðDdTtÞzigT þ Dwitdþ Duit ð10:64Þ
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The parameters y1 and g1 are not identified because they disappear from the trans-

formed equation, just as with fixed e¤ects.

The first-di¤erence (FD) estimator, b̂bFD, is the pooled OLS estimator from the

regression

Dyit on Dxit; t ¼ 2; . . . ;T ; i ¼ 1; 2; . . . ;N ð10:65Þ

Under Assumption FD.1, pooled OLS estimation of the first-di¤erenced equations

will be consistent because

EðDx 0
itDuitÞ ¼ 0; t ¼ 2; 3; . . . ;T ð10:66Þ

Therefore, Assumption POLS.1 from Section 7.8 holds. In fact, strict exogeneity

holds in the first-di¤erenced equation:

EðDuit jDxi2;Dxi3; . . . ;DxiT Þ ¼ 0; t ¼ 2; 3; . . . ;T

which means the FD estimator is actually unbiased conditional on X.

To arrive at assumption (10.66) we clearly can get by with an assumption weaker

than Assumption FD.1. The key point is that assumption (10.66) fails if uit is corre-

lated with xi; t�1, xit, or xi; tþ1, and so we just assume that xis is uncorrelated with uit

for all t and s.

For completeness, we state the rank condition for the FD estimator:

assumption FD.2: rank
PT

t¼2 EðDx 0
itDxitÞ

� �
¼ K .

In practice, Assumption FD.2 rules out time-constant explanatory variables and

perfect collinearity among the time-varying variables.

Assuming the data have been ordered as we discussed earlier, first di¤erencing is

easy to implement provided we keep track of which transformed observations are

valid and which are not. Di¤erences for observation numbers 1, T þ 1, 2T þ 1;

3T þ 1; . . . ; and ðN � 1ÞT þ 1 should be set to missing. These observations corre-

spond to the first time period for every cross section unit in the original data set; by

definition, there is no first di¤erence for the t ¼ 1 observations. A little care is needed

so that di¤erences between the first time period for unit i þ 1 and the last time period

for unit i are not treated as valid observations. Making sure these are set to missing

is easy when a year variable or time period dummies have been included in the data

set.

One reason to prefer the FD estimator to the FE estimator is that FD is easier to

implement without special software. Are there statistical reasons to prefer FD to FE?

Recall that, under Assumptions FE.1–FE.3, the fixed e¤ects estimator is asymp-
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totically e‰cient in the class of estimators using the strict exogeneity assumption

FE.1. Therefore, the first di¤erence estimator is less e‰cient than fixed e¤ects under

Assumptions FE.1–FE.3. Assumption FE.3 is key to the e‰ciency of FE. It assumes

homoskedasticity and no serial correlation in uit. Assuming that the fuit: t ¼
1; 2; . . .Tg are serially uncorrelated may be too strong. An alternative assumption is

that the first di¤erence of the idiosyncratic errors, feit 1Duit; t ¼ 2; . . . ;Tg, are seri-

ally uncorrelated (and have constant variance):

assumption FD.3: Eðeie
0
i j xi1; . . . ; xiT ; ciÞ ¼ s2

e IT�1, where ei is the ðT � 1Þ � 1

vector containing eit, t ¼ 2; . . . ;T .

Under Assumption FD.3 we can write uit ¼ ui; t�1 þ eit, so that no serial correlation

in the eit implies that uit is a random walk. A random walk has substantial serial de-

pendence, and so Assumption FD.3 represents an opposite extreme from Assumption

FE.3.

Under Assumptions FD.1–FD.3 it can be shown that the FD estimator is most

e‰cient in the class of estimators using the strict exogeneity assumption FE.1. Fur-

ther, from the pooled OLS analysis in Section 7.8,

A ^varvarð b̂bFDÞ ¼ ŝs2
e ðDX 0DXÞ�1 ð10:67Þ

where ŝs2
e is a consistent estimator of s2

e . The simplest estimator is obtained by com-

puting the OLS residuals

êeit ¼ Dyit � Dxitb̂bFD ð10:68Þ

from the pooled regression (10.65). A consistent estimator of s2
e is

ŝs2
e ¼ ½NðT � 1Þ � K ��1

XN

i¼1

XT

t¼2

êe2
it ð10:69Þ

which is the usual error variance estimator from regression (10.65). These equations

show that, under Assumptions FD.1–FD.3, the usual OLS standard errors from the

first di¤erence regression (10.65) are asymptotically valid.

Unlike in the FE regression (10.48), the denominator in equation (10.69) is cor-

rectly obtained from regression (10.65). Dropping the first time period appropriately

captures the lost degrees of freedom (N of them).

Under Assumption FD.3, all statistics reported from the pooled regression on the

first-di¤erenced data are asymptotically valid, including F statistics based on sums of

squared residuals.
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10.6.2 Robust Variance Matrix

If Assumption FD.3 is violated, then, as usual, we can compute a robust variance

matrix. The estimator in equation (7.26) applied in this context is

A ^varvarð b̂bFDÞ ¼ ðDX 0DXÞ�1
XN

i¼1

DX 0
i êeiêe

0
iDXi

 !
ðDX 0DXÞ�1 ð10:70Þ

where DX denotes the NðT � 1Þ � K matrix of stacked first di¤erences of xit.

Example 10.6 (FD Estimation of the E¤ects of Job Training Grants): We now esti-

mate the e¤ect of job training grants on logðscrapÞ using first di¤erencing. Specifi-

cally, we use pooled OLS on

DlogðscrapitÞ ¼ d1 þ d2d89t þ b1Dgrantit þ b2Dgranti; t�1 þ Duit

Rather than di¤erence the year dummies and omit the intercept, we simply include an

intercept and a dummy variable for 1989 to capture the aggregate time e¤ects. If we

were specifically interested in the year e¤ects from the structural model (in levels),

then we should di¤erence those as well.

The estimated equation is

DlogðŝscrapÞ ¼ �:091

ð:091Þ
½:088�

� :096

ð:125Þ
½:111�

d89 � :223

ð:131Þ
½:128�

Dgrant � :351

ð:235Þ
½:265�

Dgrant�1

R2 ¼ :037

where the usual standard errors are in parentheses and the robust standard errors are

in brackets. We report R2 here because it has a useful interpretation: it measures the

amount of variation in the growth in the scrap rate that is explained by Dgrant and

Dgrant�1 (and d89). The estimates on grant and grant�1 are fairly similar to the fixed

e¤ects estimates, although grant is now statistically more significant than grant�1.

The usual F test for joint significance of Dgrant and Dgrant�1 is 1.53 with p-

value ¼ :222.

10.6.3 Testing for Serial Correlation

Under Assumption FD.3, the errors eit 1Duit should be serially uncorrelated. We

can easily test this assumption given the pooled OLS residuals from regression

(10.65). Since the strict exogeneity assumption holds, we can apply the simple form of

the test in Section 7.8. The regression is based on T � 2 time periods:
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êeit ¼ r̂r1êei; t�1 þ errorit; t ¼ 3; 4; . . . ;T ; i ¼ 1; 2; . . . ;N ð10:71Þ

The test statistic is the usual t statistic on r̂r1. With T ¼ 2 this test is not available, nor

is it necessary. With T ¼ 3, regression (10.71) is just a cross section regression be-

cause we lose the t ¼ 1 and t ¼ 2 time periods.

If the idiosyncratic errors fuit: t ¼ 1; 2; . . . ;Tg are uncorrelated to begin with,

feit: t ¼ 2; 3; . . . ;Tg will be autocorrelated. In fact, under Assumption FE.3 it is easily

shown that Corrðeit; ei; t�1Þ ¼ �:5. In any case, a finding of significant serial correla-

tion in the eit warrants computing the robust variance matrix for the FD estimator.

Example 10.6 (continued): We test for AR(1) serial correlation in the first-di¤erenced

equation by regressing êeit on êei; t�1 using the year 1989. We get r̂r1 ¼ :237 with t statistic

¼ 1.76. There is marginal evidence of positive serial correlation in the first di¤erences

Duit. Further, r̂r1 ¼ :237 is very di¤erent from r1 ¼ �:5, which is implied by the stan-

dard random and fixed e¤ects assumption that the uit are serially uncorrelated.

An alternative to computing robust standard errors and test statistics is to use

an FDGLS analysis under the assumption that Eðeie
0
i j xiÞ is a constant ðT � 1Þ�

ðT � 1Þ matrix. We omit the details, as they are similar to the FEGLS case in Section

10.5.5. As with FEGLS, we could impose structure on Eðuiu
0
i Þ, such as a stable, homo-

skedastic AR(1) model, and then derive Eðeie
0
i Þ in terms of a small set of parameters.

10.6.4 Policy Analysis Using First Di¤erencing

First di¤erencing a structural equation with an unobserved e¤ect is a simple yet

powerful method of program evaluation. Many questions can be addressed by having

a two-year panel data set with control and treatment groups available at two points

in time.

In applying first di¤erencing, we should di¤erence all variables appearing in the

structural equation to obtain the estimating equation, including any binary indicators

indicating participation in the program. The estimates should be interpreted in the

orginal equation because it allows us to think of comparing di¤erent units in the cross

section at any point in time, where one unit receives the treatment and the other does

not.

In one special case it does not matter whether the policy variable is di¤erenced.

Assume that T ¼ 2, and let progit denote a binary indicator set to one if person i was

in the program at time t. For many programs, progi1 ¼ 0 for all i: no one participated

in the program in the initial time period. In the second time period, progi2 is unity for

those who participate in the program and zero for those who do not. In this one case,

Dprogi ¼ progi2, and the first-di¤erenced equation can be written as
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Dyi2 ¼ y2 þ Dzi2gþ d1progi2 þ Dui2 ð10:72Þ

The e¤ect of the policy can be obtained by regressing the change in y on the

change in z and the policy indicator. When Dzi2 is omitted, the estimate of d1 from

equation (10.72) is the di¤erence-in-di¤erences (DID) estimator (see Problem 10.4):

d̂d1 ¼ Dytreat � Dycontrol . This is similar to the DID estimator from Section 6.3—see

equation (6.32)—but there is an important di¤erence: with panel data, the di¤erences

over time are for the same cross section units.

If some people participated in the program in the first time period, or if more than

two periods are involved, equation (10.72) can give misleading answers. In general,

the equation that should be estimated is

Dyit ¼ xt þ Dzitgþ d1Dprogit þ Duit ð10:73Þ

where the program participation indicator is di¤erenced along with everything else,

and the xt are new period intercepts. Example 10.6 is one such case. Extensions of the

model, where progit appears in other forms, are discussed in Chapter 11.

10.7 Comparison of Estimators

10.7.1 Fixed E¤ects versus First Di¤erencing

When we have only two time periods, fixed e¤ects estimation and first di¤erencing

produce identical estimates and inference, as you are asked to show in Problem 10.3.

First di¤erencing is easier to implement, and all procedures that can be applied to

a single cross section—such as heteroskedasticity-robust inference—can be applied

directly.

When T > 2, the choice between FD and FE hinges on the assumptions about the

idiosyncratic errors, uit. In particular, the FE estimator is more e‰cient under As-

sumption FE.3—the uit are serially uncorrelated—while the FD estimator is more

e‰cient when uit follows a random walk. In many cases, the truth is likely to lie

somewhere in between.

If FE and FD estimates di¤er in ways that cannot be attributed to sampling error,

we should worry about the strict exogeneity assumption. If uit is correlated with xis

for any t and s, FE and FD generally have di¤erent probability limits. Any of the

standard endogeneity problems, including measurement error, time-varying omitted

variables, and simultaneity, generally cause correlation between xit and uit—that is,

contemporaneous correlation—which then causes both FD and FE to be inconsistent

and to have di¤erent probability limits. (We explicitly consider these problems in
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Chapter 11.) In addition, correlation between uit and xis for s0 t causes FD and FE

to be inconsistent. When lagged xit is correlated with uit, we can solve lack of strict

exogeneity by including lags and interpreting the equation as a distributed lag model.

More problematical is when uit is correlated with future xit: only rarely does putting

future values of explanatory variables in an equation lead to an interesting economic

model. In Chapter 11 we show how to estimate the parameters consistently when

there is feedback from uit to xis, s > t.

We can formally test the assumptions underlying the consistency of the FE and FD

estimators by using a Hausman test. It might be important to use a robust form of

the Hausman test that maintains neither Assumption FE.3 nor Assumption FD.3

under the null hypothesis. This approach is not di‰cult—see Problem 10.6—but we

focus here on regression-based tests, which are easier to compute.

If T ¼ 2, it is easy to test for strict exogeneity. In the equation Dyi ¼ Dxib þ Dui,

neither xi1 nor xi2 should be significant as additional explanatory variables in the

first-di¤erenced equation. We simply add, say, xi2 to the FD equation and carry out

an F test for significance of xi2. With more than two time periods, a test of strict

exogeneity is a test of H0: g ¼ 0 in the expanded equation

Dyt ¼ Dxtb þ wtgþ Dut; t ¼ 2; . . . ;T

where wt is a subset of xt (that would exclude time dummies). Using the Wald

approach, this test can be made robust to arbitrary serial correlation or hetero-

skedasticity; under Assumptions FD.1–FD.3 the usual F statistic is asymptotically

valid.

A test of strict exogeneity using fixed e¤ects, when T > 2, is obtained by specifying

the equation

yit ¼ xitb þ wi; tþ1dþ ci þ uit; t ¼ 1; 2; . . . ;T � 1

where wi; tþ1 is again a subset of xi; tþ1. Under strict exogeneity, d ¼ 0, and we can

carry out the test using fixed e¤ects estimation. (We lose the last time period by

leading wit.) An example is given in Problem 10.12.

Under strict exogeneity, we can use a GLS procedure on either the time-demeaned

equation or the first-di¤erenced equation. If the variance matrix of ui is unrestricted,

it does not matter which transformation we use. Intuitively, this point is pretty clear,

since allowing Eðuiu
0
i Þ to be unrestricted places no restrictions on Eð€uui€uu

0
i Þ or EðDuiDu 0

i Þ.
Im, Ahn, Schmidt, and Wooldridge (1999) show formally that the FEGLS and

FDGLS estimators are asymptotically equivalent under Assumptions FE.1 and

FEGLS.3 and the appropriate rank conditions.
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10.7.2 The Relationship between the Random E¤ects and Fixed E¤ects Estimators

In cases where the key variables in xt do not vary much over time, fixed e¤ects and

first-di¤erencing methods can lead to imprecise estimates. We may be forced to use

random e¤ects estimation in order to learn anything about the population param-

eters. If a random e¤ects analysis is appropriate—that is, if ci is orthogonal to xit—

then the random e¤ects estimators can have much smaller variances than the FE or

FD estimators. We now obtain an expression for the RE estimator that allows us to

compare it with the FE estimator.

Using the fact that j 0T jT ¼ T , we can write W under the random e¤ects structure as

W ¼ s2
u IT þ s2

c jT j 0T ¼ s2
u IT þ Ts2

c jT ðj 0T jT Þ
�1j 0T

¼ s2
u IT þ Ts2

c PT ¼ ðs2
u þ Ts2

c ÞðPT þ hQTÞ

where PT 1 IT � QT ¼ jT ðj 0T jTÞ
�1j 0T and h1 s2

u=ðs2
u þ Ts2

c Þ. Next, define ST 1
PT þ hQT . Then S�1

T ¼ PT þ ð1=hÞQT , as can be seen by direct matrix multiplica-

tion. Further, S
�1=2
T ¼ PT þ ð1= ffiffiffi

h
p ÞQT , because multiplying this matrix by itself

gives S�1
T (the matrix is clearly symmetric, since PT and QT are symmetric). After

simple algebra, it can be shown that S
�1=2
T ¼ ð1 � lÞ�1½IT � lPT �, where l ¼ 1 � ffiffiffi

h
p

.

Therefore,

W�1=2 ¼ ðs2
u þ Ts2

c Þ
�1=2ð1 � lÞ�1½IT � lPT � ¼ ð1=suÞ½IT � lPT �

where l ¼ 1 � ½s2
u=ðs2

u þ Ts2
c Þ�

1=2. Assume for the moment that we know l. Then the

RE estimator is obtained by estimating the transformed equation CT yi ¼ CT Xibþ
CT vi by system OLS, where CT 1 ½IT � lPT �. Write the transformed equation as

�yyi ¼ �XXib þ �vvi ð10:74Þ

The variance matrix of �vvi is Eð�vvi�vv
0
i Þ ¼ CTWCT ¼ s2

u IT , which verifies that �vvi has

variance matrix ideal for system OLS estimation.

The tth element of �yyi is easily seen to be yit � lyi, and similarly for �XXi. Therefore,

system OLS estimation of equation (10.74) is just pooled OLS estimation of

yit � lyi ¼ ðxit � lxiÞb þ ðvit � lviÞ

over all t and i. The errors in this equation are serially uncorrelated and homo-

skedastic under Assumption RE.3; therefore, they satisfy the key conditions for

pooled OLS analysis. The feasible RE estimator replaces the unknown l with its es-

timator, l̂l, so that b̂bRE can be computed from the pooled OLS regression

�yyit on �xxit; t ¼ 1; . . . ;T ; i ¼ 1; . . . ;N ð10:75Þ
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where now �xxit ¼ xit � l̂lxi and �yyit ¼ yit � l̂lyi, all t and i. Therefore, we can write

b̂bRE ¼
XN

i¼1

XT

t¼1

�xx 0
it�xxit

 !�1 XN

i¼1

XT

t¼1

�xx 0
it �yyit

 !
ð10:76Þ

The usual variance estimate from the pooled OLS regression (10.75), SSR/ðNT � KÞ,
is a consistent estimator of s2

u . The usual t statistics and F statistics from the pooled

regression are asymptotically valid under Assumptions RE.1–RE.3. For F tests, we

obtain l̂l from the unrestricted model.

Equation (10.76) shows that the random e¤ects estimator is obtained by a quasi-

time demeaning: rather than removing the time average from the explanatory and

dependent variables at each t, random e¤ects removes a fraction of the time average.

If l̂l is close to unity, the random e¤ects and fixed e¤ects estimates tend to be close.

To see when this result occurs, write l̂l as

l̂l ¼ 1 � f1=½1 þ Tðŝs2
c =ŝs

2
u Þ�g

1=2 ð10:77Þ

where ŝs2
u and ŝs2

c are consistent estimators of s2
u and s2

c (see Section 10.4). When

Tðŝs2
c =ŝs

2
u Þ is large, the second term in l̂l is small, in which case l̂l is close to unity. In

fact, l̂l ! 1 as T ! y or as ŝs2
c =ŝs

2
u ! y. For large T, it is not surprising to find

similar estimates from fixed e¤ects and random e¤ects. Even with small T, random

e¤ects can be close to fixed e¤ects if the estimated variance of ci is large relative to the

estimated variance of uit, a case often relevant for applications. (As l approaches

unity, the precision of the random e¤ects estimator approaches that of the fixed

e¤ects estimator, and the e¤ects of time-constant explanatory variables become

harder to estimate.)

Example 10.7 (Job Training Grants): In Example 10.4, T ¼ 3, ŝs2
u A :248, and

ŝs2
c A1:932, which gives l̂lA :797. This helps explain why the RE and FE estimates

are reasonably close.

Equations (10.76) and (10.77) also show how random e¤ects and pooled OLS are

related. Pooled OLS is obtained by setting l̂l ¼ 0, which is never exactly true but

could be close. In practice, l̂l is not usually close to zero because this outcome would

require ŝs2
u to be large relative to ŝs2

c .

In Section 10.4 we emphasized that consistency of random e¤ects hinges on the

orthogonality between ci and xit. In fact, Assumption POLS.1 is weaker than As-

sumption RE.1. We now see, because of the particular transformation used by the

RE estimator, that its inconsistency when Assumption RE.1b is violated can be small

relative to pooled OLS if s2
c is large relative to s2

u or if T is large.
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If we are primarily interested in the e¤ect of a time-constant variable in a panel

data study, the robustness of the FE estimator to correlation between the unobserved

e¤ect and the xit is practically useless. Without using an instrumental variables

approach—something we take up in Chapter 11—random e¤ects is probably our

only choice. Sometimes, applications of the RE estimator attempt to control for the

part of ci correlated with xit by including dummy variables for various groups,

assuming that we have many observations within each group. For example, if we

have panel data on a group of working people, we might include city dummy vari-

ables in a wage equation. Or, if we have panel data at the student level, we might in-

clude school dummy variables. Including dummy variables for groups controls for a

certain amount of heterogeneity that might be correlated with the (time-constant)

elements of xit. By using RE, we can e‰ciently account for any remaining serial

correlation due to unobserved time-constant factors. (Unfortunately, the language

used in empirical work can be confusing. It is not uncommon to see school dummy

variables referred to as ‘‘school fixed e¤ects’’ even though they appear in a random

e¤ects analysis at the individual level.)

Regression (10.75) using the quasi-time-demeaned data has several other practical

uses. Since it is just a pooled OLS regression that is asymptotically the same as using

l in place of l̂l, we can easily obtain standard errors that are robust to arbitrary het-

eroskedasticity in ci and uit as well as arbitrary serial correlation in the fuitg. All that

is required is an econometrics package that computes robust standard errors, t, and F

statistics for pooled OLS regression, such as Stata9. Further, we can use the residuals

from regression (10.75), say r̂rit, to test for serial correlation in rit 1 vit � lvi, which

are serially uncorrelated under Assumption RE.3a. If we detect serial correlation in

fritg, we conclude that Assumption RE.3a is false, and this result means that the uit

are serially correlated. Although the arguments are tedious, it can be shown that es-

timation of l and b has no e¤ect on the null limiting distribution of the usual (or

heteroskedasticity-robust) t statistic from the pooled OLS regression r̂rit on r̂ri; t�1,

t ¼ 2; . . . ;T ; i ¼ 1; . . . ;N.

10.7.3 The Hausman Test Comparing the RE and FE Estimators

Since the key consideration in choosing between a random e¤ects and fixed e¤ects

approach is whether ci and xit are correlated, it is important to have a method for

testing this assumption. Hausman (1978) proposed a test based on the di¤erence be-

tween the random e¤ects and fixed e¤ects estimates. Since FE is consistent when ci

and xit are correlated, but RE is inconsistent, a statistically significant di¤erence is

interpreted as evidence against the random e¤ects assumption RE.1b.
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Before we obtain the Hausman test, there are two caveats. First, strict exogeneity,

Assumption RE.1a, is maintained under the null and the alternative. Correlation

between xis and uit for any s and t causes both FE and RE to be inconsistent, and

generally their plims will di¤er.

A second caveat is that the test is usually implemented assuming that Assumption

RE.3 holds under the null. As we will see, this setup implies that the random e¤ects

estimator is more e‰cient than the FE estimator, and it simplifies computation of the

test statistic. But we must emphasize that Assumption RE.3 is an auxiliary assump-

tion, and it is not being tested by the Hausman statistic: the Hausman test has no

systematic power against the alternative that Assumption RE.1 is true but Assump-

tion RE.3 is false. Failure of Assumption RE.3 causes the usual Hausman test to

have a nonstandard limiting distribution, which means the resulting test could have

asymptotic size larger or smaller than the nominal size.

Assuming that Assumptions RE.1–RE.3 hold, consider the case where xit contains

only time-varying elements, since these are the only coe‰cients that we can estimate

using fixed e¤ects. Then

Avarð b̂bFEÞ ¼ s2
u ½Eð€XX

0
i
€XXiÞ��1=N and Avarð b̂bREÞ ¼ s2

u ½Eð�XX
0
i
�XXiÞ��1=N

where the tth row of €XXi is xit � xi and the tth row of �XXi is xit � lxi. Now

Eð�XX 0
i
�XXiÞ � Eð€XX 0

i
€XXiÞ ¼ E½X 0

i ðIT � lPTÞXi� � E½X 0
i ðIT � PT ÞXi�

¼ ð1 � lÞEðX 0
i PT XiÞ ¼ ð1 � lÞTEðx 0

i xiÞ

from which it follows that ½Avarð b̂bREÞ�
�1 � ½Avarð b̂bFEÞ�

�1 is positive definite, imply-

ing that Avarð b̂bFEÞ � Avarð b̂bREÞ is positive definite. Since l ! 1 as T ! y, these

expressions show that the asymptotic variance of the RE estimator tends to that of

FE as T gets large.

The original form of the Hausman statistic can be computed as follows. Let d̂dRE

denote the vector of random e¤ects estimates without the coe‰cients on time-constant

variables or aggregate time variables, and let d̂dFE denote the corresponding fixed

e¤ects estimates; let these each be M � 1 vectors. Then

H ¼ ðd̂dFE � d̂dREÞ0½A ^varvarðd̂dFEÞ � A ^varvarðd̂dREÞ��1ðd̂dFE � d̂dREÞ ð10:78Þ

is distributed asymptotically as w2
M under Assumptions RE.1–RE.3. A key to estab-

lishing the limiting chi-square distribution of H is to show that Avar½
ffiffiffiffiffi
N

p
ðd̂dFE � d̂dREÞ�

¼ Avar½
ffiffiffiffiffi
N

p
ðd̂dFE � dÞ� � Avar½

ffiffiffiffiffi
N

p
ðd̂dRE � dÞ�. Newey and McFadden (1994, Section

5.3) provide general su‰cient conditions, which are met by the FE and RE estimators

under Assumptions RE.1–RE.3. (We cover these conditions in Chapter 14 in our
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discussion of general e‰ciency issues; see Lemma 14.1 and the surrounding discus-

sion.) The usual estimators of Avarðd̂dFEÞ and Avarðd̂dREÞ can be used in equation

(10.78), but if di¤erent estimates of s2
u are used, the matrix A ^varvarðd̂dFEÞ � A ^varvarðd̂dREÞ

need not be positive definite. Thus it is best to use either the fixed e¤ects estimate or

the random e¤ects estimate of s2
u in both places.

Often, we are primarly interested in a single parameter, in which case we can use a

t statistic that ignores the other parameters. (For example, if one element of xit is a

policy variable, and the other elements of xit are just controls or aggregrate time

dummies, we may only care about the coe‰cient on the policy variable.) Let d be

the element of b that we wish to use in the test. The Hausman test can be computed

as a t statistic version of (10.78), ðd̂dFE � d̂dREÞ=f½seðd̂dFEÞ�2 � ½seðd̂dREÞ�2g1=2, where the

standard errors are computed under the usual assumptions. Under Assumptions

RE.1–RE.3, the t statistic has an asymptotic standard normal distribution.

For testing more than one parameter, it is often easier to use an F statistic version

of the Hausman test. Let �xxit and �yyit be the quasi-demeaned data defined previously.

Let wit denote a 1 � M subset of time-varying elements of xit (excluding time dum-

mies); one can include all elements of xit that vary across i and t or a subset. Let €wwit

denote the time-demeaned version of wit, and consider the extended model

�yyit ¼ �xxitb þ €wwitxþ errorit; t ¼ 1; . . . ;T ; i ¼ 1; . . . ;N ð10:79Þ

where x is an M � 1 vector. The error terms are complicated because l̂l replaces l in

obtaining the quasi-demeaned data, but they can be treated as being homoskedastic

and serially uncorrelated because replacing l with l̂l does not matter asymptotically.

(This comment is just the usual observation that, in feasible GLS analysis, replacing

W with ŴW has no e¤ect on the asymptotic distribution of the feasible GLS estimator

as N ! y under strict exogeneity.) Now, the Hausman test can be implemented by

testing H0: x ¼ 0 using standard pooled OLS analysis. The simplest approach is to

compute the F statistic. The restricted SSR is obtained from the pooled regression

that can be used to obtain b̂bRE , namely regression (10.75). Call this sum of squared

residuals SSRr. The unrestricted SSR comes from the pooled estimation of (10.79).

Then the F statistic is

F ¼ ðSSRr � SSRurÞ
SSRur

� ðNT � K � MÞ
M

ð10:80Þ

Under H0 (which is Assumptions RE.1–RE.3 in this case), F can be treated as an

FM;NT�K�M random variable (because M � F @
a
w2

M ).

This statistic turns out to be identical to a statistic derived by Mundlak (1978), who

suggested putting wi in place of €wwit. Mundlak’s motivation is to test an alternative to
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Assumption RE.1b of the form Eðci j xiÞ ¼ Eðci jwiÞ ¼ g0 þ wig. The equivalence of

the two approaches follows because the regressors ð�xxit; €wwitÞ are just a nonsingular

linear transformation of the regressors ð�xxit;wiÞ, and so the SSRs in the unrestricted

regression are the same; the restricted SSRs are clearly the same.

If Assumption RE.3 fails, then a robust form of the Hausman statistic is needed.

Probably the easiest approach is to test H0: x ¼ 0 via a robust Wald statistic in the

context of pooled OLS estimation of (10.79), or with wi in place of €wwi. The robust test

should account for serial correlation across time as well as general heteroskedasticity.

As in any other context that uses statistical inference, it is possible to get a statis-

tical rejection of RE.1b (say, at the 5 percent level) with the di¤erences between the

RE and FE estimates being practically small. The opposite case is also possible: there

can be seemingly large di¤erences between the random e¤ects and fixed e¤ects esti-

mates but, due to large standard errors, the Hausman statistic fails to reject. What

should be done in this case? A typical response is to conclude that the random e¤ects

assumptions hold and to focus on the RE estimates. Unfortunately, we may be

committing a Type II error: failing to reject Assumption RE.1b when it is false.

Problems

10.1. Consider a model for new capital investment in a particular industry (say,

manufacturing), where the cross section observations are at the county level and there

are T years of data for each county:

logðinvestitÞ ¼ yt þ zitgþ d1taxit þ d2disasterit þ ci þ uit

The variable taxit is a measure of the marginal tax rate on capital in the county, and

disasterit is a dummy indicator equal to one if there was a significant natural disaster

in county i at time period t (for example, a major flood, a hurricane, or an earth-

quake). The variables in zit are other factors a¤ecting capital investment, and the yt

represent di¤erent time intercepts.

a. Why is allowing for aggregate time e¤ects in the equation important?

b. What kinds of variables are captured in ci?

c. Interpreting the equation in a causal fashion, what sign does economic reasoning

suggest for d1?

d. Explain in detail how you would estimate this model; be specific about the

assumptions you are making.
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e. Discuss whether strict exogeneity is reasonable for the two variables taxit

and disasterit; assume that neither of these variables has a lagged e¤ect on capital

investment.

10.2. Suppose you have T ¼ 2 years of data on the same group of N working indi-

viduals. Consider the following model of wage determination:

logðwageitÞ ¼ y1 þ y2d2t þ zitgþ d1 femalei þ d2d2t � femalei þ ci þ uit

The unobserved e¤ect ci is allowed to be correlated with zit and femalei. The variable

d2t is a time period indicator, where d2t ¼ 1 if t ¼ 2 and d2t ¼ 0 if t ¼ 1. In what

follows, assume that

Eðuit j femalei; zi1; zi2; ciÞ ¼ 0; t ¼ 1; 2

a. Without further assumptions, what parameters in the log wage equation can be

consistently estimated?

b. Interpret the coe‰cients y2 and d2.

c. Write the log wage equation explicitly for the two time periods. Show that the

di¤erenced equation can be written as

DlogðwageiÞ ¼ y2 þ Dzigþ d2 femalei þ Dui

where DlogðwageiÞ ¼ logðwagei2Þ � logðwagei1Þ, and so on.

10.3. For T ¼ 2 consider the standard unoberved e¤ects model

yit ¼ xitb þ ci þ uit; t ¼ 1; 2

Let b̂bFE and b̂bFD denote the fixed e¤ects and first di¤erence estimators, respectively.

a. Show that the FE and FD estimates are numerically identical.

b. Show that the error variance estimates from the FE and FD methods are numer-

ically identical.

10.4. A common setup for program evaluation with two periods of panel data is the

following. Let yit denote the outcome of interest for unit i in period t. At t ¼ 1, no

one is in the program; at t ¼ 2, some units are in the control group, and others are in

the experimental group. Let progit be a binary indicator equal to one if unit i is in the

program in period t; by the program design, progi1 ¼ 0 for all i. An unobserved

e¤ects model without additional covariates is

yit ¼ y1 þ y2d2t þ d1progit þ ci þ uit; Eðuit j progi2; ciÞ ¼ 0
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where d2t is a dummy variable equal to unity if t ¼ 2, and zero if t ¼ 1, and ci is the

unobserved e¤ect.

a. Explain why including d2t is important in these contexts. In particular, what

problems might be caused by leaving it out?

b. Why is it important to include ci in the equation?

c. Using the first di¤erencing method, show that ŷy2 ¼ Dycontrol and d̂d1 ¼ Dytreat �
Dycontrol , where Dycontrol is the average change in y over the two periods for the group

with progi2 ¼ 0, and Dytreat is the average change in y for the group where progi2 ¼
1. This formula shows that d̂d1, the di¤erence-in-di¤erences estimator, arises out of an

unobserved e¤ects panel data model.

d. Write down the extension of the model for T time periods.

e. A common way to obtain the DID estimator for two years of panel data is from

the model

yit ¼ a1 þ a2startt þ a3progi þ d1starttprogi þ uit ð10:81Þ

where Eðuit j startt; progiÞ ¼ 0, progi denotes whether unit i is in the program in the

second period, and startt is a binary variable indicating when the program starts. In

the two-period setup, startt ¼ d2t and progit ¼ starttprogi. The pooled OLS estimator

of d1 is the DID estimator from part c. With T > 2, the unobserved e¤ects model

from part d and pooled estimation of equation (10.81) no longer generally give the

same estimate of the program e¤ect. Which approach do you prefer, and why?

10.5. Assume that Assumptions RE.1 and RE.3a hold, but Varðci j xiÞ0VarðciÞ.
a. Describe the general nature of Eðviv

0
i j xiÞ.

b. What are the asymptotic properties of the random e¤ects estimator and the asso-

ciated test statistics? How should the random e¤ects statistics be modified?

10.6. Define the K � K symmetric matrices A1 1EðDX 0
iDXiÞ and A2 1Eð€XX 0

i
€XXiÞ,

and assume both are positive definite. Define ŷy1 ð b̂b 0
FD; b̂b

0
FEÞ

0 and y1 ðb 0; b 0Þ 0, both

2K � 1 vectors.

a. Under Assumption FE.1 (and the rank conditions we have given), find
ffiffiffiffiffi
N

p
ðŷy � yÞ

in terms of A1;A2, N�1=2
PN

i¼1 DX 0
iDui, and N�1=2

PN
i¼1

€XX 0
i€uui [with a opð1Þ remainder].

b. Explain how to consistently estimate Avar
ffiffiffiffiffi
N

p
ðŷy � yÞ without further assumptions.

c. Use parts a and b to obtain a robust Hausman statistic comparing the FD and FE

estimators. What is the limiting distribution of your statistic under H0?
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10.7. Use the two terms of data in GPA.RAW to estimate an unobserved e¤ects

version of the model in Example 7.8. You should drop the variable cumgpa (since this

variable violates strict exogeneity).

a. Estimate the model by random e¤ects, and interpret the coe‰cient on the in-season

variable.

b. Estimate the model by fixed e¤ects; informally compare the estimates to the RE

estimates, in particular that on the in-season e¤ect.

c. Construct the nonrobust Hausman test comparing RE and FE. Include all vari-

ables in wit that have some variation across i and t, except for the term dummy.

10.8. Use the data in NORWAY.RAW for the years 1972 and 1978 for a two-year

panel data analysis. The model is a simple distributed lag model:

logðcrimeitÞ ¼ y0 þ y1d78t þ b1clrprci; t�1 þ b2clrprci; t�2 þ ci þ uit

The variable clrprc is the clear-up percentage (the percentage of crimes solved). The

data are stored for two years, with the needed lags given as variables for each year.

a. First estimate this equation using a pooled OLS analysis. Comment on the deter-

rent e¤ect of the clear-up percentage, including interpreting the size of the coe‰-

cients. Test for serial correlation in the composite error vit assuming strict exogeneity

(see Section 7.8).

b. Estimate the equation by fixed e¤ects, and compare the estimates with the

pooled OLS estimates. Is there any reason to test for serial correlation? Obtain

heteroskedasticity-robust standard errors for the FE estimates.

c. Using FE analysis, test the hypothesis H0: b1 ¼ b2. What do you conclude? If the

hypothesis is not rejected, what would be a more parsimonious model? Estimate this

model.

10.9. Use the data in CORNWELL.RAW for this problem.

a. Estimate both a random e¤ects and a fixed e¤ects version of the model in Problem

7.11a. Compute the regression-based version of the Hausman test comparing RE and

FE.

b. Add the wage variables (in logarithmic form), and test for joint significance after

estimation by fixed e¤ects.

c. Estimate the equation by first di¤erencing, and comment on any notable changes.

Do the standard errors change much between fixed e¤ects and first di¤erencing?

d. Test the first-di¤erenced equation for AR(1) serial correlation.

Chapter 10294



10.10. An unobserved e¤ects model explaining current murder rates in terms of the

number of executions in the last three years is

mrdrteit ¼ yt þ b1execit þ b2unemit þ ci þ uit

where mrdrteit is the number of murders in state i during year t, per 10,000 people;

execit is the total number of executions for the current and prior two years; and

unemit is the current unemployment rate, included as a control.

a. Using the data in MURDER.RAW, estimate this model by first di¤erencing.

Notice that you should allow di¤erent year intercepts. Test the errors in the first-

di¤erenced equation for serial correlation.

b. Estimate the model by fixed e¤ects. Are there any important di¤erences from the

FD estimates?

c. Under what circumstances would execit not be strictly exogenous (conditional on

ci)?

10.11. Use the data in LOWBIRTH.RAW for this question.

a. For 1987 and 1990, consider the state-level equation

lowbrthit ¼ y1 þ y2d90t þ b1afdcprcit þ b2 logðphypcitÞ

þ b3 logðbedspcitÞ þ b4 logðpcincitÞ þ b5 logðpopulitÞ þ ci þ uit

where the dependent variable is percentage of births that are classified as low birth

weight and the key explanatory variable is afdcprc, the percentage of the population

in the welfare program, Aid to Families with Dependent Children (AFDC). The

other variables, which act as controls for quality of health care and income levels, are

physicians per capita, hospital beds per capita, per capita income, and population.

Interpretating the equation causally, what sign should each bj have? (Note: Partici-

pation in AFDC makes poor women eligible for nutritional programs and prenatal

care.)

b. Estimate the preceding equation by pooled OLS, and discuss the results. You

should report the usual standard errors and serial correlation–robust standard errors.

c. Di¤erence the equation to eliminate the state fixed e¤ects, ci, and reestimate the

equation. Interpret the estimate of b1 and compare it to the estimate from part b.

What do you make of b̂b2?

d. Add afdcprc2 to the model, and estimate it by FD. Are the estimates on afdcprc

and afdcprc2 sensible? What is the estimated turning point in the quadratic?
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10.12. The data in WAGEPAN.RAW are from Vella and Verbeek (1998) for 545

men who worked every year from 1980 to 1987. Consider the wage equation

logðwageitÞ ¼ yt þ b1educi þ b2blacki þ b3hispani þ b4experit

þ b5exper2
it þ b6marriedit þ b7unionit þ ci þ uit

The variables are described in the data set. Notice that education does not change

over time.

a. Estimate this equation by pooled OLS, and report the results in standard form.

Are the usual OLS standard errors reliable, even if ci is uncorrelated with all ex-

planatory variables? Explain. Compute appropriate standard errors.

b. Estimate the wage equation by random e¤ects. Compare your estimates with the

pooled OLS estimates.

c. Now estimate the equation by fixed e¤ects. Why is experit redundant in the model

even though it changes over time? What happens to the marriage and union pre-

miums as compared with the random e¤ects estimates?

d. Now add interactions of the form d81�educ, d82�educ; . . . ; d87�educ and estimate

the equation by fixed e¤ects. Has the return to education increased over time?

e. Return to the original model estimated by fixed e¤ects in part c. Add a lead of the

union variable, unioni; tþ1 to the equation, and estimate the model by fixed e¤ects

(note that you lose the data for 1987). Is unioni; tþ1 significant? What does this result

say about strict exogeneity of union membership?

10.13. Consider the standard linear unobserved e¤ects model (10.11), under the

assumptions

Eðuit j xi; hi; ciÞ ¼ 0; Varðuit j xi; hi; ciÞ ¼ s2
u hit; t ¼ 1; . . . ;T

where hi ¼ ðhi1; . . . ; hiT Þ. In other words, the errors display heteroskedasticity that

depends on hit. (In the leading case, hit is a function of xit.) Suppose you estimate b

by minimizing the weighted sum of squared residuals

XN

i¼1

XT

t¼1

ðyit � a1d1i � � � � � aNdNi � xitbÞ2=hit

with respect to the ai, i ¼ 1; . . . ;N and b, where dni ¼ 1 if i ¼ n. (This would seem to

be the natural analogue of the dummy variable regression, modified for known het-

eroskedasticity.) Can you justify this procedure with fixed T as N ! y?
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10.14. Suppose that we have the unobserved e¤ects model

yit ¼ aþ xitb þ zigþ hi þ uit

where the xitð1 � KÞ are time-varying, the zið1 � MÞ are time-constant,

Eðuit j xi; zi; hiÞ ¼ 0, t ¼ 1; . . . ;T , and Eðhi j xi; ziÞ ¼ 0. Let s2
h ¼ VarðhiÞ and s2

u ¼
VarðuitÞ. If we estimate b by fixed e¤ects, we are estimating the equation

yit ¼ xitb þ ci þ uit, where ci ¼ aþ zigþ hi.

a. Find s2
c 1VarðciÞ. Show that s2

c is at least as large as s2
h , and usually strictly

larger.

b. Explain why estimation of the model by fixed e¤ects will lead to a larger estimated

variance of the unobserved e¤ect than if we estimate the model by random e¤ects.

Does this result make intuitive sense?
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11More Topics in Linear Unobserved E¤ects Models

This chapter continues our treatment of linear, unobserved e¤ects panel data models.

We first cover estimation of models where the strict exogeneity Assumption FE.1

fails but sequential moment conditions hold. A simple approach to consistent esti-

mation involves di¤erencing combined with instrumental variables methods. We also

cover models with individual slopes, where unobservables can interact with explana-

tory variables, and models where some of the explanatory variables are assumed to

be orthogonal to the unobserved e¤ect while others are not.

The final section in this chapter briefly covers some non-panel-data settings where

unobserved e¤ects models and panel data estimation methods can be used.

11.1 Unobserved E¤ects Models without the Strict Exogeneity Assumption

11.1.1 Models under Sequential Moment Restrictions

In Chapter 10 all the estimation methods we studied assumed that the explanatory

variables were strictly exogenous (conditional on an unobserved e¤ect in the case of

fixed e¤ects and first di¤erencing). As we saw in the examples in Section 10.2.3, strict

exogeneity rules out certain kinds of feedback from yit to future values of xit. Gen-

erally, random e¤ects, fixed e¤ects, and first di¤erencing are inconsistent if an ex-

planatory variable in some time period is correlated with uit. While the size of the

inconsistency might be small—something we will investigate further—in other cases

it can be substantial. Therefore, we should have general ways of obtaining consistent

estimators as N ! y with T fixed when the explanatory variables are not strictly

exogenous.

The model of interest can still be written as

yit ¼ xitb þ ci þ uit; t ¼ 1; 2; . . . ;T ð11:1Þ

but, in addition to allowing ci and xit to be arbitrarily correlated, we now allow uit to

be correlated with future values of the explanatory variables, ðxi; tþ1; xi; tþ2; . . . ; xiT Þ.
We saw in Example 10.3 that uit and xi; tþ1 must be correlated because xi; tþ1 ¼ yit.

Nevertheless, there are many models, including the AR(1) model, for which it is

reasonable to assume that uit is uncorrelated with current and past values of xit.

Following Chamberlain (1992b), we introduce sequential moment restrictions:

Eðuit j xit; xi; t�1; . . . ; xi1; ciÞ ¼ 0; t ¼ 1; 2; . . . ;T ð11:2Þ

When assumption (11.2) holds, we will say that the xit are sequentially exogenous

conditional on the unobserved e¤ect.



Given model (11.1), assumption (11.2) is equivalent to

Eðyit j xit; xi; t�1; . . . ; xi1; ciÞ ¼ Eðyit j xit; ciÞ ¼ xitb þ ci ð11:3Þ

which makes it clear what sequential exogeneity implies about the explanatory vari-

ables: after xit and ci have been controlled for, no past values of xit a¤ect the expected

value of yit. This condition is more natural than the strict exogeneity assumption,

which requires conditioning on future values of xit as well.

Example 11.1 (Dynamic Unobserved E¤ects Model): An AR(1) model with addi-

tional explanatory variables is

yit ¼ zitgþ r1 yi; t�1 þ ci þ uit ð11:4Þ

and so xit 1 ðzit; yi; t�1Þ. Therefore, ðxit; xi; t�1; . . . ; xi1Þ ¼ ðzit; yi; t�1; zi; t�1; . . . ; zi1; yi0Þ,
and the sequential exogeneity assumption (11.3) requires

Eðyit j zit; yi; t�1; zi; t�1; . . . ; zi1; yi0; ciÞ ¼ Eðyit j zit; yi; t�1; ciÞ

¼ zitgþ r1 yi; t�1 þ ci ð11:5Þ

An interesting hypothesis in this model is H0: r1 ¼ 0, which means that, after unob-

served heterogeneity, ci, has been controlled for (along with current and past zit),

yi; t�1 does not help to predict yit. When r1 0 0, we say that fyitg exhibits state de-

pendence: the current state depends on last period’s state, even after controlling for ci

and ðzit; . . . ; zi1Þ.

In this example, assumption (11.5) is an example of dynamic completeness condi-

tional on ci; we covered the unconditional version of dynamic completeness in Section

7.8.2. It means that one lag of yit is su‰cient to capture the dynamics in the con-

ditional expectation; neither further lags of yit nor lags of zit are important once

ðzit; yi; t�1; ciÞ have been controlled for. In general, if xit contains yi; t�1, then as-

sumption (11.3) implies dynamic completeness conditional on ci.

Assumption (11.3) does not require that zi; tþ1 . . . ; ziT be uncorrelated with uit, so

that feedback is allowed from yit to ðzi; tþ1; . . . ; ziT Þ. If we think that zis is uncorre-

lated with uit for all s, then additional orthogonality conditions can be used. Finally,

we do not need to restrict the value of r1 in any way because we are doing fixed-T

asymptotics; the arguments from Section 7.8.3 are also valid here.

Example 11.2 (Static Model with Feedback): Consider a static panel data model

yit ¼ zitgþ dwit þ ci þ uit ð11:6Þ

where zit is strictly exogenous and wit is sequentially exogenous:
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Eðuit j zi;wit;wi; t�1; . . . ;wi1; ciÞ ¼ 0 ð11:7Þ

However, wit is influenced by past yit, as in this case:

wit ¼ zitxþ r1 yi; t�1 þ cci þ rit ð11:8Þ

For example, let yit be per capita condom sales in city i during year t, and let wit be

the HIV infection rate for year t. Model (11.6) can be used to test whether condom

usage is influenced by the spread of HIV. The unobserved e¤ect ci contains city-

specific unobserved factors that can a¤ect sexual conduct, as well as the incidence of

HIV. Equation (11.8) is one way of capturing the fact that the spread of HIV is in-

fluenced by past condom usage. Generally, if Eðri; tþ1uitÞ ¼ 0, it is easy to show that

Eðwi; tþ1uitÞ ¼ r1EðyituitÞ ¼ r1Eðu2
itÞ > 0 under equations (11.7) and (11.8), and so

strict exogeneity fails unless r1 ¼ 0.

Lagging variables that are thought to violate strict exogeneity can mitigate but

does not usually solve the problem. Suppose we use wi; t�1 in place of wit in equation

(11.6) because we think wit might be correlated with uit. For example, let yit be the

percentage of flights canceled by airline i during year t, and let wi; t�1 be airline profits

during the previous year. In this case xi; tþ1 ¼ ðzi; tþ1;witÞ, and so xi; tþ1 is correlated

with uit; this fact results in failure of strict exogeneity. In the airline example this issue

may be important: poor airline performance this year (as measured by canceled

flights) can a¤ect profits in subsequent years. Nevertheless, the sequential exogeneity

condition (11.2) is reasonable.

Keane and Runkle (1992) argue that panel data models for testing rational

expectations using individual-level data generally do not satisfy the strict exogeneity

requirement. But they do satisfy sequential exogeneity: in fact, in the conditioning set

in assumption (11.2), we can include all variables observed at time t � 1.

What happens if we apply the standard fixed e¤ects estimator when the strict exo-

geneity assumption fails? Generally,

plimðb̂bFEÞ ¼ b þ T�1
XT

t¼1

Eð€xx 0
it€xxitÞ

" #�1

T�1
XT

t¼1

Eð€xx 0
ituitÞ

" #

where €xxit ¼ xit � xi, as in Chapter 10 (i is a random draw from the cross section).

Now, under sequential exogeneity, Eð€xx 0
ituitÞ ¼ E½ðxit � xiÞ0uit� ¼ �EðxiuitÞ because

Eðx 0
ituitÞ ¼ 0, and so T�1

PT
t¼1 Eð€xx 0

ituitÞ ¼ �T�1
PT

t¼1 EðxiuitÞ ¼ �EðxiuiÞ. We can

bound the size of the inconsistency as a function of T if we assume that the time series

process is appropriately stable and weakly dependent. Under such assumptions,

T�1
PT

t¼1 Eð€xx 0
it€xxitÞ is bounded. Further, VarðxiÞ and VarðuiÞ are of order T�1. By the
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Cauchy-Schwartz inequality (for example, Davidson, 1994, Chapter 9), jEðxijuiÞja
½VarðxijÞVarðuiÞ�1=2 ¼ OðT�1Þ. Therefore, under bounded moments and weak de-

pendence assumptions, the inconsistency from using fixed e¤ects when the strict

exogeneity assumption fails is of order T�1. With large T the bias may be minimal.

See Hamilton (1994) and Wooldridge (1994) for general discussions of weak depen-

dence for time series processes.

Hsiao (1986, Section 4.2) works out the inconsistency in the FE estimator for the

AR(1) model. The key stability condition su‰cient for the bias to be of order T �1 is

jr1j < 1. However, for r1 close to unity, the bias in the FE estimator can be sizable,

even with fairly large T. Generally, if the process fxitg has very persistent elements—

which is often the case in panel data sets—the FE estimator can have substantial

bias.

If our choice were between fixed e¤ects and first di¤erencing, we would tend to

prefer fixed e¤ects because, when T > 2, FE can have less bias as N ! y. To see

this point, write

plimðb̂bFDÞ ¼ b þ T�1
XT

t¼1

EðDx 0
itDxitÞ

" #�1

T�1
XT

t¼1

EðDx 0
itDuitÞ

" #
ð11:9Þ

If fxitg is weakly dependent, so is fDxitg, and so the first average in equation (11.9) is

bounded as a function of T. (In fact, under stationarity, this average does not depend

on T.) Under assumption (11.2), we have

EðDx 0
itDuitÞ ¼ Eðx 0

ituitÞ þ Eðx 0
i; t�1ui; t�1Þ � Eðx 0

i; t�1uitÞ � Eðx 0
itui; t�1Þ ¼ �Eðx 0

itui; t�1Þ

which is generally di¤erent from zero. Under stationarity, Eðx 0
itui; t�1Þ does not de-

pend on t, and so the second average in equation (11.9) is constant. This result shows

not only that the FD estimator is inconsistent, but also that its inconsistency does not

depend on T. As we showed previously, the time demeaning underlying FE results in

its bias being on the order of T�1. But we should caution that this analysis assumes

that the original series, fðxit; yitÞ: t ¼ 1; . . . ;Tg, is weakly dependent. Without this

assumption, the inconsistency in the FE estimator cannot be shown to be of order

T�1.

If we make certain assumptions, we do not have to settle for estimators that are

inconsistent with fixed T. A general approach to estimating equation (11.1) under

assumption (11.2) is to use a transformation to remove ci, but then search for in-

strumental variables. The FE transformation can be used provided that strictly ex-

ogenous instruments are available (see Problem 11.9). For models under sequential

exogeneity assumptions, first di¤erencing is more attractive.
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First di¤erencing equation (11.1) gives

Dyit ¼ Dxitb þ Duit; t ¼ 2; 3; . . . ;T ð11:10Þ

Now, under assumption (11.2),

Eðx 0
isuitÞ ¼ 0; s ¼ 1; 2; . . . ; t ð11:11Þ

Assumption (11.11) implies the orthogonality conditions

Eðx 0
isDuitÞ ¼ 0; s ¼ 1; 2; . . . ; t � 1 ð11:12Þ

so at time t we can use xo
i; t�1 as potential instruments for Dxit, where

xo
it 1 ðxi1; xi2; . . . ; xitÞ ð11:13Þ

The fact that xo
i; t�1 is uncorrelated with Duit opens up a variety of estimation

procedures. For example, a simple estimator uses Dxi; t�1 as the instruments for

Dxit: EðDx 0
i; t�1DuitÞ ¼ 0 under assumption (11.12), and the rank condition rank

EðDx 0
i; t�1DxitÞ ¼ K is usually reasonable. Then, the equation

Dyit ¼ Dxitb þ Duit; t ¼ 3; . . . ;T ð11:14Þ

can be estimated by pooled 2SLS using instruments Dxi; t�1. This choice of instru-

ments loses an additional time period. If T ¼ 3, estimation of equation (11.14)

becomes 2SLS on a cross section: ðxi2 � xi1Þ is used as instruments for ðxi3 � xi2Þ.
When T > 3, equation (11.14) is a pooled 2SLS procedure. There is a set of

assumptions—the sequential exogeneity analogues of Assumptions FD.1–FD.3—

under which the usual 2SLS statistics obtained from the pooled 2SLS estimation are

valid; see Problem 11.8 for details. With Dxi; t�1 as the instruments, equation (11.14)

is just identified.

Rather than use changes in lagged xit as instruments, we can use lagged levels of

xit. For example, choosing ðxi; t�1; xi; t�2Þ as instruments at time t is no less e‰cient

than the procedure that uses Dxi; t�1, as the latter is a linear combination of the for-

mer. It also gives K overidentifying restrictions that can be used to test assumption

(11.2). (There will be fewer than K if xit contains time dummies.)

When T ¼ 2, b may be poorly identified. The equation is Dyi2 ¼ Dxi2b þ Dui2,

and, under assumption (11.2), xi1 is uncorrelated with Dui2. This is a cross section

equation that can be estimated by 2SLS using xi1 as instruments for Dxi2. The esti-

mator in this case may have a large asymptotic variance because the correlations

between xi1, the levels of the explanatory variables, and the di¤erences Dxi2 ¼
xi2 � xi1 are often small. Of course, whether the correlation is su‰cient to yield small

enough standard errors depends on the application.
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Even with large T, the available IVs may be poor in the sense that they are

not highly correlated with Dxit. As an example, consider the AR(1) model (11.4)

without zit: yit ¼ r1 yi; t�1 þ ci þ uit;Eðuit j yi; t�1; . . . ; yi0; ciÞ ¼ 0, t ¼ 1; 2; . . . ;T . Dif-

ferencing to eliminate ci gives Dyit ¼ r1Dyi; t�1 þ Duit, tb 2. At time t, all elements of

ðyi; t�2; . . . ; yi0Þ are IV candidates because Duit is uncorrelated with yi; t�h, hb 2.

Anderson and Hsiao (1982) suggested pooled IV with instruments yi; t�2 or Dyi; t�2,

whereas Arellano and Bond (1991) proposed using the entire set of instruments in

a GMM procedure. Now, suppose that r1 ¼ 1 and, in fact, there is no unobserved

e¤ect. Then Dyi; t�1 is uncorrelated with any variable dated at time t � 2 or earlier,

and so the elements of ðyi; t�2; . . . ; yi0Þ cannot be used as IVs for Dyi; t�1. What this

conclusion shows is that we cannot use IV methods to test H0: r1 ¼ 1 in the absence

of an unobserved e¤ect.

Even if r1 < 1, IVs from ðyi; t�2; . . . ; yi0Þ tend to be weak if r1 is close to one.

Recently, Arellano and Bover (1995) and Ahn and Schmidt (1995) suggested addi-

tional orthogonality conditions that improve the e‰ciency of the GMM estimator,

but these are nonlinear in the parameters. (In Chapter 14 we will see how to use these

kinds of moment restrictions.) Blundell and Bond (1998) obtained additional linear

moment restrictions in the levels equation yit ¼ r1 yi; t�1 þ vit, vit ¼ ci þ uit. The ad-

ditional restrictions are based on yi0 being drawn from a steady-state distribution,

and they are especially helpful in improving the e‰ciency of GMM for r1 close to

one. (Actually, the Blundell-Bond orthogonality conditions are valid under weaker

assumptions.) See also Hahn (1999). Of course, when r1 ¼ 1, it makes no sense to

assume that there is a steady-state distribution. In Chapter 13 we cover conditional

maximum likelihood methods that can be applied to the AR(1) model.

A general feature of pooled 2SLS procedures where the dimension of the IVs is

constant across t is that they do not use all the instruments available in each time

period; therefore, they cannot be expected to be e‰cient. The optimal procedure is to

use expression (11.13) as the instruments at time t in a GMM procedure. Write the

system of equations as

Dyi ¼ DXib þ Dui ð11:15Þ

using the same definitions as in Section 10.6. Define the matrix of instruments as

Zi ¼

xo
i1 0 0 � � � 0

0 xo
i2 0 � � � 0

..

. ..
.

0 0 0 � � � xo
i;T�1

0
BBBB@

1
CCCCA ð11:16Þ

where xo
it is defined in expression (11.13). Note that Zi has T � 1 rows to correspond
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with the T � 1 time periods in the system (11.15). Since each row contains di¤erent

instruments, di¤erent instruments are used for di¤erent time periods.

E‰cient estimation of b now proceeds in the GMM framework from Chapter 8

with instruments (11.16). Without further assumptions, the unrestricted weighting

matrix should be used. In most applications there is a reasonable set of assumptions

under which

EðZ 0
i eie

0
i ZiÞ ¼ EðZ 0

iWZiÞ ð11:17Þ

where ei 1Dui and W1Eðeie
0
i Þ. Recall from Chapter 8 that assumption (11.17) is the

assumption under which the GMM 3SLS estimator is the asymptotically e‰cient

GMM estimator (see Assumption SIV.5). The full GMM analysis is not much more

di‰cult. The traditional form of 3SLS estimator that first transforms the instruments

should not be used because it is not consistent under assumption (11.2).

As a practical matter, the column dimension of Zi can be very large, making GMM

estimation di‰cult. In addition, GMM estimators—including 2SLS and 3SLS—using

many overidentifying restrictions are known to have poor finite sample properties (see,

for example, Tauchen, 1986; Altonji and Segal, 1996; and Ziliak, 1997). In practice, it

may be better to use a couple of lags rather than lags back to t ¼ 1.

Example 11.3 (Testing for Persistence in County Crime Rates): We use the data in

CORNWELL.RAW to test for state dependence in county crime rates, after allow-

ing for unobserved county e¤ects. Thus, the model is equation (11.4) with yit 1
logðcrmrteitÞ but without any other explanatory variables. As instruments for Dyi; t�1,

we use ðyi; t�2; yi; t�3Þ. Further, so that we do not have to worry about correcting the

standard error for possible serial correlation in Duit, we use just the 1986–1987 dif-

ferenced equation. The F statistic for joint significance of yi; t�2; yi; t�3 in the reduced

form for Dyi; t�1 yields p-value ¼ :023, although the R-squared is only .083. The

2SLS estimates of the first-di¤erenced equation are

Dlogðcr̂rmrteÞ ¼ :065

ð:040Þ
þ :212

ð:497Þ
DlogðcrmrteÞ�1; N ¼ 90

so that we cannot reject H0: r1 ¼ 0 ðt ¼ :427Þ:

11.1.2 Models with Strictly and Sequentially Exogenous Explanatory Variables

Estimating models with both strictly exogenous and sequentially exogenous variables

is not di‰cult. For t ¼ 1; 2; . . . ;T , suppose that

yit ¼ zitgþ witdþ ci þ uit ð11:18Þ

Assume that zis is uncorrelated with uit for all s and t, but that uit is uncorrelated with
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wis only for sa t; su‰cient is Eðuit j zi;wit;wi; t�1; . . . ;wi1Þ ¼ 0. This model covers

many cases of interest, including when wit contains a lagged dependent variable.

After first di¤erencing we have

Dyit ¼ Dzitgþ Dwitdþ Duit ð11:19Þ

and the instruments available at time t are ðzi;wi; t�1; . . . ;wi1Þ. In practice, so that

there are not so many overidentifying restrictions, we might replace zi with Dzit and

choose something like ðDzit;wi; t�1;wi; t�2Þ as the instruments at time t. Or, zit and a

couple of lags of zit can be used. In the AR(1) model (11.4), this approach would

mean something like ðzit; zi; t�1; zi; t�2; yi; t�2; yi; t�3Þ. We can even use leads of zit, such

as zi; tþ1, when zit is strictly exogenous. Such choices are amenable to a pooled 2SLS

procedure to estimate g and d. Of course, whether or not the usual 2SLS standard

errors are valid depends on serial correlation and variance properties of Duit. Never-

theless, assuming that the changes in the errors are (conditionally) homoskedastic

and serially uncorrelated is a reasonable start.

Example 11.4 (E¤ects of Enterprise Zones): Papke (1994) uses several di¤erent

panel data models to determine the e¤ect of enterprise zone designation on economic

outcomes for 22 communities in Indiana. One model she uses is

yit ¼ yt þ r1 yi; t�1 þ d1ezit þ ci þ uit ð11:20Þ

where yit is the log of unemployment claims. The coe‰cient of interest is on the

binary indicator ezit, which is unity if community i in year t was designated as an

enterprise zone. The model holds for the years 1981 to 1988, with yi0 corresponding

to 1980, the first year of data. Di¤erencing gives

Dyit ¼ xt þ r1Dyi; t�1 þ d1Dezit þ Duit ð11:21Þ

The di¤erenced equation has new time intercepts, but as we are not particularly

interested in these, we just include year dummies in equation (11.21).

Papke estimates equation (11.21) by 2SLS, using Dyi; t�2 as an instrument for

Dyi; t�1; because of the lags used, equation (11.21) can be estimated for six years of

data. The enterprise zone indicator is assumed to be strictly exogenous in equation

(11.20), and so Dezit acts as its own instrument. Strict exogeneity of ezit is valid be-

cause, over the years in question, each community was a zone in every year following

initial designation: future zone designation did not depend on past performance.

The estimated equation in first di¤erences is

Dlog ^ððuclmsÞ ¼ x̂xt þ :165

ð:288Þ
DlogðuclmsÞ�1 � :219

ð:106Þ
Dez
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where the intercept and year dummies are supressed for brevity. Based on the usual

pooled 2SLS standard errors, r̂r1 is not significant (or practially very large), while d̂d1 is

economically large and statistically significant at the 5 percent level.

If the uit in equation (11.20) are serially uncorrelated, then, as we saw in Chapter

10, Duit must be serially correlated. Papke found no important di¤erences when the

standard error for d̂d1 was adjusted for serial correlation and heteroskedasticity.

In the pure AR(1) model, using lags of yit as an instrument for Dyi; t�1 means that

we are assuming the AR(1) model captures all of the dynamics. If further lags of

yit are added to the structural model, then we must go back even further to obtain

instruments. If strictly exogenous variables appear in the model along with yi; t�1—

such as in equation (11.4)—then lags of zit are good candidates as instruments for

Dyi; t�1. Much of the time inclusion of yi; t�1 (or additional lags) in a model with other

explanatory variables is intended to simply control for another source of omitted

variables bias; Example 11.4 falls into this class.

Things are even trickier in finite distributed lag models. Consider the patents-R&D

model of Example 10.2: after first di¤erencing, we have

Dpatentsit ¼ Dyt þ Dzitgþ d0DRDit þ � � � þ d5DRDi; t�5 þ Duit ð11:22Þ

If we are concerned that strict exogeneity fails because of feedback from uit to future

R&D expenditures, then DRDit and Duit are potentially correlated (because ui; t�1 and

RDit are correlated). Assuming that the distributed lag dynamics are correct—and

assuming strict exogeneity of zit—all other explanatory variables in equation (11.22)

are uncorrelated with Duit. What can we use as an instrument for DRDit in equation

(11.22)? We can include RDi; t�1;RDi; t�2; . . . in the instrument list at time t (along

with all of zi).

This approach identifies the parameters under the assumptions made, but it is

problematic. What if we have the distributed lag dynamics wrong, so that six lags,

rather than five, belong in the structural model? Then choosing additional lags of

RDit as instruments fails. If DRDit is su‰ciently correlated with the elements of zis for

some s, then using all of zi as instruments can help. Generally, some exogenous factors

either in zit or from outside the structural equation are needed for a convincing analysis.

11.1.3 Models with Contemporaneous Correlation between Some Explanatory

Variables and the Idiosyncratic Error

Consider again model (11.18), where zit is strictly exogenous in the sense that

Eðz 0
isuitÞ ¼ 0; all s; t ð11:23Þ
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but where we allow wit to be contemporaneously correlated with uit. This correlation

can be due to any of the three problems that we studied earlier: omission of an im-

portant time-varying explanatory variable, measurement error in some elements of

wit, or simultaneity between yit and one or more elements of wit. We assume that

equation (11.18) is the equation of interest. In a simultaneous equations model with

panel data, equation (11.18) represents a single equation. A system approach is also

possible. See, for example, Baltagi (1981); Cornwell, Schmidt, and Wyhowski (1992);

and Kinal and Lahiri (1993).

Example 11.5 (E¤ects of Smoking on Earnings): A panel data model to examine

the e¤ects of cigarette smoking on earnings is

logðwageitÞ ¼ zitgþ d1cigsit þ ci þ uit ð11:24Þ

(For an empirical analysis, see Levine, Gustafson, and Velenchik, 1997.) As always,

we would like to know the causal e¤ect of smoking on hourly wage. For concrete-

ness, assume cigsit is measured as average packs per day. This equation has a causal

interpretation: holding fixed the factors in zit and ci, what is the e¤ect of an exoge-

nous change in cigarette smoking on wages? Thus equation (11.24) is a structural

equation.

The presence of the individual heterogeneity, ci, in equation (11.24) recognizes that

cigarette smoking might be correlated with individual characteristics that also a¤ect

wage. An additional problem is that cigsit might also be correlated with uit, some-

thing we have not allowed so far. In this example the correlation could be from a

variety of sources, but simultaneity is one possibility: if cigarettes are a normal good,

then, as income increases—holding everything else fixed—cigarette consumption

increases. Therefore, we might add another equation to equation (11.24) that reflects

that cigsit may depend on income, which clearly depends on wage. If equation (11.24)

is of interest, we do not need to add equations explicitly, but we must find some in-

strumental variables.

To get an estimable model, we must first deal with the presence of ci, since it might

be correlated with zit as well as cigsit. In the general model (11.18), either the FE or

FD transformations can be used to eliminate ci before addressing the correlation be-

tween wit and uit. If we first di¤erence, as in equation (11.19), we can use the entire

vector zi as valid instruments in equation (11.19) because zit is strictly exogenous.

Neither wit nor wi; t�1 is valid as instruments at time t, but it could be that wi; t�2 is

valid, provided we assume that uit is uncorrelated with wis for s < t. This assumption

means that wit has only a contemporaneous e¤ect on yit, something that is likely to

be false in example 11.5. [If smoking a¤ects wages, the e¤ects are likely to be deter-
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mined by prior smoking behavior as well as current smoking behavior. If we include

a measure of past smoking behavior in equation (11.24), then this must act as its own

instrument in a di¤erenced equation, and so using cigsis for s < t as IVs becomes

untenable.]

Another thought is to use lagged values of yit as instruments, but this approach

e¤ectively rules out serial correlation in uit. In the wage equation (11.24), it would

mean that lagged wage does not predict current wage, once ci and the other variables

are controlled for. If this assumption is false, using lags of yit is not a valid way of

identifying the parameters.

If zi is the only valid set of instruments for equation (11.18), the analysis probably

will not be convincing: it relies on Dwit being correlated with some linear combina-

tion of zi other than Dzit. Such partial correlation is likely to be small, resulting in

poor IV estimators; see Problem 11.2.

Perhaps the most convincing possibility for obtaining additional instruments is to

follow the standard SEM approach from Chapter 9: use exclusion restrictions in the

structural equations. For example, we can hope to find exogenous variables that do

not appear in equation (11.24) but that do a¤ect cigarette smoking. The local price of

cigarettes (or level of cigarette taxes) is one possibility. Such variables can usually be

considered strictly exogenous, unless we think people change their residence based on

the price of cigarettes.

If we di¤erence equation (11.24) we get

DlogðwageitÞ ¼ Dzitgþ d1Dcigsit þ Duit ð11:25Þ

Now, for each t, we can study identification of this equation just as in the cross sec-

tional case: we must first make sure the order condition holds, and then argue (or

test) that the rank condition holds. Equation (11.25) can be estimated using a pooled

2SLS analysis, where corrections to standard errors and test statistics for hetero-

skedasticity or serial correlation might be warranted. With a large cross section, a

GMM system procedure that exploits general heteroskedasticity and serial correla-

tion in Duit can be used instead.

Example 11.6 (E¤ects of Prison Population on Crime Rates): In order to estimate

the causal e¤ect of prison population increases on crime rates at the state level, Levitt

(1996) uses instances of prison overcrowding litigation as instruments for the growth

in prison population. The equation Levitt estimates is in first di¤erences. We can

write an underlying unobserved e¤ects model as

logðcrimeitÞ ¼ yt þ b1 logðprisonitÞ þ xitgþ ci þ uit ð11:26Þ
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where yt denotes di¤erent time intercepts and crime and prison are measured per

100,000 people. (The prison population variable is measured on the last day of the

previous year.) The vector xit contains other controls listed in Levitt, including mea-

sures of police per capita, income per capita, unemployment rate, and race, metro-

politan, and age distribution proportions.

Di¤erencing equation (11.26) gives the equation estimated by Levitt:

DlogðcrimeitÞ ¼ xt þ b1DlogðprisonitÞ þ Dxitgþ Duit ð11:27Þ

Simultaneity between crime rates and prison population, or, more precisely, in the

growth rates, makes OLS estimation of equation (11.27) generally inconsistent. Using

the violent crime rate and a subset of the data from Levitt (in PRISON.RAW, for the

years 1980 to 1993, for 51 � 14 ¼ 714 total observations), the OLS estimate of b1 is

�:181 (se ¼ :048). We also estimate the equation by 2SLS, where the instruments for

DlogðprisonÞ are two binary variables, one for whether a final decision was reached

on overcrowding litigation in the current year and one for whether a final decision

was reached in the previous two years. The 2SLS estimate of b1 is �1:032 (se ¼ :370).

Therefore, the 2SLS estimated e¤ect is much larger; not surprisingly, it is much less

precise, too. Levitt (1996) found similar results when using a longer time period and

more instruments.

A di¤erent approach to estimating SEMs with panel data is to use the fixed e¤ects

transformation and then to apply an IV technique such as pooled 2SLS. A simple

procedure is to estimate the time-demeaned equation (10.46) by pooled 2SLS, where

the instruments are also time demeaned. This is equivalent to using 2SLS in the

dummy variable formulation, where the unit-specific dummy variables act as their

own instruments. See Problem 11.9 for a careful analysis of this approach. Foster and

Rosenzweig (1995) use the within transformation along with IV to estimate household-

level profit functions for adoption of high-yielding seed varieties in rural India. Ayres

and Levitt (1998) apply 2SLS to a time-demeaned equation to estimate the e¤ect of

Lojack electronic theft prevention devices on city car-theft rates.

The FE transformation precludes the use of lagged values of wit among the

instruments, for essentially the same reasons discussed for models with sequentially

exogenous explanatory variables: uit will be correlated with the time-demeaned in-

struments. Therefore, if we make assumptions on the dynamics in the model that

ensure that uit is uncorrelated with wis, s < t, di¤erencing is preferred in order to use

the extra instruments.

Di¤erencing or time demeaning followed by some sort of IV procedure is useful

when uit contains an important, time-varying omitted variable that is correlated with
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uit. The same considerations for choosing instruments in the simultaneity context are

relevant in the omitted variables case as well. In some cases, wis, s < t � 1, can be

used as instruments at time t in a first-di¤erenced equation (11.18); in other cases, we

might not want identification to hinge on using lagged exploratory variables as IVs.

For example, suppose that we wish to study the e¤ects of per student spending on test

scores, using three years of data, say 1980, 1985, and 1990. A structural model at the

school level is

avgscoreit ¼ yt þ zitgþ d1spendingit þ ci þ uit ð11:28Þ

where zit contains other school and student characteristics. In addition to worrying

about the school fixed e¤ect ci, uit contains average family income for school i at time

t (unless we are able to collect data on income); average family income is likely to be

correlated with spendingit. After di¤erencing away ci, we need an instrument for

Dspendingit. One possibility is to use exogenous changes in property taxes that arose

because of an unexpected change in the tax laws. [Such changes occurred in California

in 1978 (Proposition 13) and in Michigan in 1994 (Proposal A).] Using lagged spend-

ing changes as IVs is probably not a good idea, as spending might a¤ect test scores

with a lag.

The third form of endogeneity, measurement error, can also be solved by elimi-

nating ci and finding appropriate IVs. Measurement error in panel data was studied

by Solon (1985) and Griliches and Hausman (1986). It is widely believed in econo-

metrics that the di¤erencing and FE transformations exacerbate measurement error

bias (even though they eliminate heterogeneity bias). However, it is important to

know that this conclusion rests on the classical errors-in-variables model under strict

exogeneity, as well as on other assumptions.

To illustrate, consider a model with a single explanatory variable,

yit ¼ bx�
it þ ci þ uit ð11:29Þ

under the strict exogeneity assumption

Eðuit j x�
i ; xi; ciÞ ¼ 0; t ¼ 1; 2; . . . ;T ð11:30Þ

where xit denotes the observed measure of the unobservable x�
it. Condition (11.30)

embodies the standard redundancy condition—that xit does not matter once x�
it is

controlled for—in addition to strict exogeneity of the unmeasured and measured

regressors. Denote the measurement error as rit ¼ xit � x�
it. Assuming that rit is un-

correlated with x�
it—the key CEV assumption—and that variances and covariances

are all constant across t, it is easily shown that, as N ! y, the plim of the pooled

OLS estimator is
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plim
N!y

b̂bPOLS ¼ b þ Covðxit; ci þ uit � britÞ
VarðxitÞ

¼ b þ Covðxit; ciÞ � bs2
r

VarðxitÞ
ð11:31Þ

where s2
r ¼ VarðritÞ ¼ Covðxit; ritÞ; this is essentially the formula derived by Solon

(1985).

From equation (11.31), we see that there are two sources of asymptotic bias in the

POLS estimator: correlation between xit and the unobserved e¤ect, ci, and a mea-

surement error bias term, �bs2
r . If xit and ci are positively correlated and b > 0, the

two sources of bias tend to cancel each other out.

Now assume that ris is uncorrelated with x�
it for all t and s, and for simplicity sup-

pose that T ¼ 2. If we first di¤erence to remove ci before performing OLS we obtain

plim
N!y

b̂bFD ¼ b þ CovðDxit;Duit � bDritÞ
VarðDxitÞ

¼ b � b
CovðDxit;DritÞ

VarðDxitÞ

¼ b � 2b
½s2

r � Covðrit; ri; t�1Þ�
VarðDxitÞ

¼ b 1 � s2
r ð1 � rrÞ

s2
x � ð1 � rx � Þ þ s2

r ð1 � rrÞ

� �
ð11:32Þ

where rx � ¼ Corrðx�
it; x�

i; t�1Þ and rr ¼ Corrðrit; ri; t�1Þ, where we have used the fact that

Covðrit; ri; t�1Þ ¼ s2
r rr and VarðDxitÞ ¼ 2½s2

x � ð1 � rx � Þ þ s2
r ð1 � rrÞ�; see also Solon

(1985) and Hsiao (1986, p. 64). Equation (11.32) shows that, in addition to the ratio

s2
r =s

2
x� being important in determining the size of the measurement error bias, the

ratio ð1 � rrÞ=ð1 � rx� Þ is also important. As the autocorrelation in x�
it increases rel-

ative to that in rit, the measurement error bias in b̂bFD increases. In fact, as rx � ! 1,

the measurement error bias approaches �b.

Of course, we can never know whether the bias in equation (11.31) is larger than

that in equation (11.32), or vice versa. Also, both expressions are based on the CEV

assumptions, and then some. If there is little correlation between Dxit and Drit, the

measurement error bias from first di¤erencing may be small, but the small correlation

is o¤set by the fact that di¤erencing can considerably reduce the variation in the

explanatory variables.

Consistent estimation in the presence of measurement error is possible under cer-

tain assumptions. Consider the more general model

yit ¼ zitgþ dw�
it þ ci þ uit; t ¼ 1; 2; . . . ;T ð11:33Þ
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where w�
it is measured with error. Write rit ¼ wit � w�

it, and assume strict exogeneity

along with redundancy of wit:

Eðuit j zi;w�
i ;wi; ciÞ ¼ 0; t ¼ 1; 2; . . . ;T ð11:34Þ

Replacing w�
it with wit and first di¤erencing gives

Dyit ¼ Dzitgþ dDwit þ Duit � dDrit ð11:35Þ

The standard CEV assumption in the current context can be stated as

Eðrit j zi;w�
i ; ciÞ ¼ 0; t ¼ 1; 2; . . . ;T ð11:36Þ

which implies that rit is uncorrelated with zis, w�
is for all t and s. (As always in the

context of linear models, assuming zero correlation is su‰cient for consistency, but

not for usual standard errors and test statistics to be valid.) Under assumption (11.36)

(and other measurement error assumptions), Drit is correlated with Dwit. To apply an

IV method to equation (11.35), we need at least one instrument for Dwit. As in the

omitted variables and simultaneity contexts, we may have additional variables out-

side the model that can be used as instruments. Analogous to the cross section case

(as in Chapter 5), one possibility is to use another measure on w�
it, say hit. If the

measurement error in hit is orthogonal to the measurement error in wis, all t and s,

then Dhit is a natural instrument for Dwit in equation (11.35). Of course, we can use

many more instruments in equation (11.35), as any linear combination of zi and hi is

uncorrelated with the composite error under the given assumptions.

Alternatively, a vector of variables hit may exist that are known to be redundant

in equation (11.33), strictly exogenous, and uncorrelated with ris for all s. If Dhit is

correlated with Dwit, then an IV procedure, such as pooled 2SLS, is easy to apply. It

may be that in applying something like pooled 2SLS to equation (11.35) results in

asymptotically valid statistics; this imposes serial independence and homoskedasticity

assumptions on Duit. Generally, however, it is a good idea to use standard errors and

test statistics robust to arbitrary serial correlation and heteroskedasticity, or to use a

full GMM approach that e‰ciently accounts for these. An alternative is to use the

FE transformation, as explained in Problem 11.9. Ziliak, Wilson, and Stone (1999)

find that, for a model explaining cyclicality of real wages, the FD and FE estimates

are di¤erent in important ways. The di¤erences largely disappear when IV methods

are used to account for measurement error in the local unemployment rate.

So far, the solutions to measurement error in the context of panel data have

assumed nothing about the serial correlation in rit. Suppose that, in addition to as-

sumption (11.34), we assume that the measurement error is serially uncorrelated:

EðritrisÞ ¼ 0; s0 t ð11:37Þ
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Assumption (11.37) opens up a solution to the measurement error problem with

panel data that is not available with a single cross section or independently pooled

cross sections. Under assumption (11.36), rit is uncorrelated with w�
is for all t and s.

Thus, if we assume that the measurement error rit is serially uncorrelated, then rit is

uncorrelated with wis for all t0 s. Since, by the strict exogeneity assumption, Duit is

uncorrelated with all leads and lags of zit and wit, we have instruments readily avail-

able. For example, wi; t�2 and wi; t�3 are valid as instruments for Dwit in equation

(11.35); so is wi; tþ1. Again, pooled 2SLS or some other IV procedure can be used

once the list of instruments is specified for each time period. However, it is important

to remember that this approach requires the rit to be serially uncorrelated, in addition

to the other CEV assumptions.

The methods just covered for solving measurement error problems all assume strict

exogeneity of all explanatory variables. Naturally, things get harder when measure-

ment error is combined with models with only sequentially exogenous explanatory

variables. Nevertheless, di¤erencing away the unobserved e¤ect and then selecting

instruments—based on the maintained assumptions—generally works in models with

a variety of problems.

11.1.4 Summary of Models without Strictly Exogenous Explanatory Variables

Before leaving this section, it is useful to summarize the general approach we have

taken to estimate models that do not satisfy strict exogeneity: first, a transformation

is used to eliminate the unobserved e¤ect; next, instruments are chosen for the endog-

enous variables in the transformed equation. In the previous subsections we have

stated various assumptions, but we have not catalogued them as in Chapter 10,

largely because there are so many variants. For example, in Section 11.1.3 we saw

that di¤erent assumptions lead to di¤erent sets of instruments. The importance of

carefully stating assumptions—such as (11.2), (11.34), (11.36), and (11.37)—cannot

be overstated.

First di¤erencing, which allows for more general violations of strict exogeneity

than the within transformation, has an additional benefit: it is easy to test the first-

di¤erenced equation for serial correlation after pooled 2SLS estimation. The test

suggested in Problem 8.10 is immediately applicable with the change in notation that

all variables are in first di¤erences. Arellano and Bond (1991) propose tests for serial

correlation in the original errors, fuit: t ¼ 1; . . . ;Tg; the tests are based on GMM

estimation. When the original model has a lagged dependent variable, it makes more

sense to test for serial correlation in fuitg: models with lagged dependent variables

are usually taken to have errors that are serially uncorrelated, in which case the first-

di¤erenced errors must be serially correlated. As Arellano and Bond point out, serial
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correlation in fuitg generally invalidates using lags of yit as IVs in the first-di¤erenced

equation. Of course, one might ask why we would be interested in r1 in model (11.4)

if fuitg is generally serially correlated.

11.2 Models with Individual-Specific Slopes

The unobserved e¤ects models we have studied up to this point all have an additive

unobserved e¤ect that has the same partial e¤ect on yit in all time periods. This

assumption may be too strong for some applications. We now turn to models that

allow for individual-specific slopes.

11.2.1 A Random Trend Model

Consider the following extension of the standard unobserved e¤ects model:

yit ¼ ci þ git þ xitb þ uit; t ¼ 1; 2; . . . ;T ð11:38Þ

This is sometimes called a random trend model, as each individual, firm, city, and so

on is allowed to have its own time trend. The individual-specific trend is an additional

source of heterogeneity. If yit is the natural log of a variable, as is often the case in

economic studies, then gi is (roughly) the average growth rate over a period (holding

the explanatory variables fixed). Then equation (11.38) is referred to a random growth

model; see, for example, Heckman and Hotz (1989).

In many applications of equation (11.38) we want to allow ðci; giÞ to be arbitrarily

correlated with xit. (Unfortunately, allowing this correlation makes the name ‘‘ran-

dom trend model’’ conflict with our previous usage of random versus fixed e¤ects.)

For example, if one element of xit is an indicator of program participation, equation

(11.38) allows program participation to depend on individual-specific trends (or

growth rates) in addition to the level e¤ect, ci. We proceed without imposing restric-

tions on correlations among ðci; gi; xitÞ, so that our analysis is of the fixed e¤ects

variety. A random e¤ects approach is also possible, but it is more cumbersome; see

Problem 11.5.

For the random trend model, the strict exogeneity assumption on the explanatory

variables is

Eðuit j xi1; . . . ; xiT ; ci; giÞ ¼ 0 ð11:39Þ

which follows definitionally from the conditional mean specification

Eðyit j xi1; . . . ; xiT ; ci; giÞ ¼ Eðyit j xit; ci; giÞ ¼ ci þ git þ xitb ð11:40Þ

We are still primarily interested in consistently estimating b.
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One approach to estimating b is to di¤erence away ci:

Dyit ¼ gi þ Dxitb þ Duit; t ¼ 2; 3; . . . ;T ð11:41Þ

where we have used the fact that git � giðt � 1Þ ¼ gi. Now equation (11.41) is just

the standard unobserved e¤ects model we studied in Chapter 10. The key strict exo-

geneity assumption, EðDuit j gi;Dxi2; . . . ;DxiT Þ ¼ 0, t ¼ 2; 3; . . . ;T , holds under as-

sumption (11.39). Therefore, we can apply fixed e¤ects or first-di¤erencing methods

to equation (11.41) in order to estimate b.

In di¤erencing the equation to eliminate ci we lose one time period, so that equa-

tion (11.41) applies to T � 1 time periods. To apply FE or FD methods to equation

(11.41) we must have T � 1b 2, or T b 3. In other words, b can be estimated con-

sistently in the random trend model only if T b 3.

Whether we prefer FE or FD estimation of equation (11.41) depends on the

properties of fDuit: t ¼ 2; 3; . . . ;Tg. As we argued in Section 10.6, in some cases it is

reasonable to assume that the first di¤erence of fuitg is serially uncorrelated, in which

case the FE method applied to equation (11.41) is attractive. If we make the as-

sumption that the uit are serially uncorrelated and homoskedastic (conditional on xi,

ci, gi), then FE applied to equation (11.41) is still consistent and asymptotically nor-

mal, but not e‰cient. The next subsection covers that case explicitly.

Example 11.7 (Random Growth Model for Analyzing Enterprise Zones): Papke

(1994) estimates a random growth model to examine the e¤ects of enterprise zones on

unemployment claims:

logðuclmsitÞ ¼ yt þ ci þ git þ d1ezit þ uit

so that aggregate time e¤ects are allowed in addition to a jurisdiction-specific growth

rate, gi. She first di¤erences the equation to eliminate ci and then applies fixed e¤ects

to the di¤erences. The estimate of d1 is d̂d1 ¼ �:192 with seðd̂d1Þ ¼ :085. Thus enter-

prise zone designation is predicted to lower unemployment claims by about 19.2

percent, and the e¤ect is statistically significant at the 5 percent level.

Friedberg (1998) provides an example, using state-level panel data on divorce rates

and divorce laws, that shows how important it can be to allow for state-specific

trends. Without state-specific trends, she finds no e¤ect of unilateral divorce laws on

divorce rates; with state-specific trends, the estimated e¤ect is large and statistically

significant. The estimation method Friedberg uses is the one we discuss in the next

subsection.

In using the random trend or random growth model for program evaluation, it

may make sense to allow the trend or growth rate to depend on program participa-
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tion: in addition to shifting the level of y, program participation may also a¤ect the

rate of change. In addition to progit, we would include progit � t in the model:

yit ¼ yt þ ci þ git þ zitgþ d1progit þ d2progit � t þ uit

Di¤erencing once, as before, removes ci,

Dyit ¼ xt þ gi þ Dzitgþ d1D progit þ d2Dðprogit � tÞ þ Duit

We can estimate this di¤erenced equation by fixed e¤ects. An even more flexible

specification is to replace progit and progit � t with a series of program indicators,

prog1it; . . . ; progMit, where progjit is one if unit i in time t has been in the program

exactly j years, and M is the maximum number of years the program has been

around.

If fuitg contains substantial serial correlation—more than a random walk—then

di¤erencing equation (11.41) might be more attractive. Denote the second di¤erence

of yit by

D2yit 1Dyit � Dyi; t�1 ¼ yit � 2yi; t�1 þ yi; t�2

with similar expressions for D2xit and D2uit. Then

D2yit ¼ D2xitb þ D2uit; t ¼ 3; . . . ;T ð11:42Þ

As with the FE transformation applied to equation (11.41), second di¤erencing also

eliminates gi. Because D2uit is uncorrelated with D2xis, for all t and s, we can estimate

equation (11.42) by pooled OLS or a GLS procedure.

When T ¼ 3, second di¤erencing is the same as first di¤erencing and then apply-

ing fixed e¤ects. Second di¤erencing results in a single cross section on the second-

di¤erenced data, so that if the second-di¤erence error is homoskedastic conditional

on xi, the standard OLS analysis on the cross section of second di¤erences is appro-

priate. Hoxby (1996) uses this method to estimate the e¤ect of teachers’ unions on

education production using three years of census data.

If xit contains a time trend, then Dxit contains the same constant for t ¼
2; 3; . . . ;T , which then gets swept away in the FE or FD transformation applied to

equation (11.41). Therefore, xit cannot have time-constant variables or variables that

have exact linear time trends for all cross section units.

11.2.2 General Models with Individual-Specific Slopes

We now consider a more general model with interactions between time-varying ex-

planatory variables and some unobservable, time-constant variables:
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yit ¼ zitai þ xitb þ uit; t ¼ 1; 2; . . . ;T ð11:43Þ

where zit is 1 � J, ai is J � 1, xit is 1 � K , and b is K � 1. The standard unobserved

e¤ects model is a special case with zit 1 1; the random trend model is a special case

with zit ¼ zt ¼ ð1; tÞ.
Equation (11.43) allows some time-constant unobserved heterogeneity, contained

in the vector ai, to interact with some of the observable explanatory variables. For

example, suppose that progit is a program participation indicator and yit is an out-

come variable. The model

yit ¼ xitb þ ai1 þ ai2 � progit þ uit

allows the e¤ect of the program to depend on the unobserved e¤ect ai2 (which may or

may not be tied to ai1). While we are interested in estimating b, we are also interested

in the average e¤ect of the program, m2 ¼ Eðai2Þ. We cannot hope to get good esti-

mators of the ai2 in the usual case of small T. Polachek and Kim (1994) study such

models, where the return to experience is allowed to be person-specific. Lemieux

(1998) estimates a model where unobserved heterogeneity is rewarded di¤erently in

the union and nonunion sectors.

In the general model, we initially focus on estimating b and then turn to estimation

of a ¼ EðaiÞ, which is the vector of average partial e¤ects for the covariates zit. The

strict exogeneity assumption is the natural extension of assumption (11.39):

assumption FE.1 0: Eðuit j zi; xi; aiÞ ¼ 0, t ¼ 1; 2; . . . ;T .

Along with equation (11.43), Assumption FE.1 0 is equivalent to

Eðyit j zi1; . . . ; ziT ; xi1; . . . ; xiT ; aiÞ ¼ Eðyit j zit; xit; aiÞ ¼ zitai þ xitb

which says that, once zit, xit, and ai have been controlled for, ðzis; xisÞ for s0 t do not

help to explain yit.

Define Zi as the T � J matrix with tth row zit, and similarly for the T � K matrix

Xi. Then equation (11.43) can be written as

yi ¼ Ziai þ Xib þ ui ð11:44Þ

Assuming that Z 0
i Zi is nonsingular (technically, with probability one), define

Mi 1 IT � ZiðZ 0
i ZiÞ�1Z 0

i ð11:45Þ

the projection matrix onto the null space of Zi [the matrix ZiðZ 0
i ZiÞ�1

Z 0
i is the pro-

jection matrix onto the column space of Zi]. In other words, for each cross section

observation i, Miyi is the T � 1 vector of residuals from the time series regression
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yit on zit; t ¼ 1; 2; . . . ;T ð11:46Þ

In the basic fixed e¤ects case, regression (11.46) is the regression yit on 1, t ¼ 1; 2; . . . ;

T , and the residuals are simply the time-demeaned variables. In the random trend

case, the regression is yit on 1, t, t ¼ 1; 2; . . . ;T , which linearly detrends yit for each i.

The T � K matrix MiXi contains as its rows the 1 � K vectors of residuals from

the regression xit on zit, t ¼ 1; 2; . . . ;T . The usefulness of premultiplying by Mi is that

it allows us to eliminate the unobserved e¤ect ai by premultiplying equation (11.44)

through by Mi and noting that MiZi ¼ 0:

€yyi ¼ €XXib þ €uui ð11:47Þ

where €yyi ¼ Miyi,
€XXi ¼ MiXi, and €uui ¼ Miui. This is an extension of the within

transformation used in basic fixed e¤ects estimation.

To consistently estimate b by system OLS on equation (11.47), we make the fol-

lowing assumption:

assumption FE.2 0: rank Eð€XX 0
i
€XXiÞ ¼ K , where €XXi ¼ MiXi.

The rank of Mi is T � J, so a necessary condition for Assumption FE.2 0 is J < T . In

other words, we must have at least one more time period than the number of ele-

ments in ai. In the basic unobserved e¤ects model, J ¼ 1, and we know that T b 2 is

needed. In the random trend model, J ¼ 2, and we need T b 3 to estimate b.

The system OLS estimator of equation (11.47) is

b̂bFE ¼
XN

i¼1

€XX 0
i
€XXi

 !�1 XN

i¼1

€XX 0
i€yyi

 !
¼ b þ N�1

XN

i¼1

€XX 0
i
€XXi

 !�1

N�1
XN

i¼1

€XX 0
i ui

 !

Under Assumption FE.1 0, Eð€XX 0
i uiÞ ¼ 0, and under Assumption FE.2 0, rank Eð€XX 0

i
€XXiÞ

¼ K , and so the usual consistency argument goes through. Generally, it is possible

that for some observations, €XX 0
i
€XXi has rank less than K. For example, this result occurs

in the standard fixed e¤ects case when xit does not vary over time for unit i. However,

under Assumption FE.2 0, b̂bFE should be well defined unless our cross section sample

size is small or we are unlucky in obtaining the sample.

Naturally, the FE estimator is
ffiffiffiffiffi
N

p
-asymptotically normally distributed. To obtain

the simplest expression for its asymptotic variance, we add the assumptions of con-

stant conditional variance and no (conditional) serial correlation on the idiosyncratic

errors fuit: t ¼ 1; 2; . . . ;Tg.

assumption FE.3 0: Eðuiu
0
i j zi; xi; aiÞ ¼ s2

uIT .
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Under Assumption FE.3 0, iterated expectations implies

Eð€XX 0
i uiu

0
i
€XXiÞ ¼ E½ €XX 0

i Eðuiu
0
i jZi;XiÞ€XXi� ¼ s2

uEð€XX 0
i
€XXiÞ

Using essentially the same argument as in Section 10.5.2, under Assumptions FE.1 0,

FE.2 0, and FE.3 0, Avar
ffiffiffiffiffi
N

p
ðb̂bFE � bÞ ¼ s2

u ½Eð€XX
0
i
€XXiÞ��1, and so Avarðb̂bFEÞ is con-

sistently estimated by

Avar̂rðb̂bFEÞ ¼ ŝs2
u

XN

i¼1

€XX 0
i
€XXi

 !�1

ð11:48Þ

where ŝs2
u is a consistent estimator for s2

u . As with the standard FE analysis, we must

use some care in obtaining ŝs2
u . We have

XT

t¼1

Eð€uu2
itÞ ¼ Eð€uu 0

i€uuiÞ ¼ E½Eðu 0
i Miui jZi;XiÞ� ¼ Eftr½Eðu 0

i uiMi jZi;XiÞ�g

¼ Eftr½Eðu 0
i ui jZi;XiÞMi�g ¼ E½trðs2

uMiÞ� ¼ ðT � JÞs2
u ð11:49Þ

since trðMiÞ ¼ T � J. Let ûuit ¼ €yyit � €xxitb̂bFE . Then equation (11.49) and standard

arguments imply that an unbiased and consistent estimator of s2
u is

ŝs2
u ¼ ½NðT � JÞ � K ��1

XN

i¼1

XT

t¼1

ûu2
it ¼ SSR=½NðT � JÞ � K � ð11:50Þ

The SSR in equation (11.50) is from the pooled regression

€yyit on €xxit; t ¼ 1; 2; . . . ;T ; i ¼ 1; 2; . . . ;N ð11:51Þ

which can be used to obtain b̂bFE . Division of the SSR from regression (11.51) by

NðT � JÞ � K produces ŝs2
u . The standard errors reported from regression (11.51)

will be o¤ because the SSR is only divided by NT � K ; the adjustment factor is

fðNT � KÞ=½NðT � JÞ � K �g1=2.

A standard F statistic for testing hypotheses about b is also asymptotically valid.

Let Q be the number of restrictions on b under H0, and let SSRr be the restricted sum

of squared residuals from a regression like regression (11.51) but with the restrictions

on b imposed. Let SSRur be the unrestricted sum of squared residuals. Then

F ¼ ðSSRr � SSRurÞ
SSRur

� ½NðT � JÞ � K �
Q

ð11:52Þ

can be treated as having an F distribution with Q and NðT � JÞ � K degrees of

freedom. Unless we add a (conditional) normality assumption on ui, equation (11.52)
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does not have an exact F distribution, but it is asymptotically valid because

Q � F @
a
w2

Q.

Without Assumption FE.3 0, equation (11.48) is no longer valid as the variance esti-

mator and equation (11.52) is not a valid test statistic. But the robust variance matrix

estimator (10.59) can be used with the new definitions for €XXi and ûui. This step leads

directly to robust Wald statistics for multiple restrictions.

To obtain a consistent estimator of a ¼ EðaiÞ, premultiply equation (11.44) by

ðZ 0
i ZiÞ�1

Z 0
i and rearrange to get

ai ¼ ðZ 0
i ZiÞ�1Z 0

i ðyi � XibÞ � ðZ 0
i ZiÞ�1Z 0

i ui ð11:53Þ

Under Assumption FE.1 0, Eðui jZiÞ ¼ 0, and so the second term in equation (11.53)

has a zero expected value. Therefore, assuming that the expected value exists,

a ¼ E½ðZ 0
i ZiÞ�1Z 0

i ðyi � XibÞ�

So a consistent,
ffiffiffiffiffi
N

p
-asymptotically normal estimator of a is

âa ¼ N�1
XN

i¼1

ðZ 0
i ZiÞ�1

Z 0
i ðyi � Xib̂bFEÞ ð11:54Þ

With fixed T we cannot consistently estimate the ai when they are viewed as

parameters. However, for each i, the term in the summand in equation (11.54), call

it âai, is an unbiased estimator of ai under Assumptions FE.1 0 and FE.2 0. This con-

clusion is easy to show: Eðâai jZ;XÞ ¼ ðZ 0
i ZiÞ�1

Z 0
i ½Eðyi jZ;XÞ � XiEðb̂bFE jZ;XÞ� ¼

ðZ 0
i ZiÞ�1

Z 0
i ½Ziai þ Xib � Xib� ¼ ai, where we have used the fact that Eðb̂bFE jZ;XÞ ¼

b. The estimator âa simply averages the âai over all cross section observations.

The asymptotic variance of
ffiffiffiffiffi
N

p
ðâa� aÞ can be obtained by expanding equation

(11.54) and plugging in
ffiffiffiffiffi
N

p
ðb̂bFE � bÞ ¼ ½Eð€XX 0

i
€XXiÞ��1ðN�1=2

PN
i¼1

€XX 0
i uiÞ þ opð1Þ. A

consistent estimator of Avar
ffiffiffiffiffi
N

p
ðâa� aÞ can be shown to be

N�1
XN

i¼1

½ð̂ssi � âaÞ � ĈCÂA�1 €XX 0
i ûui�½ðŝsi � âaÞ � ĈCÂA�1 €XX 0

i ûui� 0 ð11:55Þ

where ŝsi1ðZ 0
i ZiÞ�1Z 0

i ðyi � Xib̂bFEÞ, ĈC1N�1
PN

i¼1ðZ
0
i ZiÞ�1Z 0

i Xi, ÂA1N�1
PN

i¼1
€XX 0

i
€XXi,

and ûui 1 €yyi � €XXib̂bFE . This estimator is fully robust in the sense that it does not rely on

Assumption FE.3 0. As usual, asymptotic standard errors of the elements of âa are

obtained by multiplying expression (11.55) by N and taking the square roots of the

diagonal elements. As special cases, expression (11.55) can be applied to the tradi-

tional unobserved e¤ects and random trend models.
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The estimator âa in equation (11.54) is not necessarily the most e‰cient. A better

approach is to use the moment conditions for b̂bFE and âa simultaneously. This leads

to nonlinear instrumental variables methods, something we take up in Chapter 14.

Chamberlain (1992a) covers the e‰cient method of moments approach to estimating

a and b; see also Lemieux (1998).

11.3 GMM Approaches to Linear Unobserved E¤ects Models

11.3.1 Equivalence between 3SLS and Standard Panel Data Estimators

Random e¤ects, fixed e¤ects, and first di¤erencing are still the most popular ap-

proaches to estimating unobserved e¤ects panel data models under strict exogeneity

of the explanatory variables. As we saw in Chapter 10, each of these is e‰cient under

a particular set of assumptions. If these assumptions fail, we can do worse than using

an optimal GMM approach. We have already seen how to generalize Assumption

RE.3, FE.3, or FD.3 by allowing the idiosyncratic error variance matrix, VarðuiÞ, to

be unrestricted. But we still assumed that either VarðcijT þ ui j xiÞ (random e¤ects) or

Varðui j xi; ciÞ was constant.

Suppose first that Assumption RE.1 holds, so that Eðci j xiÞ ¼ 0. Write the model

in composite error form as

yi ¼ Xib þ vi ð11:56Þ

Under Assumption RE.1, xis is uncorrelated with vit for all s and t. [In fact, any

function of xi 1 ðxi1; . . . ; xiT Þ is uncorrelated with vit for all t, but we will only use the

xis themselves.] Let xo
i denote the row vector of nonredundant elements of xi, so that

any time constant element appears only once in xo
i . Then Eðxo0

i vitÞ ¼ 0, t ¼ 1; 2; . . . ;T .

This orthogonality condition suggests a system instrumental variables procedure,

with matrix of instruments

Zi 1 IT n xo
i ð11:57Þ

In other words, use instruments Zi to estimate equation (11.56) by 3SLS or, more

generally, by minimum chi-square.

The matrix (11.57) can contain many instruments. If xit contains only time-varying

variables, then Zi is T � TK . With only K parameters to estimate, this choice of

instruments implies many overidentifying restrictions even for moderately sized T.

Even if computation is not an issue, using many overidentifying restrictions can result

in poor finite sample properties.

In some cases, we can reduce the number of moment conditions without sacrificing

e‰ciency. Im, Ahn, Schmidt, and Wooldridge (1999) (IASW) show the following
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result. If ŴW has the random e¤ects structure—which means we impose the RE struc-

ture in estimating W—then 3SLS applied to equation (11.56), using instruments

Zi 1 ðPT Xi;QT WiÞ ð11:58Þ

where PT ¼ jT ðj 0T jTÞ
�1j 0T , QT 1 IT � PT , jT 1 ð1; 1; . . . ; 1Þ0, and Wi is the T � M

submatrix of Xi obtained by removing the time-constant variables, is identical to the

random e¤ects estimator. The column dimension of matrix (11.58) is only K þ M, so

there are only M overidentifying restrictions in using the 3SLS estimator.

The algebraic equivalence between 3SLS and random e¤ects has some useful ap-

plications. First, it provides a di¤erent way of testing the orthogonality between ci

and xit for all t: after 3SLS estimation, we simply apply the GMM overidentification

statistic from Chapter 8. (We discussed regression-based tests in Section 10.7.3.)

Second, it provides a way to obtain a more e‰cient estimator when Assumption

RE.3 does not hold. If W does not have the random e¤ects structure [see equation

(10.30)], then the 3SLS estimator that imposes this structure is ine‰cient; an unre-

stricted estimator of W should be used instead. Because an unrestricted estimator of

W is consistent with or without the random e¤ects structure, 3SLS with unrestricted

ŴW and IVs in matrix (11.58) is no less e‰cient than the RE estimator. Further, if

Eðvivi j xiÞ0Eðviv
0
i Þ, any 3SLS estimator is ine‰cient relative to GMM with the op-

timal weighting matrix. Therefore, if Assumption RE.3 fails, minimum chi-square

estimation with IVs in matrix (11.58) generally improves on the random e¤ects esti-

mator. In other words, we can gain asymptotic e‰ciency by using only M aK ad-

ditional moment conditions.

A di¤erent 3SLS estimator can be shown to be equivalent to the fixed e¤ects esti-

mator. In particular, IASW (1999, Theorem 4.1) verify an assertion of Arellano and

Bover (1995): when ŴW has the random e¤ects form, the 3SLS estimator applied to

equation (11.56) using instruments LT n xo
i —where LT is the T � ðT � 1Þ di¤er-

encing matrix defined in IASW [1999, equation (4.1)]—is identical to the fixed e¤ects

estimator. Therefore, we might as well use fixed e¤ects.

11.3.2 Chamberlain’s Approach to Unobserved E¤ects Models

We now study an approach to estimating the linear unobserved e¤ects model (11.1)

due to Chamberlain (1982, 1984) and related to Mundlak (1978). We maintain the

strict exogeneity assumption on xit conditional on ci (see Assumption FE.1), but we

allow arbitrary correlation between ci and xit. Thus we are in the fixed e¤ects envi-

ronment, and xit contains only time-varying explanatory variables.

In Chapter 10 we saw that the FE and FD transformations eliminate ci and pro-

duce consistent estimators under strict exogeneity. Chamberlain’s approach is to re-
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place the unobserved e¤ect ci with its linear projection onto the explanatory variables

in all time periods (plus the projection error). Assuming ci and all elements of xi have

finite second moments, we can always write

ci ¼ cþ xi1l1 þ xi2l2 þ � � � þ xiTlT þ ai ð11:59Þ

where c is a scalar and l1; . . . ; lT are 1 � K vectors. The projection error ai, by def-

inition, has zero mean and is uncorrelated with xi1; . . . ; xiT . This equation assumes

nothing about the conditional distribution of ci given xi. In particular, Eðci j xiÞ is

unrestricted, as in the usual fixed e¤ects analysis.

Plugging equation (11.59) into equation (11.1) gives, for each t,

yit ¼ cþ xi1l1 þ � � � þ xitðb þ ltÞ þ � � � þ xiTlT þ rit ð11:60Þ

where, under Assumption FE.1, the errors rit 1 ai þ uit satisfy

EðritÞ ¼ 0; Eðx 0
i ritÞ ¼ 0; t ¼ 1; 2; . . . ;T ð11:61Þ

However, unless we assume that Eðci j xiÞ is linear, it is not the case that Eðrit j xiÞ ¼
0. Nevertheless, assumption (11.61) suggests a variety of methods for estimating b

(along with c; l1; . . . ; lT ).

Write the system (11.60) for all time periods t as

yi1

yi2

..

.

yiT

0
BBBB@

1
CCCCA ¼

1 xi1 xi2 � � � xiT xi1

1 xi1 xi2 � � � xiT xi2

..

.

1 xi1 xi2 � � � xiT xiT

0
BBBB@

1
CCCCA

c

l1

l2

..

.

lT

b

0
BBBBBBBB@

1
CCCCCCCCA

þ

ri1

ri2

..

.

riT

0
BBBB@

1
CCCCA ð11:62Þ

or

yi ¼ Wiy þ ri ð11:63Þ

where Wi is T � ð1 þ TK þ KÞ and y is ð1 þ TK þ KÞ � 1. From equation (11.61),

EðW 0
i riÞ ¼ 0, and so system OLS is one way to consistently estimate y. The rank

condition requires that rank EðW 0
i WiÞ ¼ 1 þ TK þ K ; essentially, it su‰ces that the

elements of xit are not collinear and that they vary su‰ciently over time. While sys-

tem OLS is consistent, it is very unlikely to be the most e‰cient estimator. Not only

is the scalar variance assumption Eðrir
0
i Þ ¼ s2

r IT highly unlikely, but also the homo-

skedasticity assumption

Eðrir
0
i j xiÞ ¼ Eðrir

0
i Þ ð11:64Þ
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fails unless we impose further assumptions. Generally, assumption (11.64) is violated if

Eðuiu
0
i j ci; xiÞ0Eðuiu

0
i Þ, if Eðci j xiÞ is not linear in xi, or if Varðci j xiÞ is not constant.

If assumption (11.64) does happen to hold, feasible GLS is a natural approach.

The matrix W ¼ Eðrir
0
i Þ can be consistently estimated by first estimating y by system

OLS, and then proceeding with FGLS as in Section 7.5.

If assumption (11.64) fails, a more e‰cient estimator is obtained by applying GMM

to equation (11.63) with the optimal weighting matrix. Because rit is orthogonal to

xo
i ¼ ð1; xi1; . . . ; xiT Þ, xo

i can be used as instruments for each time period, and so we

choose the matrix of instruments (11.57). Interestingly, the 3SLS estimator, which

uses ½Z 0ðIN n ŴWÞZ=N��1 as the weighting matrix—see Section 8.3.4—is numerically

identical to FGLS with the same ŴW. Arellano and Bover (1995) showed this result in

the special case that ŴW has the random e¤ects structure, and IASW (1999, Theorem

3.1) obtained the general case.

In expression (11.63) there are 1 þ TK þ K parameters, and the matrix of instru-

ments is T � Tð1 þ TKÞ; there are Tð1 þ TKÞ � ð1 þ TK þ KÞ ¼ ðT � 1Þð1 þ TKÞ
�K overidentifying restrictions. Testing these restrictions is precisely a test of the

strict exogeneity Assumption FE.1, and it is a fully robust test when full GMM is

used because no additional assumptions are used.

Chamberlain (1982) works from the system (11.62) under assumption (11.61), but

he uses a di¤erent estimation approach, known as minimum distance estimation. We

cover this approach to estimation in Chapter 14.

11.4 Hausman and Taylor-Type Models

In the panel data methods we covered in Chapter 10, and so far in this chapter,

coe‰cients on time-constant explanatory variables are not identified unless we make

Assumption RE.1. In some cases the explanatory variable of primary interest is time

constant, yet we are worried that ci is correlated with some explanatory variables.

Random e¤ects will produce inconsistent estimators of all parameters if such cor-

relation exists, while fixed e¤ects or first di¤erencing eliminates the time-constant

variables.

When all time-constant variables are assumed to be uncorrelated with the unob-

served e¤ect, but the time-varying variables are possibly correlated with ci, consistent

estimation is fairly simple. Write the model as

yit ¼ zigþ xitb þ ci þ uit; t ¼ 1; 2; . . . ;T ð11:65Þ

where all elements of xit display some time variation, and it is convenient to include

unity in zi and assume that EðciÞ ¼ 0. We assume strict exogeneity conditional on ci:
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Eðuit j zi; xi1; . . . ; xiT ; ciÞ ¼ 0; t ¼ 1; . . . ;T ð11:66Þ

Estimation of b can proceed by fixed e¤ects: the FE transformation eliminates zig

and ci. As usual, this approach places no restrictions on the correlation between ci

and ðzi; xitÞ.
What about estimation of g? If, in addition to assumption (11.66) we assume

Eðz 0
i ciÞ ¼ 0 ð11:67Þ

then a
ffiffiffiffiffi
N

p
-consistent estimator is easy to obtain: average equation (11.65) across

t, premultiply by z 0
i , take expectations, use the fact that E½z 0

i ðci þ uiÞ� ¼ 0, and re-

arrange to get

Eðz 0
i ziÞg ¼ E½z 0

i ðyi � xibÞ�

Now, making the standard assumption that Eðz 0
i ziÞ is nonsingular, it follows by the

usual analogy principle argument that

ĝg ¼ N�1
XN

i¼1

z 0
i zi

 !�1

N�1
XN

i¼1

z 0
i ðyi � xib̂bFEÞ

" #

is consistent for g. The asymptotic variance of
ffiffiffiffiffi
N

p
ðĝg� gÞ can be obtained by stan-

dard arguments for two-step estimators. Rather than derive this asymptotic variance,

we turn to a more general model.

Hausman and Taylor (1981) (HT) partition zi and xit as zi ¼ ðzi1; zi2Þ, xit ¼
ðxit1; xit2Þ—where zi1 is 1 � J1, zi2 is 1 � J2, xit1 is 1 � K1, xit2 is 1 � K2—and assume

that

Eðz 0
i1ciÞ ¼ 0 and Eðx 0

it1ciÞ ¼ 0; all t ð11:68Þ

We still maintain assumption (11.66), so that zi and xis are uncorrelated with uit for

all t and s.

Assumptions (11.66) and (11.68) provide orthogonality conditions that can be used

in a method of moments procedure. HT actually imposed enough assumptions so

that the variance matrix W of the composite error vi ¼ cijT þ ui has the random

e¤ects structure and Assumption SIV.5 from Section 8.3.4 holds. Neither of these is

necessary, but together they a¤ord some simplifications.

Write equation (11.65) for all T time periods as

yi ¼ Zigþ Xib þ vi ð11:69Þ

Since xit is strictly exogenous and QT vi ¼ QT ui [where QT 1 IT � jTðj 0T jTÞ
�1

j 0T is

again the T � T time-demeaning matrix], it follows that E½ðQT XiÞ0vi� ¼ 0. Thus, the
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T � K matrix QT Xi can be used as instruments in estimating equation (11.69). If

these were the only instruments available, then we would be back to fixed e¤ects

estimation of b without being able to estimate g.

Additional instruments come from assumption (11.68). In particular, zi1 is orthog-

onal to vit for all t, and so is xo
i1, the 1 � TK1 vector containing xit1 for all t ¼ 1; . . . ;T .

Thus, define a set of instruments for equation (11.69) by

½QT Xi; jT n ðzi1; xo
i1Þ� ð11:70Þ

which is a T � ðK þ J1 þ TK1Þ matrix. Simply put, the vector of IVs for time period t

is ð€xxit; zi1; xo
i1Þ. With this set of instruments, the order condition for identification of

ðg; bÞ is that K þ J1 þ TK1 b J þ K , or TK1 b J2. In e¤ect, we must have a su‰cient

number of elements in xo
i1 to act as instruments for zi2. (€xxit are the IVs for xit, and zi1

act as their own IVs.) Whether we do depends on the number of time periods, as well

as on K1.

Actually, matrix (11.70) does not include all possible instruments under assump-

tions (11.66) and (11.68), even when we only focus on zero covariances. However,

under the full set of Hausman-Taylor assumptions mentioned earlier—including the

assumption that W has the random e¤ects structure—it can be shown that all in-

struments other than those in matrix (11.70) are redundant in the sense of Section 8.6;

see IASW (1999, Theorem 4.4) for details. In fact, a very simple estimation strategy is

available. First, estimate equation (11.65) by pooled 2SLS, using IVs ð€xxit; zi1; xo
i1Þ.

Use the pooled 2SLS residuals, say ^̂vv̂vvit, in the formulas from Section 10.4.1, namely,

equations (10.35) and (10.37), to obtain ŝs2
c and ŝs2

u , which can then be used to obtain

l̂l in equation (10.77). Then, perform quasi–time demeaning on all the dependent

variables, explanatory variables, and IVs, and use these in a pooled 2SLS estimation.

Under the Hausman-Taylor assumptions, this estimator—sometimes called a gener-

alized IV (GIV ) estimator—is the e‰cient GMM estimator, and all statistics from

pooled 2SLS on the quasi-demeaned data are asymptotically valid.

If W is not of the random e¤ects form, or if Assumption SIV.5 fails, many more

instruments than are in matrix (11.70) can help improve e‰ciency. Unfortunately,

the value of these additional IVs is unclear. For practical purposes, 3SLS with ŴW of the

RE form, 3SLS with ŴW unrestricted, or GMM with optimal weighting matrix—using

the instruments in matrix (11.70)—should be su‰cient, with the latter being the most

e‰cient in the presence of conditional heteroskedasticity. The first-stage estimator can

be the system 2SLS estimator using matrix (11.70) as instruments. The GMM over-

identification test statistic can be used to test the TK1 � J2 overidentifying restrictions.

In cases where K1 b J2, we can reduce the instrument list even further and still

achieve identification: we use xi1 as the instruments for zi2. Then, the IVs at time t are
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ð€xxit; zi1; xi1Þ. We can then use the pooled 2SLS estimators described previously with

this new set of IVs. Quasi-demeaning leads to an especially simple analysis. Although

it generally reduces asymptotic e‰ciency, replacing xo
i1 with xi1 is a reasonable way to

reduce the instrument list because much of the partial correlation between zi2 and xo
i1

is likely to be through the time average, xi1.

HT provide an application of their model to estimating the return to education,

where education levels do not vary over the two years in their sample. Initially, HT

include as the elements of xit1 all time-varying explanatory variables: experience, an

indicator for bad health, and a previous-year unemployment indicator. Race and

union status are assumed to be uncorrelated with ci, and, because these do not

change over time, they comprise zi1. The only element of zi2 is years of schooling. HT

apply the GIV estimator and obtain a return to schooling that is almost twice as large

as the pooled OLS estimate. When they allow some of the time-varying explanatory

variables to be correlated with ci, the estimated return to schooling gets even larger.

It is di‰cult to know what to conclude, as the identifying assumptions are not espe-

cially convincing. For example, assuming that experience and union status are un-

correlated with the unobserved e¤ect and then using this information to identify the

return to schooling seems tenuous.

Breusch, Mizon, and Schmidt (1989) studied the Hausman-Taylor model under the

additional assumption that Eðx 0
it2ciÞ is constant across t. This adds more orthogonality

conditions that can be exploited in estimation. See IASW (1999) for a recent analysis.

It is easy to bring in outside, exogenous variables in the Hausman-Taylor frame-

work. For example, if the model (11.65) is an equation in a simultaneous equations

model, and if elements of xit2 are simultaneously determined with yit, then we can use

exogenous variables appearing elsewhere in the system as IVs. If such variables do

not vary over time, we need to assume that they are uncorrelated with ci as well as

with uit for all t. If they do vary over time and are correlated with ci, we can use their

deviations from means as IVs, provided these instruments are strictly exogenous with

respect to uit. The time averages can be added to the instrument list if the external

variables are uncorrelated with ci. For example, in a wage equation containing alco-

hol consumption, which is determined simultaneously with the wage, we can, under

reasonable assumptions, use the time-demeaned local price of alcohol as an IV for

alcohol consumption.

11.5 Applying Panel Data Methods to Matched Pairs and Cluster Samples

Unobserved e¤ects structures arise in contexts other than repeated cross sections over

time. One simple data structure is a matched pairs sample. To illustrate, we consider
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the case of sibling data, which are often used in the social sciences in order to control

for the e¤ect of unobserved family background variables. For each family i in the

population, there are two siblings, described by

yi1 ¼ xi1b þ fi þ ui1 ð11:71Þ

yi2 ¼ xi2b þ fi þ ui2 ð11:72Þ

where the equations are for siblings 1 and 2, respectively, and fi is an unobserved

family e¤ect. The strict exogeneity assumption now means that the idiosyncratic error

uis in each sibling’s equation is uncorrelated with the explanatory variables in both

equations. For example, if y denotes logðwageÞ and x contains years of schooling as

an explanatory variable, then we must assume that sibling’s schooling has no e¤ect

on wage after controlling for the family e¤ect, own schooling, and other observed

covariates. Such assumptions are often reasonable, although the condition should be

studied in each application.

If fi is assumed to be uncorrelated with xi1 and xi2, then a random e¤ects analysis

can be used. The mechanics of random e¤ects for matched pairs are identical to the

case of two time periods.

More commonly, fi is allowed to be arbitrarily correlated with the observed factors

in xi1 and xi2, in which case di¤erencing across siblings to remove fi is the appropri-

ate strategy. Under this strategy, x cannot contain common observable family back-

ground variables, as these are indistinguishable from fi. The IV methods developed

in Section 11.1 to account for omitted variables, measurement error, and simulta-

neity, can be applied directly to the di¤erenced equation. Examples of where sibling

(in some cases twin) di¤erences have been used in economics include Geronimus and

Korenman (1992), Ashenfelter and Krueger (1994), Bronars and Grogger (1994), and

Ashenfelter and Rouse (1998).

A matched pairs sample is a special case of a cluster sample, which we touched

on in Section 6.3.4. A cluster sample is typically a cross section on individuals (or

families, firms, and so on), where each individual is part of a cluster. For example,

students may be clustered by the high school they attend, or workers may be clus-

tered by employer. Observations within a cluster are thought to be correlated as a

result of an unobserved cluster e¤ect.

The unobserved e¤ects model

yis ¼ xisb þ ci þ uis ð11:73Þ

is often reasonable, where i indexes the group or cluster and s indexes units within a

cluster. In some fields, an unobserved e¤ects model for a cluster sample is called a

hierarchical model.
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One complication that arises in cluster samples, which we have not yet addressed,

is that the number of observations within a cluster usually di¤ers across clusters.

Nevertheless, for cluster i, we can write

yi ¼ Xib þ cijGi
þ ui ð11:74Þ

where the row dimension of yi, Xi, jGi
, and ui is Gi, the number of units in cluster i.

The dimension of b is K � 1.

To apply the panel data methods we have discussed so far, we assume that the

number of clusters, N, is large, because we fix the number of units within each cluster

in analyzing the asymptotic properties of the estimators. Because the dimension of the

vectors and matrix in equation (11.74) changes with i, we cannot assume an identical

distribution across i. However, in most cases it is reasonable to assume that the

observations are independent across cluster. The fact that they are not also identically

distributed makes the theory more complicated but has no practical consequences.

The strict exogeneity assumption in the model (11.73) requires that the error uis be

uncorrelated with the explanatory variables for all units within cluster i. This as-

sumption is often reasonable when a cluster e¤ect ci is explicitly included. (In other

words, we assume strict exogeneity conditional on ci.) If we also assume that ci is

uncorrelated with xis for all s ¼ 1; . . . ;Gi, then pooled OLS across all clusters and

units is consistent as N ! y. However, the composite error will be correlated within

cluster, just as in a random e¤ects analysis. Even with di¤erent cluster sizes a valid

variance matrix for pooled OLS is easy to obtain: just use formula (7.26) but where

v̂vi, the Gi � 1 vector of pooled OLS residuals for cluster i, replaces ûui. The resulting

variance matrix estimator is robust to any kind of intracluster correlation and arbi-

trary heteroskedasticity, provided N is large relative to the Gi.

In the hierarchical models literature, ci is often allowed to depend on cluster-level

covariates, for example, ci ¼ d0 þ widþ ai, where ai is assumed to be independent

of (or at least uncorrelated with) wi and xis, s ¼ 1; . . . ;Gi. But this is equivalent to

simply adding cluster-level observables to the original model and relabeling the

unobserved cluster e¤ect.

The fixed e¤ects transformation can be used to eliminate ci in equation (11.74) when

ci is thought to be correlated with xis. The di¤erent cluster sizes cause no problems

here: demeaning is done within each cluster. Any explanatory variable that is con-

stant within each cluster for all clusters—for example, the gender of the teacher if

the clusters are elementary school classrooms—is eliminated, just as in the panel

data case. Pooled OLS can be applied to the demeaned data, just as with panel data.

Under the immediate generalizations of Assumptions FE.1–FE.3 to allow for di¤er-

ent cluster sizes, the variance matrix of the FE estimator for cluster samples can be
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estimated as in expression (10.54), but s2
u must be estimated with care. A consistent

estimator is ŝs2
u ¼ SSR=½

PN
i¼1ðGi � 1Þ � K �, which is exactly the estimator that would

be obtained from the pooled regression that includes a dummy variable for each

cluster. The robust variance matrix (10.59) is valid very generally, where ûui ¼ €yyi �
€XXib̂bFE , as usual.

The 2SLS estimator described in Section 11.1.3 can also be applied to cluster sam-

ples, once we adjust for di¤erent cluster sizes in doing the within-cluster demeaning.

Rather than include a cluster e¤ect, ci, sometimes the goal is to see whether person

s within cluster i is a¤ected by the characteristics of other people within the cluster.

One way to estimate the importance of peer e¤ects is to specify

yis ¼ xisb þ wiðsÞdþ vis ð11:75Þ

where wiðsÞ indicates averages of a subset of elements of xis across all other people in

the cluster. If equation (11.75) represents Eðyis j xiÞ ¼ Eðyis j xis;wiðsÞÞ for each s, then

the strict exogeneity assumption Eðvis j xiÞ ¼ 0, s ¼ 1; . . . ;Gi, necessarily holds. Pooled

OLS will consistently estimate b and d, although a robust variance matrix may be

needed to account for correlation in vis across s, and possibly for heteroskedasticity.

If Covðvis; vir j xiÞ ¼ 0, s0 r, and Varðvis j xiÞ ¼ s2
v are assumed, then pooled OLS is

e‰cient, and the usual test standard errors and test statistics are valid. It is also easy

to allow the unconditional variance to change across cluster using a simple weighting;

for a similar example, see Problem 7.7.

We can also apply the more general models from Section 11.2.2, where unobserved

cluster e¤ects interact with some of the explanatory variables. If we allow arbitrary

dependence between the cluster e¤ects and the explanatory variables, the transfor-

mations in Section 11.2.2 should be used. In the hierarchical models literature, the

unobserved cluster e¤ects are assumed to be either independent of the covariates xis

or independent of the covariates after netting out observed cluster covariates. This

assumption results in a particular form of heteroskedasticity that can be exploited

for e‰ciency. However, it makes as much sense to include cluster-level covariates,

individual-level covariates, and possibly interactions of these in an initial model, and

then to make inference in pooled OLS robust to arbitrary heteroskedasticity and

cluster correlation. (See Problem 11.5 for a related analysis in the context of panel

data.)

We should remember that the methods described in this section are known to have

good properties only when the number of clusters is large relative to the number of

units within a cluster. Case and Katz (1991) and Evans, Oates, and Schwab (1992)

apply cluster-sampling methods to the problem of estimating peer e¤ects.
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Problems

11.1. Let yit denote the unemployment rate for city i at time t. You are interested in

studying the e¤ects of a federally funded job training program on city unemployment

rates. Let zi denote a vector of time-constant city-specific variables that may influence

the unemployment rate (these could include things like geographic location). Let xit

be a vector of time-varying factors that can a¤ect the unemployment rate. The vari-

able progit is the dummy indicator for program participation: progit ¼ 1 if city i par-

ticipated at time t. Any sequence of program participation is possible, so that a city

may participate in one year but not the next.

a. Discuss the merits of including yi; t�1 in the model

yit ¼ yt þ zigþ xitb þ r1 yi; t�1 þ d1progit þ uit; t ¼ 1; 2; . . . ;T

State an assumption that allows you to consistently estimate the parameters by

pooled OLS.

b. Evaluate the following statement: ‘‘The model in part a is of limited value because

the pooled OLS estimators are inconsistent if the fuitg are serially correlated.’’

c. Suppose that it is more realistic to assume that program participation depends on

time-constant, unobservable city heterogeneity, but not directly on past unemploy-

ment. Write down a model that allows you to estimate the e¤ectiveness of the pro-

gram in this case. Explain how to estimate the parameters, describing any minimal

assumptions you need.

d. Write down a model that allows the features in parts a and c. In other words,

progit can depend on unobserved city heterogeneity as well as the past unemployment

history. Explain how to consistently estimate the e¤ect of the program, again stating

minimal assumptions.

11.2. Consider the following unobserved components model:

yit ¼ zitgþ dwit þ ci þ uit; t ¼ 1; 2; . . . ;T

where zit is a 1 � K vector of time-varying variables (which could include time-period

dummies), wit is a time-varying scalar, ci is a time-constant unobserved e¤ect, and uit

is the idiosyncratic error. The zit are strictly exogenous in the sense that

Eðz 0
isuitÞ ¼ 0; all s; t ¼ 1; 2; . . . ;T ð11:76Þ

but ci is allowed to be arbitrarily correlated with each zit. The variable wit is endog-

enous in the sense that it can be correlated with uit (as well as with ci).
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a. Suppose that T ¼ 2, and that assumption (11.76) contains the only available

orthogonality conditions. What are the properties of the OLS estimators of g and d on

the di¤erenced data? Support your claim (but do not include asymptotic derivations).

b. Under assumption (11.76), still with T ¼ 2, write the linear reduced form for the

di¤erence Dwi as Dwi ¼ zi1p1 þ zi2p2 þ ri, where, by construction, ri is uncorrelated

with both zi1 and zi2. What condition on ðp1; p2Þ is needed to identify g and d? (Hint:

It is useful to rewrite the reduced form of Dwi in terms of Dzi and, say, zi1.) How can

you test this condition?

c. Now consider the general T case, where we add to assumption (11.76) the as-

sumption EðwisuitÞ ¼ 0, s < t, so that previous values of wit are uncorrelated with uit.

Explain carefully, including equations where appropriate, how you would estimate g

and d.

d. Again consider the general T case, but now use the fixed e¤ects transformation to

eliminate ci:

€yyit ¼ €zzitgþ d€wwit þ €uuit

What are the properties of the IV estimators if you use €zzit and wi; t�p, pb 1, as

instruments in estimating this equation by pooled IV? (You can only use time periods

p þ 1; . . . ;T after the initial demeaning.)

11.3. Show that, in the simple model (11.29) with T > 2, under the assumptions

(11.30), Eðrit j x�
i ; ciÞ ¼ 0 for all t, and Varðrit � riÞ and Varðx�

it � x�
i Þ constant across

t, the plim of the FE estimator is

plim
N!y

b̂bFE ¼ b 1 � Varðrit � riÞ
½Varðx�

it � x�
i Þ þ Varðrit � riÞ�

� �

Thus, there is attenuation bias in the FE estimator under these assumptions.

11.4. a. Show that, in the fixed e¤ects model, a consistent estimator of mc 1EðciÞ is

m̂mc ¼ N�1
PN

i¼1ðyi � xib̂bFEÞ.
b. In the random trend model, how would you estimate mg ¼ EðgiÞ?

11.5. A random e¤ects analysis of model (11.43) would add Eðai j zi; xiÞ ¼ EðaiÞ ¼
a to Assumption FE.1 0 and, to Assumption FE.3 0, Varðai j zi; xiÞ ¼ L, where L is a

J � J positive semidefinite matrix. (This approach allows the elements of ai to be

arbitrarily correlated.)

a. Define the T � 1 composite error vector vi 1Ziðai � aÞ þ ui. Find Eðvi j zi; xiÞ and

Varðvi j zi; xiÞ. Comment on the conditional variance.
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b. If you apply the usual RE procedure to the equation

yit ¼ zitaþ xitb þ vit; t ¼ 1; 2; . . . ;T

what are the asymptotic properties of the RE estimator and the usual RE standard

errors and test statistics?

c. How could you modify your inference from part b to be asymptotically valid?

11.6. Does the measurement error model in equations (11.33) to (11.37) apply when

w�
it is a lagged dependent variable? Explain.

11.7. In the Chamberlain model in Section 11.3.2, suppose that lt ¼ l=T for all t.

Show that the pooled OLS coe‰cient on xit in the regression yit on 1, xit, xi, t ¼
1; . . . ;T ; i ¼ 1; . . . ;N, is the FE estimator. (Hint: Use partitioned regression.)

11.8. In model (11.1), first di¤erence to remove ci:

Dyit ¼ Dxitb þ Duit; t ¼ 2; . . . ;T ð11:77Þ

Assume that a vector of instruments, zit, satisfies EðDuit j zitÞ ¼ 0, t ¼ 2; . . . ;T . Typi-

cally, several elements in Dxit would be included in zit, provided they are appropri-

ately exogenous. Of course the elements of zit can be arbitrarily correlated with ci.

a. State the rank condition that is necessary and su‰cient for pooled 2SLS estima-

tion of equation (11.77) using instruments zit to be consistent (for fixed T ).

b. Under what additional assumptions are the usual pooled 2SLS standard errors

and test statistics asymptotically valid? (Hint: See Problem 8.8.)

c. How would you test for first-order serial correlation in Duit? (Hint: See Problem

8.10.)

11.9. Consider model (11.1) under the assumption

Eðuit j zi; ciÞ ¼ 0; t ¼ 1; 2; . . . ;T ð11:78Þ

where zi ¼ ðzi1; . . . ; ziTÞ and each zit is 1 � L. Typically, zit would contain some ele-

ments of xit. However, fzit: t ¼ 1; 2; . . . ;Tg is assumed to be strictly exogenous

(conditional on ci). All elements of zit are allowed to be correlated with ci.

a. Use the fixed e¤ects transformation to eliminate ci:

€yyit ¼ €xxitb þ €uuit; t ¼ 1; . . . ;T ; i ¼ 1; . . . ;N ð11:79Þ

Let €zzit denote the time-demeaned IVs. State the rank condition that is necessary and

su‰cient for pooled 2SLS estimation of equation (11.79) using instruments €zzit to be

consistent (for fixed T ).
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b. Show that, under the additional assumption

Eðuiu
0
i j zi; ciÞ ¼ s2

uIT ð11:80Þ

the asymptotic variance of
ffiffiffiffiffi
N

p
ðb̂b � bÞ is

s2
ufEð€XX 0

i
€ZZiÞ½Eð€ZZ 0

i
€ZZiÞ��1Eð€ZZ 0

i
€XXiÞg�1

where the notation should be clear from Chapter 10.

c. Propose a consistent estimator of s2
u .

d. Show that the 2SLS estimator of b from part a can be obtained by means of a

dummy variable approach: estimate

yit ¼ c1 d1i þ � � � þ cN dNi þ xitb þ uit ð11:81Þ

by pooled 2SLS, using instruments ðd1i; d2i; . . . ; dNi; zitÞ. (Hint: Use the obvious ex-

tension of Problem 5.1 to pooled 2SLS, and repeatedly apply the algebra of partial

regression.) This is another case where, even though we cannot estimate the ci con-

sistently with fixed T, we still get a consistent estimator of b.

e. In using the 2SLS approach from part d, explain why the usually reported stan-

dard errors are valid under assumption (11.80).

f. How would you obtain valid standard errors for 2SLS without assumption (11.80)?

g. If some elements of zit are not strictly exogenous, but we perform the procedure in

part c, what are the asymptotic (N ! y, T fixed) properties of b̂b ?

11.10. Consider the general model (11.43) where unobserved heterogeneity interacts

with possibly several variables. Show that the fixed e¤ects estimator of b is also

obtained by running the regression

yit on d1izit; d2izit; . . . ; dNizit; xit; t ¼ 1; 2; . . . ;T ; i ¼ 1; 2; . . . ;N ð11:82Þ

where dni ¼ 1 if and only if n ¼ i. In other words, we interact zit in each time period

with a full set of cross section dummies, and then include all of these terms in a

pooled OLS regression with xit. You should also verify that the residuals from re-

gression (11.82) are identical to those from regression (11.51), and that regression

(11.82) yields equation (11.50) directly. This proof extends the material on the basic

dummy variable regression from Section 10.5.3.

11.11. Apply the random growth model to the data in JTRAIN1.RAW (see Ex-

ample 10.6):

logðscrapitÞ ¼ yt þ ci þ git þ b1grantit þ b2granti; t�1 þ uit
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Specifically, di¤erence once and then either di¤erence again or apply fixed e¤ects to

the first-di¤erenced equation. Discuss the results.

11.12. An unobserved e¤ects model explaining current murder rates in terms of the

number of executions in the last three years is

mrdrteit ¼ yt þ b1execit þ b2unemit þ ci þ uit

where mrdrteit is the number of murders in state i during year t, per 10,000 people;

execit is the total number of executions for the current and prior two years; and

unemit is the current unemployment rate, included as a control.

a. Using the data for 1990 and 1993 in MURDER.RAW, estimate this model by

first di¤erencing. Notice that you should allow di¤erent year intercepts.

b. Under what circumstances would execit not be strictly exogenous (conditional on

ci)? Assuming that no further lags of exec appear in the model and that unem is

strictly exogenous, propose a method for consistently estimating b when exec is not

strictly exogenous.

c. Apply the method from part b to the data in MURDER.RAW. Be sure to also

test the rank condition. Do your results di¤er much from those in part a?

d. What happens to the estimates from parts a and c if Texas is dropped from the

analysis?

11.13. Use the data in PRISON.RAW for this question to estimate model (11.26).

a. Estimate the reduced form equation for DlogðprisonÞ to ensure that final1 and

final2 are partially correlated with DlogðprisonÞ. Test whether the parameters on

final1 and final2 are equal. What does this finding say about choosing an IV for

D logðprisonÞ? The elements of Dx should be the changes in the following variables:

logðpolpcÞ, logðincpcÞ, unem, black, metro, ag0_14, ag15_17, ag18_24, and ag25_34.

Is there serial correlation in this reduced form?

b. Use Problem 11.8c to test for serial correlation in Duit. What do you conclude?

c. Add a fixed e¤ect to equation (11.27). [ This procedure is appropriate if we add a

random growth term to equation (11.26).] Estimate the equation in first di¤erences

using the method of Problem 11.9. (Since N is only 51, you might be able to include

51 state dummies and use them as their own IVs.)

d. Estimate equation (11.26) using the property crime rate, and test for serial corre-

lation in Duit. Are there important di¤erences compared with the violent crime rate?

11.14. An extension of the model in Example 11.7 that allows enterprise zone des-

ignation to a¤ect the growth of unemployment claims is
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logðuclmsitÞ ¼ yt þ ci þ git þ d1ezit þ d2ezit � t þ uit

Notice that each jurisdiction also has a separate growth rate gi.

a. Use the data in EZUNEM.RAW to estimate this model by first di¤erencing fol-

lowed by fixed e¤ects on the di¤erenced equation. Interpret your estimate of d̂d2. Is it

statistically significant?

b. Reestimate the model setting d1 ¼ 0. Does this model fit better than the basic

model in Example 11.7?

c. Let wi be an observed, time-constant variable, and suppose we add b1wi þ b2wi � t

to the random growth model. Can either b1 or b2 be estimated? Explain.

11.15. Use the data in JTRAIN1.RAW for this question.

a. Consider the simple equation

logðscrapitÞ ¼ yt þ b1hrsempit þ ci þ uit

where scrapit is the scrap rate for firm i in year t, and hrsempit is hours of training per

employee. Suppose that you di¤erence to remove ci, but you still think that Dhrsempit

and DlogðscrapitÞ are simultaneously determined. Under what assumption is Dgrantit

a valid IV for Dhrsempit?

b. Using the di¤erences from 1987 to 1988 only, test the rank condition for identifi-

cation for the method described in part a.

c. Estimate the first-di¤erenced equation by IV, and discuss the results.

d. Compare the IV estimates on the first di¤erences with the OLS estimates on the

first di¤erences.

e. Use the IV method described in part a, but use all three years of data. How does

the estimate of b1 compare with only using two years of data?

11.16. Consider a Hausman and Taylor–type model with a single time-constant

explanatory variable:

yit ¼ gzi þ xitb þ ci þ uit

Eðuit j zi; xi; ciÞ ¼ 0; t ¼ 1; . . . ;T

where xit is 1 � K vector of time-varying explanatory variables.

a. If we are interested only in estimating b, how should we proceed, without making

additional assumptions (other than a standard rank assumption)?

b. Let wi be a time-constant proxy variable for ci in the sense that
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Eðci jwi; zi; xiÞ ¼ Eðci jwi; xiÞ ¼ d0 þ d1wi þ xid2

The key assumption is that, once we condition on wi and xi, zi is not partially related

to ci. Assuming the standard proxy variable redundancy assumption Eðuit j zi; xi; ci;

wiÞ ¼ 0, find Eðyit j zi; xi;wiÞ:
c. Using part b, argue that g is identified. Suggest a pooled OLS estimator.

d. Assume now that (1) Varðuit j zi; xi; ci;wiÞ ¼ s2
u , t ¼ 1; . . . ;T ; (2) Covðuit; uis j zi;

xi; ci;wiÞ ¼ 0, all t0 s; (3) Varðci j zi; xi;wiÞ ¼ s2
a . How would you e‰ciently estimate

g (along with b, d0, d1, and d2)? [Hint: It might be helpful to write ci ¼ d0 þ d1wi þ
xid2 þ ai, where Eðai j zi; xi;wiÞ ¼ 0 and Varðai j zi; xi;wiÞ ¼ s2

a .]

11.17. Derive equation (11.55).
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III GENERAL APPROACHES TO NONLINEAR ESTIMATION

In this part we begin our study of nonlinear econometric methods. What we mean

by nonlinear needs some explanation because it does not necessarily mean that the

underlying model is what we would think of as nonlinear. For example, suppose the

population model of interest can be written as y ¼ xb þ u, but, rather than assuming

Eðu j xÞ ¼ 0, we assume that the median of u given x is zero for all x. This assumption

implies Medðy j xÞ ¼ xb, which is a linear model for the conditional median of y

given x. [The conditional mean, Eðy j xÞ, may or may not be linear in x.] The stan-

dard estimator for a conditional median turns out to be least absolute deviations

(LAD), not ordinary least squares. Like OLS, the LAD estimator solves a minimi-

zation problem: it minimizes the sum of absolute residuals. However, there is a key

di¤erence between LAD and OLS: the LAD estimator cannot be obtained in closed

form. The lack of a closed-form expression for LAD has implications not only for

obtaining the LAD estimates from a sample of data, but also for the asymptotic

theory of LAD.

All the estimators we studied in Part II were obtained in closed form, a fact which

greatly facilitates asymptotic analysis: we needed nothing more than the weak law of

large numbers, the central limit theorem, and the basic algebra of probability limits.

When an estimation method does not deliver closed-form solutions, we need to use

more advanced asymptotic theory. In what follows, ‘‘nonlinear’’ describes any prob-

lem in which the estimators cannot be obtained in closed form.

The three chapters in this part provide the foundation for asymptotic analysis of

most nonlinear models encountered in applications with cross section or panel data.

We will make certain assumptions concerning continuity and di¤erentiability, and so

problems violating these conditions will not be covered. In the general development

of M-estimators in Chapter 12, we will mention some of the applications that are

ruled out and provide references.

This part of the book is by far the most technical. We will not dwell on the some-

times intricate arguments used to establish consistency and asymptotic normality in

nonlinear contexts. For completeness, we do provide some general results on consis-

tency and asymptotic normality for general classes of estimators. However, for specific

estimation methods, such as nonlinear least squares, we will only state assumptions

that have real impact for performing inference. Unless the underlying regularity

conditions—which involve assuming that certain moments of the population random

variables are finite, as well as assuming continuity and di¤erentiability of the regres-

sion function or log-likelihood function—are obviously false, they are usually just

assumed. Where possible, the assumptions will correspond closely with those given

previously for linear models.



The analysis of maximum likelihood methods in Chapter 13 is greatly simplified

once we have given a general treatment of M-estimators. Chapter 14 contains results

for generalized method of moments estimators for models nonlinear in parameters.

We also briefly discuss the related topic of minimum distance estimation in Chapter

14.

Readers who are not interested in general approaches to nonlinear estimation

might use these chapters only when needed for reference in Part IV.
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12 M-Estimation

12.1 Introduction

We begin our study of nonlinear estimation with a general class of estimators known

as M-estimators, a term introduced by Huber (1967). (You might think of the ‘‘M’’

as standing for minimization or maximization.) M-estimation methods include max-

imum likelihood, nonlinear least squares, least absolute deviations, quasi-maximum

likelihood, and many other procedures used by econometricians.

This chapter is somewhat abstract and technical, but it is useful to develop a uni-

fied theory early on so that it can be applied in a variety of situations. We will carry

along the example of nonlinear least squares for cross section data to motivate the

general approach.

In a nonlinear regression model, we have a random variable, y, and we would like

to model Eðy j xÞ as a function of the explanatory variables x, a K-vector. We already

know how to estimate models of Eðy j xÞ when the model is linear in its parameters:

OLS produces consistent, asymptotically normal estimators. What happens if the re-

gression function is nonlinear in its parameters?

Generally, let mðx; yÞ be a parametric model for Eðy j xÞ, where m is a known

function of x and y, and y is a P � 1 parameter vector. [This is a parametric model

because mð� ; yÞ is assumed to be known up to a finite number of parameters.] The

dimension of the parameters, P, can be less than or greater than K. The parameter

space, Y, is a subset of RP. This is the set of values of y that we are willing to con-

sider in the regression function. Unlike in linear models, for nonlinear models the

asymptotic analysis requires explicit assumptions on the parameter space.

An example of a nonlinear regression function is the exponential regression func-

tion, mðx; yÞ ¼ expðxyÞ, where x is a row vector and contains unity as its first ele-

ment. This is a useful functional form whenever yb 0. A regression model suitable

when the response y is restricted to the unit interval is the logistic function, mðx; yÞ ¼
expðxyÞ=½1 þ expðxyÞ�. Both the exponential and logistic functions are nonlinear in y.

In any application, there is no guarantee that our chosen model is adequate for

Eðy j xÞ. We say that we have a correctly specified model for the conditional mean,

Eðy j xÞ, if, for some yo A Y,

Eðy j xÞ ¼ mðx; yoÞ ð12:1Þ

We introduce the subscript ‘‘o’’ on theta to distinguish the parameter vector appear-

ing in Eðy j xÞ from other candidates for that vector. (Often, the value yo is called

‘‘the true value of theta,’’ a phrase that is somewhat loose but still useful as short-

hand.) As an example, for yb 0 and a single explanatory variable x, consider the

model mðx; yÞ ¼ y1xy2 . If the population regression function is Eðy j xÞ ¼ 4x1:5, then



yo1 ¼ 4 and yo2 ¼ 1:5. We will never know the actual yo1 and yo2 (unless we some-

how control the way the data have been generated), but, if the model is correctly

specified, then these values exist, and we would like to estimate them. Generic can-

didates for yo1 and yo2 are labeled y1 and y2, and, without further information, y1

is any positive number and y2 is any real number: the parameter space is Y1
fðy1; y2Þ: y1 > 0; y2 A Rg. For an exponential regression model, mðx; yÞ ¼ expðxyÞ is

a correctly specified model for Eðy j xÞ if and only if there is some K-vector yo such

that Eðy j xÞ ¼ expðxyoÞ.
In our analysis of linear models, there was no need to make the distinction between

the parameter vector in the population regression function and other candidates for

this vector, because the estimators in linear contexts are obtained in closed form, and

so their asymptotic properties can be studied directly. As we will see, in our theoret-

ical development we need to distinguish the vector appearing in Eðy j xÞ from a generic

element of Y. We will often drop the subscripting by ‘‘o’’ when studying particular

applications because the notation can be cumbersome.

Equation (12.1) is the most general way of thinking about what nonlinear least

squares is intended to do: estimate models of conditional expectations. But, as a sta-

tistical matter, equation (12.1) is equivalent to a model with an additive, unobserv-

able error with a zero conditional mean:

y ¼ mðx; yoÞ þ u; Eðu j xÞ ¼ 0 ð12:2Þ

Given equation (12.2), equation (12.1) clearly holds. Conversely, given equation

(12.1), we obtain equation (12.2) by defining the error to be u1 y � mðx; yoÞ. In

interpreting the model and deciding on appropriate estimation methods, we should

not focus on the error form in equation (12.2) because, evidently, the additivity of u

has some unintended connotations. In particular, we must remember that, in writing

the model in error form, the only thing implied by equation (12.1) is Eðu j xÞ ¼ 0.

Depending on the nature of y, the error u may have some unusual properties. For

example, if yb 0 then ub�mðx; yoÞ, in which case u and x cannot be independent.

Heteroskedasticity in the error—that is, Varðu j xÞ0VarðuÞ—is present whenever

Varðy j xÞ depends on x, as is very common when y takes on a restricted range

of values. Plus, when we introduce randomly sampled observations fðxi; yiÞ:
i ¼ 1; 2; . . . ;Ng, it is too tempting to write the model and its assumptions as

‘‘yi ¼ mðxi; yoÞ þ ui where the ui are i.i.d. errors.’’ As we discussed in Section 1.4 for

the linear model, under random sampling the fuig are always i.i.d. What is usually

meant is that ui and xi are independent, but, for the reasons we just gave, this as-

sumption is often much too strong. The error form of the model does turn out to be

useful for defining estimators of asymptotic variances and for obtaining test statistics.
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For later reference, we formalize the first nonlinear least squares (NLS) assumption

as follows:

assumption NLS.1: For some yo A Y, Eðy j xÞ ¼ mðx; yoÞ.

This form of presentation represents the level at which we will state assumptions for

particular econometric methods. In our general development of M-estimators that

follows, we will need to add conditions involving moments of mðx; yÞ and y, as well

as continuity assumptions on mðx; �Þ.
If we let w1 ðx; yÞ, then yo indexes a feature of the population distribution of w,

namely, the conditional mean of y given x. More generally, let w be an M-vector of

random variables with some distribution in the population. We let W denote the

subset of RM representing the possible values of w. Let yo denote a parameter vector

describing some feature of the distribution of w. This could be a conditional mean, a

conditional mean and conditional variance, a conditional median, or a conditional

distribution. As shorthand, we call yo ‘‘the true parameter’’ or ‘‘the true value of

theta.’’ These phrases simply mean that yo is the parameter vector describing the

underlying population, something we will make precise later. We assume that yo

belongs to a known parameter space YHRP.

We assume that our data come as a random sample of size N from the population;

we label this random sample fwi: i ¼ 1; 2; . . .g, where each wi is an M-vector. This

assumption is much more general than it may initially seem. It covers cross section

models with many equations, and it also covers panel data settings with small time

series dimension. The extension to independently pooled cross sections is almost im-

mediate. In the NLS example, wi consists of xi and yi, the ith draw from the popu-

lation on x and y.

What allows us to estimate yo when it indexes Eðy j xÞ? It is the fact that yo is the

value of y that minimizes the expected squared error between y and mðx; yÞ. That is,

yo solves the population problem

min
y AY

Ef½y � mðx; yÞ�2g ð12:3Þ

where the expectation is over the joint distribution of ðx; yÞ. This conclusion follows

immediately from basic properties of conditional expectations (in particular, condi-

tion CE.8 in Chapter 2). We will give a slightly di¤erent argument here. Write

½y � mðx; yÞ�2 ¼ ½y � mðx; yoÞ�2 þ 2½mðx; yoÞ � mðx; yÞ�u

þ ½mðx; yoÞ � mðx; yÞ�2 ð12:4Þ
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where u is defined in equation (12.2). Now, since Eðu j xÞ ¼ 0, u is uncorrelated with

any function of x, including mðx; yoÞ � mðx; yÞ. Thus, taking the expected value of

equation (12.4) gives

Ef½y � mðx; yÞ�2g ¼ Ef½y � mðx; yoÞ�2g þ Ef½mðx; yoÞ � mðx; yÞ�2g ð12:5Þ

Since the last term in equation (12.5) is nonnegative, it follows that

Ef½y � mðx; yÞ�2gbEf½y � mðx; yoÞ�2g; all y A Y ð12:6Þ

The inequality is strict when y0 yo unless Ef½mðx; yoÞ � mðx; yÞ�2g ¼ 0; for yo to be

identified, we will have to rule this possibility out.

Because yo solves the population problem in expression (12.3), the analogy

principle—which we introduced in Chapter 4—suggests estimating yo by solving the

sample analogue. In other words, we replace the population moment Ef½ðy�mðx; yÞ�2g
with the sample average. The nonlinear least squares (NLS) estimator of yo, ŷy, solves

min
y AY

N�1
XN

i¼1

½yi � mðxi; yÞ�2 ð12:7Þ

For now, we assume that a solution to this problem exists.

The NLS objective function in expression (12.7) is a special case of a more general

class of estimators. Let qðw; yÞ be a function of the random vector w and the parameter

vector y. An M-estimator of yo solves the problem

min
y AY

N�1
XN

i¼1

qðwi; yÞ ð12:8Þ

assuming that a solution, call it ŷy, exists. The estimator clearly depends on the sample

fwi: i ¼ 1; 2; . . . ;Ng, but we suppress that fact in the notation.

The objective function for an M-estimator is a sample average of a function of

wi and y. The division by N, while needed for the theoretical development, does not

a¤ect the minimization problem. Also, the focus on minimization, rather than maxi-

mization, is without loss of generality because maximiziation can be trivially turned

into minimization.

The parameter vector yo is assumed to uniquely solve the population problem

min
y AY

E½qðw; yÞ� ð12:9Þ

Comparing equations (12.8) and (12.9), we see that M-estimators are based on the

analogy principle. Once yo has been defined, finding an appropriate function q that
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delivers yo as the solution to problem (12.9) requires basic results from probability

theory. Usually there is more than one choice of q such that yo solves problem (12.9),

in which case the choice depends on e‰ciency or computational issues. In this chap-

ter we carry along the NLS example; we treat maximum likelihood estimation in

Chapter 13.

How do we translate the fact that yo solves the population problem (12.9) into

consistency of the M-estimator ŷy that solves problem (12.8)? Heuristically, the argu-

ment is as follows. Since for each y A Y fqðwi; yÞ: i ¼ 1; 2; . . .g is just an i.i.d. sequence,

the law of large numbers implies that

N�1
XN

i¼1

qðwi; yÞ !
p

E½qðw; yÞ� ð12:10Þ

under very weak finite moment assumptions. Since ŷy minimizes the function on the

left side of equation (12.10) and yo minimizes the function on the right, it seems

plausible that ŷy !p yo. This informal argument turns out to be correct, except in

pathological cases. There are essentially two issues to address. The first is identifi-

ability of yo, which is purely a population issue. The second is the sense in which the

convergence in equation (12.10) happens across di¤erent values of y in Y.

12.2 Identification, Uniform Convergence, and Consistency

We now present a formal consistency result for M-estimators under fairly weak

assumptions. As mentioned previously, the conditions can be broken down into two

parts. The first part is the identification or identifiability of yo. For nonlinear regres-

sion, we showed how yo solves the population problem (12.3). However, we did not

argue that yo is always the unique solution to problem (12.3). Whether or not this is

the case depends on the distribution of x and the nature of the regression function:

assumption NLS.2: Ef½mðx; yoÞ � mðx; yÞ�2g > 0, all y A Y, y0 yo.

Assumption NLS.2 plays the same role as Assumption OLS.2 in Chapter 4. It can

fail if the explanatory variables x do not have su‰cient variation in the population.

In fact, in the linear case mðx; yÞ ¼ xy, Assumption NLS.2 holds if and only if rank

Eðx 0xÞ ¼ K , which is just Assumption OLS.2 from Chapter 4. In nonlinear models,

Assumption NLS.2 can fail if mðx; yoÞ depends on fewer parameters than are actually

in y. For example, suppose that we choose as our model mðx; yÞ ¼ y1 þ y2x2 þ y3xy4

3 ,

but the true model is linear: yo3 ¼ 0. Then E½ðy � mðx; yÞÞ�2 is minimized for any y

with y1 ¼ yo1, y2 ¼ yo2, y3 ¼ 0, and y4 any value. If yo3 0 0, Assumption NLS.2
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would typically hold provided there is su‰cient variation in x2 and x3. Because

identification fails for certain values of yo, this is an example of a poorly identified

model. (See Section 9.5 for other examples of poorly identified models.)

Identification in commonly used nonlinear regression models, such as exponential

and logistic regression functions, holds under weak conditions, provided perfect col-

linearity in x can be ruled out. For the most part, we will just assume that, when the

model is correctly specified, yo is the unique solution to problem (12.3). For the

general M-estimation case, we assume that qðw; yÞ has been chosen so that yo is a

solution to problem (12.9). Identification requires that yo be the unique solution:

E½qðw; yoÞ� < E½qðw; yÞ�; all y A Y; y0 yo ð12:11Þ

The second component for consistency of the M-estimator is convergence of

the sample average N�1
PN

i¼1 qðwi; yÞ to its expected value. It turns out that point-

wise convergence in probability, as stated in equation (12.10), is not su‰cient for

consistency. That is, it is not enough to simply invoke the usual weak law of large

numbers at each y A Y. Instead, uniform convergence in probability is su‰cient.

Mathematically,

max
y AY

N�1
XN

i¼1

qðwi; yÞ � E½qðw; yÞ�

�����
�����!p 0 ð12:12Þ

Uniform convergence clearly implies pointwise convergence, but the converse is not

true: it is possible for equation (12.10) to hold but equation (12.12) to fail. Never-

theless, under certain regularity conditions, the pointwise convergence in equation

(12.10) translates into the uniform convergence in equation (12.12).

To state a formal result concerning uniform convergence, we need to be more

careful in stating assumptions about the function qð� ; �Þ and the parameter space Y.

Since we are taking expected values of qðw; yÞ with respect to the distribution of w,

qðw; yÞ must be a random variable for each y A Y. Technically, we should assume

that qð� ; yÞ is a Borel measurable function on W for each y A Y. Since it is very di‰-

cult to write down a function that is not Borel measurable, we spend no further time

on it. Rest assured that any objective function that arises in econometrics is Borel

measurable. You are referred to Billingsley (1979) and Davidson (1994, Chapter 3).

The next assumption concerning q is practically more important. We assume that,

for each w A W, qðw; �Þ is a continuous function over the parameter space Y. All of

the problems we treat in detail have objective functions that are continuous in the

parameters, but these do not cover all cases of interest. For example, Manski’s (1975)

maximum score estimator for binary response models has an objective function that

is not continuous in y. (We cover binary response models in Chapter 15.) It is possi-
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ble to somewhat relax the continuity assumption in order to handle such cases, but

we will not need that generality. See Manski (1988, Section 7.3) and Newey and

McFadden (1994).

Obtaining uniform convergence is generally di‰cult for unbounded parameter sets,

such as Y ¼ RP. It is easiest to assume that Y is a compact subset of RP, which

means that Y is closed and bounded (see Rudin, 1976, Theorem 2.41). Because the

natural parameter spaces in most applications are not bounded (and sometimes not

closed), the compactness assumption is unattractive for developing a general theory

of estimation. However, for most applications it is not an assumption to worry about:

Y can be defined to be such a large closed and bounded set as to always contain yo.

Some consistency results for nonlinear estimation without compact parameter spaces

are available; see the discussion and references in Newey and McFadden (1994).

We can now state a theorem concerning uniform convergence appropriate for the

random sampling environment. This result, known as the uniform weak law of large

numbers (UWLLN), dates back to LeCam (1953). See also Newey and McFadden

(1994, Lemma 2.4).

theorem 12.1 (Uniform Weak Law of Large Numbers): Let w be a random vector

taking values in WHRM , let Y be a subset of RP, and let q:W�Y ! R be a real-

valued function. Assume that (a) Y is compact; (b) for each y A Y, qð� ; yÞ is Borel

measurable on W; (c) for each w A W, qðw; �Þ is continuous on Y; and (d) jqðw; yÞja
bðwÞ for all y A Y, where b is a nonnegative function on W such that E½bðwÞ� < y.

Then equation (12.12) holds.

The only assumption we have not discussed is assumption d, which requires the

expected absolute value of qðw; yÞ to be bounded across y. This kind of moment

condition is rarely verified in practice, although, with some work, it can be; see

Newey and McFadden (1994) for examples.

The continuity and compactness assumptions are important for establishing uni-

form convergence, and they also ensure that both the sample minimization problem

(12.8) and the population minimization problem (12.9) actually have solutions. Con-

sider problem (12.8) first. Under the assumptions of Theorem 12.1, the sample average

is a continuous function of y, since qðwi; yÞ is continuous for each wi. Since a continu-

ous function on a compact space always achieves its minimum, the M-estimation

problem is well defined (there could be more than one solution). As a technical mat-

ter, it can be shown that ŷy is actually a random variable under the measurability as-

sumption on qð� ; yÞ. See, for example, Gallant and White (1988).

It can also be shown that, under the assumptions of Theorem 12.1, the function

E½qðw; yÞ� is continuous as a function of y. Therefore, problem (12.9) also has at least
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one solution; identifiability ensures that it has only one solution, and this fact implies

consistency of the M-estimator.

theorem 12.2 (Consistency of M-Estimators): Under the assumptions of Theorem

12.1, assume that the identification assumption (12.11) holds. Then a random vector,

ŷy, solves problem (12.8), and ŷy !p yo.

A proof of Theorem 12.2 is given in Newey and McFadden (1994). For nonlinear

least squares, once Assumptions NLS.1 and NLS.2 are maintained, the practical re-

quirement is that mðx; �Þ be a continuous function over Y. Since this assumption is

almost always true in applications of NLS, we do not list it as a separate assumption.

Noncompactness of Y is not much of a concern for most applications.

Theorem 12.2 also applies to median regression. Suppose that the conditional

median of y given x is Medðy j xÞ ¼ mðx; yoÞ, where mðx; yÞ is a known function of x

and y. The leading case is a linear model, mðx; yÞ ¼ xy, where x contains unity. The

least absolute deviations (LAD) estimator of yo solves

min
y A Y

N�1
XN

i¼1

jyi � mðxi; yÞj

If Y is compact and mðx; �Þ is continuous over Y for each x, a solution always exists.

The LAD estimator is motivated by the fact that yo minimizes E½jy � mðx; yÞj� over

the parameter space Y; this follows by the fact that for each x, the conditional median

is the minimum absolute loss predictor conditional on x. (See, for example, Bassett

and Koenker, 1978, and Manski, 1988, Section 4.2.2.) If we assume that yo is the

unique solution—a standard identification assumption—then the LAD estimator is

consistent very generally. In addition to the continuity, compactness, and identifica-

tion assumptions, it su‰ces that E½jyj� < y and jmðx; yÞja aðxÞ for some function

að�Þ such that E½aðxÞ� < y. [To see this point, take bðwÞ1 jyj þ aðxÞ in Theorem

12.2.]

Median regression is a special case of quantile regression, where we model quantiles

in the distribution of y given x. For example, in addition to the median, we can es-

timate how the first and third quartiles in the distribution of y given x change with x.

Except for the median (which leads to LAD), the objective function that identifies a

conditional quantile is asymmetric about zero. See, for example, Koenker and Bassett

(1978) and Manski (1988, Section 4.2.4). Buchinsky (1994) applies quantile regression

methods to examine factors a¤ecting the distribution of wages in the United States

over time.

We end this section with a lemma that we use repeatedly in the rest of this chapter.

It follows from Lemma 4.3 in Newey and McFadden (1994).
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lemma 12.1: Suppose that ŷy !p yo, and assume that rðw; yÞ satisfies the same

assumptions on qðw; yÞ in Theorem 12.2. Then

N�1
XN

i¼1

rðwi; ŷyÞ !
p

E½rðw; yoÞ� ð12:13Þ

That is, N�1
PN

i¼1 rðwi; ŷyÞ is a consistent estimator of E½rðw; yoÞ�.

Intuitively, Lemma 12.1 is quite reasonable. We know that N�1
PN

i¼1 rðwi; yoÞ gen-

erally converges in probability to E½rðw; yoÞ� by the law of large numbers. Lemma

12.1 shows that, if we replace yo with a consistent estimator, the convergence still

holds, at least under standard regularity conditions.

12.3 Asymptotic Normality

Under additional assumptions on the objective function, we can also show that M-

estimators are asymptotically normally distributed (and converge at the rate
ffiffiffiffiffi
N

p
). It

turns out that continuity over the parameter space does not ensure asymptotic nor-

mality. We will assume more than is needed because all of the problems we cover in

this book have objective functions with many continuous derivatives.

The simplest asymptotic normality proof proceeds as follows. Assume that yo is in

the interior of Y, which means that Y must have nonempty interior; this assumption

is true in most applications. Then, since ŷy !p yo, ŷy is in the interior of Y with prob-

ability approaching one. If qðw; �Þ is continuously di¤erentiable on the interior of Y,

then (with probability approaching one) ŷy solves the first-order condition

XN

i¼1

sðwi; ŷyÞ ¼ 0 ð12:14Þ

where sðw; yÞ is the P � 1 vector of partial derivatives of qðw; yÞ: sðw; yÞ0 ¼
½qqðw; yÞ=qy1; qqðw; yÞ=qy2; . . . ; qqðw; yÞ=qyP�. [Or, sðw; yÞ is the transpose of the

gradient of qðw; yÞ.] We call sðw; yÞ the score of the objective function, qðw; yÞ. While

condition (12.14) can only be guaranteed to hold with probability approaching one,

usually it holds exactly; at any rate, we will drop the qualifier, as it does not a¤ect the

derivation of the limiting distribution.

If qðw; �Þ is twice continuously di¤erentiable, then each row of the left-hand side of

equation (12.14) can be expanded about yo in a mean-value expansion:

XN

i¼1

sðwi; ŷyÞ ¼
XN

i¼1

sðwi; yoÞ þ
XN

i¼1

€HHi

 !
ðŷy � yoÞ ð12:15Þ
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The notation €HHi denotes the P � P Hessian of the objective function, qðwi; yÞ, with

respect to y, but with each row of Hðwi; yÞ1 q2qðwi; yÞ=qyqy 0 1‘2
yqðwi; yÞ evaluated

at a di¤erent mean value. Each of the P mean values is on the line segment between

yo and ŷy. We cannot know what these mean values are, but we do know that each

must converge in probability to yo (since each is ‘‘trapped’’ between ŷy and yo).

Combining equations (12.14) and (12.15) and multiplying through by 1=
ffiffiffiffiffi
N

p
gives

0 ¼ N�1=2
XN

i¼1

sðwi; yoÞ þ N�1
XN

i¼1

€HHi

 ! ffiffiffiffiffi
N

p
ðŷy � yoÞ

Now, we can apply Lemma 12.1 to get N�1
PN

i¼1
€HHi !

p
E½Hðw; yoÞ� (under some

moment conditions). If Ao 1E½Hðw; yoÞ� is nonsingular, then N�1
PN

i¼1
€HHi is non-

singular w.p.a.1 and ðN�1
PN

i¼1
€HHiÞ�1 !p A�1

o . Therefore, we can write

ffiffiffiffiffi
N

p
ðŷy � yoÞ ¼ N�1

XN

i¼1

€HHi

 !�1

�N�1=2
XN

i¼1

siðyoÞ
" #

where siðyoÞ1 sðwi; yoÞ. As we will show, E½siðyoÞ� ¼ 0. Therefore, N�1=2
PN

i¼1 siðyoÞ
generally satisfies the central limit theorem because it is the average of i.i.d. random

vectors with zero mean, multiplied by the usual
ffiffiffiffiffi
N

p
. Since opð1Þ � Opð1Þ ¼ opð1Þ, we

have

ffiffiffiffiffi
N

p
ðŷy � yoÞ ¼ A�1

o �N�1=2
XN

i¼1

siðyoÞ
" #

þ opð1Þ ð12:16Þ

This is an important equation. It shows that
ffiffiffiffiffi
N

p
ðŷy � yoÞ inherits its limiting distri-

bution from the average of the scores, evaluated at yo. The matrix A�1
o simply acts as

a linear transformation. If we absorb this linear transformation into siðyoÞ, we can

write

ffiffiffiffiffi
N

p
ðŷy � yoÞ ¼ N�1=2

XN

i¼1

riðyoÞ þ opð1Þ ð12:17Þ

where riðyoÞ1�A�1
o siðyoÞ; this is sometimes called the influence function representa-

tion of ŷy, where rðw; yÞ is the influence function.

Equation (12.16) [or (12.17)] allows us to derive the first-order asymptotic distribu-

tion of ŷy. Higher order representations attempt to reduce the error in the opð1Þ term

in equation (12.16); such derivations are much more complicated than equation

(12.16) and are beyond the scope of this book.
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We have essentially proven the following result:

theorem 12.3 (Asymptotic Normality of M-estimators): In addition to the assump-

tions in Theorem 12.2, assume (a) yo is in the interior of Y; (b) sðw; �Þ is continu-

ously di¤erentiable on the interior of Y for all w A W; (c) Each element of Hðw; yÞ
is bounded in absolute value by a function bðwÞ, where E½bðwÞ� < y; (d) Ao 1
E½Hðw; yoÞ� is positive definite; (e) E½sðw; yoÞ� ¼ 0; and (f ) each element of sðw; yoÞ
has finite second moment.

Thenffiffiffiffiffi
N

p
ðŷy � yoÞ !

d
Normalð0;A�1

o BoA�1
o Þ ð12:18Þ

where

Ao 1E½Hðw; yoÞ� ð12:19Þ

and

Bo 1E½sðw; yoÞsðw; yoÞ0� ¼ Var½sðw; yoÞ� ð12:20Þ

Thus,

Avar ŷy ¼ A�1
o BoA�1

o =N ð12:21Þ

Theorem 12.3 implies asymptotic normality of most of the estimators we study in

the remainder of the book. A leading example that is not covered by Theorem 12.3 is

the LAD estimator. Even if mðx; yÞ is twice continuously di¤erentiable in y, the ob-

jective function for each i, qðwi; yÞ1 jyi � mðxi; yÞj, is not twice continuously di¤er-

entiable because the absolute value function is nondi¤erentiable at zero. By itself, this

limitation is a minor nuisance. More importantly, by any reasonable definition, the

Hessian of the LAD objective function is the zero matrix in the leading case of a

linear conditional median function, and this fact violates assumption d of Theorem

12.3. It turns out that the LAD estimator is generally
ffiffiffiffiffi
N

p
-asymptotically normal, but

Theorem 12.3 cannot be applied. Newey and McFadden (1994) contains results that

can be used.

A key component of Theorem 12.3 is that the score evaluated at yo has expected

value zero. In many applications, including NLS, we can show this result directly.

But it is also useful to know that it holds in the abstract M-estimation framework, at

least if we can interchange the expectation and the derivative. To see this point, note

that, if yo is in the interior of Y, and E½qðw; yÞ� is di¤erentiable for y A int Y, then

‘yE½qðw; yÞ�jy¼yo
¼ 0 ð12:22Þ
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where ‘y denotes the gradient with respect to y. Now, if the derivative and expec-

tations operator can be interchanged (which is the case quite generally), then equation

(12.22) implies

E½‘yqðw; yoÞ� ¼ E½sðw; yoÞ� ¼ 0 ð12:23Þ

A similar argument shows that, in general, E½Hðw; yoÞ� is positive semidefinite. If yo

is identified, E½Hðw; yoÞ� is positive definite.

For the remainder of this chapter, it is convenient to divide the original NLS ob-

jective function by two:

qðw; yÞ ¼ ½y � mðx; yÞ�2=2 ð12:24Þ

The score of equation (12.24) can be written as

sðw; yÞ ¼ �‘ymðx; yÞ0½y � mðx; yÞ� ð12:25Þ

where ‘ymðx; yÞ is the 1 � P gradient of mðx; yÞ, and therefore ‘ymðx; yÞ0 is P � 1.

We can show directly that this expression has an expected value of zero at y ¼ yo by

showing that expected value of sðw; yoÞ conditional on x is zero:

E½sðw; yoÞ j x� ¼ �‘ymðx; yÞ0½Eðy j xÞ � mðx; yoÞ� ¼ 0 ð12:26Þ

The variance of sðw; yoÞ is

Bo 1E½sðw; yoÞsðw; yoÞ0� ¼ E½u2‘ymðx; yoÞ0‘ymðx; yoÞ� ð12:27Þ

where the error u1 y � mðx; yoÞ is the di¤erence between y and Eðy j xÞ.
The Hessian of qðw; yÞ is

Hðw; yÞ ¼ ‘ymðx; yÞ0‘ymðx; yÞ � ‘2
ymðx; yÞ½y � mðx; yÞ� ð12:28Þ

where ‘2
ymðx; yÞ is the P � P Hessian of mðx; yÞ with respect to y. To find the

expected value of Hðw; yÞ at y ¼ yo, we first find the expectation conditional on x.

When evaluated at yo, the second term in equation (12.28) is ‘2
ymðx; yoÞu, and it

therefore has a zero mean conditional on x [since Eðu j xÞ ¼ 0]. Therefore,

E½Hðw; yoÞ j x� ¼ ‘ymðx; yoÞ0‘ymðx; yoÞ ð12:29Þ

Taking the expected value of equation (12.29) over the distribution of x gives

Ao ¼ E½‘ymðx; yoÞ0‘ymðx; yoÞ� ð12:30Þ

This matrix plays a fundamental role in nonlinear regression. When yo is identified,

Ao is generally positive definite. In the linear case mðx; yÞ ¼ xy, Ao ¼ Eðx 0xÞ. In the
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exponential case mðx; yÞ ¼ expðxyÞ, Ao ¼ E½expð2xyoÞx 0x�, which is generally posi-

tive definite whenever Eðx 0xÞ is. In the example mðx; yÞ ¼ y1 þ y2x2 þ y3xy4

3 with

yo3 ¼ 0, it is easy to show that matrix (12.30) has rank less than four.

For nonlinear regression, Ao and Bo are similar in that they both depend on

‘ymðx; yoÞ0‘ymðx; yoÞ. Generally, though, there is no simple relationship between Ao

and Bo because the latter depends on the distribution of u2, the squared population

error. In Section 12.5 we will show that a homoskedasticity assumption implies that

Bo is proportional to Ao.

12.4 Two-Step M-Estimators

Sometimes applications of M-estimators involve a first-stage estimation (an example

is OLS with generated regressors, as in Chapter 6). Let ĝg be a preliminary estimator,

usually based on the random sample fwi: i ¼ 1; 2; . . . ;Ng. Where this estimator

comes from must be vague at this point.

A two-step M-estimator ŷy of yo solves the problem

min
y AY

XN

i¼1

qðwi; y; ĝgÞ ð12:31Þ

where q is now defined on W�Y� G, and G is a subset of RJ . We will see several

examples of two-step M-estimators in the applications in Part IV. An example of a

two-step M-estimator is the weighted nonlinear least squares (WNLS) estimator,

where the weights are estimated in a first stage. The WNLS estimator solves

min
y AY

1
2

XN

i¼1

½yi � mðxi; yÞ�2=hðxi; ĝgÞ ð12:32Þ

where the weighting function, hðx; gÞ, depends on the explanatory variables and a

parameter vector. As with NLS, mðx; yÞ is a model of Eðy j xÞ. The function hðx; gÞ is

chosen to be a model of Varðy j xÞ. The estimator ĝg comes from a problem used to

estimate the conditional variance. We list the key assumptions needed for WNLS to

have desirable properties here, but several of the derivations are left for the problems.

assumption WNLS.1: Same as Assumption NLS.1.

12.4.1 Consistency

For the general two-step M-estimator, when will ŷy be consistent for yo? In practice,

the important condition is the identification assumption. To state the identification
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condition, we need to know about the asymptotic behavior of ĝg. A general assump-

tion is that ĝg !p g�, where g� is some element in G. We label this value g� to allow for

the possibility that ĝg does not converge to a parameter indexing some interesting

feature of the distribution of w. In some cases, the plim of ĝg will be of direct interest.

In the weighted regression case, if we assume that hðx; gÞ is a correctly specified model

for Varðy j xÞ, then it is possible to choose an estimator such that ĝg !p go, where

Varðy j xÞ ¼ hðx; goÞ. (For an example, see Problem 12.2.) If the variance model is

misspecified, plim ĝg is generally well defined, but Varðy j xÞ0 hðx; g�Þ; it is for this

reason that we use the notation g�.

The identification condition for the two-step M-estimator is

E½qðw; yo; g
�Þ� < E½qðw; y; g�Þ�; all y A Y; y0 yo

The consistency argument is essentially the same as that underlying Theorem 12.2. If

qðwi; y; gÞ satisfies the UWLLN over Y� G then expression (12.31) can be shown to

converge to E½qðw; y; g�Þ� uniformly over Y. Along with identification, this result can

be shown to imply consistency of ŷy for yo.

In some applications of two-step M-estimation, identification of yo holds for any

g A G. This result can be shown for the WNLS estimator (see Problem 12.4). It is for

this reason that WNLS is still consistent even if the function hðx; gÞ is not correctly

specified for Varðy j xÞ. The weakest version of the identification assumption for

WNLS is the following:

assumption WNLS.2: Ef½mðx; yoÞ � mðx; yÞ�2=hðx; g�Þg > 0, all y A Y, y0 yo,

where g� ¼ plim ĝg.

As with the case of NLS, we know that weak inequality holds in Assumption

WNLS.2 under Assumption WNLS.1. The strict inequality in Assumption WNLS.2

puts restrictions on the distribution of x and the functional forms of m and h.

In other cases, including several two-step maximum likelihood estimators we en-

counter in Part IV, the identification condition for yo holds only for g ¼ g� ¼ go,

where go also indexes some feature of the distribution of w.

12.4.2 Asymptotic Normality

With the two-step M-estimator, there are two cases worth distinguishing. The first

occurs when the asymptotic variance of
ffiffiffiffiffi
N

p
ðŷy � yoÞ does not depend on the asymp-

totic variance of
ffiffiffiffiffi
N

p
ðĝg� g�Þ, and the second occurs when the asymptotic variance offfiffiffiffiffi

N
p

ðŷy � yoÞ must be adjusted to account for the first-stage estimation of g�. We first

derive conditions under which we can ignore the first-stage estimation error.
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Using arguments similar to those in Section 12.3, it can be shown that, under

standard regularity conditions,

ffiffiffiffiffi
N

p
ðŷy � yoÞ ¼ A�1

o �N�1=2
XN

i¼1

siðyo; ĝgÞ
 !

þ opð1Þ ð12:33Þ

where now Ao ¼ E½Hðw; yo; g
�Þ�. In obtaining the score and the Hessian, we take

derivatives only with respect to y; g� simply appears as an extra argument. Now, if

N�1=2
XN

i¼1

siðyo; ĝgÞ ¼ N�1=2
XN

i¼1

siðyo; g
�Þ þ opð1Þ ð12:34Þ

then
ffiffiffiffiffi
N

p
ðŷy � yoÞ behaves the same asymptotically whether we used ĝg or its plim in

defining the M-estimator.

When does equation (12.34) hold? Assuming that
ffiffiffiffiffi
N

p
ðĝg� g�Þ ¼ Opð1Þ, which is

standard, a mean value expansion similar to the one in Section 12.3 gives

N�1=2
XN

i¼1

siðyo; ĝgÞ ¼ N�1=2
XN

i¼1

siðyo; g
�Þ þ Fo

ffiffiffiffiffi
N

p
ðĝg� g�Þ þ opð1Þ ð12:35Þ

where Fo is the P � J matrix

Fo 1E½‘gsðw; yo; g
�Þ� ð12:36Þ

(Remember, J is the dimension of g.) Therefore, if

E½‘gsðw; yo; g
�Þ� ¼ 0 ð12:37Þ

then equation (12.34) holds, and the asymptotic variance of the two-step M-estimator

is the same as if g� were plugged in. In other words, under assumption (12.37), we

conclude that equation (12.18) holds, where Ao and Bo are given in expressions

(12.19) and (12.20), respectively, except that g� appears as an argument in the score

and Hessian. For deriving the asymptotic distribution of
ffiffiffiffiffi
N

p
ðŷy � yoÞ, we can ignore

the fact that ĝg was obtained in a first-stage estimation.

One case where assumption (12.37) holds is weighted nonlinear least squares,

something you are asked to show in Problem 12.4. Naturally, we must assume that

the conditional mean is correctly specified, but, interestingly, assumption (12.37)

holds whether or not the conditional variance is correctly specified.

There are many problems for which assumption (12.37) does not hold, including

some of the methods for correcting for endogeneity in probit and Tobit models in Part

IV. In Chapter 17 we will see that two-step methods for correcting sample selection
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bias are two-step M-estimators, but assumption (12.37) fails. In such cases we need to

make an adjustment to the asymptotic variance of
ffiffiffiffiffi
N

p
ðŷy � yoÞ. The adjustment is

easily obtained from equation (12.35), once we have a first-order representation forffiffiffiffiffi
N

p
ðĝg� g�Þ. We assume that

ffiffiffiffiffi
N

p
ðĝg� g�Þ ¼ N�1=2

XN

i¼1

riðg�Þ þ opð1Þ ð12:38Þ

where riðg�Þ is a J � 1 vector with E½riðg�Þ� ¼ 0 (in practice, ri depends on parameters

other than g�, but we suppress those here for simplicity). Therefore, ĝg could itself be

an M-estimator or, as we will see in Chapter 14, a generalized method of moments

estimator. In fact, every estimator considered in this book has a representation as in

equation (12.38).

Now we can write

ffiffiffiffiffi
N

p
ðŷy � yoÞ ¼ A�1

o N�1=2
XN

i¼1

½�giðyo; g
�Þ� þ opð1Þ ð12:39Þ

where giðyo; g
�Þ1 siðyo; g

�Þ þ Foriðg�Þ. Since giðyo; g
�Þ has zero mean, the standard-

ized partial sum in equation (12.39) can be assumed to satisfy the central limit theorem.

Define the P � P matrix

Do 1E½giðyo; g
�Þgiðyo; g

�Þ0� ¼ Var½giðyo; g
�Þ� ð12:40Þ

Then

Avar
ffiffiffiffiffi
N

p
ðŷy � yoÞ ¼ A�1

o DoA�1
o ð12:41Þ

We will discuss estimation of this matrix in the next section.

12.5 Estimating the Asymptotic Variance

12.5.1 Estimation without Nuisance Parameters

We first consider estimating the asymptotic variance of ŷy in the case where there are

no nuisance parameters. This task requires consistently estimating the matrices Ao

and Bo. One thought is to solve for the expected values of Hðw; yoÞ and sðw; yoÞ �
sðw; yoÞ0 over the distribution of w, and then to plug in ŷy for yo. When we have

completely specified the distribution of w, obtaining closed-form expressions for Ao

and Bo is, in principle, possible. However, except in simple cases, it would be di‰cult.

More importantly, we rarely specify the entire distribution of w. Even in a maximum
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likelihood setting, w is almost always partitioned into two parts: a set of endogenous

variables, y, and conditioning variables, x. Rarely do we wish to specify the distri-

bution of x, and so the expected values needed to obtain Ao and Bo are not available.

We can always estimate Ao consistently by taking away the expectation and

replacing yo with ŷy. Under regularity conditions that ensure uniform converge of the

Hessian, the estimator

N�1
XN

i¼1

Hðwi; ŷyÞ1N�1
XN

i¼1

ĤHi ð12:42Þ

is consistent for Ao, by Lemma 12.1. The advantage of the estimator (12.42) is that it

is always available in problems with a twice continuously di¤erentiable objective

function. The drawbacks are that it requires calculation of the second derivatives—a

nontrivial task for some problems—and it is not guaranteed to be positive definite, or

even positive semidefinite, for the particular sample we are working with. As we will

see shortly, in some cases the asymptotic variance of
ffiffiffiffiffi
N

p
ðŷy � yoÞ is proportional to

A�1
o , in which case using the estimator (12.42) to estimate Ao can result in a non-

positive definite variance matrix estimator. Without a positive definite variance matrix

estimator, some asymptotic standard errors need not even be defined, and test statis-

tics that have limiting chi-square distributions could actually be negative.

In most econometric applications, more structure is available that allows a di¤er-

ent estimator. Suppose we can partition w into x and y, and that yo indexes some

feature of the distribution of y given x (such as the conditional mean or, in the case of

maximum likelihood, the conditional distribution). Define

Aðx; yoÞ1E½Hðw; yoÞ j x� ð12:43Þ

While Hðw; yoÞ is generally a function of x and y, Aðx; yoÞ is a function only of x. By

the law of iterated expectations, E½Aðx; yoÞ� ¼ E½Hðw; yoÞ� ¼ Ao. From Lemma 12.1

and standard regularity conditions it follows that

N�1
XN

i¼1

Aðxi; ŷyÞ1N�1
XN

i¼1

ÂAi !
p

Ao ð12:44Þ

The estimator (12.44) of Ao is useful in cases where E½Hðw; yoÞ j x� can be obtained in

closed form or is easily approximated. In some leading cases, including NLS and

certain maximum likelihood problems, Aðx; yoÞ depends only on the first derivatives

of the conditional mean function.

When the estimator (12.44) is available, it is usually the case that yo actually min-

imizes E½qðw; yÞ j x� for any value of x; this is easily seen to be the case for NLS from
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equation (12.4). Under assumptions that allow the interchange of derivative and ex-

pectation, this result implies that Aðx; yoÞ is positive semidefinite. The expected value

of Aðx; yoÞ over the distribution of x is positive definite provided yo is identified.

Therefore, the estimator (12.44) is usually positive definite in the sample; as a result,

it is more attractive than the estimator (12.42).

Obtaining a positive semidefinite estimator of Bo is straightforward. By Lemma

12.1, under standard regularity conditions we have

N�1
XN

i¼1

sðwi; ŷyÞsðwi; ŷyÞ0 1N�1
XN

i¼1

ŝsi ŝs
0
i !

p
Bo ð12:45Þ

Combining the estimator (12.45) with the consistent estimators for Ao, we can con-

sistently estimate Avar
ffiffiffiffiffi
N

p
ðŷy � yoÞ by

Avâar
ffiffiffiffiffi
N

p
ðŷy � yoÞ ¼ ÂA�1B̂BÂA�1 ð12:46Þ

where ÂA is one of the estimators (12.42) or (12.44). The asymptotic standard errors

are obtained from the matrix

V̂V1AvâarðŷyÞ ¼ ÂA�1B̂BÂA�1=N ð12:47Þ

which can be expressed as

XN

i¼1

ĤHi

 !�1 XN

i¼1

ŝsi ŝs
0
i

 ! XN

i¼1

ĤHi

 !�1

ð12:48Þ

or

XN

i¼1

ÂAi

 !�1 XN

i¼1

ŝsi ŝs
0
i

 ! XN

i¼1

ÂAi

 !�1

ð12:49Þ

depending on the estimator used for Ao. Expressions (12.48) and (12.49) are both at

least positive semidefinite when they are well defined.

In the case of nonlinear least squares, the estimator of Ao in equation (12.44) is

always available and always used:

XN

i¼1

ÂAi ¼
XN

i¼1

‘ym̂m 0
i‘ym̂mi

where ‘ym̂mi 1‘ymðxi; ŷyÞ for every observation i. Also, the estimated score for NLS

can be written as
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ŝsi ¼ �‘ym̂m 0
i ½yi � mðxi; ŷyÞ� ¼ �‘ym̂m

0
i ûui ð12:50Þ

where the nonlinear least squares residuals, ûui, are defined as

ûui 1 yi � mðxi; ŷyÞ ð12:51Þ

The estimated asymptotic variance of the NLS estimator is

AvâarðŷyÞ ¼
XN

i¼1

‘ym̂m 0
i‘ym̂mi

 !�1 XN

i¼1

ûu2
i ‘ym̂m 0

i‘ym̂mi

 ! XN

i¼1

‘ym̂m
0
i‘ym̂mi

 !�1

ð12:52Þ

This is called the heteroskedasticity-robust variance matrix estimator for NLS

because it places no restrictions on Varðy j xÞ. It was first proposed by White (1980a).

[Sometimes the expression is multiplied by N=ðN � PÞ as a degrees-of-freedom ad-

justment, where P is the dimension of y.] As always, the asymptotic standard error of

each element of ŷy is the square root of the appropriate diagonal element of matrix

(12.52).

As a specific example, suppose that mðx; yÞ ¼ expðxyÞ. Then ‘ym̂m
0
i‘ym̂mi ¼

expð2xiŷyÞx 0
i xi, which has dimension K � K . We can plug this equation into expres-

sion (12.52) along with ûui ¼ yi � expðxiŷyÞ.
In many contexts, including nonlinear least squares and certain quasi-likelihood

methods, the asymptotic variance estimator can be simplified under additional as-

sumptions. For our purposes, we state the assumption as follows: For some s2
o > 0,

E½sðw; yoÞsðw; yoÞ0� ¼ s2
oE½Hðw; yoÞ� ð12:53Þ

This assumption simply says that the expected outer product of the score, evaluated

at yo, is proportional to the expected value of the Hessian (evaluated at yo): Bo ¼
s2

oAo. Shortly we will provide an assumption under which assumption (12.53) holds

for NLS. In the next chapter we will show that assumption (12.53) holds for s2
o ¼ 1 in

the context of maximum likelihood with a correctly specified conditional density. For

reasons we will see in Chapter 13, we refer to assumption (12.53) as the generalized

information matrix equality (GIME).

lemma 12.2: Under regularity conditions of the type contained in Theorem 12.3 and

assumption (12.53), AvarðŷyÞ ¼ s2
oA�1

o =N. Therefore, under assumption (12.53), the

asymptotic variance of ŷy can be estimated as

V̂V ¼ ŝs2
XN

i¼1

ĤHi

 !�1

ð12:54Þ
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or

V̂V ¼ ŝs2
XN

i¼1

ÂAi

 !�1

ð12:55Þ

where ĤHi and ÂAi are defined as before, and ŝs2 !p s2
o.

In the case of nonlinear regression, the parameter s2
o is the variance of y given x, or

equivalently Varðu j xÞ, under homoskedasticity:

assumption NLS.3: Varðy j xÞ ¼ Varðu j xÞ ¼ s2
o.

Under Assumption NLS.3, we can show that assumption (12.53) holds with s2
o ¼

Varðy j xÞ. First, since sðw; yoÞsðw; yoÞ0 ¼ u2‘ymðx; yoÞ0‘ymðx; yoÞ, it follows that

E½sðw; yoÞsðw; yoÞ0 j x� ¼ Eðu2 j xÞ‘ymðx; yoÞ0‘ymðx; yoÞ

¼ s2
o‘ymðx; yoÞ0‘ymðx; yoÞ ð12:56Þ

under Assumptions NLS.1 and NLS.3. Taking the expected value with respect to x

gives equation (12.53).

Under Assumption NLS.3, a simplified estimator of the asymptotic variance of the

NLS estimator exists from equation (12.55). Let

ŝs2 ¼ 1

ðN � PÞ
XN

i¼1

ûu2
i ¼ SSR=ðN � PÞ ð12:57Þ

where the ûui are the NLS residuals (12.51) and SSR is the sum of squared NLS

residuals. Using Lemma 12.1, ŝs2 can be shown to be consistent very generally. The

subtraction of P in the denominator of equation (12.57) is an adjustment that is

thought to improve the small sample properties of ŝs2.

Under Assumptions NLS.1–NLS.3, the asymptotic variance of the NLS estimator

is estimated as

ŝs2
XN

i¼1

‘ym̂m 0
i‘ym̂mi

 !�1

ð12:58Þ

This is the default asymptotic variance estimator for NLS, but it is valid only

under homoskedasticity; the estimator (12.52) is valid with or without Assump-

tion NLS.3. For an exponential regression function, expression (12.58) becomes

ŝs2ð
PN

i¼1 expð2xiŷyÞx 0
i xiÞ�1.

Chapter 12360



12.5.2 Adjustments for Two-Step Estimation

In the case of the two-step M-estimator, we may or may not need to adjust the

asymptotic variance. If assumption (12.37) holds, estimation is very simple. The most

general estimators are expressions (12.48) and (12.49), where ŝsi, ĤHi, and ÂAi depend on

ĝg, but we only compute derivatives with respect to y.

In some cases under assumption (12.37), the analogue of assumption (12.53) holds

(with go ¼ plim ĝg appearing in H and s). If so, the simpler estimators (12.54) and

(12.55) are available. In Problem 12.4 you are asked to show this result for weighted

NLS when Varðy j xÞ ¼ s2
ohðx; goÞ and go ¼ plim ĝg. The natural third assumption for

WNLS is that the variance function is correctly specified:

assumption WNLS.3: For some go A G and s2
o, Varðy j xÞ ¼ s2

ohðx; goÞ. Further,ffiffiffiffiffi
N

p
ðĝg� goÞ ¼ Opð1Þ.

Under Assumption WNLS.3, the asymptotic variance of the WNLS estimator is

estimated as

ŝs2
XN

i¼1

ð‘ym̂m 0
i‘ym̂miÞ=ĥhi

 !�1

ð12:59Þ

where ĥhi ¼ hðxi; ĝgÞ and ŝs2 is as in equation (12.57) except that the residual ûui is

replaced with the standardized residual, ûui= ĥhi

ffiffiffiffiffip
. The sum in expression (12.59) is

simply the outer product of the weighted gradients, ‘ym̂mi= ĥhi

ffiffiffiffiffip
. Thus the NLS for-

mulas can be used but with all quantities weighted by 1= ĥhi

ffiffiffiffiffip
. It is important to re-

member that expression (12.59) is not valid without Assumption WNLS.3.

When assumption (12.37) is violated, the asymptotic variance estimator of ŷy must

account for the asymptotic variance of ĝg; we must estimate equation (12.41). We

already know how to consistently estimate Ao: use expression (12.42) or (12.44)

where ĝg is also plugged in. Estimation of Do is also straightforward. First, we need to

estimate Fo. An estimator that is always available is

F̂F ¼ N�1
XN

i¼1

‘gsiðŷy; ĝgÞ ð12:60Þ

In cases with conditioning variables, such as nonlinear least squares, a simpler esti-

mator can be obtained by computing E½‘gsðwi; yo; g
�Þ j xi�, replacing ðyo; g

�Þ with

ðŷy; ĝgÞ, and using this in place of ‘gsiðŷy; ĝgÞ. Next, replace riðg�Þ with r̂ri 1 riðĝgÞ. Then
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D̂D1N�1
XN

i¼1

ĝgiĝg
0
i ð12:61Þ

is consistent for Do, where ĝgi ¼ ŝsi þ F̂Fr̂ri. The asymptotic variance of the two-step M-

estimator can be obtained as in expression (12.48) or (12.49), but where ŝsi is replaced

with ĝgi.

12.6 Hypothesis Testing

12.6.1 Wald Tests

Wald tests are easily obtained once we choose a form of the asymptotic variance. To

test the Q restrictions

H0: cðyoÞ ¼ 0 ð12:62Þ

we can form the Wald statistic

W 1 cðŷyÞ0ðĈCV̂VĈC 0Þ�1
cðŷyÞ ð12:63Þ

where V̂V is an asymptotic variance matrix estimator of ŷy, ĈC1CðŷyÞ, and CðyÞ is the

Q � P Jacobian of cðyÞ. The estimator V̂V can be chosen to be fully robust, as in ex-

pression (12.48) or (12.49); under assumption (12.53), the simpler forms in Lemma

12.2 are available. Also, V̂V can be chosen to account for two-step estimation, when

necessary. Provided V̂V has been chosen appropriately, W @
a
w2

Q under H0.

A couple of practical restrictions are needed for W to have a limiting w2
Q distribu-

tion. First, yo must be in the interior of Y; that is, yo cannot be on the boundary. If,

for example, the first element of y must be nonnegative—and we impose this restric-

tion in the estimation—then expression (12.63) does not have a limiting chi-square

distribution under H0: yo1 ¼ 0. The second condition is that CðyoÞ ¼ ‘ycðyoÞ must

have rank Q. This rules out cases where yo is unidentified under the null hypothesis,

such as the NLS example where mðx; yÞ ¼ y1 þ y2x2 þ y3xy4

3 and yo3 ¼ 0 under H0.

One drawback to the Wald statistic is that it is not invariant to how the nonlinear

restrictions are imposed. We can change the outcome of a hypothesis test by rede-

fining the constraint function, cð�Þ. We can illustrate the lack of invariance by study-

ing an asymptotic t statistic (since a t statistic is a special case of a Wald statistic).

Suppose that for a parameter y1 > 0, the null hypothesis is H0: yo1 ¼ 1. The asymp-

totic t statistic is ðŷy1 � 1Þ=seðŷy1Þ, where seðŷy1Þ is the asymptotic standard error of ŷy1.

Now define f1 ¼ logðy1Þ, so that fo1 ¼ logðyo1Þ and f̂f1 ¼ logðŷy1Þ. The null hypothe-

sis can be stated as H0 : fo1 ¼ 0. Using the delta method (see Chapter 3), seðf̂f1Þ ¼
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ŷy�1
1 seðŷy1Þ, and so the t statistic based on f̂f1 is f̂f1=seðf̂f1Þ ¼ logðŷy1Þŷy1=seðŷy1Þ0

ðŷy1 � 1Þ=seðŷy1Þ.
The lack of invariance of the Wald statistic is discussed in more detail by Gregory

and Veall (1985), Phillips and Park (1988), and Davidson and MacKinnon (1993,

Section 13.6). The lack of invariance is a cause for concern because it suggests that

the Wald statistic can have poor finite sample properties for testing nonlinear hypoth-

eses. What is much less clear is that the lack of invariance has led empirical researchers

to search over di¤erent statements of the null hypothesis in order to obtain a desired

result.

12.6.2 Score (or Lagrange Multiplier) Tests

In cases where the unrestricted model is di‰cult to estimate but the restricted model

is relatively simple to estimate, it is convenient to have a statistic that only requires

estimation under the null. Such a statistic is Rao’s (1948) score statistic, also called

the Lagrange multiplier statistic in econometrics, based on the work of Aitchison and

Silvey (1958). We will focus on Rao’s original motivation for the statistic because it

leads more directly to test statistics that are used in econometrics. An important point

is that, even though Rao, Aitchison and Silvey, Engle (1984), and many others focused

on the maximum likelihood setup, the score principle is applicable to any problem

where the estimators solve a first-order condition, including the general class of M-

estimators.

The score approach is ideally suited for specification testing. Typically, the first step

in specification testing is to begin with a popular model—one that is relatively easy to

estimate and interpret—and nest it within a more complicated model. Then the

popular model is tested against the more general alternative to determine if the orig-

inal model is misspecified. We do not want to estimate the more complicated model

unless there is significant evidence against the restricted form of the model. In stating

the null and alternative hypotheses, there is no di¤erence between specification test-

ing and classical tests of parameter restrictions. However, in practice, specification

testing gives primary importance to the restricted model, and we may have no in-

tention of actually estimating the general model even if the null model is rejected.

We will derive the score test only in the case where no correction is needed for

preliminary estimation of nuisance parameters: either there are no such parameters

present, or assumption (12.37) holds under H0. If nuisance parameters are present,

we do not explicitly show the score and Hessian depending on ĝg.

We again assume that there are Q continuously di¤erentiable restrictions imposed

on yo under H0, as in expression (12.62). However, we must also assume that the
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restrictions define a mapping from RP�Q to RP, say, d: RP�Q ! RP. In particular,

under the null hypothesis, we can write yo ¼ dðloÞ, where lo is a ðP � QÞ � 1 vector.

We must assume that lo is in the interior of its parameter space, L, under H0. We

also assume that d is twice continuously di¤erentiable on the interior of L.

Let ~ll be the solution to the constrained minimization problem

min
l AL

XN

i¼1

q½wi; dðlÞ� ð12:64Þ

The constrained estimator of yo is simply ~yy1 dð~llÞ. In practice, we do not have to

explicitly find the function d; solving problem (12.64) is easily done just by directly

imposing the restrictions, especially when the restrictions set certain parameters to

hypothesized values (such as zero). Then, we just minimize the resulting objective

function over the free parameters.

As an example, consider the nonlinear regression model

mðx; yÞ ¼ exp½xb þ d1ðxbÞ2 þ d2ðxbÞ3�

where x is 1 � K and contains unity as its first element. The null hypthosis is

H0: d1 ¼ d2 ¼ 0, so that the model with the restrictions imposed is just an exponential

regression function, mðx; bÞ ¼ expðxbÞ.
The simplest method for deriving the LM test is to use Rao’s score principle

extended to the M-estimator case. The LM statistic is based on the limiting distribu-

tion of

N�1=2
XN

i¼1

sið~yyÞ ð12:65Þ

under H0. This is the score with respect to the entire vector y, but we are evaluating it

at the restricted estimates. If ~yy were replaced by ŷy, then expression (12.65) would be

identically zero, which would make it useless as a test statistic. If the restrictions

imposed by the null hypothesis are true, then expression (12.65) will not be statisti-

cally di¤erent from zero.

Assume initially that yo is in the interior of Y under H0; we will discuss how to

relax this assumption later. Now
ffiffiffiffiffi
N

p
ð~yy � yoÞ ¼ Opð1Þ by the delta method becauseffiffiffiffiffi

N
p

ð~ll� loÞ ¼ Opð1Þ under the given assumptions. A standard mean value expansion

yields

N�1=2
XN

i¼1

sið~yyÞ ¼ N�1=2
XN

i¼1

siðyoÞ þ Ao

ffiffiffiffiffi
N

p
ð~yy � yoÞ þ opð1Þ ð12:66Þ
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under H0, where Ao is given in expression (12.19). But 0 ¼
ffiffiffiffiffi
N

p
cð~yyÞ ¼

ffiffiffiffiffi
N

p
cðyoÞþ

€CC
ffiffiffiffiffi
N

p
ð~yy � yoÞ, where €CC is the Q � P Jacobian matrix CðyÞ with rows evaluated at

mean values between ~yy and yo. Under H0, cðyoÞ ¼ 0, and plim €CC ¼ CðyoÞ1Co.

Therefore, under H0, Co

ffiffiffiffiffi
N

p
ð~yy � yoÞ ¼ opð1Þ, and so multiplying equation (12.66)

through by CoA�1
o gives

CoA�1
o N�1=2

XN

i¼1

sið~yyÞ ¼ CoA�1
o N�1=2

XN

i¼1

siðyoÞ þ opð1Þ ð12:67Þ

By the CLT, CoA�1
o N�1=2

PN
i¼1 siðyoÞ !

d
Normalð0;CoA�1

o BoA�1
o C 0

oÞ, where Bo is

defined in expression (12.20). Under our assumptions, CoA�1
o BoA�1

o C 0
o has full rank

Q, and so

N�1=2
XN

i¼1

sið~yyÞ
" #0

A�1
o C 0

o½CoA�1
o BoA�1

o C 0
o�
�1CoA�1

o N�1=2
XN

i¼1

sið~yyÞ
" #

!d w2
Q

The score or LM statistic is given by

LM 1
XN

i¼1

~ssi

 !0
~AA�1 ~CC 0ð~CC~AA�1~BB~AA�1 ~CC 0Þ�1 ~CC~AA�1

XN

i¼1

~ssi

 !
=N ð12:68Þ

where all quantities are evaluated at ~yy. For example, ~CC1Cð~yyÞ, ~BB is given in expres-

sion (12.45) but with ~yy in place of ŷy, and ~AA is one of the estimators in expression

(12.42) or (12.44), again evaluated at ~yy. Under H0, LM !d w2
Q.

For the Wald statistic we assumed that yo A intðYÞ under H0; this assumption is

crucial for the statistic to have a limiting chi-square distribution. We will not consider

the Wald statistic when yo is on the boundary of Y under H0; see Wolak (1991) for

some results. The general derivation of the LM statistic also assumed that yo A intðYÞ
under H0. Nevertheless, for certain applications of the LM test we can drop the

requirement that yo is in the interior of Y under H0. A leading case occurs when y

can be partitioned as y1 ðy 0
1; y

0
2Þ

0, where y1 is ðP � QÞ � 1 and y2 is Q � 1. The null

hypothesis is H0: yo2 ¼ 0, so that cðyÞ1 y2. It is easy to see that the mean value

expansion used to derive the LM statistic is valid provided lo 1 yo1 is in the interior

of its parameter space under H0; yo 1 ðy 0
o1; 0Þ0 can be on the boundary of Y. This

observation is useful especially when testing hypotheses about parameters that must

be either nonnegative or nonpositive.

If we assume the generalized information matrix equality (12.53) with s2
o ¼ 1, the

LM statistic simplifies. The simplification results from the following reasoning: (1)
~CC~DD ¼ 0 by the chain rule, where ~DD1‘ldð~llÞ, since c½dðlÞ�1 0 for l in L. (2) If E is
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a P � Q matrix E with rank Q, F is a P � ðP � QÞ matrix with rank P � Q, and

E 0F ¼ 0, then EðE 0EÞ�1E 0 ¼ IP � FðF 0FÞ�1F 0. (This is simply a statement about

projections onto orthogonal subspaces.) Choosing E1 ~AA�1=2 ~CC 0 and F1 ~AA1=2 ~DD gives
~AA�1=2 ~CC 0ð~CC~AA�1 ~CC 0Þ�1 ~CC~AA�1=2 ¼ IP � ~AA1=2 ~DDð~DD 0 ~AA~DDÞ�1 ~DD 0 ~AA1=2. Now, pre- and post-

multiply this equality by ~AA�1=2 to get ~AA�1 ~CC 0ð~CC~AA�1 ~CC
0 Þ�1 ~CC~AA�1 ¼ ~AA�1 � ~DDð~DD 0 ~AA~DDÞ�1 ~DD 0.

(3) Plug ~BB ¼ ~AA into expression (12.68) and use step 2, along with the first-order con-

dition ~DD 0ð
PN

i¼1 ~ssiÞ ¼ 0, to get

LM ¼
XN

i¼1

~ssi

 !0
~MM�1

XN

i¼1

~ssi

 !
ð12:69Þ

where ~MM can be chosen as
PN

i¼1
~AAi,
PN

i¼1
~HHi, or

PN
i¼1 ~ssi~ss

0
i . (Each of these expressions

consistently estimates Ao ¼ Bo when divided by N.) The last choice of ~MM results in a

statistic that is N times the uncentered R-squared, say R2
0 , from the regression

1 on ~ss 0i ; i ¼ 1; 2; . . . ;N ð12:70Þ

(Recall that ~ss 0i is a 1 � P vector.) Because the dependent variable in regression (12.70)

is unity, NR2
0 is equivalent to N � SSR0, where SSR0 is the sum of squared residuals

from regression (12.70). This is often called the outer product of the score LM statistic

because of the estimator it uses for Ao. While this statistic is simple to compute, there

is ample evidence that it can have severe size distortions (typically, the null hypothe-

sis is rejected much more often than the nominal size of the test). See, for example,

Davidson and MacKinnon (1993), Bera and McKenzie (1986), Orme (1990), and

Chesher and Spady (1991).

The Hessian form of the LM statistic uses ~MM ¼
PN

i¼1
~HHi, and it has a few draw-

backs: (1) the LM statistic can be negative if the average estimated Hessian is not

positive definite; (2) it requires computation of the second derivatives; and (3) it is not

invariant to reparameterizations. We will discuss the last problem later.

A statistic that always avoids the first problem, and often the second and third

problems, is based on E½Hðw; yoÞ j x�, assuming that w partitions into endogenous

variables y and exogenous variables x. We call the LM statistic that uses ~MM ¼PN
i¼1

~AAi the expected Hessian form of the LM statistic. This name comes from the fact

that the statistic is based on the conditional expectation of Hðw; yoÞ given x. When it

can be computed, the expected Hessian form is usually preferred because it tends to

have the best small sample properties.

The LM statistic in equation (12.69) is valid only when Bo ¼ Ao, and therefore it is

not robust to failures of auxiliary assumptions in some important models. If Bo 0Ao,

the limiting distribution of equation (12.69) is not chi-square and is not suitable for

testing.
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In the context of NLS, the expected Hessian form of the LM statistic needs to be

modified for the presence of s2
o, assuming that Assumption NLS.3 holds under H0.

Let ~ss2 1N�1
PN

i¼1 ~uu
2
i be the estimate of s2

o using the restricted estimator of yo: ~uui 1
yi � mðxi; ~yyÞ, i ¼ 1; 2; . . . ;N. It is customary not to make a degrees-of-freedom ad-

justment when estimating the variance using the null estimates, partly because the

sum of squared residuals for the restricted model is always larger than for the un-

restricted model. The score evaluated at the restricted estimates can be written as

~ssi ¼ ‘y ~mm
0
i ~uui. Thus the LM statistic that imposes homoskedasticity is

LM ¼
XN

i¼1

‘y ~mm
0
i ~uui

 !0 XN

i¼1

‘y ~mm
0
i‘y ~mmi

 !�1 XN

i¼1

‘y ~mm
0
i ~uui

 !
=~ss2 ð12:71Þ

A little algebra shows that this expression is identical to N times the uncentered R-

squared, R2
u , from the auxiliary regression

~uui on ‘y ~mmi; i ¼ 1; 2; . . . ;N ð12:72Þ

In other words, just regress the residuals from the restricted model on the gradient

with respect to the unrestricted mean function but evaluated at the restricted esti-

mates. Under H0 and Assumption NLS.3, LM ¼ NR2
u @

a
w2

Q.

In the nonlinear regression example with mðx; yÞ ¼ exp½xb þ d1ðxbÞ2 þ d2ðxbÞ3�,
let ~bb be the restricted NLS estimator with d1 ¼ 0 and d2 ¼ 0; in other words, ~bb is from

a nonlinear regression with an exponential regression function. The restricted resid-

uals are ~uui ¼ yi � expðxi
~bbÞ, and the gradient of mðx; yÞ with respect to all parameters,

evaluated at the null, is

‘ymðxi; bo; 0Þ ¼ fxi expðxiboÞ; ðxiboÞ
2 expðxiboÞ; ðxiboÞ

3 expðxiboÞg

Plugging in ~bb gives ‘y ~mmi ¼ ½xi ~mmi; ðxi
~bbÞ2 ~mmi; ðxi

~bbÞ3 ~mmi�, where ~mmi 1 expðxi
~bbÞ. Regres-

sion (12.72) becomes

~uui on xi ~mmi; ðxi
~bbÞ2 ~mmi; ðxi

~bbÞ3 ~mmi; i ¼ 1; 2; . . . ;N ð12:73Þ

Under H0 and homoskedasticity, NR2
u @ w2

2 , since there are two restrictions being

tested. This is a fairly simple way to test the exponential functional form without ever

estimating the more complicated alternative model. Other models that nest the ex-

ponential model are discussed in Wooldridge (1992).

This example illustrates an important point: even though
PN

i¼1ðxi ~mmiÞ0~uui is identi-

cally zero by the first-order condition for NLS, the term xi ~mmi must generally be

included in regression (12.73). The R-squared from the regression without xi ~mmi will

be di¤erent because the remaining regressors in regression (12.73) are usually corre-

lated with xi ~mmi in the sample. [More importantly, for h ¼ 2 and 3, ðxibÞh expðxibÞ is
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probably correlated with xib in the population.] As a general rule, the entire gradient

‘y ~mmi must appear in the auxiliary regression.

In order to be robust against failure of Assumption NLS.3, the more general form

of the statistic in expression (12.68) should be used. Fortunately, this statistic also

can be easily computed for most hypotheses. Partition y into the ðP � QÞ � 1 vector

b and the Q vector d. Assume that the null hypothesis is H0: do ¼ d, where d

is a prespecified vector (often containing all zeros, but not always). Let ‘b ~mmi

[1 � ðP � QÞ] and ‘d ~mmi ð1 � QÞ denote the gradients with respect to b and d, respec-

tively, evaluated at ~bb and d. After tedious algebra, and using the special structure

CðyÞ ¼ ½0 j IQ�, where 0 is a Q � ðP � QÞ matrix of zero, the following procedure can

be shown to produce expression (12.68):

1. Run a multivariate regression

‘d ~mmi on ‘b ~mmi; i ¼ 1; 2; . . . ;N ð12:74Þ

and save the 1 � Q vector residuals, say ~rri. Then, for each i, form ~uui~rri. (That is, mul-

tiply ~uui by each element of ~rri.)

2. LM ¼ N � SSR0 ¼ NR2
0 from the regression

1 on ~uui~rri; i ¼ 1; 2; . . . ;N ð12:75Þ

where SSR0 is the usual sum of squared residuals. This step produces a statistic

that has a limiting w2
Q distribution whether or not Assumption NLS.3 holds. See

Wooldridge (1991a) for more discussion.

We can illustrate the heteroskedasticity-robust test using the preceding exponential

model. Regression (12.74) is the same as regressing each of ðxi
~bbÞ2 ~mmi and ðxi

~bbÞ3 ~mmi

onto xi ~mmi, and saving the residuals ~rri1 and ~rri2, respectively (N each). Then, regression

(12.75) is simply 1 on ~uui~rri1, ~uui~rri2. The number of regressors in the final regression of

the robust test is always the same as the degrees of freedom of the test.

Finally, these procedures are easily modified for WNLS. Simply multiply both ~uui

and ‘y ~mmi by 1=
ffiffiffiffi
~hhi

p
, where the variance estimates ~hhi are based on the null model (so

we use a @ rather than a 5). The nonrobust LM statistic that maintains Assumption

WNLS.3 is obtained as in regression (12.72). The robust form, which allows

Varðy j xÞ0 s2
ohðx; goÞ, follows exactly as in regressions (12.74) and (12.75).

The invariance issue for the score statistic is somewhat complicated, but several

results are known. First, it is easy to see that the outer product form of the statistic is

invariant to di¤erentiable reparameterizations. Write f ¼ gðyÞ as a twice continu-

ously di¤erentiable, invertible reparameterization; thus the P � P Jacobian of g,
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GðyÞ, is nonsingular for all y A Y. The objective function in terms of f is qgðw; fÞ,
and we must have qg½w; gðyÞ� ¼ qðw; yÞ for all y A Y. Di¤erentiating and transposing

gives sðw; yÞ ¼ GðyÞ0sg½w; gðyÞ�, where sgðw; fÞ is the score of qg½w; f�. If ~ff is the

restricted estimator of f, then ~ff ¼ gð~yyÞ, and so, for each observation i, ~ssg
i ¼ ð~GG 0Þ�1~ssi.

Plugging this equation into the LM statistic in equation (12.69), with ~MM chosen as the

outer product form, shows that the statistic based on ~ssg
i is identical to that based on ~ssi.

Score statistics based on the estimated Hessian are not generally invariant to re-

parameterization because they can involve second derivatives of the function gðyÞ; see

Davidson and MacKinnon (1993, Section 13.6) for details. However, when w parti-

tions as ðx; yÞ, score statistics based on the expected Hessian (conditional on x),

Aðx; yÞ, are often invariant. In Chapter 13 we will see that this is always the case for

conditional maximum likelihood estimation. Invariance also holds for NLS and

WNLS for both the usual and robust LM statistics because any reparameterization

comes through the conditional mean. Predicted values and residuals are invariant to

reparameterization, and the statistics obtained from regressions (12.72) and (12.75)

only involve the residuals and first derivatives of the conditional mean function. As in

the usual outer product LM statistic, the Jacobian in the first derivative cancels out.

12.6.3 Tests Based on the Change in the Objective Function

When both the restricted and unrestricted models are easy to estimate, a test based on

the change in the objective function can greatly simplify the mechanics of obtaining

a test statistic: we only need to obtain the value of the objective function with and

without the restrictions imposed. However, the computational simplicity comes at

a price in terms of robustness. Unlike the Wald and score tests, a test based on the

change in the objective function cannot be made robust to general failure of as-

sumption (12.53). Therefore, throughout this subsection we assume that the general-

ized information matrix equality holds. Because the minimized objective function is

invariant with respect to any reparameterization, the test statistic is invariant.

In the context of two-step estimators, we must also assume that ĝg has no e¤ect on

the asymptotic distribution of the M-estimator. That is, we maintain assumption

(12.37) when nuisance parameter estimates appear in the objective function (see

Problem 12.8).

We first consider the case where s2
o ¼ 1, so that Bo ¼ Ao. Using a second-order

Taylor expansion,

XN

i¼1

qðwi; ~yyÞ �
XN

i¼1

qðwi; ŷyÞ ¼
XN

i¼1

siðŷyÞ þ ð1=2Þð~yy � ŷyÞ0
XN

i¼1

€HHi

 !
ð~yy � ŷyÞ
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where €HHi is the P � P Hessian evaluate at mean values between ~yy and ŷy. Therefore,

under H0 (using the first-order condition for ŷy), we have

2
XN

i¼1

qðwi; ~yyÞ �
XN

i¼1

qðwi; ŷyÞ
" #

¼ ½
ffiffiffiffiffi
N

p
ð~yy � ŷyÞ� 0A0½

ffiffiffiffiffi
N

p
ð~yy � ŷyÞ� þ opð1Þ ð12:76Þ

since N�1
PN

i¼1
€HHi ¼ Ao þ op (1) and

ffiffiffiffiffi
N

p
ð~yy � ŷyÞ ¼ Opð1Þ. In fact, it follows from

equations (12.33) (without ĝg) and (12.66) that
ffiffiffiffiffi
N

p
ð~yy � ŷyÞ ¼ A�1

o N�1=2
PN

i¼1 sið~yyÞþ
opð1Þ. Plugging this equation into equation (12.76) shows that

QLR1 2
XN

i¼1

qðwi; ~yyÞ �
XN

i¼1

qðwi; ŷyÞ
" #

¼ N�1=2
XN

i¼1

~ssi

 !0
A�1

o N�1=2
XN

i¼1

~ssi

 !
þ opð1Þ ð12:77Þ

so that QLR has the same limiting distribution, w2
Q, as the LM statistic under H0. [See

equation (12.69), remembering that plimð ~MM=NÞ ¼ Ao.] We call statistic (12.77) the

quasi-likelihood ratio (QLR) statistic, which comes from the fact that the leading ex-

ample of equation (12.77) is the likelihood ratio statistic in the context of maximum

likelihood estimation, as we will see in Chapter 13. We could also call equation

(12.77) a criterion function statistic, as it is based on the di¤erence in the criterion or

objective function with and without the restrictions imposed.

When nuisance parameters are present, the same estimate, say ĝg, should be used in

obtaining the restricted and unrestricted estimates. This is to ensure that QLR is

nonnegative given any sample. Typically, ĝg would be based on initial estimation of

the unrestricted model.

If s2
o 0 1, we simply divide QLR by ŝs2, which is a consistent estimator of s2

o

obtained from the unrestricted estimation. For example, consider NLS under

Assumptions NLS.1–NLS.3. When equation (12.77) is divided by ŝs2 in equation

(12.57), we obtain ðSSRr � SSRurÞ=½SSRur=ðN � PÞ�, where SSRr and SSRur are the

restricted and unrestricted sums of squared residuals. Sometimes an F version of this

statistic is used instead, which is obtained by dividing the chi-square version by Q:

F ¼ ðSSRr � SSRurÞ
SSRur

� ðN � PÞ
Q

ð12:78Þ

This has exactly the same form as the F statistic from classical linear regression

analysis. Under the null hypothesis and homoskedasticity, F can be treated as having
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an approximate FQ;N�P distribution. (As always, this treatment is justified because

Q �FQ;N�P @
a
w2

Q as N � P ! y.) Some authors (for example, Gallant, 1987) have

found that F has better finite sample properties than the chi-square version of the

statistic.

For weighted NLS, the same statistic works under Assumption WNLS.3 provided

the residuals (both restricted and unrestricted) are weighted by 1= ĥhi

ffiffiffiffiffip
, where the ĥhi

are obtained from estimation of the unrestricted model.

12.6.4 Behavior of the Statistics under Alternatives

To keep the notation and assumptions as simple as possible, and to focus on the

computation of valid test statistics under various assumptions, we have only derived

the limiting distribution of the classical test statistics under the null hypothesis. It is

also important to know how the tests behave under alternative hypotheses in order to

choose a test with the highest power.

All the tests we have discussed are consistent against the alternatives they are spe-

cifically designed against. While this consistency is desirable, it tells us nothing about

the likely finite sample power that a statistic will have against particular alternatives.

A framework that allows us to say more uses the notion of a sequence of local alter-

natives. Specifying a local alternative is a device that can approximate the finite

sample power of test statistics for alternatives ‘‘close’’ to H0. If the null hypothesis is

H0: cðyoÞ ¼ 0 then a sequence of local alternatives is

HN
1 : cðyo;NÞ ¼ do=

ffiffiffiffiffi
N

p
ð12:79Þ

where do is a given Q � 1 vector. As N ! y, HN
1 approaches H0, since do=

ffiffiffiffiffi
N

p
! 0.

The division by
ffiffiffiffiffi
N

p
means that the alternatives are local: for given N, equation

(12.79) is an alternative to H0, but as N ! y, the alternative gets closer to H0.

Dividing do by
ffiffiffiffiffi
N

p
ensures that each of the statistics has a well-defined limiting dis-

tribution under the alternative that di¤ers from the limiting distribution under H0.

It can be shown that, under equation (12.79), the general forms of the Wald and

LM statistics have a limiting noncentral chi-square distribution with Q degrees of

freedom under the regularity conditions used to obtain their null limiting distribu-

tions. The noncentrality parameter depends on Ao, Bo, Co, and do, and can be esti-

mated by using consistent estimators of Ao, Bo, and Co. When we add assumption

(12.53), then the special versions of the Wald and LM statistics and the QLR statis-

tics have limiting noncentral chi-square distributions. For various do, we can estimate

what is known as the asymptotic local power of the test statistics by computing

probabilities from noncentral chi-square distributions.
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Consider the Wald statistic where Bo ¼ Ao. Denote by yo the limit of yo;N as

N ! y. The usual mean value expansion under HN
1 givesffiffiffiffiffi

N
p

cðŷyÞ ¼ do þ CðyoÞ
ffiffiffiffiffi
N

p
ðŷy � yo;NÞ þ opð1Þ

and, under standard assumptions,
ffiffiffiffiffi
N

p
ðŷy � yo;NÞ @

a
Normalð0;A�1

o Þ. Therefore,ffiffiffiffiffi
N

p
cðŷyÞ @a Normalðdo;CoA�1

o C 0
oÞ under the sequence (12.79). This result implies that

the Wald statistic has a limiting noncentral chi-square distribution with Q degrees of

freedom and noncentrality parameter d 0
oðCoA�1

o C 0
oÞ

�1do. This turns out to be the

same noncentrality parameter for the LM and QLR statistics when Bo ¼ Ao. The

details are similar to those under H0; see, for example, Gallant (1987, Section 3.6).

The statistic with the largest noncentrality parameter has the largest asymptotic

local power. For choosing among the Wald, LM, and QLR statistics, this criterion

does not help: they all have the same noncentrality parameters under equation

(12.79). [For the QLR statistic, assumption (12.53) must also be maintained.]

The notion of local alternatives is useful when choosing among statistics based on

di¤erent estimators. Not surprisingly, the more e‰cient estimator produces tests with

the best asymptotic local power under standard assumptions. But we should keep in

mind the e‰ciency–robustness trade-o¤, especially when e‰cient test statistics are

computed under tenuous assumptions.

General analyses under local alternatives are available in Gallant (1987), Gallant

and White (1988), and White (1994). See Andrews (1989) for innovative suggestions

for using local power analysis in applied work.

12.7 Optimization Methods

In this section we briefly discuss three iterative schemes that can be used to solve the

general minimization problem (12.8) or (12.31). In the latter case, the minimization

is only over y, so the presence of ĝg changes nothing. If ĝg is present, the score and

Hessian with respect to y are simply evaluated at ĝg. These methods are closely related

to the asymptotic variance matrix estimators and test statistics we discussed in Sec-

tions 12.5 and 12.6.

12.7.1 The Newton-Raphson Method

Iterative methods are defined by an algorithm for going from one iteration to the

next. Let yfgg be the P � 1 vector on the gth iteration, and let yfgþ1g be the value on

the next iteration. To motivate how we get from yfgg to yfgþ1g, use a mean value ex-

pansion (row by row) to write
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XN

i¼1

siðyfgþ1gÞ ¼
XN

i¼1

siðyfggÞ þ
XN

i¼1

HiðyfggÞ
" #

ðyfgþ1g � yfggÞ þ rfgg ð12:80Þ

where siðyÞ is the P � 1 score with respect to y, evaluated at observation i, HiðyÞ is

the P � P Hessian, and rfgg is a P � 1 vector of remainder terms. We are trying to

find the solution ŷy to equation (12.14). If yfgþ1g ¼ ŷy, then the left-hand side of equa-

tion (12.80) is zero. Setting the left-hand side to zero, ignoring rfgg, and assuming that

the Hessian evaluated at yfgg is nonsingular, we can write

yfgþ1g ¼ yfgg �
XN

i¼1

HiðyfggÞ
" #�1 XN

i¼1

siðyfggÞ
" #

ð12:81Þ

Equation (12.81) provides an iterative method for finding ŷy. To begin the iterations

we must choose a vector of starting values; call this vector yf0g. Good starting values

are often di‰cult to come by, and sometimes we must experiment with several

choices before the problem converges. Ideally, the iterations wind up at the same

place regardless of the starting values, but this outcome is not guaranteed. Given the

starting values, we plug yf0g into the right-hand side of equation (12.81) to get yf1g.

Then, we plug yf1g into equation (12.81) to get yf2g, and so on.

If the iterations are proceeding toward the minimum, the increments yfgþ1g � yfgg

will eventually become very small: as we near the solution,
PN

i¼1 siðyfggÞ gets close to

zero. Some use as a stopping rule the requirement that the largest absolute change

jyfgþ1g
j � y

fgg
j j, for j ¼ 1; 2; . . . ;P, is smaller than some small constant; others prefer

to look at the largest percentage change in the parameter values.

Another popular stopping rule is based on the quadratic form

XN

i¼1

siðyfggÞ
" #0 XN

i¼1

HiðyfggÞ
" #�1 XN

i¼1

siðyfggÞ
" #

ð12:82Þ

where the iterations stop when expression (12.82) is less than some suitably small

number, say .0001.

The iterative scheme just outlined is usually called the Newton-Raphson method.

It is known to work in a variety of circumstances. Our motivation here has been

heuristic, and we will not investigate situations under which the Newton-Raphson

method does not work well. (See, for example, Quandt, 1983, for some theoretical

results.) The Newton-Raphson method has some drawbacks. First, it requires com-

puting the second derivatives of the objective function at every iteration. These cal-

culations are not very taxing if closed forms for the second partials are available, but
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in many cases they are not. A second problem is that, as we saw for the case of

nonlinear least squares, the sum of the Hessians evaluated at a particular value of y

may not be positive definite. If the inverted Hessian in expression (12.81) is not pos-

itive definite, the procedure may head in the wrong direction.

We should always check that progress is being made from one iteration to the next

by computing the di¤erence in the values of the objective function from one iteration

to the next:

XN

i¼1

qiðyfgþ1gÞ �
XN

i¼1

qiðyfggÞ ð12:83Þ

Because we are minimizing the objective function, we should not take the step from g

to g þ 1 unless expression (12.83) is negative. [If we are maximizing the function, the

iterations in equation (12.81) can still be used because the expansion in equation

(12.80) is still appropriate, but then we want expression (12.83) to be positive.]

A slight modification of the Newton-Raphson method is sometimes useful to speed

up convergence: multiply the Hessian term in expression (12.81) by a positive num-

ber, say r, known as the step size. Sometimes the step size r ¼ 1 produces too large a

change in the parameters. If the objective function does not decrease using r ¼ 1,

then try, say, r ¼ 1
2. Again, check the value of the objective function. If it has now

decreased, go on to the next iteration (where r ¼ 1 is usually used at the beginning of

each iteration); if the objective function still has not decreased, replace r with, say, 1
4.

Continue halving r until the objective function decreases. If you have not succeeded

in decreasing the objective function after several choices of r, new starting values

might be needed. Or, a di¤erent optimization method might be needed.

12.7.2 The Berndt, Hall, Hall, and Hausman Algorithm

In the context of maximum likelihood estimation, Berndt, Hall, Hall, and Hausman

(1974) (hereafter, BHHH) proposed using the outer product of the score in place of

the Hessian. This method can be applied in the general M-estimation case [even

though the information matrix equality (12.53) that motivates the method need not

hold]. The BHHH iteration for a minimization problem is

yfgþ1g ¼ yfgg � r
XN

i¼1

siðyfggÞsiðyfggÞ0
" #�1 XN

i¼1

siðyfggÞ
" #

ð12:84Þ

where r is the step size. [If we want to maximize
PN

i¼1 qðwi; yÞ, the minus sign in

equation (12.84) should be replaced with a plus sign.] The term multiplying r, some-
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times called the direction for the next iteration, can be obtained as the P � 1 OLS

coe‰cients from the regression

1 on siðyfggÞ0; i ¼ 1; 2; . . . ;N ð12:85Þ

The BHHH procedure is easy to implement because it requires computation of the

score only; second derivatives are not needed. Further, since the sum of the outer

product of the scores is always at least positive semidefinite, it does not su¤er from

the potential nonpositive definiteness of the Hessian.

A convenient stopping rule for the BHHH method is obtained as in expression

(12.82), but with the sum of the outer products of the score replacing the sum of the

Hessians. This is identical to N times the uncentered R-squared from regression

(12.85). Interestingly, this is the same regression used to obtain the outer product of

the score form of the LM statistic when Bo ¼ Ao, and this fact suggests a natural

method for estimating a complicated model after a simpler version of the model has

been estimated. Set the starting value, yf0g, equal to the vector of restricted estimates,
~yy. Then NR2

0 from the regression used to obtain the first iteration can be used to test

the restricted model against the more general model to be estimated; if the restrictions

are not rejected, we could just stop the iterations. Of course, as we discussed in Sec-

tion 12.6.2, this form of the LM statistic is often ill-behaved even with fairly large

sample sizes.

12.7.3 The Generalized Gauss-Newton Method

The final iteration scheme we cover is closely related to the estimator of the expected

value of the Hessian in expression (12.44). Let Aðx; yoÞ be the expected value of

Hðw; yoÞ conditional on x, where w is partitioned into y and x. Then the generalized

Gauss-Newton method uses the updating equation

yfgþ1g ¼ yfgg � r
XN

i¼1

AiðyfggÞ
" #�1 XN

i¼1

siðyfggÞ
" #

ð12:86Þ

where yfgg replaces yo in Aðxi; yoÞ. (As before, Ai and si might also depend on ĝg.)

This scheme works well when Aðx; yoÞ can be obtained in closed form.

In the special case of nonlinear least squares, we obtain what is traditionally

called the Gauss-Newton method (for example, Quandt, 1983). Since siðyÞ ¼
�‘ymiðyÞ0½yi � miðyÞ�, the iteration step is

yfgþ1g ¼ yfgg þ r
XN

i¼1

‘ym
fgg0
i ‘ym

fgg
i

 !�1 XN

i¼1

‘ym
fgg0
i u

fgg
i

 !

M-Estimation 375



The term multiplying the step size r is obtained as the OLS coe‰cients of the re-

gression of the resididuals on the gradient, both evaluated at yfgg. The stopping rule

can be based on N times the uncentered R-squared from this regression. Note how

closely the Gauss-Newton method of optimization is related to the regression used to

obtain the nonrobust LM statistic [see regression (12.72)].

12.7.4 Concentrating Parameters out of the Objective Function

In some cases, it is computationally convenient to concentrate one set of parameters

out of the objective function. Partition y into the vectors b and g. Then the first-order

conditions that define ŷy are

XN

i¼1

‘bqðwi; b; gÞ ¼ 0;
XN

i¼1

‘gqðwi; b; gÞ ¼ 0 ð12:87Þ

Rather than solving these for b̂b and ĝg, suppose that the second set of equations can be

solved for g as a function of W1 ðw1;w2; . . . ;wNÞ and b for any outcomes W and

any b in the parameter set g ¼ gðW; bÞ. Then, by construction,

XN

i¼1

‘gq½wi; b; gðW; bÞ� ¼ 0 ð12:88Þ

When we plug gðW; bÞ into the original objective function, we obtain the con-

centrated objective function,

QcðW; bÞ ¼
XN

i¼1

q½wi; b; gðW; bÞ� ð12:89Þ

Under standard di¤erentiability assumptions, the minimizer of equation (12.89) is

identical to the b̂b that solves equations (12.87) (along with ĝg), as can be seen by dif-

ferentiating equation (12.89) with respect to b using the chain rule, setting the result

to zero, and using equation (12.88); then ĝg can be obtained as gðW; b̂bÞ.
As a device for studying asymptotic properties, the concentrated objective function

is of limited value because gðW; bÞ generally depends on all of W, in which case

the objective function cannot be written as the sum of independent, identically dis-

tributed summands. One setting where equation (12.89) is a sum of i.i.d. functions

occurs when we concentrate out individual-specific e¤ects from certain nonlinear

panel data models. In addition, the concentrated objective function can be useful for

establishing the equivalence of seemingly di¤erent estimation approaches.
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12.8 Simulation and Resampling Methods

So far we have focused on the asymptotic properties of M-estimators, as these pro-

vide a unified framework for inference. But there are a few good reasons to go be-

yond asymptotic results, at least in some cases. First, the asymptotic approximations

need not be very good, especially with small sample sizes, highly nonlinear models,

or unusual features of the population distribution of wi. Simulation methods, while

always special, can help determine how well the asymptotic approximations work.

Resampling methods can allow us to improve on the asymptotic distribution

approximations.

Even if we feel comfortable with asymptotic approximations to the distribution of

ŷy, we may not be as confident in the approximations for estimating a nonlinear

function of the parameters, say go ¼ gðyoÞ. Under the assumptions in Section 3.5.2,

we can use the delta method to approximate the variance of ĝg ¼ gðŷyÞ. Depending on

the nature of gð�Þ, applying the delta method might be di‰cult, and it might not re-

sult in a very good approximation. Resampling methods can simplify the calculation

of standard errors, confidence intervals, and p-values for test statistics, and we can

get a good idea of the amount of finite-sample bias in the estimation method. In ad-

dition, under certain assumptions and for certain statistics, resampling methods can

provide quantifiable improvements to the usual asymptotics.

12.8.1 Monte Carlo Simulation

In a Monte Carlo simulation, we attempt to estimate the mean and variance—

assuming that these exist—and possibly other features of the distribution of the M-

estimator, ŷy. The idea is usually to determine how much bias ŷy has for estimating yo,

or to determine the e‰ciency of ŷy compared with other estimators of yo. In addition,

we often want to know how well the asymptotic standard errors approximate the

standard deviations of the ŷyj.

To conduct a simulation, we must choose a population distribution for w, which

depends on the finite dimensional vector yo. We must set the values of yo, and decide

on a sample size, N. We then draw a random sample of size N from this distribution

and use the sample to obtain an estimate of yo. We draw a new random sample

and compute another estimate of yo. We repeat the process for several iterations, say

M. Let ŷyðmÞ be the estimate of yo based on the mth iteration. Given fŷyðmÞ: m ¼
1; 2; . . . ;Mg, we can compute the sample average and sample variance to estimate

EðŷyÞ and VarðŷyÞ, respectively. We might also form t statistics or other test statistics to

see how well the asymptotic distributions approximate the finite sample distributions.
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We can also see how well asymptotic confidence intervals cover the population

parameter relative to the nominal confidence level.

A good Monte Carlo study varies the value of yo, the sample size, and even the

general form of the distribution of w. Obtaining a thorough study can be very chal-

lenging, especially for a complicated, nonlinear model. First, to get good estimates of

the distribution of ŷy, we would like M to be large (perhaps several thousand). But for

each Monte Carlo iteration, we must obtain ŷyðmÞ, and this step can be computation-

ally expensive because it often requires the iterative methods we discussed in Section

12.7. Repeating the simulations for many di¤erent sample sizes N, values of yo, and

distributional shapes can be very time-consuming.

In most economic applications, wi is partitioned as ðxi; yiÞ. While we can draw the

full vector wi randomly in the Monte Carlo iterations, more often the xi are fixed at

the beginning of the iterations, and then yi is drawn from the conditional distribution

given xi. This method simplifies the simulations because we do not need to vary the

distribution of xi along with the distribution of interest, the distribution of yi given xi.

If we fix the xi at the beginning of the simulations, the distributional features of ŷy that

we estimate from the Monte Carlo simulations are conditional on fx1; x2; . . . ; xNg.

This conditional approach is especially common in linear and nonlinear regression

contexts, as well as conditional maximum likelihood.

It is important not to rely too much on Monte Carlo simulations. Many estimation

methods, including OLS, IV, and panel data estimators, have asymptotic properties

that do not depend on underlying distributions. In the nonlinear regression model,

the NLS estimator is
ffiffiffiffiffi
N

p
-asymptotically normal, and the usual asymptotic variance

matrix (12.58) is valid under Assumptions NLS.1–NLS.3. However, in a typical

Monte Carlo simulation, the implied error, u, is assumed to be independent of x, and

the distribution of u must be specified. The Monte Carlo results then pertain to this

distribution, and it can be misleading to extrapolate to di¤erent settings. In addition,

we can never try more than just a small part of the parameter space. Since we never

know the population value yo, we can never be sure how well our Monte Carlo study

describes the underlying population. Hendry (1984) discusses how response surface

analysis can be used to reduce the specificity of Monte Carlo studies. See also

Davidson and MacKinnon (1993, Chapter 21).

12.8.2 Bootstrapping

A Monte Carlo simulation, although it is informative about how well the asymptotic

approximations can be expected to work in specific situations, does not generally help

us refine our inference given a particular sample. (Since we do not know yo, we

cannot know whether our Monte Carlo findings apply to the population we are
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studying. Nevertheless, researchers sometimes use the results of a Monte Carlo sim-

ulation to obtain rules of thumb for adjusting standard errors or for adjusting critical

values for test statistics.) The method of bootstrapping, which is a popular resampling

method, can be used as an alternative to asymptotic approximations for obtaining

standard errors, confidence intervals, and p-values for test statistics.

Though there are several variants of the bootstrap, we begin with one that can

be applied to general M-estimation. The goal is to approximate the distribution of

ŷy without relying on the usual first-order asymptotic theory. Let fw1;w2; . . . ;wNg
denote the outcome of the random sample used to obtain the estimate. The non-

parametric bootstrap is essentially a Monte Carlo simulation where the observed

sample is treated as the population. In other words, at each bootstrap iteration, b, a

random sample of size N is drawn from fw1;w2; . . . ;wNg. (That is, we sample with

replacement.) In practice, we use a random number generator to obtain N integers

from the set f1; 2; . . . ;Ng; in the vast majority of iterations some integers will

be repeated at least once. These integers index the elements that we draw from

fw1;w2; . . . ;wNg; call these fw
ðbÞ
1 ;w

ðbÞ
2 ; . . . ;w

ðbÞ
N g. Next, we use this bootstrap sample

to obtain the M-estimate ŷyðbÞ by solving

min
y AY

XN

i¼1

qðwðbÞ
i ; yÞ

We iterate the process B times, obtaining ŷyðbÞ, b ¼ 1; . . . ;B. These estimates can now

be used as in a Monte Carlo simulation. Computing the average of the ŷyðbÞ, say ŷy,

allows us to estimate the bias in ŷy. The sample variance, ðB � 1Þ�1PB
b¼1½ŷy

ðbÞ � ŷy� �
½ŷyðbÞ � ŷy� 0, can be used to obtain standard errors for the ŷyj —the estimates from the

original sample. A 95 percent bootstrapped confidence interval for yoj can be

obtained by finding the 2.5 and 97.5 percentiles in the list of values fŷyðbÞj : b ¼
1; . . . ;Bg. The p-value for a test statistic is approximated as the fraction of times the

bootstrapped test statistic exceeds the statistic computed from the original sample.

The parametric bootstrap is even more similar to a standard Monte Carlo simula-

tion because we assume that the distribution of w is known up to the parameters yo.

Let f ð� ; yÞ denote the parametric density. Then, on each bootstrap iteration, we draw

a random sample of size N from f ð� ; ŷyÞ; this gives fw
ðbÞ
1 ;w

ðbÞ
2 ; . . . ;w

ðbÞ
N g and the rest of

the calculations are the same as in the nonparametric bootstrap. [With the parametric

bootstrap when f ð� ; yÞ is a continuous density, only rarely would we find repeated

values among the w
ðbÞ
i .]

When wi is partitioned into ðxi; yiÞ, where the xi are conditioning variables, other

resampling schemes are sometimes preferred. For example, in a regression model
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where the error ui is independent of xi, we first compute the NLS estimate ŷy and the

NLS residuals, ûui ¼ yi � mðxi; ŷyÞ, i ¼ 1; 2; . . . ;N. Then, using the procedure de-

scribed for the nonparametric bootstrap, a bootstrap sample of residuals, fûu
ðbÞ
i : i ¼

1; 2; . . . ;Ng, is obtained, and we compute y
ðbÞ
i ¼ mðxi; ŷyÞ þ ûu

ðbÞ
i . Using the generated

data fðxi; y
ðbÞ
i Þ: i ¼ 1; 2; . . . ;Ng, we compute the NLS estimate, ŷyðbÞ. This procedure

is called the nonparametric residual bootstrap. (We resample the residuals and use

these to generate a sample on the dependent variable, but we do not resample the

conditioning variables, xi.) If the model is nonlinear in y, this method can be com-

putationally demanding because we want B to be several hundred, if not several

thousand. Nonetheless, such procedures are becoming more and more feasible as

computational speed increases. When ui has zero conditional mean ½Eðui j xiÞ ¼ 0� but

is heteroskedastic ½Varðui j xiÞ depends on xi], alternative sampling methods, in par-

ticular the wild bootstrap, can be used to obtain heteroskedastic-consistent standard

errors. See, for example, Horowitz (in press).

For certain test statistics, the bootstrap can be shown to improve upon the ap-

proximation provided by the first-order asymptotic theory that we treat in this book.

A detailed treatment of the bootstrap, including discussions of when it works and

when it does not, is given in Horowitz (in press).

Problems

12.1. Use equation (12.4) to show that yo minimizes Ef½y � mðx; yÞ�2 j xg over Y

for any x. Explain why this result is stronger than stating that yo solves problem

(12.3).

12.2. Consider the model

Eðy j xÞ ¼ mðx; yoÞ

Varðy j xÞ ¼ expðao þ xgoÞ

where x is 1 � K . The vector yo is P � 1 and go is K � 1.

a. Define u1 y � Eðy j xÞ. Show that Eðu2 j xÞ ¼ expðao þ xgoÞ.
b. Let ûui denote the residuals from estimating the conditional mean by NLS. Argue

that ao and go can be consistently estimated by a nonlinear regression where ûu2
i is the

dependent variable and the regression function is expðao þ xgoÞ. (Hint: Use the

results on two-step estimation.)

c. Using part b, propose a (feasible) weighted least squares procedure for estimat-

ing yo.
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d. If the error u is divided by ½Varðu j xÞ�1=2, we obtain v1 exp½�ðao þ xgoÞ=2�u.

Argue that if v is independent of x, then go is consistently estimated from the re-

gression logðûu2
i Þ on 1, xi, i ¼ 1; 2; . . . ;N. [The intercept from this regression will

not consistently estimate ao, but this fact does not matter, since expðao þ xgoÞ ¼
s2

o expðxgoÞ, and s2
o can be estimated from the WNLS regression.]

e. What would you do after running WNLS if you suspect the variance function is

misspecified?

12.3. Consider the exponential regression function mðx; yÞ ¼ expðxyÞ, where x is

1 � K .

a. Suppose you have estimated a special case of the model, ÊEðy j zÞ ¼ exp½ŷy1 þ
ŷy2 logðz1Þ þ ŷy3z2�, where z1 and z2 are the conditioning variables. Show that ŷy2 is

approximately the elasticity of ÊEðy j zÞ with respect to z1.

b. In the same estimated model from part a, how would you approximate the per-

centage change in ÊEðy j zÞ given Dz2 ¼ 1?

c. Now suppose a square of z2 is added: ÊEðy j zÞ ¼ exp½ŷy1 þ ŷy2 logðz1Þ þ ŷy3z2 þ
ŷy4z2

2 �, where ŷy3 > 0 and ŷy4 < 0. How would you compute the value of z2 where the

partial e¤ect of z2 on ÊEðy j zÞ becomes negative?

d. Now write the general model as expðxyÞ ¼ expðx1y1 þ x2y2Þ, where x1 is 1 � K1

(and probably contains unity as an element) and x2 is 1 � K2. Derive the usual

(nonrobust) and heteroskedasticity-robust LM tests of H0: yo2 ¼ 0, where yo indexes

Eðy j xÞ.

12.4. a. Show that the score for WNLS is siðy; gÞ ¼ �‘ymðxi; yÞ0uiðyÞ=hðxi; gÞ.
b. Show that, under Assumption WNLS.1, E½siðyo; gÞ j xi� ¼ 0 for any value of g.

c. Show that, under Assumption WNLS.1, E½‘gsiðyo; gÞ� ¼ 0 for any value of g.

d. How would you estimate AvarðŷyÞ without Assumption WNLS.3?

12.5. For the regression model

mðx; yÞ ¼ G½xb þ d1ðxbÞ2 þ d2ðxbÞ3�

where Gð�Þ is a known, twice continuously di¤erentiable function with derivative gð�Þ,
derive the standard LM test of H0: do2 ¼ 0, do3 ¼ 0 using NLS. Show that, when Gð�Þ
is the identify function, the test reduces to RESET from Section 6.2.3.

12.6. Consider a panel data model for a random draw i from the population:

yit ¼ mðxit; yoÞ þ uit; Eðuit j xitÞ ¼ 0; t ¼ 1; . . . ;T
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a. If you apply pooled nonlinear least squares to estimate yo, how would you estimate

its asymptotic variance without further assumptions?

b. Suppose that the model is dynamically complete in the conditional mean, so

that Eðuit j xit; ui; t�1; xi; t�1; . . .Þ ¼ 0 for all t. In addition, Eðu2
it j xitÞ ¼ s2

o. Show

that the usual statistics from a pooled NLS regression are valid. fHint: The objective

function for each i is qiðyÞ ¼
PT

t¼1½yit � mðxit; yÞ�2=2 and the score is siðyÞ ¼
�
PT

t¼1 ‘ymðxit; yÞ0uitðyÞ. Now show that Bo ¼ s2
oAo and that s2

o is consistently esti-

mated by ðNT � PÞ�1PN
i¼1

PT
t¼1 ûu2

it.g

12.7. Consider a nonlinear analogue of the SUR system from Chapter 7:

Eðyig j xiÞ ¼ Eðyig j xigÞ ¼ mgðxig; yogÞ; g ¼ 1; . . . ;G

Thus, each yog can be estimated by NLS using only equation g; call these
^̂
yŷyyg. Suppose

also that Varðyi j xiÞ ¼ Wo, where Wo is G � G and positive definite.

a. Explain how to consistently estimate Wo (as usual, with G fixed and N ! y). Call

this estimator ŴW.

b. Let ŷy solve the problem

min
y

XN

i¼1

½yi � mðxi; yÞ� 0ŴW�1½yi � mðxi; yÞ�=2

where mðxi; yÞ is the G � 1 vector of conditional mean functions and yi is G � 1; this

is sometimes called the nonlinear SUR estimator. Show that

Avar
ffiffiffiffiffi
N

p
ðŷy � yoÞ ¼ fE½‘ymðxi; yoÞ0W�1

o ‘ymðxi; yoÞ�g�1

fHint: Under standard regularity conditions, N�1=2
PN

i¼1 ‘ymðxi; yoÞ0ŴW�1½yi �
mðxi; yoÞ� ¼ N�1=2

PN
i¼1 ‘ymðxi; yoÞ0W�1

o ½yi � mðxi; yoÞ� þ opð1Þ.g
c. How would you estimate AvarðŷyÞ?
d. If Wo is diagonal and if the assumptions stated previously hold, show that non-

linear least squares equation by equation is just as asymptotically e‰cient as the

nonlinear SUR estimator.

e. Is there a nonlinear analogue of Theorem 7.7 for linear systems in the sense that

nonlinear SUR and NLS equation by equation are asymptotically equivalent when

the same explanatory variables appear in each equation? [Hint: When would

‘ymðxi; yoÞ have the form needed to apply the hint in Problem 7.5? You might try

Eðyg j xÞ ¼ expðxyogÞ for all g as an example.]
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12.8. Consider the M-estimator with estimated nuisance parameter ĝg, whereffiffiffiffiffi
N

p
ðĝg� goÞ ¼ Opð1Þ. If assumption (12.37) holds under the null hypothesis, show

that the QLR statistic still has a limiting chi-square distribution, assuming also

that Ao ¼Bo. [Hint: Start from equation (12.76) but where
ffiffiffiffiffi
N

p
ð~yy � ŷyÞ ¼ A�1

o N�1=2�PN
i¼1 sið~yy; ĝgÞ þ opð1Þ. Now use a mean value expansion of the score about ð~yy; goÞ

to show that
ffiffiffiffiffi
N

p
ð~yy � ŷyÞ ¼ A�1

o N�1=2
PN

i¼1 sið~yy; goÞ þ opð1Þ.]

12.9. For scalar y, suppose that y ¼ mðx; boÞ þ u, where x is a 1 � K vector.

a. If Eðu j xÞ ¼ 0, what can you say about Medðy j xÞ?
b. Suppose that u and x are independent. Show that Eðy j xÞ � Medðy j xÞ does not

depend on x.

c. What does part b imply about qEðy j xÞ=qxj and q Medðy j xÞ=qxj?

12.10. For each i, let yi be a nonnegative integer with a conditional binomial dis-

tribution with upper bound ni (a positive integer) and probability of success pðxi; boÞ,
where 0 < pðx; bÞ < 1 for all x and b. (A leading case is the logistic function.)

Therefore, Eðyi j xi; niÞ ¼ nipðxi; boÞ and Varðyi j xi; niÞ ¼ nipðxi; boÞ½1 � pðxi; boÞ�.
Explain in detail how to obtain the weighted nonlinear least squares estimator of bo.

12.11. Let yi be a G � 1 vector (where G could be T, the number of time periods in

a panel data application), and let xi be a vector of covariates. Let mðx; bÞ be a model

of Eðy j xÞ, where mgðx; bÞ is a model for Eðyg j xÞ. Assume that the model is correctly

specified, and let bo denote the true value. Assume that mðx; �Þ has many continuous

derivatives.

a. Argue that the multivariate nonlinear least squares (MNLS) estimator, which

minimizes

XN

i¼1

½yi � mðxi; bÞ� 0½yi � mðxi; bÞ�=2

is generally consistent and
ffiffiffiffiffi
N

p
-asymptotically normal. Use Theorems 12.2 and 12.3.

What is the identification assumption?

b. Let Wðx; dÞ be a model for Varðy j xÞ, and suppose that this model is correctly

specified. Let d̂d be a
ffiffiffiffiffi
N

p
-consistent estimator of do. Argue that the multivariate

weighted nonlinear least squares (MWNLS) estimator, which solves

XN

i¼1

½yi � mðxi; bÞ� 0½Wiðd̂dÞ��1½yi � mðxi; bÞ�=2
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is generally consistent and
ffiffiffiffiffi
N

p
-asymptotically normal. Find Avar

ffiffiffiffiffi
N

p
ðb̂b � boÞ and

show how to consistently estimate it.

c. Argue that, even if the variance model for y given x is misspecified, the MWNLS

estimator is still consistent and
ffiffiffiffiffi
N

p
-asymptotically normal. How would you estimate

its asymptotic variance if you suspect the variance model is misspecified?
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13 Maximum Likelihood Methods

13.1 Introduction

This chapter contains a general treatment of maximum likelihood estimation (MLE)

under random sampling. All the models we considered in Part I could be estimated

without making full distributional assumptions about the endogenous variables

conditional on the exogenous variables: maximum likelihood methods were not

needed. Instead, we focused primarily on zero-covariance and zero-conditional-mean

assumptions, and secondarily on assumptions about conditional variances and co-

variances. These assumptions were su‰cient for obtaining consistent, asymptotically

normal estimators, some of which were shown to be e‰cient within certain classes of

estimators.

Some texts on advanced econometrics take maximum likelihood estimation as the

unifying theme, and then most models are estimated by maximum likelihood. In ad-

dition to providing a unified approach to estimation, MLE has some desirable e‰-

ciency properties: it is generally the most e‰cient estimation procedure in the class of

estimators that use information on the distribution of the endogenous variables given

the exogenous variables. (We formalize the e‰ciency of MLE in Section 14.5.) So

why not always use MLE?

As we saw in Part I, e‰ciency usually comes at the price of nonrobustness, and this

is certainly the case for maximum likelihood. Maximum likelihood estimators are

generally inconsistent if some part of the specified distribution is misspecified. As an

example, consider from Section 9.5 a simultaneous equations model that is linear in

its parameters but nonlinear in some endogenous variables. There, we discussed esti-

mation by instrumental variables methods. We could estimate SEMs nonlinear in

endogenous variables by maximum likelihood if we assumed independence between

the structural errors and the exogenous variables and if we assumed a particular dis-

tribution for the structural errors, say, multivariate normal. The MLE would be

asymptotically more e‰cient than the best GMM estimator, but failure of normality

generally results in inconsistent estimators of all parameters.

As a second example, suppose we wish to estimate Eðy j xÞ, where y is bounded

between zero and one. The logistic function, expðxbÞ=½1 þ expðxbÞ�, is a reasonable

model for Eðy j xÞ, and, as we discussed in Section 12.2, nonlinear least squares

provides consistent,
ffiffiffiffiffi
N

p
-asymptotically normal estimators under weak regularity

conditions. We can easily make inference robust to arbitrary heteroskedasticity in

Varðy j xÞ. An alternative approach is to model the density of y given x—which, of

course, implies a particular model for Eðy j xÞ—and use maximum likelihood esti-

mation. As we will see, the strength of MLE is that, under correct specification of the



density, we would have the asymptotically e‰cient estimators, and we would be able

to estimate any feature of the conditional distribution, such as Pðy ¼ 1 j xÞ. The

drawback is that, except in special cases, if we have misspecified the density in any

way, we will not be able to consistently estimate the conditional mean.

In most applications, specifying the distribution of the endogenous variables con-

ditional on exogenous variables must have a component of arbitrariness, as economic

theory rarely provides guidance. Our perspective is that, for robustness reasons, it

is desirable to make as few assumptions as possible—at least until relaxing them

becomes practically di‰cult. There are cases in which MLE turns out to be robust to

failure of certain assumptions, but these must be examined on a case-by-case basis, a

process that detracts from the unifying theme provided by the MLE approach. (One

such example is nonlinear regression under a homoskedastic normal assumption; the

MLE of the parameters bo is identical to the NLS estimator, and we know the latter

is consistent and asymptotically normal quite generally. We will cover some other

leading cases in Chapter 19.)

Maximum likelihood plays an important role in modern econometric analysis, for

good reason. There are many problems for which it is indispensable. For example, in

Chapters 15 and 16 we study various limited dependent variable models, and MLE

plays a central role.

13.2 Preliminaries and Examples

Traditional maximum likelihood theory for independent, identically distributed

observations fyi A RG: i ¼ 1; 2; . . .g starts by specifying a family of densities for yi.

This is the framework used in introductory statistics courses, where yi is a scalar with

a normal or Poisson distribution. But in almost all economic applications, we are

interested in estimating parameters in conditional distributions. Therefore, we assume

that each random draw is partitioned as ðxi; yiÞ, where xi A RK and yi A RG, and we

are interested in estimating a model for the conditional distribution of yi given xi. We

are not interested in the distribution of xi, so we will not specify a model for it.

Consequently, the method of this chapter is properly called conditional maximum

likelihood estimation (CMLE). By taking xi to be null we cover unconditional MLE

as a special case.

An alternative to viewing ðxi; yiÞ as a random draw from the population is to treat

the conditioning variables xi as nonrandom vectors that are set ahead of time and that

appear in the unconditional distribution of yi. (This is analogous to the fixed regres-

sor assumption in classical regression analysis.) Then, the yi cannot be identically

distributed, and this fact complicates the asymptotic analysis. More importantly,
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treating the xi as nonrandom is much too restrictive for all uses of maximum likeli-

hood. In fact, later on we will cover methods where xi contains what are endogenous

variables in a structural model, but where it is convenient to obtain the distribution of

one set of endogenous variables conditional on another set. Once we know how to

analyze the general CMLE case, applications follow fairly directly.

It is important to understand that the subsequent results apply any time we have

random sampling in the cross section dimension. Thus, the general theory applies to

system estimation, as in Chapters 7 and 9, provided we are willing to assume a dis-

tribution for yi given xi. In addition, panel data settings with large cross sections and

relatively small time periods are encompassed, since the appropriate asymptotic

analysis is with the time dimension fixed and the cross section dimension tending to

infinity.

In order to perform maximum likelihood analysis we need to specify, or derive

from an underlying (structural) model, the density of yi given xi. We assume this

density is known up to a finite number of unknown parameters, with the result that

we have a parametric model of a conditional density. The vector yi can be continuous

or discrete, or it can have both discrete and continuous characteristics. In many of

our applications, yi is a scalar, but this fact does not simplify the general treatment.

We will carry along two examples in this chapter to illustrate the general theory of

conditional maximum likelihood. The first example is a binary response model, spe-

cifically the probit model. We postpone the uses and interepretation of binary response

models until Chapter 15.

Example 13.1 (Probit): Suppose that the latent variable y�
i follows

y�
i ¼ xiy þ ei ð13:1Þ

where ei is independent of xi (which is a 1 � K vector with first element equal to unity

for all i), y is a K � 1 vector of parameters, and ei @Normal(0,1). Instead of

observing y�
i we observe only a binary variable indicating the sign of y�

i :

yi ¼
1 if y�

i > 0

0 if y�
i a 0

�
(13.2)

(13.3)

To be succinct, it is useful to write equations (13.2) and (13.3) in terms of the indi-

cator function, denoted 1½ � �. This function is unity whenever the statement in brackets

is true, and zero otherwise. Thus, equations (13.2) and (13.3) are equivalently written

as yi ¼ 1½y�
i > 0�. Because ei is normally distributed, it is irrelevant whether the strict

inequality is in equation (13.2) or (13.3).
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We can easily obtain the distribution of yi given xi:

Pðyi ¼ 1 j xiÞ ¼ Pðy�
i > 0 j xiÞ ¼ Pðxiy þ ei > 0 j xiÞ

¼ Pðei > �xiy j xiÞ ¼ 1 �Fð�xiyÞ ¼ FðxiyÞ ð13:4Þ

where Fð�Þ denotes the standard normal cumulative distribution function (cdf ). We

have used Property CD.4 in the chapter appendix along with the symmetry of the

normal distribution. Therefore,

Pðyi ¼ 0 j xiÞ ¼ 1 �FðxiyÞ ð13:5Þ

We can combine equations (13.4) and (13.5) into the density of yi given xi:

f ðy j xiÞ ¼ ½FðxiyÞ�y½1 �FðxiyÞ�1�y; y ¼ 0; 1 ð13:6Þ

The fact that f ðy j xiÞ is zero when y B f0; 1g is obvious, so we will not be explicit

about this in the future.

Our second example is useful when the variable to be explained takes on non-

negative integer values. Such a variable is called a count variable. We will discuss the

use and interpretation of count data models in Chapter 19. For now, it su‰ces to

note that a linear model for Eðy j xÞ when y takes on nonnegative integer values is

not ideal because it can lead to negative predicted values. Further, since y can take on

the value zero with positive probability, the transformation logðyÞ cannot be used to

obtain a model with constant elasticities or constant semielasticities. A functional

form well suited for Eðy j xÞ is expðxyÞ. We could estimate y by using nonlinear least

squares, but all of the standard distributions for count variables imply hetero-

skedasticity (see Chapter 19). Thus, we can hope to do better. A traditional approach

to regression models with count data is to assume that yi given xi has a Poisson

distribution.

Example 13.2 (Poisson Regression): Let yi be a nonnegative count variable; that is,

yi can take on integer values 0; 1; 2; . . . : Denote the conditional mean of yi given the

vector xi as Eðyi j xiÞ ¼ mðxiÞ. A natural distribution for yi given xi is the Poisson

distribution:

f ðy j xiÞ ¼ exp½�mðxiÞ�fmðxiÞgy=y!; y ¼ 0; 1; 2; . . . ð13:7Þ

(We use y as the dummy argument in the density, not to be confused with the random

variable yi.) Once we choose a form for the conditional mean function, we have

completely determined the distribution of yi given xi. For example, from equation

(13.7), Pðyi ¼ 0 j xiÞ ¼ exp½�mðxiÞ�. An important feature of the Poisson distribu-
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tion is that the variance equals the mean: Varðyi j xiÞ ¼ Eðyi j xiÞ ¼ mðxiÞ. The usual

choice for mð�Þ is mðxÞ ¼ expðxyÞ, where y is K � 1 and x is 1 � K with first element

unity.

13.3 General Framework for Conditional MLE

Let poðy j xÞ denote the conditional density of yi given xi ¼ x, where y and x are

dummy arguments. We index this density by ‘‘o’’ to emphasize that it is the true

density of yi given xi, and not just one of many candidates. It will be useful to let

XHRK denote the possible values for xi and Y denote the possible values of yi; X

and Y are called the supports of the random vectors xi and yi, respectively.

For a general treatment, we assume that, for all x A X, poð� j xÞ is a density with

respect to a s-finite measure, denoted nðdyÞ. Defining a s-finite measure would take

us too far afield. We will say little more about the measure nðdyÞ because it does

not play a crucial role in applications. It su‰ces to know that nðdyÞ can be chosen to

allow yi to be discrete, continuous, or some mixture of the two. When yi is discrete,

the measure nðdyÞ simply turns all integrals into sums; when yi is purely continuous,

we obtain the usual Riemann integrals. Even in more complicated cases—where, say,

yi has both discrete and continuous characteristics—we can get by with tools from

basic probability without ever explicitly defining nðdyÞ. For more on measures and

general integrals, you are referred to Billingsley (1979) and Davidson (1994, Chapters

3 and 4).

In Chapter 12 we saw how nonlinear least squares can be motivated by the fact

that moðxÞ1Eðy j xÞ minimizes Ef½y � mðxÞ�2g for all other functions mðxÞ with

Ef½mðxÞ�2g < y. Conditional maximum likelihood has a similar motivation. The

result from probability that is crucial for applying the analogy principle is the con-

ditional Kullback-Leibler information inequality. Although there are more general

statements of this inequality, the following su‰ces for our purpose: for any non-

negative function f ð� j xÞ such thatð
Y

f ðy j xÞnðdyÞ ¼ 1; all x A X ð13:8Þ

Property CD.1 in the chapter appendix implies that

Kð f ; xÞ1
ð
Y

log½ poðy j xÞ=f ðy j xÞ�poðy j xÞnðdyÞb 0; all x A X ð13:9Þ

Because the integral is identically zero for f ¼ po, expression (13.9) says that, for

each x, Kð f ; xÞ is minimized at f ¼ po.
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We can apply inequality (13.9) to a parametric model for poð� j xÞ,

f f ð� j x; yÞ; y A Y; YHRPg ð13:10Þ

which we assume satisfies condition (13.8) for each x A X and each y A Y; if it does

not, then f ð� j x; yÞ does not integrate to unity (with respect to the measure n), and as

a result it is a very poor candidate for poðy j xÞ. Model (13.10) is a correctly specified

model of the conditional density, poð� j �Þ, if, for some yo A Y,

f ð� j x; yoÞ ¼ poð� j xÞ; all x A X ð13:11Þ

As we discussed in Chapter 12, it is useful to use yo to distinguish the true value of the

parameter from a generic element of Y. In particular examples, we will not bother

making this distinction unless it is needed to make a point.

For each x A X, Kð f ; xÞ can be written as Eflog½ poðyi j xiÞ� j xi ¼ xg �
Eflog½ f ðyi j xiÞ� j xi ¼ xg. Therefore, if the parametric model is correctly specified,

then Eflog½ f ðyi j xi; yoÞ� j xigbEflog½ f ðyi j xi; yÞ� j xig, or

E½liðyoÞ j xi�bE½liðyÞ j xi�; y A Y ð13:12Þ

where

liðyÞ1 lðyi; xi; yÞ1 log f ðyi j xi; yÞ ð13:13Þ

is the conditional log likelihood for observation i. Note that liðyÞ is a random function

of y, since it depends on the random vector ðxi; yiÞ. By taking the expected value of

expression (13.12) and using iterated expectations, we see that yo solves

max
y AY

E½liðyÞ� ð13:14Þ

where the expectation is with respect to the joint distribution of ðxi; yiÞ. The sample

analogue of expression (13.14) is

max
y AY

N�1
XN

i¼1

log f ðyi j xi; yÞ ð13:15Þ

A solution to problem (13.15), assuming that one exists, is the conditional maximum

likelihood estimator (CMLE) of yo, which we denote as ŷy. We will sometimes drop

‘‘conditional’’ when it is not needed for clarity.

The CMLE is clearly an M-estimator, since a maximization problem is easily

turned into a minimization problem: in the notation of Chapter 12, take wi 1 ðxi; yiÞ
and qðwi; yÞ1�log f ðyi j xi; yÞ. As long as we keep track of the minus sign in front

of the log likelihood, we can apply the results in Chapter 12 directly.
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The motivation for the conditional MLE as a solution to problem (13.15) may

appear backward if you learned about maximum likelihood estimation in an intro-

ductory statistics course. In a traditional framework, we would treat the xi as con-

stants appearing in the distribution of yi, and we would define ŷy as the solution to

max
y AY

YN
i¼1

f ðyi j xi; yÞ ð13:16Þ

Under independence, the product in expression (13.16) is the model for the joint

density of ðy1; . . . ; yNÞ, evaluated at the data. Because maximizing the function in

(13.16) is the same as maximizing its natural log, we are led to problem (13.15).

However, the arguments explaining why solving (13.16) should lead to a good esti-

mator of yo are necessarily heuristic. By contrast, the analogy principle applies directly

to problem (13.15), and we need not assume that the xi are fixed.

In our two examples, the conditional log likelihoods are fairly simple.

Example 13.1 (continued): In the probit example, the log likelihood for observation

i is liðyÞ ¼ yi log FðxiyÞ þ ð1 � yiÞ log½1 �FðxiyÞ�.

Example 13.2 (continued): In the Poisson example, liðyÞ ¼ �expðxiyÞ þ yixiy�
logðyi!Þ. Normally, we would drop the last term in defining liðyÞ because it does not

a¤ect the maximization problem.

13.4 Consistency of Conditional MLE

In this section we state a formal consistency result for the CMLE, which is a special

case of the M-estimator consistency result Theorem 12.2.

theorem 13.1 (Consistency of CMLE): Let fðxi; yiÞ: i ¼ 1; 2; . . .g be a random sam-

ple with xi A XHRK , yi A YHRG. Let YHRP be the parameter set and denote the

parametric model of the conditional density as f f ð� j x; yÞ: x A X; y A Yg. Assume

that (a) f ð� j x; yÞ is a true density with respect to the measure nðdyÞ for all x and y, so

that condition (13.8) holds; (b) for some yo A Y, poð� j xÞ ¼ f ð� j x; yoÞ, all x A X, and

yo is the unique solution to problem (13.14); (c) Y is a compact set; (d) for each y A Y,

lð� ; yÞ is a Borel measurable function on Y�X; (e) for each ðy; xÞ A Y�X, lðy; x; �Þ
is a continuous function on Y; and (f ) jlðw; yÞja bðwÞ, all y A Y, and E½bðwÞ� < y.

Then there exists a solution to problem (13.15), the CMLE ŷy, and plim ŷy ¼ yo.

As we discussed in Chapter 12, the measurability assumption in part d is purely

technical and does not need to be checked in practice. Compactness of Y can be
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relaxed, but doing so usually requires considerable work. The continuity assumption

holds in most econometric applications, but there are cases where it fails, such as

when estimating certain models of auctions—see Donald and Paarsch (1996). The

moment assumption in part f typically restricts the distribution of xi in some way, but

such restrictions are rarely a serious concern. For the most part, the key assumptions

are that the parametric model is correctly specified, that yo is identified, and that the

log-likelihood function is continuous in y.

For the probit and Poisson examples, the log likelihoods are clearly continuous in

y. We can verify the moment condition (f ) if we bound certain moments of xi and

make the parameter space compact. But our primary concern is that densities are

correctly specified. For example, in the probit case, the density for yi given xi will be

incorrect if the latent error ei is not independent of xi and normally distributed, or if

the latent variable model is not linear to begin with. For identification we must rule

out perfect collinearity in xi. The Poisson CMLE turns out to have desirable prop-

erties even if the Poisson distributional assumption does not hold, but we postpone a

discussion of the robustness of the Poisson CMLE until Chapter 19.

13.5 Asymptotic Normality and Asymptotic Variance Estimation

Under the di¤erentiability and moment assumptions that allow us to apply the the-

orems in Chapter 12, we can show that the MLE is generally asymptotically normal.

Naturally, the computational methods discussed in Section 12.7, including concen-

trating parameters out of the log likelihood, apply directly.

13.5.1 Asymptotic Normality

We can derive the limiting distribution of the MLE by applying Theorem 12.3. We

will have to assume the regularity conditions there; in particular, we assume that yo is

in the interior of Y, and liðyÞ is twice continuously di¤erentiable on the interior of Y.

The score of the log likelihood for observation i is simply

siðyÞ1‘yliðyÞ0 ¼
qli

qy1
ðyÞ; qli

qy2
ðyÞ; . . . ; qli

qyP

ðyÞ
� �0

ð13:17Þ

a P � 1 vector as in Chapter 12.

Example 13.1 (continued): For the probit case, y is K � 1 and

‘yliðyÞ ¼ yi

fðxiyÞxi

FðxiyÞ

� �
� ð1 � yiÞ

fðxiyÞxi

½1 �FðxiyÞ�

� �

Transposing this equation, and using a little algebra, gives
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siðyÞ ¼
fðxiyÞx 0

i½yi �FðxiyÞ�
FðxiyÞ½1 �FðxiyÞ�

ð13:18Þ

Recall that x 0
i is a K � 1 vector.

Example 13.2 (continued): The score for the Poisson case, where y is again K � 1, is

siðyÞ ¼ �expðxiyÞx 0
i þ yix

0
i ¼ x 0

i½yi � expðxiyÞ� ð13:19Þ

In the vast majority of cases, the score of the log-likelihood function has an im-

portant zero conditional mean property:

E½siðyoÞ j xi� ¼ 0 ð13:20Þ

In other words, when we evaluate the P � 1 score at yo, and take its expectation with

respect to f ð� j xi; yoÞ, the expectation is zero. Under condition (13.20), E½siðyoÞ� ¼ 0,

which was a key condition in deriving the asymptotic normality of the M-estimator

in Chapter 12.

To show condition (13.20) generally, let Ey½� j xi� denote conditional expectation

with respect to the density f ð� j xi; yÞ for any y A Y. Then, by definition,

Ey½siðyÞ j xi� ¼
ð
Y

sðy; xi; yÞf ðy j xi; yÞnðdyÞ

If integration and di¤erentation can be interchanged on intðYÞ—that is, if

‘y

ð
Y

f ðy j xi; yÞnðdyÞ
� �

¼
ð
Y

‘y f ðy j xi; yÞnðdyÞ ð13:21Þ

for all xi A X, y A intðYÞ—then

0 ¼
ð
Y

‘y f ðy j xi; yÞnðdyÞ ð13:22Þ

since
Ð
Y

f ðy j xi; yÞnðdyÞ is unity for all y, and therefore the partial derivatives with

respect to y must be identically zero. But the right-hand side of equation (13.22) can

be written as
Ð
Y
½‘ylðy; xi; yÞ� f ðy j xi; yÞnðdyÞ. Putting in yo for y and transposing

yields condition (13.20).

Example 13.1 (continued): Define ui 1 yi �FðxiyoÞ ¼ yi � Eðyi j xiÞ. Then

siðyoÞ ¼
fðxiyoÞx 0

iui

FðxiyoÞ½1 �FðxiyoÞ�

and, since Eðui j xiÞ ¼ 0, it follows that E½siðyoÞ j xi� ¼ 0.
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Example 13.2 (continued): Define ui 1 yi � expðxiyoÞ. Then siðyoÞ ¼ x 0
iui and so

E½siðyoÞ j xi� ¼ 0.

Assuming that liðyÞ is twice continuously di¤erentiable on the interior of Y, let

the Hessian for observation i be the P � P matrix of second partial derivatives of

liðyÞ:

HiðyÞ1‘ysiðyÞ ¼ ‘2
y liðyÞ ð13:23Þ

The Hessian is a symmetric matrix that generally depends on ðxi; yiÞ. Since MLE is a

maximization problem, the expected value of HiðyoÞ is negative definite. Thus, to

apply the theory in Chapter 12, we define

Ao 1�E½HiðyoÞ� ð13:24Þ

which is generally a positive definite matrix when yo is identified. Under standard

regularity conditions, the asymptotic normality of the CMLE follows from Theorem

12.3:
ffiffiffiffiffi
N

p
ðŷy � yoÞ@

a
Normalð0;A�1

o BoA�1
o Þ, where Bo 1Var½siðyoÞ�1E½siðyoÞsiðyoÞ0 �.

It turns out that this general form of the asymptotic variance matrix is too compli-

cated. We now show that Bo ¼ Ao.

We must assume enough smoothness such that the following interchange of inte-

gral and derivative is valid (see Newey and McFadden, 1994, Section 5.1, for the case

of unconditional MLE):

‘y

ð
Y

siðyÞf ðy j xi; yÞnðdyÞ
� �

¼
ð
Y

‘y½siðyÞf ðy j xi; yÞ�nðdyÞ ð13:25Þ

Then, taking the derivative of the identityð
Y

siðyÞf ðy j xi; yÞnðdyÞ1Ey½siðyÞ j xi� ¼ 0; y A intðYÞ

and using equation (13.25), gives, for all y A intðYÞ,

�Ey½HiðyÞ j xi� ¼ Vary½siðyÞ j xi�

where the indexing by y denotes expectation and variance when f ð� j xi; yÞ is the

density of yi given xi. When evaluated at y ¼ yo we get a very important equality:

�E½HiðyoÞ j xi� ¼ E½siðyoÞsiðyoÞ0 j xi� ð13:26Þ

where the expectation and variance are with respect to the true conditional distri-

bution of yi given xi. Equation (13.26) is called the conditional information matrix

equality (CIME). Taking the expectation of equation (13.26) (with respect to the
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distribution of xi) and using the law of iterated expectations gives

�E½HiðyoÞ� ¼ E½siðyoÞsiðyoÞ0 � ð13:27Þ

or Ao ¼ Bo. This relationship is best thought of as the unconditional information

matrix equality (UIME).

theorem 13.2 (Asymptotic Normality of CMLE): Let the conditions of Theorem

13.1 hold. In addition, assume that (a) yo A intðYÞ; (b) for each ðy; xÞ A Y�X,

lðy; x; �Þ is twice continuously di¤erentiable on intðYÞ; (c) the interchanges of de-

rivative and integral in equations (13.21) and (13.25) hold for all y A intðYÞ; (d)

the elements of ‘2
y lðy; x; yÞ are bounded in absolute value by a function bðy; xÞ

with finite expectation; and (e) Ao defined by expression (13.24) is positive definite.

Thenffiffiffiffiffi
N

p
ðŷy � yoÞ !

d
Normalð0;A�1

o Þ ð13:28Þ

and therefore

AvarðŷyÞ ¼ A�1
o =N ð13:29Þ

In standard applications, the log likelihood has many continuous partial deriva-

tives, although there are examples where it does not. Some examples also violate the

interchange of the integral and derivative in equation (13.21) or (13.25), such as when

the conditional support of yi depends on the parameters yo. In such cases we cannot

expect the CMLE to have a limiting normal distribution; it may not even converge

at the rate
ffiffiffiffiffi
N

p
. Some progress has been made for specific models when the support

of the distribution depends on unknown parameters; see, for example, Donald and

Paarsch (1996).

13.5.2 Estimating the Asymptotic Variance

Estimating AvarðŷyÞ requires estimating Ao. From the equalities derived previously,

there are at least three possible estimators of Ao in the CMLE context. In fact, under

slight extensions of the regularity conditions in Theorem 13.2, each of the matrices

N�1
XN

i¼1

�HiðŷyÞ; N�1
XN

i¼1

siðŷyÞsiðŷyÞ0; and N�1
XN

i¼1

Aðxi; ŷyÞ ð13:30Þ

converges to Ao ¼ Bo, where

Aðxi; yoÞ1�E½Hðyi; xi; yoÞ j xi� ð13:31Þ
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Thus, AvârðŷyÞ can be taken to be any of the three matrices

�
XN

i¼1

HiðŷyÞ
" #�1

;
XN

i¼1

siðŷyÞsiðŷyÞ0
" #�1

; or
XN

i¼1

Aðxi; ŷyÞ
" #�1

ð13:32Þ

and the asymptotic standard errors are the square roots of the diagonal elements of

any of the matrices. We discussed each of these estimators in the general M-estimator

case in Chapter 12, but a brief review is in order. The first estimator, based on the

Hessian of the log likelihood, requires computing second derivatives and is not guar-

anteed to be positive definite. If the estimator is not positive definite, standard errors

of some linear combinations of the parameters will not be well defined.

The second estimator in equation (13.32), based on the outer product of the score,

is always positive definite (whenever the inverse exists). This simple estimator was

proposed by Berndt, Hall, Hall, and Hausman (1974). Its primary drawback is that it

can be poorly behaved in even moderate sample sizes, as we discussed in Section

12.6.2.

If the conditional expectation Aðxi; yoÞ is in closed form (as it is in some leading

cases) or can be simulated—as discussed in Porter (1999)—then the estimator based

on Aðxi; ŷyÞ has some attractive features. First, it often depends only on first deriva-

tives of a conditional mean or conditional variance function. Second, it is positive

definite when it exists because of the conditional information matrix equality (13.26).

Third, this estimator has been found to have significantly better finite sample prop-

erties than the outer product of the score estimator in some situations where Aðxi; yoÞ
can be obtained in closed form.

Example 13.1 (continued): The Hessian for the probit log-likelihood is a mess.

Fortunately, E½HiðyoÞ j xi� has a fairly simple form. Taking the derivative of equation

(13.18) and using the product rule gives

HiðyÞ ¼ � ffðxiyÞg2 x 0
ixi

FðxiyÞ½1 �FðxiyÞ�
þ ½yi �FðxiyÞ�LðxiyÞ

where LðxiyÞ is a K � K complicated function of xiy that we need not find explicitly.

Now, when we evaluate this expression at yo and note that Ef½yi �FðxiyoÞ�LðxiyoÞ j
xig ¼ ½Eðyi j xiÞ �FðxiyoÞ�LðxiyoÞ ¼ 0, we have

�E½HiðyoÞ j xi� ¼ AiðyoÞ ¼
ffðxiyoÞg2 x 0

ixi

FðxiyoÞ½1 �FðxiyoÞ�

Thus, AvârðŷyÞ in probit analysis is
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XN

i¼1

ffðxiŷyÞg2 x 0
ixi

FðxiŷyÞ½1 �FðxiŷyÞ�

 !�1

ð13:33Þ

which is always positive definite when the inverse exists. Note that x 0
ixi is a K � K

matrix for each i.

Example 13.2 (continued): For the Poisson model with exponential conditional

mean, HiðyÞ ¼ �expðxiyÞx 0
ixi. In this example, the Hessian does not depend on yi,

so there is no distinction between HiðyoÞ and E½HiðyoÞ j xi�. The positive definite es-

timate of AvârðŷyÞ is simply

XN

i¼1

expðxiŷyÞx 0
ixi

" #�1

ð13:34Þ

13.6 Hypothesis Testing

Given the asymptotic standard errors, it is easy to form asymptotic t statistics for

testing single hypotheses. These t statistics are asymptotically distributed as standard

normal.

The three tests covered in Chapter 12 are immediately applicable to the MLE case.

Since the information matrix equality holds when the density is correctly specified, we

need only consider the simplest forms of the test statistics. The Wald statistic is given

in equation (12.63), and the conditions su‰cient for it to have a limiting chi-square

distribution are discussed in Section 12.6.1.

Define the log-likelihood function for the entire sample by LðyÞ1
PN

i¼1 liðyÞ. Let

ŷy be the unrestricted estimator, and let ~yy be the estimator with the Q nonredundant

constraints imposed. Then, under the regularity conditions discussed in Section

12.6.3, the likelihood ratio (LR) statistic,

LR1 2½LðŷyÞ �Lð~yyÞ� ð13:35Þ

is distributed asymptotically as w2
Q under H0. As with the Wald statistic, we cannot

use LR as approximately w2
Q when yo is on the boundary of the parameter set. The

LR statistic is very easy to compute once the restricted and unrestricted models have

been estimated, and the LR statistic is invariant to reparameterizing the conditional

density.

The score or LM test is based on the restricted estimation only. Let sið~yyÞ be the

P � 1 score of liðyÞ evaluated at the restricted estimates ~yy. That is, we compute the

partial derivatives of liðyÞ with respect to each of the P parameters, but then we
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evaluate this vector of partials at the restricted estimates. Then, from Section 12.6.2

and the information matrix equality, the statistics

XN

i¼1

~ssi

 !0

�
XN

i¼1

~HHi

 !�1 XN

i¼1

~ssi

 !
;

XN

i¼1

~ssi

 !0 XN

i¼1

~AAi

 !�1 XN

i¼1

~ssi

 !
; and

XN

i¼1

~ssi

 !0 XN

i¼1

~ssi~ss
0
i

 !�1 XN

i¼1

~ssi

 !
ð13:36Þ

have limiting w2
Q distributions under H0. As we know from Section 12.6.2, the first

statistic is not invariant to reparameterizations, but the outer product statistic is.

In addition, using the conditional information matrix equality, it can be shown that

the LM statistic based on ~AAi is invariant to reparameterization. Davidson and

MacKinnon (1993, Section 13.6) show invariance in the case of unconditional maxi-

mum likelihood. Invariance holds in the more general conditional ML setup, with xi

containing any conditioning variables; see Problem 13.5. We have already used the

expected Hessian form of the LM statistic for nonlinear regression in Section 12.6.2.

We will use it in several applications in Part IV, including binary response models

and Poisson regression models. In these examples, the statistic can be computed

conveniently using auxiliary regressions based on weighted residuals.

Because the unconditional information matrix equality holds, we know from Sec-

tion 12.6.4 that the three classical statistics have the same limiting distribution under

local alternatives. Therefore, either small-sample considerations, invariance, or com-

putational issues must be used to choose among the statistics.

13.7 Specification Testing

Since MLE generally relies on its distributional assumptions, it is useful to have

available a general class of specification tests that are simple to compute. One general

approach is to nest the model of interest within a more general model (which may be

much harder to estimate) and obtain the score test against the more general alternative.

RESET in a linear model and its extension to exponential regression models in Section

12.6.2 are examples of this approach, albeit in a non-maximum-likelihood setting.

In the context of MLE, it makes sense to test moment conditions implied by the

conditional density specification. Let wi ¼ ðxi; yiÞ and suppose that, when f ð� j x; yÞ is

correctly specified,

H0: E½gðwi; yoÞ� ¼ 0 ð13:37Þ
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where gðw; yÞ is a Q � 1 vector. Any application implies innumerable choices for the

function g. Since the MLE ŷy sets the sum of the score to zero, gðw; yÞ cannot contain

elements of sðw; yÞ. Generally, g should be chosen to test features of a model that are

of primary interest, such as first and second conditional moments, or various condi-

tional probabilities.

A test of hypothesis (13.37) is based on how far the sample average of gðwi; ŷyÞ is

from zero. To derive the asymptotic distribution, note that

N�1=2
XN

i¼1

giðŷyÞ ¼ N�1=2
XN

i¼1

½giðŷyÞ � siðŷyÞPo�

holds trivially because
PN

i¼1 siðŷyÞ ¼ 0, where

Po 1 fE½siðyoÞsiðyoÞ0 �g�1fE½siðyoÞgiðyoÞ0 �g

is the P � Q matrix of population regression coe‰cients from regressing giðyoÞ0 on

siðyoÞ0. Using a mean-value expansion about yo and algebra similar to that in Chap-

ter 12, we can write

N�1=2
XN

i¼1

½giðŷyÞ � siðŷyÞPo� ¼ N�1=2
XN

i¼1

½giðyoÞ � siðyoÞPo�

þ E½‘ygiðyoÞ � ‘ysiðyoÞPo�
ffiffiffiffiffi
N

p
ðŷy � yoÞ þ opð1Þ

ð13:38Þ

The key is that, when the density is correctly specified, the second term on the right-

hand side of equation (13.38) is identically zero. Here is the reason: First, equation

(13.27) implies that ½E‘ysiðyoÞ�fE½siðyoÞsiðyoÞ0 �g�1 ¼ �IP. Second, an extension of the

conditional information matrix equality (Newey, 1985; Tauchen, 1985) implies that

�E½‘ygiðyoÞ j xi� ¼ E½giðyoÞsiðyoÞ0 j xi�: ð13:39Þ

To show equation (13.39), write

Ey½giðyÞ j xi� ¼
ð
Y

gðy; xi; yÞf ðy j xi; yÞnðdyÞ ¼ 0 ð13:40Þ

for all y. Now, if we take the derivative with respect to y and assume that the inte-

grals and derivative can be interchanged, equation (13.40) implies thatð
Y

‘ygðy; xi; yÞf ðy j xi; yÞnðdyÞ þ
ð
Y

gðy; xi; yÞ‘y f ðy j xi; yÞnðdyÞ ¼ 0
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or Ey½‘ygiðyÞ j xi� þ Ey½giðyÞsiðyÞ0 j xi� ¼ 0, where we use the fact that ‘y f ðy j x; yÞ ¼
sðy; x; yÞ0f ðy j x; yÞ. Plugging in y ¼ yo and rearranging gives equation (13.39).

What we have shown is that

N�1=2
XN

i¼1

½giðŷyÞ � siðŷyÞPo� ¼ N�1=2
XN

i¼1

½giðyoÞ � siðyoÞPo� þ opð1Þ

which means these standardized partial sums have the same asymptotic distribution.

Letting

P̂P1
XN

i¼1

ŝsi ŝs
0
i

 !�1 XN

i¼1

ŝsiĝg
0
i

 !

it is easily seen that plim P̂P ¼ Po under standard regularity conditions. Therefore,

the asymptotic variance of N�1=2
PN

i¼1½giðŷyÞ � siðŷyÞPo� ¼ N�1=2
PN

i¼1 giðŷyÞ is con-

sistently estimated by N�1
PN

i¼1ðĝgi � ŝsiP̂PÞðĝgi � ŝsiP̂PÞ0. When we construct the qua-

dratic form, we get the Newey-Tauchen-White (NTW) statistic,

NTW ¼
XN

i¼1

giðŷyÞ
" #0 XN

i¼1

ðĝgi � ŝsiP̂PÞðĝgi � ŝsiP̂PÞ0
" #�1 XN

i¼1

giðŷyÞ
" #

ð13:41Þ

This statistic was proposed independently by Newey (1985) and Tauchen (1985), and

is an extension of White’s (1982a) information matrix (IM) test statistic.

For computational purposes it is useful to note that equation (13.41) is identical to

N � SSR0 ¼ NR2
0 from the regression

1 on ŝs 0i; ĝg 0
i ; i ¼ 1; 2; . . . ;N ð13:42Þ

where SSR0 is the usual sum of squared residuals. Under the null that the density is

correctly specified, NTW is distributed asymptotically as w2
Q, assuming that gðw; yÞ

contains Q nonredundant moment conditions. Unfortunately, the outer product form

of regression (13.42) means that the statistic can have poor finite sample properties.

In particular applications—such as nonlinear least squares, binary response analysis,

and Poisson regression, to name a few—it is best to use forms of test statistics based

on the expected Hessian. We gave the regression-based test for NLS in equation

(12.72), and we will see other examples in later chapters. For the information matrix

test statistic, Davidson and MacKinnon (1992) have suggested an alternative form of

the IM statistic that appears to have better finite sample properties.

Example 13.2 (continued): To test the specification of the conditional mean for

Poission regression, we might take gðw;yÞ ¼ expðxyÞx 0½y�expðxyÞ� ¼ expðxyÞsðw; yÞ,

Chapter 13400



where the score is given by equation (13.19). If Eðy j xÞ ¼ expðxyoÞ then E½gðw; yoÞ j x�
¼ expðxyoÞE½sðw; yoÞ j x� ¼ 0. To test the Poisson variance assumption, Varðy j xÞ ¼
Eðy j xÞ ¼ expðxyoÞ, g can be of the form gðw; yÞ ¼ aðx; yÞf½y�expðxyÞ�2�expðxyÞg,

where aðx; yÞ is a Q � 1 vector. If the Poisson assumption is true, then u ¼ y�
expðxyoÞ has a zero conditional mean and Eðu2 j xÞ ¼ Varðy j xÞ ¼ expðxyoÞ. It fol-

lows that E½gðw; yoÞ j x� ¼ 0.

Example 13.2 contains examples of what are known as conditional moment tests.

As the name suggests, the idea is to form orthogonality conditions based on some

key conditional moments, usually the conditional mean or conditional variance, but

sometimes conditional probabilities or higher order moments. The tests for nonlinear

regression in Chapter 12 can be viewed as conditional moment tests, and we will

see several other examples in Part IV. For reasons discussed earlier, we will avoid

computing the tests using regression (13.42) whenever possible. See Newey (1985),

Tauchen (1985), and Pagan and Vella (1989) for general treatments and applications

of conditional moment tests. White’s (1982a) information matrix test can often be

viewed as a conditional moment test; see Hall (1987) for the linear regression model

and White (1994) for a general treatment.

13.8 Partial Likelihood Methods for Panel Data and Cluster Samples

Up to this point we have assumed that the parametric model for the density of y

given x is correctly specified. This assumption is fairly general because x can contain

any observable variable. The leading case occurs when x contains variables we view

as exogenous in a structural model. In other cases, x will contain variables that are

endogenous in a structural model, but putting them in the conditioning set and find-

ing the new conditional density makes estimation of the structural parameters easier.

For studying various panel data models, for estimation using cluster samples, and

for various other applications, we need to relax the assumption that the full condi-

tional density of y given x is correctly specified. In some examples, such a model is

too complicated. Or, for robustness reasons, we do not wish to fully specify the den-

sity of y given x.

13.8.1 Setup for Panel Data

For panel data applications we let y denote a T � 1 vector, with generic element yt.

Thus, yi is a T � 1 random draw vector from the cross section, with tth element yit.

As always, we are thinking of T small relative to the cross section sample size. With a
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slight notational change we can replace yit with, say, a G-vector for each t, an ex-

tension that allows us to cover general systems of equations with panel data.

For some vector xt containing any set of observable variables, let Dðyt j xtÞ denote

the distribution of yt given xt. The key assumption is that we have a correctly speci-

fied model for the density of yt given xt; call it ftðyt j xt; yÞ, t ¼ 1; 2; . . . ;T . The vector

xt can contain anything, including conditioning variables zt, lags of these, and lagged

values of y. The vector y consists of all parameters appearing in ft for any t; some or

all of these may appear in the density for every t, and some may appear only in the

density for a single time period.

What distinguishes partial likelihood from maximum likelihood is that we do not

assume that

YT
t¼1

Dðyit j xitÞ ð13:43Þ

is a conditional distribution of the vector yi given some set of conditioning variables. In

other words, even though ftðyt j xt; yoÞ is the correct density for yit given xit for each t,

the product of these is not (necessarily) the density of yi given some conditioning vari-

ables. Usually, we specify ftðyt j xt; yÞ because it is the density of interest for each t.

We define the partial log likelihood for each observation i as

liðyÞ1
XT

t¼1

log ftðyit j xit; yÞ ð13:44Þ

which is the sum of the log likelihoods across t. What makes partial likelihood

methods work is that yo maximizes the expected value of equation (13.44) provided

we have the densities ftðyt j xt; yÞ correctly specified.

By the Kullback-Leibler information inequality, yo maximizes E½log ftðyit j xit; yÞ�
over Y for each t, so yo also maximizes the sum of these over t. As usual, identifica-

tion requires that yo be the unique maximizer of the expected value of equation

(13.44). It is su‰cient that yo uniquely maximizes E½log ftðyit j xit; yÞ� for each t, but

this assumption is not necessary.

The partial maximum likelihood estimator (PMLE) ŷy solves

max
y AY

XN

i¼1

XT

t¼1

log ftðyit j xit; yÞ ð13:45Þ

and this problem is clearly an M-estimator problem (where the asymptotics are with

fixed T and N ! y). Therefore, from Theorem 12.2, the partial MLE is generally

consistent provided yo is identified.
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It is also clear that the partial MLE will be asymptotically normal by Theorem

12.3 in Section 12.3. However, unless

poðy j zÞ ¼
YT
t¼1

ftðyt j xt; yoÞ ð13:46Þ

for some subvector z of x, we cannot apply the conditional information matrix

equality. A more general asymptotic variance estimator of the type covered in Sec-

tion 12.5.1 is needed, and we provide such estimators in the next two subsections.

It is useful to discuss at a general level why equation (13.46) does not necessarily

hold in a panel data setting. First, suppose xt contains only contemporaneous con-

ditioning variables, zt; in particular, xt contains no lagged dependent variables. Then

we can always write

poðy j zÞ ¼ po
1ðy1 j zÞ � po

2ðy2 j y1; zÞ � � � po
t ðyt j yt�1; yt�2; . . . ; y1; zÞ � � �

po
T ðyT j yT�1; yT�2; . . . ; y1; zÞ

where po
t ðyt j yt�1; yt�2; . . . ; y1; zÞ is the true conditional density of yt given yt�1,

yt�2; . . . ; y1 and z1 ðz1; . . . ; zTÞ. (For t ¼ 1, po
1 is the density of y1 given z.) For

equation (13.46) to hold, we should have

po
t ðyt j yt�1; yt�2; . . . ; y1; zÞ ¼ ftðyt j zt; yoÞ; t ¼ 1; . . . ;T

which requires that, once zt is conditioned on, neither past lags of yt nor elements of

z from any other time period—past or future—appear in the conditional density

po
t ðyt j yt�1; yt�2; . . . ; y1; zÞ. Generally, this requirement is very strong, as it requires a

combination of strict exogeneity of zt and the absense of dynamics in po
t .

Equation (13.46) is more likely to hold when xt contains lagged dependent vari-

ables. In fact, if xt contains only lagged values of yt, then

poðyÞ ¼
YT
t¼1

ftðyt j xt; yoÞ

holds if ftðyt j xt; yoÞ ¼ po
t ðyt j yt�1; yt�2; . . . ; y1Þ for all t (where po

1 is the uncondi-

tional density of y1), so that all dynamics are captured by ft. When xt contains some

variables zt in addition to lagged yt, equation (13.46) requires that the parametric

density captures all of the dynamics—that is, that all lags of yt and zt have been

properly accounted for in f ðyt j xt; yoÞ—and strict exogeneity of zt.

In most treatments of maximum likelihood estimation of dynamic models con-

taining additional exogenous variables, the strict exogeneity assumption is main-
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tained, often implicitly by taking zt to be nonrandom. In Chapter 7 we saw that strict

exogeneity played no role in getting consistent, asymptotically normal estimators in

linear panel data models by pooled OLS, and the same is true here. We also allow

models where the dynamics have been incompletely specified.

Example 13.3 (Probit with Panel Data): To illustrate the previous discussion, we

consider estimation of a panel data binary choice model. The idea is that, for each

unit i in the population (individual, firm, and so on) we have a binary outcome, yit,

for each of T time periods. For example, if t represents a year, then yit might indicate

whether a person was arrested for a crime during year t.

Consider the model in latent variable form:

y�
it ¼ xityo þ eit

yit ¼ 1½y�
it > 0� ð13:47Þ

eit j xit @Normalð0; 1Þ

The vector xit might contain exogenous variables zit, lags of these, and even lagged

yit (not lagged y�
it). Under the assumptions in model (13.47), we have, for each

t, Pðyit ¼ 1 j xitÞ ¼ FðxityoÞ, and the density of yit given xit ¼ xt is f ðyt j xtÞ ¼
½FðxtyoÞ�yt ½1 �FðxtyoÞ�1�yt .

The partial log likelihood for a cross section observation i is

liðyÞ ¼
XT

t¼1

fyit log FðxityÞ þ ð1 � yitÞ log½1 �FðxityÞ�g ð13:48Þ

and the partial MLE in this case—which simply maximizes liðyÞ summed across all

i—is the pooled probit estimator. With T fixed and N ! y, this estimator is consis-

tent and
ffiffiffiffiffi
N

p
-asymptotically normal without any assumptions other than identifica-

tion and standard regularity conditions.

It is very important to know that the pooled probit estimator works without im-

posing additional assumptions on ei ¼ ðei1; . . . ; eiTÞ0. When xit contains only exoge-

nous variables zit, it would be standard to assume that

eit is independent of zi 1 ðzi1; zi2; . . . ; ziT Þ; t ¼ 1; . . . ;T ð13:49Þ

This is the natural strict exogeneity assumption (and is much stronger than simply

assuming that eit and zit are independent for each t). The crime example can illustrate

how strict exogeneity might fail. For example, suppose that zit measures the amount

of time the person has spent in prison prior to the current year. An arrest this year

ðyit ¼ 1Þ certainly has an e¤ect on expected future values of zit, so that assumption
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(13.49) is almost certainly false. Fortunately, we do not need assumption (13.49) to

apply partial likelihood methods.

A second standard assumption is that the eit, t ¼ 1; 2; . . . ;T are serially indepen-

dent. This is especially restrictive in a static model. If we maintain this assumption in

addition to assumption (13.49), then equation (13.46) holds (because the yit are then

independent conditional on zi) and the partial MLE is a conditional MLE.

To relax the assumption that the yit are conditionally independent, we can allow

the eit to be correlated across t (still assuming that no lagged dependent variables

appear). A common assumption is that ei has a multivariate normal distribution with

a general correlation matrix. Under this assumption, we can write down the joint

distribution of yi given zi, but it is complicated, and estimation is very computation-

ally intensive (for recent discussions, see Keane, 1993, and Hajivassilou and Ruud,

1994). We will cover a special case, the random e¤ects probit model, in Chapter 15.

A nice feature of the partial MLE is that ŷy will be consistent and asymptotically

normal even if the eit are arbitrarily serially correlated. This result is entirely analo-

gous to using pooled OLS in linear panel data models when the errors have arbitrary

serial correlation.

When xit contains lagged dependent variables, model (13.47) provides a way of

examining dynamic behavior. Or, perhaps yi; t�1 is included in xit as a proxy for

unobserved factors, and our focus is on on policy variables in zit. For example, if yit

is a binary indicator of employment, yi; t�1 might be included as a control when

studying the e¤ect of a job training program (which may be a binary element of zit)

on the employment probability; this method controls for the fact that participation in

job training this year might depend on employment last year, and it captures the fact

that employment status is persistent. In any case, provided Pðyit ¼ 1 j xitÞ follows a

probit, the pooled probit estimator is consistent and asymptotically normal. The

dynamics may or may not be correctly specified (more on this topic later), and the zit

need not be strictly exogenous (so that whether someone participates in job training

in year t can depend on the past employment history).

13.8.2 Asymptotic Inference

The most important practical di¤erence between conditional MLE and partial MLE

is in the computation of asymptotic standard errors and test statistics. In many cases,

including the pooled probit estimator, the pooled Poisson estimator (see Problem

13.6), and many other pooled procedures, standard econometrics packages can be

used to compute the partial MLEs. However, except under certain assumptions, the

usual standard errors and test statistics reported from a pooled analysis are not valid.
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This situation is entirely analogous to the linear model case in Section 7.8 when the

errors are serially correlated.

Estimation of the asymptotic variance of the partial MLE is not di‰cult. In fact,

we can combine the M-estimation results from Section 12.5.1 and the results of Sec-

tion 13.5 to obtain valid estimators.

From Theorem 12.3, we have Avar
ffiffiffiffiffi
N

p
ðŷy � yoÞ ¼ A�1

o BoA�1
o , where

Ao ¼ �E½‘2
y liðyoÞ� ¼ �

XT

t¼1

E½‘2
y litðyoÞ� ¼

XT

t¼1

E½AitðyoÞ�

Bo ¼ E½siðyoÞsiðyoÞ0 � ¼ E
XT

t¼1

sitðyoÞ
" # XT

t¼1

sitðyoÞ
" #0( )

AitðyoÞ ¼ �E½‘2
y litðyoÞ j xit�

sitðyÞ ¼ ‘ylitðyÞ0

There are several important features of these formulas. First, the matrix Ao is just the

sum across t of minus the expected Hessian. Second, the matrix Bo generally depends

on the correlation between the scores at di¤erent time periods: E½sitðyoÞsirðyoÞ0 �, t0 r.

Third, for each t, the conditional information matrix equality holds:

AitðyoÞ ¼ E½sitðyoÞsitðyoÞ0 j xit�

However, in general, �E½HiðyoÞ j xi�0E½siðyoÞsiðyoÞ0 j xi� and, more importantly,

Bo 0Ao. Thus, to perform inference in the context of partial MLE, we generally

need separate estimates of Ao and Bo. Given the structure of the partial MLE, these

are easy to obtain. Three possibilities for Ao are

N�1
XN

i¼1

XT

t¼1

�‘2
y litðŷyÞ; N�1

XN

i¼1

XT

t¼1

AitðŷyÞ; and

N�1
XN

i¼1

XT

t¼1

sitðŷyÞsitðŷyÞ0 ð13:50Þ

The validity of the second of these follows from a standard iterated expectations

argument, and the last of these follows from the conditional information matrix equality

for each t. In most cases, the second estimator is preferred when it is easy to compute.

Since Bo depends on E½sitðyoÞsitðyoÞ0 � as well as cross product terms, there are also

at least three estimators available for Bo. The simplest is
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N�1
XN

i¼1

ŝsi ŝs
0
i ¼ N�1

XN

i¼1

XT

t¼1

ŝsit ŝs
0
it þ N�1

XN

i¼1

XT

t¼1

X
r0t

ŝsirŝs
0
it ð13:51Þ

where the second term on the right-hand side accounts for possible serial correlation

in the score. The first term on the right-hand side of equation (13.51) can be replaced

by one of the other two estimators in equation (13.50). The asymptotic variance of

ŷy is estimated, as usual, by ÂA�1B̂BÂA�1=N for the chosen estimators ÂA and B̂B. The

asymptotic standard errors come directly from this matrix, and Wald tests for linear

and nonlinear hypotheses can be obtained directly. The robust score statistic dis-

cussed in Section 12.6.2 can also be used. When Bo 0Ao, the likelihood ratio statistic

computed after pooled estimation is not valid.

Because the CIME holds for each t, Bo ¼ Ao when the scores evaluated at yo are

serially uncorrelated, that is, when

E½sitðyoÞsirðyoÞ0 � ¼ 0; t0 r ð13:52Þ

When the score is serially uncorrelated, inference is very easy: the usual MLE statis-

tics computed from the pooled estimation, including likelihood ratio statistics, are

asymptotically valid. E¤ectively, we can ignore the fact that a time dimension is

present. The estimator of AvarðŷyÞ is just ÂA�1=N, where ÂA is one of the matrices in

equation (13.50).

Example 13.3 (continued): For the pooled probit example, a simple, general esti-

mator of the asymptotic variance is

XN

i¼1

XT

t¼1

AitðŷyÞ
" #�1 XN

i¼1

siðŷyÞsiðŷyÞ0
" # XN

i¼1

XT

t¼1

AitðŷyÞ
" #�1

ð13:53Þ

where

AitðŷyÞ ¼
ffðxitŷyÞg2 x 0

itxit

FðxitŷyÞ½1 �FðxitŷyÞ�

and

siðyÞ ¼
XT

t¼1

sitðyÞ ¼
XT

t¼1

fðxityÞx 0
it½yit �FðxityÞ�

FðxityÞ½1 �FðxityÞ�

The estimator (13.53) contains cross product terms of the form sitðŷyÞsirðŷyÞ0, t0 r,

and so it is fully robust. If the score is serially uncorrelated, then the usual probit

standard errors and test statistics from the pooled estimation are valid. We will
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discuss a su‰cient condition for the scores to be serially uncorrelated in the next

subsection.

13.8.3 Inference with Dynamically Complete Models

There is a very important case where condition (13.52) holds, in which case all

statistics obtained by treating liðyÞ as a standard log likelihood are valid. For any

definition of xt, we say that f ftðyt j xt; yoÞ: t ¼ 1; . . . ;Tg is a dynamically complete

conditional density if

ftðyt j xt; yoÞ ¼ po
t ðyt j xt; yt�1; xt�1; yt�2; . . . ; y1; x1Þ; t ¼ 1; . . . ;T ð13:54Þ

In other words, ftðyt j xt; yoÞ must be the conditional density of yt given xt and the

entire past of ðxt; ytÞ.
When xt ¼ zt for contemporaneous exogenous variables, equation (13.54) is very

strong: it means that, once zt is controlled for, no past values of zt or yt appear in the

conditional density po
t ðyt j zt; yt�1; zt�1; yt�2; . . . ; y1; z1Þ. When xt contains zt and

some lags—similar to a finite distributed lag model—then equation (13.54) is per-

haps more reasonable, but it still assumes that lagged yt has no e¤ect on yt once

current and lagged zt are controlled for. That assumption (13.54) can be false is

analogous to the omnipresence of serial correlation in static and finite distributed lag

regression models. One important feature of dynamic completeness is that it does not

require strict exogeneity of zt [since only current and lagged xt appear in equation

(13.54)].

Dynamic completeness is more likely to hold when xt contains lagged dependent

variables. The issue, then, is whether enough lags of yt (and zt) have been included in

xt to fully capture the dynamics. For example, if xt 1 ðzt; yt�1Þ, then equation

(13.54) means that, along with zt, only one lag of yt is needed to capture all of the

dynamics.

Showing that condition (13.52) holds under dynamic completeness is easy. First,

for each t, E½sitðyoÞ j xit� ¼ 0, since ftðyt j xt; yoÞ is a correctly specified conditional

density. But then, under assumption (13.54),

E½sitðyoÞ j xit; yi; t�1; . . . ; yi1; xi1� ¼ 0 ð13:55Þ

Now consider the expected value in condition (13.52) for r < t. Since sirðyoÞ is a

function of ðxir; yirÞ, which is in the conditioning set (13.55), the usual iterated

expectations argument shows that condition (13.52) holds. It follows that, under dy-

namic completeness, the usual maximum likelihood statistics from the pooled esti-

mation are asymptotically valid. This result is completely analogous to pooled OLS
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under dynamic completeness of the conditional mean and homoskedasticity (see

Section 7.8).

If the panel data probit model is dynamically complete, any software package

that does standard probit can be used to obtain valid standard errors and test statis-

tics, provided the response probability satisfies Pðyit ¼ 1 j xitÞ ¼ Pðyit ¼ 1 j xit; yi; t�1;

xi; t�1; . . .Þ. Without dynamic completeness the standard errors and test statistics

generally need to be adjusted for serial dependence.

Since dynamic completeness a¤ords nontrivial simplifications, does this fact mean

that we should always include lagged values of exogenous and dependent variables

until equation (13.54) appears to be satisfied? Not necessarily. Static models are

sometimes desirable even if they neglect dynamics. For example, suppose that we

have panel data on individuals in an occupation where pay is determined partly by

cumulative productivity. (Professional athletes and college professors are two ex-

amples.) An equation relating salary to the productivity measures, and possibly de-

mographic variables, is appropriate. Nothing implies that the equation would be

dynamically complete; in fact, past salary could help predict current salary, even after

controlling for observed productivity. But it does not make much sense to include

past salary in the regression equation. As we know from Chapter 10, a reasonable

approach is to include an unobserved e¤ect in the equation, and this does not lead to

a model with complete dynamics. See also Section 13.9.

We may wish to test the null hypothesis that the density is dynamically complete.

White (1994) shows how to test whether the score is serially correlated in a pure time

series setting. A similar approach can be used with panel data. A general test for

dynamic misspecification can be based on the limiting distribution of (the vectoriza-

tion of )

N�1=2
XN

i¼1

XT

t¼2

ŝsit ŝs
0
i; t�1

where the scores are evaluated at the partial MLE. Rather than derive a general sta-

tistic here, we will study tests of dynamic completeness in particular applications later

(see particularly Chapters 15, 16, and 19).

13.8.4 Inference under Cluster Sampling

Partial MLE methods are also useful when using cluster samples. Suppose that, for

each group or cluster g, f ðyg j xg; yÞ is a correctly specified conditional density of yg

given xg. Here, i indexes the cluster, and as before we assume a large number of

clusters N and relatively small group sizes, Gi. The primary issue is that the yig might
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be correlated within a cluster, possibly through unobserved cluster e¤ects. A partial

MLE of yo is defined exactly as in the panel data case, except that t is replaced with g

and T is replaced with Gi for each i; for example, equation (13.44) becomes liðyÞ1PGi

g¼1 log f ðyig j xig; yÞ. Obtaining the partial MLE is usually much easier than spec-

ifying (or deriving) the joint distribution of yi conditional on xi for each cluster i and

employing MLE (which must recognize that the cluster observations cannot be

identically distributed if the cluster sizes di¤er).

In addition to allowing the yig to be arbitrarily dependent within a cluster, the

partial MLE does not require Dðyig j xi1; . . . ; xiGi
Þ ¼ Dðyig j xigÞ. But we need to

compute the robust variance matrix estimator as in Section 13.8.2, along with robust

test statistics. The quasi-likelihood ratio statistic is not valid unless Dðyig j xiÞ ¼
Dðyig j xigÞ and the yig are independent within each cluster, conditional on xi.

We can use partial MLE analysis to test for peer e¤ects in cluster samples, as dis-

cussed briefly in Section 11.5 for linear models. For example, some elements of xig

might be averages of explanatory variables for other units (say, people) in the cluster.

Therefore, we might specify a model fgðyg j zg;wðgÞ; yÞ (for example, a probit model),

where wðgÞ represents average characteristics of other people (or units) in the same

cluster. The pooled partial MLE analysis is consistent and asymptotically normal,

but the variance matrix must be corrected for additional within-cluster dependence.

13.9 Panel Data Models with Unobserved E¤ects

As we saw in Chapters 10 and 11, linear unobserved e¤ects panel data models play

an important role in modern empirical research. Nonlinear unobserved e¤ects panel

data models are becoming increasingly more important. Although we will cover

particular models in Chapters 15, 16, and 19, it is useful to have a general treatment.

13.9.1 Models with Strictly Exogenous Explanatory Variables

For each i, let fðyit; xitÞ: t ¼ 1; 2; . . . ;Tg be a random draw from the cross section,

where yit and xit can both be vectors. Associated with each cross section unit i is

unobserved heterogeneity, ci, which could be a vector. We assume interest lies in the

distribution of yit given ðxit; ciÞ. The vector xit can contain lags of contemporaneous

variables, say zit [for example, xit ¼ ðzit; zi; t�1; zi; t�2Þ�, or even leads of zit [for ex-

ample, xit ¼ ðzit; zi; tþ1Þ�, but not lags of yit. Whatever the lag structure, we let t ¼ 1

denote the first time period available for estimation.

Let ftðyt j xt; c; yÞ denote a correctly specified density for each t. A key assumption

on xit is analogous to the strict exogeneity assumption for linear unobserved e¤ects
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models: Dðyit j xi; ciÞ ¼ Dðyit j xit; ciÞ, which means that only contemporaneous xit

matters once ci is also conditioned on. (Whether or not xit contains lagged zit, strict

exogeneity conditonal on ci rules out certain kinds of feedback from yit to zi; tþh,

h > 0.)

In many cases we want to allow ci and xi to be dependent. A general approach to

estimating yo (and other quantities of interest) is to model the distribution of ci given

xi. [In Chapters 15 and 19 we cover some important models where yo can be con-

sistently estimated without making any assumptions about Dðci j xiÞ.] Let hðc j x; dÞ
be a correctly specified density for ci given xi ¼ x.

There are two common ways to proceed. First, we can make the additional as-

sumption that, conditional on ðxi; ciÞ, the yit are independent. Then, the joint density

of ðyi1; . . . ; yiTÞ, given ðxi; ciÞ, is

YT
t¼1

ftðyt j xit; ci; yÞ

We cannot use this density directly to estimate yo because we do not observe the

outcomes ci. Instead, we can use the density of ci given xi to integrate out the de-

pendence on c. The density of yi given xi is

ð
RJ

YT
t¼1

ftðyt j xit; c; yoÞ
" #

hðc j xi; doÞ dc ð13:56Þ

where J is the dimension of c and hðc j x; dÞ is the correctly specified model for the

density of ci given xi ¼ x. For concreteness, we assume that c is a continuous random

vector. For each i, the log-likelihood function is

log

ð
RJ

YT
t¼1

ftðyit j xit; c; yoÞ
" #

hðc j xi; doÞ dc

( )
ð13:57Þ

[It is important to see that expression (13.57) does not depend on the ci; c has been

integrated out.] Assuming identification and standard regularity conditions, we can

consistently estimate yo and do by conditional MLE, where the asymptotics are for

fixed T and N ! y. The CMLE is
ffiffiffiffiffi
N

p
-asymptotically normal.

Another approach is often simpler and places no restrictions on the joint distribu-

tion of the yit [conditional on ðxi; ciÞ]. For each t, we can obtain the density of yit

given xi:ð
RJ

½ ftðyt j xit; c; yoÞ�hðc j xi; doÞ dc
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Now the problem becomes one of partial MLE. We estimate yo and do by maximizing

XN

i¼1

XT

t¼1

log

ð
RJ

½ ftðyit j xit; c; yÞ�hðc j xi; dÞ dc

� �
ð13:58Þ

(Actually, using PMLE, yo and do are not always separately identified, although in-

teresting functions of them are. We will see examples in Chapters 15 and 16.) Across

time, the scores for each i will necessarily be serially correlated because the yit are

dependent when we condition only on xi, and not also on ci. Therefore, we must

make inference robust to serial dependence, as in Section 13.8.2. In Chapter 15, we

will study both the conditional MLE and partial MLE approaches for unobserved

e¤ects probit models.

13.9.2 Models with Lagged Dependent Variables

Now assume that we are interested in modeling Dðyit j zit; yi; t�1; ciÞ where, for sim-

plicity, we include only contemporaneous conditioning variables, zit, and only one lag

of yit. Adding lags (or even leads) of zit or more lags of yit requires only a notational

change.

A key assumption is that we have the dynamics correctly specified and that zi ¼
fzi1; . . . ; ziTg is appropriately strictly exogenous (conditional on ci). These assump-

tions are both captured by

Dðyit j zit; yi; t�1; ciÞ ¼ Dðyit j zi; yi; t�1; . . . ; yi0; ciÞ ð13:59Þ

We assume that ftðyt j zt; yt�1; c; yÞ is a correctly specified density for the conditional

distribution on the left-hand side of equation (13.59). Given strict exogeneity of

fzit: t ¼ 1; . . . ;Tg and dynamic completeness, the density of ðyi1; . . . ; yiT Þ given

ðzi ¼ z; yi0 ¼ y0; ci ¼ cÞ is

YT
t¼1

ftðyt j zt; yt�1; c; yoÞ ð13:60Þ

(By convention, yi0 is the first observation on yit.) Again, to estimate yo, we integrate

c out of this density. To do so, we specify a density for ci given zi and the initial value

yi0 (sometimes called the initial condition). Let hðc j z; y0; dÞ denote the model for this

conditional density. Then, assuming that we have this model correctly specifed, the

density of ðyi1; . . . ; yiT Þ given ðzi ¼ z; yi0 ¼ y0Þ is

ð
RJ

YT
t¼1

ftðyt j zt; yt�1; c; yoÞ
" #

hðc j z; y0; doÞ dc ð13:61Þ
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which, for each i, leads to the log-likelihood function conditional on ðzi; yi0Þ:

log

ð
RJ

YT
t¼1

ftðyit j zit; yi; t�1; c; yÞ
" #

hðc j zi; yi0; dÞ dc

( )
ð13:62Þ

We sum expression (13.62) across i ¼ 1; . . . ;N and maximize with respect to y and d

to obtain the CMLEs. Provided all functions are su‰ciently di¤erentiable and iden-

tification holds, the conditional MLEs are consistent and
ffiffiffiffiffi
N

p
-asymptotically normal,

as usual. Because we have fully specified the conditional density of ðyi1; . . . ; yiT Þ given

ðzi; yi0Þ, the general theory of conditional MLE applies directly. [The fact that the

distribution of yi0 given zi would typically depend on yo has no bearing on the con-

sistency of the CMLE. The fact that we are conditioning on yi0, rather than basing

the analysis on Dðyi0; yi1; . . . ; yiT j ziÞ, means that we are generally sacrificing e‰-

ciency. But by conditioning on yi0 we do not have to find Dðyi0 j ziÞ, something which

is very di‰cult if not impossible.] The asymptotic variance of ðŷy 0; d̂d 0Þ 0 can be esti-

mated by any of the formulas in equation (13.32) (properly modified to account for

estimation of yo and do).

A weakness of the CMLE approach is that we must specify a density for ci given

ðzi; yi0Þ, but this is a price we pay for estimating dynamic, nonlinear models with

unobserved e¤ects. The alternative of treating the ci as parameters to estimate—

which is, unfortunately, often labeled the ‘‘fixed e¤ects’’ approach—does not lead to

consistent estimation of yo.

In any application, several issues need to be addressed. First, when are the param-

eters identified? Second, what quantities are we interested in? As we cannot observe

ci, we typically want to average out ci when obtaining partial e¤ects. Wooldridge

(2000e) shows that average partial e¤ects are generally identified under the assump-

tions that we have made. Finally, obtaining the CMLE can be very di‰cult compu-

tationally, as can be obtaining the asymptotic variance estimates in equation (13.32).

If ci is a scalar, estimation is easier, but there is still a one-dimensional integral to

approximate for each i. In Chapters 15, 16, and 19 we will see that, under reasonable

assumptions, standard software can be used to estimate dynamic models with unob-

served e¤ects, including e¤ects that are averaged across the distribution of heteroge-

neity. See also Problem 13.11 for application to a dynamic linear model.

13.10 Two-Step MLE

Consistency and asymptotic normality results are also available for two-step maxi-

mum likelihood estimators and two-step partial maximum likelihood estimators; we
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focus on the former for concreteness. Let the conditional density be f ð� j xi; yo; goÞ,
where go is an R � 1 vector of additional parameters. A preliminary estimator of go,

say ĝg, is plugged into the log-likelihood function, and ŷy solves

max
y AY

XN

i¼1

log f ðyi j xi; y; ĝgÞ

Consistency follow from results for two-step M-estimators. The practical limitation is

that log f ðyi j xi; y; gÞ is continuous on Y� G and that yo and go are identified.

Asymptotic normality of the two-step MLE follows directly from the results on

two-step M-estimation in Chapter 12. As we saw there, in general the asymptotic

variance of
ffiffiffiffiffi
N

p
ðŷy�yoÞ depends on the asymptotic variance of

ffiffiffiffiffi
N

p
ðĝg�goÞ [see equa-

tion (12.41)], so we need to know the estimation problem solved by ĝg. In some cases

estimation of go can be ignored. An important case is where the expected Hessian,

defined with respect to y and g, is block diagonal [the matrix Fo in equation (12.36) is

zero in this case]. It can also hold for some values of yo, which is important for testing

certain hypotheses. We will encounter several examples in Part IV.

Problems

13.1. If f ðy j x; yÞ is a correctly specified model for the density of yi given xi, does yo

solve maxy AY E½ f ðyi j xi; yÞ�?

13.2. Suppose that for a random sample, yi j xi @Normal½mðxi; boÞ; s2
o �, where

mðx; bÞ is a function of the K-vector of explanatory variables x and the P � 1 param-

eter vector b. Recall that Eðyi j xiÞ ¼ mðxi; boÞ and Varðyi j xiÞ ¼ s2
o.

a. Write down the conditional log-likelihood function for observation i. Show that

the CMLE of bo, b̂b, solves the problem minb

PN
i¼1½yi � mðxi; bÞ�2. In other words,

the CMLE for bo is the nonlinear least squares estimator.

b. Let y1 ðb 0s2Þ0 denote the ðP þ 1Þ � 1 vector of parameters. Find the score of the

log likelihood for a generic i. Show directly that E½siðyoÞ j xi� ¼ 0. What features of

the normal distribution do you need in order to show that the conditional expectation

of the score is zero?

c. Use the first-order condition to find ŝs2 in terms of b̂b.

d. Find the Hessian of the log-likelihood function with respect to y.

e. Show directly that �E½HiðyoÞ j xi� ¼ E½siðyoÞsiðyoÞ0 j xi�.
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f. Write down the estimated asymptotic variance of b̂b, and explain how to obtain the

asymptotic standard errors.

13.3. Consider a general binary response model Pðyi ¼ 1 j xiÞ ¼ Gðxi; yoÞ, where

Gðx; yÞ is strictly between zero and one for all x and y. Here, x and y need not have

the same dimension; let x be a K-vector and y a P-vector.

a. Write down the log likelihood for observation i.

b. Find the score for each i. Show directly that E½siðyoÞ j xi� ¼ 0.

c. When Gðx; yÞ ¼ F½xb þ d1ðxbÞ2 þ d2ðxbÞ3�, find the LM statistic for testing H0:

do1 ¼ 0; do2 ¼ 0.

13.4. In the Newey-Tauchen-White specification-testing context, explain why we

can take gðw; yÞ ¼ aðx; yÞsðw; yÞ, where aðx; yÞ is essentially any scalar function of x

and y.

13.5. In the context of CMLE, consider a reparameterization of the kind in Section

12.6.2: f ¼ gðyÞ, where the Jacobian of g, GðyÞ, is continuous and nonsingular for all

y A Y. Let s
g
i ðfÞ ¼ s

g
i ½gðyÞ� denote the score of the log likelihood in the reparam-

eterized model; thus, from Section 12.6.2, s
g
i ðfÞ ¼ ½GðyÞ0 ��1siðyÞ.

a. Using the conditional information matrix equality, find A
g
iðfoÞ1

E½sg
i ðfoÞs

g
i ðfoÞ

0 j xi� in terms of GðyoÞ and AiðyoÞ1E½siðyoÞsiðyoÞ0 j xi�.
b. Show that ~AAg

i ¼ ~GG 0�1 ~AAi
~GG�1, where these are all evaluated at the restricted esti-

mate, ~yy.

c. Use part b to show that the expected Hessian form of the LM statistic is invariant

to reparameterization.

13.6. Suppose that for a panel data set with T time periods, yit given xit has a

Poisson distribution with mean expðxityoÞ, t ¼ 1; . . . ;T .

a. Do you have enough information to construct the joint distribution of yi given xi?

Explain.

b. Write down the partial log likelihood for each i and find the score, siðyÞ.
c. Show how to estimate AvarðŷyÞ; it should be of the form (13.53).

d. How does the estimator of AvarðŷyÞ simplify if the conditional mean is dynami-

cally complete?

13.7. Suppose that you have two parametric models for conditional densities:

gðy1 j y2; x; yÞ and hðy2 j x; yÞ; not all elements of y need to appear in both densities.

Denote the true value of y by yo.
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a. What is the joint density of ðy1; y2Þ given x? How would you estimate yo given a

random sample on ðx; y1; y2Þ?
b. Suppose now that a random sample is not available on all variables. In particular,

y1 is observed only when ðx; y2Þ satisfies a known rule. For example, when y2 is

binary, y1 is observed only when y2 ¼ 1. We assume ðx; y2Þ is always observed. Let

r2 be a binary variable equal to one if y1 is observed and zero otherwise. A partial

MLE is obtained by defining

liðyÞ ¼ ri2 log gðyi1 j yi2; xi; yÞ þ log hðyi2 j xi; yÞ1 ri2li1ðyÞ þ li2ðyÞ

for each i. This formulation ensures that first part of li only enters the estimation

when yi1 is observed. Verify that yo maximizes E½liðyÞ� over Y.

c. Show that �E½HiðyoÞ� ¼ E½siðyoÞsiðyoÞ0 �, even though the problem is not a true

conditional MLE problem (and therefore a conditional information matrix equality

does not hold).

d. Argue that a consistent estimator of Avar
ffiffiffiffiffi
N

p
ðŷy � yoÞ is

N�1
XN

i¼1

ðri2ÂAi1 þ ÂAi2Þ
" #�1

where Ai1ðyoÞ ¼ �E½‘2
y li1ðyoÞ j yi2; xi�, Ai2ðyoÞ ¼ �E½‘2

y li2ðyoÞ j xi�, and ŷy replaces

yo in obtaining the estimates.

13.8. Consider a probit model with an unobserved explanatory variable v,

Pðy ¼ 1 j x; z; vÞ ¼ Fðxdo þ rovÞ

but where v depends on observable variables w and z and a vector of parameters

go: v ¼ w � zgo. Assume that Eðv j x; zÞ ¼ 0; this assumption implies, among other

things, that go can be consistently estimated by the OLS regression of wi on zi, using

a random sample. Define v̂vi 1wi � zi ĝg. Let ŷy ¼ ðd̂d 0; r̂rÞ0 be the two-step probit esti-

mator from probit of yi on xi, v̂vi.

a. Using the results from Section 12.5.2, show how to consistently estimate Avarffiffiffiffiffi
N

p
ðŷy � yoÞ.

b. Show that, when ro ¼ 0, the usual probit asymptotic variance estimator is valid.

That is, valid inference is obtained for ðd 0
o; roÞ

0 by ignoring the first-stage estimation.

c. How would you test H0: ro ¼ 0?

13.9. Let fyt: t ¼ 0; 1; . . . ;Tg be an observable time series representing a popula-

tion, where we use the convention that t ¼ 0 is the first time period for which y is
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observed. Assume that the sequence follows a Markov process: Dðyt j yt�1; yt�2; . . . y0Þ
¼ Dðyt j yt�1Þ for all tb 1. Let ftðyt j yt�1; yÞ denote a correctly specified model for

the density of yt given yt�1, tb 1, where yo is the true value of y.

a. Show that, to obtain the joint distribution of ðy0; y2; . . . ; yTÞ, you need to cor-

rectly model the density of y0.

b. Given a random sample of size N from the population, that is, ðyi0; yi1; . . . ; yiT Þ
for each i, explain how to consistently etimate yo without modeling Dðy0Þ.
c. How would you estimate the asymptotic variance of the estimator from part b? Be

specific.

13.10. Let y be a G � 1 random vector with elements yg, g ¼ 1; 2; . . . ;G. These

could be di¤erent response variables for the same cross section unit or responses at

di¤erent points in time. Let x be a K-vector of observed conditioning variables, and let

c be an unobserved conditioning variable. Let fgð� j x; cÞ denote the density of yg given

ðx; cÞ. Further, assume that the y1; y2; . . . ; yG are independent conditional on ðx; cÞ:
a. Write down the joint density of y given ðx; cÞ.
b. Let hð� j xÞ be the density of c given x. Find the joint density of y given x.

c. If each fgð� j x; cÞ is known up to a Pg-vector of parameters gg
o and hð� j xÞ is known

up to an M-vector do, find the log likelihood for any random draw ðxi; yiÞ from the

population.

d. Is there a relationship between this setup and a linear SUR model?

13.11. Consider the dynamic, linear unobserved e¤ects model

yit ¼ ryi; t�1 þ ci þ eit; t ¼ 1; 2; . . . ;T

Eðeit j yi; t�1; yi; t�2; . . . ; yi0; ciÞ ¼ 0

In Section 11.1.1 we discussed estimation of r by instrumental variables methods

after di¤erencing. The deficiencies of the IV approach for large r may be overcome

by applying the conditional MLE methods in Section 13.9.2.

a. Make the stronger assumption that yit j ðyi; t�1; yi; t�2; . . . ; yi0; ciÞ is normally dis-

tributed with mean ryi; t�1 þ ci and variance s2
e . Find the density of ðyi1; . . . ; yiT Þ

given ðyi0; ciÞ. Is it a good idea to use the log of this density, summed across i, to

estimate r and s2
e along with the ‘‘fixed e¤ects’’ ci?

b. If ci j yi0 @Normalða0 þ a1yi0; s
2

a Þ, where s2
a 1VarðaiÞ and ai 1 ci � a0 � a1yi0,

write down the density of ðyi1; . . . ; yiTÞ given yi0. How would you estimate r, a0, a1,

s2
e , and s2

a ?
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c. Under the same assumptions in parts a and b, extend the model to yit ¼ ryi; t�1 þ
ci þ dci yi; t�1 þ eit. Explain how to estimate the parameters of this model, and pro-

pose a consistent estimator of the average partial e¤ect of the lag, rþ dEðciÞ.
d. Now extend part b to the case where zitb is added to the conditional mean func-

tion, where the zit are strictly exogenous conditional on ci. Assume that ci j yi0; zi @
Normalða0 þ a1yi0 þ zid; s

2
a Þ, where zi is the vector of time averages.

Appendix 13A

In this appendix we cover some important properties of conditional distributions

and conditional densities. Billingsley (1979) is a good reference for this material.

For random vectors y A YHRG and x A XHRK , the conditional distribution of y

given x always exists and is denoted Dðy j xÞ. For each x this distribution is a proba-

bility measure and completely describes the behavior of the random vector y once x

takes on a particular value. In econometrics, we almost always assume that this

distribution is described by a conditional density, which we denote by pð� j xÞ. The

density is with respect to a measure defined on the support Y of y. A conditional den-

sity makes sense only when this measure does not change with the value of x. In

practice, this assumption is not very restrictive, as it means that the nature of y is

not dramatically di¤erent for di¤erent values of x. Let n be this measure on RJ . If

Dðy j xÞ is discrete, n can be the counting measure and all integrals are sums. If

Dðy j xÞ is absolutely continuous, then n is the familiar Lebesgue measure appearing

in elementary integration theory. In some cases, Dðy j xÞ has both discrete and con-

tinuous characteristics.

The important point is that all conditional probabilities can be obtained by inte-

gration:

Pðy A A j x ¼ xÞ ¼
ð

A

pðy jxÞnðdyÞ

where y is the dummy argument of integration. When y is discrete, taking on the

values y1, y2; . . . ; then pð� jxÞ is a probability mass function and Pðy¼yj j x¼xÞ ¼
pðyj jxÞ, j ¼ 1; 2; . . . :

Suppose that f and g are nonnegative functions on RM , and define Sf 1
fz A RM : f ðzÞ > 0g. Assume that

1 ¼
ð
Sf

f ðzÞnðdzÞb
ð
Sf

gðzÞnðdzÞ ð13:63Þ
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where n is a measure on RM . The equality in expression (13.63) implies that f is a

density on RM , while the inequality holds if g is also a density on RM . An important

result is that

Ið f ; gÞ1
ð
Sf

log½ f ðzÞ=gðzÞ� f ðzÞnðdzÞb 0 ð13:64Þ

[Note that Ið f ; gÞ ¼ y is allowed; one case where this result can occur is f ðzÞ > 0

but gðzÞ ¼ 0 for some z. Also, the integrand is not defined when f ðzÞ ¼ gðzÞ ¼ 0, but

such values of z have no e¤ect because the integrand receives zero weight in the in-

tegration.] The quantity Ið f ; gÞ is called the Kullback-Leibler information criterion

(KLIC). Another way to state expression (13.64) is

Eflog½ f ðzÞ�gbEflog½gðzÞ�g ð13:65Þ

where z A ZHRM is a random vector with density f.

Conditional MLE relies on a conditional version of inequality (13.63):

property CD.1: Let y A YHRG and x A XHRK be random vectors. Let pð� j �Þ
denote the conditional density of y given x. For each x, let YðxÞ1 fy: pðy j xÞ > 0g
be the conditional support of y, and let n be a measure that does not depend on x.

Then for any other function gð� j xÞb 0 such that

1 ¼
ð
YðxÞ

pðy j xÞnðdyÞb
ð
YðxÞ

gðy j xÞnðdyÞ

the conditional KLIC is nonnegative:

Ixðp; gÞ1
ð
YðxÞ

log½ pðy j xÞ=gðy j xÞ�pðy j xÞnðdyÞb 0

That is,

Eflog½ pðy j xÞ� j xgbEflog½gðy j xÞ� j xg

for any x A X. The proof uses the conditional Jensen’s inequality (Property CE.7 in

Chapter 2). See Manski (1988, Section 5.1).

property CD.2: For random vectors y, x, and z, let pðy j x; zÞ be the conditional

density of y given ðx; zÞ and let pðx j zÞ denote the conditional density of x given z.

Then the density of ðy; xÞ given z is

pðy;x j zÞ ¼ pðy jx; zÞpðx j zÞ

where the script variables are placeholders.
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property CD.3: For random vectors y, x, and z, let pðy j x; zÞ be the conditional

density of y given ðx; zÞ, let pðy j xÞ be the conditional density of y given x, and let

pðz j xÞ denote the conditional density of z given x with respect to the measure nðdzÞ.
Then

pðy j xÞ ¼
ð
Z

pðy j x; zÞpðz j xÞnðdzÞ

In other words, we can obtain the density of y given x by integrating the density of y

given the larger conditioning set, ðx; zÞ, against the density of z given x.

property CD.4: Suppose that the random variable, u, with cdf, F, is independent of

the random vector x. Then, for any function aðxÞ of x,

P½ua aðxÞ j x� ¼ F ½aðxÞ�:
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14 Generalized Method of Moments and Minimum Distance Estimation

In Chapter 8 we saw how the generalized method of moments (GMM) approach to

estimation can be applied to multiple-equation linear models, including systems of

equations, with exogenous or endogenous explanatory variables, and to panel data

models. In this chapter we extend GMM to nonlinear estimation problems. This

setup allows us to treat various e‰ciency issues that we have glossed over until now.

We also cover the related method of minimum distance estimation. Because the

asymptotic analysis has many features in common with Chapters 8 and 12, the anal-

ysis is not quite as detailed here as in previous chapters. A good reference for this

material, which fills in most of the gaps left here, is Newey and McFadden (1994).

14.1 Asymptotic Properties of GMM

Let fwi A RM : i ¼ 1; 2; . . .g denote a set of independent, identically distributed ran-

dom vectors, where some feature of the distribution of wi is indexed by the P � 1

parameter vector y. The assumption of identical distribution is mostly for notational

convenience; the following methods apply to independently pooled cross sections

without modification.

We assume that for some function gðwi; yÞ A RL, the parameter yo A YHRP sat-

isfies the moment assumptions

E½gðwi; yoÞ� ¼ 0 ð14:1Þ

As we saw in the linear case, where gðwi; yÞ was of the form Z 0
iðyi � XiyÞ, a minimal

requirement for these moment conditions to identify yo is LbP. If L ¼ P, then

the analogy principle suggests estimating yo by setting the sample counterpart,

N�1
PN

i¼1 gðwi; yÞ, to zero. In the linear case, this step leads to the instrumental vari-

ables estimator [see equation (8.22)]. When L > P, we can choose ŷy to make the

sample average close to zero in an appropriate metric. A generalized method of

moments (GMM) estimator, ŷy, minimizes a quadratic form in
PN

i¼1 gðwi; yÞ:

min
y AY

XN

i¼1

gðwi; yÞ
" #0

X̂X
XN

i¼1

gðwi; yÞ
" #

ð14:2Þ

where X̂X is an L � L symmetric, positive semidefinite weighting matrix.

Consistency of the GMM estimator follows along the lines of consistency of the

M-estimator in Chapter 12. Under standard moment conditions, N�1
PN

i¼1 gðwi; yÞ
satisfies the uniform law of large numbers (see Theorem 12.1). If, X̂X !p

Xo, where Xo

is an L � L positive definite matrix, then the random function



QNðyÞ1 N�1
XN

i¼1

gðwi; yÞ
" #0

X̂X N�1
XN

i¼1

gðwi; yÞ
" #

ð14:3Þ

converges uniformly in probability to

fE½gðwi; yÞ�g0
XofE½gðwi; yÞ�g ð14:4Þ

Because Xo is positive definite, yo uniquely minimizes expression (14.4). For com-

pleteness, we summarize with a theorem containing regularity conditions:

theorem 14.1 (Consistency of GMM): Assume that (a) Y is compact; (b) for each

y A Y, gð� ; yÞ is Borel measurable on W; (c) for each w A W, gðw; �Þ is continuous on

Y; (d) jgjðw; yÞja bðwÞ for all y A Y and j ¼ 1; . . . ;L, where bð�Þ is a nonnegative

function on W such that E½bðwÞ� < y; (e) X̂X !p
Xo, an L � L positive definite matrix;

and (f ) yo is the unique solution to equation (14.1). Then a random vector ŷy exists

that solves problem (14.2), and ŷy !p
yo.

If we assume only that Xo is positive semidefinite, then we must directly assume that

yo is the unique minimizer of expression (14.4). Occasionally this generality is useful,

but we will not need it.

Under the assumption that gðw; �Þ is continuously di¤erentiable on intðYÞ, yo A
intðYÞ, and other standard regularity conditions, we can easily derive the limiting

distribution of the GMM estimator. The first-order condition for ŷy can be written as

XN

i¼1

‘ygðwi; ŷyÞ
" #0

X̂X
XN

i¼1

gðwi; ŷyÞ
" #

1 0 ð14:5Þ

Define the L � P matrix

Go 1E½‘ygðwi; yoÞ� ð14:6Þ

which we assume to have full rank P. This assumption essentially means that the

moment conditions (14.1) are nonredundant. Then, by the WLLN and CLT,

N�1
XN

i¼1

‘ygðwi; yoÞ !
p

Go and N�1=2
XN

i¼1

gðwi; yoÞ ¼ Opð1Þ ð14:7Þ

respectively. Let giðyÞ1 gðwi; yÞ. A mean value expansion of
PN

i¼1 gðwi; ŷyÞ about yo,

appropriate standardizations by the sample size, and replacing random averages with

their plims gives

0 ¼ G 0
oXoN�1=2

XN

i¼1

giðyoÞ þ Ao

ffiffiffiffiffi
N

p
ðŷy � yoÞ þ opð1Þ ð14:8Þ
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where

Ao 1G 0
oXoGo ð14:9Þ

Since Ao is positive definite under the given assumptions, we have

ffiffiffiffiffi
N

p
ðŷy � yoÞ ¼ �A�1

o G 0
oXoN�1=2

XN

i¼1

giðyoÞ þ opð1Þ !
d

Normalð0;A�1
o BoA�1

o Þ
ð14:10Þ

where

Bo 1G 0
oXoLoXoGo ð14:11Þ

and

Lo 1E½giðyoÞgiðyoÞ0 � ¼ Var½giðyoÞ� ð14:12Þ

Expression (14.10) gives the influence function representation for the GMM estima-

tor, and it also gives the limiting distribution of the GMM estimator. We summarize

with a theorem, which is essentially given by Newey and McFadden (1994, Theorem

3.4):

theorem 14.2 (Asymptotic Normality of GMM): In addition to the assumptions in

Theorem 14.1, assume that (a) yo is in the interior of Y; (b) gðw; �Þ is continuously

di¤erentiable on the interior of Y for all w A W; (c) each element of gðw; yoÞ has finite

second moment; (d) each element of ‘ygðw; yÞ is bounded in absolute value by a

function bðwÞ, where E½bðwÞ� < y; and (e) Go in expression (14.6) has rank P. Then

expression (14.10) holds, and so AvarðŷyÞ ¼ A�1
o BoA�1

o =N.

Estimating the asymptotic variance of the GMM estimator is easy once ŷy has been

obtained. A consistent estimator of Lo is given by

L̂L1N�1
XN

i¼1

giðŷyÞgiðŷyÞ
0 ð14:13Þ

and AvarðŷyÞ is estimated as ÂA�1B̂BÂA�1=N, where

ÂA1 ĜG 0X̂XĜG; B̂B1 ĜG 0X̂XL̂LX̂XĜG ð14:14Þ

and

ĜG1N�1
XN

i¼1

‘ygiðŷyÞ ð14:15Þ
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As in the linear case in Section 8.3.3, an optimal weighting matrix exists for the

given moment conditions: X̂X should be a consistent estimator of L�1
o . When Xo ¼ L�1

o ,

Bo ¼ Ao and Avar
ffiffiffiffiffi
N

p
ðŷy � yoÞ ¼ ðG 0

oL
�1
o GoÞ�1. Thus the di¤erence in asymptotic

variances between the general GMM estimator and the estimator with plim X̂X ¼ L�1
o is

ðG 0
oXoGoÞ�1ðG 0

oXoLoXoGoÞðG 0
oXoGoÞ�1 � ðG 0

oL
�1
o GoÞ�1 ð14:16Þ

This expression can be shown to be positive semidefinite using the same argument as

in Chapter 8 (see Problem 8.5).

In order to obtain an asymptotically e‰cient GMM estimator we need a prelimi-

nary estimator of yo in order to obtain L̂L. Let
^̂
yŷyy be such an estimator, and define L̂L as

in expression (14.13) but with
^̂
yŷyy in place of ŷy. Then, an e‰cient GMM estimator

[given the function gðw; yÞ] solves

min
y AY

XN

i¼1

gðwi; yÞ
" #0

L̂L�1
XN

i¼1

gðwi; yÞ
" #

ð14:17Þ

and its asymptotic variance is estimated as

AvâarðŷyÞ ¼ ðĜG 0L̂L�1ĜGÞ�1=N ð14:18Þ

As in the linear case, an optimal GMM estimator is called the minimum chi-square

estimator because

N�1=2
XN

i¼1

giðŷyÞ
" #0

L̂L�1
XN

i¼1

N�1=2giðŷyÞ
" #

ð14:19Þ

has a limiting chi-square distribution with L � P degrees of freedom under the con-

ditions of Theorem 14.2. Therefore, the value of the objective function (properly

standardized by the sample size) can be used as a test of any overidentifying restric-

tions in equation (14.1) when L > P. If statistic (14.19) exceeds the relevant critical

value in a w2
L�P distribution, then equation (14.1) must be rejected: at least some of

the moment conditions are not supported by the data. For the linear model, this is

the same statistic given in equation (8.49).

As always, we can test hypotheses of the form H0: cðyoÞ ¼ 0, where cðyÞ is a Q � 1

vector, QaP, by using the Wald approach and the appropriate variance matrix

estimator. A statistic based on the di¤erence in objective functions is also available if

the minimum chi-square estimator is used so that Bo ¼ Ao. Let ~yy denote the solution

to problem (14.17) subject to the restrictions cðyÞ ¼ 0, and let ŷy denote the unrestricted

estimator solving problem (14.17); importantly, these both use the same weighting
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matrix L̂L�1. Typically, L̂L is obtained from a first-stage, unrestricted estimator.

Assuming that the constraints can be written in implicit form and satisfy the condi-

tions discussed in Section 12.6.2, the GMM distance statistic (or GMM criterion

function statistic) has a limiting w2
Q distribution:

XN

i¼1

gið~yyÞ
" #0

L̂L�1
XN

i¼1

gið~yyÞ
" #

�
XN

i¼1

giðŷyÞ
" #0

L̂L�1
XN

i¼1

giðŷyÞ
" #( )

=N !d w2
Q ð14:20Þ

When applied to linear GMM problems, we obtain the statistic in equation (8.45).

One nice feature of expression (14.20) is that it is invariant to reparameterization of

the null hypothesis, just as the quasi-LR statistic is invariant for M-estimation.

Therefore, we might prefer statistic (14.20) over the Wald statistic (8.48) for testing

nonlinear restrictions in linear models. Of course, the computation of expression

(14.20) is more di‰cult because we would actually need to carry out estimation sub-

ject to nonlinear restrictions.

A nice application of the GMM methods discussed in this section is two-step esti-

mation procedures, which arose in Chapters 6, 12, and 13. Suppose that the estimator

ŷy—it could be an M-estimator or a GMM estimator—depends on a first-stage esti-

mator, ĝg. A unified approach to obtaining the asymptotic variance of ŷy is to stack the

first-order conditions for ŷy and ĝg into the same function gð�Þ. This is always possible

for the estimators encountered in this book. For example, if ĝg is an M-estimator

solving
PN

i¼1 sðwi; ĝgÞ ¼ 0, and ŷy is a two-step M-estimator solving

XN

i¼1

hðwi; ŷy; ĝgÞ� ¼ 0 ð14:21Þ

then we can obtain the asymptotic variance of ŷy by defining

gðw; y; gÞ ¼
hðw; y; gÞ

sðw; gÞ

� �

and applying the GMM formulas. The first-order condition for the full GMM prob-

lem reproduces the first-order conditions for each estimator separately.

In general, either ĝg, ŷy, or both might themselves be GMM estimators. Then,

stacking the orthogonality conditions into one vector can simplify the derivation of

the asymptotic variance of the second-step estimator ŷy while also ensuring e‰cient

estimation when the optimal weighting matrix is used.

Finally, sometimes we want to know whether adding additional moment con-

ditions does not improve the e‰ciency of the minimum chi-square estimator. (Adding
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additional moment conditions can never reduce asymptotic e‰ciency, provided an

e‰cient weighting matrix is used.) In other words, if we start with equation (14.1) but

add new moments of the form E½hðw; yoÞ� ¼ 0, when does using the extra moment

conditions yield the same asymptotic variance as the original moment conditions?

Breusch, Qian, Schmidt, and Wyhowski (1999) prove some general redundancy

results for the minimum chi-square estimator. Qian and Schmidt (1999) study the

problem of adding moment conditions that do not depend on unknown parameters,

and they characterize when such moment conditions improve e‰ciency.

14.2 Estimation under Orthogonality Conditions

In Chapter 8 we saw how linear systems of equations can be estimated by GMM

under certain orthogonality conditions. In general applications, the moment con-

ditions (14.1) almost always arise from assumptions that disturbances are uncorre-

lated with exogenous variables. For a G � 1 vector rðwi; yÞ and a G � L matrix Zi,

assume that yo satisfies

E½Z 0
irðwi; yoÞ� ¼ 0 ð14:22Þ

The vector function rðwi; yÞ can be thought of as a generalized residual function. The

matrix Zi is usually called the matrix of instruments. Equation (14.22) is a special case

of equation (14.1) with gðwi; yÞ1Z 0
irðwi; yÞ. In what follows, write riðyÞ1 rðwi; yÞ.

Identification requires that yo be the only y A Y such that equation (14.22) holds.

Condition e of the asymptotic normality result Theorem 14.2 requires that rank

E½Z 0
i‘y riðyoÞ� ¼ P (necessary is LbP). Thus, while Zi must be orthogonal to riðyoÞ,

Zi must be su‰ciently correlated with the G � P Jacobian, ‘y riðyoÞ. In the linear case

where rðwi; yÞ ¼ yi � Xiy, this requirement reduces to EðZ 0
iXiÞ having full column

rank, which is simply Assumption SIV.2 in Chapter 8.

Given the instruments Zi, the e‰cient estimator can be obtained as in Section 14.1.

A preliminary estimator
^̂
yŷyy is usually obtained with

X̂X1 N�1
XN

i¼1

Z 0
iZi

 !�1

ð14:23Þ

so that
^̂
yŷyy solves

min
y AY

XN

i¼1

Z 0
iriðyÞ

" #0
N�1

XN

i¼1

Z 0
iZi

" #�1 XN

i¼1

Z 0
iriðyÞ

" #
ð14:24Þ
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The solution to problem (14.24) is called the nonlinear system 2SLS estimator; it is an

example of a nonlinear instrumental variables estimator.

From Section 14.1, we know that the nonlinear system 2SLS estimator is guaran-

teed to be the e‰cient GMM estimator if for some s2
o > 0,

E½Z 0
iriðyoÞriðyoÞ0Zi� ¼ s2

o EðZ 0
iZiÞ

Generally, this is a strong assumption. Instead, we can obtain the minimum chi-square

estimator by obtaining

L̂L ¼ N�1
XN

i¼1

Z 0
irið ^̂yŷyyÞrið ^̂yŷyyÞ0Zi ð14:25Þ

and using this in expression (14.17).

In some cases more structure is available that leads to a three-stage least squares

estimator. In particular, suppose that

E½Z 0
iriðyoÞriðyoÞ0Zi� ¼ EðZ 0

iWoZiÞ ð14:26Þ

where Wo is the G � G matrix

Wo ¼ E½riðyoÞriðyoÞ0 � ð14:27Þ

When E½riðyoÞ� ¼ 0, as is almost always the case under assumption (14.22), Wo is the

variance matrix of riðyoÞ. As in Chapter 8, assumption (14.26) is a kind of system

homoskedasticity assumption.

By iterated expectations, a su‰cient condition for assumption (14.26) is

E½riðyoÞriðyoÞ0 jZi� ¼ Wo ð14:28Þ

However, assumption (14.26) can hold in cases where assumption (14.28) does not.

If assumption (14.26) holds, then Lo can be estimated as

L̂L ¼ N�1
XN

i¼1

Z 0
iŴWZi ð14:29Þ

where

ŴW ¼ N�1
XN

i¼1

rið ^̂yŷyyÞrið ^̂yŷyyÞ ð14:30Þ

and
^̂
yŷyy is a preliminary estimator. The resulting GMM estimator is usually called the

nonlinear 3SLS (N3SLS) estimator. The name is a holdover from the traditional
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3SLS estimator in linear systems of equations; there are not really three estimation

steps. We should remember that nonlinear 3SLS is generally ine‰cient when as-

sumption (14.26) fails.

The Wald statistic and the QLR statistic can be computed as in Section 14.1. In

addition, a score statistic is sometimes useful. Let
~~yy~yy be a preliminary ine‰cient esti-

mator with Q restrictions imposed. The estimator
~~yy~yy would usually come from prob-

lem (14.24) subject to the restrictions cðyÞ ¼ 0. Let ~LL be the estimated weighting

matrix from equation (14.25) or (14.29), based on
~~yy~yy. Let ~yy be the minimum chi-

square estimator using weighting matrix ~LL�1. Then the score statistic is based on the

limiting distribution of the score of the unrestricted objective function evaluated at

the restricted estimates, properly standardized:

N�1
XN

i¼1

Z 0
i‘y rið~yyÞ

" #0
~LL�1 N�1=2

XN

i¼1

Z 0
irið~yyÞ

" #
ð14:31Þ

Let ~ssi 1 ~GG 0 ~LL�1Z 0
i~rri, where ~GG is the first matrix in expression (14.31), and let so

i 1
G 0

oL
�1
o Z 0

ir
o
i . Then, following the proof in Section 12.6.2, it can be shown that equa-

tion (12.67) holds with Ao 1G 0
oL

�1
o Go. Further, since Bo ¼ Ao for the minimum chi-

square estimator, we obtain

LM ¼
XN

i¼1

~ssi

 !0
~AA�1

XN

i¼1

~ssi

 !
=N ð14:32Þ

where ~AA ¼ ~GG 0 ~LL�1 ~GG. Under H0 and the usual regularity conditions, LM has a limit-

ing w2
Q distribution.

14.3 Systems of Nonlinear Equations

A leading application of the results in Section 14.2 is to estimation of the parameters

in an implicit set of nonlinear equations, such as a nonlinear simultaneous equations

model. Partition wi as yi A RJ , xi A RK and, for h ¼ 1; . . . ;G, suppose we have

q1ðyi; xi; yo1Þ ¼ ui1

..

.

qGðyi; xi; yoGÞ ¼ uiG

ð14:33Þ

where yoh is a Ph � 1 vector of parameters. As an example, write a two-equation

SEM in the population as
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y1 ¼ x1d1 þ g1 y
g2

2 þ u1 ð14:34Þ

y2 ¼ x2d2 þ g3 y1 þ u2 ð14:35Þ

(where we drop ‘‘o’’ to index the parameters). This model, unlike those covered in

Section 9.5, is nonlinear in the parameters as well as the endogenous variables. Nev-

ertheless, assuming that Eðug j xÞ ¼ 0, g ¼ 1; 2, the parameters in the system can be

estimated by GMM by defining q1ðy; x; y1Þ ¼ y1 � x1d1 � g1 y
g2

2 and q2ðy; x; y2Þ ¼
y2 � x2d2 � g3 y1.

Generally, the equations (14.33) need not actually determine yi given the exoge-

nous variables and disturbances; in fact, nothing requires J ¼ G. Sometimes equations

(14.33) represent a system of orthogonality conditions of the form E½qgðy; x; yogÞ j x� ¼
0, g ¼ 1; . . . ;G. We will see an example later.

Denote the P � 1 vector of all parameters by yo, and the parameter space by YH
RP. To identify the parameters we need the errors uih to satisfy some orthogonality

conditions. A general assumption is, for some subvector xih of xi,

Eðuih j xihÞ ¼ 0; h ¼ 1; 2; . . . ;G ð14:36Þ

This allows elements of xi to be correlated with some errors, a situation that some-

times arises in practice (see, for example, Chapter 9 and Wooldridge, 1996). Under

assumption (14.36), let zih 1 fhðxihÞ be a 1 � Lh vector of possibly nonlinear func-

tions of xi. If there are no restrictions on the yoh across equations we should have

Lh bPh so that each yoh is identified. By iterated expectations, for all h ¼ 1; . . . ;G,

Eðz 0
ihuihÞ ¼ 0 ð14:37Þ

provided appropriate moments exist. Therefore, we obtain a set of orthogonality

conditions by defining the G � L matrix Zi as the block diagonal matrix with zig in

the gth block:

Zi 1

zi1 0 0 � � � 0

0 zi2 0 � � � 0
..
. ..

.

0 0 0 � � � ziG

2
6664

3
7775 ð14:38Þ

where L1L1 þ L2 þ � � � þ LG. Letting rðwi; yÞ1 qðyi; xi; yÞ1 ½qi1ðy1Þ; . . . ; qiGðyGÞ� 0,
equation (14.22) holds under assumption (14.36).

When there are no restrictions on the yg across equations and Zi is chosen as in

matrix (14.38), the system 2SLS estimator reduces to the nonlinear 2SLS (N2SLS)

estimator (Amemiya, 1974) equation by equation. That is, for each h, the N2SLS

estimator solves
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min
yh

XN

i¼1

z 0
ihqihðyhÞ

" #0
N�1

XN

i¼1

z 0
ihzih

 !�1 XN

i¼1

z 0
ihqihðyhÞ

" #
ð14:39Þ

Given only the orthogonality conditions (14.37), the N2SLS estimator is the e‰cient

estimator of yoh if

Eðu2
ihz 0

ihzihÞ ¼ s2
ohEðz 0

ihzihÞ ð14:40Þ

where s2
oh 1Eðu2

ihÞ; su‰cient for condition (14.40) is Eðu2
ih j xihÞ ¼ s2

oh. Let
^̂
yŷyyh denote

the N2SLS estimator. Then a consistent estimator of s2
oh is

ŝs2
h 1N�1

XN

i¼1

^̂uûuu2
ih ð14:41Þ

where ^̂uûuuih 1 qhðyi; xi;
^̂
yŷyyhÞ are the N2SLS residuals. Under assumptions (14.37) and

(14.40), the asymptotic variance of
^̂
yŷyyh is estimated as

ŝs2
h

XN

i¼1

z 0
ih‘yh

qihð ^̂yŷyyhÞ
" #0 XN

i¼1

z 0
ihzih

 !�1 XN

i¼1

z 0
ih‘yh

qihð ^̂yŷyyhÞ
" #8<

:
9=
;

�1

ð14:42Þ

where ‘yh
qihð ^̂yŷyyhÞ is the 1 � Ph gradient.

If assumption (14.37) holds but assumption (14.40) does not, the N2SLS estimator

is still
ffiffiffiffiffi
N

p
-consistent, but it is not the e‰cient estimator that uses the orthogonality

condition (14.37) whenever Lh > Ph [and expression (14.42) is no longer valid]. A

more e‰cient estimator is obtained by solving

min
yh

XN

i¼1

z 0
ihqihðyhÞ

" #0
N�1

XN

i¼1

^̂uûuu2
ihz 0

ihzih

 !�1 XN

i¼1

z 0
ihqihðyhÞ

" #

with asymptotic variance estimated as

XN

i¼1

z 0
ih‘yh

qihð ^̂yŷyyhÞ
" #0 XN

i¼1

^̂uûuu2
ihz 0

ihzih

 !�1 XN

i¼1

z 0
ih‘yh

qihð ^̂yŷyyhÞ
" #8<

:
9=
;

�1

This estimator is asymptotically equivalent to the N2SLS estimator if assumption

(14.40) happens to hold.

Rather than focus on one equation at a time, we can increase e‰ciency if we esti-

mate the equations simultaneously. One reason for doing so is to impose cross

equation restrictions on the yoh. The system 2SLS estimator can be used for these
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purposes, where Zi generally has the form (14.38). But this estimator does not exploit

correlation in the errors uig and uih in di¤erent equations.

The e‰cient estimator that uses all orthogonality conditions in equation (14.37) is

just the GMM estimator with L̂L given by equation (14.25), where rið ^̂yŷyyÞ is the G � 1

vector of system 2SLS residuals, ^̂uûuui. In other words, the e‰cient GMM estimator

solves

min
y AY

XN

i¼1

Z 0
iqiðyÞ

" #0
N�1

XN

i¼1

Z 0
i
^̂uûuui
^̂uûuu 0

iZi

 !�1 XN

i¼1

Z 0
iqiðyÞ

" #
ð14:43Þ

The asymptotic variance of ŷy is estimated as

XN

i¼1

Z 0
i‘yqiðŷyÞ

" #0 XN

i¼1

Z 0
i
^̂uûuui
^̂uûuu 0

iZi

 !�1 XN

i¼1

Z 0
i‘yqiðŷyÞ

" #8<
:

9=
;

�1

Because this is the e‰cient GMM estimator, the QLR statistic can be used to test

hypotheses about yo. The Wald statistic can also be applied.

Under the homoskedasticity assumption (14.26) with riðyoÞ ¼ ui, the nonlinear

3SLS estimator, which solves

min
y AY

XN

i¼1

Z 0
iqiðyÞ

" #0
N�1

XN

i¼1

Z 0
iŴWZi

 !�1 XN

i¼1

Z 0
iqiðyÞ

" #

is e‰cient, and its asymptotic variance is estimated as

XN

i¼1

Z 0
i‘y riðŷyÞ

" #0 XN

i¼1

Z 0
iŴWZi

 !�1 XN

i¼1

Z 0
i‘y riðŷyÞ

" #8<
:

9=
;

�1

The N3SLS estimator is used widely for systems of the form (14.33), but, as we dis-

cussed in Section 9.6, there are many cases where assumption (14.26) must fail when

di¤erent instruments are needed for di¤erent equations.

As an example, we show how a hedonic price system fits into this framework.

Consider a linear demand and supply system for G attributes of a good or service (see

Epple, 1987; Kahn and Lang, 1988; and Wooldridge, 1996). The demand and supply

system is written as

demandg ¼ h1g þ wa1g þ x1b1g þ u1g; g ¼ 1; . . . ;G

supplyg ¼ h2g þ wa2g þ x2b2g þ u2g; g ¼ 1; . . . ;G
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where w ¼ ðw1; . . . ;wGÞ is the 1 � G vector of attribute prices. The demand equations

usually represent an individual or household; the supply equations can represent an

individual, firm, or employer.

There are several tricky issues in estimating either the demand or supply function

for a particular g. First, the attribute prices wg are not directly observed. What is

usually observed are the equilibrium quantities for each attribute and each cross

section unit i; call these qig, g ¼ 1; . . . ;G. (In the hedonic systems literature these are

often denoted zig, but we use qig here because they are endogenous variables, and we

have been using zi to denote exogenous variables.) For example, the qig can be fea-

tures of a house, such as size, number of bathrooms, and so on. Along with these

features we observe the equilibrium price of the good, pi, which we assume follows a

quadratic hedonic price function:

pi ¼ gþ qicþ qiPq 0
i=2 þ xi3dþ xi3Gq 0

i þ ui3 ð14:44Þ

where xi3 is a vector of variables that a¤ect pi, P is a G � G symmetric matrix, and G

is a G � G matrix.

A key point for identifying the demand and supply functions is that wi ¼ qpi=qqi,

which, under equation (14.44), becomes wi ¼ qiPþ xi3G, or wig ¼ qipg þ xi3gg for

each g. By substitution, the equilibrium estimating equations can be written as

equation (14.44) plus

qig ¼ h1g þ ðqiPþ xi3GÞa1g þ xi1b1g þ ui1g; g ¼ 1; . . . ;G ð14:45Þ

qig ¼ h2g þ ðqiPþ xi3GÞa2g þ xi2b2g þ ui2g; g ¼ 1; . . . ;G ð14:46Þ

These two equations are linear in qi; xi1; xi2, and xi3 but nonlinear in the parameters.

Let ui1 be the G � 1 vector of attribute demand disturbances and ui2 the G � 1

vector of attribute supply disturbances. What are reasonable assumptions about

ui1; ui2, and ui3? It is almost always assumed that equation (14.44) represents a con-

ditional expectation with no important unobserved factors; this assumption means

Eðui3 j qi; xiÞ ¼ 0, where xi contains all elements in xi1; xi2, and xi3. The properties of

ui1 and ui2 are more subtle. It is clear that these cannot be uncorrelated with qi, and

so equations (14.45) and (14.46) contain endogenous explanatory variables if P0 0.

But there is another problem, pointed out by Bartik (1987), Epple (1987), and Kahn

and Lang (1988): because of matching that happens between individual buyers and

sellers, xi2 is correlated with ui1, and xi1 is correlated with ui2. Consequently, what

would seem to be the obvious IVs for the demand equations (14.45)—the factors

shifting the supply curve—are endogenous to equation (14.45). Fortunately, all is not

lost: if xi3 contains exogenous factors that a¤ect pi but do not appear in the struc-
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tural demand and supply functions, we can use these as instruments in both the de-

mand and supply equations. Specifically, we assume

Eðui1 j xi1; xi3Þ ¼ 0; Eðui2 j xi2; xi3Þ ¼ 0; Eðui3 j qi; xiÞ ¼ 0 ð14:47Þ

Common choices for xi3 are geographical or industry dummy indicators (for exam-

ple, Montgomery, Shaw, and Benedict, 1992; Hagy, 1998), where the assumption is

that the demand and supply functions do not change across region or industry but the

type of matching does, and therefore pi can di¤er systematically across region or in-

dustry. Bartik (1987) discusses how a randomized experiment can be used to create

the elements of xi3.

For concreteness, let us focus on estimating the set of demand functions. If P ¼ 0,

so that the quadratic in qi does not appear in equation (14.44), a simple two-step

procedure is available: (1) estimate equation (14.44) by OLS, and obtain ŵwig ¼
ĉcg þ xi3ĝgg for each i and g; (2) run the regression qig on 1, ŵwi; xi1; i ¼ 1; . . . ;N. Under

assumptions (14.47) and identification assumptions, this method produces
ffiffiffiffiffi
N

p
-

consistent, asymptotically normal estimators of the parameters in demand equation

g. Because the second regression involves generated regressors, the standard errors

and test statistics should be adjusted.

It is clear that, without restrictions on a1g, the order condition necessary for iden-

tifying the demand parameters is that the dimension of xi3, say K3, must exceed G. If

K3 < G then E½ðwi; xi1Þ0ðwi; xi1Þ� has less than full rank, and the OLS rank condition

fails. If we make exclusion restrictions on a1g, fewer elements are needed in xi3. In the

case that only wig appears in the demand equation for attribute g, xi3 can be a scalar,

provided its interaction with qig in the hedonic price system is significant ðggg 0 0Þ.
Checking the analogue of the rank condition in general is somewhat complicated; see

Epple (1987) for discussion.

When wi ¼ qiPþ xi3G, wi is correlated with ui1g, so we must modify the two-step

procedure. In the second step, we can use instruments for ŵwi and perform 2SLS rather

than OLS. Assuming that xi3 has enough elements, the demand equations are still

identified. If only wig appears in demandig, su‰cient for identification is that an ele-

ment of xi3 appears in the linear projection of wig on xi1, xi3. This assumption can

hold even if xi3 has only a single element. For the matching reasons we discussed

previously, xi2 cannot be used as instruments for ŵwi in the demand equation.

Whether P ¼ 0 or not, more e‰cient estimators are obtained from the full demand

system and the hedonic price function. Write

q 0
i ¼ h1 þ ðqiPþ xi3GÞA1 þ xi1B1 þ ui1
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along with equation (14.44). Then ðxi1; xi3Þ (and functions of these) can be used as

instruments in any of the G demand equations, and ðqi; xiÞ act as IVs in equation

(14.44). (It may be that the supply function is not even specified, in which case xi

contains only xi1 and xi3.) A first-stage estimator is the nonlinear system 2SLS esti-

mator. Then the system can be estimated by the minimum chi-square estimator that

solves problem (14.43). When restricting attention to demand equations plus the

hedonic price equation, or supply equations plus the hedonic price equation, nonlinear

3SLS is e‰cient under certain assumptions. If the demand and supply equations are

estimated together, the key assumption (14.26) that makes nonlinear 3SLS asymp-

totically e‰cient cannot be expected to hold; see Wooldridge (1996) for discussion.

If one of the demand functions is of primary interest, it may make sense to estimate

it along with equation (14.44), by GMM or nonlinear 3SLS. If the demand functions

are written in inverse form, the resulting system is linear in the parameters, as shown

in Wooldridge (1996).

14.4 Panel Data Applications

As we saw in Chapter 11, system IV methods are needed in certain panel data con-

texts. In the current case, our interest is in nonlinear panel data models that cannot

be estimated using linear methods. We hold o¤ on discussing nonlinear panel data

models explicitly containing unobserved e¤ects until Part IV.

One increasingly popular use of panel data is to test rationality in economic models

of individual, family, or firm behavior (see, for example, Shapiro, 1984; Zeldes, 1989;

Keane and Runkle, 1992; Shea, 1995). For a random draw from the population we

assume that T time periods are available. Suppose that an economic theory implies

that

E½rtðwt; yoÞ jwt�1; . . . ;w1Þ ¼ 0; t ¼ 1; . . . ;T ð14:48Þ

where, for simplicity, rt is a scalar. These conditional moment restrictions are often

implied by rational expectations, under the assumption that the decision horizon is

the same length as the sampling period. For example, consider a standard life-cycle

model of consumption. Let cit denote consumption of family i at time t, let hit denote

taste shifters, let do denote the common rate of time preference, and let a
j

it denote the

return for family i from holding asset j from period t � 1 to t. Under the assumption

that utility is given by

uðcit; yitÞ ¼ expðhitboÞc
1�lo

it =ð1 � loÞ ð14:49Þ

the Euler equation is
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E½ð1 þ a
j

itÞðcit=ci; t�1Þ�lo jIi; t�1� ¼ ð1 þ doÞ�1 expðxitboÞ ð14:50Þ

where Iit is family i ’s information set at time t and xit 1 hi; t�1 � hit; equation (14.50)

assumes that hit � hi; t�1 A Ii; t�1, an assumption which is often reasonable. Given

equation (14.50), we can define a residual function for each t:

ritðyÞ ¼ ð1 þ a
j

itÞðcit=ci; t�1Þ�l � expðxitbÞ ð14:51Þ

where ð1 þ dÞ�1 is absorbed in an intercept in xit. Let wit contain cit, ci; t�1, ait, and

xit. Then condition (14.48) holds, and lo and bo can be estimated by GMM.

Returning to condition (14.48), valid instruments at time t are functions of infor-

mation known at time t � 1:

zt ¼ f tðwt�1; . . . ;w1Þ ð14:52Þ

The T � 1 residual vector is rðw; yÞ ¼ ½r1ðw1; yÞ; . . . ; rT ðwT ; yÞ�0, and the matrix of

instruments has the same form as matrix (14.38) for each i (with G ¼ T). Then, the

minimum chi-square estimator can be obtained after using the system 2SLS estima-

tor, although the choice of instruments is a nontrivial matter. A common choice is

linear and quadratic functions of variables lagged one or two time periods.

Estimation of the optimal weighting matrix is somewhat simplified under the con-

ditional moment restrictions (14.48). Recall from Section 14.2 that the optimal esti-

mator uses the inverse of a consistent estimator of Lo ¼ E½Z 0
iriðyoÞriðyoÞ0Zi�. Under

condition (14.48), this matrix is block diagonal. Dropping the i subscript, the ðs; tÞ
block is E½rsðyoÞrtðyoÞz 0

szt�. For concreteness, assume that s < t. Then zt; zs, and rsðyoÞ
are all functions of wt�1;wt�2; . . . ;w1. By iterated expectations it follows that

E½rsðyoÞrtðyoÞz 0
szt� ¼ EfrsðyoÞz 0

sztE½rtðyoÞ jwt�1; . . . ;w1�g ¼ 0

and so we only need to estimate the diagonal blocks of E½Z 0
iriðyoÞriðyoÞ0Zi�:

N�1
XN

i¼1

^̂rr̂rr2
it z 0

itzit ð14:53Þ

is a consistent estimator of the tth block, where the ^̂rr̂rrit are obtained from an ine‰cient

GMM estimator.

In cases where the data frequency does not match the horizon relevant for decision

making, the optimal matrix does not have the block diagonal form: some o¤-diagonal

blocks will be nonzero. See Hansen (1982) for the pure time series case.

Ahn and Schmidt (1995) apply nonlinear GMM methods to estimate the linear,

unobserved e¤ects AR(1) model. Some of the orthogonality restrictions they use are

nonlinear in the parameters of interest. In Part IV we will cover nonlinear panel data
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models with unobserved e¤ects. For the consumption example, we would like to allow

for a family-specific rate of time preference, as well as unobserved family tastes.

Orthogonality conditions can often be obtained in such cases, but they are not as

straightforward to obtain as in the previous example.

14.5 E‰cient Estimation

In Chapter 8 we obtained the e‰cient weighting matrix for GMM estimation of

linear models, and we extended that to nonlinear models in Section 14.1. In Chapter

13 we asserted that maximum likelihood estimation has some important e‰ciency

properties. We are now in a position to study a framework that allows us to show the

e‰ciency of an estimator within a particular class of estimators, and also to find

e‰cient estimators within a stated class. Our approach is essentially that in Newey

and McFadden (1994, Section 5.3), although we will not use the weakest possible

assumptions. Bates and White (1993) proposed a very similar framework and also

considered time series problems.

14.5.1 A General E‰ciency Framework

Most estimators in econometrics—and all of the ones we have studied—are
ffiffiffiffiffi
N

p
-

asymptotically normal, with variance matrices of the form

V ¼ A�1E½sðwÞsðwÞ0 �ðA0Þ�1 ð14:54Þ

where, in most cases, sðwÞ is the score of an objective function (evaluated at yo) and

A is the expected value of the Jacobian of the score, again evaluated at yo. (We

suppress an ‘‘o’’ subscript here, as the value of the true parameter is irrelevant.) All

M-estimators with twice continuously di¤erentiable objective functions (and even

some without) have variance matrices of this form, as do GMM estimators. The fol-

lowing lemma is a useful su‰cient condition for showing that one estimator is more

e‰cient than another.

lemma 14.1 (Relative E‰ciency): Let ŷy1 and ŷy2 be two
ffiffiffiffiffi
N

p
-asymptotically normal

estimators of the P � 1 parameter vector yo, with asymptotic variances of the form

(14.54) (with appropriate subscripts on A, s, and V). If for some r > 0,

E½s1ðwÞs1ðwÞ0 � ¼ rA1 ð14:55Þ

E½s2ðwÞs1ðwÞ0 � ¼ rA2 ð14:56Þ

then V2 � V1 is positive semidefinite.
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The proof of Lemma 14.1 is given in the chapter appendix.

Condition (14.55) is essentially the generalized information matrix equality (GIME)

we introduced in Section 12.5.1 for the estimator ŷy1. Notice that A1 is necessarily

symmetric and positive definite under condition (14.55). Condition (14.56) is new. In

most cases, it says that the expected outer product of the scores s2 and s1 equals the

expected Jacobian of s2 (evaluated at yo). In Section 12.5.1 we claimed that the

GIME plays a role in e‰ciency, and Lemma 14.1 shows that it does so.

Verifying the conditions of Lemma 14.1 is also very convenient for constructing

simple forms of the Hausman (1978) statistic in a variety of contexts. Provided that

the two estimators are jointly asymptotically normally distributed—something that is

almost always true when each is
ffiffiffiffiffi
N

p
-asymptotically normal, and that can be verified

by stacking the first-order representations of the estimators—assumptions (14.55) and

(14.56) imply that the asymptotic covariance between
ffiffiffiffiffi
N

p
ðŷy2 � yoÞ and

ffiffiffiffiffi
N

p
ðŷy1 � yoÞ

is A�1
2 Eðs2s 01ÞA

�1
1 ¼ A�1

2 ðrA2ÞA�1
1 ¼ rA�1

1 ¼ Avar½
ffiffiffiffiffi
N

p
ðŷy1 � yoÞ�. In other words, the

asymptotic covariance between the (
ffiffiffiffiffi
N

p
-scaled) estimators is equal to the asymptotic

variance of the e‰cient estimator. This equality implies that Avar½
ffiffiffiffiffi
N

p
ðŷy2 � ŷy1Þ� ¼

V2 þ V1 � C � C 0 ¼ V2 þ V1 � 2V1 ¼ V2 � V1, where C is the asymptotic covariance.

If V2 � V1 is actually positive definite (rather than just positive semidefinite), then

½
ffiffiffiffiffi
N

p
ðŷy2 � ŷy1Þ� 0ðV̂V2 � V̂V1Þ�1½

ffiffiffiffiffi
N

p
ðŷy2 � ŷy1Þ�@

a
w2

P under the assumptions of Lemma

14.1, where V̂Vg is a consistent estimator of Vg, g ¼ 1; 2. Statistically significant di¤er-

ences between ŷy2 and ŷy1 signal some sort of model misspecification. (See Section

6.2.1, where we discussed this form of the Hausman test for comparing 2SLS and

OLS to test whether the explanatory variables are exogenous.) If assumptions (14.55)

and (14.56) do not hold, this standard form of the Hausman statistic is invalid.

Given Lemma 14.1, we can state a condition that implies e‰ciency of an estimator

in an entire class of estimators. It is useful to be somewhat formal in defining the

relevant class of estimators. We do so by introducing an index, t. For each t in an

index set, say, T, the estimator ŷyt has an associated st and At such that the asymp-

totic variance of
ffiffiffiffiffi
N

p
ðŷyt � yoÞ has the form (14.54). The index can be very abstract; it

simply serves to distinguish di¤erent
ffiffiffiffiffi
N

p
-asymptotically normal estimators of yo. For

example, in the class of M-estimators, the set T consists of objective functions qð� ; �Þ
such that yo uniquely minimizes E½qðw; yÞ� over Y, and q satisfies the twice con-

tinuously di¤erentiable and bounded moment assumptions imposed for asymptotic

normality. For GMM with given moment conditions, T is the set of all L � L posi-

tive definite matrices. We will see another example in Section 14.5.3.

Lemma 14.1 immediately implies the following theorem.

theorem 14.3 (E‰ciency in a Class of Estimators): Let fŷyt: t A Tg be a class offfiffiffiffiffi
N

p
-asymptotically normal estimators with variance matrices of the form (14.54). If
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for some t� A T and r > 0

E½stðwÞst � ðwÞ0 � ¼ rAt; all t A T ð14:57Þ

then ŷyt � is asymptotically relatively e‰cient in the class fŷyt: t A Tg.

This theorem has many applications. If we specify a class of estimators by defining

the index set T, then the estimator ŷyt � is more e‰cient than all other estimators in the

class if we can show condition (14.57). [A partial converse to Theorem 14.3 also

holds; see Newey and McFadden (1994, Section 5.3).] This is not to say that ŷyt � is

necessarily more e‰cient than all possible
ffiffiffiffiffi
N

p
-asymptotically normal estimators. If

there is an estimator that falls outside of the specified class, then Theorem 14.3 does

not help us to compare it with ŷyt � . In this sense, Theorem 14.3 is a more general (and

asymptotic) version of the Gauss-Markov theorem from linear regression analysis:

while the Gauss-Markov theorem states that OLS has the smallest variance in the

class of linear, unbiased estimators, it does not allow us to compare OLS to unbiased

estimators that are not linear in the vector of observations on the dependent variable.

14.5.2 E‰ciency of MLE

Students of econometrics are often told that the maximum likelihood estimator is

‘‘e‰cient.’’ Unfortunately, in the context of conditional MLE from Chapter 13, the

statement of e‰ciency is usually ambiguous; Manski (1988, Chapter 8) is a notable

exception. Theorem 14.3 allows us to state precisely the class of estimators in which

the conditional MLE is relatively e‰cient. As in Chapter 13, we let Eyð� j xÞ denote

the expectation with respect to the conditional density f ðy j x; yÞ.
Consider the class of estimators solving the first-order condition

N�1
XN

i¼1

gðwi; ŷyÞ1 0 ð14:58Þ

where the P � 1 function gðw; yÞ such that

Ey½gðw; yÞ j x� ¼ 0; all x A X; all y A Y ð14:59Þ

In other words, the class of estimators is indexed by functions g satisfying a zero

conditional moment restriction. We assume the standard regularity conditions from

Chapter 12; in particular, gðw; �Þ is continuously di¤erentiably on the interior of Y.

As we showed in Section 13.7, functions g satisfying condition (14.59) generally

have the property

�E½‘ygðw; yoÞ j x� ¼ E½gðw; yoÞsðw; yoÞ0 j x�
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where sðw; yÞ is the score of log f ðy j x; yÞ (as always, we must impose certain regu-

larity conditons on g and log f ). If we take the expectation of both sides with respect

to x, we obtain condition (14.57) with r ¼ 1, At ¼ E½‘ygðw; yoÞ�, and st � ðwÞ ¼
�sðw; yoÞ. It follows from Theorem 14.3 that the conditional MLE is e‰cient in

the class of estimators solving equation (14.58), where gð�Þ satisfies condition (14.59)

and appropriate regularity conditions. Recall from Section 13.5.1 that the asymp-

totic variance of the (centered and standardized) CMLE is fE½sðw; yoÞsðw; yoÞ0 �g�1.

This is an example of an e‰ciency bound because no estimator of the form

(14.58) under condition (14.59) can have an asymptotic variance smaller than

fE½sðw; yoÞsðw; yoÞ0 �g�1 (in the matrix sense). When an estimator from this class has

the same asymptotic variance as the CMLE, we way it achieves the e‰ciency bound.

It is important to see that the e‰ciency of the conditional MLE in the class of

estimators solving equation (14.58) under condition (14.59) does not require x to be

ancillary for yo: except for regularity conditions, the distribution of x is essentially

unrestricted, and could depend on yo. Conditional MLE simply ignores information

on yo that might be contained in the distribution of x, but so do all other estimators

that are based on condition (14.59).

By choosing x to be empty, we conclude that the unconditional MLE is e‰cient in

the class of estimators based on equation (14.58) with Ey½gðw; yÞ� ¼ 0, all y A Y. This

is a very broad class of estimators, including all of the estimators requiring condition

(14.59): if a function g satisfies condition (14.59), it has zero unconditional mean, too.

Consequently, the unconditional MLE is generally more e‰cient than the condi-

tional MLE. This e‰ciency comes at the price of having to model the joint density of

ðy; xÞ, rather than just the conditional density of y given x. And, if our model for the

density of x is incorrect, the unconditional MLE generally would be inconsistent.

When is CMLE as e‰cient as unconditional MLE for estimating yo? Assume that

the model for the joint density of ðx; yÞ can be expressed as f ðy j x; yÞhðx; dÞ, where y

is the parameter vector of interest, and hðx; doÞ is the marginal density of x for some

vector do. Then, if d does not depend on y in the sense that ‘yhðx; dÞ ¼ 0 for all x and

d, x is ancillary for yo. In fact, the CMLE is identical to the unconditional MLE. If d

depends on y, the term ‘y log½hðx; dÞ� generally contains information for estimating

yo, and unconditional MLE will be more e‰cient than CMLE.

14.5.3 E‰cient Choice of Instruments under Conditional Moment Restrictions

We can also apply Theorem 14.3 to find the optimal set of instrumental variables

under general conditional moment restrictions. For a G � 1 vector rðwi; yÞ, where

wi A RM , yo is said to satisfy conditional moment restrictions if

E½rðwi; yoÞ j xi� ¼ 0 ð14:60Þ
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where xi A RK is a subvector of wi. Under assumption (14.60), the matrix Zi

appearing in equation (14.22) can be any function of xi. For a given matrix Zi, we

obtain the e‰cient GMM estimator by using the e‰cient weighting matrix. However,

unless Zi is the optimal set of instruments, we can generally obtain a more e‰cient

estimator by adding any nonlinear function of xi to Zi. Because the list of potential

IVs is endless, it is useful to characterize the optimal choice of Zi.

The solution to this problem is now pretty well known, and it can be obtained by

applying Theorem 14.3. Let

WoðxiÞ1Var½rðwi; yoÞ j xi� ð14:61Þ

be the G � G conditional variance of riðyoÞ given xi, and define

RoðxiÞ1E½‘y rðwi; yoÞ j xi� ð14:62Þ

Problem 14.3 asks you to verify that the optimal choice of instruments is

Z�ðxiÞ1WoðxiÞ�1RoðxiÞ ð14:63Þ

The optimal instrument matrix is always G � P, and so the e‰cient method of

moments estimator solves

XN

i¼1

Z�ðxiÞ0riðŷyÞ ¼ 0

There is no need to use a weighting matrix. Incidentally, by taking gðw; yÞ1
Z�ðxÞ0rðw; yÞ, we obtain a function g satisfying condition (14.59). From our discus-

sion in Section 14.5.2, it follows immediately that the conditional MLE is no less

e‰cient than the optimal IV estimator.

In practice, Z�ðxiÞ is never a known function of xi. In some cases the function

RoðxiÞ is a known function of xi and yo and can be easily estimated; this statement is

true of linear SEMs under conditional mean assumptions (see Chapters 8 and 9) and

of multivariate nonlinear regression, which we cover later in this subsection. Rarely

do moment conditions imply a parametric form for WoðxiÞ, but sometimes homo-

skedasticity is assumed:

E½riðyoÞriðyoÞ j xi� ¼ Wo ð14:64Þ

and Wo is easily estimated as in equation (14.30) given a preliminary estimate of yo.

Since both WoðxiÞ and RoðxiÞ must be estimated, we must know the asymptotic

properties of GMM with generated instruments. Under conditional moment restric-

tions, generated instruments have no e¤ect on the asymptotic variance of the GMM

estimator. Thus, if the matrix of instruments is Zðxi; goÞ for some unknown parame-
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ter vector go, and ĝg is an estimator such that
ffiffiffiffiffi
N

p
ðĝg� goÞ ¼ Opð1Þ, then the GMM

estimator using the generated instruments ẐZi 1Zðxi; ĝgÞ has the same limiting dis-

tribution as the GMM estimator using instruments Zðxi; goÞ (using any weighting

matrix). This result follows from a mean value expansion, using the fact that the de-

rivative of each element of Zðxi; gÞ with respect to g is orthogonal to riðyoÞ under

condition (14.60):

N�1=2
XN

i¼1

ẐZ 0
iriðŷyÞ ¼ N�1=2

XN

i¼1

ZiðgoÞ
0riðyoÞ

þ E½ZiðgoÞ
0RoðxiÞ�

ffiffiffiffiffi
N

p
ðŷy � yoÞ þ opð1Þ ð14:65Þ

The right-hand side of equation (14.65) is identical to the expansion with ẐZi replaced

with ZiðgoÞ.
Assuming now that ZiðgoÞ is the matrix of e‰cient instruments, the asymptotic

variance of the e‰cient estimator is

Avar
ffiffiffiffiffi
N

p
ðŷy � yoÞ ¼ fE½RoðxiÞ0WoðxiÞ�1

RoðxiÞ�g�1 ð14:66Þ

as can be seen from Section 14.1 by noting that Go ¼ E½RoðxiÞ0WoðxiÞ�1RoðxiÞ� and

Lo ¼ G�1
o when the instruments are given by equation (14.63).

Equation (14.66) is another example of an e‰ciency bound, this time under the

conditional moment restrictions (14.54). What we have shown is that any GMM es-

timator has variance matrix that di¤ers from equation (14.66) by a positive semi-

definite matrix. Chamberlain (1987) has shown more: any estimator that uses only

condition (14.60) and satisfies regularity conditions has variance matrix no smaller

than equation (14.66).

Estimation of RoðxiÞ generally requires nonparametric methods. Newey (1990)

describes one approach. Essentially, regress the elements of ‘y rið ^̂yŷyyÞ on polynomial

functions of xi (or other functions with good approximating properties), where
^̂
yŷyy is

an initial estimate of yo. The fitted values from these regressions can be used as the

elements of R̂Ri. Other nonparametric approaches are available. See Newey (1990,

1993) for details. Unfortunately, we need a fairly large sample size in order to apply

such methods e¤ectively.

As an example of finding the optimal instruments, consider the problem of esti-

mating a conditional mean for a vector yi:

Eðyi j xiÞ ¼ mðxi; yoÞ ð14:67Þ

Then the residual function is rðwi; yÞ1 yi � mðxi; yÞ and WoðxiÞ ¼ Varðyi j xiÞ;
therefore, the optimal instruments are ZoðxiÞ1WoðxiÞ�1‘ymðxi; yoÞ. This is an im-
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portant example where RoðxiÞ ¼ �‘ymðxi; yoÞ is a known function of xi and yo. If

the homoskedasticity assumption

Varðyi j xiÞ ¼ Wo ð14:68Þ

holds, then the e‰cient estimator is easy to obtain. First, let
^̂
yŷyy be the multivariate

nonlinear least squares (MNLS) estimator, which solves miny AY
PN

i¼1½yi �mðxi; yÞ� 0 �
½yi � mðxi; yÞ�. As discussed in Problem 12.11, the MNLS estimator is generally

consistent and
ffiffiffiffiffi
N

p
-asymptotic normal. Define the residuals ^̂uûuui 1 yi � mðxi;

^̂
yŷyyÞ, and

define a consistent estimator of Wo by ŴW ¼ N�1
PN

i¼1
^̂uûuui
^̂uûuu 0

i. An e‰cient estimator, ŷy,

solves

XN

i¼1

‘ymðxi;
^̂
yŷyyÞ0ŴW�1½yi � mðxi; ŷyÞ� ¼ 0

and the asymptotic variance of
ffiffiffiffiffi
N

p
ðŷy � yoÞ is fE½‘ymiðyoÞ0W�1

o ‘ymiðyoÞ�g�1. An

asymptotically equivalent estimator is the nonlinear SUR estimator described in

Problem 12.7. In either case, the estimator of AvarðŷyÞ under assumption (14.68) is

AvâarðŷyÞ ¼
XN

i¼1

‘ymiðŷyÞ0ŴW�1‘ymiðŷyÞ
" #�1

Because the nonlinear SUR estimator is a two-step M-estimator and Bo ¼ Ao (in the

notation of Chapter 12), the simplest forms of tests statistics are valid. If assumption

(14.68) fails, the nonlinear SUR estimator is consistent, but robust inference should

be used because Ao 0Bo. And, the estimator is no longer e‰cient.

14.6 Classical Minimum Distance Estimation

We end this chapter with a brief treatment of classical minimum distance (CMD)

estimation. This method has features in common with GMM, and often it is a con-

venient substitute for GMM.

Suppose that the P � 1 parameter vector of interest, yo, which often consists of

parameters from a structural model, is known to be related to an S � 1 vector of

reduced form parameters, po, where S > P. In particular, po ¼ hðyoÞ for a known,

continuously di¤erentiable function h: RP ! RS, so that h maps the structural

parameters into the reduced form parameters.

CMD estimation of yo entails first estimating po by p̂p, and then choosing an esti-

mator ŷy of yo by making the distance between p̂p and hðŷyÞ as small as possible. As

with GMM estimation, we use a weighted Euclidean measure of distance. While a
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CMD estimator can be defined for any positive semidefinite weighting matrix, we

consider only the e‰cient CMD estimator given our choice of p̂p. As with e‰cient

GMM, the CMD estimator that uses the e‰cient weighting matrix is also called the

minimum chi-square estimator.

Assuming that for an S � S positive definite matrix Xoffiffiffiffiffi
N

p
ðp̂p � poÞ@

a
Normalð0;XoÞ ð14:69Þ

it turns out that an e‰cient CMD estimator solves

min
y AY

fp̂p � hðyÞg0
X̂X�1fp̂p � hðyÞg ð14:70Þ

where plimN!y X̂X ¼ Xo. In other words, an e‰cient weighting matrix is the inverse

of any consistent estimator of Avar
ffiffiffiffiffi
N

p
ðp̂p � poÞ.

We can easily derive the asymptotic variance of
ffiffiffiffiffi
N

p
ðŷy � yoÞ. The first-order con-

dition for ŷy is

HðŷyÞ0X̂X�1fp̂p � hðŷyÞg1 0 ð14:71Þ

where HðyÞ1‘yhðyÞ is the S � P Jacobian of hðyÞ. Since hðyoÞ ¼ po andffiffiffiffiffi
N

p
fhðŷyÞ � hðyoÞg ¼ HðyoÞ

ffiffiffiffiffi
N

p
ðŷy � yoÞ þ opð1Þ

by a standard mean value expansion about yo, we have

0 ¼ HðŷyÞ0X̂X�1f
ffiffiffiffiffi
N

p
ðp̂p � poÞ � HðyoÞ

ffiffiffiffiffi
N

p
ðŷy � yoÞg þ opð1Þ ð14:72Þ

Because Hð�Þ is continuous and ŷy !p
yo, HðŷyÞ ¼ HðyoÞ þ opð1Þ; by assumption X̂X ¼

Xo þ opð1Þ. Therefore,

HðyoÞ0X�1
o HðyoÞ

ffiffiffiffiffi
N

p
ðŷy � yoÞ ¼ HðyoÞ0X�1

o

ffiffiffiffiffi
N

p
ðp̂p � poÞ þ opð1Þ

By assumption (14.69) and the asymptotic equivalence lemma,

HðyoÞ0X�1
o HðyoÞ

ffiffiffiffiffi
N

p
ðŷy � yoÞ@

a
Normal½0;HðyoÞ0X�1

o HðyoÞ�

and soffiffiffiffiffi
N

p
ðŷy � yoÞ@

a
Normal½0; ðH 0

oX
�1
o HoÞ�1� ð14:73Þ

provided that Ho 1HðyoÞ has full-column rank P, as will generally be the case when

yo is identified and hð�Þ contains no redundancies. The appropriate estimator of

AvâarðŷyÞ is

AvâarðŷyÞ1 ðĤH 0X̂X�1ĤHÞ�1=N ¼ ðĤH 0½Avâarðp̂pÞ��1
ĤHÞ�1 ð14:74Þ
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The proof that X̂X�1 is the optimal weighting matrix in expression (14.70) is very

similar to the derivation of the optimal weighting matrix for GMM. (It can also

be shown by applying Theorem 14.3.) We will simply call the e‰cient estimator

the CMD estimator, where it is understood that we are using the e‰cient weighting

matrix.

There is another e‰ciency issue that arises when more than one
ffiffiffiffiffi
N

p
-asymptotically

normal estimator for po is available: Which estimator of po should be used? Let ŷy be

the estimator based on p̂p, and let ~yy be the estimator based on another estimator, ~pp.

You are asked to show in Problem 14.6 that Avar
ffiffiffiffiffi
N

p
ð~yy � yoÞ � Avar

ffiffiffiffiffi
N

p
ðŷy � yoÞ is

p.s.d. whenever Avar
ffiffiffiffiffi
N

p
ð~pp � poÞ � Avar

ffiffiffiffiffi
N

p
ðp̂p � poÞ is p.s.d. In other words, we

should use the most e‰cient estimator of po to obtain the most e‰cient estimator of yo.

A test of overidentifying restrictions is immediately available after estimation, be-

cause, under the null hypothesis po ¼ hðyoÞ,

N½p̂p � hðŷyÞ�0X̂X�1½p̂p � hðŷyÞ�@a w2
S�P ð14:75Þ

To show this result, we useffiffiffiffiffi
N

p
½p̂p � hðŷyÞ� ¼

ffiffiffiffiffi
N

p
ðp̂p � poÞ � Ho

ffiffiffiffiffi
N

p
ðŷy � yoÞ þ opð1Þ

¼
ffiffiffiffiffi
N

p
ðp̂p � poÞ � HoðH 0

oX
�1
o HoÞ�1

H 0
oX

�1
o

ffiffiffiffiffi
N

p
ðp̂p � poÞ þ opð1Þ

¼ ½IS � HoðH 0
oX

�1
o HoÞ�1H 0

oX
�1
o �

ffiffiffiffiffi
N

p
ðp̂p � poÞ þ opð1Þ

Therefore, up to opð1Þ,

X�1=2
o

ffiffiffiffiffi
N

p
fp̂p � hðŷyÞg ¼ ½IS � X�1=2

o HoðH 0
oX

�1
o HoÞ�1H 0

oX
�1=2
o �Z1MoZ

where Z1X�1=2
o

ffiffiffiffiffi
N

p
ðp̂p � poÞ !

d
Normalð0; ISÞ. But Mo is a symmetric idempotent

matrix with rank S � P, so f
ffiffiffiffiffi
N

p
½p̂p � hðŷyÞ�g0

X�1
o f

ffiffiffiffiffi
N

p
½p̂p � hðŷyÞ�g@a w2

S�P. Because X̂X

is consistent for Xo, expression (14.75) follows from the asymptotic equivalence

lemma. The statistic can also be expressed as

fp̂p � hðŷyÞg0½Avâarðp̂pÞ��1fp̂p � hðŷyÞg ð14:76Þ

Testing restrictions on yo is also straightforward, assuming that we can express the

restrictions as yo ¼ dðaoÞ for an R � 1 vector ao, R < P. Under these restrictions,

po ¼ h½dðaoÞ�1 gðaoÞ. Thus, ao can be estimated by minimum distance by solving

problem (14.70) with a in place of y and gðaÞ in place of hðyÞ. The same estimator X̂X

should be used in both minimization problems. Then it can be shown (under interi-

ority and di¤erentiability) that
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N½p̂p � gðâaÞ�0X̂X�1½p̂p � gðâaÞ� � N½p̂p � hðŷyÞ�0X̂X�1½p̂p � hðŷyÞ�@a w2
P�R ð14:77Þ

when the restrictions on yo are true.

To illustrate the application of CMD estimation, we reconsider Chamberlain’s

(1982, 1984) approach to linear, unobserved e¤ects panel data models. (See Section

11.3.2 for the GMM approach.) The key equations are

yit ¼ cþ xi1l1 þ � � � þ xitðb þ ltÞ þ � � � þ xiTlT þ vit ð14:78Þ

where

EðvitÞ ¼ 0; Eðx 0
ivitÞ ¼ 0; t ¼ 1; 2; . . . ;T ð14:79Þ

(For notational simplicity we do not index the true parameters by ‘‘o’’.) Equation

(14.78) embodies the restrictions on the ‘‘structural’’ parameters y1 ðc; l 0
1; . . . ;

l 0
T ; b

0Þ 0, a ð1 þ TK þ KÞ � 1 vector. To apply CMD, write

yit ¼ pt0 þ xipt þ vit; t ¼ 1; . . . ;T

so that the vector p is Tð1 þ TKÞ � 1. When we impose the restrictions,

pt0 ¼ c, pt ¼ ½l 0
1; l

0
2; . . . ; ðb þ ltÞ0; . . . ; l 0

T �
0; t ¼ 1; . . . ;T

Therefore, we can write p ¼ Hy for a ðT þ T 2KÞ � ð1 þ TK þ KÞ matrix H. When

T ¼ 2, p can be written with restrictions imposed as p ¼ ðc; b 0 þ l 0
1; l

0
2;c; l

0
1; b

0 þ
l 0

2Þ
0, and so

H ¼

1 0 0 0

0 IK 0 IK

0 0 IK 0

1 0 0 0

0 IK 0 0

0 0 IK IK

2
666666664

3
777777775

The CMD estimator can be obtained in closed form, once we have p̂p; see Problem

14.7 for the general case.

How should we obtain p̂p, the vector of estimates without the restrictions imposed?

There is really only one way, and that is OLS for each time period. Condition (14.79)

ensures that OLS is consistent and
ffiffiffiffiffi
N

p
-asymptotically normal. Why not use a system

method, in particular, SUR? For one thing, we cannot generally assume that vi sat-

isfies the requisite homoskedasticity assumption that ensures that SUR is more e‰-

cient than OLS equation by equation; see Section 11.3.2. Anyway, because the same
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regressors appear in each equation and no restrictions are imposed on the pt, OLS

and SUR are identical. Procedures that might use nonlinear functions of xi as

instruments are not allowed under condition (14.79).

The estimator X̂X of Avar
ffiffiffiffiffi
N

p
ðp̂p � pÞ is the robust asymptotic variance for system

OLS from Chapter 7:

X̂X1 N�1
XN

i¼1

X 0
iXi

 !�1

N�1
XN

i¼1

X 0
i v̂vi v̂v

0
i Xi

 !
N�1

XN

i¼1

X 0
iXi

 !�1

ð14:80Þ

where Xi ¼ IT n ð1; xiÞ is T � ðT þ T 2KÞ and v̂vi is the vector of OLS residuals; see

also equation (7.26).

Given the linear model with an additive unobserved e¤ect, the overidentification

test statistic (14.75) in Chamberlain’s setup is a test of the strict exogeneity assump-

tion. Essentially, it is a test of whether the leads and lags of xt appearing in each time

period are due to a time-constant unobserved e¤ect ci. The number of overidentifying

restrictions is ðT þ T 2KÞ � ð1 þ TK þ KÞ. Perhaps not surprisingly, the minimum

distance approach to estimating y is asymptotically equivalent to the GMM proce-

dure we described in Section 11.3.2, as can be reasoned from the work of Angrist and

Newey (1991).

One hypothesis of interest concerning y is that lt ¼ 0, t ¼ 1; . . . ;T . Under this

hypothesis, the random e¤ects assumption that the unobserved e¤ect ci is uncorre-

lated with xit for all t holds. We discussed a test of this assumption in Chapter 10.

A more general test is available in the minimum distance setting. First, estimate

a1 ðc; b 0Þ 0 by minimum distance, using p̂p and X̂X in equation (14.80). Second, com-

pute the test statistic (14.77). Chamberlain (1984) gives an empirical example.

Minimum distance methods can be applied to more complicated panel data models,

including some of the duration models that we cover in Chapter 20. (See Han and

Hausman, 1990.) Van der Klaauw (1996) uses minimum distance estimation in a

complicated dynamic model of labor force participation and marital status.

Problems

14.1. Consider the system in equations (14.34) and (14.35).

a. How would you estimate equation (14.35) using single-equation methods? Give

a few possibilities, ranging from simple to more complicated. State any additional

assumptions relevant for estimating asymptotic variances or for e‰ciency of the

various estimators.
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b. Is equation (14.34) identified if g1 ¼ 0?

c. Now suppose that g3 ¼ 0, so that the parameters in equation (14.35) can be con-

sistently estimated by OLS. Let ŷy2 be the OLS fitted values. Explain why nonlinear

least squares estimation of

y1 ¼ x1d1 þ g1ŷy
g2

2 þ error

does not consistently estimate d1, g1, and g2 when g1 0 0 and g2 0 1.

14.2. Consider the following labor supply function nonlinear in parameters:

hours ¼ z1d1 þ g1ðwager1 � 1Þ=r1 þ u1; Eðu1 j zÞ ¼ 0

where z1 contains unity and z is the full set of exogenous variables.

a. Show that this model contains the level-level and level-log models as special cases.

[Hint: For w > 0, ðwr � 1Þ=r ! logðwÞ as r ! 0.]

b. How would you test H0: g1 ¼ 0? (Be careful here; r1 cannot be consistently esti-

mated under H0.)

c. Assuming that g1 0 0, how would you estimate this equation if Varðu1 j zÞ ¼ s2
1 ?

What if Varðu1 j zÞ is not constant?

d. Find the gradient of the residual function with respect to d1, g1, and r1. [Hint:

Recall that the derivative of wr with respect to r is wr logðwÞ.]
e. Explain how to obtain the score test of H0: r1 ¼ 1.

14.3. Use Theorem 14.3 to show that the optimal instrumental variables based on

the conditional moment restrictions (14.60) are given by equation (14.63).

14.4. a. Show that, under Assumptions WNLS.1–WNLS.3 in Chapter 12, the

weighted NLS estimator has asymptotic variance equal to that of the e‰cient IV es-

timator based on the orthogonality condition E½ðyi � mðxi; boÞÞ j xi� ¼ 0.

b. When does the nonlinear least squares estimator of bo achieve the e‰ciency bound

derived in part a?

c. Suppose that, in addition to Eðy j xÞ ¼ mðx; boÞ, you use the restriction Varðy j xÞ
¼ s2

o for some s2
o > 0. Write down the two conditional moment restrictions for esti-

mating bo and s2
o . What are the e‰cient instrumental variables?

14.5. Write down y, p, and the matrix H such that p ¼ Hy in Chamberlain’s

approach to unobserved e¤ects panel data models when T ¼ 3.

14.6. Let p̂p and ~pp be two consistent estimators of po, with Avar
ffiffiffiffiffi
N

p
ðp̂p � poÞ ¼ Xo

and Avar
ffiffiffiffiffi
N

p
ð~pp � poÞ ¼ Lo. Let ŷy be the CMD estimator based on p̂p, and let ~yy be
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the CMD estimator based on ~pp, where po ¼ hðyoÞ. Show that, if Lo � Xo is positive

semidefinite, then so is Avar
ffiffiffiffiffi
N

p
ð~yy � yoÞ � Avar

ffiffiffiffiffi
N

p
ðŷy � yoÞ. (Hint: Twice use the

fact that, for two positive definite matrices A and B, A � B is p.s.d. if and only if

B�1 � A�1 is p.s.d.)

14.7. Show that when the mapping from yo to po is linear, po ¼ Hyo for a known

S � P matrix H with rankðHÞ ¼ P, the CMD estimator ŷy is

ŷy ¼ ðH 0X̂X�1HÞ�1H 0X̂X�1p̂p ð14:81Þ

Equation (14.81) looks like a generalized least squares (GLS) estimator of p̂p on

H using variance matrix X̂X, and this apparent similarity has prompted some to call

the minimum chi-square estimator a ‘‘generalized least squares’’ (GLS) estimator.

Unfortunately, the association between CMD and GLS is misleading because p̂p

and H are not data vectors whose row dimension, S, grows with N. The asymptotic

properties of the minimum chi-square estimator do not follow from those of GLS.

14.8. In Problem 13.9, suppose you model the unconditional distribution of y0 as

f0ðy0; yÞ, which depends on at least some elements of y appearing in ftðyt j yt�1; yÞ.
Discuss the pros and cons of using f0ðy0; yÞ in a maximum likelihood analysis along

with ftðyt j yt�1; yÞ, t ¼ 1; 2; . . . ;T .

14.9. Verify that, for the linear unobserved e¤ects model under Assumptions RE.1–

RE.3, the conditions of Lemma 14.1 hold for the fixed e¤ects ðŷy2Þ and the ran-

dom e¤ects ðŷy1Þ estimators, with r ¼ s2
u . [Hint: For clarity, it helps to introduce a

cross section subscript, i. Then A1 ¼ Eð�XX 0
i
�XXiÞ, where �XXi ¼ Xi � ljT xi; A2 ¼ Eð€XX 0

i
€XXiÞ,

where €XXi ¼ Xi � jT xi; si1 ¼ �XX 0
iri, where ri ¼ vi � ljT vi; and si2 ¼ €XX 0

iui; see Chapter

10 for further notation. You should show that €XX 0
iui ¼ €XX 0

iri and then €XX 0
i
�XXi ¼ €XX 0

i
€XXi.]

Appendix 14A

Proof of Lemma 14.1: Given condition (14.55), A1 ¼ ð1=rÞEðs1s 01Þ, a P � P sym-

metric matrix, and

V1 ¼ A�1
1 Eðs1s 01ÞA

�1
1 ¼ r2½Eðs1s 01Þ�

�1

where we drop the argument w for notational simplicity. Next, under condition

(14.56), A2 ¼ ð1=rÞEðs 02s1Þ, and so

V2 ¼ A�1
2 Eðs2s 02ÞðA

0
2Þ

�1 ¼ r2½Eðs2s 01Þ�
�1Eðs2s 02Þ½Eðs1s 02Þ�

�1
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Now we use the standard result that V2 � V1 is positive semidefinite if and only if

V�1
1 � V�1

2 is p.s.d. But, dropping the term r2 (which is simply a positive constant),

we have

V�1
1 � V�1

2 ¼ Eðs1s 01Þ � Eðs1s 02Þ½Eðs2s 02Þ�
�1Eðs2s 01Þ1Eðr1r 01Þ

where r1 is the P � 1 population residual from the population regression s1 on s2. As

Eðr1r 01Þ is necessarily p.s.d., this step completes the proof.
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IV NONLINEAR MODELS AND RELATED TOPICS

We now apply the general methods of Part III to study specific nonlinear models that

often arise in applications. Many nonlinear econometric models are intended to ex-

plain limited dependent variables. Roughly, a limited dependent variable is a variable

whose range is restricted in some important way. Most variables encountered in

economics are limited in range, but not all require special treatment. For example,

many variables—wage, population, and food consumption, to name just a few—can

only take on positive values. If a strictly positive variable takes on numerous values,

special econometric methods are rarely called for. Often, taking the log of the vari-

able and then using a linear model su‰ces.

When the variable to be explained, y, is discrete and takes on a finite number of

values, it makes little sense to treat it as an approximately continuous variable. Dis-

creteness of y does not in itself mean that a linear model for Eðy j xÞ is inappropriate.

However, in Chapter 15 we will see that linear models have certain drawbacks for

modeling binary responses, and we will treat nonlinear models such as probit and

logit. We also cover basic multinomial response models in Chapter 15, including the

case when the response has a natural ordering.

Other kinds of limited dependent variables arise in econometric analysis, especially

when modeling choices by individuals, families, or firms. Optimizing behavior often

leads to corner solutions for some nontrivial fraction of the population. For example,

during any given time, a fairly large fraction of the working age population does not

work outside the home. Annual hours worked has a population distribution spread

out over a range of values, but with a pileup at the value zero. While it could be that

a linear model is appropriate for modeling expected hours worked, a linear model

will likely lead to negative predicted hours worked for some people. Taking the nat-

ural log is not possible because of the corner solution at zero. In Chapter 16 we will

discuss econometric models that are better suited for describing these kinds of limited

dependent variables.

We treat the problem of sample selection in Chapter 17. In many sample selection

contexts the underlying population model is linear, but nonlinear econometric meth-

ods are required in order to correct for nonrandom sampling. Chapter 17 also covers

testing and correcting for attrition in panel data models, as well as methods for

dealing with stratified samples.

In Chapter 18 we provide a modern treatment of switching regression models and,

more generally, random coe‰cient models with endogenous explanatory variables.

We focus on estimating average treatment e¤ects.

We treat methods for count-dependent variables, which take on nonnegative inte-

ger values, in Chapter 19. An introduction to modern duration analysis is given in

Chapter 20.



 



15 Discrete Response Models

15.1 Introduction

In qualitative response models, the variable to be explained, y, is a random variable

taking on a finite number of outcomes; in practice, the number of outcomes is usually

small. The leading case occurs where y is a binary response, taking on the values zero

and one, which indicate whether or not a certain event has occurred. For example,

y ¼ 1 if a person is employed, y ¼ 0 otherwise; y ¼ 1 if a family contributes to

charity during a particular year, y ¼ 0 otherwise; y ¼ 1 if a firm has a particular type

of pension plan, y ¼ 0 otherwise. Regardless of the definition of y, it is traditional to

refer to y ¼ 1 as a success and y ¼ 0 as a failure.

As in the case of linear models, we often call y the explained variable, the response

variable, the dependent variable, or the endogenous variable; x1 ðx1; x2; . . . ; xKÞ is

the vector of explanatory variables, regressors, independent variables, exogenous

variables, or covariates.

In binary response models, interest lies primarily in the response probability,

pðxÞ1Pðy ¼ 1 j xÞ ¼ Pðy ¼ 1 j x1; x2; . . . ; xKÞ ð15:1Þ

for various values of x. For example, when y is an employment indicator, x might

contain various individual characteristics such as education, age, marital status, and

other factors that a¤ect employment status, such as a binary indicator variable for

participation in a recent job training program, or measures of past criminal behavior.

For a continuous variable, xj, the partial e¤ect of xj on the response probability is

qPðy ¼ 1 j xÞ
qxj

¼ qpðxÞ
qxj

ð15:2Þ

When multiplied by Dxj , equation (15.2) gives the approximate change in Pðy ¼ 1 j xÞ
when xj increases by Dxj, holding all other variables fixed (for ‘‘small’’ Dxj). Of

course if, say, x1 1 z and x2 1 z2 for some variable z (for example, z could be work

experience), we would be interested in qpðxÞ=qz.

If xK is a binary variable, interest lies in

pðx1; x2; . . . ; xK�1; 1Þ � pðx1; x2; . . . ; xK�1; 0Þ ð15:3Þ

which is the di¤erence in response probabilities when xK ¼ 1 and xK ¼ 0. For most

of the models we consider, whether a variable xj is continuous or discrete, the partial

e¤ect of xj on pðxÞ depends on all of x.

In studying binary response models, we need to recall some basic facts about

Bernoulli (zero-one) random variables. The only di¤erence between the setup here



and that in basic statistics is the conditioning on x. If Pðy ¼ 1 j xÞ ¼ pðxÞ then

Pðy ¼ 0 j xÞ ¼ 1 � pðxÞ, Eðy j xÞ ¼ pðxÞ, and Varðy j xÞ ¼ pðxÞ½1 � pðxÞ�.

15.2 The Linear Probability Model for Binary Response

The linear probability model (LPM) for binary response y is specified as

Pðy ¼ 1 j xÞ ¼ b0 þ b1x1 þ b2x2 þ � � � þ bK xK ð15:4Þ

As usual, the xj can be functions of underlying explanatory variables, which would

simply change the interpretations of the bj. Assuming that x1 is not functionally re-

lated to the other explanatory variables, b1 ¼ qPðy ¼ 1 j xÞ=qx1. Therefore, b1 is the

change in the probability of success given a one-unit increase in x1. If x1 is a binary

explanatory variable, b1 is just the di¤erence in the probability of success when

x1 ¼ 1 and x1 ¼ 0, holding the other xj fixed.

Using functions such as quadratics, logarithms, and so on among the independent

variables causes no new di‰culties. The important point is that the bj now measure

the e¤ects of the explanatory variables xj on a particular probability.

Unless the range of x is severely restricted, the linear probability model cannot be a

good description of the population response probability Pðy ¼ 1 j xÞ. For given values

of the population parameters bj, there would usually be feasible values of x1; . . . ; xK

such that b0 þ xb is outside the unit interval. Therefore, the LPM should be seen as a

convenient approximation to the underlying response probability. What we hope is

that the linear probability approximates the response probability for common values

of the covariates. Fortunately, this often turns out to be the case.

In deciding on an appropriate estimation technique, it is useful to derive the con-

ditional mean and variance of y. Since y is a Bernoulli random variable, these are

simply

Eðy j xÞ ¼ b0 þ b1x1 þ b2x2 þ � � � þ bK xK ð15:5Þ

Varðy j xÞ ¼ xbð1 � xbÞ ð15:6Þ

where xb is shorthand for the right-hand side of equation (15.5).

Equation (15.5) implies that, given a random sample, the OLS regression of y

on 1; x1; x2; . . . ; xK produces consistent and even unbiased estimators of the bj.

Equation (15.6) means that heteroskedasticity is present unless all of the slope co-

e‰cients b1; . . . ; bK are zero. A nice way to deal with this issue is to use standard

heteroskedasticity-robust standard errors and t statistics. Further, robust tests of

multiple restrictions should also be used. There is one case where the usual F statistic
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can be used, and that is to test for joint significance of all variables (leaving the con-

stant unrestricted). This test is asymptotically valid because Varðy j xÞ is constant

under this particular null hypothesis.

Since the form of the variance is determined by the model for Pðy ¼ 1 j xÞ, an

asymptotically more e‰cient method is weighted least squares (WLS). Let b̂b be the

OLS estimator, and let ŷyi denote the OLS fitted values. Then, provided 0 < ŷyi < 1 for

all observations i, define the estimated standard deviation as ŝsi 1 ½ ŷyið1 � ŷyiÞ�
1=2.

Then the WLS estimator, b �, is obtained from the OLS regression

yi=ŝsi on 1=ŝsi; xi1=ŝsi; . . . ; xiK=ŝsi; i ¼ 1; 2; . . . ;N ð15:7Þ

The usual standard errors from this regression are valid, as follows from the treat-

ment of weighted least squares in Chapter 12. In addition, all other testing can be

done using F statistics or LM statistics using weighted regressions.

If some of the OLS fitted values are not between zero and one, WLS analysis is not

possible without ad hoc adjustments to bring deviant fitted values into the unit in-

terval. Further, since the OLS fitted value ŷyi is an estimate of the conditional proba-

bility Pðyi ¼ 1 j xiÞ, it is somewhat awkward if the predicted probability is negative or

above unity.

Aside from the issue of fitted values being outside the unit interval, the LPM

implies that a ceteris paribus unit increase in xj always changes Pðy ¼ 1 j xÞ by the

same amount, regardless of the initial value of xj . This implication cannot literally be

true because continually increasing one of the xj would eventually drive Pðy ¼ 1 j xÞ
to be less than zero or greater than one.

Even with these weaknesses, the LPM often seems to give good estimates of the

partial e¤ects on the response probability near the center of the distribution of x.

(How good they are can be determined by comparing the coe‰cients from the LPM

with the partial e¤ects estimated from the nonlinear models we cover in Section 15.3.)

If the main purpose is to estimate the partial e¤ect of xj on the response probability,

averaged across the distribution of x, then the fact that some predicted values are

outside the unit interval may not be very important. The LPM need not provide very

good estimates of partial e¤ects at extreme values of x.

Example 15.1 (Married Women’s Labor Force Participation): We use the data from

MROZ.RAW to estimate a linear probability model for labor force participation

(inlf ) of married women. Of the 753 women in the sample, 428 report working non-

zero hours during the year. The variables we use to explain labor force participation

are age, education, experience, nonwife income in thousands (nwifeinc), number of

children less than six years of age (kidslt6), and number of kids between 6 and 18
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inclusive (kidsge6); 606 women report having no young children, while 118 report

having exactly one young child. The usual OLS standard errors are in parentheses,

while the heteroskedasticity-robust standard errors are in brackets:

in̂nlf ¼ :586

ð:154Þ
½:151�

� :0034

ð:0014Þ
½:0015�

nwifeinc þ :038

ð:007Þ
½:007�

educ þ :039

ð:006Þ
½:006�

exper � :00060

ð:00018Þ
½:00019�

exper2

� :016

ð:002Þ
½:002�

age � :262

ð:034Þ
½:032�

kidslt6 þ :013

ð:013Þ
½:013�

kidsge6

N ¼ 753; R2 ¼ :264

With the exception of kidsge6, all coe‰cients have sensible signs and are statistically

significant; kidsge6 is neither statistically significant nor practically important. The

coe‰cient on nwifeinc means that if nonwife income increases by 10 ($10,000), the

probability of being in the labor force is predicted to fall by .034. This is a small e¤ect

given that an increase in income by $10,000 in 1975 dollars is very large in this sam-

ple. (The average of nwifeinc is about $20,129 with standard deviation $11,635.)

Having one more small child is estimated to reduce the probability of inlf ¼ 1 by

about .262, which is a fairly large e¤ect.

Of the 753 fitted probabilities, 33 are outside the unit interval. Rather than using

some adjustment to those 33 fitted values and applying weighted least squares, we

just use OLS and report heteroskedasticity-robust standard errors. Interestingly, these

di¤er in practically unimportant ways from the usual OLS standard errors.

The case for the LPM is even stronger if most of the xj are discrete and take on

only a few values. In the previous example, to allow a diminishing e¤ect of young

children on the probability of labor force participation, we can break kidslt6 into

three binary indicators: no young children, one young child, and two or more young

children. The last two indicators can be used in place of kidslt6 to allow the first

young child to have a larger e¤ect than subsequent young children. (Interestingly,

when this method is used, the marginal e¤ects of the first and second young children

are virtually the same. The estimated e¤ect of the first child is about �.263, and the

additional reduction in the probability of labor force participation for the next child

is about �.274.)

In the extreme case where the model is saturated—that is, x contains dummy vari-

ables for mutually exclusive and exhaustive categories—the linear probability model
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is completely general. The fitted probabilities are simply the average yi within each

cell defined by the di¤erent values of x; we need not worry about fitted probabilities

less than zero or greater than one. See Problem 15.1.

15.3 Index Models for Binary Response: Probit and Logit

We now study binary response models of the form

Pðy ¼ 1 j xÞ ¼ GðxbÞ1 pðxÞ ð15:8Þ

where x is 1 � K, b is K � 1, and we take the first element of x to be unity. Examples

where x does not contain unity are rare in practice. For the linear probability model,

GðzÞ ¼ z is the identity function, which means that the response probabilities cannot

be between 0 and 1 for all x and b. In this section we assume that Gð�Þ takes on values

in the open unit interval: 0 < GðzÞ < 1 for all z A R.

The model in equation (15.8) is generally called an index model because it restricts

the way in which the response probability depends on x: pðxÞ is a function of x only

through the index xb ¼ b1 þ b2x2 þ � � � þ bK xK . The function G maps the index into

the response probability.

In most applications, G is a cumulative distribution function (cdf ), whose specific

form can sometimes be derived from an underlying economic model. For example, in

Problem 15.2 you are asked to derive an index model from a utility-based model of

charitable giving. The binary indicator y equals unity if a family contributes to charity

and zero otherwise. The vector x contains family characteristics, income, and the price

of a charitable contribution (as determined by marginal tax rates). Under a normality

assumption on a particular unobservable taste variable, G is the standard normal cdf.

Index models where G is a cdf can be derived more generally from an underlying

latent variable model, as in Example 13.1:

y� ¼ xb þ e; y ¼ 1½y� > 0� ð15:9Þ

where e is a continuously distributed variable independent of x and the distribution

of e is symmetric about zero; recall from Chapter 13 that 1½�� is the indicator function.

If G is the cdf of e, then, because the pdf of e is symmetric about zero, 1 � Gð�zÞ ¼
GðzÞ for all real numbers z. Therefore,

Pðy ¼ 1 j xÞ ¼ Pðy� > 0 j xÞ ¼ Pðe > �xb j xÞ ¼ 1 � Gð�xbÞ ¼ GðxbÞ

which is exactly equation (15.8).
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There is no particular reason for requiring e to be symmetrically distributed in the

latent variable model, but this happens to be the case for the binary response models

applied most often.

In most applications of binary response models, the primary goal is to explain the

e¤ects of the xj on the response probability Pðy ¼ 1 j xÞ. The latent variable formu-

lation tends to give the impression that we are primarily interested in the e¤ects of

each xj on y�. As we will see, the direction of the e¤ects of xj on Eðy� j xÞ ¼ xb and

on Eðy j xÞ ¼ Pðy ¼ 1 j xÞ ¼ GðxbÞ are the same. But the latent variable y� rarely has

a well-defined unit of measurement (for example, y� might be measured in utility

units). Therefore, the magnitude of bj is not especially meaningful except in special

cases.

The probit model is the special case of equation (15.8) with

GðzÞ1FðzÞ1
ð z

�y
fðvÞ dv ð15:10Þ

where fðzÞ is the standard normal density

fðzÞ ¼ ð2pÞ�1=2 expð�z2=2Þ ð15:11Þ

The probit model can be derived from the latent variable formulation when e has a

standard normal distribution.

The logit model is a special case of equation (15.8) with

GðzÞ ¼ LðzÞ1 expðzÞ=½1 þ expðzÞ� ð15:12Þ

This model arises from the model (15.9) when e has a standard logistic distribution.

The general specification (15.8) allows us to cover probit, logit, and a number of

other binary choice models in one framework. In fact, in what follows we do not even

need G to be a cdf, but we do assume that GðzÞ is strictly between zero and unity for

all real numbers z.

In order to successfully apply probit and logit models, it is important to know how

to interpret the bj on both continuous and discrete explanatory variables. First, if xj

is continuous,

qpðxÞ
qxj

¼ gðxbÞbj ; where gðzÞ1 dG

dz
ðzÞ ð15:13Þ

Therefore, the partial e¤ect of xj on pðxÞ depends on x through gðxbÞ. If Gð�Þ is a

strictly increasing cdf, as in the probit and logit cases, gðzÞ > 0 for all z. Therefore,
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the sign of the e¤ect is given by the sign of bj. Also, the relative e¤ects do not depend

on x: for continuous variables xj and xh, the ratio of the partial e¤ects is constant and

given by the ratio of the corresponding coe‰cients:
qpðxÞ=qxj

qpðxÞ=qxh

¼ bj=bh. In the typical

case that g is a symmetric density about zero, with unique mode at zero, the largest

e¤ect is when xb ¼ 0. For example, in the probit case with gðzÞ ¼ fðzÞ, gð0Þ ¼ fð0Þ
¼ 1=

ffiffiffiffiffiffi
2p

p
A :399. In the logit case, gðzÞ ¼ expðzÞ=½1 þ expðzÞ�2, and so gð0Þ ¼ :25.

If xK is a binary explanatory variable, then the partial e¤ect from changing xK

from zero to one, holding all other variables fixed, is simply

Gðb1 þ b2x2 þ � � � þ bK�1xK�1 þ bKÞ � Gðb1 þ b2x2 þ � � � þ bK�1xK�1Þ ð15:14Þ

Again, this expression depends on all other values of the other xj. For example, if y is

an employment indicator and xj is a dummy variable indicating participation in a job

training program, then expression (15.14) is the change in the probability of em-

ployment due to the job training program; this depends on other characteristics that

a¤ect employability, such as education and experience. Knowing the sign of bK is

enough to determine whether the program had a positive or negative e¤ect. But to

find the magnitude of the e¤ect, we have to estimate expression (15.14).

We can also use the di¤erence in expression (15.14) for other kinds of discrete

variables (such as number of children). If xK denotes this variable, then the e¤ect on

the probability of xK going from cK to cK þ 1 is simply

G½b1 þ b2x2 þ � � � þ bK�1xK�1 þ bKðcK þ 1Þ�

� Gðb1 þ b2x2 þ � � � þ bK�1xK�1 þ bK cKÞ ð15:15Þ

It is straightforward to include standard functional forms among the explanatory

variables. For example, in the model

Pðy ¼ 1 j zÞ ¼ G½b0 þ b1z1 þ b2z2
1 þ b3 logðz2Þ þ b4z3�

the partial e¤ect of z1 on Pðy ¼ 1 j zÞ is qPðy ¼ 1 j zÞ=qz1 ¼ gðxbÞðb1 þ 2b2z1Þ, where

xb ¼ b0 þ b1z1 þ b2z2
1 þ b3 logðz2Þ þ b4z3. It follows that if the quadratic in z1 has a

hump shape or a U shape, the turning point in the response probability is jb1=ð2b2Þj
[because gðxbÞ > 0�. Also, qPðy ¼ 1 j zÞ=q logðz2Þ ¼ gðxbÞb3, and so gðxbÞðb3=100Þ
is the approximate change in Pðy ¼ 1 j zÞ given a 1 percent increase in z2. Models

with interactions among explanatory variables, including interactions between dis-

crete and continuous variables, are handled similarly. When measuring e¤ects of

discrete variables, we should use expression (15.15).
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15.4 Maximum Likelihood Estimation of Binary Response Index Models

Assume we have N independent, identically distributed observations following the

model (15.8). Since we essentially covered the case of probit in Chapter 13, the dis-

cussion here will be brief. To estimate the model by (conditional) maximum likeli-

hood, we need the log-likelihood function for each i. The density of yi given xi can be

written as

f ðy j xi; bÞ ¼ ½GðxibÞ�y½1 � GðxibÞ�1�y; y ¼ 0; 1 ð15:16Þ

The log-likelihood for observation i is a function of the K � 1 vector of parameters

and the data ðxi; yiÞ:

liðbÞ ¼ yi log½GðxibÞ� þ ð1 � yiÞ log½1 � GðxibÞ� ð15:17Þ

(Recall from Chapter 13 that, technically speaking, we should distinguish the ‘‘true’’

value of beta, bo, from a generic value. For conciseness we do not do so here.)

Restricting Gð�Þ to be strictly between zero and one ensures that liðbÞ is well defined

for all values of b.

As usual, the log likelihood for a sample size of N is LðbÞ ¼
PN

i¼1 liðbÞ, and the

MLE of b, denoted b̂b, maximizes this log likelihood. If Gð�Þ is the standard normal

cdf, then b̂b is the probit estimator; if Gð�Þ is the logistic cdf, then b̂b is the logit esti-

mator. From the general maximum likelihood results we know that b̂b is consistent

and asymptotically normal. We can also easily estimate the asymptotic variance b̂b.

We assume that Gð�Þ is twice continuously di¤erentiable, an assumption that is

usually satisfied in applications (and, in particular, for probit and logit). As before,

the function gðzÞ is the derivative of GðzÞ. For the probit model, gðzÞ ¼ fðzÞ, and for

the logit model, gðzÞ ¼ expðzÞ=½1 þ expðzÞ�2.

Using the same calculations for the probit example as in Chapter 13, the score of

the conditional log likelihood for observation i can be shown to be

siðbÞ1
gðxibÞx 0

i½yi � GðxibÞ�
GðxibÞ½1 � GðxibÞ�

ð15:18Þ

Similarly, the expected value of the Hessian conditional on xi is

�E½HiðbÞ j xi� ¼
½gðxibÞ�2x 0

ixi

fGðxibÞ½1 � GðxibÞ�g
1Aðxi; bÞ ð15:19Þ

which is a K � K positive semidefinite matrix for each i. From the general condi-

tional MLE results in Chapter 13, Avarð b̂bÞ is estimated as
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Avâarð b̂bÞ1
XN

i¼1

½gðxi b̂bÞ�2x 0
ixi

Gðxi b̂bÞ½1 � Gðxi b̂bÞ�

( )�1

1 V̂V ð15:20Þ

In most cases the inverse exists, and when it does, V̂V is positive definite. If the matrix

in equation (15.20) is not invertible, then perfect collinearity probably exists among

the regressors.

As usual, we treat b̂b as being normally distributed with mean zero and variance

matrix in equation (15.20). The (asymptotic) standard error of b̂bj is the square root of

the jth diagonal element of V̂V. These can be used to construct t statistics, which have

a limiting standard normal distribution, and to construct approximate confidence

intervals for each population parameter. These are reported with the estimates for

packages that perform logit and probit. We discuss multiple hypothesis testing in the

next section.

Some packages also compute Huber-White standard errors as an option for probit

and logit analysis, using the general M-estimator formulas; see, in particular, equa-

tion (12.49). While the robust variance matrix is consistent, using it in place of the

usual estimator means we must think that the binary response model is incorrectly

specified. Unlike with nonlinear regression, in a binary response model it is not pos-

sible to correctly specify Eðy j xÞ but to misspecify Varðy j xÞ. Once we have specified

Pðy ¼ 1 j xÞ, we have specified all conditional moments of y given x.

In Section 15.8 we will see that, when using binary response models with panel

data or cluster samples, it is sometimes important to compute variance matrix esti-

mators that are robust to either serial dependence or within-group correlation. But

this need arises as a result of dependence across time or subgroup, and not because

the response probability is misspecified.

15.5 Testing in Binary Response Index Models

Any of the three tests from general MLE analysis—the Wald, LR, or LM test—can be

used to test hypotheses in binary response contexts. Since the tests are all asymptotically

equivalent under local alternatives, the choice of statistic usually depends on computa-

tional simplicity (since finite sample comparisons must be limited in scope). In the fol-

lowing subsections we discuss some testing situations that often arise in binary choice

analysis, and we recommend particular tests for their computational advantages.

15.5.1 Testing Multiple Exclusion Restrictions

Consider the model

Pðy ¼ 1 j x; zÞ ¼ Gðxb þ zgÞ ð15:21Þ
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where x is 1 � K and z is 1 � Q. We wish to test the null hypothesis H0: g ¼ 0, so we

are testing Q exclusion restrictions. The elements of z can be functions of x, such as

quadratics and interactions—in which case the test is a pure functional form test. Or,

the z can be additional explanatory variables. For example, z could contain dummy

variables for occupation or region. In any case, the form of the test is the same.

Some packages, such as Stata, compute the Wald statistic for exclusion restrictions

using a simple command following estimation of the general model. This capability

makes it very easy to test multiple exclusion restrictions, provided the dimension of

ðx; zÞ is not so large as to make probit estimation di‰cult.

The likelihood ratio statistic is also easy to use. Let Lur denote the value of the log-

likelihood function from probit of y on x and z (the unrestricted model), and let Lr

denote the value of the likelihood function from probit of y on x (the restricted

model). Then the likelihood ratio test of H0: g ¼ 0 is simply 2ðLur �LrÞ, which has

an asymptotic w2
Q distribution under H0. This is analogous to the usual F statistic in

OLS analysis of a linear model.

The score or LM test is attractive if the unrestricted model is di‰cult to estimate.

In this section, let b̂b denote the restricted estimator of b, that is, the probit or logit

estimator with z excluded from the model. The LM statistic using the estimated

expected hessian, ÂAi [see equation (15.20) and Section 12.6.2], can be shown to be

numerically identical to the following: (1) Define ûui 1 yi � Gðxi b̂bÞ, ĜGi 1Gðxi b̂bÞ, and

ĝgi 1 gðxi b̂bÞ. These are all obtainable after estimating the model without z. (2) Use all

N observations to run the auxiliary OLS regression

ûuiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĜGið1 � ĜGiÞ

q on
ĝgiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĜGið1 � ĜGiÞ
q xi;

ĝgiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĜGið1 � ĜGiÞ

q zi ð15:22Þ

The LM statistic is equal to the explained sum of squares from this regression. A test

that is asymptotically (but not numerically) equivalent is NR2
u , where R2

u is the

uncentered R-squared from regression (15.22).

The LM procedure is rather easy to remember. The term ĝgixi is the gradient of the

mean function Gðxib þ zigÞ with respect to b, evaluated at b ¼ b̂b and g ¼ 0. Simi-

larly, ĝgizi is the gradient of Gðxib þ zigÞ with respect to g, again evaluated at b ¼ b̂b

and g ¼ 0. Finally, under H0: g ¼ 0, the conditional variance of ui given ðxi; ziÞ is

GðxibÞ½1 � GðxibÞ�; therefore, ½ĜGið1 � ĜGiÞ�1=2 is an estimate of the conditional stan-

dard deviation of ui. The dependent variable in regression (15.22) is often called a

standardized residual because it is an estimate of ui=½Gið1 � GiÞ�1=2, which has unit

conditional (and unconditional) variance. The regressors are simply the gradient of the

conditional mean function with respect to both sets of parameters, evaluated under
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H0, and weighted by the estimated inverse conditional standard deviation. The first

set of regressors in regression (15.22) is 1 � K and the second set is 1 � Q.

Under H0, LM @ w2
Q. The LM approach can be an attractive alternative to the LR

statistic if z has large dimension, since with many explanatory variables probit can be

di‰cult to estimate.

15.5.2 Testing Nonlinear Hypotheses about b

For testing nonlinear restrictions on b in equation (15.8), the Wald statistic is com-

putationally the easiest because the unrestricted estimator of b, which is just probit

or logit, is easy to obtain. Actually imposing nonlinear restrictions in estimation—

which is required to apply the score or likelihood ratio methods—can be di‰cult.

However, we must also remember that the Wald statistic for testing nonlinear restric-

tions is not invariant to reparameterizations, whereas the LM and LR statistics are.

(See Sections 12.6 and 13.6; for the LM statistic, we would always use the expected

Hessian.)

Let the restictions on b be given by H0: cðbÞ ¼ 0, where cðbÞ is a Q � 1 vector of

possibly nonlinear functions satisfying the di¤erentiability and rank requirements

from Chapter 13. Then, from the general MLE analysis, the Wald statistic is simply

W ¼ cð b̂bÞ0½‘bcð b̂bÞV̂V‘bcð b̂bÞ0 ��1cð b̂bÞ ð15:23Þ

where V̂V is given in equation (15.20) and ‘bcð b̂bÞ is the Q � K Jacobian of cðbÞ evalu-

ated at b̂b.

15.5.3 Tests against More General Alternatives

In addition to testing for omitted variables, sometimes we wish to test the probit or

logit model against a more general functional form. When the alternatives are not

standard binary response models, the Wald and LR statistics are cumbersome to

apply, whereas the LM approach is convenient because it only requires estimation of

the null model.

As an example of a more complicated binary choice model, consider the latent

variable model (15.9) but assume that e j x@Normal½0; expð2x1dÞ�, where x1 is 1�
K1 subset of x that excludes a constant and d is a K1 � 1 vector of additional param-

eters. (In many cases we would take x1 to be all nonconstant elements of x.) There-

fore, there is heteroskedasticity in the latent variable model, so that e is no longer

independent of x. The standard deviation of e given x is simply expðx1dÞ. Define

r ¼ e=expðx1dÞ, so that r is independent of x with a standard normal distribution.

Then
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Pðy ¼ 1 j xÞ ¼ Pðe > �xb j xÞ ¼ P½expð�x1dÞe > �expð�x1dÞxb�

¼ P½r > �expð�x1dÞxb� ¼ F½expð�x1dÞxb� ð15:24Þ

The partial e¤ects of xj on Pðy ¼ 1 j xÞ are much more complicated in equation

(15.24) than in equation (15.8). When d ¼ 0, we obtain the standard probit model.

Therefore, a test of the probit functional form for the response probability is a test of

H0: d ¼ 0.

To obtain the LM test of d ¼ 0 in equation (15.24), it is useful to derive the LM

test for an index model against a more general alternative. Consider

Pðy ¼ 1 j xÞ ¼ mðxb; x; dÞ ð15:25Þ

where d is a Q � 1 vector of parameters. We wish to test H0: d ¼ d0, where d0 is often

(but not always) a vector of zeros. We assume that, under the null, we obtain a

standard index model (probit or logit, usually):

GðxbÞ ¼ mðxb; x; d0Þ ð15:26Þ

In the previous example, Gð�Þ ¼ Fð�Þ, d0 ¼ 0, and mðxb; x; dÞ ¼ F½expð�x1dÞxb�.
Let b̂b be the probit or logit estimator of b obtained under d ¼ d0. Define

ûui 1 yi � Gðxi b̂bÞ, ĜGi 1Gðxi b̂bÞ, and ĝgi 1 gðxi b̂bÞ. The gradient of the mean function

mðxib; xi; dÞ with respect to b, evaluated at d0, is simply gðxibÞxi. The only other

piece we need is the gradient of mðxib; xi; dÞ with respect to d, evaluated at d0. Denote

this 1 � Q vector as ‘dmðxib; xi; d0Þ. Further, set ‘dm̂mi 1‘dmðxi b̂b; xi; d0Þ. The LM

statistic can be obtained as the explained sum of squares or NR2
u from the regression

ûuiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĜGið1 � ĜGiÞ

q on
ĝgiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ĜGið1 � ĜGiÞ
q xi;

‘dm̂miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĜGið1 � ĜGiÞ

q ð15:27Þ

which is quite similar to regression (15.22). The null distribution of the LM statistic is

w2
Q, where Q is the dimension of d.

When applying this test to the preceding probit example, we have only ‘dm̂mi left to

compute. But mðxib; xi; dÞ ¼ F½expð�xi1dÞxib�, and so

‘dmðxib; xi; dÞ ¼ �ðxibÞ expð�xi1dÞxi1f½expð�xi1dÞxib�

When evaluated at b ¼ b̂b and d ¼ 0 (the null value), we get ‘dm̂mi ¼ �ðxi b̂bÞfðxi b̂bÞxi1

1�ðxi b̂bÞf̂fixi1, a 1 � K1 vector. Regression (15.27) becomes

ûuiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̂Fið1 � F̂FiÞ

q on
f̂fiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F̂Fið1 � F̂FiÞ
q xi;

ðxi b̂bÞf̂fiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̂Fið1 � F̂FiÞ

q xi1 ð15:28Þ
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(We drop the minus sign because it does not a¤ect the value of the explained sum of

squares or R2
u.) Under the null hypothesis that the probit model is correctly specified,

LM @ w2
K1

. This statistic is easy to compute after estimation by probit.

For a one-degree-of-freedom test regardless of the dimension of xi, replace the last

term in regression (15.28) with ðxi b̂bÞ2f̂fi= F̂Fið1 � F̂FiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip

, and then the explained sum of

squares is distributed asymptotically as w2
1 . See Davidson and MacKinnon (1984) for

further examples.

15.6 Reporting the Results for Probit and Logit

Several statistics should be reported routinely in any probit or logit (or other binary

choice) analysis. The b̂bj, their standard errors, and the value of the likelihood func-

tion are reported by all software packages that do binary response analysis. The b̂bj

give the signs of the partial e¤ects of each xj on the response probability, and the

statistical significance of xj is determined by whether we can reject H0: bj ¼ 0.

One measure of goodness of fit that is usually reported is the percent correctly

predicted. For each i, we compute the predicted probability that yi ¼ 1, given the

explanatory variables, xi. If Gðxi b̂bÞ > :5, we predict yi to be unity; if Gðxi b̂bÞa :5, yi

is predicted to be zero. The percentage of times the predicted yi matches the actual yi

is the percent correctly predicted. In many cases it is easy to predict one of the out-

comes and much harder to predict another outcome, in which case the percent cor-

rectly predicted can be misleading as a goodness-of-fit statistic. More informative is

to compute the percent correctly predicted for each outcome, y ¼ 0 and y ¼ 1. The

overall percent correctly predicted is a weighted average of the two, with the weights

being the fractions of zero and one outcomes, respectively. Problem 15.7 provides an

illustration.

Various pseudo R-squared measures have been proposed for binary response.

McFadden (1974) suggests the measure 1 �Lur=Lo, where Lur is the log-likelihood

function for the estimated model and Lo is the log-likelihood function in the model

with only an intercept. Because the log likelihood for a binary response model is

always negative, jLurja jLoj, and so the pseudo R-squared is always between zero

and one. Alternatively, we can use a sum of squared residuals measure: 1 � SSRur=

SSRo, where SSRur is the sum of squared residuals ûui ¼ yi � Gðxi b̂bÞ and SSRo is the

total sum of squares of yi. Several other measures have been suggested (see, for ex-

ample, Maddala, 1983, Chapter 2), but goodness of fit is not as important as statis-

tical and economic significance of the explanatory variables. Estrella (1998) contains

a recent comparison of goodness-of-fit measures for binary response.
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Often we want to estimate the e¤ects of the variables xj on the response proba-

bilities Pðy ¼ 1 j xÞ. If xj is (roughly) continuous then

DP̂Pðy ¼ 1 j xÞA ½gðxb̂bÞb̂bj �Dxj ð15:29Þ

for small changes in xj . (As usual when using calculus, the notion of ‘‘small’’ here is

somewhat vague.) Since gðxb̂bÞ depends on x, we must compute gðxb̂bÞ at interesting

values of x. Often the sample averages of the xj’s are plugged in to get gðxb̂bÞ. This

factor can then be used to adjust each of the b̂bj (at least those on continuous vari-

ables) to obtain the e¤ect of a one-unit increase in xj. If x contains nonlinear functions

of some explanatory variables, such as natural logs or quadratics, there is the issue of

using the log of the average versus the average of the log (and similarly with qua-

dratics). To get the e¤ect for the ‘‘average’’ person, it makes more sense to plug the

averages into the nonlinear functions, rather than average the nonlinear functions.

Software packages (such as Stata with the dprobit command) necessarily average the

nonlinear functions. Sometimes minimum and maximum values of key variables are

used in obtaining gðxb̂bÞ, so that we can see how the partial e¤ects change as some

elements of x get large or small.

Equation (15.29) also suggests how to roughly compare magnitudes of the probit

and logit estimates. If xb̂b is close to zero for logit and probit, the scale factor we use

can be gð0Þ. For probit, gð0ÞA :4, and for logit, gð0Þ ¼ :25. Thus the logit estimates

can be expected to be larger by a factor of about :4=:25 ¼ 1:6. Alternatively, multiply

the logit estimates by .625 to make them comparable to the probit estimates. In the

linear probability model, gð0Þ is unity, and so logit estimates should be divided by

four to compare them with LPM estimates, while probit estimates should be divided

by 2.5 to make them roughly comparable to LPM estimates. More accurate com-

parisons are obtained by using the scale factors gðxb̂bÞ for probit and logit. Of course,

one of the potential advantages of using probit or logit is that the partial e¤ects vary

with x, and it is of some interest to compute gðxb̂bÞ at values of x other than the

sample averages.

If, say, x2 is a binary variable, it perhaps makes more sense to plug in zero or one

for x2, rather than x2 (which is the fraction of ones in the sample). Putting in the

averages for the binary variables means that the e¤ect does not really correspond to a

particular individual. But often the results are similar, and the choice is really based

on taste.

To obtain standard errors of the partial e¤ects in equation (15.29) we use the delta

method. Consider the case j ¼ K for notational simplicity, and for given x, define

dK ¼ bK gðxbÞ ¼ qPðy ¼ 1 j xÞ=qxK . Write this relation as dK ¼ hðbÞ to denote that

this is a (nonlinear) function of the vector b. We assume x1 ¼ 1. The gradient of

hðbÞ is
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‘bhðbÞ ¼ bK

dg

dz
ðxbÞ; bK x2

dg

dz
ðxbÞ; . . . ; bK xK�1

dg

dz
ðxbÞ; bK xK

dg

dz
ðxbÞ þ gðxbÞ

� �

where dg=dz is simply the derivative of g with respect to its argument. The delta

method implies that the asymptotic variance of d̂dK is estimated as

½‘bhð b̂bÞ�V̂V½‘bhð b̂bÞ� 0 ð15:30Þ

where V̂V is the asymptotic variance estimate of b̂b. The asymptotic standard error of

d̂dK is simply the square root of expression (15.30). This calculation allows us to ob-

tain a large-sample confidence interval for d̂dK . The program Stata does this calcula-

tion for the probit model using the dprobit command.

If xK is a discrete variable, then we can estimate the change in the predicted prob-

ability in going from cK to cK þ 1 as

d̂dK ¼ G½ b̂b1 þ b̂b2x2 þ � � � þ b̂bK�1xK�1 þ b̂bKðcK þ 1Þ�

� Gð b̂b1 þ b̂b2x2 þ � � � þ b̂bK�1xK�1 þ b̂bK cKÞ ð15:31Þ

In particular, when xK is a binary variable, set cK ¼ 0. Of course, the other xj’s can

be evaluated anywhere, but the use of sample averages is typical. The delta method

can be used to obtain a standard error of equation (15.31). For probit, Stata does this

calculation when xK is a binary variable. Usually the calculations ignore the fact that

xj is an estimate of EðxjÞ in applying the delta method. If we are truly interested in

bK gðmxbÞ, the estimation error in x can be accounted for, but it makes the calculation

more complicated, and it is unlikely to have a large e¤ect.

An alternative way to summarize the estimated marginal e¤ects is to estimate the

average value of bK gðxbÞ across the population, or bK E½gðxbÞ�. A consistent estima-

tor is

b̂bK N�1
XN

i¼1

gðxi b̂bÞ
" #

ð15:32Þ

when xK is continuous or

N�1
XN

i¼1

½Gð b̂b1 þ b̂b2xi2 þ � � � þ b̂bK�1xi;K�1 þ b̂bKÞ � Gð b̂b1 þ b̂b2xi2 þ � � � þ b̂bK�1xi;K�1Þ�

ð15:33Þ

if xK is binary. The delta method can be used to obtain an asymptotic standard error

of expression (15.32) or (15.33). Costa (1995) is a recent example of average e¤ects

obtained from expression (15.33).
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Example 15.2 (Married Women’s Labor Force Participation): We now estimate

logit and probit models for women’s labor force participation. For comparison we

report the linear probability estimates. The results, with standard errors in parenthe-

ses, are given in Table 15.1 (for the LPM, these are heteroskedasticity-robust).

The estimates from the three models tell a consistent story. The signs of the co-

e‰cients are the same across models, and the same variables are statistically signifi-

cant in each model. The pseudo R-squared for the LPM is just the usual R-squared

reported for OLS; for logit and probit the pseudo R-squared is the measure based on

the log likelihoods described previously. In terms of overall percent correctly pre-

dicted, the models do equally well. For the probit model, it correctly predicts ‘‘out of

the labor force’’ about 63.1 percent of the time, and it correctly predicts ‘‘in the labor

force’’ about 81.3 percent of the time. The LPM has the same overall percent cor-

rectly predicted, but there are slight di¤erences within each outcome.

As we emphasized earlier, the magnitudes of the coe‰cients are not directly com-

parable across the models. Using the rough rule of thumb discussed earlier, we can

Table 15.1
LPM, Logit, and Probit Estimates of Labor Force Participation

Dependent Variable: inlf

Independent Variable
LPM
(OLS)

Logit
(MLE)

Probit
(MLE)

nwifeinc �.0034
(.0015)

�.021
(.008)

�.012
(.005)

educ .038
(.007)

.221
(.043)

.131
(.025)

exper .039
(.006)

.206
(.032)

.123
(.019)

exper2 �.00060
(.00019)

�.0032
(.0010)

�.0019
(.0006)

age �.016
(.002)

�.088
(.015)

�.053
(.008)

kidslt6 �.262
(.032)

�1.443
(0.204)

�.868
(.119)

kidsge6 .013
(.013)

.060
(.075)

.036
(.043)

constant .586
(.151)

.425
(.860)

.270
(.509)

Number of observations 753 753 753

Percent correctly predicted 73.4 73.6 73.4

Log-likelihood value — �401.77 �401.30

Pseudo R-squared .264 .220 .221
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divide the logit estimates by four and the probit estimates by 2.5 to make all estimates

comparable to the LPM estimates. For example, for the coe‰cients on kidslt6, the

scaled logit estimate is about �.361, and the scaled probit estimate is about �.347.

These are larger in magnitude than the LPM estimate (for reasons we will soon dis-

cuss). The scaled coe‰cient on educ is .055 for logit and .052 for probit.

If we evaluate the standard normal probability density function, fð b̂b0 þ b̂b1x1 þ � � �
þ b̂bkxkÞ, at the average values of the independent variables in the sample (including

the average of exper2), we obtain about .391; this value is close enough to .4 to make

the rough rule of thumb for scaling the probit coe‰cients useful in obtaining the

e¤ects on the response probability. In other words, to estimate the change in the re-

sponse probability given a one-unit increase in any independent variable, we multiply

the corresponding probit coe‰cient by .4.

The biggest di¤erence between the LPM model on one hand, and the logit and

probit models on the other, is that the LPM assumes constant marginal e¤ects for

educ, kidslt6, and so on, while the logit and probit models imply diminishing mar-

ginal magnitudes of the partial e¤ects. In the LPM, one more small child is estimated

to reduce the probability of labor force participation by about .262, regardless of how

many young children the woman already has (and regardless of the levels of the other

dependent variables). We can contrast this finding with the estimated marginal e¤ect

from probit. For concreteness, take a woman with nwifeinc ¼ 20:13, educ ¼ 12:3,

exper ¼ 10:6, age ¼ 42:5—which are roughly the sample averages—and kidsge6 ¼ 1.

What is the estimated fall in the probability of working in going from zero to one

small child? We evaluate the standard normal cdf, Fð b̂b0 þ b̂b1x1 þ � � � þ b̂bkxkÞ with

kidslt6 ¼ 1 and kidslt6 ¼ 0, and the other independent variables set at the values

given. We get roughly :373 � :707 ¼ �:334, which means that the labor force par-

ticipation probability is about .334 lower when a woman has one young child. This is

not much di¤erent from the scaled probit coe‰cient of �.347. If the woman goes

from one to two young children, the probability falls even more, but the marginal

e¤ect is not as large: :117 � :373 ¼ �:256. Interestingly, the estimate from the linear

probability model, which we think can provide a good estimate near the average

values of the covariates, is in fact between the probit estimated partial e¤ects starting

from zero and one children.

Binary response models apply with little modification to independently pooled

cross sections or to other data sets where the observations are independent but not

necessarily identically distributed. Often year or other time-period dummy variables

are included to account for aggregate time e¤ects. Just as with linear models, probit

can be used to evaluate the impact of certain policies in the context of a natural ex-

periment; see Problem 15.13. An application is given in Gruber and Poterba (1994).
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15.7 Specification Issues in Binary Response Models

We now turn to several issues that can arise in applying binary response models to

economic data. All of these topics are relevant for general index models, but features

of the normal distribution allow us to obtain concrete results in the context of probit

models. Therefore, our primary focus is on probit models.

15.7.1 Neglected Heterogeneity

We begin by studying the consequences of omitting variables when those omitted

variables are independent of the included explanatory variables. This is also called the

neglected heterogeneity problem. The (structural) model of interest is

Pðy ¼ 1 j x; cÞ ¼ Fðxb þ gcÞ ð15:34Þ

where x is 1 � K with x1 1 1 and c is a scalar. We are interested in the partial e¤ects

of the xj on the probability of success, holding c (and the other elements of x) fixed.

We can write equation (15.34) in latent variable form as y� ¼ xb þ gc þ e, where

y ¼ 1½y� > 0� and e j x; c@Normalð0; 1Þ. Because x1 ¼ 1, EðcÞ ¼ 0 without loss of

generality.

Now suppose that c is independent of x and c@Normalð0; t2Þ. [Remember, this

assumption is much stronger than Covðx; cÞ ¼ 0 or even Eðc j xÞ ¼ 0: under indepen-

dence, the distribution of c given x does not depend on x.] Given these assumptions,

the composite term, gc þ e, is independent of x and has a Normalð0; g2t2 þ 1Þ dis-

tribution. Therefore,

Pðy ¼ 1 j xÞ ¼ Pðgc þ e > �xb j xÞ ¼ Fðxb=sÞ ð15:35Þ

where s2 1 g2t2 þ 1. It follows immediately from equation (15.35) that probit of y

on x consistently estimates b=s. In other words, if b̂b is the estimator from a probit of

y on x, then plim b̂bj ¼ bj=s. Because s ¼ ðg2t2 þ 1Þ1=2 > 1 (unless g ¼ 0 or t2 ¼ 0Þ,
jbj=sj < jbjj.

The attenuation bias in estimating bj in the presence of neglected heterogeneity has

prompted statements of the following kind: ‘‘In probit analysis, neglected heteroge-

neity is a much more serious problem than in linear models because, even if the

omitted heterogeneity is independent of x, the probit coe‰cients are inconsistent.’’

We just derived that probit of y on x consistently estimates b=s rather than b, so

the statement is technically correct. However, we should remember that, in nonlinear

models, we usually want to estimate partial e¤ects and not just parameters. For the

purposes of obtaining the directions of the e¤ects or the relative e¤ects of the ex-

planatory variables, estimating b=s is just as good as estimating b.
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For continuous xj, we would like to estimate

qPðy ¼ 1 j x; cÞ=qxj ¼ bjfðxb þ gcÞ ð15:36Þ

for various values of x and c. Because c is not observed, we cannot estimate g. Even

if we could estimate g, c almost never has meaningful units of measurement—for

example, c might be ‘‘ability,’’ ‘‘health,’’ or ‘‘taste for saving’’—so it is not obvious

what values of c we should plug into equation (15.36). Nevertheless, c is normalized

so that EðcÞ ¼ 0, so we may be interested in equation (15.36) evaluated at c ¼ 0,

which is simply bjfðxbÞ. What we consistently estimate from the probit of y on x is

ðbj=sÞfðxb=sÞ ð15:37Þ

This expression shows that, if we are interested in the partial e¤ects evaluated at

c ¼ 0, then probit of y on x does not do the trick. An interesting fact about expres-

sion (15.37) is that, even though bj=s is closer to zero than bj, fðxb=sÞ is larger than

fðxbÞ because fðzÞ increases as jzj ! 0, and s > 1. Therefore, for estimating the

partial e¤ects in equation (15.36) at c ¼ 0, it is not clear for what values of x an

attenuation bias exists.

With c having a normal distribution in the population, the partial e¤ect evaluated

at c ¼ 0 describes only a small fraction of the population. [Technically, Pðc ¼ 0Þ ¼ 0.]

Instead, we can estimate the average partial e¤ect (APE), which we introduced in

Section 2.2.5. The APE is obtained, for given x, by averaging equation (15.36) across

the distribution of c in the population. For emphasis, let xo be a given value of the

explanatory variables (which could be, but need not be, the mean value). When we

plug xo into equation (15.36) and take the expected value with respect to the distri-

bution of c, we get

E½bjfðxob þ gcÞ� ¼ ðbj=sÞfðxob=sÞ ð15:38Þ

In other words, probit of y on x consistently estimates the average partial e¤ects,

which is usually what we want.

The result in equation (15.38) follows from the general treatment of average partial

e¤ects in Section 2.2.5. In the current setup, there are no extra conditioning variables,

w, and the unobserved heterogeneity is independent of x. It follows from equation

(2.35) that the APE with respect to xj, evaluated at xo, is simply qEðy j xoÞ=qxj . But

from the law of iterated expectations, Eðy j xÞ ¼ Ec½Fðxb þ gcÞ� ¼ Fðxb=sÞ, where

Ecð�Þ denotes the expectation with respect to the distribution of c. The derivative of

Fðxb=sÞ with respect to xj is ðbj=sÞfðxb=sÞ, which is what we wanted to show.

The bottom line is that, except in cases where the magnitudes of the bj in equation

(15.34) have some meaning, omitted heterogeneity in probit models is not a problem

Discrete Response Models 471



when it is independent of x: ignoring it consistently estimates the average partial

e¤ects. Of course, the previous arguments hinge on the normality of c and the probit

structural equation. If the structural model (15.34) were, say, logit and if c were

normally distributed, we would not get a probit or logit for the distribution of y given

x; the response probability is more complicated. The lesson from Section 2.2.5 is that

we might as well work directly with models for Pðy ¼ 1 j xÞ because partial e¤ects of

Pðy ¼ 1 j xÞ are always the average of the partial e¤ects of Pðy ¼ 1 j x; cÞ over the

distribution of c.

If c is correlated with x or is otherwise dependent on x [for example, if Varðc j xÞ
depends on x], then omission of c is serious. In this case we cannot get consistent

estimates of the average partial e¤ects. For example, if c j x@Normalðxd; h2Þ, then

probit of y on x gives consistent estimates of ðb þ gdÞ=r, where r2 ¼ g2h2 þ 1. Un-

less g ¼ 0 or d ¼ 0, we do not consistently estimate b=s. This result is not surprising

given what we know from the linear case with omitted variables correlated with the

xj. We now study what can be done to account for endogenous variables in probit

models.

15.7.2 Continuous Endogenous Explanatory Variables

We now explicitly allow for the case where one of the explanatory variables is cor-

related with the error term in the latent variable model. One possibility is to estimate

a linear probability model by 2SLS. This procedure is relatively easy and might pro-

vide a good estimate of the average e¤ect.

If we want to estimate a probit model with an endogenous explanatory variables,

we must make some fairly strong assumptions. In this section we consider the case of

a continuous endogenous explanatory variable.

Write the model as

y�
1 ¼ z1d1 þ a1y2 þ u1 ð15:39Þ

y2 ¼ z1d21 þ z2d22 þ v2 ¼ zd2 þ v2 ð15:40Þ

y1 ¼ 1½y�
1 > 0� ð15:41Þ

where ðu1; v2Þ has a zero mean, bivariate normal distribution and is independent

of z. Equation (15.39), along with equation (15.41), is the structural equation; equa-

tion (15.40) is a reduced form for y2, which is endogenous if u1 and v2 are correlated.

If u1 and v2 are independent, there is no endogeneity problem. Because v2 is nor-

mally distributed, we are assuming that y2 given z is normal; thus y2 should have

features of a normal random variable. (For example, y2 should not be a discrete

variable.)
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The model is applicable when y2 is correlated with u1 because of omitted variables

or measurement error. It can also be applied to the case where y2 is determined jointly

with y1, but with a caveat. If y1 appears on the right-hand side in a linear structural

equation for y2, then the reduced form for y2 cannot be found with v2 having the

stated properties. However, if y�
1 appears in a linear structural equation for y2, then

y2 has the reduced form given by equation (15.40); see Maddala (1983, Chapter 7)

for further discussion.

The normalization that gives the parameters in equation (15.39) an average partial

e¤ect interpretation, at least in the omitted variable and simultaneity contexts, is

Varðu1Þ ¼ 1, just as in a probit model with all explanatory variables exogenous. To

see this point, consider the outcome on y1 at two di¤erent outcomes of y2, say y2 and

y2 þ 1. Holding the observed exogenous factors fixed at z1, and holding u1 fixed, the

di¤erence in responses is

1½z1d1 þ a1ðy2 þ 1Þ þ u1 b 0� � 1½z1d1 þ a1y2 þ u1 b 0�

(This di¤erence can take on the values �1, 0, and 1.) Because u1 is unobserved, we

cannot estimate the di¤erence in responses for a given population unit. Nevertheless,

if we average across the distribution of u1, which is Normalð0; 1Þ, we obtain

F½z1d1 þ a1ðy2 þ 1Þ� �Fðz1d1 þ a1y2Þ

Therefore, d1 and a1 are the parameters appearing in the APE. [Alternatively, if we

begin by allowing s2
1 ¼ Varðu1Þ > 0 to be unrestricted, the APE would depend on

d1=s1 and a1=s1, and so we should just rescale u1 to have unit variance. The variance

and slope parameters are not separately identified, anyway.] The proper normali-

zation for Varðu1Þ should be kept in mind, as two-step procedures, which we cover in

the following paragraphs, only consistently estimate d1 and a1 up to scale; we have to

do a little more work to obtain estimates of the APE. If y2 is a mismeasured variable,

we apparently cannot estimate the APE of interest: we would like to estimate the

change in the response probability due to a change in y�
2 , but, without further as-

sumptions, we can only estimate the e¤ect of changing y2.

The most useful two-step approach is due to Rivers and Vuong (1988), as it leads

to a simple test for endogeneity of y2. To derive the procedure, first note that, under

joint normality of ðu1; v2Þ, with Varðu1Þ ¼ 1, we can write

u1 ¼ y1v2 þ e1 ð15:42Þ

where y1 ¼ h1=t
2
2 , h1 ¼ Covðv2; u1Þ, t2

2 ¼ Varðv2Þ, and e1 is independent of z and

v2 (and therefore of y2). Because of joint normality of ðu1; v2Þ, e1 is also normally
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distributed with Eðe1Þ ¼ 0 and Varðe1Þ ¼ Varðu1Þ � h2
1=t

2
2 ¼ 1 � r2

1 , where r1 ¼
Corrðv2; u1Þ. We can now write

y�
1 ¼ z1d1 þ a1y2 þ y1v2 þ e1 ð15:43Þ

e1 j z; y2; v2 @Normalð0; 1 � r2
1Þ ð15:44Þ

A standard calculation shows that

Pðy1 ¼ 1 j z; y2; v2Þ ¼ F½ðz1d1 þ a1y2 þ y1v2Þ=ð1 � r2
1Þ

1=2�

Assuming for the moment that we observe v2, then probit of y1 on z1, y2, and v2 con-

sistently estimates dr1 1 d1=ð1� r2
1Þ

1=2, ar1 1 a1=ð1� r2
1Þ

1=2, and yr1 1 y1=ð1� r2
1Þ

1=2.

Notice that because r2
1 < 1, each scaled coe‰cient is greater than its unscaled coun-

terpart unless y2 is exogenous ðr1 ¼ 0Þ.
Since we do not know d2, we must first estimate it, as in the following procedure:

Procedure 15.1: (a) Run the OLS regression y2 on z and save the residuals v̂v2.

(b) Run the probit y1 on z1, y2, v̂v2 to get consistent estimators of the scaled co-

e‰cients dr1, ar1, and yr1:

A nice feature of Procedure 15.1 is that the usual probit t statistic on v̂v2 is a valid

test of the null hypothesis that y2 is exogenous, that is, H0: y1 ¼ 0. If y1 0 0, the

usual probit standard errors and test statistics are not strictly valid, and we have only

estimated d1 and a1 up to scale. The asymptotic variance of the two-step estimator

can be derived using the M-estimator results in Section 12.5.2; see also Rivers and

Vuong (1988).

Under H0: y1 ¼ 0, e1 ¼ u1, and so the distribution of v2 plays no role under the

null. Therefore, the test of exogeneity is valid without assuming normality or homo-

skedasticity of v2, and it can be applied very broadly, even if y2 is a binary variable.

Unfortunately, if y2 and u1 are correlated, normality of v2 is crucial.

Example 15.3 (Testing for Exogeneity of Education in the Women’s LFP Model): We

test the null hypothesis that educ is exogenous in the married women’s labor force

participation equation. We first obtain the reduced form residuals, v̂v2, from regressing

educ on all exogenous variables, including motheduc, fatheduc, and huseduc. Then, we

add v̂v2 to the probit from Example 15.2. The t statistic on v̂v2 is only .867, which is weak

evidence against the null hypothesis that educ is exogenous. As always, this conclusion

hinges on the assumption that the instruments for educ are themselves exogenous.

Even when y1 0 0, it turns out that we can consistently estimate the average partial

e¤ects after the two-stage estimation. We simply apply the results from Section 2.2.5.

Chapter 15474



To see how, write y1 ¼ 1½z1d1 þ a1y2 þ u1 > 0�, where, in the notation of Section

2.2.5, q1 u1, x1 ðz1; y2Þ, and w1 v2 (a scalar in this case). Because y1 is a deter-

ministic function of ðz1; y2; u1Þ, v2 is trivially redundant in Eðy1 j z1; y2; u1Þ, and so

equation (2.34) holds. Further, as we have already used, u1 given ðz1; y2; v2Þ is inde-

pendent of ðz1; y2Þ, and so equation (2.33) holds as well. It follows from Section 2.2.5

that the APEs are obtained by taking derivatives (or di¤erences) of

Ev2
½Fðz1dr1 þ ar1 y2 þ yr1v2Þ� ð15:45Þ

where we still use the r subscript to denote the scaled coe‰cients. But we computed

exactly this kind of expectation in Section 15.7.1. The same reasoning gives

Ev2
½Fðz1dr1 þ ar1 y2 þ yr1v2Þ� ¼ Fðz1dy1 þ ay1 y2Þ

where dy1 1 dr1=ðy2
r1t

2
2 þ 1Þ1=2 and ay1 1 ar1=ðy2

r1t
2
2 þ 1Þ1=2, where t2

2 ¼ Varðv2Þ.
Therefore, for any ðz1; y2Þ, a consistent estimator of expression (15.45) is

Fðz1d̂dy1 þ âay1 y2Þ ð15:46Þ

where d̂dy1 1 d̂dr1=ðŷy2
r1t̂t

2
2 þ 1Þ1=2 and âay1 1 âar1=ðŷy2

r1t̂t
2
2 þ 1Þ1=2. Note that t̂t2

2 is the usual

error variance estimator from the first-stage regression of y2 on z. Expression (15.46)

implies a very simple way to obtain the estimated APEs after the second-stage probit.

We simply divide each coe‰cient by the factor ðŷy2
r1t̂t

2
2 þ 1Þ1=2 before computing

derivatives or di¤erences with respect to the elements of ðz1; y2Þ. Unfortunately, be-

cause the APEs depend on the parameters in a complicated way—and the asymptotic

variance of ðd̂d 0
r1; âar1; ŷyr1Þ0 is already complicated because of the two-step estimation—

standard errors for the APEs would be very di‰cult to come by using the delta method.

An alternative method for estimating the APEs does not exploit the normality

assumption for v2. By the usual uniform weak law of large numbers argument—see

Lemma 12.1—a consistent estimator of expression (15.45) for any ðz1; y2Þ is obtained

by replacing unknown parameters by consistent estimators:

N�1
XN

i¼1

Fðz1d̂dr1 þ âar1 y2 þ ŷyr1v̂vi2Þ ð15:47Þ

where the v̂vi2 are the first-stage OLS residuals from regressing yi2 on zi, i ¼ 1; . . . ;N.

This approach provides a di¤erent strategy for estimating APEs: simply compute

partial e¤ects with respect to z1 and y2 after the second-stage estimation, but then

average these across the v̂vi2 in the sample.

Rather than use a two-step procedure, we can estimate equations (15.39)–(15.41)

by conditional maximum likelihood. To obtain the joint distribution of ðy1; y2Þ,
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conditional on z, recall that

f ðy1; y2 j zÞ ¼ f ðy1 j y2; zÞ f ðy2 j zÞ ð15:48Þ

(see Property CD.2 in Appendix 13A). Since y2 j z@Normalðzd2; t
2
2Þ, the density

f ðy2 j zÞ is easy to write down. We can also derive the conditional density of y1 given

ðy2; zÞ. Since v2 ¼ y2 � zd2 and y1 ¼ 1½y�
1 > 0�,

Pðy1 ¼ 1 j y2; zÞ ¼ F
z1d1 þ a1y2 þ ðr1=t2Þðy2 � zd2Þ

ð1 � r2
1Þ

1=2

" #
ð15:49Þ

where we have used the fact that y1 ¼ r1=t2.

Let w denote the term in inside Fð�Þ in equation (15.49). Then we have derived

f ðy1; y2 j zÞ ¼ fFðwÞgy1f1 �FðwÞg1�y1ð1=t2Þf½ðy2 � zd2Þ=t2�

and so the log likelihood for observation i (apart from terms not depending on the

parameters) is

yi1 log FðwiÞ þ ð1 � yi1Þ log½1 �FðwiÞ� � 1
2 logðt2

2Þ � 1
2 ðyi2 � zid2Þ2=t2

2 ð15:50Þ

where we understand that wi depends on the parameters ðd1; a1; r1; d2; t2Þ:

wi 1 ½zi1d1 þ a1yi2 þ ðr1=t2Þðyi2 � zid2Þ�=ð1 � r2
1Þ

1=2

Summing expression (15.50) across all i and maximizing with respect to all param-

eters gives the MLEs of d1, a1, r1, d2, t2
2 . The general theory of conditional MLE

applies, and so standard errors can be obtained using the estimated Hessian, the

estimated expected Hessian, or the outer product of the score.

Maximum likelihood estimation has some decided advantages over two-step pro-

cedures. First, MLE is more e‰cient than any two-step procedure. Second, we get

direct estimates of d1 and a1, the parameters of interest for computing partial e¤ects.

Evans, Oates, and Schwab (1992) study peer e¤ects on teenage behavior using the full

MLE.

Testing that y2 is exogenous is easy once the MLE has been obtained: just test

H0: r1 ¼ 0 using an asymptotic t test. We could also use a likelihood ratio test.

The drawback with the MLE is computational. Sometimes it can be di‰cult to get

the iterations to converge, as r̂r1 sometimes tends toward 1 or �1.

Comparing the Rivers-Vuong approach to the MLE shows that the former is a

limited information procedure. Essentially, Rivers and Vuong focus on f ðy1 j y2; zÞ,
where they replace the unknown d2 with the OLS estimator d̂d2 (and they ignore the

rescaling problem by taking e1 in equation (15.43) to have unit variance). MLE esti-
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mates the parameters using the information in f ðy1 j y2; zÞ and f ðy2 j zÞ simulta-

neously. For the initial test of whether y2 is exogenous, the Rivers-Vuong approach

has significant computational advantages. If exogeneity is rejected, it is probably

worth doing MLE.

Another benefit of the maximum likelihood approach for this and related problems

is that it forces discipline on us in coming up with consistent estimation procedures

and correct standard errors. It is easy to abuse two-step procedures if we are not

careful in deriving estimating equations. With MLE, although it can be di‰cult to

derive joint distributions of the endogenous variables given the exogenous variables,

we know that, if the underlying distributional assumptions hold, consistent and e‰-

cient estimators are obtained.

15.7.3 A Binary Endogenous Explanatory Variable

We now consider the case where the probit model contains a binary explanatory

variable that is endogenous. The model is

y1 ¼ 1½z1d1 þ a1y2 þ u1 > 0� ð15:51Þ

y2 ¼ 1½zd2 þ v2 > 0� ð15:52Þ

where ðu1; v2Þ is independent of z and distributed as bivariate normal with mean zero,

each has unit variance, and r1 ¼ Corrðu1; v2Þ. If r1 0 0, then u1 and y2 are corre-

lated, and probit estimation of equation (15.51) is inconsistent for d1 and a1.

As discussed in Section 15.7.2, the normalization Varðu1Þ ¼ 1 is the proper one for

computing average partial e¤ects. Often, the e¤ect of y2 is of primary interest, espe-

cially when y2 indicates participation in some sort of program, such as job training,

and the binary outcome y1 might denote employment status. The average treatment

e¤ect (for a given value of z1) is Fðz1d1 þ a1Þ �Fðz1d1Þ.
To derive the likelihood function, we again need the joint distribution of ðy1; y2Þ

given z, which we obtain from equation (15.48). To obtain Pðy1 ¼ 1 j y2; zÞ, first note

that

Pðy1 ¼ 1 j v2; zÞ ¼ F½ðz1d1 þ a1y2 þ r1v2Þ=ð1 � r2
1Þ

1=2� ð15:53Þ

Since y2 ¼ 1 if and only if v2 > �zd2, we need a basic fact about truncated normal

distributions: If v2 has a standard normal distribution and is independent of z, then

the density of v2 given v2 > �zd2 is

fðv2Þ=Pðv2 > �zd2Þ ¼ fðv2Þ=Fðzd2Þ ð15:54Þ

Therefore,
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Pðy1 ¼ 1 j y2 ¼ 1; zÞ ¼ E½Pðy1 ¼ 1 j v2; zÞ j y2 ¼ 1; z�

¼ EfF½ðz1d1 þ a1y2 þ r1v2Þ=ð1 � r2
1Þ

1=2� j y2 ¼ 1; zg

¼ 1

Fðzd2Þ

ðy
�zd2

F½ðz1d1 þ a1y2 þ r1v2Þ=ð1 � r2
1Þ

1=2�fðv2Þ dv2

ð15:55Þ

where v2 in the integral is a dummy argument of integration. Of course Pðy1 ¼
0 j y2 ¼ 1; zÞ is just one minus equation (15.55).

Similarly, Pðy1 ¼ 1 j y2 ¼ 0; zÞ is

1

1 �Fðzd2Þ

ð�zd2

�y
F½ðz1d1 þ a1y2 þ r1v2Þ=ð1 � r2

1Þ
1=2�fðv2Þ dv2 ð15:56Þ

Combining the four possible outcomes of ðy1; y2Þ, along with the probit model for

y2, and taking the log gives the log-likelihood function for maximum likelihood

analysis. It is messy but certainly doable. Evans and Schwab (1995) use the MLE

approach to study the causal e¤ects of attending a Catholic high school on the

probability of attending college, allowing the Catholic high school indicator to be

correlated with unobserved factors that a¤ect college attendence. As an IV they use a

binary variable indicating whether a student is Catholic.

Because the MLE is nontrivial to compute, it is tempting to use some seemingly

‘‘obvious’’ two-step procedures. As an example, we might try to inappropriately

mimic 2SLS. Since Eðy2 j zÞ ¼ Fðzd2Þ and d2 is consistently estimated by probit of y2

on z, it is tempting to estimate d1 and a1 from the probit of y1 on z, F̂F2, where F̂F2 1
Fðzd̂d2Þ. This approach does not produce consistent estimators, for the same reasons

the forbidden regression discussed in Section 9.5 for nonlinear simultaneous equa-

tions models does not. For this two-step procedure to work, we would have to have

Pðy1 ¼ 1 j zÞ ¼ F½z1d1 þ a1Fðzd2Þ�. But Pðy1 ¼ 1 j zÞ ¼ Eðy1 j zÞ ¼ Eð1½z1d1 þ a1y2 þ
u1 > 0� j zÞ, and since the indicator function 1½�� is nonlinear, we cannot pass the

expected value through. If we were to compute the correct (complicated) formula for

Pðy1 ¼ 1 j zÞ, plug in d̂d2, and then maximize the resulting binary response log likeli-

hood, then the two-step approach would produce consistent estimators. But full

maximum likelihood is easier and more e‰cient.

As mentioned in the previous subsection, we can use the Rivers-Vuong approach

to test for exogeneity of y2. This has the virtue of being simple, and, if the test fails to

reject, we may not need to compute the MLE. A more e‰cient test is the score test of

H0: r1 ¼ 0, and this does not require estimation of the full MLE.
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15.7.4 Heteroskedasticity and Nonnormality in the Latent Variable Model

In applying the probit model it is easy to become confused about the problems of

heteroskedasticity and nonnormality. The confusion stems from a failure to distin-

guish between the underlying latent variable formulation, as in the model (15.9), and

the response probability in equation (15.8). As we have emphasized throughout this

chapter, for most purposes we want to estimate Pðy ¼ 1 j xÞ. The latent variable for-

mulation is convenient for certain manipulations, but we are rarely interested in

Eðy� j xÞ. [One case in which Eðy� j xÞ is of interest is covered in Problem 15.16.]

Once we focus on Pðy ¼ 1 j xÞ, we can easily see why we should not attempt to

compare heteroskedasticity in the latent variable model (15.9) with the consequences

of heteroskedasticity in a standard linear regression model. Heteroskedasticity in

Varðe j xÞ entirely changes the functional form for Pðy ¼ 1 j xÞ ¼ Eðy j xÞ. While the

statement ‘‘probit will be inconsistent for b when e is heteroskedastic’’ is correct, it

largely misses the point. In most probit applications, it makes little sense to care

about consistent estimation of b when Pðy ¼ 1 j xÞ0FðxbÞ. (Section 15.7.5 contains

a di¤erent perspective.)

It is easy to construct examples where the partial e¤ect of a variable on Pðy ¼ 1 j xÞ
has the sign opposite to that of its coe‰cient in the latent variable formulation.

For example, let x1 be a positive, continuous variable, and write the latent variable

model as y� ¼ b0 þ b1x1 þ e, e j x1 @Normalð0; x2
1Þ. The binary response is defined

as y ¼ 1½y� > 0�. A simple calculation shows that Pðy ¼ 1 j x1Þ ¼ Fðb0=x1 þ b1Þ,
and so qPðy ¼ 1 j x1Þ=qx1 ¼ �ðb0=x2

1Þfðb0=x1 þ b1Þ. If b0 > 0 and b1 > 0, then

qPðy ¼ 1 j x1Þ=qx1 and b1 have opposite signs. The problem is fairly clear: while the

latent variable model has a conditional mean that is linear in x1, the response prob-

ability depends on 1=x1. If the latent variable model is correct, we should just do

probit of y on 1 and 1=x1.

Nonnormality in the latent error e means that GðzÞ0FðzÞ, and therefore

Pðy ¼ 1 j xÞ0FðxbÞ. Again, this is a functional form problem in the response

probability, and it should be treated as such. As an example, suppose that the true

model is logit, but we estimate probit. We are not going to consistently estimate b in

Pðy ¼ 1 j xÞ ¼ LðxbÞ—in fact, Table 15.1 shows that the logit estimates are generally

much larger (roughly 1.6 times as large)—because of the di¤erent scalings inherent in

the probit and logit functions. But inconsistent estimation of b is practically irrele-

vant: probit might provide very good estimates of the partial e¤ects, qPðy ¼ 1 j xÞ=qxj,

even though logit is the correct model. In Example 15.2, the estimated partial e¤ects

are very similar for logit and probit.

Discrete Response Models 479



Relaxing distributional assumptions on e in the model (15.9) can be useful for

obtaining more flexible functional forms for Pðy ¼ 1 j xÞ, as we saw in equation

(15.24). Replacing FðzÞ with some function Gðz; gÞ, where g is a vector of parameters,

is a good idea, especially when it nests the standard normal cdf. [Moon (1988) covers

some interesting possibilities in the context of logit models, including asymmetric

cumulative distribution functions.] But it is important to remember that these are just

ways of generalizing functional form, and they may be no better than directly speci-

fying a more flexible functional form for the response probability, as in McDonald

(1996). When di¤erent functional forms are used, parameter estimates across di¤er-

ent models should not be the basis for comparison: in most cases, it makes sense only

to compare the estimated response probabilities at various values of x and goodness

of fit, such as the values of the log-likelihood function. (For an exception, see Prob-

lem 15.16.)

15.7.5 Estimation under Weaker Assumptions

Probit, logit, and the extensions of these mentioned in the previous subsection are all

parametric models: Pðy ¼ 1 j xÞ depends on a finite number of parameters. There

have been many recent advances in estimation of binary response models that relax

parametric assumptions on Pðy ¼ 1 j xÞ. We briefly discuss some of those here.

If we are interested in estimating the directions and relative sizes of the partial

e¤ects, and not the response probabilities, several approaches are possible. Ruud

(1983) obtains conditions under which we can estimate the slope parameters, call these

b, up to scale—that is, we can consistently estimate tb for some unknown constant t—

even though we misspecify the function Gð�Þ. Ruud (1986) shows how to exploit these

results to consistently estimate the slope parameters up to scale fairly generally.

An alternative approach is to recognize that we do not know the function Gð�Þ, but

the response probability has the index form in equation (15.8). This arises from the

latent variable formulation (15.9) when e is independent of x but the distribution of e

is not known. There are several semiparametric estimators of the slope parameters,

up to scale, that do not require knowledge of G. Under certain restrictions on the

function G and the distribution of x, the semiparametric estimators are consistent

and
ffiffiffiffiffi
N

p
-asymptotically normal. See, for example, Stoker (1986); Powell, Stock,

and Stoker (1989); Ichimura (1993); Klein and Spady (1993); and Ai (1997). Powell

(1994) contains a recent survey of these methods.

Once b̂b is obtained, the function G can be consistently estimated (in a sense we

cannot make precise here, as G is part of an infinite dimensional space). Thus, the

response probabilities, as well as the partial e¤ects on these probabilities, can be

consistently estimated for unknown G. Obtaining ĜG requires nonparametric regression
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of yi on xi b̂b, where b̂b are the scaled slope estimators. Accessible treatments of the

methods used are contained in Stoker (1992), Powell (1994), and Härdle and Linton

(1994).

Remarkably, it is possible to estimate b up to scale without assuming that e and x

are independent in the model (15.9). In the specification y ¼ 1½xb þ e > 0�, Manski

(1975, 1988) shows how to consistently estimate b, subject to a scaling, under the

assumption that the median of e given x is zero. Some mild restrictions are needed on

the distribution of x; the most important of these is that at least one element of x with

nonzero coe‰cient is essentially continuous. This allows e to have any distribution,

and e and x can be dependent; for example, Varðe j xÞ is unrestricted. Manski’s esti-

mator, called the maximum score estimator, is a least absolute deviations estimator.

Since the median of y given x is 1½xb > 0�, the maximum score estimator solves

min
b

XN

i¼1

jyi � 1½xib > 0�j

over all b with, say, b 0b ¼ 1, or with some element of b fixed at unity if the corre-

sponding xj is known to appear in Medðy j xÞ. fA normalization is needed because if

Medðy j xÞ ¼ 1½xb > 0� then Medðy j xÞ ¼ 1½xðtbÞ > 0� for any t > 0.g The resulting

estimator is consistent—for a recent proof see Newey and McFadden (1994)—but its

limiting distribution is nonnormal. In fact, it converges to its limiting distribution at

rate N 1=3. Horowitz (1992) proposes a smoothed version of the maximum score esti-

mator that converges at a rate close to
ffiffiffiffiffi
N

p
.

The maximum score estimator’s strength is that it consistently estimates b up to

scale in cases where the index model (15.8) does not hold. In a sense, this is also the

estimator’s weakness, because it is not intended to deliver estimates of the response

probabilities Pðy ¼ 1 j xÞ. In some cases we might only want to know the relative

e¤ects of each xj on an underlying utility di¤erence or unobserved willingness to pay

ðy�Þ, and the maximum score estimator is well suited for that purpose. However, for

most policy purposes we want to know the magnitude of the change in Pðy ¼ 1 j xÞ
for a given change in xj. As illustrated by the heteroskedasticity example in the pre-

vious subsection, where Varðe j x1Þ ¼ x2
1 , it is possible for bj and qPðy ¼ 1 j xÞ=qxj to

have opposite signs. More generally, for any variable y, it is possible that xj has a

positive e¤ect on Medðy j xÞ but a negative e¤ect on Eðy j xÞ, or vice versa. This

possibility raises the issue of what should be the focus, the median or the mean. For

binary response, the conditional mean is the response probability.

It is also possible to estimate the parameters in a binary response model with

endogenous explanatory variables without knowledge of Gð�Þ. Lewbel (1998) con-
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tains some recent results. Apparently, methods for estimating average partial e¤ects

with endogenous explanatory variables and unknown Gð�Þ are not yet available.

15.8 Binary Response Models for Panel Data and Cluster Samples

When analyzing binary responses in the context of panel data, it is often useful to

begin with a linear model with an additive, unobserved e¤ect, and then, just as in

Chapters 10 and 11, use the within transformation or first di¤erencing to remove the

unobserved e¤ect. A linear probability model for binary outcomes has the same

problems as in the cross section case. In fact, it is probably less appealing for

unobserved e¤ects models, as it implies the unnatural restrictions xitbU ci U
1 � xitb; t ¼ 1; . . . ;T ; on the unobserved e¤ects. In this section we discuss probit and

logit models that can incorporate unobserved e¤ects.

15.8.1 Pooled Probit and Logit

In Section 13.8 we used a probit model to illustrate partial likelihood methods with

panel data. Naturally, we can use logit or any other binary response function as well.

Suppose the model is

Pðyit ¼ 1 j xitÞ ¼ GðxitbÞ; t ¼ 1; 2; . . . ;T ð15:57Þ

where Gð�Þ is a known function taking on values in the open unit interval. As we

discussed in Chapter 13, xit can contain a variety of factors, including time dummies,

interactions of time dummies with time-constant or time-varying variables, and lagged

dependent variables.

In specifying the model (15.57) we have not assumed nearly enough to obtain the

distribution of yi 1 ðyi1; . . . ; yiT Þ given xi ¼ ðxi1; . . . ; xiTÞ. Nevertheless, we can ob-

tain a
ffiffiffiffiffi
N

p
-consistent estimator of b by maximizing the partial log-likelihood function

XN

i¼1

XT

t¼1

fyit log GðxitbÞ þ ð1 � yitÞ log½1 � GðxitbÞ�g

which is simply an exercise in pooled estimation. Without further assumptions, a

robust variance matrix estimator is needed to account for serial correlation in the

scores across t; see equation (13.53) with b̂b in place of ŷy and G in place of F. Wald

and score statistics can be computed as in Chapter 12.

In the case that the model (15.57) is dynamically complete, that is,

Pðyit ¼ 1 j xit; yi; t�1; xi; t�1; . . .Þ ¼ Pðyit ¼ 1 j xitÞ ð15:58Þ
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inference is considerably easier: all the usual statistics from a probit or logit that

pools observations and treats the sample as a long independent cross section of size

NT are valid, including likelihood ratio statistics. Remember, we are definitely not

assuming independence across t (for example, xit can contain lagged dependent vari-

ables). Dynamic completeness implies that the scores are serially uncorrelated across

t, which is the key condition for the standard inference procedures to be valid. (See

the general treatment in Section 13.8.)

To test for dynamic completeness, we can always add a lagged dependent variable

and possibly lagged explanatory variables. As an alternative, we can derive a simple

one-degree-of-freedom test that works regardless of what is in xit. For concreteness,

we focus on the probit case; other index models are handled similarly. Define uit 1
yit �FðxitbÞ, so that, under assumption (15.58), Eðuit j xit; yi; t�1; xi; t�1; . . .Þ ¼ 0, all

t. It follows that uit is uncorrelated with any function of the variables ðxit; yi; t�1;

xi; t�1; . . .Þ, including ui; t�1. By studying equation (13.53), we can see that it is serial

correlation in the uit that makes the usual inference procedures invalid. Let ûuit ¼
yit �Fðxitb̂bÞ. Then a simple test is available by using pooled probit to estimate the

artificial model

‘‘Pðyit ¼ 1 j xit; ûui; t�1Þ ¼ Fðxitb þ g1ûui; t�1Þ’’ ð15:59Þ

using time periods t ¼ 2; . . . ;T . The null hypothesis is H0: g1 ¼ 0. If H0 is rejected,

then so is assumption (15.58). This is a case where under the null hypothesis, the es-

timation of b required to obtain ûui; t�1 does not a¤ect the limiting distribution of any

of the usual test statistics, Wald, LR, or LM, of H0: g1 ¼ 0. The Wald statistic, that

is, the t statistic on ĝg1, is the easiest to obtain. For the LM and LR statistics we must

be sure to drop the first time period in estimating the restricted model ðg1 ¼ 0Þ.

15.8.2 Unobserved E¤ects Probit Models under Strict Exogeneity

A popular model for binary outcomes with panel data is the unobserved e¤ects probit

model. The main assumption of this model is

Pðyit ¼ 1 j xi; ciÞ ¼ Pðyit ¼ 1 j xit; ciÞ ¼ Fðxitb þ ciÞ; t ¼ 1; . . . ;T ð15:60Þ

where ci is the unobserved e¤ect and xi contains xit for all t. The first equality says

that xit is strictly exogenous conditional on ci: once ci is conditioned on, only xit

appears in the response probability at time t. This rules out lagged dependent vari-

ables in xit, as well as certain kinds of explanatory variables whose future move-

ments depend on current and past outcomes on y. (Strict exogeneity also requires that

we have enough lags of explanatory variables if there are distributed lag e¤ects.) The
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second equality is the standard probit assumption, with ci appearing additively in the

index inside Fð�Þ. Many analyses are not convincing unless xit contains a full set of

time dummies.

In addition to assumption (15.60), a standard assumption is that the outcomes are

independent conditional on ðxi; ciÞ:

yi1; . . . ; yiT are independent conditional on ðxi; ciÞ ð15:61Þ

Because of the presence of ci, the yit are dependent across t conditional only on the

observables, xi. [Assumption (15.61) is analogous to the linear model assumption

that, conditional on ðxi; ciÞ, the yit are serially uncorrelated; see Assumption FE.3 in

Chapter 10.] Under assumptions (15.60) and (15.61), we can derive the density of

ðyi1; . . . ; yiTÞ conditional on ðxi; ciÞ:

f ðy1; . . . ; yT j xi; ci; bÞ ¼
YT
t¼1

f ðyt j xit; ci; bÞ ð15:62Þ

where f ðyt j xt; c; bÞ ¼ Fðxtb þ cÞyt ½1 �Fðxtb þ cÞ�1�yt . Ideally, we could estimate

the quantities of interest without restricting the relationship between ci and the xit. In

this spirit, a fixed e¤ects probit analysis treats the ci as parameters to be estimated

along with b, as this treatment obviates the need to make assumptions about the

distribution of ci given xi. The log-likelihood function is
PN

i¼1 liðci; bÞ, where liðci; bÞ
is the log of equation (15.62) evaluated at the yit. Unfortunately, in addition to being

computationally di‰cult, estimation of the ci along with b introduces an incidental

parameters problem. Unlike in the linear case, where estimating the ci along with b

leads to the
ffiffiffiffiffi
N

p
-consistent fixed e¤ects estimator of b, in the present case estimating

the ci (N of them) along with b leads to inconsistent estimation of b with T fixed and

N ! y. We discuss the incidental parameters problem in more detail for the unob-

served e¤ects logit model in Section 15.8.3.

The name ‘‘fixed e¤ects probit’’ to describe the model where the ci are fixed

parameters is somewhat unfortunate. As we saw with linear models, and, as we will

see with the logit model in the next subsection and with count data models in Chapter

19, in some cases we can consistently estimate the parameters b without specifying a

distribution for ci given xi. This ability is the hallmark of a fixed e¤ects analysis for

most microeconometric applications. By contrast, treating the ci as parameters to

estimate can lead to potentially serious biases.

Here we follow the same approach adopted for linear models: we always treat ci

as an unobservable random variable drawn along with ðxi; yiÞ. The question is,

Under what additional assumptions can we consistently estimate parameters, as
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well as interesting partial e¤ects? Unfortunately, for the unobserved e¤ects probit

model, we must make an assumption about the relationship between ci and xi. The

traditional random e¤ects probit model adds, to assumptions (15.60) and (15.61), the

assumption

ci j xi @Normalð0; s2
c Þ ð15:63Þ

This is a strong assumption, as it implies that ci and xi are independent and that ci

has a normal distribution. It is not enough to assume that ci and xi are uncorrelated,

or even that Eðci j xiÞ ¼ 0. The assumption EðciÞ ¼ 0 is without loss of generality

provided xit contains an intercept, as it always should.

Before we discuss estimation of the random e¤ects probit model, we should be sure

we know what we want to estimate. As in Section 15.7.1, consistent estimation of b

means that we can consistently estimate the partial e¤ects of the elements of xt on the

response probability Pðyt ¼ 1 j xt; cÞ at the average value of c in the population,

c ¼ 0. (We can also estimate the relative e¤ects of any two elements of xt for any

value of c, as the relative e¤ects do not depend on c.) For the reasons discussed in

Section 15.7.1, average partial e¤ects (APEs) are at least as useful. Since ci @
Normalð0; s2

c Þ, the APE for a continuous xtj is ½bj=ð1 þ s2
c Þ

1=2�f½xtb=ð1 þ s2
c Þ

1=2�,
just as in equation (15.38). Therefore, we only need to estimate bc 1 b=ð1 þ s2

c Þ
1=2

to estimate the APEs, for either continuous or discrete explanatory variables. (In

other branches of applied statistics, such as biostatistics and education, the coef-

ficients indexing the APEs—bc in our notation—are called the population-averaged

parameters.)

Under assumptions (15.60), (15.61), and (15.63), a conditional maximum likeli-

hood approach is available for estimating b and s2
c . This is a special case of the

approach in Section 13.9. Because the ci are not observed, they cannot appear in the

likelihood function. Instead, we find the joint distribution of ðyi1; . . . ; yiT Þ condi-

tional on xi, a step that requires us to integrate out ci. Since ci has a Normalð0; s2
c Þ

distribution,

f ðy1; . . . ; yT j xi; yÞ ¼
ðy
�y

YT
t¼1

f ðyt j xit; c; bÞ
" #

ð1=scÞfðc=scÞ dc ð15:64Þ

where f ðyt j xt; c; bÞ ¼ Fðxtb þ cÞyt ½1 �Fðxtb þ cÞ�1�yt and y contains b and s2
c .

Plugging in yit for all t and taking the log of equation (15.64) gives the conditional

log likelihood liðyÞ for each i. The log-likelihood function for the entire sample of

size N can be maximized with respect to b and s2
c (or b and sc) to obtain

ffiffiffiffiffi
N

p
-consistent

asymptotically normal estimators; Butler and Mo‰tt (1982) describe a procedure for
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approximating the integral in equation (15.64). The conditional MLE in this context

is typically called the random e¤ects probit estimator, and the theory in Section 13.9

can be applied directly to obtain asymptotic standard errors and test statistics. Since

b and s2
c can be estimated, the partial e¤ects at c ¼ 0 as well as the average partial

e¤ects can be estimated. Since the variance of the idiosyncratic error in the latent

variable model is unity, the relative importance of the unobserved e¤ect is measured

as r ¼ s2
c =ðs2

c þ 1Þ, which is also the correlation between the composite latent error,

say, ci þ eit, across any two time periods. Many random e¤ects probit routines report

r̂r and its standard error; these statistics lead to an easy test for the presence of the

unobserved e¤ect.

Assumptions (15.61) and (15.63) are fairly strong, and it is possible to relax them.

First consider relaxing assumption (15.61). One useful observation is that, under

assumptions (15.60) and (15.63) only,

Pðyit ¼ 1 j xiÞ ¼ Pðyit ¼ 1 j xitÞ ¼ FðxitbcÞ ð15:65Þ

where bc ¼ b=ð1 þ s2
c Þ

1=2. Therefore, just as in Section 15.8.1, we can estimate bc

from pooled probit of yit on xit, t ¼ 1; . . . ;T , i ¼ 1; . . . ;N, meaning that we directly

estimate the average partial e¤ects. If ci is truly present, fyit: t ¼ 1; . . . ;Tg will not

be independent conditional on xi. Robust inference is needed to account for the serial

dependence, as discussed in Section 15.8.1.

An alternative to simply calculating robust standard errors for b̂bc after pooled

probit, or using the full random e¤ects assumptions and obtaining the MLE, is what

is called the generalized estimating equations (GEE) approach (see Zeger, Liang, and

Albert, 1988). In the GEE approach to unobserved e¤ects binary response models,

the response probabilities are specified conditional only on xi, with the result that

we have Eðyit j xitÞ ¼ Eðyit j xiÞ for all t. [Unfortunately, the model is then called a

population-averaged model. As we just saw, we can estimate the population-averaged

parameters, or APEs, even if we have used random e¤ects probit estimation. It is best

to think of assumption (15.60) as the unobserved e¤ects model of interest. The rele-

vant question is, What e¤ects are we interested in, and how can we consistently esti-

mate them under various assumptions? We are usually interested in averaging across

the distribution of ci, but the basic model has not changed.] Next, a model for the

T � T matrix Wi 1Varðyi j xiÞ is specified, and this depends on b as well as some

additional parameters, say d. After estimating b and d in a first step, ŴWi is obtained,

and the GEE estimate of b is a multivariate weighted nonlinear least squares

(MWNLS) estimator. (See Problem 12.11.) As the model for Varðyi j xiÞ is often

chosen for convenience, it can be misspecified. The MWNLS estimator is still con-
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sistent and asymptotically normal because Eðyi j xiÞ is correctly specified under

assumptions (15.60) and (15.63)—we do not need assumption (15.61)—but a robust

variance matrix is needed (see Problem 12.11). Even with a misspecified variance

function, the MWNLS estimator is likely to be more e‰cient than pooled probit but

less e‰cient than the random e¤ects MLE under the full set of random e¤ects

assumptions.

Another way to relax assumption (15.61) is to assume a particular correlation

structure and then use full conditional maximum likelihood. For example, for each t

write the latent variable model as

y�
it ¼ xitb þ ci þ eit; yit ¼ 1½y�

it > 0� ð15:66Þ

and assume that the T � 1 vector ei is multivariate normal, with unit variances, but

unrestricted correlation matrix. This assumption, along with assumptions (15.60) and

(15.63), fully characterizes the distribution of yi given xi. However, even for moderate

T the computation of the CMLE can be very di‰cult. Recent advances in simulation

methods of estimation make it possible to estimate such models for fairly large T; see,

for example, Keane (1993) and Geweke and Keane (in press). The pooled probit

procedure that we have described is valid for estimating bc, the vector that indexes

the average partial e¤ects, regardless of the serial dependence in feitg, but it is ine‰-

cient relative to the full CMLE.

As in the linear case, in many applications the point of introducing the unobserved

e¤ect, ci, is to explicitly allow unobservables to be correlated with some elements of

xit. Chamberlain (1980) allowed for correlation between ci and xi by assuming a

conditional normal distribution with linear expectation and constant variance. A

Mundlak (1978) version of Chamberlain’s assumption is

ci j xi @Normalðcþ xix; s
2

a Þ ð15:67Þ

where xi is the average of xit, t ¼ 1; . . . ;T and s2
a is the variance of ai in the equation

ci ¼ cþ xixþ ai. (In other words, s2
a is the conditional variance of ci, which is

assumed not to depend on xi.) Chamberlain (1980) allowed more generality by

having xi, the vector of all explanatory variables across all time periods, in place of

xi. We will work with assumption (15.67), as it conserves on parameters; the more

general model requires a simple notational change. Chamberlain (1980) called model

(15.60) under assumption (15.67) a random e¤ects probit model, so we refer to the

model as Chamberlain’s random e¤ects probit model. While assumption (15.67) is re-

strictive in that it specifies a distribution for ci given xi, it at least allows for some

dependence between ci and xi.
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As in the linear case, we can only estimate the e¤ects of time-varying elements in

xit. In particular, xit should no longer contain a constant, as that would be indistin-

guishable from c in assumption (15.67). If our original model contains a time-constant

explanatory variable, say wi, it can be included among the explanatory variables, but

we cannot distinguish its e¤ect from ci unless we assume that the coe‰cient for wi in

x is zero. (That is, unless we assume that ci is partially uncorrelated with wi.) Time

dummies, which do not vary across i, are omitted from xi.

If assumptions (15.60), (15.61), and (15.67) hold, estimation of b, c, x, and s2
a is

straightforward because we can write the latent variable as y�
it ¼ cþ xitb þ xixþ

ai þ eit, where the eit are independent Normalð0; 1Þ variates [conditional on ðxi; aiÞ],
and ai j xi @Normalð0; s2

a Þ. In other words, by adding xi to the equation for each

time period, we arrive at a traditional random e¤ects probit model. (The variance we

estimate is s2
a rather than s2

c , but, as we will see, this suits our purposes nicely.)

Adding xi as a set of controls for unobserved heterogeneity is very intuitive: we are

estimating the e¤ect of changing xitj but holding the time average fixed. A test of the

usual RE probit model is easily obtained as a test of H0: x ¼ 0. Estimation can be

carried out using standard random e¤ects probit software. Given estimates of c and

x, we can estimate EðciÞ ¼ cþ EðxiÞx by ĉcþ xx̂x, where x is the sample average of xi.

Therefore, for any vector xt, we can estimate the response probability at EðciÞ as

Fðĉcþ xtb̂b þ xx̂xÞ. Taking di¤erences or derivatives (with respect to the elements of

xt) allows us to estimate the partial e¤ects on the response probabilities for any value

of xt. (We will show how to estimate the average partial e¤ects shortly.)

If we drop assumption (15.61), we can still estimate scaled versions of c, b, and x.

Under assumptions (15.60) and (15.67) we have

Pðyit ¼ 1 j xiÞ ¼ F½ðcþ xitb þ xixÞ � ð1 þ s2
a Þ

�1=2�

1Fðca þ xitba þ xixaÞ ð15:68Þ

where the a subscript means that a parameter vector has been multiplied by

ð1 þ s2
a Þ

�1=2. It follows immediately that ca, ba, and xa can be consistently estimated

using a pooled probit analysis of yit on 1, xit, xi, t ¼ 1; . . . ;T , i ¼ 1; . . . ;N. Because

the yit will be dependent condition on xi, inference that is robust to arbitrary time

dependence is required.

Conveniently, once we have estimated ca, ba, and xa, we can estimate the average

partial e¤ects. (We could apply the results from Section 2.2.5 here, but a direct

argument is instructive.) To see how, we need to average Pðyt ¼ 1 j xt ¼ xo; ciÞ across

the distribution of ci; that is, we need to find E½Pðyt ¼ 1 j xt ¼ xo; ciÞ� ¼E½Fðxob þ ciÞ�
for any given value xo of the explanatory variables. (In what follows, xo is a non-
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random vector of numbers that we choose as interesting values of the explanatory

variables. For emphasis, we include an i subscript on the random variables appearing

in the expectations.) Writing ci ¼ cþ xixþ ai and using iterated expectations, we

have E½Fðcþ xob þ xixþ aiÞ� ¼ E½EfFðcþ xob þ xixþ aiÞ j xig� [where the first

expectation is with respect to ðxi; aiÞ]. Using the same argument from Section 15.7.1,

E½FðcþxobþxixþaiÞjxi� ¼F½fcþxob þ xixg � ð1þs2
a Þ

�1=2� ¼Fðca þxoba þxixaÞ,
and so

E½Fðxob þ ciÞ� ¼ E½Fðca þ xoba þ xixaÞ� ð15:69Þ

Because the only random variable in the right-hand-side expectation is xi, a consis-

tent estimator of the right-hand side of equation (15.66) is simply

N�1
XN

i¼1

Fðĉca þ xob̂ba þ xix̂xaÞ ð15:70Þ

Average partial e¤ects can be estimated by evaluating expression (15.70) at two

di¤erent values for xo and forming the di¤erence, or, for continuous variable xj, by

using the average across i of b̂bajfðĉca þ xob̂ba þ xix̂xaÞ to get the approximate APE of

a one-unit increase in xj. See also Chamberlain [1984, equation (3.4)]. If we use

Chamberlain’s more general version of assumption (15.67), xi replaces xi everywhere.

[Incidentally, the focus on the APEs raises an interesting, and apparently open, ques-

tion: How does treating the ci’s as parameters to estimate—in a ‘‘fixed e¤ects probit’’

analysis—a¤ect estimation of the APEs? Given ĉci, i ¼ 1; . . . ;N and b̂b, the APEs

could be based on N�1
PN

i¼1 Fðĉci þ xob̂bÞ. Even though b̂b does not consistently esti-

mate b and the ĉci are estimates of the incidental parameters, it could be that the

resulting estimates of the APEs have reasonable properties.]

Under assumption (15.60) and the more general version of assumption (15.67),

Chamberlain (1980) suggested a minimum distance approach analogous to the linear

case (see Section 14.6). Namely, obtain p̂pt for each t by running a cross-sectional

probit of yit on 1, xi, i ¼ 1; . . . ;N. The mapping from the structural parameters ya 1
ðca; b

0
a; x

0
aÞ

0 to the vector p is exactly as in the linear case (see Section 14.6). The

variance matrix estimator for p̂p is obtained by pooling all T probits and computing

the robust variance matrix estimator in equation (13.53), with ŷy replaced by p̂p; see

also Chamberlain (1984, Section 4.5). The minimum distance approach leads to a

straightforward test of H0: xa ¼ 0, which is a test of assumption (15.63) that does not

impose assumption (15.61).

All of the previous estimation methods hinge crucially on the strict exogeneity of

fxit: t ¼ 1; . . . ;Tg, conditional on ci. As mentioned earlier, this assumption rules out
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lagged dependent variables, a case we consider explicitly in Section 15.8.4. But there

are other cases where strict exogeneity is questionable. For example, suppose that yit

is an employment indicator for person i in period t and wit is measure of recent

arrests. It is possible that whether someone is employed this period has an e¤ect on

future arrests. If so, then shocks that a¤ect employment status could be correlated

with future arrests, and such correlation would violate strict exogeneity. Whether this

situation is empirically important is largely unknown.

On the one hand, correcting for an explanatory variable that is not strictly exoge-

nous is quite di‰cult in nonlinear models; Wooldridge (2000c) suggests one possible

approach. On the other hand, obtaining a test of strict exogeneity is fairly easy. Let

wit denote a 1 � G subset of xit that we suspect of failing the strict exogeneity re-

quirement. Then a simple test is to add wi; tþ1 as an additional set of covariates; under

the null hypothesis, wi; tþ1 should be insignificant. In implementing this test, we can

use either random e¤ects probit or pooled probit, where, in either case, we lose the

last time period. (In the pooled probit case, we should use a fully robust Wald or

score test.) We should still obtain xi from all T time periods, as the test is either based

on the distribution of ðyi1; . . . ; yi;T�1Þ given ðxi1; . . . ; xiT Þ (random e¤ects probit) or

on the marginal distributions of yit given ðxi1; . . . ; xiT Þ, t ¼ 1; . . . ;T � 1 (pooled

probit). If the test does not reject, it provides at least some justification for the strict

exogeneity assumption.

15.8.3 Unobserved E¤ects Logit Models under Strict Exogeneity

The unobserved e¤ects probit models of the previous subsection have logit counter-

parts. If we replace the standard normal cdf F in assumption (15.60) with the logistic

function L, and also maintain assumptions (15.61) and (15.63), we arrive at what is

usually called the random e¤ects logit model. This model is not as attractive as the

random e¤ects probit model because there are no simple estimators available. The

normal distribution, with its property that linear combinations of normals are nor-

mally distributed, facilitates the pooled probit, random e¤ects, and minimum distance

estimation approaches. By contrast, in the random e¤ects logit model, Pðyit ¼ 1 j xiÞ
has no simple form: integrating the logit response Lðxtb þ cÞ with respect to the

normal density ð1=scÞfðc=scÞ yields no simple functional form. This statement is also

true of other popular continuous distributions for c.

There is one important advantage of the unobserved e¤ects logit model over the

probit model: under assumptions (15.60) (with F replaced by L) and (15.61), it is

possible to obtain a
ffiffiffiffiffi
N

p
-consistent estimator of b without any assumptions about

how ci is related to xi.
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How can we allow ci and xi to be arbitrarily related in the unobserved e¤ects logit

model? In the linear case we used the FE or FD transformation to eliminate ci from

the estimating equation. It turns out that a similar strategy works in the logit case,

although the argument is more subtle. What we do is find the joint distribution of

yi 1 ðyi1; . . . ; yiT Þ
0 conditional on xi; ci, and ni 1

PT
t¼1 yit. It turns out that this

conditional distribution does not depend on ci, so that it is also the distribution of yi

given xi and ni. Therefore, we can use standard conditional maximum likelihood

methods to estimate b. (The fact that we can find a conditional distribution that does

not depend on the ci is a feature of the logit functional form. Unfortunately, the same

argument does not work for the unobserved e¤ects probit model.)

First consider the T ¼ 2 case, where ni takes a value in f0; 1; 2g. Intuitively, the

conditional distribution of ðyi1; yi2Þ
0 given ni cannot be informative for b when ni ¼ 0

or ni ¼ 2 because these values completely determine the outcome on yi. However, for

ni ¼ 1,

Pðyi2 ¼ 1 j xi; ci; ni ¼ 1Þ ¼ Pðyi2 ¼ 1; ni ¼ 1 j xi; ciÞ=Pðni ¼ 1 j xi; ciÞ

¼ Pðyi2 ¼ 1 j xi; ciÞPðyi1 ¼ 0 j xi; ciÞ=fPðyi1 ¼ 0; yi2 ¼ 1 j xi; ciÞ

þ Pðyi1 ¼ 1; yi2 ¼ 0 j xi; ciÞg

¼ Lðxi2b þ ciÞ½1 �Lðxi1b þ ciÞ�=f½1 �Lðxi1b þ ciÞ�Lðxi2b þ ciÞ

þLðxi1b þ ciÞ½1 �Lðxi2b þ ciÞ�g ¼ L½ðxi2 � xi1Þb�

Similarly, Pðyi1 ¼ 1 j xi; ci; ni ¼ 1Þ ¼ L½�ðxi2 � xi1Þb� ¼ 1 �L½ðxi2 � xi1Þb�. The

conditional log likelihood for observation i is

liðbÞ ¼ 1½ni ¼ 1�ðwi log L½ðxi2 � xi1Þb� þ ð1�wiÞ logf1�L½ðxi2 � xi1Þb�gÞ ð15:71Þ

where wi ¼ 1 if ðyi1 ¼ 0; yi2 ¼ 1Þ and wi ¼ 0 if ðyi1 ¼ 1; yi2 ¼ 0Þ. The conditional

MLE is obtained by maximizing the sum of the liðbÞ across i. The indicator function

1½ni ¼ 1� selects out the observations for which ni ¼ 1; as stated earlier, observations

for which ni ¼ 0 or ni ¼ 2 do not contribute to the log likelihood. Interestingly, equa-

tion (15.71) is just a standard cross-sectional logit of wi on ðxi2 � xi1Þ using the obser-

vations for which ni ¼ 1. (This approach is analogous to di¤erencing in the linear

case with T ¼ 2.)

The conditional MLE from equation (15.71) is usually called the fixed e¤ects logit

estimator. We must emphasize that the FE logit estimator does not arise by treating

the ci as parameters to be estimated along with b. (This fact is confusing, as the FE

probit estimator does estimate the ci along with b.) As shown recently by Abrevaya
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(1997), the MLE of b that is obtained by maximizing the log likelihood over b and

the ci has probability limit 2b. (This finding extends a simple example due to

Andersen, 1970; see also Hsiao, 1986, Section 7.3.)

Sometimes the conditional MLE is described as ‘‘conditioning on the unobserved

e¤ects in the sample.’’ This description is misleading. What we have done is found a

conditional density—which describes the subpopulation with ni ¼ 1—that depends

only on observable data and the parameter b.

For general T the log likelihood is more complicated, but it is tractable. First,

Pðyi1 ¼ y1; . . . ; yiT ¼ yT j xi; ci; ni ¼ nÞ

¼ Pðyi1 ¼ y1; . . . ; yiT ¼ yT j xi; ciÞ=Pðni ¼ n j xi; ciÞ ð15:72Þ

and the numerator factors as Pðyi1 ¼ y1 j xi; ciÞ � � �PðyiT ¼ yT j xi; ciÞ by the condi-

tional independence assumption. The denominator is the complicated part, but it is

easy to describe: Pðni ¼ n j xi; ciÞ is the sum of the probabilities of all possible out-

comes of yi such that ni ¼ n. Using the specific form of the logit function we can write

liðbÞ ¼ log exp
XT

t¼1

yitxitb

 ! X
a ARi

exp
XT

t¼1

atxitb

 !" #�1
8<
:

9=
; ð15:73Þ

where Ri is the subset of RT defined as fa A RT : at A f0; 1g and
PT

t¼1 at ¼ nig. The

log likelihood summed across i can be used to obtain a
ffiffiffiffiffi
N

p
-asymptotically normal

estimator of b, and all inference follows from conditional MLE theory. Observations

for which equation (15.72) is zero or unity—and which therefore do not depend on

b—drop out of LðbÞ. See Chamberlain (1984).

The fixed e¤ects logit estimator b̂b immediately gives us the e¤ect of each element of

xt on the log-odds ratio, logfLðxtb þ cÞ=½1 �Lðxtb þ cÞ�g ¼ xtb þ c. Unfortunately,

we cannot estimate the partial e¤ects on the response probabilities unless we plug in a

value for c. Because the distribution of ci is unrestricted—in particular, EðciÞ is not

necessarily zero—it is hard to know what to plug in for c. In addition, we cannot

estimate average partial e¤ects, as doing so would require finding E½Lðxtb þ ciÞ�, a

task that apparently requires specifying a distribution for ci.

The conditional logit approach also has the drawback of apparently requiring the

conditional independence assumption (15.61) for consistency. As we saw in Section

15.8.2, if we are willing to make the normality assumption (15.67), the probit approach

allows unrestricted serial dependence in yit even after conditioning on xi and ci. This

possibility may be especially important when several time periods are available.
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15.8.4 Dynamic Unobserved E¤ects Models

Dynamic models that also contain unobserved e¤ects are important in testing theories

and evaluating policies. Here we cover one class of models that illustrates the impor-

tant points for general dynamic models and is of considerable interest in its own

right.

Suppose we date our observations starting at t ¼ 0, so that yi0 is the first obser-

vation on y. For t ¼ 1; . . . ;T we are interested in the dynamic unobserved e¤ects

model

Pðyit ¼ 1 j yi; t�1; . . . ; yi0; zi; ciÞ ¼ Gðzitdþ ryi; t�1 þ ciÞ ð15:74Þ

where zit is a vector of contemporaneous explanatory variables, zi ¼ ðzi1; . . . ; ziT Þ,
and G can be the probit or logit function. There are several important points about

this model. First, the zit are assumed to satisfy a strict exogeneity assumption (con-

ditional on ci), since zi appears in the conditioning set on the left-hand side of equa-

tion (15.74), but only zit appears on the right-hand side. Second, the probability of

success at time t is allowed to depend on the outcome in t � 1 as well as unobserved

heterogeneity, ci. We saw the linear version in Section 11.1.1. Of particular interest is

the hypothesis H0: r ¼ 0. Under this null, the response probability at time t does not

depend on past outcomes once ci (and zi) have been controlled for. Even if r ¼ 0,

Pðyit ¼ 1 j yi; t�1; ziÞ0Pðyit ¼ 1 j ziÞ owing to the presence of ci. But economists are

interested in whether there is state dependence—that is, r0 0 in equation (15.74)—

after controlling for the unobserved heterogeneity, ci.

We might also be interested in the e¤ects of zt, as it may contain policy variables.

Then, equation (15.74) simply captures the fact that, in addition to an unobserved

e¤ect, behavior may depend on past observed behavior.

How can we estimate d and r in equation (15.74), in addition to quantities such as

average partial e¤ects? First, we can always write

f ðy1; y2; . . . ; yT j y0; z; c; bÞ ¼
YT
t¼1

f ðyt j yt�1; . . . y1; y0; zt; c; bÞ

¼
YT
t¼1

Gðztdþ ryt�1 þ cÞyt ½1 � Gðztdþ ryt�1 þ cÞ�1�yt

ð15:75Þ

With fixed-T asymptotics, this density, because of the unobserved e¤ect c, does not

allow us to construct a log-likelihood function that can be used to estimate b con-

sistently. Just as in the case with strictly exogenous explanatory variables, treating the
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ci as parameters to be estimated does not result in consistent estimators of d and r

as N ! y. In fact, the simulations in Heckman (1981) show that the incidental

parameters problem is even more severe in dynamic models. What we should do is

integrate out the unobserved e¤ect c, as we discussed generally in Section 13.9.2.

Our need to integrate c out of the distribution raises the issue of how we treat the

initial observations, yi0; this is usually called the initial conditions problem. One pos-

sibility is to treat each yi0 as a nonstochastic starting position for each i. Then, if ci is

assumed to be independent of zi (as in a pure random e¤ects environment), equation

(15.75) can be integrated against the density of c to obtain the density of ðy1; y2; . . . ;

yTÞ given z; this density also depends on y0 through f ðy1 j y0; c; z1; bÞ. We can then

apply conditional MLE. Although treating the yi0 as nonrandom simplifies estima-

tion, it is undesirable because it e¤ectively means that ci and yi0 are independent, a

very strong assumption.

Another possibility is to first specify a density for yi0 given ðzi; ciÞ and to multiply

this density by equation (15.75) to obtain f ðy0; y1; y2; . . . ; yT j z; c; b; gÞ. Next, a

density for ci given zi can be specified. Finally, f ðy0; y1; y2; . . . ; yT j z; c; b; gÞ is inte-

grated against the density hðc j z; aÞ to obtain the density of ðyi0; yi1; yi2; . . . ; yiT Þ
given zi. This density can then be used in an MLE analysis. The problem with this

approach is that finding the density of yi0 given ðzi; ciÞ is very di‰cult, if not impos-

sible, even if the process is assumed to be in equilibrium. For discussion, see Hsiao

(1986, Section 7.4).

Heckman (1981) suggests approximating the conditional density of yi0 given ðzi; ciÞ
and then specifying a density for ci given zi. For example, we might assume that yi0

follows a probit model with success probability Fðhþ zip þ gciÞ and specify the den-

sity of ci given zi as normal. Once these two densities are given, they can be multi-

plied by equation (15.75), and c can be integrated out to approximate the density of

ðyi0; yi1; yi2; . . . ; yiT Þ given zi; see Hsiao (1986, Section 7.4).

Heckman’s (1981) approach attempts to find or approximate the joint distribution

of ðyi0; yi1; yi2; . . . ; yiTÞ given zi. We discussed an alternative approach in Section

13.9.2: obtain the joint distribution of ðyi1; yi2; . . . ; yiTÞ conditional on ðyi0; ziÞ. This

allows us to remain agnostic about the distribution of yi0 given ðzi; ciÞ, which is the

primary source of di‰culty in Heckman’s approach. If we can find the density of

ðyi1; yi2; . . . ; yiT Þ given ðyi0; ziÞ, in terms of b and other parameters, then we can use

standard conditional maximum likelihood methods: we are simply conditioning on

yi0 in addition to zi. It is important to see that using the density of ðyi1; yi2; . . . ; yiT Þ
given ðyi0; ziÞ is not the same as treating yi0 as nonrandom. Indeed, the model with ci

independent of yi0, given zi, is a special case.
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To obtain f ðy1; y2; . . . ; yT j yi0; ziÞ, we need to propose a density for ci given

ðyi0; ziÞ. This approach is very much like Chamberlain’s (1980) approach to static

probit models with unobserved e¤ects, except that we now condition on yi0 as well.

[Since the density of ci given zi is not restricted by the specification (15.75), our choice

of the density of ci given ðyi0; ziÞ is not logically restricted in any way.] Given a

density hðc j y0; z; gÞ, which depends on a vector of parameters g, we have

f ðy1; y2; . . . ; yT j y0; z; yÞ ¼
ðy
�y

f ðy1; y2; . . . ; yT j y0; z; c; bÞhðc j y0; z; gÞ dc

See Property CD.2 in Chapter 13. The integral can be replaced with a weighted

average if the distribution of c is discrete. When G ¼ F in the model (15.74)—the

leading case—a very convenient choice for hðc j y0; z; gÞ is Normalðcþ x0 yi0 þ zix;

s2
a Þ, which follows by writing ci ¼ cþ x0 yi0 þ zixþ ai, where ai @Normalð0; s2

a Þ
and independent of ðyi0; ziÞ. Then we can write

yit ¼ 1½cþ zitdþ ryi; t�1 þ x0 yi0 þ zixþ ai þ eit > 0�

so that yit given ðyi; t�1; . . . ; yi0; zi; aiÞ follows a probit model and ai given ðyi0; ziÞ is

distributed as Normalð0; s2
a Þ. Therefore, the density of ðyi1; . . . ; yiT Þ given ðyi0; ziÞ

has exactly the form in equation (15.64), where xit ¼ ð1; zit; yi; t�1; yi0; ziÞ and with a

and sa replacing c and sc, respectively. Conveniently, this result means that we can

use standard random e¤ects probit software to estimate c, d, r, x0, x, and s2
a : we

simply expand the list of explanatory variables to include yi0 and zi in each time

period. (The approach that treats yi0 and zi as fixed omits yi0 and zi in each time

period.) It is simple to test H0: r ¼ 0, which means there is no state dependence once

we control for an unobserved e¤ect.

Average partial e¤ects can be estimated as in Chamberlain’s unobserved e¤ects

probit model: for given values of ztðzoÞ and yt�1ðyo
�1Þ, E½Fðzodþ ryo

�1 þ ciÞ� is con-

sistently estimated by N�1
PN

i¼1 Fðĉca þ zod̂da þ r̂ra yo
�1 þ x̂xa0 yi0 þ zix̂xaÞ, where the a

subscript denotes multiplication by ð1 þ ŝs2
a Þ

�1=2, and ĉc, d̂d, r̂r, x̂x0, x̂x, and ŝs2
a are the

conditional MLEs. See Wooldridge (2000e) for additional details. A mean value ex-

pansion can be used to obtain asymptotic standard errors for the APEs, or a boot-

strapping approach, as described in Section 12.8.2, can be used.

15.8.5 Semiparametric Approaches

Under strict exogeneity of the explanatory variables, it is possible to consistently es-

timate b up to scale under very weak assumptions. Manski (1987) derives an objec-

tive function that identifies b up to scale in the T ¼ 2 case when ei1 and ei2 in the
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model (15.66) are identically distributed conditional on ðxi1; xi2; ciÞ and xit is strictly

exogenous. The estimator is the maximum score estimator applied to the di¤erences

Dyi and Dxi. As in the cross-sectional case, it is not known how to estimate the

average response probabilities.

Honoré and Kyriazidou (2000a) show how to estimate the parameters in the

unobserved e¤ects logit model with a lagged dependent variable and strictly exoge-

nous explanatory variables without making distributional assumptions about the

unobserved e¤ect. Unfortunately, the estimators, which are consistent and asymp-

totically normal, do not generally converge at the usual
ffiffiffiffiffi
N

p
rate. In addition, as with

many semiparametric approaches, discrete explanatory variables such as time dum-

mies are ruled out, and it is not possible to estimate the average partial e¤ects. See

also Arellano and Honoré (in press).

15.8.6 Cluster Samples

In Section 13.8 we noted how partial MLE methods can be applied to cluster sam-

ples, and binary choice models are no exception. For cluster i and unit g, we might

specify Pðyig ¼ 1 j xigÞ ¼ FðxigbÞ, and then estimate b using a pooled probit analysis.

(Replacing F with L gives pooled logit.) A robust variance matrix is needed to ac-

count for any within-cluster correlation due, say, to unobserved cluster e¤ects. The

formula is given in equation (13.53), except that g replaces t, and Gi, the size of cluster

i, replaces T everywhere. This estimator is valid as N ! y with Gi fixed.

We can also test for peer group e¤ects by including among xig the average (or

other summary statistics) of variables within the same cluster. In this scenario there

are almost certainly unobserved cluster e¤ects, so statistics robust to intercluster

correlation should be computed.

An alternative to pooled probit or logit is to use an unobserved e¤ect framework

explicitly. For example, we might have Pðyig ¼ 1 j xi; ciÞ ¼ Fðxigb þ ciÞ, where ci is

an unobserved cluster e¤ect. If observations are assumed independent within cluster

conditional on ðxi; ciÞ, and if ci is independent of xi, then the random e¤ects probit

MLE is easily modified: just use equation (15.64) with t ¼ g and T ¼ Gi. The fact

that the observations are no longer identically distributed across i has no practical

implications. Allowing ci and xi to be correlated in the context of cluster sampling is

easy if we maintain assumption (15.67) regardless of the cluster size. The details are

essentially the same as the panel data case.

When Gi ¼ 2 for all i, the fixed e¤ects logit approach is straightforward. Geronimus

and Korenman (1992) use sister pairs to determine the e¤ects of teenage motherhood

on subsequent economic outcomes. When the outcome is binary (such as an employ-
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ment indicator), Geronimus and Korenman allow for an unobserved family e¤ect by

applying fixed e¤ects logit.

15.9 Multinomial Response Models

15.9.1 Multinomial Logit

The logit model for binary outcomes extends to the case where the unordered response

has more than two outcomes. Examples of unordered multinomial responses include

occupational choice, choice of health plan, and transportation mode for commuting

to work. In each case, an individual chooses one alternative from the group of choices,

and the labeling of the choices is arbitrary. Let y denote a random variable taking on

the values f0; 1; . . . ; Jg for J a positive integer, and let x denote a set of conditioning

variables. For example, if y denotes occupational choice, x can contain things like

education, age, gender, race, and marital status. As usual, ðxi; yiÞ is a random draw

from the population.

As in the binary response case, we are interested in how ceteris paribus changes in

the elements of x a¤ect the response probabilities, Pðy ¼ j j xÞ, j ¼ 0; 1; 2; . . . ; J.

Since the probabilities must sum to unity, Pðy ¼ 0 j xÞ is determined once we know

the probabilities for j ¼ 1; . . . ; J.

Let x be a 1 � K vector with first-element unity. The multinomial logit (MNL)

model has response probabilities

Pðy ¼ j j xÞ ¼ expðxbjÞ= 1 þ
XJ

h¼1

expðxbhÞ
" #

; j ¼ 1; . . . ; J ð15:76Þ

where bj is K � 1, j ¼ 1; . . . ; J. Because the response probabilities must sum to unity,

Pðy ¼ 0 j xÞ ¼ 1= 1 þ
XJ

h¼1

expðxbhÞ
" #

When J ¼ 1, b1 is the K � 1 vector of unknown parameters, and we get the binary

logit model.

The partial e¤ects for this model are complicated. For continuous xk, we can write

qPðy ¼ j j xÞ
qxk

¼ Pðy ¼ j j xÞ bjk �
XJ

h¼1

bhk expðxbhÞ
" #

=gðx; bÞ
( )

ð15:77Þ

where bhk is the kth element of bh and gðx; bÞ ¼ 1 þ
PJ

h¼1 expðxbhÞ. Equation
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(15.77) shows that even the direction of the e¤ect is not determined entirely by bjk. A

simpler interpretation of bj is given by

pjðx; bÞ=p0ðx; bÞ ¼ expðxbjÞ; j ¼ 1; 2; . . . ; J ð15:78Þ

where pjðx; bÞ denotes the response probability in equation (15.76). Thus the change

in pjðx; bÞ=p0ðx; bÞ is approximately bjk expðxbjÞDxk for roughly continuous xk.

Equivalently, the log-odds ratio is linear in x: log½ pjðx; bÞ=p0ðx; bÞ� ¼ xbj. This result

extends to general j and h: log½ pjðx; bÞ=phðx; bÞ� ¼ xðbj � bhÞ.
Here is another useful fact about the multinomial logit model. Since Pðy ¼ j or

y ¼ h j xÞ ¼ pjðx; bÞ þ phðx; bÞ,

Pðy ¼ j j y ¼ j or y ¼ h; xÞ ¼ pjðx; bÞ=½ pjðx; bÞ þ phðx; bÞ� ¼ L½xðbj � bhÞ�

where Lð�Þ is the logistic function. In other words, conditional on the choice being

either j or h, the probability that the outcome is j follows a standard logit model with

parameter vector bj � bh.

Since we have fully specified the density of y given x, estimation of the MNL

model is best carried out by maximum likelihood. For each i the conditional log

likelihood can be written as

liðbÞ ¼
XJ

j¼0

1½yi ¼ j � log½ pjðxi; bÞ�

where the indicator function selects out the appropriate response probability for

each observation i. As usual, we estimate b by maximizing
PN

i¼1 liðbÞ. McFadden

(1974) has shown that the log-likelihood function is globally concave, and this fact

makes the maximization problem straightforward. The conditions needed to apply

Theorems 13.1 and 13.2 for consistency and asymptotic normality are broadly appli-

cable; see McFadden (1984).

Example 15.4 (School and Employment Decisions for Young Men): The data

KEANE.RAW (a subset from Keane and Wolpin, 1997) contains employment and

schooling history for a sample of men for the years 1981 to 1987. We use the data for

1987. The three possible outcomes are enrolled in school (status ¼ 0), not in school

and not working (status ¼ 1), and working (status ¼ 2). The explanatory variables

are education, a quadratic in past work experience, and a black binary indicator. The

base category is enrolled in school. Out of 1,717 observations, 99 are enrolled in

school, 332 are at home, and 1,286 are working. The results are given in Table 15.2.

Another year of education reduces the log-odds between at home and enrolled in

school by �.674, and the log-odds between at home and enrolled in school is .813
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higher for black men. The magnitudes of these coe‰cients are di‰cult to interpret.

Instead, we can either compute partial e¤ects, as in equation (15.77), or compute

di¤erences in probabilities. For example, consider two black men, each with five years

of experience. A black man with 16 years of education has an employment proba-

bility that is .042 higher than a man with 12 years of education, and the at-home

probability is .072 lower. (Necessarily, the in-school probability is .030 higher for the

man with 16 years of education.) These results are easily obtained by comparing fitted

probabilities after multinomial logit estimation.

The experience terms are each insignificant in the home column, but the Wald test

for joint significance of exper and exper2 gives p-value ¼ .047, and so they are jointly

significant at the 5 percent level. We would probably leave their coe‰cients un-

restricted in b1 rather than setting them to zero.

The fitted probabilities can be used for prediction purposes: for each observation i,

the outcome with the highest estimated probability is the predicted outcome. This can

be used to obtain a percent correctly predicted, by category if desired. For the pre-

vious example, the overall percent correctly predicted is almost 80 percent, but the

model does a much better job of predicting that a man is employed (95.2 percent

correct) than in school (12.1 percent) or at home (39.2 percent).

Table 15.2
Multinomial Logit Estimates of School and Labor Market Decisions

Dependent Variable: status

Explanatory Variable
home
(status ¼ 1)

work
(status ¼ 2)

educ �.674
(.070)

�.315
(.065)

exper �.106
(.173)

.849
(.157)

exper2 �.013
(.025)

�.077
(.023)

black .813
(.303)

.311
(.282)

constant 10.28
(1.13)

5.54
(1.09)

Number of observations 1,717

Percent correctly predicted 79.6

Log-likelihood value �907.86

Pseudo R-squared .243
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15.9.2 Probabilistic Choice Models

McFadden (1974) showed that a model closely related to the multinomial logit model

can be obtained from an underlying utility comparison. Suppose that, for a random

draw i from the underlying population (usually, but not necessarily, individuals), the

utility from choosing alternative j is

y�
ij ¼ xijb þ aij ; j ¼ 0; . . . ; J ð15:79Þ

where aij; j ¼ 0; 1; 2; . . . ; J are unobservables a¤ecting tastes. Here, xij is a 1 � K

vector that di¤ers across alternatives and possibly across individuals as well. For ex-

ample, xij might contain the commute time for individual i using transportation

mode j, or the co-payment required by health insurance plan j (which may or may

not di¤er by individual). For reasons we will see, xij cannot contain elements that

vary only across i and not j; in particular, xij does not contain unity. We assume that

the ðJ þ 1Þ-vector ai is independent of xi, which contains fxij: j ¼ 0; . . . ; Jg.

Let yi denote the choice of individual i that maximizes utility:

yi ¼ argmaxðy�
i0; y�

i2; . . . ; y�
iJÞ

so that yi takes on a value in f0; 1; . . . ; Jg. As shown by McFadden (1974), if the aij,

j ¼ 0; . . . ; J are independently distributed with cdf FðaÞ ¼ exp½�expð�aÞ�—the type

I extreme value distribution—then

Pðyi ¼ j j xiÞ ¼ expðxijbÞ=
XJ

h¼0

expðxihbÞ
" #

; j ¼ 0; . . . ; J ð15:80Þ

The response probabilities in equation (15.80) constitute what is usually called the

conditional logit model. Dropping the subscript i and di¤erentiating shows that the

marginal e¤ects are given by

qpjðxÞ=qxjk ¼ pjðxÞ½1 � pjðxÞ�bk; j ¼ 0; . . . ; J; k ¼ 1; . . . ;K ð15:81Þ

and

qpjðxÞ=qxhk ¼ �pjðxÞphðxÞbk; j 0 h; k ¼ 1; . . . ;K ð15:82Þ

where pjðxÞ is the response probability in equation (15.80) and bk is the kth element

of b. As usual, if the xj contain nonlinear functions of underlying explanatory vari-

ables, this fact will be reflected in the partial derivatives.

The conditional logit and multinomial logit models have similar response proba-

bilities, but they di¤er in some important respects. In the MNL model, the condi-
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tioning variables do not change across alternative: for each i, xi contains variables

specific to the individual but not to the alternatives. This model is appropriate for

problems where characteristics of the alternatives are unimportant or are not of in-

terest, or where the data are simply not available. For example, in a model of occu-

pational choice, we do not usually know how much someone could make in every

occupation. What we can usually collect data on are things that a¤ect individual

productivity and tastes, such as education and past experience. The MNL model

allows these characteristics to have di¤erent e¤ects on the relative probabilities be-

tween any two choices.

The conditional logit model is intended specifically for problems where consumer

or firm choices are at least partly made based on observable attributes of each alter-

native. The utility level of each choice is assumed to be a linear function in choice

attributes, xij , with common parameter vector b. This turns out to actually contain

the MNL model as a special case by appropriately choosing xij . Suppose that wi is a

vector of individual characteristics and that Pðyi ¼ j jwiÞ follows the MNL in equa-

tion (15.76) with parameters dj , j ¼ 1; . . . ; J. We can cast this model as the condi-

tional logit model by defining xij ¼ ðd1jwi; d2jwi; . . . ; dJjwiÞ, where djh is a dummy

variable equal to unity when j ¼ h, and b ¼ ðd 0
1; . . . ; d

0
JÞ

0. Consequently, some

authors refer to the conditional logit model as the multinomial logit model, with the

understanding that alternative-specific characteristics are allowed in the response

probability.

Empirical applications of the conditional logit model often include individual-

specific variables by allowing them to have separate e¤ects on the latent utilities. A

general model is

y�
ij ¼ zijgþ widj þ aij ; j ¼ 0; 1; . . . ; J

with d0 ¼ 0 as a normalization, where zij varies across j and possibly i. If dj ¼ d for

all j, then wid drops out of all response probabilities.

The conditional logit model is very convenient for modeling probabilistic choice,

but it has some limitations. An important restriction is

pjðxjÞ=phðxhÞ ¼ expðxjbÞ=expðxhbÞ ¼ exp½ðxj � xhÞb� ð15:83Þ

so that relative probabilities for any two alternatives depend only on the attributes of

those two alternatives. This is called the independence from irrelevant alternatives

(IIA) assumption because it implies that adding another alernative or changing the

characteristics of a third alternative does not a¤ect the relative odds between alter-

natives j and h. This implication is implausible for applications with similar alterna-
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tives. A well-known example is due to McFadden (1974). Consider commuters initially

choosing between two modes of transportation, car and red bus. Suppose that a

consumer chooses between the buses with equal probability, .5, so that the ratio in

equation (15.83) is unity. Now suppose a third mode, blue bus, is added. Assuming

bus commuters do not care about the color of the bus, consumers will choose be-

tween these with equal probability. But then IIA implies that the probability of each

mode is 1
3; therefore, the fraction of commuters taking a car would fall from 1

2 to 1
3, a

result that is not very realistic. This example is admittedly extreme—in practice, we

would lump the blue bus and red bus into the same category, provided there are no

other di¤erences—but it indicates that the IIA property can impose unwanted restric-

tions in the conditional logit model.

Hausman and McFadden (1984) o¤er tests of the IIA assumption based on

the observation that, if the conditional logit model is true, b can be consistently esti-

mated by conditional logit by focusing on any subset of alternatives. They apply the

Hausman principle that compares the estimate of b using all alternatives to the esti-

mate using a subset of alternatives.

Several models that relax the IIA assumption have been suggested. In the context

of the random utility model the IIA assumption comes about because the faij: j ¼ 0;

1; . . . ; Jg are assumed to be independent Wiebull random variables. A more flexible

assumption is that ai has a multivariate normal distribution with arbitrary corre-

lations between aij and aih, all j 0 h. The resulting model is called the multinomial

probit model. [In keeping with the spirit of the previous names, conditional probit

model is a better name, which is used by Hausman and Wise (1978) but not by many

others.]

Theoretically, the multinomial probit model is attractive, but it has some practical

limitations. The response probabilities are very complicated, involving a ðJ þ 1Þ-
dimensional integral. This complexity not only makes it di‰cult to obtain the partial

e¤ects on the response probabilities, but also makes maximum likelihood infeasible

for more than about five alternatives. For details, see Maddala (1983, Chapter 3) and

Amemiya (1985, Chapter 9). Hausman and Wise (1978) contain an application to

transportation mode for three alternatives.

Recent advances on estimation through simulation make multinomial probit esti-

mation feasible for many alternatives. See Hajivassilou and Ruud (1994) and Keane

(1993) for recent surveys of simulation estimation. Keane and Mo‰tt (1998) apply

simulation methods to structural multinomial response models, where the econometric

model is obtained from utility maximization subject to constraints. Keane and Mo‰tt

study the tax e¤ects of labor force participation allowing for participation in multiple

welfare programs.
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A di¤erent approach to relaxing IIA is to specify a hierarchical model. The most

popular of these is called the nested logit model. McFadden (1984) gives a detailed

treatment of these and other models; here we illustrate the basic approach where

there are only two hierarchies.

Suppose that the total number of alternatives can be put into S groups of similar

alternatives, and let Gs denote the number of alternatives within group s. Thus the

first hierarchy corresponds to which of the S groups y falls into, and the second cor-

responds to the actual alternative within each group. McFadden (1981) studied the

model

Pðy A Gs j xÞ ¼ as

X
j AGs

expðr�1
s xjbÞ

" #rs
( ), XS

r¼1

ar

X
j AGr

expðr�1
r xjbÞ

" #rr
( )

ð15:84Þ

and

Pðy ¼ j j y A Gs; xÞ ¼ expðr�1
s xjbÞ=

X
h AGs

expðr�1
s xhbÞ

" #
ð15:85Þ

where equation (15.84) is defined for s ¼ 1; 2; . . . ;S while equation (15.85) is defined

for j A Gs and s ¼ 1; 2; . . . ;S; of course, if j B Gs, Pðy ¼ j j y A Gs; xÞ ¼ 0. This model

requires a normalization restriction, usually a1 ¼ 1. Equation (15.84) gives the prob-

ability that the outcome is in group s (conditional on x); then, conditional on y A Gs,

equation (15.85) gives the probability of choosing alternative j within Gs. The re-

sponse probability Pðy ¼ j j xÞ, which is ultimately of interest, is obtained by multi-

plying equations (15.84) and (15.85). This model can be derived by specifying a

particular joint distribution for ai in equation (15.79); see Amemiya (1985, p. 303).

Equation (15.85) implies that, conditional on choosing group s, the response

probabilities take a conditional logit form with parameter vector r�1
s b. This suggests

a natural two-step estimation procedure. First, estimate ls 1 r�1
s b, s ¼ 1; 2; . . . ;S, by

applying conditional logit analysis separately to each of the groups. Then, plug the l̂ls

into equation (15.84) and estimate as, s ¼ 2; . . . ;S and rs, s ¼ 1; . . . ;S by maximizing

the log-likelihood function

XN

i¼1

XS

s¼1

1½yi A Gs� log½qsðxi; l̂l; a; rÞ�

where qsðx; l; a; rÞ is the probability in equation (15.84) with ls ¼ r�1
s b. This two-

step conditional MLE is consistent and
ffiffiffiffiffi
N

p
-asymptotically normal under general

Discrete Response Models 503



conditions, but the asymptotic variance needs to be adjusted for the first-stage esti-

mation of the ls; see Chapters 12 and 13 for more on two-step estimators.

Of course, we can also use full maximum likelihood. The log likelihood for obser-

vation i can be written as

liðb; a; rÞ ¼
XS

s¼1

ð1½yi A Gs�flog½qsðxi; b; a; rÞ� þ 1½yi ¼ j� log½ psjðxi; b; rsÞ�gÞ ð15:86Þ

where qsðxi; b; a; rÞ is the probability in equation (15.84) and psjðxi; b; rsÞ is the

probability in equation (15.85). The regularity conditions for MLE are satisfied under

weak assumptions.

When as ¼ 1 and rs ¼ 1 for all s, the nested logit model reduces to the conditional

logit model. Thus, a test of IIA (as well as the other assumptions underlying the CL

model) is a test of H0: a2 ¼ � � � ¼ aS ¼ r1 ¼ � � � ¼ rS ¼ 1. McFadden (1987) suggests

a score test, which only requires estimation of the conditional logit model.

Often special cases of the model are used, such as setting each as to unity and

estimating the rs. In his study of community choice and type of dwelling within a

community, McFadden (1978) imposes this restriction along with rs ¼ r for all s, so

that the model has only one more parameter than the conditional logit model. This

approach allows for correlation among the aj for j belonging to the same community

group, but the correlation is assumed to be the same for all communities.

Higher-level nested-logit models are covered in McFadden (1984) and Amemiya

(1985, Chapter 9).

15.10 Ordered Response Models

15.10.1 Ordered Logit and Ordered Probit

Another kind of multinomial response is an ordered response. As the name suggests,

if y is an ordered response, then the values we assign to each outcome are no longer

arbitrary. For example, y might be a credit rating on a scale from zero to six, with

y ¼ 6 representing the highest rating and y ¼ 0 the lowest rating. The fact that six is a

better rating than five conveys useful information, even though the credit rating itself

only has ordinal meaning. For example, we cannot say that the di¤erence between

four and two is somehow twice as important as the di¤erence between one and zero.

Let y be an ordered response taking on the values f0; 1; 2; . . . ; J} for some known

integer J. The ordered probit model for y (conditional on explanatory variables x) can

be derived from a latent variable model. Assume that a latent variable y� is deter-

mined by
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y� ¼ xb þ e; e j x@Normalð0; 1Þ ð15:87Þ

where b is K � 1 and, for reasons to be seen, x does not contain a constant. Let

a1 < a2 < � � � < aJ be unknown cut points (or threshold parameters), and define

y ¼ 0 if y�
a a1

y ¼ 1 if a1 < y�
a a2

..

.

y ¼ J if y� > aJ

ð15:88Þ

For example, if y takes on the values 0, 1, and 2, then there are two cut points, a1

and a2.

Given the standard normal assumption for e, it is straightforward to derive the

conditional distribution of y given x; we simply compute each response probability:

Pðy ¼ 0 j xÞ ¼ Pðy� a a1 j xÞ ¼ Pðxb þ ea a1 j xÞ ¼ Fða1 � xbÞ

Pðy ¼ 1 j xÞ ¼ Pða1 < y� a a2 j xÞ ¼ Fða2 � xbÞ �Fða1 � xbÞ
..
.

Pðy ¼ J � 1 j xÞ ¼ PðaJ�1 < y� a aJ j xÞ ¼ FðaJ � xbÞ �FðaJ�1 � xbÞ

Pðy ¼ J j xÞ ¼ Pðy� > aJ j xÞ ¼ 1 �FðaJ � xbÞ

You can easily verify that these sum to unity. When J ¼ 1 we get the binary probit

model: Pðy ¼ 1 j xÞ ¼ 1 � Pðy ¼ 0 j xÞ ¼ 1 �Fða1 � xbÞ ¼ Fðxb � a1Þ, and so �a1

is the intercept inside F. It is for this reason that x does not contain an intercept in

this formulation of the ordered probit model. (When there are only two outcomes,

zero and one, we set the single cut point to zero and estimate the intercept; this

approach leads to the standard probit model.)

The parameters a and b can be estimated by maximum likelihood. For each i, the

log-likelihood function is

liða; bÞ ¼ 1½yi ¼ 0� log½Fða1 � xibÞ� þ 1½yi ¼ 1� log½Fða2 � xibÞ

�Fða1 � xibÞ� þ � � � þ 1½yi ¼ J� log½1 �FðaJ � xibÞ� ð15:89Þ

This log-likelihood function is well behaved, and many statistical packages routinely

estimate ordered probit models.

Other distribution functions can be used in place of F. Replacing F with the logit

function, L, gives the ordered logit model. In either case we must remember that b, by
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itself, is of limited interest. In most cases we are not interested in Eðy� j xÞ ¼ xb, as

y� is an abstract construct. Instead, we are interested in the response probabilities

Pðy ¼ j j xÞ, just as in the ordered response case. For the ordered probit model

qp0ðxÞ=qxk ¼ �bkfða1 � xbÞ, qpJðxÞ=qxk ¼ bkfðaJ � xbÞ

qpjðxÞ=qxk ¼ bk½fðaj�1 � xbÞ � fðaj � xbÞ�; 0 < j < J

and the formulas for the ordered logit model are similar. In making comparisons

across di¤erent models—in particular, comparing ordered probit and ordered logit—

we must remember to compare estimated response probabilities at various values of

x, such as x; the b̂b are not directly comparable. In particular, the âaj are important

determinants of the magnitudes of the estimated probabilities and partial e¤ects.

(Therefore, treatments of ordered probit that refer to the aj as ancillary, or second-

ary, parameters are misleading.)

While the direction of the e¤ect of xk on the probabilities Pðy ¼ 0 j xÞ and

Pðy ¼ J j xÞ is unambiguously determined by the sign of bk, the sign of bk does not

always determine the direction of the e¤ect for the intermediate outcomes, 1; 2; . . . ;

J � 1. To see this point, suppose there are three possible outcomes, 0, 1, and 2, and

that bk > 0. Then qp0ðxÞ=qxk < 0 and qp2ðxÞ=qxk > 0, but qp1ðxÞ=qxk could be either

sign. If ja1 � xbj < ja2 � xbj, the scale factor, fða1 � xbÞ � fða2 � xbÞ, is positive;

otherwise it is negative. (This conclusion follows because the standard normal pdf is

symmetric about zero, reaches its maximum at zero, and declines monotonically as

its argument increases in absolute value.)

As with multinomial logit, for ordered responses we can compute the percent cor-

rectly predicted, for each outcome as well as overall: our prediction for y is simply

the outcome with the highest probability.

Ordered probit and logit can also be applied when y is given quantitative meaning

but we wish to acknowledge the discrete, ordered nature of the response. For exam-

ple, suppose that individuals are asked to give one of three responses on how their

pension funds are invested: ‘‘mostly bonds,’’ ‘‘mixed,’’ and ‘‘mostly stocks.’’ One

possibility is to assign these outcomes as 0, 1, 2 and apply ordered probit or ordered

logit to estimate the e¤ects of various factors on the probability of each outcome.

Instead, we could assign the percent invested in stocks as, say 0, 50, and 100, or 25,

50, and 75. For estimating the probabilities of each category it is irrelevant how we

assign the percentages as long as the order is preserved. However, if we give quanti-

tative meaning to y, the expected value of y has meaning. We have

Eðy j xÞ ¼ a0Pðy ¼ a0 j xÞ þ a1Pðy ¼ a1 j xÞ þ � � � þ aJPðy ¼ aJ j xÞ
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where a0 < a1 < � � � < aJ are the J values taken on by y. Once we have estimated

the response probabilities by ordered probit or ordered logit, we can easily estimate

Eðy j xÞ for any value of x, for example, x. Estimates of the expected values can be

compared at di¤erent values of the explanatory variables to obtain partial e¤ects for

discrete xj.

Example 15.5 (Asset Allocation in Pension Plans): The data in PENSION.RAW

are a subset of data used by Papke (1998) in assessing the impact of allowing indi-

viduals to choose their own allocations on asset allocation in pension plans. Initially,

Papke codes the responses ‘‘mostly bonds,’’ ‘‘mixed,’’ and ‘‘mostly stocks’’ as 0, 50,

and 100, and uses a linear regression model estimated by OLS. The binary explana-

tory variable choice is unity if the person has choice in how his or her pension fund is

invested. Controlling for age, education, gender, race, marital status, income (via a set

of dummy variables), wealth, and whether the plan is profit sharing, gives the OLS

estimate b̂bchoice ¼ 12:05 (se ¼ 6.30), where N ¼ 194. This result means that, other

things equal, a person having choice has about 12 percentage points more assets in

stocks.

The ordered probit coe‰cient on choice is .371 (se ¼ .184). The magnitude of the

ordered probit coe‰cient does not have a simple interpretation, but its sign and sta-

tistical significance agree with the linear regression results. (The estimated cut points

are âa1 ¼ �3:087 and âa2 ¼ �2:054.) To get an idea of the magnitude of the estimated

e¤ect of choice on the expected percent in stocks, we can estimate Eðy j xÞ with

choice ¼ 1 and choice ¼ 0, and obtain the di¤erence. However, we need to choose

values for the other regressors. For illustration, suppose the person is 60 years old,

has 13.5 years of education (roughly the averages in the sample), is a single, nonblack

male, has annual income between $50,000 and $75,000, and had wealth in 1989 of

$200,000 (also close to the sample average). Then, for choice ¼ 1, ÊEðpctstck j xÞA
50:4, and with choice ¼ 0, ÊEðpctstck j xÞA37:6. The di¤erence, 12.8, is remarkably

close to the linear model estimate of the e¤ect on choice.

For ordered probit, the percentages correctly predicted for each category are 51.6

(mostly bonds), 43.1 (mixed), and 37.9 (mostly stocks). The overall percentage cor-

rectly predicted is about 44.3.

The specification issues discussed in Section 15.7 for binary probit have analogues

for ordered probit. The presence of normally distributed unobserved heterogeneity

that is independent of x does not cause any problems when average partial e¤ects are

the focus. We can test for continuous endogenous variables in a manner very similar

to the Rivers and Vuong (1988) procedure for binary probit, and maximum likeli-
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hood estimation is possible if we make a distributional assumption for the endoge-

nous explanatory variable.

Heteroskedasticity in the latent error e in equation (15.87) changes the form of the

response probabilities and, therefore, Eðy j xÞ when y has quantitative meaning. If

the heteroskedasticity is modeled, for example, as expðx1d1Þ where x1 is a subset of

x, then maximum likelihood can be used to estimate b, a and d1. However, as with

the probit case, we must compute the partial e¤ects on the response probabilities in

comparing di¤erent models. It does not make sense to compare estimates of b with

and without heteroskedasticity. Score tests for heteroskedasticity are also easily

derived along the lines of Section 15.5.3. Similar comments hold for deviations from

normality in the latent variable model.

Unobserved e¤ects ordered probit models can be handled by adapting Chamber-

lain’s approach for binary probit in Section 15.8.2. The latent variable model can be

written as

y�
it ¼ xitb þ ci þ eit; eit j xi @Normalð0; 1Þ; t ¼ 1; . . . ;T

and yit ¼ 0 if y�
it a a1, yit ¼ 1 if a1 < y�

it a a2, and so on. Certain embellishments are

possible, such as letting the aj change over time. Assumption (15.67) allows estima-

tion of the average partial e¤ects by using a pooled ordered probit of yit on 1, xit, xi.

A full conditional MLE analysis is possible when we add assumption (15.61). The

details are very similar to the probit case and are omitted.

15.10.2 Applying Ordered Probit to Interval-Coded Data

The ordered probit model can be modified to apply to a very di¤erent situation.

When the quantitative outcome we would like to explain is grouped into intervals, we

say that we have interval-coded data. Specifically, suppose that y� is a variable with

quantitative meaning, such as family wealth, and we are interested in estimating the

model Eðy� j xÞ ¼ xb, where x1 ¼ 1. (Therefore, y� is no longer a vague, latent vari-

able.) If we observed y� we would just use OLS to estimate b. However, because we

only observe whether, say, wealth falls into one of several cells, we have a data-coding

problem. We can still consistently estimate b if we make a distributional assumption.

Let a1 < a2 < � � � < aJ denote the known cell limits, and define y as in equations

(15.88), but with aj replacing the unknown parameter aj. Because our interest is now

in the linear model for Eðy� j xÞ, we replace the standard normal assumption in

equation (15.87) with the assumption y� j x@Normalðxb; s2Þ, where s2 ¼ Varðy� j xÞ
is assumed not to depend on x. The parameters of b and s2 can be estimated by

maximum likelihood by defining the log likelihood for observation i as in equa-

tion (15.89), but with ðb; s2Þ replacing ða; bÞ, and ðaj � xbÞ=s replacing ðaj � xbÞ.
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(Remember, now we do not estimate the cut points, as these are set by the data col-

lection scheme.)

Many ordered probit software routines assume that our purpose in estimating an

ordered probit model is to model a qualitative, ordered response. This assumption

means that the cut points are always estimated and that s2 is normalized to be one,

but these characteristics are not what we want in interval coding applications. For-

tunately, some econometrics packages have a feature for interval regression, which is

exactly ordered probit with the cut points fixed and with b and s2 estimated by

maximum likelihood.

When applying ordered probit to interval regression, it is important to remember

that the bj are interpretable as if we had observed y�
i for each i and estimated

Eðy� j xÞ ¼ xb by OLS. Our ability to estimate the partial e¤ects of the xj is due to

the strong assumption that y� given x satisfies the classical linear model assumptions;

without these assumptions, the ordered probit estimator of b would be inconsistent.

A simpler method, which sometimes works well for approximating the partial e¤ects

on y�, is to define an artificial dependent variable. For each observation i, wi is the

midpoint of the reported interval. If all we know is that y�
i > aJ , so that the response

is in the cell unbounded from above, we might set wi equal to aJ , or some value

above aJ , perhaps based on an estimated cell average from aggregate data or other

data sets. (For example, if aJ ¼ 250,000 and we are modeling wealth, we might be

able to find from a separate data source the average wealth for people with wealth

above $250,000.) Once we have defined wi for each observation i, an OLS regression

of wi on xi might approximately estimate the bj.

If the variable we would like to explain, y�, is strictly positive, it often makes sense

to estimate the model logðy�Þ ¼ xb þ u. Of course, this transformation changes the

cell limits to logðajÞ.

Problems

15.1. Suppose that y is a binary outcome and d1; d2; . . . ; dM are dummy variables

for exhaustive and mutually exclusive categories; that is, each person in the popula-

tion falls into one and only one category.

a. Show that the fitted values from the regression (without an intercept)

yi on d1i; d2i; . . . ; dMi; i ¼ 1; 2; . . . ;N

are always in the unit interval. In particular, carefully describe the coe‰cient on each

dummy variable and the fitted value for each i.
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b. What happens if yi is regressed on M linearly independent, linear combinations of

d1i; . . . ; dMi, for example, 1, d2i; d3i; . . . ; dMi?

15.2. Suppose that family i chooses annual consumption ci (in dollars) and chari-

table contributions qi (in dollars) to solve the problem

max
c;q

c þ ai logð1 þ qÞ

subject to c þ piqami; c; qb 0

where mi is income of family i, pi is the price of one dollar of charitable contributions

—where pi < 1 because of the tax deductability of charitable contributions, and this

price di¤ers across families because of di¤erent marginal tax rates and di¤erent state

tax codes—and ai b 0 determines the marginal utility of charitable contributions.

Take mi and pi as exogenous to the family in this problem.

a. Show that the optimal solution is qi ¼ 0 if ai a pi, and qi ¼ ai=pi � 1 if ai > pi.

b. Define yi ¼ 1 if qi > 0 and yi ¼ 0 if qi ¼ 0, and suppose that ai ¼ expðzigþ viÞ,
where zi is a J-vector of observable family traits and vi is unobservable. Assume that

vi is independent of ðzi;mi; piÞ and vi=s has symmetric distribution function Gð�Þ,
where s2 ¼ VarðviÞ. Show that

Pðyi ¼ 1 j zi;mi; piÞ ¼ G½ðzig� log piÞ=s�

so that yi follows an index model.

15.3. Let z1 be a vector of variables, let z2 be a continuous variable, and let d1 be a

dummy variable.

a. In the model

Pðy ¼ 1 j z1; z2Þ ¼ Fðz1d1 þ g1z2 þ g2z2
2Þ

find the partial e¤ect of z2 on the response probability. How would you estimate this

partial e¤ect?

b. In the model

Pðy ¼ 1 j z1; z2; d1Þ ¼ Fðz1d1 þ g1z2 þ g2d1 þ g3z2d1Þ

find the partial e¤ect of z2. How would you measure the e¤ect of d1 on the response

probability? How would you estimate these e¤ects?

c. Describe how you would obtain the standard errors of the estimated partial e¤ects

from parts a and b.
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15.4. Evaluate the following statement: ‘‘Estimation of a linear probability model is

more robust than probit or logit because the LPM does not assume homoskedasticity

or a distributional assumption.’’

15.5. Consider the probit model

Pðy ¼ 1 j z; qÞ ¼ Fðz1d1 þ g1z2qÞ

where q is independent of z and distributed as Normalð0; 1Þ; the vector z is observed

but the scalar q is not.

a. Find the partial e¤ect of z2 on the response probability, namely,

qPðy ¼ 1 j z; qÞ
qz2

b. Show that Pðy ¼ 1 j zÞ ¼ F½z1d1=ð1 þ g2
1z2

2Þ
1=2�.

c. Define r1 1 g2
1 . How would you test H0: r1 ¼ 0?

d. If you have reason to believe r1 > 0, how would you estimate d1 along with r1?

15.6. Consider taking a large random sample of workers at a given point in time.

Let sicki ¼ 1 if person i called in sick during the last 90 days, and zero otherwise. Let

zi be a vector of individual and employer characteristics. Let cigsi be the number of

cigarettes individual i smokes per day (on average).

a. Explain the underlying experiment of interest when we want to examine the e¤ects

of cigarette smoking on workdays lost.

b. Why might cigsi be correlated with unobservables a¤ecting sicki?

c. One way to write the model of interest is

Pðsick ¼ 1 j z; cigs; q1Þ ¼ Fðz1d1 þ g1cigs þ q1Þ

where z1 is a subset of z and q1 is an unobservable variable that is possibly correlated

with cigs. What happens if q1 is ignored and you estimate the probit of sick on z1,

cigs?

d. Can cigs have a conditional normal distribution in the population? Explain.

e. Explain how to test whether cigs is exogenous. Does this test rely on cigs having a

conditional normal distribution?

f. Suppose that some of the workers live in states that recently implemented no-

smoking laws in the workplace. Does the presence of the new laws suggest a good IV

candidate for cigs?
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15.7. Use the data in GROGGER.RAW for this question.

a. Define a binary variable, say arr86, equal to unity if a man was arrested at least

once during 1986, and zero otherwise. Estimate a linear probability model relating

arr86 to pcnv, avgsen, tottime, ptime86, inc86, black, hispan, and born60. Report the

usual and heteroskedasticity-robust standard errors. What is the estimated e¤ect on

the probability of arrest if pcnv goes from .25 to .75?

b. Test the joint significance of avgsen and tottime, using a nonrobust and robust

test.

c. Now estimate the model by probit. At the average values of avgsen, tottime, inc86,

and ptime86 in the sample, and with black ¼ 1, hispan ¼ 0, and born60 ¼ 1, what is

the estimated e¤ect on the probability of arrest if pcnv goes from .25 to .75? Compare

this result with the answer from part a.

d. For the probit model estimated in part c, obtain the percent correctly predicted.

What is the percent correctly predicted when narr86 ¼ 0? When narr86 ¼ 1? What do

you make of these findings?

e. In the probit model, add the terms pcnv2, ptime862, and inc862 to the model. Are

these individually or jointly significant? Describe the estimated relationship between

the probability of arrest and pcnv. In particular, at what point does the probability of

conviction have a negative e¤ect on probability of arrest?

15.8. Use the data set BWGHT.RAW for this problem.

a. Define a binary variable, smokes, if the woman smokes during pregnancy. Esti-

mate a probit model relating smokes to motheduc, white, and logð famincÞ. At white ¼
0 and faminc evaluated at the average in the sample, what is the estimated di¤erence

in the probability of smoking for a woman with 16 years of education and one with

12 years of education?

b. Do you think faminc is exogenous in the smoking equation? What about motheduc?

c. Assume that motheduc and white are exogenous in the probit from part a. Also

assume that fatheduc is exogenous to this equation. Estimate the reduced form for

logð famincÞ to see if fatheduc is partially correlated with logð famincÞ.
d. Test the null hypothesis that logð famincÞ is exogenous in the probit from part a.

15.9. Assume that the binary variable y follows a linear probability model.

a. Write down the log-likelihood function for observation i.

b. Why might maximum likelihood estimation of the LPM be di‰cult?
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c. Assuming that you can estimate the LPM by MLE, explain why it is valid, as a

model selection device, to compare the log likelihood from the LPM with that from

logit or probit.

15.10. Suppose you wish to use goodness-of-fit measures to compare the LPM with

a model such as logit or probit, after estimating the LPM by ordinary least squares.

The usual R-squared from OLS estimation measures the proportion of the variance

in y that is explained by P̂Pðy ¼ 1 j xÞ ¼ xb̂b.

a. Explain how to obtain a comparable R-squared measured for the general index

model Pðy ¼ 1 j xÞ ¼ GðxbÞ.
b. Compute the R-squared measures using the data in CRIME.RAW, where the

dependent variable is arr86 and the explanatory variables are pcnv, pcnv2, avgsen,

tottime, ptime86, ptime862, inc86, inc862, black, hispan, and born60. Are the R-

squareds substantially di¤erent?

15.11. List assumptions under which the pooled probit estimator is a conditional

MLE based on the distribution of yi given xi, where yi is the T � 1 vector of binary

outcomes and xi is the vector of all explanatory variables across all T time periods.

15.12. Find Pðyi1 ¼ 1; yi2 ¼ 0; yi3 ¼ 0 j xi; ci; ni ¼ 1Þ in the fixed e¤ects logit model

with T ¼ 3.

15.13. Suppose that you have a control group, A, and a treatment group, B, and

two periods of data. Between the two years, a new policy is implemented that a¤ects

group B; see Section 6.3.1.

a. If your outcome variable is binary (for example, an employment indicator), and

you have no covariates, how would you estimate the e¤ect of the policy?

b. If you have covariates, write down a probit model that allows you to estimate the

e¤ect of the policy change. Explain in detail how you would estimate this e¤ect.

c. How would you get an asymptotic 95 percent confidence interval for the estimate

in part b?

15.14. Use the data in PENSION.RAW for this example.

a. Estimate a linear model for pctstck, where the explanatory variables are choice,

age, educ, female, black, married, finc25; . . . ; finc101, wealth89, and prftshr. Why

might you compute heteroskedasticity-robust standard errors?

b. The sample contains separate observations for some husband-wife pairs. Compute

standard errors of the estimates from the model in part a that account for the cluster
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correlation within family. (These should also be heteroskedasticity-robust.) Do

the standard errors di¤er much from the usual OLS standard errors, or from the

heteroskedasticity-robust standard errors?

c. Estimate the model from part a by ordered probit. Estimate Eðpctstck j xÞ for a

single, nonblack female with 12 years of education who is 60 years old. Assume she

has net worth (in 1989) equal to $150,000 and earns $45,000 a year, and her plan is

not profit sharing. Compare this with the estimate of Eðpctstck j xÞ from the linear

model.

d. If you want to choose between the linear model and ordered probit based on how

well each estimates Eðy j xÞ, how would you proceed?

15.15. Suppose that you are hired by a university to estimate the e¤ect of drug

usage on college grade point average of undergraduates. The survey data given to

you had students choose a range of grade point averages: less than 1.0, 1.0 to 1.5, and

so on, with the last interval being 3.5 to 4.0. You have data on family background

variables, drug usage, and standardized test scores such as the SAT or ACT. What

approach would you use? Provide enough detail so that someone can implement your

suggested method.

15.16. Let wtpi denote the willingness of person i from a population to pay for a

new public project, such as a new park or the widening of an existing highway. You

are interested in the e¤ects of various socioeconomic variables on wtp, and you specify

the population model wtp ¼ xb þ u, where x is 1 � K and Eðu j xÞ ¼ 0. Rather than

observe wtpi, each person in the sample is presented with a cost of the project, ri. At

this cost the person either favors or does not favor the project. Let yi ¼ 1 if person i

favors the project and zero otherwise.

a. Assume that yi ¼ 1 if and only if wtpi > ri. If ui is independent of ðxi; riÞ and is

distributed as Normalð0; s2Þ, find Pðyi ¼ 1 j xi; riÞ. In particular, show that this

probability follows a probit model with parameters depending on b and s.

b. Let ĝg be the K � 1 vector of estimates on x, and let d̂d be the coe‰cient on ri, from

the probit of yi on xi, ri. Given these estimates, how would you estimate b and s?

c. How would you estimate b and s directly?

d. Now suppose ui is independent of ðxi; riÞ with cdf Gð� ; dÞ, where d is an R � 1

vector of parameters. Write down the log likelihood for observation i as a function of

b and d.

e. Does it make sense to compare the estimates of b for di¤erent choices of Gð� ; dÞ in

part d? Explain.
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15.17. Let y1; y2; . . . ; yG be a set of discrete outcomes representing a population.

These could be outcomes for the same individual, family, firm, and so on. Some

entries could be binary outcomes, others might be ordered outcomes. For a vector of

conditioning variables x and unobserved heterogeneity c, assume that y1; y2; . . . ; yG

are independent conditional on ðx; cÞ, where fgð� j x; c; gg
o Þ is the density of yg given

ðx; cÞ, where gg
o is a Pg-vector of parameters. For example, if y1 is a binary outcome,

f1ð� j x; c; g1
oÞ might represent a probit model with response probability Fðxg1

o þ cÞ.
a. Write down the density of y ¼ ðy1; y2; . . . ; yGÞ given ðx; cÞ.
b. Let hð� j x; doÞ be the density of c given x, where do is a vector of parameters. Find

the density of y given x. Are the yg independent conditional on x? Explain.

c. Find the log likelihood for any random draw ðxi; yiÞ.

15.18. Consider Chamberlain’s random e¤ects probit model under assumptions

(15.60) and (15.61), but replace assumption (15.67) with

ci j xi @Normal½cþ xix; s
2

a expðxilÞ�

so that ci given xi has exponential heteroskedasticity.

a. Find Pðyit ¼ 1 j xi; aiÞ, where ai ¼ ci � Eðci j xiÞ. Does this probability di¤er from

the probability under assumption (15.67)? Explain.

b. Derive the log-likelihood function by first finding the density of ðyi1; . . . ; yiT Þ
given xi. Does it have similarities with the log-likelihood function under assumption

(15.67)?

c. Assuming you have estimated b, c, x, s2
a , and l by CMLE, how would you esti-

mate the average partial e¤ects? fHint: First show that E½Fðxob þ cþ xixþ
aiÞ j xi� ¼ Fðfxob þ cþ xixg=f1 þ s2

a expðxilÞg1=2Þ, and then use the appropriate

average across i.g

15.19. Use the data in KEANE.RAW for this question, and restrict your attention

to black men who are in the sample all 11 years.

a. Use pooled probit to estimate the model Pðemployit ¼ 1 j employi; t�1Þ ¼ Fðd0 þ
remployi; t�1Þ. What assumption is needed to ensure that the usual standard errors

and test statistics from pooled probit are asymptotically valid?

b. Estimate Pðemployt ¼ 1 j employt�1 ¼ 1Þ and Pðemployt ¼ 1 j employt�1 ¼ 0Þ. Ex-

plain how you would obtain standard errors of these estimates.

c. Add a full set of year dummies to the analysis in part a, and estimate the proba-

bilities in part b for 1987. Are there important di¤erences with the estimates in part b?
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d. Now estimate a dynamic unobserved e¤ects model using the method described in

Section 15.8.4. In particular, add employi;81 as an additional explanatory variable,

and use random e¤ects probit software. Use a full set of year dummies.

e. Is there evidence of state dependence, conditional on ci? Explain.

f. Average the estimated probabilities across employi;81 to get the average partial

e¤ect for 1987. Compare the estimates with the e¤ects estimated in part c.

15.20. A nice feature of the Rivers and Vuong (1988) approach to estimating probit

models with endogenous explanatory variables—see Section 15.7.2—is that it im-

mediately extends to models containing any nonlinear functions of the endogenous

explanatory variables. Suppose that the model is

y�
1 ¼ z1d1 þ gðy2Þa1 þ u1

along with equations (15.40) and (15.41) and the assumption that ðu1; v2Þ is inde-

pendent of z and bivariate normal. Here, gðy2Þ is a row vector of functions of y2; for

example, gðy2Þ ¼ ðy2; y2
2Þ. Show that

Pðy1 ¼ 1 j z; v2Þ ¼ Ff½z1d1 þ gðy2Þa1 þ y1v2�=ð1 � r2
1Þ

1=2g

so that Procedure 15.1 goes through with the minor notational change that gðy2Þ
replaces y2 in step b; step a is unchanged.
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16 Corner Solution Outcomes and Censored Regression Models

16.1 Introduction and Motivation

In this chapter we cover a class of models traditionally called censored regression

models. Censored regression models generally apply when the variable to be explained

is partly continuous but has positive probability mass at one or more points. In order

to apply these methods e¤ectively, we must understand that the statistical model

underlying censored regression analysis applies to problems that are conceptually

very di¤erent.

For the most part, censored regression applications can be put into one of two

categories. In the first case there is a variable with quantitative meaning, call it y�,

and we are interested in the population regression Eðy� j xÞ. If y� and x were ob-

served for everyone in the population, there would be nothing new: we could use

standard regression methods (ordinary or nonlinear least squares). But a data prob-

lem arises because y� is censored above or below some value; that is, it is not ob-

servable for part of the population. An example is top coding in survey data. For

example, assume that y� is family wealth, and, for a randomly drawn family, the

actual value of wealth is recorded up to some threshold, say, $200,000, but above

that level only the fact that wealth was more than $200,000 is recorded. Top coding is

an example of data censoring, and is analogous to the data-coding problem we dis-

cussed in Section 15.10.2 in connection with interval regression.

Example 16.1 (Top Coding of Wealth): In the population of all families in the

United States, let wealth� denote actual family wealth, measured in thousands of

dollars. Suppose that wealth� follows the linear regression model Eðwealth� j xÞ ¼ xb,

where x is a 1 � K vector of conditioning variables. However, we observe wealth�

only when wealth� a 200. When wealth� is greater than 200 we know that it is, but

we do not know the actual value of wealth. Define observed wealth as

wealth ¼ minðwealth�; 200Þ

The definition wealth ¼ 200 when wealth� > 200 is arbitrary, but it is useful for

defining the statistical model that follows. To estimate b we might assume that

wealth� given x has a homoskedastic normal distribution. In error form,

wealth� ¼ xb þ u; u j x@Normalð0; s2Þ

This is a strong assumption about the conditional distribution of wealth�, something

we could avoid entirely if wealth� were not censored above 200. Under these as-

sumptions we can write recorded wealth as

wealth ¼ minð200; xb þ uÞ ð16:1Þ



Data censoring also arises in the analysis of duration models, a topic we treat in

Chapter 20.

A second kind of application of censored regression models appears more often in

econometrics and, unfortunately, is where the label ‘‘censored regression’’ is least

appropriate. To describe the situation, let y be an observable choice or outcome

describing some economic agent, such as an individual or a firm, with the following

characteristics: y takes on the value zero with positive probability but is a continuous

random variable over strictly positive values. There are many examples of variables

that, at least approximately, have these features. Just a few examples include amount

of life insurance coverage chosen by an individual, family contributions to an indi-

vidual retirement account, and firm expenditures on research and development. In

each of these examples we can imagine economic agents solving an optimization

problem, and for some agents the optimal choice will be the corner solution, y ¼ 0.

We will call this kind of response variable a corner solution outcome. For corner solu-

tion outcomes, it makes more sense to call the resulting model a corner solution

model. Unfortunately, the name ‘‘censored regression model’’ appears to be firmly

entrenched.

For corner solution applications, we must understand that the issue is not data

observability: we are interested in features of the distribution of y given x, such as

Eðy j xÞ and Pðy ¼ 0 j xÞ. If we are interested only in the e¤ect of the xj on the mean

response, Eðy j xÞ, it is natural to ask, Why not just assume Eðy j xÞ ¼ xb and apply

OLS on a random sample? Theoretically, the problem is that, when yb 0, Eðy j xÞ
cannot be linear in x unless the range of x is fairly limited. A related weakness is that

the model implies constant partial e¤ects. Further, for the sample at hand, predicted

values for y can be negative for many combinations of x and b. These are very sim-

ilar to the shortcomings of the linear probability model for binary responses.

We have already seen functional forms that ensure that Eðy j xÞ is positive for

all values of x and parameters, the leading case being the exponential function,

Eðy j xÞ ¼ expðxbÞ. [We cannot use logðyÞ as the dependent variable in a linear re-

gression because logð0Þ is undefined.] We could then estimate b using nonlinear least

squares (NLS), as in Chapter 12. Using an exponential conditional mean function

is a reasonable strategy to follow, as it ensures that predicted values are positive

and that the parameters are easy to interpret. However, it also has limitations. First,

if y is a corner solution outcome, Varðy j xÞ is probably heteroskedastic, and so

NLS could be ine‰cient. While we may be able to partly solve this problem using

weighted NLS, any model for the conditional variance would be arbitrary. Probably

a more important criticism is that we would not be able to measure the e¤ect of

each xj on other features of the distribution of y given x. Two that are commonly of
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interest are Pðy ¼ 0 j xÞ and Eðy j x; y > 0Þ. By definition, a model for Eðy j xÞ does

not allow us to estimate other features of the distribution. If we make a full distribu-

tional assumption for y given x, we can estimate any feature of the conditional dis-

tribution. In addition, we will obtain e‰cient estimates of quantities such as Eðy j xÞ.
The following example shows how a simple economic model leads to an econo-

metric model where y can be zero with positive probability and where the conditional

expectation Eðy j xÞ is not a linear function of parameters.

Example 16.2 (Charitable Contributions): Problem 15.1 shows how to derive a

probit model from a utility maximization problem for charitable giving, using utility

function utiliðc; qÞ ¼ c þ ai logð1 þ qÞ, where c is annual consumption, in dollars, and

q is annual charitable giving. The variable ai determines the marginal utility of giving

for family i. Maximizing subject to the budget constraint ci þ piqi ¼ mi (where mi is

family income and pi is the price of a dollar of charitable contributions) and the in-

equality constraint c, qb 0, the solution qi is easily shown to be qi ¼ 0 if ai=pi a 1

and qi ¼ ai=pi � 1 if ai=pi > 1. We can write this relation as 1 þ qi ¼ maxð1; ai=piÞ.
If ai ¼ expðzigþ uiÞ, where ui is an unobservable independent of ðzi; pi;miÞ and nor-

mally distributed, then charitable contributions are determined by the equation

logð1 þ qiÞ ¼ max½0; zig� logðpiÞ þ ui� ð16:2Þ

Comparing equations (16.2) and (16.1) shows that they have similar statistical

structures. In equation (16.2) we are taking a maximum, and the lower threshold is

zero, whereas in equation (16.1) we are taking a minimum with an upper threshold of

200. Each problem can be transformed into the same statistical model: for a ran-

domly drawn observation i from the population,

y�
i ¼ xib þ ui; ui j xi @Normalð0; s2Þ ð16:3Þ

yi ¼ maxð0; y�
i Þ ð16:4Þ

These equations constitute what is known as the standard censored Tobit model (after

Tobin, 1956) or type I Tobit model (which is from Amemiya’s 1985 taxonomy). This

is the canonical form of the model in the sense that it is the form usually studied in

methodological papers, and it is the default model estimated by many software

packages.

The charitable contributions example immediately fits into the standard censored

Tobit framework by defining xi ¼ ½zi; logðpiÞ� and yi ¼ logð1 þ qiÞ. This particular

transformation of qi and the restriction that the coe‰cient on logðpiÞ is �1 depend

critically on the utility function used in the example. In practice, we would probably

take yi ¼ qi and allow all parameters to be unrestricted.
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The wealth example can be cast as equations (16.3) and (16.4) after a simple

transformation:

�ðwealthi � 200Þ ¼ maxð0;�200 � xib � uiÞ

and so the intercept changes, and all slope coe‰cients have the opposite sign from

equation (16.1). For data-censoring problems, it is easier to study the censoring

scheme directly, and many econometrics packages support various kinds of data

censoring. Problem 16.3 asks you to consider general forms of data censoring,

including the case when the censoring point can change with observation, in which

case the model is often called the censored normal regression model. (This label

properly emphasizes the data-censoring aspect.)

For the population, we write the standard censored Tobit model as

y� ¼ xb þ u; u j x@Normalð0; s2Þ ð16:5Þ

y ¼ maxð0; y�Þ ð16:6Þ

where, except in rare cases, x contains unity. As we saw from the two previous

examples, di¤erent features of this model are of interest depending on the type of

application. In examples with true data censoring, such as Example 16.1, the vector b

tells us everything we want to know because Eðy� j xÞ ¼ xb is of interest. For corner

solution outcomes, such as Example 16.2, b does not give the entire story. Usually,

we are interested in Eðy j xÞ or Eðy j x; y > 0Þ. These certainly depend on b, but in a

nonlinear fashion.

For the statistical model (16.5) and (16.6) to make sense, the variable y� should

have characteristics of a normal random variable. In data censoring cases this re-

quirement means that the variable of interest y� should have a homoskedastic nor-

mal distribution. In some cases the logarithmic transformation can be used to make

this assumption more plausible. Example 16.1 might be one such case if wealth is

positive for all families. See also Problems 16.1 and 16.2.

In corner solution examples, the variable y should be (roughly) continuous when

y > 0. Thus the Tobit model is not appropriate for ordered responses, as in Section

15.10. Similarly, Tobit should not be applied to count variables, especially when the

count variable takes on only a small number of values (such as number of patents

awarded annually to a firm or the number of times someone is arrested during a

year). Poisson regression models, a topic we cover in Chapter 19, are better suited for

analyzing count data.

For corner solution outcomes, we must avoid placing too much emphasis on the

latent variable y�. Most of the time y� is an artificial construct, and we are not

interested in Eðy� j xÞ. In Example 16.2 we derived the model for charitable con-
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tributions using utility maximization, and a latent variable never appeared. Viewing

y� as something like ‘‘desired charitable contributions’’ can only sow confusion: the

variable of interest, y, is observed charitable contributions.

16.2 Derivations of Expected Values

In corner solution applications such as the charitable contributions example, interest

centers on probabilities or expectations involving y. Most of the time we focus on the

expected values Eðy j x; y > 0Þ and Eðy j xÞ.
Before deriving these expectations for the Tobit model, it is interesting to derive an

inequality that bounds Eðy j xÞ from below. Since the function gðzÞ1maxð0; zÞ is

convex, it follows from the conditional Jensen’s inequality (see Appendix 2A) that

Eðy j xÞbmax½0;Eðy� j xÞ�. This condition holds when y� has any distribution and

for any form of Eðy� j xÞ. If Eðy� j xÞ ¼ xb, then

Eðy j xÞbmaxð0; xbÞ ð16:7Þ

which is always nonnegative. Equation (16.7) shows that Eðy j xÞ is bounded from

below by the larger of zero and xb.

When u is independent of x and has a normal distribution, we can find an explicit

expression for Eðy j xÞ. We first derive Pðy > 0 j xÞ and Eðy j x; y > 0Þ, which are of

interest in their own right. Then, we use the law of iterated expectations to obtain

Eðy j xÞ:

Eðy j xÞ ¼ Pðy ¼ 0 j xÞ � 0 þ Pðy > 0 j xÞ � Eðy j x; y > 0Þ

¼ Pðy > 0 j xÞ � Eðy j x; y > 0Þ ð16:8Þ

Deriving Pðy > 0 j xÞ is easy. Define the binary variable w ¼ 1 if y > 0, w ¼ 0 if

y ¼ 0. Then w follows a probit model:

Pðw ¼ 1 j xÞ ¼ Pðy� > 0 j xÞ ¼ Pðu > �xb j xÞ

¼ Pðu=s > �xb=sÞ ¼ Fðxb=sÞ ð16:9Þ

One implication of equation (16.9) is that g1 b=s, but not b and s separately, can be

consistently estimated from a probit of w on x.

To derive Eðy j x; y > 0Þ, we need the following fact about the normal distribution:

if z@Normalð0; 1Þ, then, for any constant c,

Eðz j z > cÞ ¼ fðcÞ
1 �FðcÞ
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where fð�Þ is the standard normal density function. fThis is easily shown by noting

that the density of z given z > c is fðzÞ=½1 �FðcÞ�, z > c, and then integrating zfðzÞ
from c to y.g Therefore, if u@Normalð0; s2Þ, then

Eðu j u > cÞ ¼ sE
u

s

���� u

s
>

c

s

� �
¼ s

fðc=sÞ
1 �Fðc=sÞ

� �

We can use this equation to find Eðy j x; y > 0Þ when y follows a Tobit model:

Eðy j x; y > 0Þ ¼ xb þ Eðu j u > �xbÞ ¼ xb þ s
fðxb=sÞ
Fðxb=sÞ

� �
ð16:10Þ

since 1 �Fð�xb=sÞ ¼ Fðxb=sÞ. Although it is not obvious from looking at equation

(16.10), the right-hand side is positive for any values of x and b; this statement must

be true by equations (16.7) and (16.8).

For any c the quantity lðcÞ1 fðcÞ=FðcÞ is called the inverse Mills ratio. Thus,

Eðy j x; y > 0Þ is the sum of xb and s times the inverse Mills ratio evaluated at xb=s.

If xj is a continuous explanatory variable, then

qEðy j x; y > 0Þ
qxj

¼ bj þ bj

dl

dc
ðxb=sÞ

� �

assuming that xj is not functionally related to other regressors. By di¤erentiating

lðcÞ ¼ fðcÞ=FðcÞ, it can be shown that
dl

dc
ðcÞ ¼ �lðcÞ½c þ lðcÞ�, and therefore

qEðy j x; y > 0Þ
qxj

¼ bjf1 � lðxb=sÞ½xb=sþ lðxb=sÞ�g ð16:11Þ

This equation shows that the partial e¤ect of xj on Eðy j x; y > 0Þ is not entirely de-

termined by bj; there is an adjustment factor multiplying bj, the term in f � g, that

depends on x through the index xb=s. We can use the fact that if z@Normalð0; 1Þ,
then Varðz j z > �cÞ ¼ 1 � lðcÞ½c þ lðcÞ� for any c A R, which implies that the adjust-

ment factor in equation (16.11), call it yðxb=sÞ ¼ f1 � lðxb=sÞ½xb=sþ lðxb=sÞ�g, is

strictly between zero and one. Therefore, the sign of bj is the same as the sign of the

partial e¤ect of xj.

Other functional forms are easily handled. Suppose that x1 ¼ logðz1Þ (and that this

is the only place z1 appears in x). Then

qEðy j x; y > 0Þ
qz1

¼ ðb1=z1Þyðxb=sÞ ð16:12Þ
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where b1 now denotes the coe‰cient on logðz1Þ. Or, suppose that x1 ¼ z1 and x2 ¼
z2

1 . Then

qEðy j x; y > 0Þ
qz1

¼ ðb1 þ 2b2z1Þyðxb=sÞ

where b1 is the coe‰cient on z1 and b2 is the coe‰cient on z2
1 . Interaction terms are

handled similarly. Generally, we compute the partial e¤ect of xb with respect to the

variable of interest and multiply this by the factor yðxb=sÞ.
All of the usual economic quantities such as elasticities can be computed. The

elasticity of y with respect to x1, conditional on y > 0, is

qEðy j x; y > 0Þ
qx1

� x1

Eðy j x; y > 0Þ ð16:13Þ

and equations (16.11) and (16.10) can be used to find the elasticity when x1 appears

in levels form. If z1 appears in logarithmic form, the elasticity is obtained simply as

q log Eðy j x; y > 0Þ=q logðz1Þ.
If x1 is a binary variable, the e¤ect of interest is obtained as the di¤erence between

Eðy j x; y > 0Þ with x1 ¼ 1 and x1 ¼ 0. Other discrete variables (such as number of

children) can be handled similarly.

We can also compute Eðy j xÞ from equation (16.8):

Eðy j xÞ ¼ Pðy > 0 j xÞ � Eðy j x; y > 0Þ

¼ Fðxb=sÞ½xb þ slðxb=sÞ� ¼ Fðxb=sÞxb þ sfðxb=sÞ ð16:14Þ

We can find the partial derivatives of Eðy j xÞ with respect to continuous xj using the

chain rule. In examples where y is some quantity chosen by individuals (labor supply,

charitable contributions, life insurance), this derivative accounts for the fact that

some people who start at y ¼ 0 may switch to y > 0 when xj changes. Formally,

qEðy j xÞ
qxj

¼ qPðy > 0 j xÞ
qxj

� Eðy j x; y > 0Þ þ Pðy > 0 j xÞ � qEðy j x; y > 0Þ
qxj

ð16:15Þ

This decomposition is attributed to McDonald and Mo‰tt (1980). Because Pðy >

0 j xÞ ¼ Fðxb=sÞ, qPðy > 0 j xÞ=qxj ¼ ðbj=sÞfðxb=sÞ. If we plug this along with equa-

tion (16.11) into equation (16.15), we get a remarkable simplification:

qEðy j xÞ
qxj

¼ Fðxb=sÞbj ð16:16Þ

The estimated scale factor for a given x is Fðxb̂b=ŝsÞ. This scale factor has a very in-

teresting interpretation: Fðxb̂b=ŝsÞ ¼ P̂Pðy > 0 j xÞ; that is, Fðxb̂b=ŝsÞ is the estimated

Corner Solution Outcomes and Censored Regression Models 523



probability of observing a positive response given x. If Fðxb̂b=ŝsÞ is close to one, then

it is unlikely we observe yi ¼ 0 when xi ¼ x, and the adjustment factor becomes

unimportant. In practice, a single adjustment factor is obtained as Fðxb̂b=ŝsÞ, where x

denotes the vector of mean values. If the estimated probability of a positive response

is close to one at the sample means of the covariates, the adjustment factor can be

ignored. In most interesting Tobit applications, Fðxb̂b=ŝsÞ is notably less than unity.

For discrete variables or for large changes in continuous variables, we can compute

the di¤erence in Eðy j xÞ at di¤erent values of x. [Incidentally, equations (16.11) and

(16.16) show that s is not a ‘‘nuisance parameter,’’ as it is sometimes called in Tobit

applications: s plays a crucial role in estimating the partial e¤ects of interest in corner

solution applications.]

Equations (16.9), (16.11), and (16.14) show that, for continuous variables xj and

xh, the relative partial e¤ects on Pðy > 0 j xÞ, Eðy j x; y > 0Þ, and Eðy j xÞ are all

equal to bj=bh (assuming that bh 0 0). This fact can be a limitation of the Tobit

model, something we take up further in Section 16.7.

By taking the log of equation (16.8) and di¤erentiating, we see that the elasticity

(or semielasticity) of Eðy j xÞ with respect to any xj is simply the sum of the elasticities

(or semielasticities) of Fðxb=sÞ and Eðy j x; y > 0Þ, each with respect to xj.

16.3 Inconsistency of OLS

We can use the previous expectation calculations to show that OLS using the entire

sample or OLS using the subsample for which yi > 0 are both (generally) inconsistent

estimators of b. First consider OLS using the subsample with strictly positive yi.

From equation (16.10) we can write

yi ¼ xib þ slðxib=sÞ þ ei ð16:17Þ

Eðei j xi; yi > 0Þ ¼ 0 ð16:18Þ

which implies that Eðei j xi; li; yi > 0Þ ¼ 0, where li 1 lðxib=sÞ. It follows that if we

run OLS of yi on xi using the sample for which yi > 0, we e¤ectively omit the vari-

able li. Correlation between li and xi in the selected subpopulation results in incon-

sistent estimation of b.

The inconsistency of OLS restricted to the subsample with yi > 0 is especially un-

fortunate in the case of true data censoring. Restricting the sample to yi > 0 means

we are only using the data on uncensored observations. In the wealth top coding ex-

ample, this restriction means we drop all people whose wealth is at least $200,000. In

a duration application—see Problem 16.1 and Chapter 20—it would mean using
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only observations with uncensored durations. It would be convenient if OLS using

only the uncensored observations were consistent for b, but such is not the case.

From equation (16.14) it is also pretty clear that regressing yi on xi using all of the

data will not consistently estimate b: Eðy j xÞ is nonlinear in x, b, and s, so it would

be a fluke if a linear regression consistently estimated b.

There are some interesting theoretical results about how the slope coe‰cients in b

can be estimated up to scale using one of the two OLS regressions that we have dis-

cussed. Therefore, each OLS coe‰cient is inconsistent by the same multiplicative

factor. This fact allows us—both in data-censoring applications and corner solution

applications—to estimate the relative e¤ects of any two explanatory variables. The

assumptions made to derive such results are very restrictive, and they generally rule

out discrete and other discontinuous regressors. [Multivariate normality of ðx; y�Þ is

su‰cient.] The arguments, which rely on linear projections, are elegant—see, for ex-

ample, Chung and Goldberger (1984)—but such results have questionable practical

value.

The previous discussion does not mean a linear regression of yi on xi is uninfor-

mative. Remember that, whether or not the Tobit model holds, we can always write

the linear projection of y on x as Lðy j xÞ ¼ xg for g ¼ ½Eðx 0xÞ��1Eðx 0 yÞ, under the

mild restriction that all second moments are finite. It is possible that gj approximates

the e¤ect of xj on Eðy j xÞ when x is near its population mean. Similarly, a linear re-

gression of yi on xi, using only observations with yi > 0, might approximate the

partial e¤ects on Eðy j x; y > 0Þ near the mean values of the xj. Such issues have not

been fully explored in corner solution applications of the Tobit model.

16.4 Estimation and Inference with Censored Tobit

Let fðxi; yiÞ: i ¼ 1; 2; . . .Ng be a random sample following the censored Tobit model.

To use maximum likelihood, we need to derive the density of yi given xi. We have

already shown that f ð0 j xiÞ ¼ Pðyi ¼ 0 j xiÞ ¼ 1 �Fðxib=sÞ. Further, for y > 0,

Pðyi ay j xiÞ ¼ Pðy�
i ay j xiÞ, which implies that

f ðy j xiÞ ¼ f �ðy j xiÞ; all y > 0

where f �ð� j xiÞ denotes the density of y�
i given xi. (We use y as the dummy argument

in the density.) By assumption, y�
i j xi @Normalðxib; s

2Þ, so

f �ðy j xiÞ ¼
1

s
f½ðy� xibÞ=s�; �y < y < y
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(As in recent chapters, we will use b and s2 to denote the true values as well as

dummy arguments in the log-likelihood function and its derivatives.) We can write

the density for yi given xi compactly using the indicator function 1½ � � as

f ðy j xiÞ ¼ f1 �Fðxib=sÞg1½y¼0�fð1=sÞf½ðy� xibÞ=s�g1½y>0� ð16:19Þ

where the density is zero for y < 0. Let y1 ðb 0; s2Þ0 denote the ðK þ 1Þ � 1 vector of

parameters. The conditional log likelihood is

liðyÞ ¼ 1½yi ¼ 0� log½1 �Fðxib=sÞ� þ 1½yi > 0�flog f½ðyi � xibÞ=s� � logðs2Þ=2g
ð16:20Þ

Apart from a constant that does not a¤ect the maximization, equation (16.20) can be

written as

1½yi ¼ 0� log½1 �Fðxib=sÞ� � 1½yi > 0�fðyi � xibÞ2=2s2 þ logðs2Þ=2g

Therefore,

qliðyÞ=qb ¼ �1½yi ¼ 0�fðxib=sÞxi=½1 �Fðxib=sÞ� þ 1½yi > 0�ðyi � xibÞxi=s
2

(16.21)

qliðyÞ=qs2 ¼ 1½yi ¼ 0�fðxib=sÞðxibÞ=f2s2½1 �Fðxib=sÞ�g

þ 1½yi > 0�fðyi � xibÞ2=ð2s4Þ � 1=ð2s2Þg ð16:22Þ

The second derivatives are complicated, but all we need is Aðxi; yÞ1�E½HiðyÞ j xi�.
After tedious calculations it can be shown that

Aðxi; yÞ ¼
aix

0
i xi bix

0
i

bixi ci

� �
ð16:23Þ

where

ai ¼ �s�2fxigfi � ½f2
i =ð1 �FiÞ� �Fig

bi ¼ s�3fðxigÞ2
fi þ fi � ½ðxigÞf2

i =ð1 �FiÞ�g=2

ci ¼ �s�4fðxigÞ3fi þ ðxigÞfi � ½ðxigÞf2
i =ð1 �FiÞ� � 2Fig=4

g ¼ b=s, and fi and Fi are evaluated at xig. This matrix is used in equation (13.32) to

obtain the estimate of AvarðŷyÞ. See Amemiya (1973) for details.

Testing is easily carried out in a standard MLE framework. Single exclusion

restrictions are tested using asymptotic t statistics once b̂bj and its asymptotic standard

error have been obtained. Multiple exclusion restrictions are easily tested using the

LR statistic, and some econometrics packages routinely compute the Wald statistic.
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If the unrestricted model has so many variables that computation becomes an issue,

the LM statistic is an attractive alternative.

The Wald statistic is the easiest to compute for testing nonlinear restrictions on b,

just as in binary response analysis, because the unrestricted model is just standard

Tobit.

16.5 Reporting the Results

For data censoring applications, the quantities of interest are the b̂bj and their stan-

dard errors. (We might use these to compute elasticities, and so on.) We interpret the

estimated model as if there were no data-censoring problem, because the population

model is a linear conditional mean. The value of the log-likelihood function should

be reported for any estimated model because of its role in obtaining likelihood ratio

statistics. We can test for omitted variables, including nonlinear functions of already

included variables, using either t tests or LR tests. All of these rely on the homo-

skedastic normal assumption in the underlying population.

For corner solution applications, the same statistics can be reported, and, in addi-

tion, we should report estimated partial e¤ects on Eðy j x; y > 0Þ and Eðy j xÞ. The

formulas for these are given in Section 16.2, where b and s are replaced with their

MLEs. Because these estimates depend on x, we must decide at what values of x to

report the partial e¤ects or elasticities. As with probit, the average values of x can be

used, or, if some elements of x are qualitative variables, we can assign them values of

particular interest. For the important elements of x, the partial e¤ects or elasticities

can be estimated at a range of values, holding the other elements fixed. For example,

if x1 is price, then we can compute equation (16.11) or (16.16), or the corresponding

elasticities, for low, medium, and high prices, while keeping all other elements fixed.

If x1 is a dummy variable, then we can obtain the di¤erence in estimates with x1 ¼ 1

and x1 ¼ 0, holding all other elements of x fixed. Standard errors of these estimates

can be obtained by the delta method, although the calculations can be tedious.

Example 16.3 (Annual Hours Equation for Married Women): We use the Mroz

(1987) data (MROZ.RAW) to estimate a reduced form annual hours equation for

married women. The equation is a reduced form because we do not include hourly

wage o¤er as an explanatory variable. The hourly wage o¤er is unlikely to be exog-

enous, and, just as importantly, we cannot observe it when hours ¼ 0. We will show

how to deal with both these issues in Chapter 17. For now, the explanatory variables

are the same ones appearing in the labor force participation probit in Example 15.2.

Of the 753 women in the sample, 428 worked for a wage outside the home during

the year; 325 of the women worked zero hours. For the women who worked positive
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hours, the range is fairly broad, ranging from 12 to 4,950. Thus, annual hours

worked is a reasonable candidate for a Tobit model. We also estimate a linear model

(using all 753 observations) by OLS. The results are in Table 16.1.

Not surprisingly, the Tobit coe‰cient estimates are the same sign as the corre-

sponding OLS estimates, and the statistical significance of the estimates is similar.

(Possible exceptions are the coe‰cients on nwifeinc and kidsge6, but the t statistics

have similar magnitudes.) Second, though it is tempting to compare the magnitudes

of the OLS estimates and the Tobit estimates, such comparisons are not very infor-

mative. We must not think that, because the Tobit coe‰cient on kidslt6 is roughly

twice that of the OLS coe‰cient, the Tobit model somehow implies a much greater

response of hours worked to young children.

We can multiply the Tobit estimates by the adjustment factors in equations (16.11)

and (16.16), evaluated at the estimates and the mean values of the xj (but where we

square exper rather than use the average of the exper2
i Þ, to obtain the partial e¤ects

on the conditional expectations. The factor in equation (16.11) is about .451. For

example, conditional on hours being positive, a year of education (starting from

the mean values of all variables) is estimated to increase expected hours by about

Table 16.1
OLS and Tobit Estimation of Annual Hours Worked

Dependent Variable: hours

Independent Variable Linear (OLS) Tobit (MLE)

nwifeinc �3.45
(2.54)

�8.81
(4.46)

educ 28.76
(12.95)

80.65
(21.58)

exper 65.67
(9.96)

131.56
(17.28)

exper2 �.700
(.325)

�1.86
(0.54)

age �30.51
(4.36)

�54.41
(7.42)

kidslt6 �442.09
(58.85)

�894.02
(111.88)

kidsge6 �32.78
(23.18)

�16.22
(38.64)

constant 1,330.48
(270.78)

965.31
(446.44)

Log-likelihood value — �3,819.09

R-squared .266 .275

ŝs 750.18 1,122.02
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.451(80.65)A36.4 hours. Using the approximation for one more young child gives a

fall in expected hours by about (.451)(894.02)A403.2. Of course, this figure does not

make sense for a woman working less than 403.2 hours. It would be better to estimate

the expected values at two di¤erent values of kidslt6 and form the di¤erence, rather

than using the calculus approximation.

The factor in equation (16.16), again evaluated at the mean values of the xj, is

about .645. This result means that the estimated probability of a woman being in the

workforce, at the mean values of the covariates, is about .645. Therefore, the mag-

nitudes of the e¤ects of each xj on expected hours—that is, when we account for

people who initially do not work, as well as those who are initially working—is larger

than when we condition on hours > 0. We can multiply the Tobit coe‰cients, at least

those on roughly continuous explanatory variables, by .645 to make them roughly

comparable to the OLS estimates in the first column. In most cases the estimated

Tobit e¤ect at the mean values are significantly above the corresponding OLS

estimate. For example, the Tobit e¤ect of one more year of education is about

.645(80.65)A52.02, which is well above the OLS estimate of 28.76.

We have reported an R-squared for both the linear regression model and the Tobit

model. The R-squared for OLS is the usual one. For Tobit, the R-squared is the

square of the correlation coe‰cient between yi and ŷyi, where ŷyi ¼ Fðxib̂b=ŝsÞxib̂bþ
ŝsfðxib̂b=ŝsÞ is the estimate of Eðy j x ¼ xiÞ. This statistic is motivated by the fact that

the usual R-squared for OLS is equal to the squared correlation between the yi and

the OLS fitted values.

Based on the R-squared measures, the Tobit conditional mean function fits the

hours data somewhat better, although the di¤erence is not overwhelming. However, we

should remember that the Tobit estimates are not chosen to maximize an R-squared—

they maximize the log-likelihood function—whereas the OLS estimates produce the

highest R-squared given the linear functional form for the conditional mean.

When two additional variables, the local unemployment rate and a binary city in-

dicator, are included, the log likelihood becomes about �3,817.89. The likelihood

ratio statistic is about 2(3,819.09 � 3,817.89) ¼ 2.40. This is the outcome of a w2
2

variate under H0, and so the p-value is about .30. Therefore, these two variables are

jointly insignificant.

16.6 Specification Issues in Tobit Models

16.6.1 Neglected Heterogeneity

Suppose that we are initially interested in the model

y ¼ maxð0; xb þ gq þ uÞ; u j x; q@Normalð0; s2Þ ð16:24Þ
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where q is an unobserved variable that is assumed to be independent of x and has a

Normalð0; t2Þ distribution. It follows immediately that

y ¼ maxð0; xb þ vÞ; v j x@Normalð0; s2 þ g2t2Þ ð16:25Þ

Thus, y conditional on x follows a Tobit model, and Tobit of y on x consistently

estimates b and h2 1 s2 þ g2t2. In data-censoring cases we are interested in b; g is of

no use without observing q, and g cannot be estimated anyway. We have shown that

heterogeneity independent of x and normally distributed has no important con-

sequences in data-censoring examples.

Things are more complicated in corner solution examples because, at least initially,

we are interested in Eðy j x; qÞ or Eðy j x; q; y > 0Þ. As we discussed in Sections 2.2.5

and 15.7.1, we are often interested in the average partial e¤ects (APEs), where, say,

Eðy j x; qÞ is averaged over the population distribution of q, and then derivatives or

di¤erences with respect to elements of x are obtained. From Section 2.2.5 we know

that when the heterogeneity is independent of x, the APEs are obtained by finding

Eðy j xÞ [or Eðy j x; y > 0Þ]. Naturally, these conditional means come from the dis-

tribution of y given x. Under the preceding assumptions, it is exactly this distribution

that Tobit of y on x estimates. In other words, we estimate the desired quantities—

the APEs—by simply ignoring the heterogeneity. This is the same conclusion we

reached for the probit model in Section 15.7.1.

If q is not normal, then these arguments do not carry over because y given x does

not follow a Tobit model. But the flavor of the argument does. A more di‰cult issue

arises when q and x are correlated, and we address this in the next subsection.

16.6.2 Endogenous Explanatory Variables

Suppose we now allow one of the variables in the Tobit model to be endogenous. The

model is

y1 ¼ maxð0; z1d1 þ a1 y2 þ u1Þ ð16:26Þ

y2 ¼ zd2 þ v2 ¼ z1d21 þ z2d22 þ v2 ð16:27Þ

where ðu1; v2Þ are zero-mean normally distributed, independent of z. If u1 and v2 are

correlated, then y2 is endogenous. For identification we need the usual rank condi-

tion d22 0 0; Eðz 0zÞ is assumed to have full rank, as always.

If equation (16.26) represents a data-censoring problem, we are interested, as always,

in the parameters, d1 and a1, as these are the parameters of interest in the uncensored

population model. For corner solution outcomes, the quantities of interest are more

subtle. However, when the endogeneity of y2 is due to omitted variables or simulta-

neity, the parameters we need to estimate to obtain average partial e¤ects are d1, a1,
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and s2
1 ¼ Varðu1Þ. The reasoning is just as for the probit model in Section 15.7.2.

Holding other factors fixed, the di¤erence in y1 when y2 changes from y2 to y2 þ 1 is

max½0; z1d1 þ a1ðy2 þ 1Þ þ u1� � max½0; z1d1 þ a1y2 þ u1�

Averaging this expression across the distribution of u1 gives di¤erences in expecta-

tions that have the form (16.14), with x ¼ ½z1; ðy2 þ 1Þ� in the first case, x ¼ ðz1; y2Þ
in the second, and s ¼ s1. Importantly, unlike in the data censoring case, we need to

estimate s2
1 in order to estimate the partial e¤ects of interest (the APEs).

Before estimating this model by maximum likelihood, a procedure that requires

obtaining the distribution of ðy1; y2Þ given z, it is convenient to have a two-step

procedure that also delivers a simple test for the endogeneity of y2. Smith and

Blundell (1986) propose a two-step procedure that is analogous to the Rivers-Vuong

method (see Section 15.7.2) for binary response models. Under bivariate normality of

ðu1; v2Þ, we can write

u1 ¼ y1v2 þ e1 ð16:28Þ

where y1 ¼ h1=t
2
2 , h1 ¼ Covðu1; v2Þ, t2

2 ¼ Varðv2Þ, and e1 is independent of v2 with a

zero-mean normal distribution and variance, say, t2
1 . Further, because ðu1; v2Þ is in-

dependent of z, e1 is independent of ðz; v2Þ. Now, plugging equation (16.28) into

equation (16.26) gives

y1 ¼ maxð0; z1d1 þ a1 y2 þ y1v2 þ e1Þ ð16:29Þ

where e1 j z; v2 @Normalð0; t2
1Þ. It follows that, if we knew v2, we would just estimate

d1, a1, y1, and t2
1 by standard censored Tobit. We do not observe v2 because it

depends on the unknown vector d2. However, we can easily estimate d2 by OLS in a

first stage. The Smith-Blundell procedure is as follows:

Procedure 16.1: (a) Estimate the reduced form of y2 by OLS; this step gives d̂d2.

Define the reduced-form OLS residuals as v̂v2 ¼ y2 � zd̂d2.

(b) Estimate a standard Tobit of y1 on z1, y2, and v̂v2. This step gives consistent

estimators of d1, a1, y1, and t2
1 .

The usual t statistic on v̂v2 reported by Tobit provides a simple test of the null

H0: y1 ¼ 0, which says that y2 is exogenous. Further, under y1 ¼ 0, e1 ¼ u1, and so

normality of v2 plays no role: as a test for endogeneity of y2, the Smith-Blundell

approach is valid without any distributional assumptions on the reduced form of y2.

Example 16.4 (Testing Exogeneity of Education in the Hours Equation): As an illus-

tration, we test for endogeneity of educ in the reduced-form hours equation in Example

16.3. We assume that motheduc, fatheduc, and huseduc are exogenous in the hours

Corner Solution Outcomes and Censored Regression Models 531



equation, and so these are valid instruments for educ. We first obtain v̂v2 as the OLS

residuals from estimating the reduced form for educ. When v̂v2 is added to the Tobit

model in Example 16.3 (without unem and city), its coe‰cient is 39.88 with t

statistic ¼ .91. Thus, there is little evidence that educ is endogenous in the equation.

The test is valid under the null hypothesis that educ is exogenous even if educ does

not have a conditional normal distribution.

When y1 0 0, the second-stage Tobit standard errors and test statistics are not

asymptotically valid because d̂d2 has been used in place of d2. Smith and Blundell

(1986) contain formulas for correcting the asymptotic variances; these can be derived

using the formulas for two-step M-estimators in Chapter 12. It is easily seen that joint

normality of ðu1; v2Þ is not absolutely needed for the procedure to work. It su‰ces

that u1 conditional on z and v2 is distributed as Normalðy1v2; t
2
1Þ. Still, this is a fairly

restrictive assumption.

When y1 0 0, the Smith-Blundell procedure does not allow us to estimate s2
1 ,

which is needed to estimate average partial e¤ects in corner solution outcomes.

Nevertheless, we can obtain consistent estimates of the average partial e¤ects by

using methods similar to those in the probit case. Using the same reasoning in Sec-

tion 15.7.2, the APEs are obtained by computing derivatives or di¤erences of

Ev2
½mðz1d1 þ a1 y2 þ y1v2; t

2
1Þ� ð16:30Þ

where mðz; s2Þ1Fðz=sÞz þ sfðz=sÞ and Ev2
½ � � denotes expectation with respect to

the distribution of v2. Using the same argument as in Section 16.6.1, expression

(16.30) can be written as mðz1d1 þ a1 y2; y
2
1t

2
2 þ t2

1Þ. Therefore, consistent estimators

of the APEs are obtained by taking, with respect to elements of ðz1; y2Þ, derivatives

or di¤erences of

mðz1d̂d1 þ âa1 y2; ŷy
2
1 t̂t

2
2 þ t̂t2

1Þ ð16:31Þ

where all estimates except t̂t2
2 come from step b of the Smith-Blundell procedure; t̂t2

2 is

simply the usual estimate of the error variance from the first-stage OLS regression.

As in the case of probit, obtaining standard errors for the APEs based on expression

(16.31) and the delta method would be quite complicated. An alternative procedure,

where mðz1d̂d1 þ âa1 y2 þ ŷy1v̂vi2; t̂t
2
1Þ is averaged across i, is also consistent, but it does

not exploit the normality of v2.

A full maximum likelihood approach avoids the two-step estimation problem. The

joint distribution of ðy1; y2Þ given z is most easily found by using

f ðy1; y2 j zÞ ¼ f ðy1 j y2; zÞ f ðy2 j zÞ ð16:32Þ
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just as for the probit case in Section 15.7.2. The density f ðy2 j zÞ is Normalðzd2; t
2
2Þ.

Further, from equation (16.29), y1 given ðy2; zÞ follows a Tobit with latent mean

z1d1 þ a1 y2 þ y1v2 ¼ z1d1 þ a1 y2 þ ðh1=t
2
2Þðy2 � zd2Þ

and variance t2
1 ¼ s2

1 � ðh2
1=t

2
2Þ, where s2

1 ¼ Varðu1Þ, t2
2 ¼ Varðv2Þ, and h1 ¼

Covðu1; v2Þ. Taking the log of equation (16.32), the log-likelihood function for each i

is easily constructed as a function of the parameters ðd1; a1; d2; s
2
1 ; t

2
2 ; h1Þ. The usual

coditional maximum likelihood theory can be used for constructing standard errors

and test statistics.

Once the MLE has been obtained, we can easily test the null hypothesis of exoge-

neity of y2 by using the t statistic for ŷy1. Because the MLE can be computationally

more di‰cult than the Smith-Blundell procedure, it makes sense to use the Smith-

Blundell procedure to test for endogeneity before obtaining the MLE.

If y2 is a binary variable, then the Smith-Blundell assumptions cannot be expected

to hold. Taking equation (16.26) as the structural equation, we could add

y2 ¼ 1½zp2 þ v2 > 0� ð16:33Þ

and assume that ðu1; v2Þ has a zero-mean normal distribution and is independent of z;

v2 is standard normal, as always. Equation (16.32) can be used to obtain the log like-

lihood for each i. Since y2 given z is probit, its density is easy to obtain: f ðy2 j zÞ ¼
Fðzp2Þy2 ½1 �Fðzp2Þ�1�y2 . The hard part is obtaining the conditional density

f ðy1 j y2; zÞ, which is done first for y2 ¼ 0 and then for y2 ¼ 1; see Problem 16.6.

Similar comments hold if y2 given z follows a standard Tobit model.

16.6.3 Heteroskedasticity and Nonnormality in the Latent Variable Model

As in the case of probit, both heteroskedasticity and nonnormality result in the Tobit

estimator b̂b being inconsistent for b. This inconsistency occurs because the derived

density of y given x hinges crucially on y� j x@Normalðxb; s2Þ. This nonrobustness

of the Tobit estimator shows that data censoring can be very costly: in the absence of

censoring ðy ¼ y�Þ, b could be consistently estimated under Eðu j xÞ ¼ 0 [or even

Eðx 0uÞ ¼ 0].

In corner solution applications, we must remember that the presence of hetero-

skedasticity or nonnormality in the latent variable model entirely changes the func-

tional forms for Eðy j x; y > 0Þ and Eðy j xÞ. Therefore, it does not make sense to

focus only on the inconsistency in estimating b. We should study how departures

from the homoskedastic normal assumption a¤ect the estimated partial derivatives of

the conditional mean functions. Allowing for heteroskedasticity or nonnormality in
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the latent variable model can be useful for generalizing functional form in corner

solution applications, and it should be viewed in that light.

Specification tests can be based on the score approach, where the standard Tobit

model is nested in a more general alternative. Tests for heteroskedasticity and non-

normality in the latent variable equation are easily constructed if the outer product of

the form statistic (see Section 13.6) is used. A useful test for heteroskedasticity is

obtained by assuming Varðu j xÞ ¼ s2 expðzdÞ, where z is a 1 � Q subvector of x (z

does not include a constant). The Q restrictions H0: d ¼ 0 can be tested using the LM

statistic. The partial derivatives of the log likelihood liðb; s2; dÞ with respect to b and

s2, evaluated at d ¼ 0, are given exactly as in equations (16.21) and (16.22). Further,

we can show that qli=qd ¼ s2ziðqli=qs
2Þ. Thus the outer product of the score statistic

is N � SSR0 from the regression

1 on ql̂li=qb; ql̂li=qs
2; ŝs2ziðql̂li=qs

2Þ; i ¼ 1; . . . ;N

where the derivatives are evaluated at the Tobit estimates (the restricted estimates)

and SSR0 is the usual sum of squared residuals. Under H0, N � SSR0 @
a
w2

Q.

Unfortunately, as we discussed in Section 13.6, the outer product form of the statistic

can reject much too often when the null hypothesis is true. If maximum likelihood

estimation of the alternative model is possible, the likelihood ratio statistic is a pref-

erable alternative.

We can also construct tests of nonnormality that only require standard Tobit esti-

mation. The most convenient of these are derived as conditional moment tests, which

we discussed in Section 13.7. See Pagan and Vella (1989).

It is not too di‰cult to estimate Tobit models with u heteroskedastic if a test

reveals such a problem. For data-censoring applications, it makes sense to directly

compare the estimates of b from standard Tobit and Tobit with heteroskedasticity.

But when Eðy j x; y > 0Þ and Eðy j xÞ are of interest, we should look at estimates

of these expectations with and without heteroskedasticity. The partial e¤ects on

Eðy j x; y > 0Þ and Eðy j xÞ could be similar even though the estimates of b might be

very di¤erent.

As a rough idea of the appropriateness of the Tobit model, we can compare the

probit estimates, say ĝg, to the Tobit estimate of g ¼ b=s, namely, b̂b=ŝs. These will

never be identical, but they should not be statistically di¤erent. Statistically signifi-

cant sign changes are indications of misspecification. For example, if ĝgj is positive

and significant but b̂bj is negative and perhaps significant, the Tobit model is probably

misspecified.

As an illustration, in Example 15.2, we obtained the probit coe‰cient on nwifeinc

as �.012, and the coe‰cient on kidslt6 was �.868. When we divide the corresponding
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Tobit coe‰cients by ŝs ¼ 1,122.02, we obtain about �.0079 and �.797, respectively.

Though the estimates di¤er somewhat, the signs are the same and the magnitudes are

similar.

It is possible to form a Hausman statistic as a quadratic form in ðĝg� b̂b=ŝsÞ, but

obtaining the appropriate asymptotic variance is somewhat complicated. (See Ruud,

1984, for a formal discussion of this test.) Section 16.7 discusses more flexible models

that may be needed for corner solution outcomes.

16.6.4 Estimation under Conditional Median Restrictions

It is possible to
ffiffiffiffiffi
N

p
-consistently estimate b without assuming a particular distribu-

tion for u and without even assuming that u and x are independent. Consider again

the latent variable model, but where the median of u given x is zero:

y� ¼ xb þ u; Medðu j xÞ ¼ 0 ð16:34Þ

This equation implies that Medðy� j xÞ ¼ xb, so that the median of y� is linear in x.

If the distribution of u given x is symmetric about zero, then the conditional expec-

tation and conditional median of y� coincide, in which case there is no ambiguity

about what we would like to estimate in the case of data censoring. If y� given x is

asymmetric, the median and mean can be very di¤erent.

A well-known result in probability says that, if gðyÞ is a nondecreasing function,

then Med½gðyÞ� ¼ g½MedðyÞ�. (The same property does not hold for the expected

value.) Then, because y ¼ maxð0; y�Þ is a nondecreasing function,

Medðy j xÞ ¼ max½0;Medðy� j xÞ� ¼ maxð0; xbÞ ð16:35Þ

Importantly, equation (16.35) holds under assumption (16.34) only; no further dis-

tributional assumptions are needed. In Chapter 12 we noted that the analogy princi-

ple leads to least absolute deviations as the appropriate method for estimating the

parameters in a conditional median. Therefore, assumption (16.35) suggests estimat-

ing b by solving

min
b

XN

i¼1

jyi � maxð0; xibÞj ð16:36Þ

This estimator was suggested by Powell (1984) for the censored Tobit model. Since

qðw; bÞ1 jy � maxð0; xbÞj is a continuous function of b, consistency of Powell’s es-

timator follows from Theorem 12.2 under an appropriate identification assumption.

Establishing
ffiffiffiffiffi
N

p
-asymptotic normality is much more di‰cult because the objective

function is not twice continuously di¤erentiable with nonsingular Hessian. Powell

(1984, 1994) and Newey and McFadden (1994) contain applicable theorems.
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Powell’s method also applies to corner solution applications, but the di¤erence

between the conditional median of y and its conditional expectations becomes cru-

cial. As shown in equation (16.35), Medðy j xÞ does not depend on the distribution

of u given x, whereas Eðy j xÞ and Eðy j x; y > 0Þ do. Further, the median and mean

functions have di¤erent shapes. The conditional median of y is zero for xba 0, and

it is linear in x for xb > 0. (One implication of this fact is that, when using the

median for predicting y, the prediction is exact when xib̂ba 0 and yi ¼ 0.) By con-

trast, the conditional expectation Eðy j xÞ is never zero and is everywhere a nonlinear

function of x. In the standard Tobit specification we can also estimate Eðy j x; y > 0Þ
and various probabilities. By its nature, the LAD approach does not allow us to do

so. We cannot resolve the issue about whether the median or mean is more relevant

for determining the e¤ects of the xj on y. It depends on the context and is somewhat

a matter of taste.

In some cases a quantile other than the median is of interest. Buchinsky and Hahn

(1998) show how to estimate the parameters in a censored quantile regression model.

It is also possible to estimate Eðy j xÞ and Eðy j x; y > 0Þ without specifying the

distribution of u given x using semiparametric methods similar to those used to esti-

mate index binary choice models without specifying the index function G. See Powell

(1994) for a summary.

16.7 Some Alternatives to Censored Tobit for Corner Solution Outcomes

In corner solution applications, an important limitation of the standard Tobit model

is that a single mechanism determines the choice between y ¼ 0 versus y > 0 and the

amount of y given y > 0. In particular, qPðy > 0 j xÞ=qxj and qEðy j x; y > 0Þ=qxj

have the same sign. In fact, in Section 16.2 we showed that the relative e¤ects of

continuous explanatory variables on Pðy > 0 j xÞ and Eðy j x; y > 0Þ are identical.

Alternatives to censored Tobit have been suggested to allow the initial decision of

y > 0 versus y ¼ 0 to be separate from the decision of how much y given that y > 0.

These are often called hurdle models or two-tiered models. The hurdle or first tier is

whether or not to choose positive y. For example, in the charitable contributions ex-

ample, family characteristics may di¤erently a¤ect the decision to contribute at all

and the decision on how much to contribute.

A simple two-tiered model for a corner solution variable is

Pðy ¼ 0 j xÞ ¼ 1 �FðxgÞ ð16:37Þ

logðyÞ j ðx; y > 0Þ@Normalðxb; s2Þ ð16:38Þ
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The first equation dictates the probability that y is zero or positive, and equation

(16.38) says that, conditional on y > 0, y j x follows a lognormal distribution. If we

define w ¼ 1½y > 0� and use

f ðy j xÞ ¼ Pðw ¼ 0 j xÞ f ðy j x;w ¼ 0Þ þ Pðw ¼ 1 j xÞ f ðy j x;w ¼ 1Þ

we obtain

f ðy j xÞ ¼ 1½y ¼ 0�½1 �FðxgÞ� þ 1½y > 0�FðxgÞf½flogðyÞ � xbg=s�=ðysÞ

since P½y > 0 j x� ¼ FðxgÞ and f½flogðyÞ � xbg=s�=ðysÞ is the density of a lognormal

random variable. For maximum likelihood analysis, a better way to write the den-

sity is

f ðy j x; yÞ ¼ ½1 �FðxgÞ�1½y¼0�fFðxgÞf½flogðyÞ � xbg=s�=ðysÞg1½y>0�

for yb 0. If there are no restrictions on g, b, and s2, then the MLEs are easy to ob-

tain: the log-likelihood function for observation i is

liðyÞ ¼ 1½yi ¼ 0� log½1 �FðxgÞ� þ 1½yi > 0�flog FðxigÞ � logðyiÞ

� 1
2 logðs2Þ � 1

2 logð2pÞ � 1
2 ½logðyiÞ � xib�2=s2g

The MLE of g is simply the probit estimator using w ¼ 1½y > 0� as the binary re-

sponse. The MLE of b is just the OLS estimator from the regression logðyÞ on x using

those observations for which y > 0. A consistent estimator of ŝs is the usual standard

error from this regression. Estimation is very simple because we assume that, condi-

tional on y> 0, logðyÞ follows a classical linear model. The expectations Eðyjx; y> 0Þ
and Eðy j xÞ are easy to obtain using properties of the lognormal distribution:

Eðy j x; y > 0Þ ¼ expðxb þ s2=2Þ; Eðy j xÞ ¼ FðxgÞ expðxb þ s2=2Þ

and these are easily estimated given b̂b, ŝs2, and ĝg.

We cannot obtain the Tobit model as a special case of the model (16.37) and

(16.38) by imposing parameter restrictions, and this inability makes it di‰cult to test

the Tobit model against equations (16.37) and (16.38). Vuong (1989) suggests a gen-

eral model selection test that can be applied to choose the best-fitting model when

the models are nonnested. Essentially, Vuong shows how to test whether one log-

likelihood value is significantly greater than another, where the null is that they have

the same expected value.

Cragg (1971) suggests a di¤erent two-tiered model which, unlike equations (16.37)

and (16.38), nests the usual Tobit model. Cragg uses the truncated normal distribu-

tion in place of the lognormal distribution:
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f ðy j x; y > 0Þ ¼ ½Fðxb=sÞ��1ff½ðy � xbÞ=s�=sg; y > 0

where the term ½Fðxb=sÞ��1 ensures that the density integrates to unity over y > 0.

The density of y given x becomes

f ðy j x; yÞ ¼ ½1 �FðxgÞ�1½y¼0�fFðxgÞ½Fðxb=sÞ��1½fðfy � xbg=sÞ=s�g1½y>0�

This equation is easily seen to yield the standard censored Tobit density when

g ¼ b=s. Fin and Schmidt (1984) derive the LM test of this restriction, which allows

the Tobit model to be tested against Cragg’s more general alternative. Problem 16.7

asks you to derive the conditional expectations associated with Cragg’s model. It is

legitimate to choose between Cragg’s model and the lognormal model in equation

(16.38) by using the value of the log-likelihood function. Vuong’s (1989) approach can

be used to determine whether the di¤erence in log likelihoods is statistically significant.

If we are interested primarily in Eðy j xÞ, then we can model Eðy j xÞ directly and

use a least squares approach. We discussed the drawbacks of using linear regression

methods in Section 16.1. Nevertheless, a linear model for Eðy j xÞ might give good

estimates on the partial e¤ects for x near its mean value.

In Section 16.1 we also mentioned the possibility of modeling Eðy j xÞ as an ex-

ponential function and using NLS or a quasi-MLE procedure (see Chapter 19)

without any further assumptions about the distribution of y given x. If a model for

Pðy ¼ 0 j xÞ is added, then we can obtain Eðy j x; y > 0Þ ¼ expðxbÞ=½1 � Pðy ¼ 0 j xÞ�.
Such methods are not common in applications, but this neglect could be partly due to

confusion about which quantities are of interest for corner solution outcomes.

16.8 Applying Censored Regression to Panel Data and Cluster Samples

We now cover Tobit methods for panel data and cluster samples. The treatment is

very similar to that for probit models in Section 15.8, and so we make it brief.

16.8.1 Pooled Tobit

As with binary response, it is easy to apply pooled Tobit methods to panel data or

cluster samples. A panel data model is

yit ¼ maxð0; xitb þ uitÞ; t ¼ 1; 2; . . . ;T ð16:39Þ

uit j xit @Normalð0; s2Þ ð16:40Þ

This model has several notable features. First, it does not maintain strict exogeneity

of xit: uit is independent of xit, but the relationship between uit and xis, t0 s, is

unspecified. As a result, xit could contain yi; t�1 or variables that are a¤ected by

Chapter 16538



feedback. A second important point is that the fuit: t ¼ 1; . . . ;Tg are allowed to be

serially dependent, which means that the yit can be dependent after conditioning on

the explanatory variables. In short, equations (16.39) and (16.40) only specify a

model for Dðyit j xitÞ, and xit can contain any conditioning variables (time dummies,

interactions of time dummies with time-constant or time-varying variables, lagged

dependent variables, and so on).

The pooled estimator maximizes the partial log-likelihood function

XN

i¼1

XT

t¼1

litðb; s2Þ

where litðb; s2Þ is the log-likelihood function given in equation (16.20). Computa-

tionally, we just apply Tobit to the data set as if it were one long cross section of size

NT. However, without further assumptions, a robust variance matrix estimator is

needed to account for serial correlation in the score across t; see Sections 13.8.2 and

15.8.1. Robust Wald and score statistics can be computed as in Section 12.6. The

same methods work when each i represents a cluster and t is a unit within a cluster;

see Section 15.8.6 for the probit case and Section 13.8.4 for the general case. With

either panel data or cluster samples, the LR statistic based on the pooled Tobit esti-

mation is not generally valid.

In the case that the panel data model is dynamically complete, that is,

Dðyit j xit; yi; t�1; xi; t�1; . . .Þ ¼ Dðyit j xitÞ ð16:41Þ

inference is considerably easier: all the usual statistics from pooled Tobit are valid,

including likelihood ratio statistics. Remember, we are not assuming any kind of in-

dependence across t; in fact, xit can contain lagged dependent variables. It just works

out that dynamic completeness leads to the same inference procedures one would use

on independent cross sections; see the general treatment in Section 13.8.

A general test for dynamic completeness can be based on the scores ŝsit, as men-

tioned in Section 13.8.3, but it is nice to have a simple test that can be computed from

pooled Tobit estimation. Under assumption (16.41), variables dated at time t � 1 and

earlier should not a¤ect the distribution of yit once xit is conditioned on. There are

many possibilities, but we focus on just one here. Define ri; t�1 ¼ 1 if yi; t�1 ¼ 0 and

ri; t�1 ¼ 0 if yi; t�1 > 0. Further, define ûui; t�1 1 yi; t�1 � xi; t�1b̂b if yi; t�1 > 0. Then es-

timate the following (artificial) model by pooled Tobit:

yit ¼ max½0; xitb þ g1ri; t�1 þ g2ð1 � ri; t�1Þûui; t�1 þ errorit�

using time periods t ¼ 2; . . . ;T , and test the joint hypothesis H0: g1 ¼ 0, g2 ¼ 0.

Under the null of dynamic completeness, errorit ¼ uit, and the estimation of ui; t�1
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does not a¤ect the limiting distribution of the Wald, LR, or LM tests. In computing

either the LR or LM test it is important to drop the first time period in estimating the

restricted model with g1 ¼ g2 ¼ 0. Since pooled Tobit is used to estimate both the

restricted and unrestricted models, the LR test is fairly easy to obtain.

In some applications it may be important to allow interactions between time

dummies and explanatory variables. We might also want to allow the variance of uit

to change over time. In data-censoring cases, where Eðy�
it j xitÞ ¼ xitb is of direct in-

terest, allowing changing variances over time could give us greater confidence in the

estimate of b. If s2
t ¼ VarðuitÞ, a pooled approach still works, but litðb; s2Þ becomes

litðb; s2
t Þ, and special software may be needed for estimation.

With true data censoring, it is tricky to allow for lagged dependent variables in

xit, because we probably want a linear, AR(1) model for the unobserved outcome,

y�
it. But including y�

i; t�1 in xit is very di‰cult, because y�
i; t�1 is only partially observed.

For corner solution applications, it makes sense to include functions of yi; t�1 in xit,

and this approach is straightforward.

16.8.2 Unobserved E¤ects Tobit Models under Strict Exogeneity

Another popular model for Tobit outcomes with panel data is the unobserved e¤ects

Tobit model. We can state this model as

yit ¼ maxð0; xitb þ ci þ uitÞ; t ¼ 1; 2; . . . ;T ð16:42Þ

uit j xi; ci @Normalð0; s2
uÞ ð16:43Þ

where ci is the unobserved e¤ect and xi contains xit for all t. Assumption (16.43) is a

normality assumption, but it also imples that the xit are strictly exogenous condi-

tional on ci. As we have seen in several contexts, this assumption rules out certain

kinds of explanatory variables.

If these equations represent a data-censoring problem, then b is of primary interest.

In corner solution applications we must be careful to specify what is of interest.

Consistent estimation of b and s2
u means we can estimate the partial e¤ects of the

elements of xt on Eðyt j xt; c; yt > 0Þ and Eðyt j xt; cÞ for given values of c, using

equations (16.11) and (16.14). Under assumption (16.44), which follows, we can es-

timate EðciÞ and evaluate the partial e¤ects at the estimated mean value. We will also

see how to estimate the average partial e¤ects.

Rather than cover a standard random e¤ects version, we consider a more general

Chamberlain-like model that allows ci and xi to be correlated. To this end, assume,

just as in the probit case,

ci j xi @Normalðcþ xix; s
2
aÞ ð16:44Þ
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where s2
a is the variance of ai in the equation ci ¼ cþ xixþ ai. We could replace xi

with xi to be more general, but xi has at most dimension K. (As usual, xit would not

include a constant, and time dummies would be excluded from xi because they are

already in xit.) Under assumptions (16.42)–(16.44), we can write

yit ¼ maxð0;cþ xitb þ xixþ ai þ uitÞ ð16:45Þ

uit j xi; ai @Normalð0; s2
uÞ; t ¼ 1; 2; . . . ;T ð16:46Þ

ai j xi @Normalð0; s2
aÞ ð16:47Þ

This formulation is very useful, especially if we assume that, conditional on ðxi; aiÞ
[equivalently, conditional on ðxi; ciÞ], the fuitg are serially independent:

ðui1; . . . ; uiT Þ are independent given ðxi; aiÞ ð16:48Þ

Under assumptions (16.45)–(16.47), we have the random e¤ects Tobit model but with

xi as an additional set of time-constant explanatory variables appearing in each time

period. Software that estimates a random e¤ects Tobit model will provide
ffiffiffiffiffi
N

p
-

consistent estimates of c, b, x, s2
u , and s2

a . We can easily test H0: x ¼ 0 as a test of the

traditional Tobit random e¤ects model.

In data-censoring applications, our interest lies in b, and so—under the maintained

assumptions—adding xi to the random e¤ects Tobit model solves the unobserved

heterogeneity problem.

If xit contains a time-constant variable, say, wi, we will not be able to estimate its

e¤ect unless we assume that its coe‰cient in x is zero. But we can still include wi as

an explanatory variable to reduce the error variance.

For corner solution applications, we can estimate either partial e¤ects evaluated at

EðcÞ or average partial e¤ects (APEs). As in Section 16.6.2, it is convenient to define

mðz; s2Þ1Fðz=sÞz þ sfðz=sÞ, so that Eðyt j x; cÞ ¼ mðxtb þ c; s2
uÞ. A consistent es-

timator of EðciÞ is ĉcþ xx̂x, where x is the sample average of the xi, and so we can

consistently estimate partial e¤ects at the mean value by taking derivatives or di¤er-

ences of mðĉcþ xtb̂b þ xx̂x; ŝs2
uÞ with respect to the elements of xt.

Estimating APEs is also relatively simple. APEs (at xt ¼ xo) are obtained by find-

ing E½mðxob þ ci; s
2
uÞ� and then computing partial derivatives or changes with respect

to elements of xo. Since ci ¼ cþ xixþ ai, we have, by iterated expectations,

E½mðxob þ ci; s
2
uÞ� ¼ EfE½mðcþ xob þ xixþ ai; s

2
uÞ j xi�g ð16:49Þ

where the first expectation is with respect to the distribution of ci. Since ai and xi are

independent and ai @Normalð0; s2
aÞ, the conditional expectation in equation (16.49)

is obtained by integrating mðcþ xob þ xixþ ai; s
2
uÞ over ai with respect to the
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Normalð0; s2
aÞ distribution. Since mðcþ xob þ xixþ ai; s

2
uÞ is obtained by integrat-

ing maxð0;cþ xob þ xixþ ai þ uitÞ with respect to uit over the Normalð0; s2
uÞ distri-

bution, it follows that

E½mðcþ xob þ xixþ ai; s
2
uÞ j xi� ¼ mðcþ xob þ xix; s

2
a þ s2

uÞ ð16:50Þ

Therefore, the expected value of equation (16.50) (with respect to the distribution of

xi) is consistently estimated as

N�1
XN

i¼1

mðĉcþ xob̂b þ xix̂x; ŝs
2
a þ ŝs2

uÞ ð16:51Þ

A similar argument works for Eðyt j x; c; yt > 0Þ: sum ðĉcþ xob̂b þ xix̂xÞ þ ŝsvl½ðĉcþ
xob̂b þ xix̂xÞ=ŝsv� in expression (16.51), where lð�Þ is the inverse Mills ratio and ŝs2

v ¼
ŝs2

a þ ŝs2
u .

We can relax assumption (16.48) and still obtain consistent,
ffiffiffiffiffi
N

p
-asymptotically

normal estimates of the APEs. In fact, under assumptions (16.45)–(16.47), we can

write

yit ¼ maxð0;cþ xitb þ xixþ vitÞ ð16:52Þ

vit j xi @Normalð0; s2
v Þ; t ¼ 1; 2; . . . ;T ð16:53Þ

where vit ¼ ai þ uit. Without further assumptions, the vit are arbitrarily serially cor-

related, and so maximum likelihood analysis using the density of yi given xi would

be computationally demanding. However, we can obtain
ffiffiffiffiffi
N

p
-asymptotically normal

estimators by a simple pooled Tobit procedure of yit on 1, xit, xi, t ¼ 1; . . . ;T , i ¼
1; . . . ;N. While we can only estimate s2

v from this procedure, it is all we need—along

with ĉc, b̂b, and x̂x—to obtain the average partial e¤ects based on expression (16.51).

The robust variance matrix for partial MLE derived in Section 13.8.2 should be used

for standard errors and inference. A minimum distance approach, analogous to the

probit case discussed in Section 15.8.2, is also available.

When we are interested only in b, such as in data-censoring cases or when we are

interested in Medðyt j x; cÞ ¼ maxð0; xtb þ cÞ, it is useful to have an estimator of b

that does not require distributional assumptions for uit or ci. Honoré (1992) uses a

clever transformation that eliminates ci and provides estimating equations for b. See

also Honoré and Kyriazidou (2000b) and Arellano and Honoré (in press).

16.8.3 Dynamic Unobserved E¤ects Tobit Models

We now turn to a specific dynamic model

yit ¼ maxð0; zitdþ r1 yi; t�1 þ ci þ uitÞ ð16:54Þ
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uit j ðzi; yi; t�1; . . . ; yi0; ciÞ@Normalð0; s2
uÞ; t ¼ 1; . . . ;T ð16:55Þ

We can embellish this model in many ways. For example, the lagged e¤ect of yi; t�1

can depend on whether yi; t�1 is zero or greater than zero. Thus, we might replace

r1 yi; t�1 by h1ri; t�1 þ r1ð1 � ri; t�1Þyi; t�1, where rit is a binary variable equal to unity if

yit ¼ 0. Or, we can let the variance of uit change over time. The basic approach does

not depend on the particular model.

The model in equation (16.54) is suitable only for corner solution applications. In

data-censoring cases, it makes more sense to have a dynamic linear model y�
it ¼

zitdþ r1 y�
i; t�1 þ ci þ uit and then to introduce the data-censoring mechanism for each

time period. This approach leads to y�
i; t�1 in equation (16.54) and is considerably

more di‰cult to handle.

The discussion in Section 15.8.4 about how to handle the initial value problem also

holds here (see Section 13.9.2 for the general case). A fairly general and tractable

approach is to specify a distribution for the unobserved e¤ect, ci, given the initial

value, yi0, and the exogenous variables in all time periods, zi. Let hðc j y0; z; gÞ denote

such a density. Then the joint density of ðy1; . . . ; yTÞ given ðy0; zÞ is

ðy
�y

YT
t¼1

f ðyt j yt�1; . . . y1; y0; z; c; yÞhðc j y0; z; gÞ dc ð16:56Þ

where f ðyt j yt�1; . . . y1; y0; z; c; yÞ is the censored-at-zero normal distribution with

mean ztdþ r1 yt�1 þ c and variance s2
u . A natural specification for hðc j y0; z; gÞ is

Normalðcþ x0 y0 þ zx; s2
aÞ, where s2

a ¼ Varðc j y0; zÞ. This leads to a fairly straight-

forward procedure. To see why, write ci ¼ cþ x0 yi0 þ zixþ ai, so that

yit ¼ maxð0;cþ zitdþ r1 yi; t�1 þ x0 yi0 þ zixþ ai þ uitÞ

where the distribution of ai given ðyi0; ziÞ is Normalð0; s2
aÞ, and assumption (16.55)

holds with ai replacing ci. The density in expression (16.56) then has the same form

as the random e¤ects Tobit model, where the explanatory variables at time t are

ðzit; yi; t�1; yi0; ziÞ. The inclusion of the initial condition in each time period, as well as

the entire vector zi, allows for the unobserved heterogeneity to be correlated with the

initial condition and the strictly exogenous variables. Standard software can be used

to test for state dependence ðr1 0 0Þ.
Average partial e¤ects can be estimated by modification of the probit results in

Section 15.8.4 and the formulas in Section 16.8.2. See Wooldridge (2000e) for details.

Honoré (1993a) obtains orthogonality conditions that can be used in a method of

moments framework to estimate d and r1 in equation (16.54) without making dis-

tributional assumptions about ci. The assumptions on uit restrict the dependence

across time but do not include distributional assumptions. Because no distributional
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assumptions are made, partial e¤ects on the conditional mean cannot be estimated

using Honoré’s approach.

Problems

16.1. Let t�i denote the duration of some event, such as unemployment, measured in

continuous time. Consider the following model for t�i :

t�i ¼ expðxib þ uiÞ; ui j xi @Normalð0; s2Þ

ti ¼ minðt�i ; cÞ

where c > 0 is a known censoring constant.

a. Find Pðti ¼ c j xiÞ, that is, the probability that the duration is censored. What

happens as c ! y?

b. What is the density of logðtiÞ (given xi) when ti < c? Now write down the full

density of logðtiÞ given xi.

c. Write down the log-likelihood function for observation i.

d. Partition b into the K1 � 1 and K2 � 1 vectors b1 and b2. How would you test

H0: b2 ¼ 0? Be specific.

e. Obtain the log-likelihood function if the censoring time is potentially di¤erent for

each person, so that ti ¼ minðt�i ; ciÞ, where ci is observed for all i. Assume that ui is

independent of ðxi; ciÞ.

16.2. In some occupations, such as major league baseball, salary floors exist. This

situation can be described by the model

wage� ¼ expðxb þ uÞ; u j x@Normalð0; s2Þ

wage ¼ maxðc;wage�Þ

where c > 0 is the known salary floor (the minimum wage), wage� is the person’s true

worth, and x contains productivity and demographic variables.

a. Show how to turn this into a standard censored Tobit model.

b. Why is Eðwage� j xÞ, rather than Eðwage� j x;wage� > cÞ or Eðwage j xÞ, of interest

in this application?

16.3. Suppose that, for a random draw ðxi; yiÞ from the population, yi is a doubly

censored variable:
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y�
i j xi @Normalðxib; s

2Þ

yi ¼ a1 if y�
i a a1

yi ¼ y�
i if a1 < y�

i < a2

yi ¼ a2 if y�
i b a2

where xi is 1 � K , b is K � 1, and a1 < a2 are known censoring constants. This may

be a data-censoring problem—for example, y� may be both top coded and bottom

coded in a survey—in which case we are interested in Eðy�
i j xiÞ ¼ xib. Or, yi may be

the outcome of a constrained optimization problem with corners at a1 and a2, such as

when yi is the proportion of person i ’s pension assets invested in the stock market, so

that a1 ¼ 0 and a2 ¼ 1.

a. Find Pðy ¼ a1 j xÞ and Pðy ¼ a2 j xÞ in terms of the standard normal cdf, x, b, and

s. For a1 < y < a2, find Pðyay j xÞ, and use this to find the density of y given x for

a1 < y < a2.

b. If z@Normalð0; 1Þ, it can be shown that Eðz j c1 < z < c2Þ ¼ ffðc1Þ � fðc2Þg=
fFðc2Þ �Fðc1Þg for c1 < c2. Use this fact to find Eðy j x; a1 < y < a2Þ and Eðy j xÞ.
c. Consider the following method for estimating b. Using only the uncensored

observations, that is, observations for which a1 < yi < a2, run the OLS regression of

yi on xi. Explain why this does not generally produce a consistent estimator of b.

d. Write down the log-likelihood function for observation i; it should consist of three

parts.

e. For a corner solution, how would you estimate Eðy j x; a1 < y < a2Þ and Eðy j xÞ?
f. Show that

qEðy j xÞ
qxj

¼ fF½ða2 � xbÞ=s� �F½ða1 � xbÞ=s�gbj

Why is the scale factor multiplying bj necessarily between zero and one?

g. For a corner solution outcome, suppose you obtain ĝg from a standard OLS re-

gression of yi on xi, using all observations. Would you compare ĝgj to the Tobit esti-

mate, b̂bj? What would be a sensible comparison?

h. For data censoring, how would the analysis change if a1 and a2 were replaced with

ai1 and ai2, respectively, where ui is independent of ðxi; ai1; ai2Þ?

16.4. Use the data in JTRAIN1.RAW for this question.
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a. Using only the data for 1988, estimate a linear equation relating hrsemp to

logðemployÞ, union, and grant. Compute the usual and heteroskedasticity-robust

standard errors. Interpret the results.

b. Out of the 127 firms with nonmissing data on all variables, how many have

hrsemp ¼ 0? Estimate the model from part a by Tobit. Find the estimated e¤ect of

grant on Eðhrsemp j employ; union; grant; hrsemp > 0Þ at the average employment for

the 127 firms and union ¼ 1. What is the e¤ect on Eðhrsemp j employ; union; grantÞ?
c. Are logðemployÞ and union jointly significant in the Tobit model?

d. In terms of goodness of fit for the conditional mean, do you prefer the linear

model or Tobit model for estimating Eðhrsemp j employ; union; grantÞ?

16.5. Use the data set FRINGE.RAW for this question.

a. Estimate a linear model by OLS relating hrbens to exper, age, educ, tenure, mar-

ried, male, white, nrtheast, nrthcen, south, and union.

b. Estimate a Tobit model relating the same variables from part a. Why do you

suppose the OLS and Tobit estimates are so similar?

c. Add exper2 and tenure2 to the Tobit model from part b. Should these be included?

d. Are there significant di¤erences in hourly benefits across industry, holding the

other factors fixed?

16.6. Consider a Tobit model with an endogenous binary explanatory variable:

y1 ¼ maxð0; z1d1 þ a1 y2 þ u1Þ

y2 ¼ 1½zd2 þ v2 > 0�

where ðu1; v2Þ is independent of z with a bivariate normal distribution with mean zero

and Varðv2Þ ¼ 1. If u1 and v2 are correlated, y2 is endogenous.

a. Find the density of the latent variable, y�
1, given ðz; y2Þ. [Hint: As shown in Sec-

tion 16.6.2, the density of y1 given ðz; v2Þ is normal with mean z1d1 þ a1 y2 þ r1v2 and

variance s2
1 � r2

1 , where r1 ¼ Covðu1; v2Þ. Integrate against the density of v2 given

ðz; y2 ¼ 1Þ, as in equation (15.55), and similarly for y2 ¼ 0:�
b. Write down the log-likelihood function for the parameters d1, a1, s2

1 , d2, and r1

for observation i.

16.7. Suppose that y given x follows Cragg’s model from Section 16.7.

a. Show that Eðy j x; y > 0Þ ¼ xb þ slðxb=sÞ, just as in the standard Tobit model.

b. Use part a and equation (16.8) to find Eðy j xÞ.
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c. Show that the elasticity of Eðy j xÞ with respect to, say, x1, is the sum of the elas-

ticities of Pðy > 0 j xÞ and Eðy j x; y > 0Þ.

16.8. Consider three di¤erent approaches for modeling Eðy j xÞ when yb 0 is a

corner solution outcome: (1) Eðy j xÞ ¼ xb; (2) Eðy j xÞ ¼ expðxbÞ; and (3) y given x

follows a Tobit model.

a. How would you estimate models 1 and 2?

b. Obtain three goodness-of-fit statistics that can be compared across models; each

should measure how much sample variation in yi is explained by ÊEðyi j xiÞ.
c. Suppose, in your sample, yi > 0 for all i. Show that the OLS and Tobit estimates

of b are identical. Does the fact that they are identical mean that the linear model for

Eðy j xÞ and the Tobit model produce the same estimates of Eðy j xÞ? Explain.

d. If y > 0 in the population, does a Tobit model make sense? What is a simple

alternative to the three approaches listed at the beginning of this problem? What

assumptions are su‰cient for estimating Eðy j xÞ?

16.9. Let y be the percentage of annual income invested in a pension plan, and

assume that a law caps this percentage at 10 percent. Thus, in a sample of data, we

observe yi between zero and 10, with pileups at the end points.

a. What model would you use for y?

b. Explain the conceptual di¤erence between the outcomes y ¼ 0 and y ¼ 10. In

particular, which limit can be viewed as a form of data censoring?

c. Suppose you want to ask, What is the e¤ect on Eðy j xÞ if the cap were increased

from 10 to 11? How would you estimate this? (Hint: Call the upper bound a2, and

take a derivative.)

d. If there are no observations at y ¼ 10, what does the estimated model reduce to?

16.10. Provide a careful derivation of equation (16.16). It will help to use the fact

that dfðzÞ=dz ¼ �zfðzÞ.

16.11. Let y be a corner solution response, and let Lðy j 1; xÞ ¼ g0 þ xg be the linear

projection of y onto an intercept and x, where x is 1 � K . If we use a random sample

on ðx; yÞ to estimate g0 and g by OLS, are the estimators inconsistent because of the

corner solution nature of y? Explain.

16.12. Use the data in APPLE.RAW for this question. These are phone survey

data, where each respondent was asked the amount of ‘‘ecolabeled’’ (or ‘‘ecologically

friendly’’) apples he or she would purchase at given prices for both ecolabeled apples
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and regular apples. The prices are cents per pound, and ecolbs and reglbs are both in

pounds.

a. For what fraction of the sample is ecolbsi ¼ 0? Discuss generally whether ecolbs

is a good candidate for a Tobit model.

b. Estimate a linear regression model for ecolbs, with explanatory variables

logðecoprcÞ, logðregprcÞ, logð famincÞ, educ, hhsize, and num5_17. Are the signs of the

coe‰cient for logðecoprcÞ and logðregprcÞ the expected ones? Interpret the estimated

coe‰cient on logðecoprcÞ.
c. Test the linear regression in part b for heteroskedasticity by running the regression

ûu2 on 1, ecôolbs, ecôolbs2 and carrying out an F test. What do you conclude?

d. Obtain the OLS fitted values. How many are negative?

e. Now estimate a Tobit model for ecolbs. Are the signs and statistical significance of

the explanatory variables the same as for the linear regression model? What do you

make of the fact that the Tobit estimate on logðecoprcÞ is about twice the size of the

OLS estimate in the linear model?

f. Obtain the estimated partial e¤ect of logðecoprcÞ for the Tobit model using equa-

tion (16.16), where the xj are evaluated at the mean values. What is the estimated

price elasticity (again, at the mean values of the xj)?

g. Reestimate the Tobit model dropping the variable logðregprcÞ. What happens to

the coe‰cient on logðecoprcÞ? What kind of correlation does this result suggest be-

tween logðecoprcÞ and logðregprcÞ?
h. Reestimate the model from part e, but with ecoprc and regprc as the explanatory

variables, rather than their natural logs. Which functional form do you prefer? (Hint:

Compare log-likelihood functions.)

16.13. Suppose that, in the context of an unobserved e¤ects Tobit (or probit) panel

data model, the mean of the unobserved e¤ect, ci, is related to the time average of

detrended xit. Specifically,

ci ¼ ð1=TÞ
XT

t¼1

ðxit � ptÞ
" #

xþ ai

where pt ¼ EðxitÞ, t ¼ 1; . . . ;T , and ai j xi @Normalð0; s2
aÞ. How does this extension

of equation (16.44) a¤ect estimation of the unobserved e¤ects Tobit (or probit)

model?

16.14. Consider the random e¤ects Tobit model under assumptions (16.42), (16.43),

and (16.48), but replace assumption (16.44) with
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ci j xi @Normal½cþ xix; s
2
a expðxilÞ�

See Problem 15.18 for the probit case.

a. What is the density of yit given ðxi; aiÞ, where ai ¼ ci � Eðci j xiÞ?
b. Derive the log-likelihood function by first finding the density of ðyi1; . . . ; yiT Þ
given xi.

c. Assuming you have estimated b, s2
u , c, x, s2

a , and l by CMLE, how would you

estimate the average partial e¤ects?

16.15. Explain why the Smith and Blundell (1986) procedure (Procedure 16.1 in

Section 16.6.2) extends immediately to the model

y1 ¼ max½0; z1d1 þ gðy2Þa1 þ u1�

where gðy2Þ is a row vector of functions of y2, under equation (16.27) and the

assumption that ðu1; v2Þ is bivariate normal and independent of z. (See Problem 15.20

for the probit case.)
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17 Sample Selection, Attrition, and Stratified Sampling

17.1 Introduction

Up to this point, with the exception of occasionally touching on cluster samples and

independently pooled cross sections, we have assumed the availability of a random

sample from the underlying population. This assumption is not always realistic: be-

cause of the way some economic data sets are collected, and often because of the

behavior of the units being sampled, random samples are not always available.

A selected sample is a general term that describes a nonrandom sample. There are a

variety of selection mechanisms that result in nonrandom samples. Some of these are

due to sample design, while others are due to the behavior of the units being sam-

pled, including nonresponse on survey questions and attrition from social programs.

Before we launch into specifics, there is an important general point to remember:

sample selection can only be an issue once the population of interest has been care-

fully specified. If we are interested in a subset of a larger population, then the proper

approach is to specify a model for that part of the population, obtain a random

sample from that part of the population, and proceed with standard econometric

methods.

The following are some examples with nonrandomly selected samples.

Example 17.1 (Saving Function): Suppose we wish to estimate a saving function for

all families in a given country, and the population saving function is

saving ¼ b0 þ b1income þ b2age þ b3married þ b4kids þ u ð17:1Þ

where age is the age of the household head and the other variables are self-explanatory.

However, we only have access to a survey that included families whose household

head was 45 years of age or older. This limitation raises a sample selection issue be-

cause we are interested in the saving function for all families, but we can obtain a

random sample only for a subset of the population.

Example 17.2 (Truncation Based on Wealth): We are interested in estimating the

e¤ect of worker eligibility in a particular pension plan [for example, a 401(k) plan] on

family wealth. Let the population model be

wealth ¼ b0 þ b1plan þ b2educ þ b3age þ b4income þ u ð17:2Þ

where plan is a binary indicator for eligibility in the pension plan. However, we can

only sample people with a net wealth less than $200,000, so the sample is selected on

the basis of wealth. As we will see, sampling based on a response variable is much

more serious than sampling based on an exogenous explanatory variable.



In these two examples data were missing on all variables for a subset of the popu-

lation as a result of survey design. In other cases, units are randomly drawn from the

population, but data are missing on one or more variables for some units in the

sample. Using a subset of a random sample because of missing data can lead to a

sample selection problem. As we will see, if the reason the observations are missing is

appropriately exogenous, using the subsample has no serious consequences.

Our final example illustrates a more subtle form of a missing data problem.

Example 17.3 (Wage O¤er Function): Consider estimating a wage o¤er equation

for people of working age. By definition, this equation is supposed to represent all

people of working age, whether or not a person is actually working at the time of the

survey. Because we can only observe the wage o¤er for working people, we e¤ectively

select our sample on this basis.

This example is not as straightforward as the previous two. We treat it as a sample

selection problem because data on a key variable—the wage o¤er, wageo—are avail-

able only for a clearly defined subset of the population. This is sometimes called

incidental truncation because wageo is missing as a result of the outcome of another

variable, labor force participation.

The incidental truncation in this example has a strong self-selection component:

people self-select into employment, so whether or not we observe wageo depends on

an individual’s labor supply decision. Whether we call examples like this sample

selection or self-selection is largely irrelevant. The important point is that we must

account for the nonrandom nature of the sample we have for estimating the wage

o¤er equation.

In the next several sections we cover a variety of sample selection issues, including

tests and corrections. Section 17.7 treats sample selection and the related problem of

attrition in panel data. Stratified sampling, which arises out of sampling design, is

covered in Section 17.8.

17.2 When Can Sample Selection Be Ignored?

In some cases, the fact that we have a nonrandom sample does not a¤ect the way we

estimate population parameters; it is important to understand when this is the case.

17.2.1 Linear Models: OLS and 2SLS

We begin by obtaining conditions under which estimation of the population model

by 2SLS using the selected sample is consistent for the population parameters. These
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results are of interest in their own right, but we will also apply them to several specific

models later in the chapter.

We assume that there is a population represented by the random vector ðx; y; zÞ,
where x is a 1 � K vector of explanatory variables, y is the scalar response variable,

and z is a 1 � L vector of instruments.

The population model is the standard single-equation linear model with possibly

endogenous explanatory variables:

y ¼ b1 þ b2x2 þ � � � þ bK xK þ u ð17:3Þ

Eðu j zÞ ¼ 0 ð17:4Þ

where we take x1 1 1 for notational simplicity. The sense in which the instruments z

are exogenous, given in assumption (17.4), is stronger than we need for 2SLS to be

consistent when using a random sample from the population. With random sam-

pling, the zero correlation condition Eðz 0uÞ ¼ 0 is su‰cient. If we could obtain a

random sample from the population, equation (17.3) could be estimated by 2SLS

under the condition rank½Eðz 0xÞ� ¼ K .

A leading special case is z ¼ x, so that the explanatory variables are exogenous and

equation (17.3) is a model of the conditional expectation Eðy j xÞ:

Eðy j xÞ ¼ b1 þ b2x2 þ � � � þ bK xK ð17:5Þ

But our general treatment allows elements of x to be correlated with u.

Rather than obtaining a random sample—that is, a sample representative of the

population—we only use data points that satisfy certain conditions. Let s be a binary

selection indicator representing a random draw from the population. By definition,

s ¼ 1 if we use the draw in the estimation, and s ¼ 0 if we do not. Usually, we do not

use observations when s ¼ 0 because data on at least some elements of ðx; y; zÞ are

unobserved—because of survey design, nonresponse, or incidental truncation.

The key assumption underlying the validity of 2SLS on selected sample is

Eðu j z; sÞ ¼ 0 ð17:6Þ

There are some important cases where assumption (17.6) necessarily follows from

assumption (17.4). If s is a deterministic function of z, then Eðu j z; sÞ ¼ Eðu j zÞ. Such

cases arise when selection is a fixed rule involving only the exogenous variables z.

Also, if selection is independent of ðz; uÞ—a su‰cient condition is that selection is

independent of ðx; y; zÞ—then Eðu j z; sÞ ¼ Eðu j zÞ.
In estimating equation (17.3), we apply 2SLS to the observations for which

s ¼ 1. To study the properties of the 2SLS estimator on the selected sample, let

Sample Selection, Attrition, and Stratified Sampling 553



fðxi; yi; zi; siÞ: i ¼ 1; 2; . . . ;Ng denote a random sample from the population. We use

observation i if si ¼ 1, but not if si ¼ 0. Therefore, we do not actually have N obser-

vations to use in the estimation; in fact, we do not even need to know N.

The 2SLS estimator using the selected sample can be expressed as

b̂b ¼ N�1
XN

i¼1

siz
0
i xi

 !0

N�1
XN

i¼1

siz
0
i zi

 !�1

N�1
XN

i¼1

siz
0
i xi

 !2
4

3
5
�1

� N�1
XN

i¼1

siz
0
i xi

 !0

N�1
XN

i¼1

siz
0
i zi

 !�1

N�1
XN

i¼1

siz
0
i yi

 !

Substituting yi ¼ xib þ ui gives

b̂b ¼ b þ N�1
XN

i¼1

siz
0
i xi

 !0

N�1
XN

i¼1

siz
0
i zi

 !�1

N�1
XN

i¼1

siz
0
i xi

 !2
4

3
5
�1

� N�1
XN

i¼1

siz
0
i xi

 !0

N�1
XN

i¼1

siz
0
i zi

 !�1

N�1
XN

i¼1

siz
0
i ui

 !
ð17:7Þ

By assumption, Eðui j zi; siÞ ¼ 0, and so Eðsiz
0
i uiÞ ¼ 0 by iterated expectations. [In the

case where s is a function of z, this result shows why assumption (17.4) cannot be

replaced with Eðz 0uÞ ¼ 0.] Now the law of large numbers applies to show that plim

b̂b ¼ b, at least under a modification of the rank condition. We summarize with a

theorem:

theorem 17.1 (Consistency of 2SLS under Sample Selection): In model (17.3),

assume that Eðu2Þ < y, Eðx2
j Þ < y, j ¼ 1; . . . ;K , and Eðz2

j Þ < y, j ¼ 1; . . . ;L.

Maintain assumption (17.6) and, in addition, assume

rank Eðz 0z j s ¼ 1Þ ¼ L ð17:8Þ

rank Eðz 0x j s ¼ 1Þ ¼ K ð17:9Þ

Then the 2SLS estimator using the selected sample is consistent for b and
ffiffiffiffiffi
N

p
-

asymptotically normal. Further, if Eðu2 j z; sÞ ¼ s2, then the usual asymptotic vari-

ance of the 2SLS estimator is valid.

Equation (17.7) essentially proves the consistency result. Showing that the usual

2SLS asymptotic variance matrix is valid requires two steps. First, under the homo-
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skedasticity assumption in the population, the usual iterated expectations argument

gives Eðsu2z 0zÞ ¼ s2Eðsz 0zÞ. This equation can be used to show that Avar
ffiffiffiffiffi
N

p
ð b̂b � bÞ

¼ s2fEðsx 0zÞ½Eðsz 0zÞ��1Eðsz 0xÞg�1. The second step is to show that the usual 2SLS

estimator of s2 is consistent. This fact can be seen as follows. Under the homoskeda-

sticity assumption, Eðsu2Þ ¼ EðsÞs2, where EðsÞ is just the fraction of the subpopu-

lation in the overall population. The estimator of s2 (without degrees-of-freedom

adjustment) is

XN

i¼1

si

 !�1XN

i¼1

siûu
2
i ð17:10Þ

since
PN

i¼1 si is simply the number of observations in the selected sample. Removing

the ‘‘^’’ from u2
i and applying the law of large numbers gives N�1

PN
i¼1 si !

p
EðsÞ and

N�1
PN

i¼1 siu
2
i !p

Eðsu2Þ ¼ EðsÞs2. Since the N�1 terms cancel, expression (17.10)

converges in probability to s2.

If s is a function only of z, or s is independent of ðz; uÞ, and Eðu2 j zÞ ¼ s2—

that is, if the homoskedasticity assumption holds in the original population—then

Eðu2 j z; sÞ ¼ s2. Without the homoskedasticity assumption we would just use the

heteroskedasticity-robust standard errors, just as if a random sample were available

with heteroskedasticity present in the population model.

When x is exogenous and we apply OLS on the selected sample, Theorem 17.1

implies that we can select the sample on the basis of the explanatory variables.

Selection based on y or on endogenous elements of x is not allowed because then

Eðu j z; sÞ0EðuÞ.

Example 17.4 (Nonrandomly Missing IQ Scores): As an example of how Theorem

17.1 can be applied, consider the analysis in Griliches, Hall, and Hausman (1978)

(GHH). The structural equation of interest is

logðwageÞ ¼ z1d1 þ abil þ v; Eðv j z1; abil; IQÞ ¼ 0

and we assume that IQ is a valid proxy for abil in the sense that abil ¼ y1IQ þ e and

Eðe j z1; IQÞ ¼ 0 (see Section 4.3.2). Write

logðwageÞ ¼ z1d1 þ y1IQ þ u ð17:11Þ

where u ¼ v þ e. Under the assumptions made, Eðu j z1; IQÞ ¼ 0. It follows imme-

diately from Theorem 17.1 that, if we choose the sample excluding all people with

IQs below a fixed value, then OLS estimation of equation (17.11) will be consistent.

This problem is not quite the one faced by GHH. Instead, GHH noticed that the

Sample Selection, Attrition, and Stratified Sampling 555



probability of IQ missing was higher at lower IQs (because people were reluctant

to give permission to obtain IQ scores). A simple way to model this situation is s ¼ 1

if IQ þ rb 0, s ¼ 0 if IQ þ r < 0, where r is an unobserved random variable. If r is

redundant in the structural equation and in the proxy variable equation for IQ, that

is, if Eðv j z1; abil; IQ; rÞ ¼ 0 and Eðe j z1; IQ; rÞ ¼ 0, then Eðu j z1; IQ; rÞ ¼ 0. Since s

is a function of IQ and r, it follows immediately that Eðu j z1; IQ; sÞ ¼ 0. Therefore,

using OLS on the sample for which IQ is observed yields consistent estimators.

If r is correlated with either v or e, Eðu j z1; IQ; sÞ0EðuÞ in general, and OLS es-

timation of equation (17.11) using the selected sample would not consistently esti-

mate d1 and y1. Therefore, even though IQ is exogenous in the population equation

(17.11), the sample selection is not exogenous. In Section 17.4.2 we cover a method

that can be used to correct for sample selection bias.

Theorem 17.1 has other useful applications. Suppose that x is exogenous in equa-

tion (17.3) and that s is a nonrandom function of ðx; vÞ, where v is a variable not

appearing in equation (17.3). If ðu; vÞ is independent of x, then Eðu j x; vÞ ¼ Eðu j vÞ,
and so

Eðy j xÞ ¼ xb þ Eðu j x; vÞ ¼ xb þ Eðu j vÞ

If we make an assumption about the functional form of Eðu j vÞ, for example,

Eðu j vÞ ¼ gv, then we can write

y ¼ xb þ gv þ e; Eðe j x; vÞ ¼ 0 ð17:12Þ

where e ¼ u � Eðu j vÞ. Because s is just a function of ðx; vÞ, Eðe j x; v; sÞ ¼ 0, and so b

and g can be estimated consistently by the OLS regression y on x, v, using the

selected sample. E¤ectively, including v in the regression on the selected subsample

eliminates the sample selection problem and allows us to consistently estimate b.

[Incidentally, because v is independent of x, we would not have to include it in

equation (17.3) to consistently estimate b if we had a random sample from the pop-

ulation. However, including v would result in an asymptotically more e‰cient esti-

mator of b when Varðy j x; vÞ is homoskedastic. See Problem 4.5.] In Section 17.5 we

will see how equation (17.12) can be implemented.

17.2.2 Nonlinear Models

Results similar to those in the previous section hold for nonlinear models as well. We

will cover explicitly the case of nonlinear regression and maximum likelihood. See

Problem 17.8 for the GMM case.
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In the nonlinear regression case, if Eðy j x; sÞ ¼ Eðy j xÞ—so that selection is igno-

rable in the conditional mean sense—then NLS on the selected sample is consistent.

Su‰cient is that s is a deterministic function of x. The consistency argument is sim-

ple: NLS on the selected sample solves

min
b

N�1
XN

i¼1

si½yi � mðxi; bÞ�2

so it su‰ces to show that bo in Eðy j xÞ ¼ mðx; boÞ minimizes Efs½y � mðx; bÞ�2g over

b. By iterated expectations,

Efs½y � mðx; bÞ�2g ¼ EðsEf½y � mðx; bÞ�2 j x; sgÞ

Next, write ½y�mðx; bÞ�2 ¼ u2þ2½mðx; boÞ�mðx; bÞ�uþ½mðx; boÞ�mðx; bÞ�2, where

u ¼ y � mðx; boÞ. By assumption, Eðu j x; sÞ ¼ 0. Therefore,

Ef½y � mðx; bÞ�2 j x; sg ¼ Eðu2 j x; sÞ þ ½mðx; boÞ � mðx; bÞ�2

and the second term is clearly minimized at b ¼ bo. We do have to assume that bo is

the unique value of b that makes Efs½mðx; bÞ � mðx; boÞ�
2g zero. This is the identifi-

cation condition on the subpopulation.

It can also be shown that, if Varðy j x; sÞ ¼ Varðy j xÞ and Varðy j xÞ ¼ s2
o, then the

usual, nonrobust NLS statistics are valid. If heteroskedasticity exists either in the

population or the subpopulation, standard heteroskedasticity-robust inference can be

used. The arguments are very similar to those for 2SLS in the previous subsection.

Another important case is the general conditional maximum likelihood setup. As-

sume that the distribution of y given x and s is the same as the distribution of y given

x: Dðy j x; sÞ ¼ Dðy j xÞ. This is a stronger form of ignorability of selection, but it

always holds if s is a nonrandom function of x, or if s is independent of ðx; yÞ. In any

case, Dðy j x; sÞ ¼ Dðy j xÞ ensures that the MLE on the selected sample is consistent

and that the usual MLE statistics are valid. The analogy argument should be familiar

by now. Conditional MLE on the selected sample solves

max
y

N�1
XN

i¼1

silðyi; xi; yÞ ð17:13Þ

where lðyi; xi; yÞ is the log likelihood for observation i. Now for each x, yo maximizes

E½lðy; x; yÞjx� over y. But E½slðy; x; yÞ� ¼EfsE½lðy; x; yÞjx; s�g ¼EfsE½lðy; x; yÞjx�g,

since, by assumption, the conditional distribution of y given ðx; sÞ does not depend on

s. Since E½lðy; x; yÞ j x� is maximized at yo, so is EfsE½lðy; x; yÞ j x�g. We must make
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the stronger assumption that yo is the unique maximum, just as in the previous cases:

if the selected subset of the population is too small, we may not be able to identify yo.

Inference can be carried out using the usual MLE statistics obtained from the

selected subsample because the information equality now holds conditional on x and

s under the assumption that Dðy j x; sÞ ¼ Dðy j xÞ. We omit the details.

Problem 17.8 asks you to work through the case of GMM estimation of general

nonlinear models based on conditional moment restrictions.

17.3 Selection on the Basis of the Response Variable: Truncated Regression

Let ðxi; yiÞ denote a random draw from a population. In this section we explicitly

treat the case where the sample is selected on the basis of yi.

In applying the following methods it is important to remember that there is an

underlying population of interest, often described by a linear conditional expectation:

Eðyi j xiÞ ¼ xib. If we could observe a random sample from the population, then we

would just use standard regression analysis. The problem comes about because the

sample we can observe is chosen at least partly based on the value of yi. Unlike in the

case where selection is based only on xi, selection based on yi causes problems for

standard OLS analysis on the selected sample.

A classic example of selection based on yi is Hausman and Wise’s (1977) study of

the determinants of earnings. Hausman and Wise recognized that their sample from a

negative income tax experiment was truncated because only families with income

below 1.5 times the poverty level were allowed to participate in the program; no data

were available on families with incomes above the threshold value. The truncation

rule was known, and so the e¤ects of truncation could be accounted for.

A similar example is Example 17.2. We do not observe data on families with

wealth above $200,000. This case is di¤erent from the top coding example we dis-

cussed in Chapter 16. Here, we observe nothing about families with high wealth: they

are entirely excluded from the sample. In the top coding case, we have a random

sample of families, and we always observe xi; the information on xi is useful even if

wealth is top coded.

We assume that yi is a continuous random variable and that the selection rule

takes the form

si ¼ 1½a1 < yi < a2�

where a1 and a2 are known constants such that a1 < a2. A good way to think of the

sample selection is that we draw ðxi; yiÞ randomly from the population. If yi falls in
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the interval ða1; a2Þ, then we observe both yi and xi. If yi is outside this interval, then

we do not observe yi or xi. Thus all we know is that there is some subset of the

population that does not enter our data set because of the selection rule. We know

how to characterize the part of the population not being sampled because we know

the constants a1 and a2.

In most applications we are still interested in estimating Eðyi j xiÞ ¼ xib. However,

because of sample selection based on yi, we must—at least in a parametric context—

specify a full conditional distribution of yi given xi. Parameterize the conditional

density of yi given xi by f ð� j xi; b; gÞ, where b are the conditional mean parameters

and g is a G � 1 vector of additional parameters. The cdf of yi given xi is Fð� j xi; b; gÞ.
What we can use in estimation is the density of yi conditional on xi and the

fact that we observe ðyi; xiÞ. In other words, we must condition on a1 < yi < a2 or,

equivalently, si ¼ 1. The cdf of yi conditional on ðxi; si ¼ 1Þ is simply

Pðyi ay j xi; si ¼ 1Þ ¼ Pðyi ay; si ¼ 1 j xiÞ
Pðsi ¼ 1 j xiÞ

Because yi is continuously distributed, Pðsi ¼1jxiÞ¼Pða1< yi <a2 jxiÞ¼F ða2 jxi; b; gÞ
�F ða1 j xi; b; gÞ > 0 for all possible values of xi. The case a2 ¼ y corresponds to

truncation only from below, in which case Fða2 j xi; b; gÞ1 1. If a1 ¼ �y (truncation

only from above), then F ða1 j xi; b; gÞ ¼ 0. To obtain the numerator when a1 < y <

a2, we have

Pðyi ay; si ¼ 1 j xiÞ ¼ Pða1 < yi ay j xiÞ ¼ Fðy j xi; b; gÞ � Fða1 j xi; b; gÞ

When we put this equation over Pðsi ¼ 1 j xiÞ and take the derivative with respect to

the dummy argument y, we obtain the density of yi given ðxi; si ¼ 1Þ:

pðy j xi; si ¼ 1Þ ¼ f ðy j xi; b; gÞ
Fða2 j xi; b; gÞ � F ða1 j xi; b; gÞ

ð17:14Þ

for a1 < y < a2.

Given a model for f ðy j x; b; gÞ, the log-likelihood function for any ðxi; yiÞ in the

sample can be obtained by plugging yi into equation (17.14) and taking the log. The

CMLEs of b and g using the selected sample are e‰cient in the class of estimators

that do not use information about the distribution of xi. Standard errors and test

statistics can be computed using the general theory of conditional MLE.

In most applications of truncated samples, the population conditional distribution

is assumed to be Normalðxb; s2Þ, in which case we have the truncated Tobit model or

truncated normal regression model. The truncated Tobit model is related to the cen-

sored Tobit model for data-censoring applications (see Chapter 16), but there is a key
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di¤erence: in censored regression, we observe the covariates x for all people, even

those for whom the response is not known. If we drop observations entirely when the

response is not observed, we obtain the truncated regression model. If in Example

16.1 we use the information in the top coded observations, we are in the censored

regression case. If we drop all top coded observations, we are in the truncated re-

gression case. (Given a choice, we should use a censored regression analysis, as it uses

all of the information in the sample.)

From our analysis of the censored regression model in Chapter 16, it is not sur-

prising that heteroskedasticity or nonnormality in truncated regression results in in-

consistent estimators of b. This outcome is unfortunate because, if not for the sample

selection problem, we could consistently estimate b under Eðy j xÞ ¼ xb, without

specifying Varðy j xÞ or the conditional distribution. Distribution-free methods for

the truncated regression model have been suggested by Powell (1986) under the as-

sumption of a symmetric error distribution; see Powell (1994) for a recent survey.

Truncating a sample on the basis of y is related to choice-based sampling. Tradi-

tional choice-based sampling applies when y is a discrete response taking on a finite

number of values, where sampling frequencies di¤er depending on the outcome of y.

[In the truncation case, the sampling frequency is one when y falls in the interval

ða1; a2Þ and zero when y falls outside of the interval.] We do not cover choice-based

sampling here; see Manksi and McFadden (1981), Imbens (1992), and Cosslett

(1993). In Section 17.8 we cover some estimation methods for stratified sampling,

which can be applied to some choice-based samples.

17.4 A Probit Selection Equation

We now turn to sample selection corrections when selection is determined by a probit

model. This setup applies to problems di¤erent from those in Section 17.3, where the

problem was that a survey or program was designed to intentionally exclude part of

the population. We are now interested in selection problems that are due to incidental

truncation, attrition in the context of program evalution, and general nonresponse

that leads to missing data on the response variable or the explanatory variables.

17.4.1 Exogenous Explanatory Variables

The incidental truncation problem is motivated by Gronau’s (1974) model of the

wage o¤er and labor force participation.

Example 17.5 (Labor Force Participation and the Wage O¤er): Interest lies in esti-

mating Eðwo
i j xiÞ, where wo

i is the hourly wage o¤er for a randomly drawn individual
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i. If wo
i were observed for everyone in the (working age) population, we would pro-

ceed in a standard regression framework. However, a potential sample selection

problem arises because wo
i is observed only for people who work.

We can cast this problem as a weekly labor supply model:

max
h

utiliðwo
i h þ ai; hÞ subject to 0a ha 168 ð17:15Þ

where h is hours worked per week and ai is nonwage income of person i. Let siðhÞ1
utiliðwo

i h þ ai; hÞ, and assume that we can rule out the solution hi ¼ 168. Then the

solution can be hi ¼ 0 or 0 < hi < 168. If dsi=dha 0 at h ¼ 0, then the optimum is

hi ¼ 0. Using this condition, straightforward algebra shows that hi ¼ 0 if and only if

wo
i a�muh

i ðai; 0Þ=mu
q
i ðai; 0Þ ð17:16Þ

where muh
i ð� ; �Þ is the marginal disutility of working and mu

q
i ð� ; �Þ is the marginal

utility of income. Gronau (1974) called the right-hand side of equation (17.16) the

reservation wage, wr
i , which is assumed to be strictly positive.

We now make the parametric assumptions

wo
i ¼ expðxi1b1 þ ui1Þ; wr

i ¼ expðxi2b2 þ g2ai þ ui2Þ ð17:17Þ

where ðui1; ui2Þ is independent of ðxi1; xi2; aiÞ. Here, xi1 contains productivity char-

acteristics, and possibly demographic characteristics, of individual i, and xi2 contains

variables that determine the marginal utility of leisure and income; these may overlap

with xi1. From equation (17.17) we have the log wage equation

log wo
i ¼ xi1b1 þ ui1 ð17:18Þ

But the wage o¤er wo
i is observed only if the person works, that is, only if wo

i bwr
i , or

log wo
i � log wr

i ¼ xi1b1 � xi2b2 � g2ai þ ui1 � ui2 1 xid2 þ vi2 > 0

This behavior introduces a potential sample selection problem if we use data only on

working people to estimate equation (17.18).

This example di¤ers in an important respect from top coding examples. With top

coding, the censoring rule is known for each unit in the population. In Gronau’s ex-

ample, we do not know wr
i , so we cannot use wo

i in a censored regression analysis. If

wr
i were observed and exogenous and xi1 were always observed, then we would be in

the censored regression framework (see Problem 16.3). If wr
i were observed and ex-

ogenous but xi1 were observed only when wo
i is, we would be in the truncated Tobit

framework. But wr
i is allowed to depend on unobservables, and so we need a new

framework.
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If we drop the i subscript, let y1 1 log wo, and let y2 be the binary labor force

participation indicator, Gronau’s model can be written for a random draw from the

population as

y1 ¼ x1b1 þ u1 ð17:19Þ

y2 ¼ 1½xd2 þ v2 > 0� ð17:20Þ

We discuss estimation of this model under the following set of assumptions:

assumption 17.1: (a) ðx; y2Þ are always observed, y1 is observed only when y2 ¼ 1;

(b) ðu1; v2Þ is independent of x with zero mean; (c) v2 @Normalð0; 1Þ; and (d)

Eðu1 j v2Þ ¼ g1v2.

Assumption 17.1a emphasizes the sample selection nature of the problem. Part b is

a strong, but standard, form of exogeneity of x. We will see that Assumption 17.1c is

needed to derive a conditional expectation given the selected sample. It is probably

the most restrictive assumption because it is an explicit distributional assumption.

Assuming Varðv2Þ ¼ 1 is without loss of generality because y2 is a binary variable.

Assumption 17.1d requires linearity in the population regression of u1 on v2.

It always holds if ðu1; v2Þ is bivariate normal—a standard assumption in these

contexts—but Assumption 17.1d holds under weaker assumptions. In particular, we

do not need to assume that u1 itself is normally distributed.

Amemiya (1985) calls equations (17.19) and (17.20) the type II Tobit model. This

name is fine as a label, but we must understand that it is a model of sample selection,

and it has nothing to do with y1 being a corner solution outcome. Unfortunately, in

almost all treatments of this model, y1 is set to zero when y2 ¼ 0. Setting y1 to zero

(or any value) when y2 ¼ 0 is misleading and can lead to inappropriate use of the

model. For example, it makes no sense to set the wage o¤er to zero just because we

do not observe it. As another example, it makes no sense to set the price per dollar of

life insurance ðy1Þ to zero for someone who did not buy life insurance (so y2 ¼ 1 if

and only if a person owns a life insurance policy).

We also have some interest in the parameters of the selection equation (17.20); for

example, in Gronau’s model it is a reduced-form labor force participation equation.

In program evaluation with attrition, the selection equation explains the probability

of dropping out of the program.

We can allow a little more generality in the model by replacing x in equation

(17.20) with x2; then, as will become clear, x1 would only need to be observed

whenever y1 is, whereas x2 must always be observed. This extension is not especially

useful for something like Gronau’s model because it implies that x1 contains elements
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that cannot also appear in x2. Because the selection equation is not typically a

structural equation, it is undesirable to impose exclusion restrictions in equation

(17.20). If a variable a¤ecting y1 is observed only along with y1, the instrumental

variables method that we cover in Section 17.4.2 is more attractive.

To derive an estimating equation, let ðy1; y2; x; u1; v2Þ denote a random draw from

the population. Since y1 is observed only when y2 ¼ 1, what we can hope to estimate

is Eðy1 j x; y2 ¼ 1Þ [along with Pðy2 ¼ 1 j xÞ]. How does Eðy1 j x; y2 ¼ 1Þ depend on

the vector of interest, b1? First, under Assumption 17.1 and equation (17.19),

Eðy1 j x; v2Þ ¼ x1b1 þ Eðu1 j x; v2Þ ¼ x1b1 þ Eðu1 j v2Þ ¼ x1b1 þ g1v2 ð17:21Þ

where the second equality follows because ðu1; v2Þ is independent of x. Equation

(17.21) is very useful. The first thing to note is that, if g1 ¼ 0—which implies that u1

and v2 are uncorrelated—then Eðy1 j x; v2Þ ¼ Eðy1 j xÞ ¼ Eðy1 j x1Þ ¼ x1b1. Because

y2 is a function of ðx; v2Þ, it follows immediately that Eðy1 j x; y2Þ ¼ Eðy1 j x1Þ. In

other words, if g1 ¼ 0, then there is no sample selection problem, and b1 can be

consistently estimated by OLS using the selected sample.

What if g1 0 0? Using iterated expectations on equation (17.21),

Eðy1 j x; y2Þ ¼ x1b1 þ g1Eðv2 j x; y2Þ ¼ x1b1 þ g1hðx; y2Þ

where hðx; y2Þ ¼ Eðv2 j x; y2Þ. If we knew hðx; y2Þ, then, from Theorem 17.1, we

could estimate b1 and g1 from the regression y1 on x1 and hðx; y2Þ, using only the

selected sample. Because the selected sample has y2 ¼ 1, we need only find hðx; 1Þ.
But hðx; 1Þ ¼ Eðv2 j v2 > �xd2Þ ¼ lðxd2Þ, where lð�Þ1 fð�Þ=Fð�Þ is the inverse Mills

ratio, and so we can write

Eðy1 j x; y2 ¼ 1Þ ¼ x1b1 þ g1lðxd2Þ ð17:22Þ

Equation (17.22), which can be found in numerous places (see, for example, Heckman,

1979, and Amemiya, 1985) makes it clear that an OLS regression of y1 on x1 using

the selected sample omits the term lðxd2Þ and generally leads to inconsistent estima-

tion of b1. As pointed out by Heckman (1979), the presence of selection bias can be

viewed as an omitted variable problem in the selected sample. An interesting point is

that, even though only x1 appears in the population expectation, Eðy1 j xÞ, other ele-

ments of x appear in the expectation on the subpopulation, Eðy1 j x; y2 ¼ 1Þ.
Equation (17.22) also suggests a way to consistently estimate b1. Following

Heckman (1979), we can consistently estimate b1 and g1 using the selected sample by

regressing yi1 on xi1, lðxid2Þ. The problem is that d2 is unknown, so we cannot

compute the additional regressor lðxid2Þ. Nevertheless, a consistent estimator of d2 is

available from the first-stage probit estimation of the selection equation.
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Procedure 17.1: (a) Obtain the probit estimate d̂d2 from the model

Pðyi2 ¼ 1 j xiÞ ¼ Fðxid2Þ ð17:23Þ

using all N observations. Then, obtain the estimated inverse Mills ratios l̂li2 1 lðxid̂d2Þ
(at least for i ¼ 1; . . . ;N1).

(b) Obtain b̂b1 and ĝg1 from the OLS regression on the selected sample,

yi1 on xi1; l̂li2; i ¼ 1; 2; . . . ;N1 ð17:24Þ

These estimators are consistent and
ffiffiffiffiffi
N

p
-asymptotically normal.

The procedure is sometimes called Heckit after Heckman (1976) and the tradition of

putting ‘‘it’’ on the end of procedures related to probit (such as Tobit).

A very simple test for selection bias is available from regression (17.24). Under the

the null of no selection bias, H0: g1 ¼ 0, we have Varðy1 j x; y2 ¼ 1Þ ¼ Varðy1 j xÞ ¼
Varðu1Þ, and so homoskedasticity holds under H0. Further, from the results on gen-

erated regressors in Chapter 6, the asymptotic variance of ĝg1 (and b̂b1) is not a¤ected

by d̂d2 when g1 ¼ 0. Thus, a standard t test on ĝg1 is a valid test of the null hypothsesis

of no selection bias.

When g1 0 0, obtaining a consistent estimate for the asymptotic variance of b̂b1 is

complicated for two reasons. The first is that, if g1 0 0, then Varðy1 j x; y2 ¼ 1Þ is not

constant. As we know, heteroskedasticity itself is easy to correct for using the robust

standard errors. However, we should also account for the fact that d̂d2 is an estimator

of d2. The adjustment to the variance of ð b̂b1; ĝg1Þ because of the two-step estimation is

cumbersome—it is not enough to simply make the standard errors heteroskedasticity-

robust. Some statistical packages now have this feature built in.

As a technical point, we do not need x1 to be a strict subset of x for b1 to be

indentified, and Procedure 17.1 does carry through when x1 ¼ x. However, if xid̂d2

does not have much variation in the sample, then l̂li2 can be approximated well by

a linear function of x. If x ¼ x1, this correlation can introduce severe collinearity

among the regressors in regression (17.24), which can lead to large standard errors of

the elements of b̂b1. When x1 ¼ x, b1 is identified only due to the nonlinearity of the

inverse Mills ratio.

The situation is not quite as bad as in Section 9.5.1. There, identification failed for

certain values of the structural parameters. Here, we still have identification for any

value of b1 in equation (17.19), but it is unlikely we can estimate b1 with much pre-

cision. Even if we can, we would have to wonder whether a statistically inverse Mills

ratio term is due to sample selection or functional form misspecification in the pop-

ulation model (17.19).
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Example 17.6 (Wage O¤er Equation for Married Women): We use the data in

MROZ.RAW to estimate a wage o¤er function for married women, accounting for

potential selectivity bias into the workforce. Of the 753 women, we observe the wage

o¤er for 428 working women. The labor force participation equation contains the

variables in Table 15.1, including other income, age, number of young children, and

number of older children—in addition to educ, exper, and exper2. The results of OLS

on the selected sample and the Heckit method are given in Table 17.1.

The di¤erences between the OLS and Heckit estimates are practically small, and

the inverse Mills ratio term is statistically insignificant. The fact that the intercept

estimates di¤er somewhat is usually unimportant. [The standard errors reported for

Heckit are the unadjusted ones from regression (17.24). If l̂l2 were statistically sig-

nificant, we should obtain the corrected standard errors.]

The Heckit results in Table 17.1 use four exclusion restrictions in the structural

equation, because nwifeinc, age, kidslt6, and kidsge6 are all excluded from the wage

o¤er equation. If we allow all variables in the selection equation to also appear in the

wage o¤er equation, the Heckit estimates become very imprecise. The coe‰cient on

educ becomes .119 (se ¼ :034), compared with the OLS estimate .100 (se ¼ :015). The

coe‰cient on kidslt6—which now appears in the wage o¤er equation—is �:188

(se ¼ :232) in the Heckit estimation, and �:056 (se ¼ :009) in the OLS estimation.

The imprecision of the Heckit estimates is due to the severe collinearity that comes

from adding l̂l2 to the equation, because l̂l2 is now a function only of the explanatory

variables in the wage o¤er equation. In fact, using the selected sample, regressing l̂l2 on

Table 17.1
Wage O¤er Equation for Married Women

Dependent Variable: logðwageÞ

Independent Variable OLS Heckit

educ .108
(.014)

.109
(.016)

exper .042
(.012)

.044
(.016)

exper2 �.00081
(.00039)

�.00086
(.00044)

constant �.522
(.199)

�.578
(.307)

l̂l2 — .032
(.134)

Sample size 428 428
R-squared .157 .157
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the seven explanatory variables gives R-squared ¼ :962. Unfortunately, comparing

the OLS and Heckit results does not allow us to resolve some important issues. For

example, the OLS results suggest that another young child reduces the wage o¤er by

about 5.6 percent (t statistic A�6:2), other things being equal. Is this e¤ect real, or is

it simply due to our inability to adequately correct for sample selection bias? Unless

we have a variable that a¤ects labor force participation without a¤ecting the wage

o¤er, we cannot answer this question.

If we replace parts c and d in Assumption 17.1 with the stronger assumption that

ðu1; v2Þ is bivariate normal with mean zero, Varðu1Þ ¼ s2
1 , Covðu1; v2Þ ¼ s12, and

Varðv2Þ ¼ 1, then partial maximum likelihood estimation can be used, as described

generally in Problem 13.7. Partial MLE will be more e‰cient than the two-step pro-

cedure under joint normality of u1 and v2, and it will produce standard errors and

likelihood ratio statistics that can be used directly (this conclusion follows from

Problem 13.7). The drawbacks are that it is less robust than the two-step procedure

and that it is sometimes di‰cult to get the problem to converge.

The reason we cannot perform full conditional MLE is that y1 is only observed

when y2 ¼ 1. Thus, while we can use the full density of y2 given x, which is f ðy2 j xÞ
¼ ½Fðxd2Þ�y2 ½1 �Fðxd2Þ�1�y2 , y2 ¼ 0, 1, we can only use the density f ðy1 j y2; xÞ when

y2 ¼ 1. To find f ðy1 j y2; xÞ at y2 ¼ 1, we can use Bayes’ rule to write f ðy1 j y2; xÞ ¼
f ðy2 j y1; xÞ f ðy1 j xÞ= f ðy2 j xÞ. Therefore, f ðy1 j y2¼1; xÞ¼Pðy2¼1 j y1; xÞ f ðy1 j xÞ=
Pðy2¼1 j xÞ. But y1 j x@Normalðx1b1; s

2
1 Þ. Further, y2¼1½xd2 þ s12s

�2
1 ðy1 � x1b1Þ

þ e2 > 0�, where e2 is independent of ðx; y1Þ and e2 @Normalð0; 1 � s2
12s

�2
1 Þ (this

conclusion follows from standard conditional distribution results for joint normal

random variables). Therefore,

Pðy2 ¼ 1 j y1; xÞ ¼ Ff½xd2 þ s12s
�2
1 ðy1 � x1b1Þ�ð1 � s2

12s
�2
1 Þ�1=2g

Combining all of these pieces [and noting the cancellation of Pðy2 ¼ 1 j xÞ� we get

liðyÞ ¼ ð1 � yi2Þ log½1 �Fðxid2Þ� þ yi2ðlog Ff½xd2 þ s12s
�2
1 ðyi1 � xi1b1Þ�

� ð1 � s2
12s

�2
1 Þ�1=2g þ log f½ðyi1 � xi1b1Þ=s1� � logðs1ÞÞ

The partial log likelihood is obtained by summing liðyÞ across all observations;

yi2 ¼ 1 picks out when yi1 is observed and therefore contains information for esti-

mating b1.

Ahn and Powell (1993) show how to consistently estimate b1 without making any

distributional assumptions; in particular, the selection equation need not have the

probit form. Vella (1998) contains a recent survey.
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17.4.2 Endogenous Explanatory Variables

We now study the sample selection model when one of the elements of x1 is thought

to be correlated with u1. Or, all the elements of x1 are exogenous in the population

model but data are missing on an element of x1, and the reason data are missing

might be systematically related to u1. For simplicity, we focus on the case of a single

endogenous explanatory variable.

The model in the population is

y1 ¼ z1d1 þ a1y2 þ u1 ð17:25Þ

y2 ¼ zd2 þ v2 ð17:26Þ

y3 ¼ 1ðzd3 þ v3 > 0Þ ð17:27Þ

The first equation is the structural equation of interest, the second equation is a

linear projection for the potentially endogenous or missing variable y2, and the third

equation is the selection equation. We allow arbitrary correlation among u1, v2,

and v3.

The setup in equations (17.25)–(17.27) encompasses at least three cases of interest.

The first occurs when y2 is always observed but is endogenous in equation (17.25).

An example is seen when y1 is logðwageoÞ and y2 is years of schooling: years of

schooling is generally available whether or not someone is in the workforce. The

model also applies when y2 is observed only along with y1, as would happen if y1 ¼
logðwageoÞ and y2 is the ratio of the benefits o¤er to wage o¤er. As a second exam-

ple, let y1 be the percentage of voters supporting the incumbent in a congressional

district, and let y2 be intended campaign expenditures. Then y3 ¼ 1 if the incumbent

runs for reelection, and we only observe ðy1; y2Þ when y3 ¼ 1. A third application is

to missing data only on y2, as in Example 17.4 where y2 is IQ score. In the last two

cases, y2 might in fact be exogenous in equation (17.25), but endogenous sample

selection e¤ectively makes y2 endogenous in the selected sample.

If y1 and y2 were always observed along with z, we would just estimate equation

(17.25) by 2SLS if y2 is endogenous. We can use the results from Section 17.2.1 to

show that 2SLS with the inverse Mills ratio added to the regressors is consistent.

Regardless of the data availability on y1 and y2, in the second step we use only

observations for which both y1 and y2 are observed.

assumption 17.2: (a) ðz; y3Þ is always observed, ðy1; y2Þ is observed when y3 ¼ 1;

(b) ðu1; v3Þ is independent of z; (c) v3 @Normalð0; 1Þ; (d) Eðu1 j v3Þ ¼ g1v3; and (e)

Eðz 0v2Þ ¼ 0 and, writing zd2 ¼ z1d21 þ z2d22, d22 0 0.
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Parts b, c, and d are identical to the corresponding assumptions when all explana-

tory variables are observed and exogenous. Assumption e is new, resulting from the

endogeneity of y2 in equation (17.25). It is important to see that Assumption 17.2e is

identical to the rank condition needed for identifying equation (17.25) in the absence

of sample selection. As we will see, stating identification in the population is not

always su‰cient, but, from a practical point of view, the focus should be on As-

sumption 17.2e.

To derive an estimating equation, write (in the population)

y1 ¼ z1d1 þ a1y2 þ gðz; y3Þ þ e1 ð17:28Þ

where gðz; y3Þ1Eðu1 j z; y3Þ and e1 1 u1 � Eðu1 j z; y3Þ. By definition, Eðe1 j z; y3Þ ¼
0. If we knew gðz; y3Þ then, from Theorem 17.1, we could just estimate equation

(17.28) by 2SLS on the selected sample ðy3 ¼ 1Þ using instruments ½z; gðz; 1Þ�. It turns

out that we do know gðz; 1Þ up to some estimable parameters: Eðu1 j z; y3 ¼ 1Þ ¼
g1lðzd3Þ. Since d3 can be consistently estimated by probit of y3 on z (using the entire

sample), we have the following:

Procedure 17.2: (a) Obtain d̂d3 from probit of y3 on z using all observations. Obtain

the estimated inverse Mills ratios, l̂li3 ¼ lðzid̂d3Þ.
(b) Using the selected subsample (for which we observe both y1 and y2), estimate

the equation

yi1 ¼ zi1d1 þ a1yi2 þ g1l̂li3 þ errori ð17:29Þ

by 2SLS, using instruments ðzi; l̂li3Þ.

The steps in this procedure show that identification actually requires that z2 appear

in the linear projection of y2 onto z1; z2, and lðzd3Þ in the selected subpopulation. It

would be unusual if this statement were not true when the rank condition 17.2e holds

in the population.

The hypothesis-of-no-selection problem (allowing y2 to be endogenous or not),

H0: g1 ¼ 0, is tested using the usual 2SLS t statistic for ĝg1. When g1 0 0, standard

errors and test statistics should be corrected for the generated regressors problem, as

in Chapter 6.

Example 17.7 (Education Endogenous and Sample Selection): In Example 17.6 we

now allow educ to be endogenous in the wage o¤er equation, and we test for sample

selection bias. Just as if we did not have a sample selection problem, we need IVs

for educ that do not appear in the wage o¤er equation. As in Example 5.3, we use

parents’ education (motheduc, fatheduc) and husband’s education as IVs. In addition,
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we need some variables that a¤ect labor force participation but not the wage o¤er;

we use the same four variables as in Example 17.6. Therefore, all variables except

educ (and, of course, the wage o¤er) are treated as exogenous.

Unless we have very reliable prior information, all exogenous variables should

appear in the selection equation, and all should be listed as instruments in estimating

equation (17.29) by 2SLS. Dropping some exogenous variables in either the selection

equation or in estimating equation (17.29) imposes exclusion restrictions on a reduced-

form equation, something that can be dangerous and is unnecessary. Therefore, in

the labor force participation equation we include exper, exper2, nwifeinc, kidslt6,

kidsge6, motheduc, fatheduc, and huseduc (not educ). In estimating equation (17.29),

the same set of variables, along with l̂l3, are used as IVs. The 2SLS coe‰cient on l̂l3 is

.040 (se ¼ :133), and so, again, there is little evidence of sample selection bias. The

coe‰cient on educ is .088 (se ¼ :021), which is similar to the 2SLS estimate obtained

without the sample selection correction (see Example 5.3). Because there is little evi-

dence of sample selection bias, the standard errors are not corrected for first-stage

estimation of d3.

Importantly, Procedure 17.2 applies to any kind of endogenous variable y2, in-

cluding binary and other discrete variables, without any additional assumptions. This

statement is true because the reduced form for y2 is just a linear projection; we do not

have to assume, for example, that v2 is normally distributed or even independent of z.

As an example, we might wish to look at the e¤ects of participation in a job training

program on the subsequent wage o¤er, accounting for the fact that not all who par-

ticipated in the program will be employed in the following period (y2 is always

observed in this case). If participation is voluntary, an instrument for it might be

whether the person was randomly chosen as a potential participant.

Even if y2 is exogenous in the population equation (17.25), when y2 is sometimes

missing we generally need an instrument for y2 when selection is not ignorable [that

is, Eðu1 j z1; y2; y3Þ0Eðu1Þ]. In Example 17.4 we could use family background vari-

ables and another test score, such as KWW, as IVs for IQ, assuming these are always

observed. We would generally include all such variables in the reduced-form selection

equation. Procedure 17.2 works whether we assume IQ is a proxy variable for ability

or an indicator of ability (see Chapters 4 and 5).

As a practical matter, we should have at least two elements of z that are not also in

z1; that is, we need at least two exclusion restrictions in the structural equation.

Intuitively, for the procedure to be convincing, we should have at least one instru-

ment for y2 and another exogenous variable that determines selection. Suppose that

the scalar z2 is our only exogenous variable excluded from equation (17.25). Then,
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under random sampling, the equation would be just identified. When we account for

sample selection bias, the Mills ratio term in equation (17.29) is a function of z1 and

z2. While the nonlinearity of the Mills ratio technically allows us to identify d1 and

a1, it is unlikely to work very well in practice because of severe multicollinearity

among the IVs. This situation is analogous to using the standard Heckit method

when there are no exclusion restrictions in the structural equation (see Section

17.4.1).

If we make stronger assumptions, it is possible to estimate model (17.25)–(17.27)

by partial maximum likelihood of the kind discussed in Problem 13.7. One possibility

is to assume that ðu1; v2; v3Þ is trivariate normal and independent of z. In addition to

ruling out discrete y2, such a procedure would be computationally di‰cult. If y2 is

binary, we can model it as y2 ¼ 1½zd2 þ v2 > 0�, where v2 j z@Normalð0; 1Þ. But

maximum likelihood estimation that allows any correlation matrix for ðu1; v2; v3Þ is

complicated and less robust than Procedure 17.2.

17.4.3 Binary Response Model with Sample Selection

We can estimate binary response models with sample selection if we assume that

the latent errors are bivariate normal and independent of the explanatory variables.

Write the model as

y1 ¼ 1½x1b1 þ u1 > 0� ð17:30Þ

y2 ¼ 1½xd2 þ v2 > 0� ð17:31Þ

where the second equation is the sample selection equation and y1 is observed only

when y2 ¼ 1; we assume that x is always observed. For example, suppose y1 is an

employment indicator and x1 contains a job training binary indicator (which we as-

sume is exogenous), as well as other human capital and family background variables.

We might lose track of some people who are eligible to participate in the program;

this is an example of sample attrition. If attrition is systematically related to u1, esti-

mating equation (17.30) on the sample at hand can result in an inconsistent estimator

of b1.

If we assume that ðu1; v2Þ is independent of x with a zero-mean normal distribution

(and unit variances), we can apply partial maximum likelihood. What we need is the

density of y1 conditional on x and y2 ¼ 1. We have essentially found this density in

Chapter 15: in equation (15.55) set a1 ¼ 0, replace z with x, and replace d1 with b1.

The parameter r1 is still the correlation between u1 and v2. A two-step procedure can

be applied: first, estimate d2 by probit of y2 on x. Then, estimate b1 and r1 in the

second stage using equation (15.55) along with Pðy1 ¼ 0 j x; y2 ¼ 1Þ.
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A convincing analysis requires at least one variable in x—that is, something that

determines selection—that is not also in x1. Otherwise, identification is o¤ of the

nonlinearities in the probit models.

Allowing for endogenous explanatory variables in equation (17.30) along with

sample selection is di‰cult, and it could be the focus of future research.

17.5 A Tobit Selection Equation

We now study the case where more information is available on sample selection,

primarily in the context of incidental truncation. In particular, we assume that

selection is based on the outcome of a Tobit, rather than a probit, equation. The

analysis of the models in this section comes from Wooldridge (1998). The model in

Section 17.5.1 is a special case of the model studied by Vella (1992) in the context of

testing for selectivity bias.

17.5.1 Exogenous Explanatory Variables

We now consider the case where the selection equation is of the censored Tobit form.

The population model is

y1 ¼ x1b1 þ u1 ð17:32Þ

y2 ¼ maxð0; xd2 þ v2Þ ð17:33Þ

where ðx; y2Þ is always observed in the population but y1 is observed only when

y2 > 0. A standard example occurs when y1 is the log of the hourly wage o¤er and y2

is weekly or annual hours of labor supply.

assumption 17.3: (a) ðx; y2Þ is always observed in the population, but y1 is observed

only when y2 > 0; (b) ðu1; v2Þ is independent of x; (c) v2 @Normalð0; t2
2Þ; and (d)

Eðu1 j v2Þ ¼ g1v2.

These assumptions are very similar to the assumptions for a probit selection equa-

tion. The only di¤erence is that v2 now has an unknown variance, since y2 is a cen-

sored as opposed to binary variable.

Amemiya (1985) calls equations (17.32) and (17.33) the type III Tobit model, but

we emphasize that equation (17.32) is the structural population equation of interest

and that equation (17.33) simply determines when y1 is observed. In the labor eco-

nomics example, we are interested in the wage o¤er equation, and equation (17.33) is

a reduced-form hours equation. It makes no sense to define y1 to be, say, zero, just

because we do not observe y1.
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The starting point is equation (17.21), just as in the probit selection case. Now

define the selection indicator as s2 ¼ 1 if y2 > 0, and s2 ¼ 0 otherwise. Since s2 is a

function of x and v2, it follows immediately that

Eðy1 j x; v2; s2Þ ¼ x1b1 þ g1v2 ð17:34Þ

This equation means that, if we could observe v2, then an OLS regression of y1 on x1,

v2 using the selected subsample would consistently estimate ðb1; g1Þ, as we discussed

in Section 17.2.1. While v2 cannot be observed when y2 ¼ 0 (because when y2 ¼ 0,

we only know that v2 a�xd2), for y2 > 0, v2 ¼ y2 � xd2. Thus, if we knew d2, we

would know v2 whenever y2 > 0. It seems reasonable that, because d2 can be con-

sistently estimated by Tobit on the whole sample, we can replace v2 with consistent

estimates.

Procedure 17.3: (a) Estimate equation (17.33) by standard Tobit using all N obser-

vations. For yi2 > 0 (say i ¼ 1; 2; . . . ;N1), define

v̂vi2 ¼ yi2 � xid̂d2 ð17:35Þ

(b) Using observations for which yi2 > 0, estimate b1, g1 by the OLS regression

yi1 on xi1; v̂vi2 i ¼ 1; 2; . . . ;N1 ð17:36Þ

This regression produces consistent,
ffiffiffiffiffi
N

p
-asymptotically normal estimators of b1 and

g1 under Assumption 17.3.

The statistic to test for selectivity bias is just the usual t statistic on v̂vi2 in regression

(17.36). This was suggested by Vella (1992). Wooldridge (1998) showed that this

procedure also solves the selection problem when g1 0 0.

It seems likely that there is an e‰ciency gain over Procedure 17.1. If v2 were

known and we could use regression (17.36) for the entire population, there would

definitely be an e‰ciency gain: the error variance is reduced by conditioning on v2

along with x, and there would be no heteroskedasticity in the population. See Prob-

lem 4.5.

Unlike in the probit selection case, x1 ¼ x causes no problems here: v2 always has

separate variation from x1 because of variation in y2. We do not need to rely on the

nonlinearity of the inverse Mills ratio.

Example 17.8 (Wage O¤er Equation for Married Women): We now apply Proce-

dure 17.3 to the wage o¤er equation for married women in Example 17.6. (We

assume education is exogenous.) The only di¤erence is that the first-step estimation

is Tobit, rather than probit, and we include the Tobit residuals as the additional
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explanatory variables, not the inverse Mills ratio. In regression (17.36), the coe‰cient

on v̂v2 is �:000053 (se ¼ :000041), which is somewhat more evidence of a sample

selection problem, but we still do not reject the null hypothesis H0: g1 ¼ 0 at even the

15 percent level against a two-sided alternative. Further, the coe‰cient on educ is

.103 (se ¼ :015), which is not much di¤erent from the OLS and Heckit estimates.

(Again, we use the usual OLS standard error.) When we include all exogenous vari-

ables in the wage o¤er equation, the estimates from Procedure 17.3 are much more

stable than the Heckit estimates. For example, the coe‰cient on educ becomes .093

(se ¼ :016), which is comparable to the OLS estimates discussed in Example 17.6.

For partial maximum likelihood estimation, we assume that ðu1; v2Þ is jointly

normal, and we use the density for f ðy2 j xÞ for the entire sample and the con-

ditional density f ðy1 j x; y2; s2 ¼ 1Þ ¼ f ðy1 j x; y2Þ for the selected sample. This ap-

proach is fairly straightforward because, when y2 > 0, y1 j x; y2 @Normal½x1b1 þ
g1ðy2 � xd2Þ; h2

1 �, where h2
1 ¼ s2

1 � s2
12=t

2
2 , s2

1 ¼ Varðu1Þ, and s12 ¼ Covðu1; v2Þ. The

log likelihood for observation i is

liðyÞ ¼ si2 log f ðyi1 j xi; yi2; yÞ þ log f ðyi2 j xi; d2; t
2
2Þ ð17:37Þ

where f ðyi1 j xi; yi2; yÞ is the Normal½xi1b1 þ g1ðyi2 � xid2Þ; h2
1 � distribution, eval-

uated at yi1, and f ðyi2 j xi; d2; t
2
2Þ is the standard censored Tobit density [see equation

(16.19)]. As shown in Problem 13.7, the usual MLE theory can be used even though

the log-likelihood function is not based on a true conditional density.

It is possible to obtain sample selection corrections and tests for various other

nonlinear models when the selection rule is of the Tobit form. For example, suppose

that the binary variable y1 given z follows a probit model, but it is observed only

when y2 > 0. A valid test for selection bias is to include the Tobit residuals, v̂v2, in a

probit of y1 on z, v̂v2 using the selected sample; see Vella (1992). This procedure also

produces consistent estimates (up to scale), as can be seen by applying the maximum

likelihood results in Section 17.2.2 along with two-step estimation results.

Honoré, Kyriazidou, and Udry (1997) show how to estimate the parameters of the

type III Tobit model without making distributional assumptions.

17.5.2 Endogenous Explanatory Variables

We explicitly consider the case of a single endogenous explanatory variable, as in

Section 17.4.2. We use equations (17.25) and (17.26), and, in place of equation

(17.27), we have a Tobit selection equation:

y3 ¼ maxð0; zd3 þ v3Þ ð17:38Þ
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assumption 17.4: (a) ðz; y3Þ is always observed, ðy1; y2Þ is observed when y3 > 0;

(b) ðu1; v3Þ is independent of z; (c) v3 @Normalð0; t2
3Þ; (d) Eðu1 j v3Þ ¼ g1v3; and (e)

Eðz 0v2Þ ¼ 0 and, writing zd2 ¼ z1d21 þ z2d22, d22 0 0.

Again, these assumptions are very similar to those used with a probit selection

mechanism.

To derive an estimating equation, write

y1 ¼ z1d1 þ a1y2 þ g1v3 þ e1 ð17:39Þ

where e1 1 u1 � Eðu1 j v3Þ. Since ðe1; v3Þ is independent of z by Assumption 17.4b,

Eðe1 j z; v3Þ ¼ 0. From Theorem 17.1, if v3 were observed, we could estimate equation

(17.39) by 2SLS on the selected sample using instruments ðz; v3Þ. As before, we can

estimate v3 when y3 > 0, since d3 can be consistently estimated by Tobit of y3 on z

(using the entire sample).

Procedure 17.4: (a) Obtain d̂d3 from Tobit of y3 on z using all observations. Obtain

the Tobit residuals v̂vi3 ¼ yi3 � zid̂d3 for yi3 > 0.

(b) Using the selected subsample, estimate the equation

yi1 ¼ zi1d1 þ a1yi2 þ g1v̂vi3 þ errori ð17:40Þ

by 2SLS, using instruments ðzi; v̂vi3Þ. The estimators are
ffiffiffiffiffi
N

p
-consistent and asymp-

totically normal under Assumption 17.4.

Comments similar to those after Procedure 17.2 hold here as well. Strictly speak-

ing, identification really requires that z2 appear in the linear projection of y2 onto z1,

z2, and v3 in the selected subpopulation. The null of no selection bias is tested using

the 2SLS t statistic (or maybe its heteroskedasticity-robust version) on v̂vi3. When

g1 0 0, standard errors should be corrected using two-step methods.

As in the case with a probit selection equation, the endogenous variable y2 can be

continuous, discrete, censored, and so on. Extending the method to multiple endog-

enous explanatory variables is straightforward. The only restriction is the usual one

for linear models: we need enough instruments to identify the structural equation. See

Problem 17.6 for an application to the Mroz data.

An interesting special case of model (17.25), (17.26), and (17.38) is when y2 ¼ y3.

Actually, because we only use observations for which y3 > 0, y2 ¼ y�
3 is also

allowed, where y�
3 ¼ zd3 þ v3. Either way, the variable that determines selection also

appears in the structural equation. This special case could be useful when sample

selection is caused by a corner solution outcome on y3 (in which case y2 ¼ y3 is
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natural) or because y�
3 is subject to data censoring (in which case y2 ¼ y�

3 is more

realistic). An example of the former occurs when y3 is hours worked and we assume

hours appears in the wage o¤er function. As a data-censoring example, suppose that

y1 is a measure of growth in an infant’s weight starting from birth and that we observe

y1 only if the infant is brought into a clinic within three months. Naturally, birth

weight depends on age, and so y�
3 —length of time between the first and second mea-

surements, which has quantitiative meaning—appears as an explanatory variable in

the equation for y1. We have a data-censoring problem for y�
3 , which causes a sample

selection problem for y1. In this case, we would estimate a censored regression model

for y3 [or, possibly, logðy3Þ] to account for the data censoring. We would include the

residuals v̂vi3 ¼ yi3 � zid̂d3 in equation (17.40) for the noncensored observations. As

our extra instrument we might use distance from the child’s home to the clinic.

17.6 Estimating Structural Tobit Equations with Sample Selection

We briefly show how a structural Tobit model can be estimated using the methods of

the previous section. As an example, consider the structural labor supply model

logðwoÞ ¼ z1b1 þ u1 ð17:41Þ

h ¼ max½0; z2b2 þ a2 logðwoÞ þ u2� ð17:42Þ

This system involves simultaneity and sample selection because we observe wo only if

h > 0.

The general form of the model is

y1 ¼ z1b1 þ u1 ð17:43Þ

y2 ¼ maxð0; z2b2 þ a2 y1 þ u2Þ ð17:44Þ

assumption 17.5: (a) ðz; y2Þ is always observed; y1 is observed when y2 > 0; (b)

ðu1; u2Þ is independent of z with a zero-mean bivariate normal distribution; and (c) z1

contains at least one element whose coe‰cient is di¤erent from zero that is not in z2.

As always, it is important to see that equations (17.43) and (17.44) constitute a

model describing a population. If y1 were always observed, then equation (17.43)

could be estimated by OLS. If, in addition, u1 and u2 were uncorrelated, equation

(17.44) could be estimated by censored Tobit. Correlation between u1 and u2 could be

handled by the methods of Section 16.6.2. Now, we require new methods, whether or

not u1 and u2 are uncorrelated, because y1 is not observed when y2 ¼ 0.

Sample Selection, Attrition, and Stratified Sampling 575



The restriction in Assumption 17.5c is needed to identify the structural parameters

ðb2; a2Þ (b1 is always identified). To see that this condition is needed, and for finding

the reduced form for y2, it is useful to introduce the latent variable

y�
2 1 z2b2 þ a2 y1 þ u2 ð17:45Þ

so that y2 ¼ maxð0; y�
2 Þ. If equations (17.43) and (17.45) make up the system of

interest—that is, if y1 and y�
2 are always observed—then b1 is identified without

further restrictions, but identification of a2 and b2 requires exactly Assumption 17.5c.

This turns out to be su‰cient even when y2 follows a Tobit model and we have

nonrandom sample selection.

The reduced form for y�
2 is y�

2 ¼ zd2 þ v2. Therefore, we can write the reduced

form of equation (17.44) as

y2 ¼ maxð0; zd2 þ v2Þ: ð17:46Þ

But then equations (17.43) and (17.46) constitute the model we studied in Section

17.5.1. The vector d2 is consistently estimated by Tobit, and b1 is estimated as in

Procedure 17.3. The only remaining issue is how to estimate the structural param-

eters of equation (17.44), a2 and b2. In the labor supply case, these are the labor

supply parameters.

Assuming identification, estimation of ða2; b2Þ is fairly straightforward after having

estimated b1. To see this point, write the reduced form of y2 in terms of the structural

parameters as

y2 ¼ max½0; z2b2 þ a2ðz1b1Þ þ v2� ð17:47Þ

Under joint normality of u1 and u2, v2 is normally distributed. Therefore, if b1 were

known, b2 and a2 could be estimated by standard Tobit using z2 and z1b1 as regres-

sors. Operationalizing this procedure requires replacing b1 with its consistent esti-

mator. Thus, using all observations, b2 and a2 are estimated from the Tobit equation

yi2 ¼ max½0; zi2b2 þ a2ðzi1b̂b1Þ þ errori� ð17:48Þ

To summarize, we have the following:

Procedure 17.5: (a) Use Procedure 17.3 to obtain b̂b1.

(b) Obtain b̂b2 and âa2 from the Tobit in equation (17.48).

In applying this procedure, it is important to note that the explanatory variable in

equation (17.48) is zi1b̂b1 for all i. These are not the fitted values from regression

(17.36), which depend on v̂vi2. Also, it may be tempting to use yi1 in place of zi1b̂b1 for
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that part of the sample for which yi1 is observed. This approach is not a good idea:

the estimators are inconsistent in this case.

The estimation in equation (17.48) makes it clear that the procedure fails if z1 does

not contain at least one variable not in z2. If z1 is a subset of z2, then zi1b̂b1 is a linear

combination of zi2, and so perfect multicollinearity will exist in equation (17.48).

Estimating Avarðâa2; b̂b2Þ is even messier than estimating Avarð b̂b1Þ, since ðâa2; b̂b2Þ
comes from a three-step procedure. Often just the usual Tobit standard errors and

test statistics reported from equation (17.48) are used, even though these are not

strictly valid. By setting the problem up as a large GMM problem, as illustrated in

Chapter 14, correct standard errors and test statistics can be obtained.

Under Assumption 17.5, a full maximum likelihood approach is possible. In fact,

the log-likelihood function can be constructed from equations (17.43) and (17.47),

and it has a form very similar to equation (17.37). The only di¤erence is that non-

linear restrictions are imposed automatically on the structural parameters. In addi-

tion to making it easy to obtain valid standard errors, MLE is desirable because it

allows us to estimate s2
2 ¼ Varðu2Þ, which is needed to estimate average partial e¤ects

in equation (17.44).

In examples such as labor supply, it is not clear where the elements of z1 that are

not in z2 might come from. One possibility is a union binary variable, if we believe

that union membership increases wages (other factors accounted for) but has no e¤ect

on labor supply once wage and other factors have been controlled for. This approach

would require knowing union status for people whether or not they are working in

the period covered by the survey. In some studies past experience is assumed to a¤ect

wage—which it certainly does—and is assumed not to appear in the labor supply

function, a tenuous assumption.

17.7 Sample Selection and Attrition in Linear Panel Data Models

In our treatment of panel data models we have assumed that a balanced panel is

available—each cross section unit has the same time periods available. Often, some

time periods are missing for some units in the population of interest, and we are left

with an unbalanced panel. Unbalanced panels can arise for several reasons. First, the

survey design may simply rotate people or firms out of the sample based on pre-

specified rules. For example, if a survey of individuals begins at time t ¼ 1, at time

t ¼ 2 some of the original people may be dropped and new people added. At t ¼ 3

some additional people might be dropped and others added; and so on. This is an

example of a rotating panel.
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Provided the decision to rotate units out of a panel is made randomly, unbalanced

panels are fairly easy to deal with, as we will see shortly. A more complicated prob-

lem arises when attrition from a panel is due to units electing to drop out. If this de-

cision is based on factors that are systematically related to the response variable, even

after we condition on explanatory variables, a sample selection problem can result—

just as in the cross section case. Nevertheless, a panel data set provides us with

the means to handle, in a simple fashion, attrition that is based on a time-constant,

unobserved e¤ect, provided we use first-di¤erencing methods; we show this in Section

17.7.3.

A di¤erent kind of sample selection problem occurs when people do not disappear

from the panel but certain variables are unobserved for at least some time periods.

This is the incidental truncation problem discussed in Section 17.4. A leading case is

estimating a wage o¤er equation using a panel of individuals. Even if the population

of interest is people who are employed in the initial year, some people will become

unemployed in subsequent years. For those people we cannot observe a wage o¤er,

just as in the cross-sectional case. This situation is di¤erent from the attrition prob-

lem where people leave the sample entirely and, usually, do not reappear in later

years. In the incidental truncation case we observe some variables on everyone in

each time period.

17.7.1 Fixed E¤ects Estimation with Unbalanced Panels

We begin by studying assumptions under which the usual fixed e¤ects estimator on

the unbalanced panel is consistent. The model is the usual linear, unobserved e¤ects

model under random sampling in the cross section: for any i,

yit ¼ xitb þ ci þ uit; t ¼ 1; . . . ;T ð17:49Þ

where xit is 1 � K and b is the K � 1 vector of interest. As before, we assume that N

cross section observations are available and the asymptotic analysis is as N ! y. We

explicitly cover the case where ci is allowed to be correlated with xit, so that all

elements of xit are time varying. A random e¤ects analysis is also possible under

stronger assumptions; see, for example, Verbeek and Nijman (1992, 1996).

We covered the case where all T time periods are available in Chapters 10 and 11.

Now we consider the case where some time periods might be missing for some of the

cross section draws. Think of t ¼ 1 as the first time period for which data on anyone

in the population are available, and t ¼ T as the last possible time period. For a

random draw i from the population, let si 1 ðsi1; . . . ; siT Þ0 denote the T � 1 vector of

selection indicators: sit ¼ 1 if ðxit; yitÞ is observed, and zero otherwise. Generally, we
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have an unbalanced panel. We can treat fðxi; yi; siÞ: i ¼ 1; 2; . . . ;Ng as a random

sample from the population; the selection indicators tell us which time periods are

missing for each i.

We can easily find assumptions under which the fixed e¤ects estimator on the

unbalanced panel is consistent by writing it as

b̂b ¼ N�1
XN

i¼1

XT

t¼1

sit€xx
0
it€xxit

 !�1

N�1
XN

i¼1

XT

t¼1

sit€xx
0
it €yyit

 !

¼ b þ N�1
XN

i¼1

XT

t¼1

sit€xx
0
it€xxit

 !�1

N�1
XN

i¼1

XT

t¼1

sit€xx
0
ituit

 !
ð17:50Þ

where we define

€xxit 1 xit � T�1
i

XT

r¼1

sirxir; €yyit 1 yit � T�1
i

XT

r¼1

sir yir; and Ti 1
XT

t¼1

sit

That is, Ti is the number of time periods observed for cross section i, and we apply

the within transformation on the available time periods.

If fixed e¤ects on the unbalanced panel is to be consistent, we should have

Eðsit€xx
0
ituitÞ ¼ 0 for all t. Now, since €xxit depends on all of xi and si, a form of strict

exogeneity is needed.

assumption 17.6: (a) Eðuit j xi; si; ciÞ ¼ 0, t ¼ 1; 2; . . . ;T ; (b)
PT

t¼1 Eðsit€xx
0
it€xxitÞ is

nonsingular; and (c) Eðuiu
0
i j xi; si; ciÞ ¼ s2

u IT .

Under Assumption 17.6a, Eðsit€xx
0
ituitÞ ¼ 0 from the law of iterated expectations

[because sit€xxit is a function of ðxi; siÞ]. The second assumption is the rank condition

on the expected outer product matrix, after accounting for sample selection; natu-

rally, it rules out time-constant elements in xit. These first two assumptions ensure

consistency of FE on the unbalanced panel.

In the case of a randomly rotating panel, and in other cases where selection is en-

tirely random, si is independent of ðui; xi; ciÞ, in which case Assumption 17.6a follows

under the standard fixed e¤ects assumption Eðuit j xi; ciÞ ¼ 0 for all t. In this case, the

natural assumptions on the population model imply consistency and asympotic nor-

mality on the unbalanced panel. Assumption 17.6a also holds under much weaker

conditions. In particular, it does not assume anything about the relationship between

si and ðxi; ciÞ. Therefore, if we think selection in all time periods is correlated with ci

or xi, but that uit is mean independent of si given ðxi; ciÞ for all t, then FE on the
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unbalanced panel is consistent and asymptotically normal. This conclusion may be a

reasonable approximation, especially for short panels. What Assumption 17.6a rules

out is selection that is partially correlated with the idiosyncratic errors, uit.

A random e¤ects analysis on the unbalanced panel requires much stronger as-

sumptions: it e¤ectively requires si and ci to be independent. Random e¤ects will be

inconsistent if, say, in a wage o¤er equation, less able people are more likely to dis-

appear from the sample. This conclusion is true even if Eðci j xiÞ ¼ 0 (Assumption

RE.1 from Chapter 10) holds in the underlying population; see Wooldridge (1995a)

for further discussion.

When we add Assumption 17.6c, standard inference procedures based on FE are

valid. In particular, under Assumptions 17.6a and 17.6c,

Var
XT

t¼1

sit€xx
0
ituit

 !
¼ s2

u

XT

t¼1

Eðsit€xx
0
it€xxitÞ

" #

Therefore, the asymptotic variance of the fixed e¤ects estimator is estimated as

ŝs2
u

XN

i¼1

XT

t¼1

sit€xx
0
it€xxit

 !�1

ð17:51Þ

The estimator ŝs2
u can be derived from

E
XT

t¼1

sit€uu
2
it

 !
¼ E

XT

t¼1

sitEð€uu2
it j siÞ

" #
¼ E Ti½s2

u ð1 � 1=TiÞ�
� �

¼ s2
u E½ðTi � 1Þ�

Now, define the FE residuals as ûuit ¼ €yyit � €xxitb̂b when sit ¼ 1. Then, because

N�1
PN

i¼1ðTi � 1Þ !p
EðTi � 1Þ,

ŝs2
u ¼ N�1

XN

i¼1

ðTi � 1Þ
" #�1

N�1
XN

i¼1

XT

t¼1

sitûu
2
it ¼

XN

i¼1

ðTi � 1Þ
" #�1XN

i¼1

XT

t¼1

sitûu
2
it

is consistent for s2
u as N ! y. Standard software packages also make a degrees-of-

freedom adjustment by subtracting K from
PN

i¼1ðTi � 1Þ. It follows that all of the

usual test statistics based on an unbalanced fixed e¤ects analysis are valid. In partic-

ular, the dummy variable regression discussed in Chapter 10 produces asymptotically

valid statistics.

Because the FE estimator uses time demeaning, any unit i for which Ti ¼ 1 drops

out of the fixed e¤ects estimator. To use these observations we would need to add

more assumptions, such as the random e¤ects assumption Eðci j xi; siÞ ¼ 0.
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Relaxing Assumption 17.6c is easy: just apply the robust variance matrix estimator

in equation (10.59) to the unbalanced panel. The only changes are that the rows of €XXi

are sit€xxit and the elements of ûui are sitûuit, t ¼ 1; . . . ;T .

Under Assumption 17.6, it is also valid to used a standard fixed e¤ects analysis on

any balanced subset of the unbalanced panel; in fact, we can condition on any out-

comes of the sit. For example, if we use unit i only when observations are available in

all time periods, we are conditioning on sit ¼ 1 for all t.

Using similar arguments, it can be shown that any kind of di¤erencing method on

any subset of the observed panel is consistent. For example, with T ¼ 3, we observe

cross section units with data for one, two, or three time periods. Those units with

Ti ¼ 1 drop out, but any other combinations of di¤erences can be used in a pooled

OLS analysis. The analogues of Assumption 17.6 for first di¤erencing—for example,

Assumption 17.6c is replaced with EðDuiDu 0
i j xi; si; ciÞ ¼ s2

e IT�1—ensure that the

usual statistics from pooled OLS on the unbalanced first di¤erences are asymptoti-

cally valid.

17.7.2 Testing and Correcting for Sample Selection Bias

The results in the previous subsection imply that sample selection in a fixed e¤ects

context is only a problem when selection is related to the idiosyncratic errors, uit.

Therefore, any test for selection bias should test only this assumption. A simple test

was suggested by Nijman and Verbeek (1992) in the context of random e¤ects esti-

mation, but it works for fixed e¤ects as well: add, say, the lagged selection indicator,

si; t�1, to the equation, estimate the model by fixed e¤ects (on the unbalanced panel),

and do a t test (perhaps making it fully robust) for the significance of si; t�1. (This

method loses the first time period for all observations.) Under the null hypothesis, uit

is uncorrelated with sir for all r, and so selection in the previous time period should

not be significant in the equation at time t. (Incidentally, it never makes sense to put

sit in the equation at time t because sit ¼ 1 for all i and t in the selected subsample.)

Putting si; t�1 does not work if si; t�1 is unity whenever sit is unity because then there

is no variation in si; t�1 in the selected sample. This is the case in attrition problems if

(say) a person can only appear in period t if he or she appeared in t � 1. An alterna-

tive is to include a lead of the selection indicator, si; tþ1. For observations i that are in

the sample every time period, si; tþ1 is always zero. But for attriters, si; tþ1 switches

from zero to one in the period just before attrition. If we use fixed e¤ects or first dif-

ferencing, we need T > 2 time periods to carry out the test.

For incidental truncation problems it makes sense to extend Heckman’s (1976) test

to the unobserved e¤ects panel data context. This is done in Wooldridge (1995a).

Write the equation of interest as
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yit1 ¼ xit1b1 þ ci1 þ uit1; t ¼ 1; . . . ;T ð17:52Þ

Initially, suppose that yit1 is observed only if the binary selection indicator, sit2, is

unity. Let xit denote the set of all exogenous variables at time t; we assume that these

are observed in every time period, and xit1 is a subset of xit. Suppose that, for each t,

sit2 is determined by the probit equation

sit2 ¼ 1½xict2 þ vit2 > 0�; vit2 j xi @Normalð0; 1Þ ð17:53Þ

where xi contains unity. This is best viewed as a reduced-form selection equation: we

let the explanatory variables in all time periods appear in the selection equation at

time t to allow for general selection models, including those with unobserved e¤ect

and the Chamberlain (1980) device discussed in Section 15.8.2, as well as certain

dynamic models of selection. A Mundlak (1978) approach would replace xi with

ðxit; xiÞ at time t and assume that coe‰cients are constant across time. [See equation

(15.68).] Then the parameters can be estimated by pooled probit, greatly conserving

on degrees of freedom. Such conservation may be important for small N. For testing

purposes, under the null hypothesis it does not matter whether equation (17.53) is the

proper model of sample selection, but we will need to assume equation (17.53), or a

Mundlak version of it, when correcting for sample selection.

Under the null hypothesis in Assumption 17.6a (with the obvious notational

changes), the inverse Mills ratio obtained from the sample selection probit should not

be significant in the equation estimated by fixed e¤ects. Thus, let l̂lit2 be the estimated

Mills ratios from estimating equation (17.53) by pooled probit across i and t. Then

a valid test of the null hypothesis is a t statistic on l̂lit2 in the FE estimation on the

unbalanced panel. Under Assumption 17.6c the usual t statistic is valid, but the ap-

proach works whether or not the uit1 are homoskedastic and serially uncorrelated: just

compute the robust standard error. Wooldridge (1995a) shows formally that the first-

stage estimation of c2 does not a¤ect the limiting distribution of the t statistic under

H0. This conclusion also follows from the results in Chapter 12 on M-estimation.

Correcting for sample selection requires much more care. Unfortunately, under

any assumptions that actually allow for an unobserved e¤ect in the underlying

selection equation, adding l̂lit2 to equation (17.52) and using FE does not produce

consistent estimators. To see why, suppose

sit2 ¼ 1½xitd2 þ ci2 þ ait2 > 0�; ait2 j ðxi; ci1; ci2Þ@Normalð0; 1Þ ð17:54Þ

Then, to get equation (17.53), vit2 depends on ait2 and, at least partially, on ci2. Now,

suppose we make the strong assumption Eðuit1 j xi; ci1; ci2; vi2Þ ¼ gi1 þ r1vit2, which

would hold under the assumption that the ðuit1; ait2Þ are independent across t condi-
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tional on ðxi; ci1; ci2Þ. Then we have

yit1 ¼ xit1b1 þ r1Eðvit2 j xi; si2Þ þ ðci1 þ gi1Þ þ eit1 þ r1½vit2 � Eðvit2 j xi; si2Þ�

The composite error, eit1 þ r1½vit2 � Eðvit2 j xi; si2Þ�, is uncorrelated with any function

of ðxi; si2Þ. The problem is that Eðvit2 j xi; si2Þ depends on all elements in si2, and this

expectation is complicated for even small T.

A method that does work is available using Chamberlain’s approach to panel data

models, but we need some linearity assumptions on the expected values of uit1 and ci1

given xi and vit2.

assumption 17.7: (a) The selection equation is given by equation (17.53);

(b) Eðuit1 j xi; vit2Þ ¼ Eðuit1 j vit2Þ ¼ rt1vit2, t ¼ 1; . . . ;T ; and (c) Eðci1 j xi; vit2Þ ¼
Lðci1 j 1; xi; vit2Þ

The second assumption is standard and follows under joint normality of ðuit1; vit2Þ
when this vector is independent of xi. Assumption 17.7c implies that

Eðci1 j xi; vit2Þ ¼ xip1 þ ft1vit2

where, by equation (17.53) and iterated expectations, Eðci1 j xiÞ ¼ xip1 þ Eðvit2 j xitÞ
¼ xip1. These assumptions place no restrictions on the serial dependence in ðuit1; vit2Þ.
They do imply that

Eðyit1 j xi; vit2Þ ¼ xit1b1 þ xip1 þ gt1vit2 ð17:55Þ

Conditioning on sit2 ¼ 1 gives

Eðyit1 j xi; sit2 ¼ 1Þ ¼ xit1b1 þ xip1 þ gt1lðxict2Þ

Therefore, we can consistently estimate b1 by first estimating a probit of sit2 on xi for

each t and then saving the inverse Mills ratio, l̂lit2, all i and t. Next, run the pooled

OLS regression using the selected sample:

yit1 on xit1; xi; l̂lit2; d2tl̂lit2; . . . ; dTtl̂lit2 for all sit ¼ 1 ð17:56Þ

where d2t through dTt are time dummies. If gt1 in equation (17.55) is constant across

t, simply include l̂lit2 by itself in equation (17.56).

The asymptotic variance of b̂b1 needs to be corrected for general heteroskedas-

ticity and serial correlation, as well as first-stage estimation of the ct2. These correc-

tions can be made using the formulas for two-step M-estimation from Chapter 12;

Wooldridge (1995a) contains the formulas.

If the selection equation is of the Tobit form, we have somewhat more flexibility.

Write the selection equation now as
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yit2 ¼ maxð0; xict2 þ vit2Þ; vit2 j xi @Normalð0; s2
t2Þ ð17:57Þ

where yit1 is observed if yit2 > 0. Then, under Assumption 17.6, with the Tobit

selection equation in place of equation (17.53), consistent estimation follows from the

pooled regression (17.56) where l̂lit2 is replaced by the Tobit residuals, v̂vit2 when

yit2 > 0 ðsit2 ¼ 1Þ. The Tobit residuals are obtained from the T cross section Tobits in

equation (17.57); alternatively, especially with small N, we can use a Mundlak-type

approach and use pooled Tobit with xict2 replaced with xitd2 þ xip2; see equation

(16.52).

It is easy to see that we can add a1yit2 to the structural equation (17.52), provided

we make an explicit exclusion restriction in Assumption 17.7. In particular, we must

assume that Eðci1 j xi; vit2Þ ¼ xi1p1 þ ft1vit2, and that xit1 is a strict subset of xit. Then,

because yit2 is a function of ðxi; vit2Þ, we can write Eðyit1 j xi; vit2Þ ¼ xit1b1 þ a1yit2 þ
xi1p1 þ gt1vit2. We obtain the Tobit residuals, v̂vit2 for each t, and then run the regres-

sion yit1 on xit1; yit2; xi1, and v̂vit2 (possibly interacted with time dummies) for the

selected sample. If we do not have an exclusion restriction, this regression su¤ers

from perfect multicollinearity. As an example, we can easily include hours worked in

a wage o¤er function for panel data, provided we have a variable a¤ecting labor

supply (such as the number of young children) but not the wage o¤er.

A pure fixed e¤ects approach is more fruitful when the selection equation is of the

Tobit form. The following assumption comes from Wooldridge (1995a):

assumption 17.8: (a) The selection equation is equation (17.57). (b) For some

unobserved e¤ect gi1, Eðuit1 j xi; ci1; gi1; vi2Þ ¼ Eðuit1 j gi1; vit2Þ ¼ gi1 þ r1vit2.

Under part b of this assumption,

Eðyit1 j xi; vi2; ci1; gi1Þ ¼ xit1b1 þ r1vit2 þ fi1 ð17:58Þ

where fi1 ¼ ci1 þ gi1. The same expectation holds when we also condition on si2

(since si2 is a function of xi, vi2). Therefore, estimating equation (17.58) by fixed

e¤ects on the unbalanced panel would consistently estimate b1 and r1. As usual, we

replace vit2 with the Tobit residuals v̂vit2 whenever yit2 > 0. A t test of H0: r1 ¼ 0 is

valid very generally as a test of the null hypothesis of no sample selection. If the fuit1g
satisfy the standard homoskedasticity and serial uncorrelatedness assumptions, then

the usual t statistic is valid. A fully robust test may be warranted. (Again, with an

exclusion restriction, we can add yit2 as an additional explanatory variable.)

Wooldridge (1995a) discusses an important case where Assumption 17.8b holds: in

the Tobit version of equation (17.54) with ðui1; ai2Þ independent of ðxi; ci1; ci2Þ and

Eðuit1 j ai2Þ ¼ Eðuit1 j ait2Þ ¼ r1ait2. The second-to-last equality holds under the com-

mon assumption that fðuit1; ait2Þ: t ¼ 1; . . . ;Tg is serially independent.
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The preceding methods assume normality of the errors in the selection equation

and, implicitly, the unobserved heterogeneity. Kyriazidou (1997) and Honoré and

Kyriazidou (2000b) have proposed methods that do not require distributional

assumptions. Dustmann and Rochina-Barrachina (2000) apply Wooldridge’s (1995a)

and Kyriazidou’s (1997) methods to the problem of estimating a wage o¤er equation

with selection into the work force.

17.7.3 Attrition

We now turn specifically to testing and correcting for attrition in a linear, unobserved

e¤ects panel data model. General attrition, where units may reenter the sample after

leaving, is complicated. We analyze a common special case. At t ¼ 1 a random

sample is obtained from the relevant population—people, for concreteness. In t ¼ 2

and beyond, some people drop out of the sample for reasons that may not be entirely

random. We assume that, once a person drops out, he or she is out forever: attrition

is an absorbing state. Any panel data set with attrition can be set up in this way by

ignoring any subsequent observations on units after they initially leave the sample. In

Section 17.7.2 we discussed one way to test for attrition bias when we assume that

attrition is an absorbing state: include si; tþ1 as an additional explanatory variable in a

fixed e¤ects analysis.

One method for correcting for attrition bias is closely related to the corrections for

incidental truncation covered in the previous subsection. Write the model for a ran-

dom draw from the population as in equation (17.49), where we assume that ðxit; yitÞ
is observed for all i when t ¼ 1. Let sit denote the selection indicator for each time

period, where sit ¼ 1 if ðxit; yitÞ are observed. Because we ignore units once they ini-

tially leave the sample, sit ¼ 1 implies sir ¼ 1 for r < t.

The sequential nature of attrition makes first di¤erencing a natural choice to re-

move the unobserved e¤ect:

Dyit ¼ Dxitb þ Duit; t ¼ 2; . . . ;T

Conditional on si; t�1 ¼ 1, write a (reduced-form) selection equation for tb 2 as

sit ¼ 1½witdt þ vit > 0�; vit j fwit; si; t�1 ¼ 1g@Normalð0; 1Þ ð17:59Þ

where wit must contain variables observed at time t for all units with si; t�1 ¼ 1. Good

candidates for wit include the variables in xi; t�1 and any variables in xit that are

observed at time t when si; t�1 ¼ 1 (for example, if xit contains lags of variables or a

variable such as age). In general, the dimension of wit can grow with t. For example,

if equation (17.49) is dynamically complete, then yi; t�2 is orthogonal to Duit, and so

it can be an element of wit. Since yi; t�1 is correlated with ui; t�1, it should not be

included in wit.
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If the xit are strictly exogenous and selection does not depend on Dxit once wit has

been controlled for, a reasonable assumption (say, under joint normality of Duit and

vit) is

EðDuit jDxit;wit; vit; si; t�1 ¼ 1Þ ¼ EðDuit j vitÞ ¼ rtvit ð17:60Þ

Then

EðDyit jDxit;wit; sit ¼ 1Þ ¼ Dxitb þ rtlðwitdtÞ; t ¼ 2; . . . ;T ð17:61Þ

Notice how, because si; t�1 ¼ 1 when sit ¼ 1, we do not have to condition on si; t�1 in

equation (17.61). It now follows from equation (17.61) that pooled OLS of Dyit on

Dxit; d2tl̂lit; . . . ; dTtl̂lit, t ¼ 2; . . . ;T , where the l̂lit are from the T � 1 cross section

probits in equation (17.59), is consistent for b1 and the rt. A joint test of H0: rt ¼ 0,

t ¼ 2; . . . ;T , is a fairly simple test for attrition bias, although nothing guarantees

serial independence of the errors.

There are two potential problems with this approach. For one, the first equality in

equation (17.60) is restrictive because it means that xit does not a¤ect attrition once

the elements in wit have been controlled for. Second, we have assumed strict exoge-

neity of xit. Both these restrictions can be relaxed by using an IV procedure.

Let zit be a vector of variables such that zit is redundant in the selection equation

(possibly because wit contains zit) and that zit is exogenous in the sense that equation

(17.58) holds with zit in place of Dxit; for example, zit should contain xir for r < t.

Now, using an argument similar to the cross section case in Section 17.4.2, we can

estimate the equation

Dyit ¼ Dxitb þ r2 d2tl̂lit þ � � � þ rT dTtl̂lit þ errorit ð17:62Þ

by instrumental variables with instruments ðzit; d2tl̂lit; . . . ; dTtl̂litÞ, using the selected

sample. For example, the pooled 2SLS estimator on the selected sample is consistent

and asymptotically normal, and attrition bias can be tested by a joint test of H0:

rt ¼ 0, t ¼ 2; . . . ;T . Under H0, only serial correlation and heteroskedasticity adjust-

ments are possibly needed. If H0 fails we have the usual generated regressors problem

for estimating the asymptotic variance. Other IV procedures, such as GMM, can also

be used, but they too must account for the generated regressors problem.

Example 17.9 (Dynamic Model with Attrition): Consider the model

yit ¼ gitgþ h1 yi; t�1 þ ci þ uit; t ¼ 1; . . . ;T ð17:63Þ

where we assume that ðyi0; gi1; yi1Þ are all observed for a random sample from the

population. Assume that Eðuit j gi; yi; t�1; . . . ; yi0; ciÞ ¼ 0, so that git is strictly exoge-
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nous. Then the explanatory variables in the probit at time t, wit, can include gi; t�1,

yi; t�2, and further lags of these. After estimating the selection probit for each t, and

di¤erencing, we can estimate

Dyit ¼ Dgitb þ h1Dyi; t�1 þ r3 d3tl̂lit þ � � � þ rT dTtl̂lit þ errorit

by pooled 2SLS on the selected sample starting at t ¼ 3, using instruments

ðgi; t�1; gi; t�2; yi; t�2; yi; t�3Þ. As usual, there are other possibilities for the instruments.

Although the focus in this section has been on pure attrition, where units disappear

entirely from the sample, the methods can also be used in the context of incidental

truncation without strictly exogenous explanatory variables. For example, suppose

we are interested in the population of men who are employed at t ¼ 0 and t ¼ 1, and

we would like to estimate a dynamic wage equation with an unobserved e¤ect.

Problems arise if men become unemployed in future periods. Such events can be

treated as an attrition problem if all subsequent time periods are dropped once a man

first becomes unemployed. This approach loses information but makes the econo-

metrics relatively straightforward, especially because, in the preceding general model,

xit will always be observed at time t and so can be included in the labor force par-

ticipation probit (assuming that men do not leave the sample entirely). Things be-

come much more complicated if we are interested in the wage o¤er for all working

age men at t ¼ 1 because we have to deal with the sample selection problem into

employment at t ¼ 0 and t ¼ 1.

The methods for attrition and selection just described apply only to linear models,

and it is di‰cult to extend them to general nonlinear models. An alternative ap-

proach is based on inverse probability weighting (IPW), which can be applied to

general M-estimation, at least under certain assumptions.

Mo‰tt, Fitzgerald, and Gottschalk (1999) (MFG) propose inverse probability

weighting to estimate linear panel data models under possibly nonrandom attrition.

[MFG propose a di¤erent set of weights, analogous to those studied by Horowitz and

Manski (1998), to solve missing data problems. The weights we use require estima-

tion of only one attrition model, rather than two as in MFG.] IPW must be used with

care to solve the attrition problem. As before, we assume that we have a random

sample from the population at t ¼ 1. We are interested in some feature, such as the

conditional mean, or maybe the entire conditional distribution, of yit given xit. Ide-

ally, at each t we would observe ðyit; xitÞ for any unit that was in the random sample

at t ¼ 1. Instead, we observe ðyit; xitÞ only if sit ¼ 1. We can easily solve the attrition

problem if we assume that, conditional on observables in the first time period, say,

zi1, ðyit; xitÞ is independent of sit:
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Pðsit ¼ 1 j yit; xit; zi1Þ ¼ Pðsit ¼ 1 j zi1Þ; t ¼ 2; . . . ;T ð17:64Þ

Assumption (17.64) has been called selection on observables because we assume that

zi1 is a strong enough predictor of selection in each time period so that the dis-

tribution of sit given ½zi1; ðyit; xitÞ� does not depend on ðyit; xitÞ. In the statistics liter-

ature, selection on observables is also called ignorability of selection conditional on

zi1. [The more standard approach, where selection is given by equation (17.59) and

Duit is correlated with vit, is sometimes called selection on unobservables. These cate-

gorizations are not strictly correct, as selection in both cases depends on observables

and unobservables, but they serve as useful shorthand.]

Inverse probability weighting involves two steps. First, for each t, we estimate a

probit or logit of sit on zi1. (A crucial point is that the same cross section units—

namely, all units appearing in the first time period—are used in the probit or logit

for each time period.) Let p̂pit be the fitted probabilities, t ¼ 2; . . . ;T , i ¼ 1; . . . ;N. In

the second step, the objective function for ði; tÞ is weighted by 1=p̂pit. For general M-

estimation, the objective function is

XN

i¼1

XT

t¼1

ðsit=p̂pitÞqtðwit; yÞ ð17:65Þ

where wit 1 ðyit; xitÞ and qtðwit; yÞ is the objective function in each time period. As

usual, the selection indicator sit chooses the observations where we actually observe

data. (For t ¼ 1, sit ¼ p̂pit ¼ 1 for all i.) For least squares, qtðwit; yÞ is simply the

squared residual function; for partial MLE, qtðwit; yÞ is the log-likelihood function.

The argument for why IPW works is rather simple. Let yo denote the value of y

that solves the population problem miny AY
PT

t¼1 E½qtðwit; yÞ�. Let do
t denote the true

values of the selection response parameters in each time period, so that Pðsit ¼ 1 j zi1Þ
¼ ptðzi1; d

o
t Þ1 po

it. Now, under standard regularity conditions, we can replace po
it

with p̂pit 1 ptðzi1; d̂dtÞ without a¤ecting the consistency argument. So, apart from reg-

ularity conditions, it is su‰cient to show that yo minimizes
PT

t¼1 E½ðsit=po
itÞqtðwit; yÞ�

over Y. But, from iterated expectations,

E½ðsit=po
itÞqtðwit; yÞ� ¼ EfE½ðsit=po

itÞqtðwit; yÞ jwit; zi1�g

¼ Ef½Eðsit jwit; zi1Þ=po
it�qtðwit; yÞg ¼ E½qtðwit; yÞ�

because Eðsit jwit; zi1Þ ¼ Pðsit ¼ 1 j zi1Þ by assumption (17.64). Therefore, the proba-

bility limit of the weighted objective function is identical to that of the unweighted

function if we had no attrition problem. Using this simple analogy argument, Wool-

dridge (2000d) shows that the inverse probability weighting produces a consistent,
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ffiffiffiffiffi
N

p
-asymptotically normal estimator. The methods for adjusting the asymptotic

variance matrix of two step M-estimators—described in Subsection 12.5.2—can be

applied to the IPW M-estimator from (17.65). For reasons we will see, a sequential

method of estimating attrition probabilities can be more attractive.

MFG propose an IPW scheme where the conditioning variables in the attri-

tion probits change across time. In particular, at time t an attrition probit is

estimated restricting attention to those units still in the sample at time t � 1. (Out of

this group, some are lost to attrition at time t, and some are not.) If we assume that

attrition is an absorbing state, we can include in the conditioning variables, zit, all

values of y and x dated at time t � 1 and earlier (as well as other variables observed

for all units in the sample at t � 1). This approach is appealing because the ignorability

assumption is much more plausible if we can condition on both recent responses and

covariates. [That is, Pðsit ¼ 1 jwit;wi; t�1; . . . ;wi1; si; t�1 ¼ 1Þ ¼ Pðsit ¼ 1 jwi; t�1; . . . ;

wi1; si; t�1 ¼ 1Þ is more likely than assumption (17.64).] Unfortunately, obtaining the

fitted probabilities in this way and using them in an IPW procedure does not gener-

ally produce consistent estimators. The problem is that the selection models at each

time period are not representative of the population that was originally sampled at

t ¼ 1. Letting po
it ¼ Pðsit ¼ 1 jwi; t�1; . . . ;wi1; si; t�1 ¼ 1Þ, we can no longer use the

iterated expectations argument to conclude that E½ðsit=po
itÞqtðwit; yÞ� ¼ E½qtðwit; yÞ�.

Only if E½qtðwit; yÞ� ¼ E½qtðwit; yÞ j si; t�1 ¼ 1� for all y does the argument work, but

this assumption essentially requires that wit be independent of si; t�1.

It is possible to allow the covariates in the selection probabilities to increase in

richness over time, but the MFG procedure must be modified. For the case where

attrition is an absorbing state, Wooldridge (2000d), building on work for regression

models by Robins, Rotnitzky, and Zhao (1995) (RRZ), shows that the following

probabilities can be used in the IPW procedure:

pitðdo
t Þ1 pi2ðgo

2Þpi3ðgo
3Þ � � � pitðgo

t Þ; t ¼ 2; . . . ;T ð17:66Þ

where

pitðgo
t Þ1Pðsit ¼ 1 j zit; si; t�1 ¼ 1Þ ð17:67Þ

In other words, as in the MFG procedure, we estimate probit models at each time

t, restricted to units that are in the sample at t � 1. The covariates in the probit are

essentially everything we can observe for units in the sample at time t � 1 that might

a¤ect attrition. For t ¼ 2; . . . ;T , let p̂pit denote the fitted selection probabilities. Then

we construct the probability weights as the product p̂pit 1 p̂pi2p̂pi3 � � � p̂pit and use the

objective function (17.65). Naturally, this method only works under certain assump-

tions. The key ignorability condition can be stated as
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Pðsit ¼ 1 j vi1; . . . ; viT ; si; t�1 ¼ 1Þ ¼ Pðsit ¼ 1 j zit; si; t�1 ¼ 1Þ ð17:68Þ

where vit 1 ðwit; zitÞ. Now, we must include future values of wit and zit in the con-

ditioning set on the left-hand side. Assumption (17.68) is fairly strong, but it does

allow for attrition to be strongly related to past outcomes on y and x (which can be

included in zit).

A convenient feature of the sequential method described above is that ignoring the

first-stage estimation of the probabilities actually leads to conservative inference con-

cerning y0: the (correct) asymptotic variance that adjusts for the first-stage estimation

is actually smaller than the one that does not. See Wooldridge (2000d) for the general

case and RRZ (1995) for the nonlinear regression case. See Wooldridge (2000d) for

more on the pros and cons of using inverse probability weighting to reduce attrition

bias.

17.8 Stratified Sampling

Nonrandom samples also come in the form of stratified samples, where di¤erent

subsets of the population are sampled with di¤erent frequencies. For example, certain

surveys are designed to learn primarily about a particular subset of the population, in

which case that group is usually overrepresented in the sample. Stratification can be

based on exogenous variables or endogenous variables (which are known once a

model and assumptions have been specified), or some combination of these. As in the

case of sample selection problems, it is important to know which is the case.

As mentioned in Section 17.3, choice-based sampling occurs when the stratification

is based entirely on a discrete response variable. Various methods have been proposed

for estimating discrete response models from choice-based samples under di¤erent

assumptions; most of these are variations of maximum likelihood. Manski and

McFadden (1981) and Cosslett (1993) contain general treatments, with the latter being

a very useful survey. For a class of discrete response models, Cosslett (1981) proposed

an e‰cient estimator, and Imbens (1992) obtained a computationally simple method

of moments estimator that also achieves the e‰ciency bound. Imbens and Lancaster

(1996) allow for general response variables in a maximum likelihood setting. Here,

we focus on a simple, albeit often ine‰cient, method for estimating models in the

context of two kinds of stratified sampling.

17.8.1 Standard Stratified Sampling and Variable Probability Sampling

The two most common kinds of stratification used in obtaining data sets in the social

sciences are standard stratified sampling (SS sampling) and variable probability sam-
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pling (VP sampling). In SS sampling, the population is first partitioned into J groups,

W1;W2; . . . ;WJ , which we assume are nonoverlapping and exhaustive. We let w

denote the random variable representing the population of interest.

standard stratified sampling: For j ¼ 1; . . . ; J, draw a random sample of size Nj

from stratum j. For each j, denote this random sample by fwij : i ¼ 1; 2; . . . ;Njg.

The strata sample sizes Nj are nonrandom. Therefore, the total sample size, N ¼
N1 þ � � � þ NJ , is also nonrandom. A randomly drawn observation from stratum

j;wij, has distribution Dðw jw A WjÞ. Therefore, while observations within a stratum

are identically distributed, observations across strata are not. A scheme that is similar

in nature to SS sampling is called multinomial sampling, where a stratum is first

picked at random and then an observation is randomly drawn from the stratum. This

does result in i.i.d. observations, but it does not correspond to how stratified samples

are obtained in practice. It also leads to the same estimators as under SS sampling, so

we do not discuss it further; see Cosslett (1993) or Wooldridge (1999b) for further

discussion.

Variable probability samples are obtained using a di¤erent scheme. First, an obser-

vation is drawn at random from the population. If the observation falls into stratum j,

it is kept with probability pj. Thus, random draws from the population are discarded

with varying frequencies depending on which stratum they fall into. This kind of

sampling is appropriate when information on the variable or variables that determine

the strata is relatively easy to obtain compared with the rest of the information.

Survey data sets, including initial interviews to collect panel or longitudinal data, are

good examples. Suppose we want to oversample individuals from, say, lower income

classes. We can first ask an individual her or his income. If the response is in income

class j, this person is kept in the sample with probability pj, and then the remaining

information, such as education, work history, family background, and so on can be

collected; otherwise, the person is dropped without further interviewing.

A key feature of VP sampling is that observations within a stratum are discarded

randomly. As discussed by Wooldridge (1999b), VP sampling is equivalent to the

following:

variable probability sampling: Repeat the following steps N times:

1. Draw an observation wi at random from the population.

2. If wi is in stratum j, toss a (biased) coin with probability pj of turning up heads.

Let hij ¼ 1 if the coin turns up heads and zero otherwise.

3. Keep observation i if hij ¼ 1; otherwise, omit it from the sample.
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The number of observations falling into stratum j is denoted Nj, and the number of

data points we actually have for estimation is N0 ¼ N1 þ N2 þ � � � þ NJ . Notice that

if N—the number of times the population is sampled—is fixed, then N0 is a random

variable: we do not know what each Nj will be prior to sampling. Also, we will not

use information on the number of discarded observations in each stratum, so that N

is not required to be known.

The assumption that the probability of the coin turning up heads in step 2 depends

only on the stratum ensures that sampling is random within each stratum. This

roughly reflects how samples are obtained for certain large cross-sectional and panel

data sets used in economics, including the panel study of income dynamics and the

national longitudinal survey.

To see that a VP sample can be analyzed as a random sample, we construct a

population that incorporates the stratification. The VP sampling scheme is equivalent

to first tossing all J coins before actually observing which stratum wi falls into; this

gives ðhi1; . . . ; hiJÞ. Next, wi is observed to fall into one of the strata. Finally, the

outcome is kept or not depending on the coin flip for that stratum. The result is that

the vector ðwi; hiÞ, where hi is the J-vector of binary indicators hij, is a random sam-

ple from a new population with sample space W�H, where W is the original

sample space and H denotes the sample space associated with outcomes from flip-

ping J coins. Under this alternative way of viewing the sampling scheme, hi is inde-

pendent of wi. Treating ðwi; hiÞ as a random draw from the new population is not at

odds with the fact that our estimators are based on a nonrandom sample from the

original population: we simply use the vector hi to determine which observations are

kept in the estimation procedure.

17.8.2 Weighted Estimators to Account for Stratification

With variable probability sampling, it is easy to construct weighted objective func-

tions that produce consistent and asymptotically normal estimators of the population

parameters. It is useful to define a set of binary variables that indicate whether a

random draw wi is kept in the sample and, if so, which stratum it falls into:

rij ¼ hijsij ð17:69Þ

By definition, rij ¼ 1 for at most one j. If hij ¼ 1 then rij ¼ sij. If rij ¼ 0 for all j ¼
1; 2; . . . ; J, then the random draw wi does not appear in the sample (and we do not

know which stratum it belonged to).

With these definitions, we can define the weighted M-estimator, ŷyw, as the solution to

min
y AY

XN

i¼1

XJ

j¼1

p�1
j rijqðwi; yÞ ð17:70Þ
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where qðw; yÞ is the objective function that is chosen to identify the population

parameters yo. Note how the outer summation is over all potential observations, that

is, the observations that would appear in a random sample. The indicators rij simply

pick out the observations that actually appear in the available sample, and these

indicators also attach each observed data point to its stratum. The objective function

(17.70) weights each observed data point in the sample by the inverse of the sampling

probability. For implementation it is useful to write the objective function as

min
y AY

XN0

i¼1

p�1
ji

qðwi; yÞ ð17:71Þ

where, without loss of generality, the data points actually observed are ordered i ¼
1; . . . ;N0. Since ji is the stratum for observation i, p�1

ji
is the weight attached to ob-

servation i in the estimation. In practice, the p�1
ji

are the sampling weights reported

with other variables in stratified samples.

The objective function qðw; yÞ contains all of the M-estimator examples we have

covered so far in the book, including least squares (linear and nonlinear), conditional

maximum likelihood, and partial maximum likelihood. In panel data applications,

the probability weights are from sampling in an initial year. Weights for later years

are intended to reflect both stratification (if any) and possible attrition, as discussed in

Section 17.7.3 and in Wooldridge (2000d).

Wooldridge (1999b) shows that, under the same assumptions as Theorem 12.2 and

the assumption that each sampling probability is strictly positive, the weighted M-

estimator consistently estimates yo, which is assumed to uniquely minimize E½qðw; yÞ�.
To see that the weighted objective function identifies yo, we use the fact that hj is in-

dependent of w [and therefore of ðw; sjÞ for each j], and so

E
XJ

j¼1

p�1
j hjsjqðw; yÞ

" #
¼
XJ

j¼1

p�1
j EðhjÞE½sjqðw; yÞ�

¼
XJ

j¼1

p�1
j pjE½sjqðw; yÞ� ¼ E

XJ

j¼1

sj

 !
qðw; yÞ

" #
¼ E½qðw; yÞ�

ð17:72Þ

where the final equality follows because the sj sum to unity. Therefore, the expected

value of the weighted objective function [over the distribution of ðw; hÞ] equals the

expected value of qðw; yÞ (over the distribution of w). Consistency of the weighted M-

estimator follows under the regularity conditions in Theorem 12.2.

Asymptotic normality also follows under the same regularity conditions as in

Chapter 12. Wooldridge (1999b) shows that a valid estimator of the asymptotic
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variance of ŷyw is

XN0

i¼1

p�1
ji
‘2
y qiðŷywÞ

" #�1 XN0

i¼1

p�2
ji
‘yqiðŷywÞ0‘yqiðŷywÞ

" # XN0

i¼1

p�1
ji
‘2
y qiðŷywÞ

" #�1

ð17:73Þ

which looks like the standard formula for a robust variance matrix estimator except

for the presence of the sampling probabilities pji
.

When w partitions as ðx; yÞ, an alternative estimator replaces the Hessian ‘2
y qiðŷywÞ

in expression (17.73) with Aðxi; ŷywÞ, where Aðxi; yoÞ1E½‘2
y qðwi; yoÞ j xi�, as in

Chapter 12. Asymptotic standard errors and Wald statistics can be obtained using

either estimate of the asymptotic variance.

Example 17.10 (Linear Model under Stratified Sampling): In estimating the linear

model

y ¼ xbo þ u; Eðx 0uÞ ¼ 0 ð17:74Þ

by weighted least squares, the asymptotic variance matrix estimator is

XN0

i¼1

p�1
ji

x 0
ixi

 !�1 XN0

i¼1

p�2
ji

ûu2
i x 0

ixi

 ! XN0

i¼1

p�1
ji

x 0
ixi

 !�1

ð17:75Þ

where ûui ¼ yi � xi b̂bw is the residual after WLS estimation. Interestingly, this is simply

the White (1980b) heteroskedasticity-consistent covariance matrix estimator applied

to the stratified sample, where all variables for observation i are weighted by p
�1=2
ji

before performing the regression. This estimator has been suggested by, among others,

Hausman and Wise (1981). Hausman and Wise use maximum likelihood to obtain

more e‰cient estimators in the context of the normal linear regression model, that is,

u j x@Normalðxbo; s
2
oÞ. Because of stratification, MLE is not generally robust to

failure of the homoskedastic normality assumption.

It is important to remember that the form of expression (17.75) in this example is

not due to potential heteroskedasticity in the underlying population model. Even if

Eðu2 j xÞ ¼ s2
o, the estimator (17.75) is generally needed because of the stratified

sampling. This estimator also works in the presence of heteroskedasticity of arbitrary

and unknown form in the population, and it is routinely computed by many regres-

sion packages.

Example 17.11 (Conditional MLE under Stratified Sampling): When f ðy j x; yÞ is a

correctly specified model for the density of yi given xi in the population, the inverse-

probability-weighted MLE is obtained with qiðyÞ1�log½ f ðyi j xi; yÞ�. This estimator
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is consistent and asymptotically normal, with asymptotic variance estimator given by

expression (17.73) [or, preferably, the form that uses Aðxi; ŷywÞ�.

A weighting scheme is also available in the standard stratified sampling case, but

the weights are di¤erent from the VP sampling case. To derive them, let Qj ¼
Pðw A WjÞ denote the population frequency for stratum j; we assume that the Qj are

known. By the law of iterated expectations,

E½qðw; yÞ� ¼ Q1E½qðw; yÞ jw A W1� þ � � � þ QJE½qðw; yÞ jw A WJ � ð17:76Þ

for any y. For each j, E½qðw; yÞ jw A Wj � can be consistently estimated using a ran-

dom sample obtained from stratum j. This scheme leads to the sample objective

function

Q1 N�1
1

XN1

i¼1

qðwi1; yÞ
" #

þ � � � þ QJ N�1
J

XNJ

i¼1

qðwiJ ; yÞ
" #

where wij denotes a random draw i from stratum j and Nj is the nonrandom sample

size for stratum j. We can apply the uniform law of large numbers to each term, so

that the sum converges uniformly to equation (17.76) under the regularity conditions

in Chapter 12. By multiplying and dividing each term by the total number of obser-

vations N ¼ N1 þ � � � þ NJ , we can write the sample objective function more simply as

N�1
XN

i¼1

ðQji=HjiÞqðwi; yÞ ð17:77Þ

where ji denotes the stratum for observation i and Hj 1Nj=N denotes the fraction of

observations in stratum j. Because we have the stratum indicator ji, we can drop the

j subscript on wi. When we omit the division by N, equation (17.77) has the same

form as equation (17.71), but the weights are ðQji=HjiÞ rather than p�1
ji

(and the

arguments for why each weighting works are very di¤erent). Also, in general, the

formula for the asymptotic variance is di¤erent in the SS sampling case. In addition

to the minor notational change of replacing N0 with N, the middle matrix in equation

(17.73) becomes

XJ

j¼1

ðQ2
j =H 2

j Þ
XNj

i¼1

ð‘yq̂qij � ‘yqjÞ0ð‘yq̂qij � ‘yqjÞ
" #

where ‘yq̂qij 1‘yqðwij; ŷywÞ and ‘yqj 1N�1
j

PNj

i¼1 ‘yq̂qij (the within-stratum sample

average). This approach requires us to explicitly partition observations into their

respective strata. See Wooldridge (2001) for a detailed derivation. [If in the VP
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sampling case the population frequencies Qj are known, it is better to use as weights

Qj=ðNj=N0Þ rather than p�1
j , which makes the analysis look just like the SS sampling

case. See Wooldridge (1999b) for details.]

If in Example 17.11 we have standard stratified sampling rather than VP sam-

pling, the weighted MLE is typically called the weighted exogenous sample MLE

(WESMLE); this estimator was suggested by Manski and Lerman (1977) in the

context of choice-based sampling in discrete response models. [Actually, Manski and

Lerman (1977) use multinomial sampling where Hj is the probability of picking

stratum j. But Cosslett (1981) showed that a more e‰cient estimator is obtained by

using Nj=N, as one always does in the case of SS sampling; see Wooldridge (1999b)

for an extension of Cosslett’s result to the M-estimator case.]

Provided that the sampling weights Qji=Hji or p�1
ji

are given (along with the stra-

tum), analysis with the weighted M-estimator under SS or VP sampling is fairly

straightforward, but it is not likely to be e‰cient. In the conditional maximum like-

lihood case it is certainly possible to do better. See Imbens and Lancaster (1996) for a

careful treatment.

17.8.3 Stratification Based on Exogenous Variables

When w partitions as ðx; yÞ, where x is exogenous in a sense to be made precise, and

stratification is based entirely on x, the standard unweighted estimator on the strati-

fied sample is consistent and asymptotically normal. The sense in which x must be

exogenous is that yo solves

min
y AY

E½qðw; yÞ j x� ð17:78Þ

for each possible outcome x. This assumption holds in a variety of contexts with

conditioning variables and correctly specified models. For example, as we discussed

in Chapter 12, this holds for nonlinear regression when the conditional mean is cor-

rectly specified and yo is the vector of conditional mean parameters; in Chapter 13 we

showed that this holds for conditional maximum likelihood when the density of y

given x is correct. It also holds in other cases, including quasi-maximum likelihood,

which we cover in Chapter 19. One interesting observation is that, in the linear re-

gression model (17.74), the exogeneity of x must be strengthened to Eðu j xÞ ¼ 0.

In the case of VP sampling, selection on the basis of x means that each selection

indicator sj is a deterministic function of x. The unweighted M-estimator on the

stratified sample, ŷyu, minimizes

XN

i¼1

XJ

j¼1

hijsijqðwi; yÞ ¼
XN0

i¼1

qðwi; yÞ
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Consistency follows from standard M-estimation results if we can show that yo

uniquely solves

min
y A y

XJ

j¼1

E½hjsjqðw; yÞ� ð17:79Þ

Since sj is a function of x and hj is independent of w (and therefore x),

E½hjsjqðw; yÞ j x� ¼ Eðhj j xÞsjE½qðw; yÞ j x� ¼ pjsjE½qðw; yÞ j x� for each j. By assump-

tion, E½qðw; yÞ j x� is minimized at yo for all x, and therefore so is pjsjE½qðw; yÞ j x�
(but probably not uniquely). By iterated expectations it follows that yo is a solution

to equation (17.79). Unlike in the case of the weighted estimator, it no longer su‰ces

to assume that yo uniquely minimizes E½qðw; yÞ�; we must directly assume yo is the

unique solution to problem (17.79). This assumption could fail if, for example, pj ¼ 0

for some j—so that we do not observe part of the population at all. (Unlike in the

case of the weighted estimator, pj ¼ 0 for at least some j is allowed for the unweighted

estimator, subject to identification holding.) For example, in the context of linear

wage regression, we could not identify the return to education if we only sample those

with exactly a high school education.

Wooldridge (1999b) shows that the usual asymptotic variance estimators (see Sec-

tion 12.5) are valid when stratification is based on x and we ignore the stratification

problem. For example, the usual conditional maximum likelihood analysis holds. In

the case of regression, we can use the usual heteroskedasticity-robust variance matrix

estimator. Or, if we assume homoskedasticity in the population, the nonrobust form

[see equation (12.58)] is valid with the usual estimator of the error variance.

When a generalized conditional information matrix equality holds, and stratifica-

tion is based on x, Wooldridge (1999b) shows that the unweighted estimator is more

e‰cient than the weighted estimator. The key assumption is

E½‘yqðw; yoÞ0‘yqðw; yoÞ j x� ¼ s2
oE½‘2

y qðw; yoÞ j x� ð17:80Þ

for some s2
o > 0. When assumption (17.80) holds and yo solves equation (17.79), the

asymptotic variance of the unweighted M-estimator is smaller than that for the

weighted M-estimator. This generalization includes conditional maximum likelihood

(with s2
o ¼ 1) and nonlinear regression under homoskedasticity.

Very similar conclusions hold for standard stratified sampling. One useful fact is

that, when stratification is based on x, the estimator (17.73) is valid with pj ¼ Hj=Qj

(and N0 ¼ N); therefore, we need not compute within-strata variation in the esti-

mated score. The unweighted estimator is consistent when stratification is based on

x and the usual asymptotic variance matrix estimators are valid. The unweighted
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estimator is also more e‰cient when assumption (17.80) holds. See Wooldridge

(2001) for statements of assumptions and proofs of theorems.

Problems

17.1. a. Suppose you are hired to explain fire damage to buildings in terms of

building and neighborhood characteristics. If you use cross section data on reported

fires, is there a sample selection problem due to the fact that most buildings do not

catch fire during the year?

b. If you want to estimate the relationship between contributions to a 401(k) plan

and the match rate of the plan—the rate at which the employer matches employee

contributions—is there a sample selection problem if you only use a sample of

workers already enrolled in a 401(k) plan?

17.2. In Example 17.4, suppose that IQ is an indicator of abil, and KWW is another

indicator (see Section 5.3.2). Find assumptions under which IV on the selected sam-

ple is valid.

17.3. Let f ð� j xi; yÞ denote the density of yi given xi for a random draw from the

population. Find the conditional density of yi given ðxi; si ¼ 1Þ when the selection

rule is si ¼ 1½a1ðxiÞ < yi < a2ðxiÞ�, where a1ðxÞ and a2ðxÞ are known functions of x.

In the Hausman and Wise (1977) example, a2ðxÞ was a function of family size be-

cause the poverty income level depends on family size.

17.4. Suppose in Section 17.4.1 we replace Assumption 17.1d with

Eðu1 j v2Þ ¼ g1v2 þ g2ðv2
2 � 1Þ

(We subtract unity from v2
2 to ensure that the second term has zero expectation.)

a. Using the fact that Varðv2 j v2 > �aÞ ¼ 1 � lðaÞ½lðaÞ þ a�, show that

Eðy1 j x; y2 ¼ 1Þ ¼ x1b1 þ g1lðxd2Þ � g2lðxd2Þxd2

[Hint: Take a ¼ xd2 and use the fact that Eðv2
2 j v2 > �aÞ ¼ Varðv2 j v2 > �aÞþ

½Eðv2 j v2 > �aÞ�2.]

b. Explain how to correct for sample selection in this case.

c. How would you test for the presence of sample selection bias?

17.5. Consider the following alternative to Procedure 17.2. First, run the OLS re-

gression of y2 on z and obtain the fitted values, ŷy2. Next, get the inverse Mills ratio,
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l̂l3, from the probit of y3 on z. Finally, run the OLS regression y1 on z1; ŷy2; l̂l3 using

the selected sample.

a. Find a set of su‰cient conditions that imply consistency of the proposed proce-

dure. (Do not worry about regularity conditions.)

b. Show that the assumptions from part a are more restrictive than those in Proce-

dure 17.2, and give some examples that are covered by Procedure 17.2 but not by the

alternative procedure.

17.6. Apply Procedure 17.4 to the data in MROZ.RAW. Use a constant, exper,

and exper2 as elements of z1; take y2 ¼ educ. The other elements of z should include

age, kidslt6, kidsge6, nwifeinc, motheduc, fatheduc, and huseduc.

17.7. Consider the model

y1 ¼ zd1 þ v1

y2 ¼ zd2 þ v2

y3 ¼ maxð0; a31 y1 þ a32 y2 þ z3d3 þ u3Þ

where ðz; y2; y3Þ are always observed and y1 is observed when y3 > 0. The first two

equations are reduced-form equations, and the third equation is of primary interest.

For example, take y1 ¼ logðwageoÞ, y2 ¼ educ, and y3 ¼ hours, and then education

and logðwageoÞ are possibly endogenous in the labor supply function. Assume that

ðv1; v2; u3Þ are jointly zero-mean normal and independent of z.

a. Find a simple way to consistently estimate the parameters in the third equation

allowing for arbitrary correlations among ðv1; v2; u3Þ. Be sure to state any identifica-

tion assumptions needed.

b. Now suppose that y2 is observed only when y3 > 0; for example, y1 ¼
logðwageoÞ, y2 ¼ logðbenefitsoÞ, y3 ¼ hours. Now derive a multistep procedure for

estimating the third equation under the same assumptions as in part a.

c. How can we estimate the average partial e¤ects?

17.8. Consider the following conditional moment restrictions problem with a

selected sample. In the population, E½rðw; yoÞ j x� ¼ 0. Let s be the selection indicator,

and assume that

E½rðw; yoÞ j x; s� ¼ 0

Su‰cient is that s ¼ f ðxÞ for a nonrandom function f .

a. Let Zi be a G � L matrix of functions of xi. Show that yo satisfies
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E½siZ
0
i rðwi; yoÞ� ¼ 0

b. Write down the objective function for the system nonlinear 2SLS estimator based

on the selected sample. Argue that, under the appropriate rank condition, the esti-

mator is consistent and
ffiffiffiffiffi
N

p
-asymptotically normal.

c. Write down the objective function for a minimum chi-square estimator using the

selected sample. Use the estimates from part b to estimate the weighting matrix.

Argue that the estimator is consistent and
ffiffiffiffiffi
N

p
-asymptotically normal.

17.9. Consider the problem of standard stratified sampling. Argue that when yo

solves equation (17.78) for each x, yo is identified in the population, stratification is

based on x, and Hj > 0 for j ¼ 1; . . . ; J, the unweighted estimator is consistent.

fHint: Write the objective function for the unweighted estimator as

XJ

j¼1

Hj N�1
j

XNj

i¼1

qðwij ; yÞ
" #

ð17:81Þ

and assume that Hj ! Hj > 0 as N ! y. If the strata are X1;X2; . . . ;XJ , argue that

equation (17.81) converges uniformly to

H1E½qðw; yÞ j x A X1� þ � � � þ HJE½qðw; yÞ j x A XJ � ð17:82Þ

Why does yo necessarily minimize expression (17.82)? Identification follows when you

show that E½qðw; yÞ j x A Xj � is uniquely minimized at yo for at least one j.g

17.10. Consider model (17.25), where selection is ignorable in the sense that

Eðu1 j z; u3Þ ¼ 0. However, data are missing on y2 when y3 ¼ 0, and Eðy2 j z; y3Þ0
Eðy2 j zÞ.
a. Find Eðy1 j z; y3Þ.
b. If, in addition to Assumption 17.2, ðv2; v3Þ is independent of z and Eðv2 j v3Þ ¼
g2v3, find Eðy1 j z; y3 ¼ 1Þ.
c. Suggest a two-step method for consistently estimating d1 and a1.

d. Does this method generally work if Eðu1 j z; y3Þ0 0?

e. Would you bother with the method from part c if Eðu1 j z; y2; y3Þ ¼ 0?

Explain.

17.11. In Section 16.7 we discussed two-part models for a corner solution out-

come, say, y. These models have sometimes been studied in the context of incidental

truncation.
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a. Suppose you have a parametric model for the distribution of y conditional on x

and y > 0. (Cragg’s model and the lognormal model from Section 16.7 are exam-

ples.) If you estimate the parameters of this model by conditional MLE, using only

the observations for which yi > 0, do the parameter estimates su¤er from sample

selection bias? Explain.

b. If instead you specify only Eðy j x; y > 0Þ ¼ expðxbÞ and estimate b by nonlinear

least squares using observations for which yi > 0, do the estimates su¤er from sample

selection bias?

c. In addition to the specification from part b, suppose that Pðy ¼ 0 j xÞ ¼
1 �FðxgÞ. How would you estimate g?

d. Given the assumptions in parts b and c, how would you estimate Eðy j xÞ?
e. Given your answers to the first four parts, do you think viewing estimation of two-

part models as an incidental truncation problem is appropriate?

17.12. Consider Theorem 17.1. Suppose that we relax assumption (17.6) to

Eðu j z; sÞ ¼ Eðu j sÞ ¼ ð1 � sÞa0 þ sa1. The first equality is the assumption; the second

is unrestrictive, as it simply allows the mean of u to di¤er in the selected and un-

selected subpopulations.

a. Show that 2SLS estimation using the selected subsample consistently estimates the

slope parameters, b2; . . . ; bK . What is the plim of the intercept estimator? [Hint: Re-

place u with ð1 � sÞa0 þ sa1 þ e, where Eðe j z; sÞ ¼ 0.]

b. Show that Eðu j z; sÞ ¼ Eðu j sÞ if ðu; sÞ is independent of z. Does independence of s

and z seem reasonable?

17.13. Suppose that y given x follows a standard censored Tobit, where y is a cor-

ner solution response. However, there is at least one element of x that we can observe

only when y > 0. (An example is seen when y is quantity demanded of a good or

service, and one element of x is price, derived as total expenditure on the good div-

ided by y whenever y > 0.)

a. Explain why we cannot use standard censored Tobit maximum likelihood esti-

mation to estimate b and s2. What method can we use instead?

b. How is it that we can still estimate Eðy j xÞ, even though we do not observe some

elements of x when y ¼ 0?
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18 Estimating Average Treatment E¤ects

18.1 Introduction

In this chapter we explicitly study the problem of estimating an average treatment

e¤ect (ATE). An average treatment e¤ect is a special case of an average partial e¤ect:

an ATE is an average partial e¤ect for a binary explanatory variable.

Estimating ATEs has become important in the program evaluation literature, such

as in the evaluation of job training programs. Originally, the binary indicators repre-

sented medical treatment or program participation, but the methods are applicable

when the explanatory variable of interest is any binary variable.

We begin by introducing a counterfactual framework pioneered by Rubin (1974)

and since adopted by many in both statistics and econometrics, including Rosen-

baum and Rubin (1983), Heckman (1992, 1997), Imbens and Angrist (1994), Angrist,

Imbens, and Rubin (1996), Manski (1996), Heckman, Ichimura, and Todd (1997), and

Angrist (1998). The counterfactual framework allows us to define various treatment

e¤ects that may be of interest. Once we define the di¤erent treatment e¤ects, we can

study ways to consistently estimate these e¤ects. We will not provide a comprehensive

treatment of this rapidly growing literature, but we will show that, under certain as-

sumptions, estimators that we are already familiar with consistently estimate average

treatment e¤ects. We will also study some extensions that consistently estimate ATEs

under weaker assumptions.

Broadly, most estimators of ATEs fit into one of two categories. The first set

exploits assumptions concerning ignorability of the treatment conditional on a set of

covariates. As we will see in Section 18.3, this approach is analogous to the proxy

variable solution to the omitted variables problem that we discussed in Chapter 4,

and in some cases reduces exactly to an OLS regression with many controls. A sec-

ond set of estimators relies on the availability of one or more instrumental variables

that are redundant in the response equations but help determine participation. Dif-

ferent IV estimators are available depending on functional form assumptions con-

cerning how unobserved heterogeneity a¤ects the responses. We study IV estimators

in Section 18.4.

In Section 18.5 we briefly discuss some further topics, including special consid-

erations for binary and corner solution responses, using panel data to estimate treat-

ment e¤ects, and nonbinary treatments.

18.2 A Counterfactual Setting and the Self-Selection Problem

The modern literature on treatment e¤ects begins with a counterfactual, where each

individual (or other agent) has an outcome with and without treatment (where



‘‘treatment’’ is interpreted very broadly). This section draws heavily on Heckman

(1992, 1997), Imbens and Angrist (1994), and Angrist, Imbens, and Rubin (1996)

(hereafter AIR). Let y1 denote the outcome with treatment and y0 the outcome with-

out treatment. Because an individual cannot be in both states, we cannot observe

both y0 and y1; in e¤ect, the problem we face is one of missing data.

It is important to see that we have made no assumptions about the distributions of

y0 and y1. In many cases these may be roughly continuously distributed (such as

salary), but often y0 and y1 are binary outcomes (such as a welfare participation in-

dicator), or even corner solution outcomes (such as married women’s labor supply).

However, some of the assumptions we make will be less plausible for discontinuous

random variables, something we discuss after introducing the assumptions.

The following discussion assumes that we have an independent, identically distri-

buted sample from the population. This assumption rules out cases where the treat-

ment of one unit a¤ects another’s outcome (possibly through general equilibrium

e¤ects, as in Heckman, Lochner, and Taber, 1998). The assumption that treatment

of unit i a¤ects only the outcome of unit i is called the stable unit treatment value

assumption (SUTVA) in the treatment literature (see, for example, AIR). We are

making a stronger assumption because random sampling implies SUTVA.

Let the variable w be a binary treatment indicator, where w ¼ 1 denotes treatment

and w ¼ 0 otherwise. The triple ðy0; y1;wÞ represents a random vector from the

underlying population of interest. For a random draw i from the population, we write

ðyi0; yi1;wiÞ. However, as we have throughout, we state assumptions in terms of the

population.

To measure the e¤ect of treatment, we are interested in the di¤erence in the out-

comes with and without treatment, y1 � y0. Because this is a random variable (that

is, it is individual specific), we must be clear about what feature of its distribution

we want to estimate. Several possibilities have been suggested in the literature. In

Rosenbaum and Rubin (1983), the quantity of interest is the average treatment e¤ect

(ATE),

ATE 1Eðy1 � y0Þ ð18:1Þ

ATE is the expected e¤ect of treatment on a randomly drawn person from the pop-

ulation. Some have criticized this measure as not being especially relevant for policy

purposes: because it averages across the entire population, it includes in the average

units who would never be eligible for treatment. Heckman (1997) gives the example

of a job training program, where we would not want to include millionaires in com-

puting the average e¤ect of a job training program. This criticism is somewhat mis-

leading, as we can—and would—exclude people from the population who would

never be eligible. For example, in evaluating a job training program, we might re-
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strict attention to people whose pretraining income is below a certain threshold;

wealthy people would be excluded precisely because we have no interest in how job

training a¤ects the wealthy. In evaluating the benefits of a program such as Head

Start, we could restrict the population to those who are actually eligible for the pro-

gram or are likely to be eligible in the future. In evaluating the e¤ectiveness of en-

terprise zones, we could restrict our analysis to block groups whose unemployment

rates are above a certain threshold or whose per capita incomes are below a certain

level.

A second quantity of interest, and one that has received much recent attention, is

the average treatment e¤ect on the treated, which we denote ATE1:

ATE1 1Eðy1 � y0 jw ¼ 1Þ ð18:2Þ

That is, ATE1 is the mean e¤ect for those who actually participated in the program.

As we will see, in some special cases equations (18.1) and (18.2) are equivalent, but

generally they di¤er.

Imbens and Angrist (1994) define another treatment e¤ect, which they call a local

average treatment e¤ect (LATE). LATE has the advantage of being estimable using

instrumental variables under very weak conditions. It has two potential drawbacks:

(1) it measures the e¤ect of treatment on a generally unidentifiable subpopulation;

and (2) the definition of LATE depends on the particular instrumental variable that

we have available. We will discuss LATE in the simplest setting in Section 18.4.2.

We can expand the definition of both treatment e¤ects by conditioning on covari-

ates. If x is an observed covariate, the ATE conditional on x is simply Eðy1 � y0 j xÞ;
similarly, equation (18.2) becomes Eðy1 � y0 j x;w ¼ 1Þ. By choosing x appropri-

ately, we can define ATEs for various subsets of the population. For example, x

can be pretraining income or a binary variable indicating poverty status, race, or

gender. For the most part, we will focus on ATE and ATE1 without conditioning on

covariates.

As noted previously, the di‰culty in estimating equation (18.1) or (18.2) is that we

observe only y0 or y1, not both, for each person. More precisely, along with w, the

observed outcome is

y ¼ ð1 � wÞy0 þ wy1 ¼ y0 þ wðy1 � y0Þ ð18:3Þ

Therefore, the question is, How can we estimate equation (18.1) or (18.2) with a

random sample on y and w (and usually some observed covariates)?

First, suppose that the treatment indicator w is statistically independent of ðy0; y1Þ,
as would occur when treatment is randomized across agents. One implication of

independence between treatment status and the potential outcomes is that ATE and

ATE1 are identical: Eðy1 � y0 jw ¼ 1Þ ¼ Eðy1 � y0Þ. Furthermore, estimation of
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ATE is simple. Using equation (18.3), we have

Eðy jw ¼ 1Þ ¼ Eðy1 jw ¼ 1Þ ¼ Eðy1Þ

where the last equality follows because y1 and w are independent. Similarly,

Eðy jw ¼ 0Þ ¼ Eðy0 jw ¼ 0Þ ¼ Eðy0Þ

It follows that

ATE ¼ ATE1 ¼ Eðy jw ¼ 1Þ � Eðy jw ¼ 0Þ ð18:4Þ

The right-hand side is easily estimated by a di¤erence in sample means: the sample

average of y for the treated units minus the sample average of y for the untreated

units. Thus, randomized treatment guarantees that the di¤erence-in-means estimator

from basic statistics is unbiased, consistent, and asymptotically normal. In fact, these

properties are preserved under the weaker assumption of mean independence:

Eðy0 jwÞ ¼ Eðy0Þ and Eðy1 jwÞ ¼ Eðy1Þ.
Randomization of treatment is often infeasible in program evaluation (although

randomization of eligibility often is feasible; more on this topic later). In most cases,

individuals at least partly determine whether they receive treatment, and their deci-

sions may be related to the benefits of treatment, y1 � y0. In other words, there is

self-selection into treatment.

It turns out that ATE1 can be consistently estimated as a di¤erence in means under

the weaker assumption that w is independent of y0, without placing any restriction on

the relationship between w and y1. To see this point, note that we can always write

Eðy jw ¼ 1Þ � Eðy jw ¼ 0Þ ¼ Eðy0 jw ¼ 1Þ � Eðy0 jw ¼ 0Þ þ Eðy1 � y0 jw ¼ 1Þ

¼ ½Eðy0 jw ¼ 1Þ � Eðy0 jw ¼ 0Þ� þ ATE1 ð18:5Þ

If y0 is mean independent of w, that is,

Eðy0 jwÞ ¼ Eðy0Þ ð18:6Þ

then the first term in equation (18.5) disappears, and so the di¤erence in means esti-

mator is an unbiased estimator of ATE1. Unfortunately, condition (18.6) is a strong

assumption. For example, suppose that people are randomly made eligible for a

voluntary job training program. Condition (18.6) e¤ectively implies that the partici-

pation decision is unrelated to what people would earn in the absence of the program.

A useful expression relating ATE1 and ATE is obtained by writing y0 ¼ m0 þ v0

and y1 ¼ m1 þ v1, where mg ¼ EðygÞ, g ¼ 0; 1. Then

y1 � y0 ¼ ðm1 � m0Þ þ ðv1 � v0Þ ¼ ATE þ ðv1 � v0Þ
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Taking the expectation of this equation conditional on w ¼ 1 gives

ATE1 ¼ ATE þ Eðv1 � v0 jw ¼ 1Þ

We can think of v1 � v0 as the person-specific gain from participation, and so ATE1

di¤ers from ATE by the expected person-specific gain for those who participated. If

y1 � y0 is not mean independent of w, ATE1 and ATE generally di¤er.

Fortunately, we can estimate ATE and ATE1 under assumptions less restrictive

than independence of ðy0; y1Þ and w. In most cases, we can collect data on individ-

ual characteristics and relevant pretreatment outcomes—sometimes a substantial

amount of data. If, in an appropriate sense, treatment depends on the observables

and not on the unobservables determining ðy0; y1Þ, then we can estimate average

treatment e¤ects quite generally, as we show in the next section.

18.3 Methods Assuming Ignorability of Treatment

We adopt the framework of the previous section, and, in addition, we let x denote a

vector of observed covariates. Therefore, the population is described by ðy0; y1;w; xÞ,
and we observe y, w, and x, where y is given by equation (18.3). When w and ðy0; y1Þ
are allowed to be correlated, we need an assumption in order to identify treatment

e¤ects. Rosenbaum and Rubin (1983) introduced the following assumption, which

they called ignorability of treatment (given observed covariates x):

assumption ATE.1: Conditional on x, w and ðy0; y1Þ are independent.

For many purposes, it su‰ces to assume ignorability in a conditional mean indepen-

dence sense:

assumption ATE.1 0: (a) Eðy0 j x;wÞ ¼ Eðy0 j xÞ; and (b) Eðy1 j x;wÞ ¼ Eðy1 j xÞ.

Naturally, Assumption ATE.1 implies Assumption ATE.1 0. In practice, Assumption

ATE.1 0 might not a¤ord much generality, although it does allow Varðy0 j x;wÞ and

Varðy1 j x;wÞ to depend on w. The idea underlying Assumption ATE.1 0 is this: if

we can observe enough information (contained in x) that determines treatment, then

ðy0; y1Þ might be mean independent of w, conditional on x. Loosely, even though

ðy0; y1Þ and w might be correlated, they are uncorrelated once we partial out x.

Assumption ATE.1 certainly holds if w is a deterministic function of x, which has

prompted some authors in econometrics to call assumptions like ATE.1 selection on

observables; see, for example, Barnow, Cain, and Goldberger (1980, 1981), Heckman

and Robb (1985), and Mo‰tt (1996). (We discussed a similar assumption in Section

Estimating Average Treatment E¤ects 607



17.7.3 in the context of attrition in panel data.) The name is fine as a label, but we

must realize that Assumption ATE.1 does allow w to depend on unobservables, albeit

in a restricted fashion. If w ¼ gðx; aÞ, where a is an unobservable random variable

independent of ðx; y0; y1Þ, then Assumption ATE.1 holds. But a cannot be arbitrarily

correlated with y0 and y1.

An important fact is that, under Assumption ATE.1 0, the average treatment e¤ect

conditional on x and the average treatment e¤ect of the treated, conditional on x, are

identical:

ATE1ðxÞ1Eðy1 � y0 j x;w ¼ 1Þ ¼ Eðy1 � y0 j xÞ ¼ ATEðxÞ

because Eðyg j x;wÞ ¼ Eðyg j xÞ, g ¼ 0; 1. However, the unconditional versions of the

treatment e¤ects are not generally equal. For clarity, define rðxÞ ¼ Eðy1 � y0 j xÞ ¼
ATEðxÞ. Then ATE is the expected value of rðxÞ across the entire population,

whereas ATE1 is the expected value of rðxÞ in the treated subpopulation. Mathe-

matically,

ATE ¼ E½rðxÞ� and ATE1 ¼ E½rðxÞ jw ¼ 1�

If we can estimate rð�Þ, then ATE can be estimated by averaging across the entire

random sample from the population, whereas ATE1 would be estimated by averaging

across the part of the sample with wi ¼ 1. We will discuss specific estimation strat-

egies in the next subsection.

An interesting feature of Assumptions ATE.1 and ATE.1 0—and one that is per-

haps foreign to economists—is that they are stated without imposing any kind of

model on joint or conditional distributions. It turns out that no more structure is

needed in order to identify either of the treatment e¤ects. We first show how the

ignorability assumption relates to standard regression analysis.

18.3.1 Regression Methods

We can use equation (18.3), along with Assumption ATE.1 0, to obtain estimators of

ATEðxÞ, which can then be used to estimate ATE and ATE1. First,

Eðy j x;wÞ ¼ Eðy0 j x;wÞ þ w½Eðy1 j x;wÞ � Eðy0 j x;wÞ�

¼ Eðy0 j xÞ þ w½Eðy1 j xÞ � Eðy0 j xÞ�

where the first equality follows from equation (18.3) and the second follows from

Assumption ATE.1 0. Therefore, under Assumption ATE.1 0,

Eðy j x;w ¼ 1Þ � Eðy j x;w ¼ 0Þ ¼ Eðy1 j xÞ � Eðy0 j xÞ ¼ ATEðxÞ ð18:7Þ
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Because we have a random sample on ðy;w; xÞ from the relevant population, r1ðxÞ1
Eðy j x;w ¼ 1Þ and r0ðxÞ1Eðy j x;w ¼ 0Þ are nonparametrically identified. That is,

these are conditional expectations that depend entirely on observables, and so they

can be consistently estimated quite generally. (See Härdle and Linton, 1994, for as-

sumptions and methods.) For the purposes of identification, we can just assume r1ðxÞ
and r0ðxÞ are known, and the fact that they are known means that ATEðxÞ is identi-

fied. If r̂r1ðxÞ and r̂r0ðxÞ are consistent estimators (in an appropriate sense), using the

random sample of size N, a consistent estimator of ATE under fairly weak assump-

tions is

AT̂TE ¼ N�1
XN

i¼1

½r̂r1ðxiÞ � r̂r0ðxiÞ�

while a consistent estimator of ATE1 is

AT̂TE1 ¼
XN

i¼1

wi

 !�1 XN

i¼1

wi½r̂r1ðxiÞ � r̂r0ðxiÞ�
( )

The formula for AT̂TE1 simply averages ½r̂r1ðxiÞ � r̂r0ðxiÞ� over the subsample with

wi ¼ 1.

There are several implementation issues that arise in computing and using AT̂TE

and AT̂TE1. The most obvious of these is obtaining r̂r1ð�Þ and r̂r0ð�Þ. To be as flexible

as possible, we could use nonparametric estimators, such as a kernel estimator

(see Härdle and Linton, 1994). Obtaining reliable standard errors when we use non-

parametric estimates can be di‰cult. An alternative is to use flexible parametric

models, such as low-order polynomials that include interaction terms. [Presumably,

we would also account for the nature of y in estimating Eðy j x;w ¼ 1Þ and

Eðy j x;w ¼ 0Þ. For example, if y is binary, we would use a flexible logit or probit; if y

is a corner solution, we might use a flexible Tobit or a flexible exponential regression

function.]

With plenty of data, a third possibility is to list all possible values that x can take,

say, c1; c2; . . . ; cM , and to estimate Eðy j x ¼ cm;w ¼ 1Þ by averaging the yi over all i

with xi ¼ cm and wi ¼ 1; Eðy j x ¼ cm;w ¼ 0Þ is estimated similarly. For each m and

w ¼ 0 or 1, this method is just estimation of a mean using a sample average. Typi-

cally, M is large because x takes on many values, and many of the cells may have

only a small number of observations.

Regardless of how r̂r1ð�Þ and r̂r0ð�Þ are obtained, to use the estimated treatment

e¤ects we need to obtain asymptotically valid standard errors. Generally, this task

can be very di‰cult, especially if nonparametric methods are used in estimation.
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Nevertheless, we will show how a linear regression model involving level e¤ects and

interactions can be used to obtain good estimates of the treatment e¤ects as well as

reliable standard errors.

Before we turn to standard regression models, we need to discuss a problem that

can arise in the evaluation of programs, especially when flexible estimation of

Eðy j x;w ¼ 1Þ and Eðy j x;w ¼ 0Þ is desirable. To illustrate the problem, suppose

there is only one binary covariate, x, and Assumption ATE.1 0 holds; for concrete-

ness, x could be an indicator for whether pretraining earnings are below a certain

threshold. Suppose that everyone in the relevant population with x ¼ 1 participates

in the program. Then, while we can estimate Eðy j x ¼ 1;w ¼ 1Þ with a random sample

from the population, we cannot estimate Eðy j x ¼ 1;w ¼ 0Þ because we have no data

on the subpopulation with x ¼ 1 and w ¼ 0. Intuitively, we only observe the coun-

terfactual y1 when x ¼ 1; we never observe y0 for any members of the population

with x ¼ 1. Therefore, ATEðxÞ is not identified at x ¼ 1.

If some people with x ¼ 0 participate while others do not, we can estimate

Eðy j x ¼ 0;w ¼ 1Þ � Eðy j x ¼ 0;w ¼ 0Þ using a simple di¤erence in averages over

the group with x ¼ 0, and so ATEðxÞ is identified at x ¼ 0. But if we cannot estimate

ATEð1Þ, we cannot estimate the unconditional ATE because ATE ¼ Pðx ¼ 0Þ �
ATEð0Þ þ Pðx ¼ 1Þ � ATEð1Þ. In e¤ect, we can only estimate the ATE over the sub-

population with x ¼ 0, which means that we must redefine the population of interest.

This limitation is unfortunate: presumably we would be very interested in the pro-

gram’s e¤ects on the group that always participates.

A similar conclusion holds if the group with x ¼ 0 never participates in the pro-

gram. Then ATEð0Þ is not estimable because Eðy j x ¼ 0;w ¼ 1Þ is not estimable. If

some people with x ¼ 1 participated while others did not, ATEð1Þ would be identi-

fied, and then we would view the population of interest as the subgroup with x ¼ 1.

There is one important di¤erence between this situation and the one where the x ¼ 1

group always receives treatment: it seems perfectly natural to exclude from the pop-

ulation people who have no chance of treatment based on observed covariates. This

observation is related to the issue we discussed in Section 18.2 concerning the rele-

vant population for defining ATE. If, for example, people with very high preprogram

earnings ðx ¼ 0Þ have no chance of participating in a job training program, then we

would not want to average together ATEð0Þ and ATEð1Þ; ATEð1Þ by itself is much

more interesting.

Although the previous example is extreme, its consequences can arise in more

plausible settings. Suppose that x is a vector of binary indicators for pretraining in-

come intervals. For most of the intervals, the probability of participating is strictly

between zero and one. If the participation probability is zero at the highest income
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level, we simply exclude the high-income group from the relevant population.

Unfortunately, if participation is certain at low income levels, we must exclude low-

income groups as well.

As a practical matter, we often determine whether the probability of participation

is one or zero by looking at the random sample. If we list the possible values of the

explanatory variables, c1; . . . ; cM , as described earlier, the problem arises when there

is a value, say cm, where all units with xi ¼ cm participate in the program. Because we

cannot estimate Eðy j x ¼ cm;w ¼ 0Þ, the subpopulation with x ¼ cm must be ex-

cluded from the analysis.

We now turn to standard parametric regression methods for estimating ATE, and

then briefly discuss estimating ATE1. It is useful to decompose the counterfactual

outcomes into their means and a stochastic part with zero mean, as we did at the end

of Section 18.2:

y0 ¼ m0 þ v0; Eðv0Þ ¼ 0 ð18:8Þ

y1 ¼ m1 þ v1; Eðv1Þ ¼ 0 ð18:9Þ

Plugging these into equation (18.3) gives

y ¼ m0 þ ðm1 � m0Þw þ v0 þ wðv1 � v0Þ ð18:10Þ

This is a simple example of a switching regression model, where the outcome equa-

tions depend on the regime (treatment status in this case).

If we assume that v1 � v0 has zero mean conditional on x, we obtain a standard

regression model under Assumption ATE.1 0.

proposition 18.1: Under Assumption ATE.1 0, assume, in addition, that

Eðv1 j xÞ ¼ Eðv0 j xÞ ð18:11Þ

Then ATE1 ¼ ATE, and

Eðy jw; xÞ ¼ m0 þ aw þ g0ðxÞ ð18:12Þ

where a1ATE and g0ðxÞ ¼ Eðv0 j xÞ. If, in addition, Eðv0 j xÞ ¼ h0 þ h0ðxÞb0 for

some vector function h0ðxÞ, then

Eðy jw; xÞ ¼ g0 þ aw þ h0ðxÞb0 ð18:13Þ

where g0 ¼ m0 þ h0.

Proof: Under Assumption ATE.1 0, Eðy1 jw; xÞ ¼ m1 þ Eðv1 j xÞ and Eðy0 jw; xÞ ¼
m0 þ Eðv0 j xÞ. Under assumption (18.11), Eðy1 jw; xÞ � Eðy0 jw; xÞ ¼ m1 � m0.
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Therefore, by iterated expectations, Eðy1 jwÞ � Eðy0 jwÞ ¼ m1 � m0, which implies

that ATE1 ¼ ATE. The proof of equation (18.12) follows by taking the expectation

of equation (18.10) given w, x and using Assumption ATE.1 0 and assumption (18.11).

This proposition shows that when the predicted person-specific gain given x is

zero—that is, when Eðv1 � v0 j xÞ ¼ 0—Eðy jw; xÞ is additive in w and a function of

x, and the coe‰cient on w is the average treatment e¤ect. It follows that standard

regression methods can be used to estimate ATE. While nonlinear regression methods

can be used if Eðv0 j xÞ is assumed to be nonlinear in parameters, typically we would

use an assumption such as equation (18.13). Then, regressing y on an intercept, w,

and h0ðxÞ consistently estimates the ATE. By putting enough controls in x, we have

arranged it so that w and unobservables a¤ecting ðy0; y1Þ are appropriately unrelated.

In e¤ect, x proxies for the unobservables. Using flexible functional forms for the

elements of h0ðxÞ should provide a good approximation to Eðv0 j xÞ.
The function h0ðxÞb0 in equation (18.13) is an example of a control function: when

added to the regression of y on 1, w, it controls for possible self-selection bias. Of

course, this statement is only true under the assumptions in Proposition 18.1.

Given Assumption ATE.1 0, the additively separable form of equation (18.12)

hinges crucially on assumption (18.11). Though assumption (18.11) might be rea-

sonable in some cases, it need not generally hold. [A su‰cient, but not necessary,

condition for assumption (18.11) is v1 ¼ v0 or y1 ¼ aþ y0, which means the e¤ect of

treatment is the same for everyone in the population.] If we relax assumption (18.11),

then we no longer have equality of ATE and ATE1. Nevertheless, a regression for-

mulation can be used to estimate ATE:

proposition 18.2: Under Assumption ATE.1 0,

Eðy jw; xÞ ¼ m0 þ aw þ g0ðxÞ þ w½g1ðxÞ � g0ðxÞ� ð18:14Þ

where a ¼ ATE, g0ðxÞ1Eðv0 j xÞ, and g1ðxÞ1Eðv1 j xÞ.

The proof of Proposition 18.2 is immediate by taking the expectation of equation

(18.10) given ðw; xÞ. Equation (18.14) is interesting because it shows that, under As-

sumption ATE.1 0 only, Eðy jw; xÞ is additive in w, a function of x, and an interaction

between w and another function of x. The coe‰cient on w is the average treatment

e¤ect (but not generally ATE1). To operationalize equation (18.14) in a parametric

framework, we would replace g0ð�Þ and g1ð�Þ with parametric functions of x; typi-

cally, these would be linear in parameters, say h0 þ h0ðxÞb0 and h1 þ h1ðxÞb1. For

notational simplicity, assume that these are both linear in x. Then we can write
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Eðy jw; xÞ ¼ gþ aw þ xb0 þ w � ðx � cÞd ð18:15Þ

where b0 and d are vectors of unknown parameters and c1EðxÞ. Subtracting the

mean from x ensures that ATE is the coe‰cient on w. In practice, either we would

subtract o¤ the known population mean from each element of x, or, more likely, we

would demean each element of x using the sample average. Therefore, under equa-

tion (18.15), we would estimate a as the coe‰cient on w in the regression

yi on 1;wi; xi;wiðxi � xÞ; i ¼ 1; 2; . . . ;N ð18:16Þ

where x is the vector of sample averages. (Subtracting the sample averages rather

than population averages introduces a generated regressor problem. However, as

argued in Problem 6.10, the adjustments to the standard errors typically have minor

e¤ects.) The control functions in this case involve not just the xi, but also interactions

of the covariates with the treatment variable. If desired, we can be selective about

which elements of ðxi � xÞ we interact with wi.

Adding functions of x, such as squares or logarithms, as both level terms and

interactions, is simple, provided we demean any functions before constructing the

interactions.

Because regression (18.16) consistently estimates d, we can also study how the ATE

given x, that is, ATEðxÞ ¼ Eðy1 � y0 j xÞ, changes with elements of x. In particular,

for any x in the valid range,

AT̂TEðxÞ ¼ âaþ ðx � xÞd̂d

We can then average this equation over interesting values of x to obtain the ATE for

a subset of the population. For example, if x contains pretraining earnings or indi-

cators for earnings groups, we can estimate how the ATE changes for various levels

of pretraining earnings.

If the functions of x appearing in the regression are very flexible, problems with

estimating ATEðxÞ at certain values of x can arise. In the extreme case, we define

dummy variables for each possible outcome on x and use these in place of x. This

approach results in what is known as a saturated model. We will not be able to in-

clude dummy variables for groups that are always treated or never treated, with the

result that our estimator of ATE is for the population that excludes these groups.

To estimate ATE1, write ATE1 ¼ aþ ½Eðx jw ¼ 1Þ � c�d, and so a consistent es-

timator is

AT̂TE1 ¼ âaþ
XN

i¼1

wi

 !�1 XN

i¼1

wiðxi � xÞd̂d
" #
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Obtaining a standard error for this estimator is somewhat complicated, but it can be

done using the delta method or bootstrapping.

Example 18.1 (E¤ects of Enterprise Zones on Economic Development): Consider

evaluating the e¤ects of enterprise zone (EZ) designation on employment growth, for

block groups in a particular state. Suppose that we have 1980 and 1990 census data,

and that the EZ designation originated in the early 1980s. To account for the fact

that zone designation is likely to depend on prior economic performance, and per-

haps other block characteristics, we can estimate a model such as the following:

gemp ¼ m0 þ aez þ b1 logðemp80Þ þ b2 logðpop80Þ þ b3 percmanf 80

þ b4 logðhousval80Þ þ b5ez � ½logðemp80Þ � m1� þ b6ez � ½logðpop80Þ � m2�

þ b7ez � ½ percmanf 80 � m3� þ b8ez � ½logðhousval80Þ � m4� þ error

where the right-hand-side variables are a dummy variable for EZ designation, em-

ployment, population, percent of employment in manufacturing, and median housing

value, all in 1980, and where the mj are the sample averages.

The regression estimator (18.16), especially with flexible functions of the covari-

ates, applies directly to what are called regression discontinuity designs. In this case,

treatment is determined as a nonstochastic function of a covariate, say w ¼ f ðsÞ,
where s is an element of x that has su‰cient variation. The key is that f is a discon-

tinuous function of s, typically a step function, w ¼ 1½sa s0�, where s0 is a known

threshold. The idea is that once s, which could be income level or class size, reaches

a certain threshold, a policy automatically kicks in. (See, for example, Angrist and

Lavy, 1999.) Because s is a nonrandom function of x, the conditional independence

assumption in Assumption ATE.1 must hold. The key is obtaining flexible functional

forms for g0ð�Þ and g1ð�Þ. Generally, we can identify a only if we are willing to assume

that g0ð�Þ and g1ð�Þ are smooth functions of x (which is almost always the case when

we estimate parametric or nonparametric regression functions). If we allow g0ð�Þ to

be discontinuous in s—that is, with jumps—we could never distinguish between

changes in y due to a change in s or a change in treatment status.

18.3.2 Methods Based on the Propensity Score

Rosenbaum and Rubin (1983) use the ignorability-of-treatment assumption di¤er-

ently in estimating ATE. Regression (18.16) makes functional form assumptions

about Eðv0 j xÞ and Eðv1 j xÞ, where v0 and v1 are unobserved. Alternatively, it turns

out that ATE and ATE1 can both be estimated by modeling
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pðxÞ1Pðw ¼ 1 j xÞ ð18:17Þ

which is the probability of treatment given the covariates. The function pðxÞ, which is

simply the response probability for treatment, is called the propensity score in the

evaluation literature. Interestingly, ATE and ATE1 can be written in terms of the

propensity score.

proposition 18.3: Under Assumption ATE.1 0, assume in addition that

0 < pðxÞ < 1; all x ð18:18Þ

Then

ATE ¼ Eð½w � pðxÞ�y=fpðxÞ½1 � pðxÞ�gÞ ð18:19Þ

and

ATE1 ¼ Ef½w � pðxÞ�y=½1 � pðxÞ�g=Pðw ¼ 1Þ ð18:20Þ

Proof: Plugging equation (18.3) into the numerator inside the expectation in equa-

tion (18.19) gives

½w � pðxÞ�y ¼ ½w � pðxÞ�½ð1 � wÞy0 þ wy1�

¼ wy1 � pðxÞð1 � wÞy0 � pðxÞwy1

Taking the expectation of this equation conditional on ðw; xÞ and using Assumption

ATE.1 0 gives

wm1ðxÞ � pðxÞð1 � wÞm0ðxÞ � pðxÞwm1ðxÞ

where mjðxÞ1Eðyj j xÞ, j ¼ 0; 1. Taking the expectation conditional on x gives

pðxÞm1ðxÞ � pðxÞ½1 � pðxÞ�m0ðxÞ � ½ pðxÞ�2m1ðxÞ ¼ pðxÞ½1 � pðxÞ�½m1ðxÞ � m0ðxÞ�

because pðxÞ ¼ Eðw j xÞ. Therefore, the expected value of the term in equation (18.19)

conditional on x is simply ½m1ðxÞ � m0ðxÞ�; iterated expectations implies that the

right-hand side of equation (18.19) is m1 � m0.

Very similar reasoning shows that

Ef½w � pðxÞ�y=½1 � pðxÞ� j xg ¼ pðxÞ½m1ðxÞ � m0ðxÞ�

Next, by iterated expectations,

EfpðxÞ½m1ðxÞ � m0ðxÞ�g ¼ Efw½m1ðxÞ � m0ðxÞ�g ¼ E½wðy1 � y0Þ�

where the last equality follows from Assumption ATE.1 0. But
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E½wðy1 � y0Þ� ¼ Pðw ¼ 1ÞE½wðy1 � y0Þ jw ¼ 1� þ Pðw ¼ 0ÞE½wðy1 � y0Þ jw ¼ 0�

¼ Pðw ¼ 1ÞEðy1 � y0 jw ¼ 1Þ

Therefore, the right-hand side of equation (18.20) is

fPðw ¼ 1ÞEðy1 � y0 jw ¼ 1Þg=Pðw ¼ 1Þ ¼ ATE1:

Rosenbaum and Rubin (1983) call Assumption ATE.1 plus condition (18.18) strong

ignorability of treatment (given covariates x). Proposition 18.3 shows, in a di¤erent

way from Section 18.3.1, that ATE and ATE1 are nonparametrically identified under

strong ignorability of treatment: the response probability, Pðy ¼ 1 j xÞ, can be assumed

known for the purposes of identification analysis. Wooldridge (1999c) obtained

equation (18.19) in the more general setting of a random coe‰cient model (see Sec-

tion 18.5.3), while equation (18.20) is essentially due to Dehejia and Wahba (1999,

Proposition 4), who make the stronger assumption ATE.1.

Condition (18.18) is precisely the restriction on the response probability that arose

in Section 18.3.1 for identifying ATE. Equation (18.20) shows that ATE1 is still

identified if pðxÞ ¼ 0 for some x, but this finding has little practical value because we

probably want to exclude units that have no chance of being treated, anyway. Im-

portantly, in estimating ATE or ATE1, we rule out pðxÞ ¼ 1: we cannot estimate

ATE or ATE1 by including in the population units that are treated with certainty,

conditional on x.

Of course, to estimate ATE and ATE1, we need an estimator of pð�Þ. Rosenbaum

and Rubin (1983) suggest using a flexible logit model, where x and various functions

of x—for example, quadratics and interactions—are included. [In this case there is

no danger of p̂pðxÞ ¼ 0 or 1 because logit fitted values are strictly in the unit interval,

but this functional form restriction might simply mask the problem in the popula-

tion.] The propensity score can also be estimated using fully nonparametric methods—

see, for example, Powell (1994) and Heckman, Ichimura, and Todd (1997). Here, we

focus on flexible parametric methods. If p̂pðxÞ1Fðx; ĝgÞ is such an estimator, where ĝg

is obtained in a first-stage binary response estimation of w on x, then a consistent

estimator of ATE is

AT̂TE ¼ N�1
XN

i¼1

½wi � p̂pðxiÞ�yi=f p̂pðxiÞ½1 � p̂pðxiÞ�g ð18:21Þ

Interestingly, after simple algebra this estimator can be shown to be identical to an

estimator due to Horvitz and Thompson (1952) for handling nonrandom sampling.

Consistency under standard regularity conditions follows from Lemma 12.1. Simi-
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larly, a consistent estimator of ATE1 is

AT̂TE1 ¼ N�1
XN

i¼1

wi

 !�1

N�1
XN

i¼1

½wi � p̂piðxiÞ�yi=½1 � p̂pðxiÞ�
( )

ð18:22Þ

Notice that N�1
PN

i¼1 wi is a consistent estimator of Pðw ¼ 1Þ. Obtaining valid

asymptotic standard errors using the delta method is somewhat complicated, as we

need a first-order representation for
ffiffiffiffiffi
N

p
ðĝg� gÞ—see Section 12.5.2. Notice that only

the predicted probabilities appear in equations (18.21) and (18.22). Therefore, di¤er-

ent methods of estimating pðxÞ that lead to similar predicted values p̂pðxiÞ will tend to

produce similar treatment e¤ect estimates.

It turns out that the estimators in equations (18.21) and (18.22) not only are con-

venient, but also can be made to have the smallest asymptotic variances among esti-

mators that are based only on Assumption ATE.1 and condition (18.18) (as well as

several regularity conditions). Hirano, Imbens, and Ridder (2000) (HIR) have

recently shown that (18.21) and (18.22) achieve the semiparametric e‰ciency bound

obtained by Hahn (1998). In order to achieve the bound, HIR assume that p̂pð�Þ is a

series estimator, so that the conditions in Newey (1994) can be verified. As a practical

matter, series estimation is not ideal, because, for a binary response, it is identical to a

linear probability model in functions of x. Plus, it is di‰cult to estimate the asymp-

totic variance of the resulting estimators, AT̂TE and AT̂TE1. Probably little is lost by

using a flexible logit or probit and then obtaining the standard errors by the usual

delta method.

A simple, popular estimator in program evaluation is obtained from an OLS re-

gression that simply includes the estimated propensity score, p̂pðxÞ, as an additional

regressor:

yi on 1;wi; p̂pðxiÞ; i ¼ 1; 2; . . . ;N ð18:23Þ

where the coe‰cient on wi is the estimate of the treatment e¤ect. In other words, the

estimated propensity score plays the role of the control function. The idea is that the

estimated propensity score should contain all the information in the covariates that is

relevant for estimating the treatment e¤ect. The question is, When does regression

(18.23) consistently estimate the average treatment e¤ect? The following is a special

case of Wooldridge (1999c, Proposition 3.2):

proposition 18.4: In addition to Assumption ATE.1 0, assume that Eðy1 � y0 j xÞ ¼
m1ðxÞ � m0ðxÞ is uncorrelated with Varðw j xÞ ¼ pðxÞ½1 � pðxÞ�. If the parametric es-

timator p̂pð�Þ is consistent and
ffiffiffiffiffi
N

p
-asymptotically normal, then the OLS coe‰cient on
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w from regression (18.23) is consistent and
ffiffiffiffiffi
N

p
-asymptotically normal for the aver-

age treatment e¤ect, ATE.

The assumption that m1ðxÞ � m0ðxÞ is uncorrelated with Varðw j xÞ may appear un-

likely, as both are functions of x. However, remember that correlation is a linear

measure of dependence. The conditional variance Varðw j xÞ is a nonmonotonic qua-

dratic in pðxÞ, while m1ðxÞ � m0ðxÞ is likely to be monotonic in many elements of x;

zero correlation might hold approximately. (This observation is analogous to the fact

that if z is a standard normal random variable, then z and z2 are uncorrelated.)

Using di¤erent auxiliary assumptions, Rosenbaum and Rubin (1983, Corollary

4.3) suggest a more general version of regression (18.23) for estimating ATE:

yi on 1;wi; p̂pi;wið p̂pi � m̂mpÞ; i ¼ 1; 2; . . . ;N ð18:24Þ

where m̂mp is the sample average of p̂pi, i ¼ 1; 2; . . . ;N.

proposition 18.5: Under Assumption ATE.1, assume in addition that E½y0 j pðxÞ�
and E½y1 j pðxÞ� are linear in pðxÞ. Then the coe‰cient on wi in regression (18.24)

consistently estimates ATE.

Proof: Rosenbaum and Rubin (1983, Theorem 3) show that, under Assumption

ATE.1, ðy0; y1Þ and w are independent conditional on pðxÞ. For completeness, we

present the argument. It su‰ces to show P½w ¼ 1 j y0; y1; pðxÞ� ¼ P½w ¼ 1 j pðxÞ� or

E½w j y0; y1; pðxÞ� ¼ E½w j pðxÞ�. But, under Assumption ATE.1, Eðw j y0; y1; xÞ ¼
Eðw j xÞ ¼ pðxÞ. By iterated expectations,

E½w j y0; y1; pðxÞ� ¼ E½Eðw j y0; y1; xÞ j y0; y1; pðxÞ� ¼ E½ pðxÞ j y0; y1; pðxÞ� ¼ pðxÞ

We can now use this equation to obtain E½y jw; pðxÞ�. Write y ¼ y0 þ ðm1 � m0Þwþ
wðv1 � v0Þ. We just showed that ðy0; y1Þ and w are independent given pðxÞ, and so

E½y jw; pðxÞ� ¼ E½y0 j pðxÞ� þ ðm1 � m0Þw þ wfE½v1 j pðxÞ� � E½v0 j pðxÞ�g

¼ d0 þ d1pðxÞ þ ðm1 � m0Þw þ d2w½ pðxÞ � mp�

under the linearity assumptions, where mp 1E½ pðxÞ�. fRemember, as v1 and v0 have

zero means, the linear function of pðxÞ must have a zero mean, too; we can always

write it as d2½ pðxÞ � mp�.g This step completes the proof, as replacing mp with its sample

average in the regression does not a¤ect consistency (or asymptotic normality).

The linearity assumptions for E½y0 j pðxÞ� and E½y1 j pðxÞ� are probably too re-

strictive in many applications. As pðxÞ is bounded between zero and one, E½y0 j pðxÞ�
and E½y1 j pðxÞ� are necessarily bounded under linearity, which might be a poor as-
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sumption if the yg have a wide support. If y is binary, linearity of these expected

values is also questionable, but it could be a reasonable approximation. Of course, it

is a simple matter to replace p̂pi with a low-order polynomial in p̂pi, being sure to de-

mean any term before constructing its interaction with wi.

Example 18.2 (E¤ects of Job Training on Earnings): The data in JTRAIN2.RAW

are from a job training experiment in the 1970s. The response variable is real earnings

in 1978, measured in thousands of dollars. Real earnings are zero for men who did

not work during the year. Training began up to two years prior to 1978. We use

regressions (18.23) and (18.24) to estimate the average treatment e¤ect. The elements

of x are real earnings in 1974 and 1975, age (in quadratic form), a binary high school

degree indicator (nodegree), marital status, and binary variables for black and His-

panic. In the first-stage probit of train on x, only nodegree is statistically significant at

the 5 percent level. Once we have the fitted propensity scores, we can run regression

(18.23). This gives âa ¼ 1:626 (se ¼ :644), where the standard error is not adjusted for

the probit first-stage estimation. Job training is estimated to increase earnings by about

$1,626. Interestingly, this estimate is very close to the regression re78 on 1, train,

x: âa ¼ 1:625 (se ¼ :640); both are somewhat smaller than the simple comparison-of-

means estimate, which is 1.794 (se ¼ :633).

Adding the interaction term in regression (18.24), with m̂mp ¼ :416, lowers the esti-

mate somewhat: âa ¼ 1:560 (se ¼ :642). The interaction term (again, based on the

usual OLS standard error) is marginally significant.

Regressions (18.23) and (18.24) are attractive because they account for possibly

nonrandom assignment of treatment by including a single function of the covariates,

the estimated propensity score. Compared with the regressions that include the full

set of covariates, in flexible ways, possibly interacted with the treatment [as in equation

(18.16)], the propensity score approach seems much more parsimonious. However, this

parsimony is somewhat illusory. Remember, the propensity score is estimated by a

first-stage probit or logit, where the treatment is the dependent variable and flexible

functions of the elements of x are the explanatory variables. It is not obvious that

estimating a flexible binary response model in the first stage is somehow better than

the kitchen sink regression (18.16). In fact, if the propensity score were estimated

using a linear probability model, regression (18.23) and regression (18.16) without

the interaction terms would produce identical estimates of a. Also, using regres-

sion (18.23) or (18.24) makes it tempting to ignore the first-stage estimation of the

propensity score in obtaining the standard error of the treatment e¤ect (as we did in

Example 18.2). At least in regression (18.16) we know that the standard error of âa is

reliable; at worst, we must make the standard error robust to heteroskedasticity. In
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Example 18.2, we have no way of knowing how much the sampling variation in the

first-stage probit estimates would a¤ect a properly computed standard error short

of actually doing the calculations. Because the propensity score approach and the

standard regression approach require di¤erent assumptions for consistency, neither

generally dominates the other. [If anything, the linearity assumptions on E½y0 j pðxÞ�
and E½y1 j pðxÞ� are less palatable than the linearity assumptions underlying equation

(18.15).]

If we use the propensity score as in equation (18.21) then we need not make aux-

iliary assumptions as required by regressions (18.23) and (18.24). But we should still

adjust the standard error of AT̂TE to account for first-stage estimation of the propensity

score. Apparently, not much work has been done comparing regression methods that

use the propensity score with standard kitchen sink–type regressions, let alone com-

paring these procedures with the estimator from equation (18.21).

All the previous estimates of ATEs that use the estimated propensity score involve

either regressions or formulas that appear similar to regressions in the sense that the

propensity score is included in a sample average [see equations (18.21) and (18.22)].

Estimates of the propensity score are also used in a very di¤erent way in the treat-

ment e¤ect literature. Various matching estimators have been proposed, and asymp-

totic distributions are available in many cases. The matching approach suggested by

Rosenbaum and Rubin (1983) is motivated by the following thought experiment.

Suppose we choose a propensity score, pðxÞ, at random from the population. Then,

we select two agents from the population sharing the chosen propensity score, where

one agent receives treatment and the other does not. Under Assumption ATE.1, the

expected di¤erence in the observed outcomes for these agents is

E½y jw ¼ 1; pðxÞ� � E½y jw ¼ 0; pðxÞ� ¼ E½y1 � y0 j pðxÞ�

which is the ATE conditional on pðxÞ. By iterated expectations, averaging across the

distribution of propensity scores gives ATE ¼ Eðy1 � y0Þ.
An estimation strategy requires estimating the propensity scores, estimating the

response di¤erences for pairs matched on the basis of the estimated propensity scores,

and then averaging over all such pairs. Because getting identical predicted proba-

bilities is often unlikely, grouping into cells or local averaging is used instead. E¤ec-

tively, agents with similar propensity scores are considered a match. Heckman,

Ichimura, and Todd (1997) (HIT), Angrist (1998), and Dehejia and Wahba (1999)

provide recent treatments of matching methods.

As with the regression methods discussed in Section 18.3.1, a practical problem

with matching on the propensity score is that it can be hard to find treated and

untreated agents with similar estimated propensity scores. HIT discuss trimming
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strategies in a nonparametric context and derive asymptotically valid standard errors.

Similarly, the practice of grouping on the basis of the estimated propensity scores,

and then ignoring the sampling variation in both the estimated propensity scores and

the grouping when constructing standard errors and confidence intervals, may be

misleading. HIT show how to obtain valid inference.

18.4 Instrumental Variables Methods

We now turn to instrumental variables estimation of average treatment e¤ects when

we suspect failure of the ignorability-of-treatment assumption (ATE.1 or ATE.1 0). IV

methods for estimating ATEs can be very e¤ective if a good instrument for treatment

is available. We need the instrument to predict treatment (after partialing out any

controls). As we discussed in Section 5.3.1, the instrument should be redundant in a

certain conditional expectation and unrelated to unobserved heterogeneity; we give

precise assumptions in the following subsections.

Our primary focus in this section is on the average treatment e¤ect defined in

equation (18.1), although we touch on estimating ATE1. In Section 18.4.2, we briefly

discuss estimating the local average treatment e¤ect.

18.4.1 Estimating the ATE Using IV

In studying IV procedures, it is useful to write the observed outcome y as in equation

(18.10):

y ¼ m0 þ ðm1 � m0Þw þ v0 þ wðv1 � v0Þ ð18:25Þ

However, unlike in Section 18.3, we do not assume that v0 and v1 are mean inde-

pendent of w, given x. Instead, we assume the availability of instruments, which we

collect in the vector z. (Here we separate the extra instruments from the covariates, so

that x and z do not overlap. In many cases z is a scalar, but the analysis is no easier in

that case.)

If we assume that the stochastic parts of y1 and y0 are the same, that is, v1 ¼ v0,

then the interaction term disappears (and ATE ¼ ATE1). Without the interaction

term we can use standard IV methods under weak assumptions.

assumption ATE.2: (a) In equation (18.25), v1 ¼ v0; (b) Lðv0 j x; zÞ ¼ Lðv0 j xÞ; and

(c) Lðw j x; zÞ0Lðw j xÞ.

All linear projections in this chapter contain unity, which we suppress for notational

simplicity.
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Under parts a and b of Assumption ATE.2, we can write

y ¼ d0 þ aw þ xb0 þ u0 ð18:26Þ

where a ¼ ATE and u0 1 v0 � Lðv0 j x; zÞ. By definition, u0 has zero mean and is

uncorrelated with ðx; zÞ, but w and u0 are generally correlated, which makes OLS

estimation of equation (18.26) inconsistent. The redundancy of z in the linear pro-

jection Lðv0 j x; zÞ means that z is appropriately excluded from equation (18.26); this

is the part of identification that we cannot test (except indirectly using the over-

identification test from Chapter 6). Part c means that z has predictive power in

the linear projection of treatment on ðx; zÞ; this is the standard rank condition for

identification from Chapter 5, and we can test it using a first-stage regression and

heteroskedasticity-robust tests of exclusion restrictions. Under Assumption ATE.2, a

[and the other parameters in equation (18.26)] are identified, and they can be con-

sistently estimated by 2SLS. Because the only endogenous explanatory variable in

equation (18.26) is binary, equation (18.25) is called a dummy endogenous variable

model (Heckman, 1978). As we discussed in Chapter 5, there are no special consid-

erations in estimating equation (18.26) by 2SLS when the endogenous explanatory

variable is binary.

Assumption ATE.2b holds if the instruments z are independent of ðy0; xÞ. For ex-

ample, suppose z is a scalar determining eligibility in a job training program or some

other social program. Actual participation, w, might be correlated with v0, which

could contain unobserved ability. If eligibility is randomly assigned, it is often rea-

sonable to assume that z is independent of ðy0; xÞ. Eligibility would positively influ-

ence participation, and so Assumption ATE.2c should hold.

Random assignment of eligibility is no guarantee that eligibility is a valid instru-

ment for participation. The outcome of z could a¤ect other behavior, which could

feed back into u0 in equation (18.26). For example, consider Angrist’s (1990) draft

lottery application, where draft lottery number is used as an instrument for enlisting.

Lottery number clearly a¤ected enlistment, so Assumption ATE.2c is satisfied. As-

sumption ATE.2b is also satisfied if men did not change behavior in unobserved ways

that a¤ect wage, based on their lottery number. One concern is that men with low

lottery numbers may get more education as a way of avoiding service through a de-

ferment. Including years of education in x e¤ectively solves this problem. But what if

men with high draft lottery numbers received more job training because employers

did not fear losing them? If a measure of job training status cannot be included in x,

lottery number would generally be correlated with u0. See AIR and Heckman (1997)

for additional discussion.
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As the previous discussion implies, the redundancy condition in Assumption

ATE.2b allows the instruments z to be correlated with elements of x. For example, in

the population of high school graduates, if w is a college degree indicator and the

instrument z is distance to the nearest college while attending high school, then z is

allowed to be correlated with other controls in the wage equation, such as geographic

indicators.

Under v1 ¼ v0 and the key assumptions on the instruments, 2SLS on equation

(18.26) is consistent and asymptotically normal. But if we make stronger assump-

tions, we can find a more e‰cient IV estimator.

assumption ATE.2 0: (a) In equation (18.25), v1 ¼ v0; (b) Eðv0 j x; zÞ ¼ Lðv0 j xÞ; (c)

Pðw ¼ 1 j x; zÞ0Pðw ¼ 1 j xÞ and Pðw ¼ 1 j x; zÞ ¼ Gðx; z; gÞ is a known parametric

form (usually probit or logit); and (d) Varðv0 j x; zÞ ¼ s2
0 .

Part b assumes that Eðv0 j xÞ is linear in x, and so it is more restrictive than Assumption

ATE.2b. It does not usually hold for discrete response variables y, although it may

be a reasonable approximation in some cases. Under parts a and b, the error u0 in

equation (18.26) has a zero conditional mean:

Eðu0 j x; zÞ ¼ 0 ð18:27Þ

Part d implies that Varðu0 j x; zÞ is constant. From the results on e‰cient choice of

instruments in Section 14.5.3, the optimal IV for w is Eðw j x; zÞ ¼ Gðx; z; gÞ. There-

fore, we can use a two-step IV method:

Procedure 18.1 (Under Assumption ATE.2 0): (a) Estimate the binary response model

Pðw ¼ 1 j x; zÞ ¼ Gðx; z; gÞ by maximum likelihood. Obtain the fitted probabilities,

ĜGi. The leading case occurs when Pðw ¼ 1 j x; zÞ follows a probit model.

(b) Estimate equation (18.26) by IV using instruments 1, ĜGi, and xi.

There are several nice features of this IV estimator. First, it can be shown that the

conditions su‰cient to ignore the estimation of g in the first stage hold; see Section

6.1.2. Therefore, the usual 2SLS standard errors and test statistics are asymptotically

valid. Second, under Assumption ATE.2 0, the IV estimator from step b is asymp-

totically e‰cient in the class of estimators where the IVs are functions of ðxi; ziÞ; see

Problem 8.11. If Assumption ATE.2d does not hold, all statistics should be made

robust to heteroskedasticity, and we no longer have the e‰cient IV estimator.

Procedure 18.1 has an important robustness property. Because we are using ĜGi as an

instrument for wi, the model for Pðw ¼ 1 j x; zÞ does not have to be correctly specified.

For example, if we specify a probit model for Pðw ¼ 1 j x; zÞ, we do not need the probit
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model to be correct. Generally, what we need is that the linear projection of w onto

½x;Gðx; z; g�Þ� actually depends on Gðx; z; g�Þ, where we use g� to denote the plim of

the maximum likelihood estimator when the model is misspecified (see White, 1982a).

These requirements are fairly weak when z is partially correlated with w.

Technically, a and b are identified even if we do not have extra exogenous varia-

bles excluded from x. But we can rarely justify the estimator in this case. For con-

creteness, suppose that w given x follows a probit model [and we have no z, or z does

not appear in Pðw ¼ 1 j x; zÞ]. Because Gðx; gÞ1Fðg0 þ xg1Þ is a nonlinear function

of x, it is not perfectly correlated with x, so it can be used as an IV for w. This situ-

ation is very similar to the one discussed in Section 17.4.1: while identification holds

for all values of a and b if g1 0 0, we are achieving identification o¤ of the non-

linearity of Pðw ¼ 1 j xÞ. Further, Fðg0 þ xg1Þ and x are typically highly correlated.

As we discussed in Section 5.2.6, severe multicollinearity among the IVs can result in

very imprecise IV estimators. In fact, if Pðw ¼ 1 j xÞ followed a linear probability

model, a would not be identified. See Problem 18.5 for an illustration.

Example 18.3 (Estimating the E¤ects of Education on Fertility): We use the data in

FERTIL2.RAW to estimate the e¤ect of attaining at least seven years of education

on fertility. The data are for women of childbearing age in Botswana. Seven years of

education is, by far, the modal amount of positive education. (About 21 percent of

women report zero years of education. For the subsample with positive education,

about 33 percent report seven years of education.) Let y ¼ children, the number of

living children, and let w ¼ educ7 be a binary indicator for at least seven years of

education. The elements of x are age, age2, evermarr (ever married), urban (lives in an

urban area), electric (has electricity), and tv (has a television).

The OLS estimate of ATE is �:394 (se ¼ :050). We also use the variable frsthalf, a

binary variable equal to one if the woman was born in the first half of the year, as an

IV for educ7. It is easily shown that educ7 and frsthalf are significantly negatively

related. The usual IV estimate is much larger in magnitude than the OLS estimate,

but only marginally significant: �1:131 (se ¼ :619). The estimate from Procedure

18.1 is even bigger in magnitude, and very significant: �1:975 (se ¼ :332). The stan-

dard error that is robust to arbitrary heteroskedasticity is even smaller. Therefore,

using the probit fitted values as an IV, rather than the usual linear projection, pro-

duces a more precise estimate (and one notably larger in magnitude).

The IV estimate of education e¤ect seems very large. One possible problem is that,

because children is a nonnegative integer that piles up at zero, the assumptions

underlying Procedure 18.1—namely, Assumptions ATE.2 0a and ATE.2 0b—might

not be met. In Chapter 19 we will discuss other methods for handling integer responses.
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In principle, it is important to recognize that Procedure 18.1 is not the same as

using ĜG as a regressor in place of w. That is, IV estimation of equation (18.26) is not

the same as the OLS estimator from

yi on 1; ĜGi; xi ð18:28Þ

Consistency of the OLS estimators from regression (18.28) relies on having the model

for Pðw ¼ 1 j x; zÞ correctly specified. If the first three parts of Assumption ATE.2 0

hold, then

Eðy j x; zÞ ¼ d0 þ aGðx; z; gÞ þ xb

and, from the results on generated regressors in Chapter 6, the estimators from re-

gression (18.28) are generally consistent. Procedure 18.1 is more robust because it

does not require Assumption ATE.2 0c for consistency.

Another problem with regression (18.28) is that the usual OLS standard errors

and test statistics are not valid, for two reasons. First, if Varðu0 j x; zÞ is constant,

Varðy j x; zÞ cannot be constant because Varðw j x; zÞ is not constant. By itself this is a

minor nuisance because heteroskedasticity-robust standard errors and test statistics

are easy to obtain. [However, it does call into question the e‰ciency of the estimator

from regression (18.28).] A more serious problem is that the asymptotic variance of

the estimator from regression (18.28) depends on the asymptotic variance of ĝg unless

a ¼ 0, and the heteroskedasticity-robust standard errors do not correct for this.

In summary, using fitted probabilities from a first-stage binary response model,

such as probit or logit, as an instrument for w is a nice way to exploit the binary nature

of the endogenous explanatory variable. In addition, the asymptotic inference is

always standard. Using ĜGi as an instrument does require the assumption that

Eðv0 j x; zÞ depends only on x and is linear in x, which can be more restrictive than

Assumption ATE.2b.

Allowing for the interaction wðv1 � v0Þ in equation (18.25) is notably harder. In

general, when v1 0 v0, the IV estimator (using z or ĜG as IVs for w) does not con-

sistently estimate ATE (or ATE1). Nevertheless, it is useful to find assumptions under

which IV estimation does consistently estimate ATE. This problem has been studied

by Angrist (1991), Heckman (1997), and Wooldridge (1997b), and we synthesize

results from these papers.

Under the conditional mean redundancy assumptions

Eðv0 j x; zÞ ¼ Eðv0 j xÞ and Eðv1 j x; zÞ ¼ Eðv1 j xÞ ð18:29Þ

we can always write equation (18.25) as

y ¼ m0 þ aw þ g0ðxÞ þ w½g1ðxÞ � g0ðxÞ� þ e0 þ wðe1 � e0Þ ð18:30Þ
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where a is the ATE and

v0 ¼ g0ðxÞ þ e0; Eðe0 j x; zÞ ¼ 0 ð18:31Þ

v1 ¼ g1ðxÞ þ e1; Eðe1 j x; zÞ ¼ 0 ð18:32Þ

Given functional form assumptions for g0 and g1—which would typically be linear

in parameters—we can estimate equation (18.30) by IV, where the error term is

e0 þ wðe1 � e0Þ. For concreteness, suppose that

g0ðxÞ ¼ h0 þ xb0; g1ðxÞ � g0ðxÞ ¼ ðx � cÞd ð18:33Þ

where c ¼ EðxÞ. If we plug these equations into equation (18.30), we need instru-

ments for w and wðx � cÞ (note that x does not contain a constant here). If

q1 qðx; zÞ is the instrument for w (such as the response probability in Procedure

18.1), the natural instrument for w � x is q � x. (And, if q is the e‰cient IV for w, q � x

is the e‰cient instrument for w � x.) When will applying IV to

y ¼ gþ aw þ xb0 þ wðx � cÞdþ e0 þ wðe1 � e0Þ ð18:34Þ

be consistent? If the last term disappears, and, in particular, if

e1 ¼ e0 ð18:35Þ

then the error e0 has zero mean given ðx; zÞ; this result means that IV estimation of

equation (18.34) produces consistent, asymptotically normal estimators.

assumption ATE.3: With y expressed as in equation (18.25), conditions (18.29),

(18.33), and (18.35) hold. In addition, Assumption ATE.2 0c holds.

We have the following extension of Procedure 18.1:

Procedure 18.2 (Under Assumption ATE.3): (a) Same as Procedure 18.1.

(b) Estimate the equation

yi ¼ gþ awi þ xib0 þ ½wiðxi � xÞ�dþ errori ð18:36Þ

by IV, using instruments 1, ĜGi, xi, and ĜGiðxi � xÞ.

If we add Assumption ATE.2 0d, Procedure 18.2 produces the e‰cient IV estimator

[when we ignore estimation of EðxÞ]. As with Procedure 18.1, we do not actually need

the binary response model to be correctly specified for identification. As an alterna-

tive, we can use zi and interactions between zi and xi as instruments, which generally

results in testable overidentifying restrictions.

Technically, the fact that x is an estimator of EðxÞ should be accounted for in

computing the standard errors of the IV estimators. But, as shown in Problem 6.10,
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the adjustments for estimating EðxÞ can be expected to have a trivial e¤ect on the

standard errors; in practice, we can just use the usual or heteroskedasticity-robust

standard errors.

Example 18.4 (An IV Approach to Evaluating Job Training): To evaluate the e¤ects

of a job training program on subsequent wages, suppose that x includes education,

experience, and the square of experience. If z indicates eligibility in the program, we

would estimate the equation

logðwageÞ ¼ m0 þ a jobtrain þ b01educ þ b02exper þ b03exper2

þ d1 jobtrain � ðeduc � educÞ þ d2 jobtrain � ðexper � experÞ

þ d3 jobtrain � ðexper2 � exper2Þ þ error

by IV, using instruments 1, z, educ, exper, exper2, and interactions of z with all

demeaned covariates. Notice that for the last interaction, we subtract o¤ the average

of exper2. Alternatively, we could use in place of z the fitted values from a probit of

jobtrain on ðx; zÞ.

Procedure 18.2 is easy to carry out, but its consistency generally hinges on condi-

tion (18.35), not to mention the functional form assumptions in equation (18.33). We

can relax condition (18.35) to

E½wðe1 � e0Þ j x; z� ¼ E½wðe1 � e0Þ� ð18:37Þ

We do not need wðe1 � e0Þ to have zero mean, as a nonzero mean only a¤ects the

intercept. It is important to see that correlation between w and ðe1 � e0Þ does not in-

validate the IV estimator of a from Procedure 18.2. However, we must assume that

the covariance conditional on ðx; zÞ is constant. Even if this assumption is not exactly

true, it might be approximately true.

It is easy to see why, along with conditions (18.29) and (18.33), condition (18.37)

implies consistency of the IV estimator. We can write equation (18.34) as

y ¼ xþ aw þ xb0 þ wðx � cÞdþ e0 þ r ð18:38Þ

where r ¼ wðe1 � e0Þ � E½wðe1 � e0Þ� and x ¼ gþ E½wðe1 � e0Þ�. Under condition

(18.37), Eðr j x; zÞ ¼ 0, and so the composite error e0 þ r has zero mean conditional

on ðx; zÞ. Therefore, any function of ðx; zÞ can be used as instruments in equation

(18.38). Under the following modification of Assumption ATE.3, Procedure 18.2 is

still consistent:

assumption ATE.3 0: With y expressed as in equation (18.25), conditions (18.29),

(18.33), and (18.37) hold. In addition, Assumption ATE.2 0c holds.
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Even if Assumption ATE.2 0d holds in addition to Assumption ATE.2 0c, the IV esti-

mator is generally not e‰cient because Varðr j x; zÞ would typically be heteroskedastic.

Angrist (1991) provided primitive conditions for assumption (18.37) in the case

where z is independent of ðy0; y1; xÞ. Then, the covariates can be dropped entirely

from the analysis (leading to IV estimation of the simple regression equation y ¼
xþ aw þ error). We can extend those conditions here to allow z and x to be corre-

lated. Assume that

Eðw j x; z; e1 � e0Þ ¼ hðx; zÞ þ kðe1 � e0Þ ð18:39Þ

for some functions hð�Þ and kð�Þ and that

e1 � e0 is independent of ðx; zÞ ð18:40Þ

Under these two assumptions,

E½wðe1 � e0Þ j x; z� ¼ hðx; zÞEðe1 � e0 j x; zÞ þ E½ðe1 � e0Þkðe1 � e0Þ j x; z�

¼ hðx; zÞ � 0 þ E½ðe1 � e0Þkðe1 � e0Þ�

¼ E½ðe1 � e0Þkðe1 � e0Þ� ð18:41Þ

which is just an unconditional moment in the distribution of e1 � e0. We have used

the fact that Eðe1 � e0 j x; zÞ ¼ 0 and that any function of e1 � e0 is independent of

ðx; zÞ under assumption (18.40). If we assume that kð�Þ is the identity function (as in

Wooldridge, 1997b), then equation (18.41) is Varðe1 � e0Þ.
Assumption (18.40) is reasonable for continuously distributed responses, but it

would not generally be reasonable when y is a discrete response or corner solution

outcome. Further, even if assumption (18.40) holds, assumption (18.39) is violated

when w given x, z, and ðe1 � e0Þ follows a standard binary response model. For ex-

ample, a probit model would have

Pðw ¼ 1 j x; z; e1 � e0Þ ¼ F½p0 þ xp1 þ zp2 þ rðe1 � e0Þ� ð18:42Þ

which is not separable in ðx; zÞ and ðe1 � e0Þ. Nevertheless, assumption (18.39) might

be a reasonable approximation in some cases. Without covariates, Angrist (1991)

presents simulation evidence that suggests the simple IV estimator does quite well for

estimating the ATE even when assumption (18.39) is violated.

Rather than assuming (18.39), di¤erent approaches are available, but they require

di¤erent assumptions. We first consider a solution that involves adding a nonlinear

function of ðx; zÞ to equation (18.38) and estimating the resulting equation by 2SLS.

We add to assumptions (18.40) and (18.42) a normality assumption,
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e1 � e0 @Normalð0; t2Þ ð18:43Þ

Under assumptions (18.40), (18.42), and (18.43) we can derive an estimating equation

to show that ATE is usually identified.

To derive an estimating equation, note that conditions (18.40), (18.42), and (18.43)

imply that

Pðw ¼ 1 j x; zÞ ¼ Fðy0 þ xy1 þ zy2Þ ð18:44Þ

where each theta is the corresponding pi multiplied by ½1 þ r2t2��1=2. If we let a

denote the latent error underlying equation (18.44) (with a standard normal distri-

bution), and define c1 e1 � e0, then conditions (18.40), (18.42), and (18.43) imply

that ða; cÞ has a zero-mean bivariate normal distribution that is independent of ðx; zÞ.
Therefore, Eðc j a; x; zÞ ¼ Eðc j aÞ ¼ xa for some parameter x, and

Eðwc j x; zÞ ¼ E½wEðc j a; x; zÞ j x; z� ¼ xEðwa j x; zÞ:

Using the fact that a@Normalð0; 1Þ and is independent of ðx; zÞ, we have

Eðwa j x; zÞ ¼
ðy
�y

1½y0 þ xy1 þ zy2 þ ab 0�afðaÞ da

¼ fð�fy0 þ xy1 þ zy2gÞ ¼ fðy0 þ xy1 þ zy2Þ ð18:45Þ

where fð�Þ is the standard normal density. Therefore, we can now write

y ¼ gþ aw þ xb þ wðx � cÞdþ xfðy0 þ xy1 þ zy2Þ þ e0 þ r ð18:46Þ

where r ¼ wc � Eðwc j x; zÞ. The composite error in (18.46) has zero mean conditional

on ðx; zÞ, and so we can estimate the parameters using IV methods. One catch is

the nonlinear function fðy0 þ xy1 þ zy2Þ. We could use nonlinear two stage least

squares, as described in Chapter 14. But a two-step approach is easier. First, we

gather together the assumptions:

assumption ATE.4: With y written as in equation (18.25), maintain assumptions

(18.29), (18.33), (18.40), (18.42) (with p2 0 0), and (18.43).

Procedure 18.3 (Under Assumption ATE.4): (a) Estimate y0, y1, and y2 from a

probit of w on ð1; x; zÞ. Form the predicted probabilities, F̂Fi, along with f̂fi ¼
fðŷy0 þ xiŷy1 þ ziŷy2Þ, i ¼ 1; 2; . . . ;N.

(b) Estimate the equation

yi ¼ gþ awi þ xib0 þ wiðxi � xÞdþ xf̂fi þ errori ð18:47Þ

by IV, using instruments ½1; F̂Fi; xi; F̂Fiðxi � xÞ; f̂fi�.
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The term f̂fi 1 fðŷy0 þ xiŷy1 þ ziŷy2Þ in equation (18.47) is another example of a

control function, although, unlike in Section 18.3, it is obtained from instrumental

variables assumptions, rather than ignorability of treatment assumptions.

Even if x0 0, the e¤ect of adding f̂fi to the estimate of a can be small. Consider the

version of (18.46) without covariates x and with a scalar instrument, z:

y ¼ gþ aw þ xfðy0 þ y1zÞ þ u; Eðu j zÞ ¼ 0 ð18:48Þ

This equation holds, for example, if the instrument z is independent of ðx; v0; v1Þ. The

simple IV estimator of a is obtained by omitting fðy0 þ y1zÞ. If we use z as an IV for

w, the simple IV estimator is consistent provided z and fðy0 þ y1zÞ are uncorrelated.

(Remember, having an omitted variable that is uncorrelated with the IV does not

cause inconsistency of the IV estimator.) Even though fðy0 þ y1zÞ is a function of

z, these two variables might have small correlation because z is monotic while

fðy0 þ y1zÞ is symmetric about �ðy0=y1Þ. This discussion shows that condition

(18.37) is not necessary for IV to consistently estimate the ATE: It could be that while

E½wðe1 � e0Þ j x; z� is not constant, it is roughly uncorrelated with x (or the functions

of x) that appear in (18.38), as well as with the functions of z used as instruments.

Equation (18.48) illustrates another important point: If x0 0 and the single

instrument z is binary, a is not identified. Lack of identification occurs because

fðy0 þ y1zÞ takes on only two values, which means it is perfectly linearly related to z.

So long as z takes on more than two values, a is generally identified, although the

identification is due to the fact that fð�Þ is a di¤erent nonlinear function than Fð�Þ.
With x in the model f̂fi and F̂Fi might be collinear, resulting in imprecise IV estimates.

Because r in (18.46) is heteroskedastic, the instruments below (18.47) are not opti-

mal, and so we might simply use zi along with interactions of zi with ðxi � xÞ and f̂fi

as IVs. If zi has dimension greater than one, then we can test the overidentifying

restrictions as a partial test of instrument selection and the normality assumptions. Of

course, we could use the results of Chapter 14 to characterize and estimate the opti-

mal instruments, but this is fairly involved [see, for example, Newey and McFadden

(1994)].

A di¤erent approach to estimating the ATE when assumption (18.39) fails is to

compute the expected value of y given the endogenous treatment and all exogenous

variables: Eðy jw; x; zÞ. Finding this expectation requires somewhat more by way of

assumptions, but it also has some advantages, which we discuss later. For complete-

ness, we list a set of assumptions:

assumption ATE.4 0: With y written as in equation (18.25), maintain assumptions

(18.29) and (18.33). Furthermore, the treatment can be written as w ¼ 1½y0 þ xy1 þ
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zy2 þ ab 0�, where ða; e0; e1Þ is independent of ðx; zÞ with a trivariate normal distri-

bution; in particular, a@Normalð0; 1Þ.

Under Assumption ATE.4 0, we can use calculations very similar to those used in

Section 17.4.1 to obtain Eðy jw; x; zÞ. In particular,

Eðy jw; x; zÞ ¼ gþ aw þ xb0 þ wðx � cÞdþ r1w½fðqyÞ=FðqyÞ�

þ r2ð1 � wÞffðqyÞ=½1 �FðqyÞ�g ð18:49Þ

where qy1 y0 þ xy1 þ zy2 and r1 and r2 are additional parameters. Heckman (1978)

used this expectation to obtain two-step estimators of the switching regression model.

[See Vella and Verbeek (1999) for a recent discussion of the switching regression

model in the context of treatment e¤ects.] Not surprisingly, (18.49) suggests a simple

two-step procedure, where the first step is identical to that in Procedure 18.3:

Procedure 18.4 (Under Assumption ATE.4 0): (a) Estimate y0, y1, and y2 from a

probit of w on ð1; x; zÞ. Form the predicted probabilities, F̂Fi, along with f̂fi ¼ fðŷy0 þ
xiŷy1 þ ziŷy2Þ, i ¼ 1; 2; . . . ;N.

(b) Run the OLS regression

yi on 1;wi; xi;wiðxi � xÞ;wiðf̂fi=F̂FiÞ; ð1 � wiÞ½f̂fi=ð1 � F̂FiÞ� ð18:50Þ

using all of the observations. The coe‰cient on wi is a consistent estimator of a, the

ATE.

When we restrict attention to the wi ¼ 1 subsample, thereby dropping wi and

wiðxi � xÞ, we obtain the sample selection correction from Section 17.4.1; see equa-

tion (17.24). (The treatment wi becomes the sample selection indicator.) But the goal

of sample selection corrections is very di¤erent from estimating an average treatment

e¤ect. For the sample selection problem, the goal is to estimate b0, which indexes

Eðy j xÞ in the population. By contrast, in estimating an ATE we are interested in the

causal e¤ect that w has on y.

It makes sense to check for joint significance of the last two regressors in regression

(18.50) as a test of endogeneity of w. Because the coe‰cients r1 and r2 are zero under

H0, we can use the results from Chapter 6 to justify the usual Wald test (perhaps

made robust to heteroskedasticity). If these terms are jointly insignificant at a su‰-

ciently high level, we can justify the usual OLS regression without unobserved heter-

ogeneity. If we reject H0, we must deal with the generated regressors problem in

obtaining a valid standard error for âa.

Technically, Procedure 18.3 is more robust than Procedure 18.4 because the former

does not require a trivariate normality assumption. Linear conditional expectations,
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along with the assumption that w given ðx; zÞ follows a probit, su‰ce. In addition,

Procedure 18.3 allows us to separate the issues of endogeneity of w and nonconstant

treatment e¤ect: if we ignore the estimation error involved with demeaning xi in the

interaction term—which generally seems reasonable—then a standard t-test (perhaps

made robut to heteroskedasticity) for H0: x ¼ 0 is valid for testing the presence of

wðe1 � e0Þ, even when w is endogenous.

Practically, the extra assumption in Procedure 18.4 is that e0 is independent of

ðx; zÞ with a normal distribution. We may be willing to make this assumption, espe-

cially if the estimates from Procedure 18.3 are too imprecise to be useful. The e‰ciency

issue is a di‰cult one because of the two-step estimation involved, but, intuitively,

Procedure 18.4 is likely to be more e‰cient because it is based on Eðy jw; x; zÞ. Pro-

cedure 18.3 involves replacing the unobserved composite error with its expectation

conditional only on ðx; zÞ. In at least one case, Procedure 18.4 gives results when

Procedure 18.3 cannot: when x is not in the equation and there is a single binary

instrument.

Under a variant of Assumption ATE.3 0, we can consistently estimate ATE1 by IV.

As before, we express y as in equation (18.25). First, we show how to consistently

estimate ATE1ðxÞ, which can be written as

ATE1ðxÞ ¼ Eðy1 � y0 j x;w ¼ 1Þ ¼ ðm1 � m0Þ þ Eðv1 � v0 j x;w ¼ 1Þ

The following assumption identifies ATE1ðxÞ:

assumption ATE.3 00: (a) With y expressed as in equation (18.25), the first part of

assumption (18.29) holds, that is, Eðv0 j x; zÞ ¼ Eðv0 j xÞ; (b) Eðv1 � v0 j x; z;w ¼ 1Þ ¼
Eðv1 � v0 j x;w ¼ 1Þ; and (c) Assumption ATE.2 0c holds.

We discussed part a of this assumption earlier, as it also appears in Assumption

ATE.3 0. It can be violated if agents change their behavior based on z. Part b deserves

some discussion. Recall that v1 � v0 is the person-specific gain from participation or

treatment. Assumption ATE.3 00 requires that for those in the treatment group, the

gain is not predictable given z, once x is controlled for. Heckman (1997) discusses

Angrist’s (1990) draft lottery example, where z (a scalar) is draft lottery number. Men

who had a large z were virtually certain to escape the draft. But some men with large

draft numbers chose to serve anyway. Even with good controls in x, it seems plausi-

ble that, for those who chose to serve, a higher z is associated with a higher gain to

military service. In other words, for those who chose to serve, v1 � v0 and z are pos-

itively correlated, even after controlling for x. This argument directly applies to esti-

mation of ATE1; the e¤ect on estimation of ATE is less clear.
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Assumption ATE.3 00b is plausible when z is a binary indicator for eligibility in a

program, which is randomly determined and does not induce changes in behavior

other than whether or not to participate.

To see how Assumption ATE.3 00 identifies ATE1ðxÞ, rewrite equation (18.25) as

y ¼ m0 þ g0ðxÞ þ w½ðm1 � m0Þ þ Eðv1 � v0 j x;w ¼ 1Þ�

þ w½ðv1 � v0Þ � Eðv1 � v0 j x;w ¼ 1Þ� þ e0

¼ m0 þ g0ðxÞ þ w � ATE1ðxÞ þ a þ e0 ð18:51Þ

where a1w½ðv1 � v0Þ � Eðv1 � v0 j x;w ¼ 1Þ� and e0 is defined in equation (18.31).

Under Assumption ATE.3 00a, Eðe0 j x; zÞ ¼ 0. The hard part is dealing with the

term a. When w ¼ 0, a ¼ 0. Therefore, to show that Eða j x; zÞ ¼ 0, it su‰ces to show

that Eða j x; z;w ¼ 1Þ ¼ 0. [Remember, Eða j x; zÞ ¼ Pðw ¼ 0Þ � Eða j x; z;w ¼ 0Þþ
Pðw ¼ 1Þ � Eða j x; z;w ¼ 1Þ.] But this result follows under Assumption ATE.3 00b:

Eða j x; z;w ¼ 1Þ ¼ Eðv1 � v0 j x; z;w ¼ 1Þ � Eðv1 � v0 j x;w ¼ 1Þ ¼ 0

Now, letting r1 a þ e0 and assuming that g0ðxÞ ¼ h0 þ hðxÞb0 and ATE1ðxÞ ¼ tþ
fðxÞd for some row vector of functions hðxÞ and fðxÞ, we can write

y ¼ g0 þ h0ðxÞb0 þ tw þ ½w � fðxÞ�dþ r; Eðr j x; zÞ ¼ 0

All the parameters of this equation can be consistently estimated by IV, using any

functions of ðx; zÞ as IVs. [These would include include 1, h0ðxÞ, Gðx; z; ĝgÞ—the fitted

treatment probabilities—and Gðx; z; ĝgÞ � fðxÞ.] The average treatment e¤ect on the

treated for any x is estimated as t̂tþ fðxÞd̂d. Averaging over the observations with

wi ¼ 1 gives a consistent estimator of ATE1.

18.4.2 Estimating the Local Average Treatment E¤ect by IV

We now discuss estimation of an evaluation parameter introduced by Imbens and

Angrist (1994), the local average treatment e¤ect (LATE), in the simplest possible

setting. This requires a slightly more complicated notation. (More general cases re-

quire even more complicated notation, as in AIR.) As before, we let w be the

observed treatment indicator (taking on zero or one), and let the counterfactual out-

comes be y1 with treatment and y0 without treatment. The observed outcome y can

be written as in equation (18.3).

To define LATE, we need to have an instrumental variable, z. In the simplest case

z is a binary variable, and we focus attention on that case here. For each unit i in a

random draw from the population, zi is zero or one. Associated with the two possible

outcomes on z are counterfactual treatments, w0 and w1. These are the treatment
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statuses we would observe if z ¼ 0 and z ¼ 1, respectively. For each unit, we observe

only one of these. For example, z can denote whether a person is eligible for a par-

ticular program, while w denotes actual participation in the program.

Write the observed treatment status as

w ¼ ð1 � zÞw0 þ zw1 ¼ w0 þ zðw1 � w0Þ ð18:52Þ

When we plug this equation into y ¼ y0 þ wðy1 � y0Þ we get

y ¼ y0 þ w0ðy1 � y0Þ þ zðw1 � w0Þðy1 � y0Þ

A key assumption is

z is independent of ðy0; y1;w0;w1Þ ð18:53Þ

Under assumption (18.53), all expectations involving functions of ðy0; y1;w0;w1Þ,
conditional on z, do not depend on z. Therefore,

Eðy j z ¼ 1Þ ¼ Eðy0Þ þ E½w0ðy1 � y0Þ� þ E½ðw1 � w0Þðy1 � y0Þ�

and

Eðy j z ¼ 0Þ ¼ Eðy0Þ þ E½w0ðy1 � y0Þ�

Subtracting the second equation from the first gives

Eðy j z ¼ 1Þ � Eðy j z ¼ 0Þ ¼ E½ðw1 � w0Þðy1 � y0Þ� ð18:54Þ

which can be written [see equation (2.49)] as

1 � Eðy1 � y0 jw1 � w0 ¼ 1ÞPðw1 � w0 ¼ 1Þ

þ ð�1ÞEðy1 � y0 jw1 � w0 ¼ �1ÞPðw1 � w0 ¼ �1Þ

þ 0 � Eðy1 � y0 jw1 � w0 ¼ 0ÞPðw1 � w0 ¼ 0Þ

¼ Eðy1 � y0 jw1 � w0 ¼ 1ÞPðw1 � w0 ¼ 1Þ

� Eðy1 � y0 jw1 � w0 ¼ �1ÞPðw1 � w0 ¼ �1Þ

To get further, we introduce another important assumption, called monotonicity by

Imbens and Angrist:

w1 bw0 ð18:55Þ

In other words, we are ruling out w1 ¼ 0 and w0 ¼ 1. This assumption has a simple

interpretation when z is a dummy variable representing assignment to the treatment

group: anyone in the population who would be in the treatment group in the absence
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of assignment (or eligibility) would be in the treatment group if assigned to the

treatment group. Units of the population who do not satisfy monotonicity are called

defiers. In many applications, this assumption seems very reasonable. For example, if

z denotes randomly assigned eligibility in a job training program, assumption (18.55)

simply requires that people who would participate without being eligible would also

participate if eligible.

Under assumption (18.55), Pðw1 � w0 ¼ �1Þ ¼ 0, so assumptions (18.53) and

(18.55) imply

Eðy j z ¼ 1Þ � Eðy j z ¼ 0Þ ¼ Eðy1 � y0 jw1 � w0 ¼ 1ÞPðw1 � w0 ¼ 1Þ ð18:56Þ

In this setup, Imbens and Angrist (1994) define LATE to be

LATE ¼ Eðy1 � y0 jw1 � w0 ¼ 1Þ ð18:57Þ

Because w1 � w0 ¼ 1 is equivalent to w1 ¼ 1, w0 ¼ 0, LATE has the following inter-

pretation: it is the average treatment e¤ect for those who would be induced to par-

ticipate by changing z from zero to one. There are two things about LATE that make

it di¤erent from the other treatment parameters. First, it depends on the instrument,

z. If we use a di¤erent instrument, then LATE generally changes. The parameters

ATE and ATE1 are defined without reference to an IV, but only with reference to a

population. Second, because we cannot observe both w1 and w0, we cannot identify

the subpopulation with w1 � w0 ¼ 1. By contrast, ATE averages over the entire

population, while ATE1 is the average for those who are actually treated.

Example 18.5 (LATE for Attending a Catholic High School): Suppose that y is a

standardized test score, w is an indicator for attending a Catholic high school, and z

is an indicator for whether the student is Catholic. Then, generally, LATE is the

mean e¤ect on test scores for those individuals who choose a Catholic high school

because they are Catholic. Evans and Schwab (1995) use a high school graduation

indicator for y, and they estimate a probit model with an endogenous binary ex-

planatory variable, as described in Section 15.7.3. Under the probit assumptions, it is

possible to estimate ATE, whereas the simple IV estimator identifies LATE under

weaker assumptions.

Because Eðy j z ¼ 1Þ and Eðy j z ¼ 0Þ are easily estimated using a random sample,

LATE is identified if Pðw1 � w0 ¼ 1Þ is estimable and nonzero. Importantly, from the

monotonicity assumption, w1 � w0 is a binary variable because Pðw1 � w0 ¼ �1Þ ¼ 0.

Therefore,

Pðw1 � w0 ¼ 1Þ ¼ Eðw1 � w0Þ ¼ Eðw1Þ � Eðw0Þ ¼ Eðw j z ¼ 1Þ � Eðw j z ¼ 0Þ

¼ Pðw ¼ 1 j z ¼ 1Þ � Pðw ¼ 1 j z ¼ 0Þ
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where the second-to-last equality follows from equations (18.52) and (18.53). Each

conditional probability can be consistently estimated given a random sample on

ðw; zÞ. Therefore, the final assumption is

Pðw ¼ 1 j z ¼ 1Þ0Pðw ¼ 1 j z ¼ 0Þ ð18:58Þ

To summarize, under assumptions (18.53), (18.55), and (18.58),

LATE ¼ ½Eðy j z ¼ 1Þ � Eðy j z ¼ 0Þ�=½Pðw ¼ 1 j z ¼ 1Þ � Pðw ¼ 1 j z ¼ 0Þ� ð18:59Þ

Therefore, a consistent estimator is LÂATE ¼ ðy1 � y0Þ=ðw1 � w0Þ, where y1 is the

sample average of yi over that part of the sample where zi ¼ 1 and y0 is the sample

average over zi ¼ 0, and similarly for w1 and w0 (which are sample proportions).

From Problem 5.13b, we know that LÂATE is identical to the IV estimator of a in the

simple equation y ¼ d0 þ aw þ error, where z is the IV for w.

Our conclusion is that, in the simple case of a binary instrument for the binary

treatment, the usual IV estimator consistently estimates LATE under weak assump-

tions. See Angrist, Imbens, and Rubin (1996) and the discussants’ comments for

much more.

18.5 Further Issues

As we have seen in Sections 18.3 and 18.4, under certain assumptions, OLS or IV can

be used to estimate average treatment e¤ects. Therefore, at least in some cases,

problems such as attrition or other forms of sample selection can be easily handled

using the methods in Chapter 17. For example, in equation (18.34) under assumption

(18.35), it is reasonable to assume that the assumptions of Procedure 17.2 hold, with

the straightforward extension that the interaction between wi (which plays the role of

yi2) and ðxi � xÞ is added, along with the appropriate IVs. If the problem is attrition,

we need some exogenous elements that a¤ect attrition but do not appear in x or z.

Other situations may require special attention, and we now briefly discuss some of

these.

18.5.1 Special Considerations for Binary and Corner Solution Responses

The definitions of ATE and ATE1, as well as LATE, are valid for any kind of re-

sponse variable. ATE is simply Eðy1Þ � Eðy0Þ, and for this to be well defined we only

need to assume that the expected values exist. If y0 and y1 are binary—such as em-

ployment indicators—the expected values are probabilities of success. If y0 and y1

are corner solution outcomes—such as labor supply—ATE and ATE1 estimate

the e¤ect of treatment on the so-called unconditional expectation rather than, say,
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Eðy1 � y0 j y0 > 0Þ. Still, ATE and ATE1 are often of interest for corner solution

outcomes.

If the average treatment e¤ects as we defined them in Section 18.2 are still of

interest, why do we need to consider alternative methods for estimating treatment

e¤ects? The answer is that some of the assumptions we have discussed are unrealistic

for discrete or corner solution outcomes. For example, to arrive at equation (18.15),

we assumed that Eðyg j xÞ is linear in some functions of x. Though these assumptions

can be relaxed, the computation of valid standard errors is no longer straightforward

because a linear regression no longer generally estimates ATE. [Expression (18.7) is

general and does not impose any functional forms, and so it can be used as the basis

for estimating ATE. We would simply estimate Eðy j x;w ¼ 1Þ and Eðy j x;w ¼ 0Þ in

a way that is consistent with the features of y.]

Under ignorability of treatment, the propensity score approach is attractive be-

cause it requires no modeling of expectations involving y0 or y1. Only the propensity

score needs to be modeled, and this is always a binary response probability.

When we cannot assume ignorability of treatment and must resort to IV methods,

allowing for discrete and corner solution responses is theoretically harder. As we

discussed in Section 18.4.1, conditions such as equation (18.33) cannot be literally

true for binary and Tobit-like responses, and this condition appears in all of the

assumptions for IV estimation. It is not easy to relax this assumption because if, say,

yg is a corner solution outcome, a reasonable model for Eðv1 � v0 j xÞ is not obvious.

Of course, it could be that, even if the assumptions in Section 18.4 cannot be ex-

actly true, the IV methods may nevertheless produce reasonable estimates of ATE

and ATE1. Angrist’s (1991) simulation evidence is compelling for binary responses,

but he only studies the case without covariates.

As an alternative to the various treatment e¤ect estimators covered in this chapter,

we can use probit and Tobit models with a binary endogenous explanatory variable.

The maximum likelihood estimator described in Section 15.7.3 requires a strong set

of assumptions, but it delivers estimates of the exact average treatment e¤ect, condi-

tional on the exogenous variables, if the probit assumptions hold. Similarly, a Tobit

model with a binary endogenous variable can be estimated by maximum likelihood

(see Problem 16.6); again, estimates of ATE can be obtained directly.

18.5.2 Panel Data

The availability of panel data allows us to consistently estimate treatment e¤ects

without assuming ignorability of treatment and without an instrumental variable,

provided the treatment varies over time and is uncorrelated with time-varying unob-

servables that a¤ect the response.
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If the treatment is assumed to have the same e¤ect for each unit and if the e¤ect is

constant over time, fixed e¤ects or first-di¤erencing methods can be used, as de-

scribed in Chapter 10. This approach works well when the treatment and control

groups are designated based on time-constant variables and when treatment status is

not constant across time. Of course, we must observe the responses and other con-

trols for each cross section unit in at least two di¤erent time periods. A more com-

plicated model allows the treatment e¤ect to interact with observable variables and

unobserved heterogeneity. For example, consider the model

yit ¼ xitb þ a1wit þ ci þ withi þ uit

where wit is a binary treatment indicator of some training program, yit is the response

variable, and ci and hi are unobserved heterogeneity. This is a special case of the

model studied in Section 11.2.2. The average treatment e¤ect is a1 þ EðhiÞ, and we

can use the methods of Section 11.2.2 to estimate a1 and EðhiÞ.
The problem of attrition can be handled as in Section 17.7, provided the treatment

e¤ect has an additive form. If attrition is determined solely by whether the partici-

pant was not selected for the program, then no adjustments are needed if wit is

orthogonal to the idiosyncratic error, uit: this is just attrition on the basis of exoge-

nous explanatory variables.

18.5.3 Nonbinary Treatments

So far, we have restricted attention to the case where w is a binary variable. But we

can also estimate average treatment e¤ects when w takes on more than two values.

The definitions of ATE, ATE1, and LATE are more complicated in this case because

the counterfactual is more complicated; see Angrist and Imbens (1995) and Heckman

(1997). Here, we focus on a random coe‰cient model for the observed outcome, as in

Garen (1984), Heckman and Vytlacil (1998), and Wooldridge (1997b, 1999c). The

average treatment e¤ect is easy to define in this context, as it is just an average partial

e¤ect.

As in the case of binary treatment, two approaches can be used to identify ATE:

we can assume ignorability of treatment, conditional on a set of covariates, or we can

use an instrumental variables approach. In either case, the model is the same:

Eðy jw; cÞ ¼ a þ bw ð18:60Þ

where c ¼ ða; bÞ and a and b may both depend on observable covariates as well as

unobserved heterogeneity. A more traditional approach would introduce observables

and unobservables into the equation separately in a parametric fashion—usually,
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linear in a set of parameters—but this step is unnecessary when we are interested in

estimating b1EðbÞ, which is the average partial e¤ect of w on Eðy jw; cÞ.
It is important to see that, unlike in the binary treatment case, equation (18.60)

imposes a functional form assumption. This is not as restrictive as it might seem,

because a and b are allowed to depend on individual-specific observables and unob-

servables. Nevertheless, as we know, linear models can have drawbacks for binary

and corner solution responses (unless w is binary).

When w is binary, equation (18.60) encompasses the counterfactual setup in Sec-

tion 18.2, which we analyzed in Sections 18.3 and 18.4. Equation (18.3) shows this

result immediately, where we take a ¼ y0 and b ¼ y1 � y0.

We now establish identification of b under ignorability conditions. The assump-

tions are collected together as follows:

assumption ATE.5: (a) Equation (18.60) holds. For a set of covariates x, the fol-

lowing redundancy assumptions hold: (b) Eðy jw; c; xÞ ¼ Eðy jw; cÞ; and (c) Condi-

tional on x, c is redundant in the first two conditional moments of w: Eðw j x; cÞ ¼
Eðw j xÞ and Varðw j x; cÞ ¼ Varðw j xÞ.

Given the functional form assumption (18.60), Assumption ATE.5b is not very con-

troversial because a and b can depend in an arbitrary way on x. In e¤ect, a and b

already capture any dependence of Eðy jw; cÞ on x. Assumption ATE.5c is much

more restrictive, but it is the analogue of the ignorability-of-treatment Assumption

ATE.1 0. In fact, when w is binary, Assumption ATE.1 0 implies Assumption ATE.5c.

For general w, Assumption ATE.5c is slightly less restrictive than assuming ðw; cÞ are

independent given x. The following is from Wooldridge (1999c, Proposition 3.1):

proposition 18.6: Under Assumption ATE.5, assume, in addition, that Varðw j xÞ >
0 for all x in the relevant population. Then

b ¼ E½Covðw; y j xÞ=Varðw j xÞ� ð18:61Þ

Because Varðw j xÞ and Covðw; y j xÞ can be estimated generally, equation (18.61)

shows that b is identified. If m̂mð�Þ and ĥhð�Þ are consistent estimators of Eðw j xÞ and

Varðw j xÞ, respectively, a consistent estimator of b, under fairly weak assumptions, is

N�1
PN

i¼1½wi � m̂mðxiÞ�yi=ĥhðxiÞ; this is the extension of equation (18.21) to the case of

nonbinary treatments.

Estimating mð�Þ and hð�Þ is easily done using flexible parametric models that should

reflect the nature of w. When w is binary, we simply estimate the propensity score.

When w is a roughly continuous variable over a broad range, Eðw j xÞ linear in
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functions of x and Varðw j xÞ constant might be reasonable, in which case, as shown

in Wooldridge (1999c), a ‘‘kitchen sink’’ regression of y on w and functions of x can

consistently estimate b. Wooldridge (1999c) discusses additional examples, including

when w is a count variable or a fractional variable (both of which we discuss in

Chapter 19), and contains an example.

As a computational device, it is useful to see that consistent estimators of b can

be computed using an instrumental variables approach. As shown in Wooldridge

(1999c), under Assumption ATE.5 we can write

y ¼ bw þ gðxÞy þ v ð18:62Þ

where gð�Þ is any vector function of x and E½gðxÞ0v� ¼ 0. Typically, we would include

levels, squares, and cross products, or logarithms, as elements of gð�Þ. Adding gðxÞ
is intended to e¤ectively reduce the error variance. Further, if we define r ¼
½w � mðxÞ�=hðxÞ, it can be shown that EðrvÞ ¼ 0. Because r and w are highly corre-

lated, we can use ½r; gðxÞ� as IVs in equation (18.62). In practice, we replace each

unknown ri with r̂ri ¼ ½wi � m̂mðxiÞ�=ĥhðxiÞ, and use ðr̂ri; giÞ as the IVs for ðwi; giÞ. This

estimator is consistent and
ffiffiffiffiffi
N

p
-asymptotically normal. Unfortunately, the su‰cient

conditions for ignoring estimation of the IVs in the first stage—see Section 6.1.2—

are not always met in this application.

An alternative approach assumes that w is ignorable in Eða j x;wÞ and Eðb j x;wÞ.
Under additional linearity assumptions, this leads directly to equation (18.15), re-

gardless of the nature of w.

The previous methods assume some kind of ignorability of treatment. The IV

approach also begins with equation (18.60). As in the binary treatment case, we

separate the covariates (x) and the IVs (z). We assume both are redundant in equa-

tion (18.60):

Eðy jw; c; x; zÞ ¼ Eðy jw; cÞ ð18:63Þ

Again, this assumption is noncontroversial once we specify the functional form in

equation (18.60). Assumption (18.63) holds trivially in the counterfactual framework

with binary treatment.

The di¤erence between x and z is that a and b may have conditional means that

depend on x, but not on z. For example, if w is a measure of class attendance, x

might contain measures of student ability and motivation. By contrast, we assume z

is redundant for explaining a and b, given x. In the class attendance example, z might

be indicators for di¤erent living situations or distances from residence to lecture halls.

In e¤ect, the distinction between x and z is the kind of distinction we make in struc-
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tural models, where some ‘‘exogenous’’ variables (x) are allowed to appear in the

structural equation and others (z) are not. Mathematically, we have

Eða j x; zÞ ¼ Eða j xÞ; Eðb j x; zÞ ¼ Eðb j xÞ: ð18:64Þ

Assumption (18.64) is completely analogous to assumption (18.29). For simplicity,

we also assume the expectations are linear in x:

Eða j xÞ ¼ g0 þ xg; Eðb j xÞ ¼ d0 þ xd ð18:65Þ

Then we can write

y ¼ h0 þ xgþ bw þ wðx � cÞdþ u þ w � v þ e ð18:66Þ

where c ¼ EðxÞ, u ¼ a � Eða j x; zÞ, v ¼ b � Eðb j x; zÞ, e is the error implied by

equation (18.60), and so Eðe jw; c; x; zÞ ¼ 0. This equation is basically the same as

equation (18.34), except that now w need not be binary. To apply IV to equation

(18.66), it su‰ces that the composite error, u þ w � v þ e, has a constant mean given

ðx; zÞ. But Eðu þ e j x; zÞ ¼ 0, and so it su‰ces to assume

Eðw � v j x; zÞ ¼ Eðw � vÞ ð18:67Þ

which is the same as Covðw; v j x; zÞ ¼ Covðw; vÞ because Eðv j x; zÞ ¼ 0. When as-

sumption (18.67) holds along with conditions (18.60), (18.63), (18.64), and (18.65)

and an appropriate rank condition—essentially, w is partially correlated with z—

2SLS estimation of equation (18.66) consistently estimates all parameters except the

intercept. The IVs would be ð1; x; z; z1x; . . . ; zLxÞ, or we could use ÊEðw j x; zÞ and

ÊEðw j x; zÞ � x as IVs for ½w;wðx � cÞ�, where ÊEðw j x; zÞ is an estimate of Eðw j x; zÞ.
As before, in practice c would be replaced with x. The 2SLS estimator is

ffiffiffiffiffi
N

p
-

consistent and asymptotically normal. Generally, the error in equation (18.66) is

heteroskedastic.

Condition (18.67) is the same one we used in the binary treatment case to justify

the usual IV estimator. As we discussed in Section 18.4.1, condition (18.67) does

not hold when Pðw ¼ 1 j x; zÞ satisfies logit or probit binary response models. If w is

a continuous treatment, condition (18.67) is more reasonable. For example, if

Eðw j x; z; vÞ is additive in v, then condition (18.67) holds when Varðv j x; zÞ is con-

stant, in which case Covðw; v j x; zÞ ¼ s2
v . See Wooldridge (1997b, 2000f ) for further

discussion. Wooldridge (2000f ) also covers more general cases when condition

(18.67) is not true and the treatment is not binary.

Heckman and Vytlacil (1998) use similar assumptions in a general random coe‰-

cient model to arrive at a related estimation method. In their simplest approach,
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Heckman and Vytlacil suggest a two-step estimator, where Eðw j x; zÞ is estimated

using a linear model in the first stage and the fitted values are used in a second-stage

regression. The preceding analysis shows that a linear functional form for Eðw j x; zÞ
is not needed for the IV estimator to be consistent, although condition (18.67) gen-

erally is.

18.5.4 Multiple Treatments

Sometimes the treatment variable is not simply a scalar. For example, for the popu-

lation of working high school graduates, w1 could be credit hours at two-year colleges

and w2 credit hours at four-year colleges. If we make ignorability assumptions of the

kind in Section 18.3.1, equation (18.15) extends in a natural way: each treatment

variable appears by itself and interacted with the (demeaned) covariates. This

approach does not put any restrictions on the nature of the treatments. Alternatively,

as in Wooldridge (1999c), Assumption 18.5 extends to a vector w, which leads to an

extension of condition (18.60) for multiple treatments.

Wooldridge (2000f ) shows how the IV methods in Section 18.4.1 extend easily to

multiple treatments, binary or otherwise. For multiple binary treatments, a reduced-

form probit is estimated for each treatment, and then terms wijðxi � xÞ and f̂fij for

each treatment j are added to equation (18.47). See Wooldridge (2000f ) for further

discussion. An approach based on finding Eðy jw1; . . . ;wM ; x; zÞ, for M treatments, is

di‰cult but perhaps tractable in some cases.

Problems

18.1. Consider the di¤erence-in-means estimator, d ¼ y1 � y0, where yg is the sam-

ple average of the yi with wi ¼ g, g ¼ 0; 1.

a. Show that, as an estimator of ATE1, the bias in y1 � y0 is Eðy0 jw ¼ 1Þ�
Eðy0 jw ¼ 0Þ.
b. Let y0 be the earnings someone would earn in the absence of job training, and let

w ¼ 1 denote the job training indicator. Explain the meaning of Eðy0 jw ¼ 1Þ <
Eðy0 jw ¼ 0Þ. Intuitively, does it make sense that Eðd Þ < ATE1?

18.2. Show that ATE1ðxÞ is identified under Assumption ATE.1 0a; Assumption

ATE.1 0b is not needed.

18.3. Using the data in JTRAIN2.RAW, repeat the analysis in Example 18.2, using

unem78 as the response variable. For comparison, use the same x as in Example 18.2.
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Compare the estimates from regressions (18.23) and (18.24), along with the estimate

of ATE from linear regression unem78 on 1, train, x.

18.4. Carefully derive equation (18.45).

18.5. Use the data in JTRAIN2.RAW for this question.

a. As in Example 18.2, run a probit of train on 1, x, where x contains the covariates

from Example 18.2. Obtain the probit fitted values, say F̂Fi.

b. Estimate the equation re78i ¼ g0 þ a traini þ xigþ ui by IV, using instruments

ð1; F̂Fi; xiÞ. Comment on the estimate of a and its standard error.

c. Regress F̂Fi on xi to obtain the R-squared. What do you make of this result?

d. Does the nonlinearity of the probit model for train allow us to estimate a when we

do not have an additional instrument? Explain.

18.6. In Procedure 18.2, explain why it is better to estimate equation (18.36) by IV

rather than to run the OLS regression yi on 1, ĜGi, xi, ĜGiðxi � xÞ, i ¼ 1; . . . ;N.

18.7. Use the data in JTRAIN2.RAW for this question.

a. In the ignorability setup of Section 18.5.3, let w ¼ mostrn, the number of months

spent in job training. Assume that Eðw j xÞ ¼ expðg0 þ xgÞ, where x contains the

same covariates as in Example 18.2. Estimate the parameters by nonlinear least

squares, and let m̂mi be the fitted values. Which elements of x are significant? (You

may use the usual NLS standard errors.)

b. Suppose that Varðw j xÞ ¼ hðxÞ ¼ d0 þ d1Eðw j xÞ þ d2½Eðw j xÞ�2. Use the estimates

from part a to estimate the dj . (Hint: Regress the squared NLS residuals on a qua-

dratic in the NLS fitted values.) Are any of ĥhi —the estimated variances—negative?

c. Form r̂ri ¼ ðwi � m̂miÞ=ĥhi. Estimate equation (18.62) using r̂ri as an IV for wi, where

gðxÞ ¼ ð1; xÞ and y ¼ re78. Compare b̂b with the OLS estimate of b.

18.8. In the IV setup of Section 18.5.3, suppose that b ¼ b, and therefore we can

write

y ¼ a þ bw þ e; Eðe j a; x; zÞ ¼ 0

Assume that conditions (18.64) and (18.65) hold for a.

a. Suppose w is a corner solution outcome, such as hours spent in a job training

program. If z is used as IVs for w in y ¼ g0 þ bw þ xgþ r, what is the identification

condition?
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b. If w given ðx; zÞ follows a standard Tobit model, propose an IV estimator that

uses the Tobit fitted values for w.

c. If Varðe j a; x; zÞ ¼ s2
e and Varða j x; zÞ ¼ s2

a , argue that the IV estimator from part

b is asymptotically e‰cient.

d. What is an alternative to IV estimation that would use the Tobit fitted values for

w? Which method do you prefer?

e. If b0 b, but assumptions (18.64) and (18.65) hold, how would you estimate b?

18.9. Consider the IV approach in Section 18.5.3, under assumptions (18.60),

(18.63), (18.64), and (18.65). In place of assumption (18.67), assume that Eðw j x; z; vÞ
¼ expðp0 þ xp1 þ zp2 þ p3vÞ, where v is independent of ðx; zÞ with E½expðp3vÞ� ¼ 1.

(Therefore, w is some nonnegative treatment.)

a. Show that we can write

y ¼ h0 þ xgþ bw þ w � ðx � cÞdþ xEðw j x; zÞ þ r

where Eðw j x; zÞ ¼ expðh0 þ xp1 þ zp2Þ for some p0, and Eðr j x; zÞ ¼ 0.

b. Use part a to show that b is not identified. fHint: Let q1Eðw j x; zÞ, and let h be

any other function of ðx; zÞ. Does the linear projection of w on ½1; x; h; h � ðx � cÞ; q�
depend on h?g
c. For w > 0 (strictly positive treatment), add the assumption that Eðu j v; x; zÞ ¼ rv.

Find Eðy jw; x; zÞ ¼ Eðy j v; x; zÞ and propose a two-step estimator of b.
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19 Count Data and Related Models

19.1 Why Count Data Models?

A count variable is a variable that takes on nonnegative integer values. Many vari-

ables that we would like to explain in terms of covariates come as counts. A few

examples include the number of times someone is arrested during a given year,

number of emergency room drug episodes during a given week, number of cigarettes

smoked per day, and number of patents applied for by a firm during a year. These

examples have two important characteristics in common: there is no natural a priori

upper bound, and the outcome will be zero for at least some members of the popu-

lation. Other count variables do have an upper bound. For example, for the number

of children in a family who are high school graduates, the upper bound is number of

children in the family.

If y is the count variable and x is a vector of explanatory variables, we are often

interested in the population regression, Eðy j xÞ. Throughout this book we have dis-

cussed various models for conditional expectations, and we have discussed di¤erent

methods of estimation. The most straightforward approach is a linear model,

Eðy j xÞ ¼ xb, estimated by OLS. For count data, linear models have shortcomings

very similar to those for binary responses or corner solution responses: because yb

0, we know that Eðy j xÞ should be nonnegative for all x. If b̂b is the OLS estimator,

there usually will be values of x such that xb̂b < 0—so that the predicted value of y is

negative.

For strictly positive variables, we often use the natural log transformation, logðyÞ,
and use a linear model. This approach is not possible in interesting count data

applications, where y takes on the value zero for a nontrivial fraction of the popula-

tion. Transformations could be applied that are defined for all yb 0—for example,

logð1 þ yÞ—but logð1 þ yÞ itself is nonnegative, and it is not obvious how to recover

Eðy j xÞ from a linear model for E½logð1 þ yÞ j x�. With count data, it is better to

model Eðy j xÞ directly and to choose functional forms that ensure positivity for any

value of x and any parameter values. When y has no upper bound, the most popular

of these is the exponential function, Eðy j xÞ ¼ expðxbÞ.
In Chapter 12 we discussed nonlinear least squares (NLS) as a general method for

estimating nonlinear models of conditional means. NLS can certainly be applied to

count data models, but it is not ideal: NLS is relatively ine‰cient unless Varðy j xÞ is

constant (see Chapter 12), and all of the standard distributions for count data imply

heteroskedasticity.

In Section 19.2 we discuss the most popular model for count data, the Poisson re-

gression model. As we will see, the Poisson regression model has some nice features.

First, if y given x has a Poisson distribution—which used to be the maintained



assumption in count data contexts—then the conditional maximum likelihood esti-

mators are fully e‰cient. Second, the Poisson assumption turns out to be unneces-

sary for consistent estimation of the conditional mean parameters. As we will see in

Section 19.2, the Poisson quasi–maximum likelihood estimator is fully robust to dis-

tributional misspecification. It also maintains certain e‰ciency properties even when

the distribution is not Poisson.

In Section 19.3 we discuss other count data models, and in Section 19.4 we cover

quasi-MLEs for other nonnegative response variables. In Section 19.5 we cover mul-

tiplicative panel data models, which are motivated by unobserved e¤ects count data

models but can also be used for other nonnegative responses.

19.2 Poisson Regression Models with Cross Section Data

In Chapter 13 we used the basic Poisson regression model to illustrate maximum

likelihood estimation. Here, we study Poisson regression in much more detail, em-

phasizing the properties of the estimator when the Poisson distributional assumption

is incorrect.

19.2.1 Assumptions Used for Poisson Regression

The basic Poisson regression model assumes that y given x1 ðx1; . . . ; xKÞ has a

Poisson distribution, as in El Sayyad (1973) and Maddala (1983, Section 2.15). The

density of y given x under the Poisson assumption is completely determined by the

conditional mean mðxÞ1Eðy j xÞ:

f ðy j xÞ ¼ exp½�mðxÞ�½mðxÞ�y=y!; y ¼ 0; 1; . . . ð19:1Þ

where y! is y factorial. Given a parametric model for mðxÞ [such as mðxÞ ¼ expðxbÞ]
and a random sample fðxi; yiÞ: i ¼ 1; 2; . . . ;Ng on ðx; yÞ, it is fairly straightforward

to obtain the conditional MLEs of the parameters. The statistical properties then

follow from our treatment of CMLE in Chapter 13.

It has long been recognized that the Poisson distributional assumption imposes

restrictions on the conditional moments of y that are often violated in applications.

The most important of these is equality of the conditional variance and mean:

Varðy j xÞ ¼ Eðy j xÞ ð19:2Þ

The variance-mean equality has been rejected in numerous applications, and later we

show that assumption (19.2) is violated for fairly simple departures from the Poisson
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model. Importantly, whether or not assumption (19.2) holds has implications for how

we carry out statistical inference. In fact, as we will see, it is assumption (19.2), not

the Poisson assumption per se, that is important for large-sample inference; this point

will become clear in Section 19.2.2. In what follows we refer to assumption (19.2) as

the Poisson variance assumption.

A weaker assumption allows the variance-mean ratio to be any positive constant:

Varðy j xÞ ¼ s2Eðy j xÞ ð19:3Þ

where s2 > 0 is the variance-mean ratio. This assumption is used in the generalized

linear models (GLM) literature, and so we will refer to assumption (19.3) as the

Poisson GLM variance assumption. The GLM literature is concerned with quasi-

maximum likelihood estimation of a class of nonlinear models that contains Poisson

regression as a special case. We do not need to introduce the full GLM apparatus and

terminology to analyze Poisson regression. See McCullagh and Nelder (1989).

The case s2 > 1 is empirically relevant because it implies that the variance is

greater than the mean; this situation is called overdispersion (relative to the Poisson

case). One distribution for y given x where assumption (19.3) holds with over-

dispersion is what Cameron and Trivedi (1986) call NegBin I—a particular param-

eterization of the negative binomial distribution. When s2 < 1 we say there is

underdispersion. Underdispersion is less common than overdispersion, but under-

dispersion has been found in some applications.

There are plenty of count distributions for which assumption (19.3) does not

hold—for example, the NegBin II model in Cameron and Trivedi (1986). Therefore,

we are often interested in estimating the conditional mean parameters without speci-

fying the conditional variance. As we will see, Poisson regression turns out to be well

suited for this purpose.

Given a parametric model mðx; bÞ for mðxÞ, where b is a P � 1 vector of parame-

ters, the log likelihood for observation i is

liðbÞ ¼ yi log½mðxi; bÞ� � mðxi; bÞ ð19:4Þ

where we drop the term logðyi!Þ because it does not depend on the parameters b (for

computational reasons dropping this term is a good idea in practice, too, as yi! gets

very large for even moderate yi). We let BHRP denote the parameter space, which

is needed for the theoretical development but is practically unimportant in most

cases.

The most common mean function in applications is the exponential:

mðx; bÞ ¼ expðxbÞ ð19:5Þ
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where x is 1 � K and contains unity as its first element, and b is K � 1. Under as-

sumption (19.5) the log likelihood is liðbÞ ¼ yixib � expðxibÞ. The parameters in

model (19.5) are easy to interpret. If xj is continuous, then

qEðy j xÞ
qxj

¼ expðxbÞbj

and so

bj ¼
qEðy j xÞ

qxj

� 1

Eðy j xÞ ¼
q log½Eðy j xÞ�

qxj

Therefore, 100bj is the semielasticity of Eðy j xÞ with respect to xj: for small changes

Dxj , the percentage change in Eðy j xÞ is roughly ð100bjÞDxj. If we replace xj with

logðxjÞ, bj is the elasticity of Eðy j xÞ with respect to xj. Using assumption (19.5) as

the model for Eðy j xÞ is analogous to using logðyÞ as the dependent variable in linear

regression analysis.

Quadratic terms can be added with no additional e¤ort, except in interpreting the

parameters. In what follows, we will write the exponential function as in assumption

(19.5), leaving transformations of x—such as logs, quadratics, interaction terms, and

so on—implicit. See Wooldridge (1997c) for a discussion of other functional forms.

19.2.2 Consistency of the Poisson QMLE

Once we have specified a conditional mean function, we are interested in cases where,

other than the conditional mean, the Poisson distribution can be arbitrarily mis-

specified (subject to regularity conditions). When yi given xi does not have a Poisson

distribution, we call the estimator b̂b that solves

max
b AB

XN

i¼1

liðbÞ ð19:6Þ

the Poisson quasi–maximum likelihood estimator (QMLE). A careful discussion of

the consistency of the Poisson QMLE requires introduction of the true value of the

parameter, as in Chapters 12 and 13. That is, we assume that for some value bo in the

parameter space B,

Eðy j xÞ ¼ mðx; boÞ ð19:7Þ

To prove consistency of the Poisson QMLE under assumption (19.5), the key is to

show that bo is the unique solution to

max
b AB

E½liðbÞ� ð19:8Þ
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Then, under the regularity conditions listed in Theorem 12.2, it follows from this

theorem that the solution to equation (19.6) is weakly consistent for bo.

Wooldridge (1997c) provides a simple proof that bo is a solution to equation (19.8)

when assumption (19.7) holds (see also Problem 19.1). It also follows from the gen-

eral results on quasi-MLE in the linear exponential family (LEF) by Gourieroux,

Monfort, and Trognon (1984a) (hereafter, GMT, 1984a). Uniqueness of bo must be

assumed separately, as it depends on the distribution of xi. That is, in addition to

assumption (19.7), identification of bo requires some restrictions on the distribution

of explanatory variables, and these depend on the nature of the regression function

m. In the linear regression case, we require full rank of Eðx 0
ixiÞ. For Poisson QMLE

with an exponential regression function expðxbÞ, it can be shown that multiple solu-

tions to equation (19.8) exist whenever there is perfect multicollinearity in xi, just as

in the linear regression case. If we rule out perfect multicollinearity, we can usually

conclude that bo is identified under assumption (19.7).

It is important to remember that consistency of the Poisson QMLE does not re-

quire any additional assumptions concerning the distribution of yi given xi. In par-

ticular, Varðyi j xiÞ can be virtually anything (subject to regularity conditions needed

to apply the results of Chapter 12).

19.2.3 Asymptotic Normality of the Poisson QMLE

If the Poission QMLE is consistent for bo without any assumptions beyond (19.7),

why did we introduce assumptions (19.2) and (19.3)? It turns out that whether these

assumptions hold determines which asymptotic variance matrix estimators and in-

ference procedures are valid, as we now show.

The asymptotic normality of the Poisson QMLE follows from Theorem 12.3. The

result isffiffiffiffiffi
N

p
ð b̂b � boÞ !

d
Normalð0;A�1

o BoA�1
o Þ ð19:9Þ

where

Ao 1E½�HiðboÞ� ð19:10Þ

and

Bo 1E½siðboÞsiðboÞ
0 � ¼ Var½siðboÞ� ð19:11Þ

where we define Ao in terms of minus the Hessian because the Poisson QMLE solves

a maximization rather than a minimization problem. Taking the gradient of equation

(19.4) and transposing gives the score for observation i as

siðbÞ ¼ ‘bmðxi; bÞ0½ yi � mðxi; bÞ�=mðxi; bÞ ð19:12Þ
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It is easily seen that, under assumption (19.7), siðboÞ has a zero mean conditional on

xi. The Hessian is more complicated but, under assumption (19.7), it can be shown

that

�E½HiðboÞ j xi� ¼ ‘bmðxi; boÞ
0‘bmðxi; boÞ=mðxi; boÞ ð19:13Þ

Then Ao is the expected value of this expression (over the distribution of xi). A fully

robust asymptotic variance matrix estimator for b̂b follows from equation (12.49):

XN

i¼1

ÂAi

 !�1 XN

i¼1

ŝsi ŝs
0
i

 ! XN

i¼1

ÂAi

 !�1

ð19:14Þ

where ŝsi is obtained from equation (19.12) with b̂b in place of b, and ÂAi is the right-

hand side of equation (19.13) with b̂b in place of bo. This is the fully robust variance

matrix estimator in the sense that it requires only assumption (19.7) and the regularity

conditions from Chapter 12.

The asymptotic variance of b̂b simplifies under the GLM assumption (19.3). Main-

taining assumption (19.3) (where s2
o now denotes the true value of s2) and defining

ui 1 yi � mðxi; boÞ, the law of iterated expectations implies that

Bo ¼ E½u2
i ‘bmiðboÞ

0‘bmiðboÞ=fmiðboÞg
2�

¼ E½Eðu2
i j xiÞ‘bmiðboÞ

0‘bmiðboÞ=fmiðboÞg
2� ¼ s2

oAo

since Eðu2
i j xiÞ ¼ s2

omiðboÞ under assumptions (19.3) and (19.7). Therefore, A�1
o BoA�1

o

¼ s2
oA�1

o , so we only need to estimate s2
o in addition to obtaining ÂA. A consistent es-

timator of s2
o is obtained from s2

o ¼ E½u2
i =miðboÞ�, which follows from assumption

(19.3) and iterated expectations. The usual analogy principle argument gives the

estimator

ŝs2 ¼ N�1
XN

i¼1

ûu2
i =m̂mi ¼ N�1

XN

i¼1

ðûui=
ffiffiffiffiffi
m̂mi

p
Þ2 ð19:15Þ

The last representation shows that ŝs2 is simply the average sum of squared weighted

residuals, where the weights are the inverse of the estimated nominal standard devi-

ations. (In the GLM literature, the weighted residuals ~uui 1 ûui=
ffiffiffiffiffi
m̂mi

p
are sometimes

called the Pearson residuals. In earlier chapters we also called them standardized

residuals.) In the GLM literature, a degrees-of-freedom adjustment is usually made

by replacing N�1 with ðN � PÞ�1 in equation (19.15).

Given ŝs2 and ÂA, it is straightforward to obtain an estimate of Avarð b̂bÞ under as-

sumption (19.3). In fact, we can write
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Avâarð b̂bÞ ¼ ŝs2ÂA�1=N ¼ ŝs2
XN

i¼1

‘bm̂m 0
i‘bm̂mi=m̂mi

 !�1

ð19:16Þ

Note that the matrix is always positive definite when the inverse exists, so it produces

well-defined standard errors (given, as usual, by the square roots of the diagonal ele-

ments). We call these the GLM standard errors.

If the Poisson variance assumption (19.2) holds, things are even easier because s2

is known to be unity; the estimated asymptotic variance of b̂b is given in equation

(19.16) but with ŝs2 1 1. The same estimator can be derived from the MLE theory in

Chapter 13 as the inverse of the estimated information matrix (conditional on the xi);

see Section 13.5.2.

Under assumption (19.3) in the case of overdispersion ðs2 > 1Þ, standard errors of

the b̂bj obtained from equation (19.16) with ŝs2 ¼ 1 will systematically underestimate

the asymptotic standard deviations, sometimes by a large factor. For example, if

s2 ¼ 2, the correct GLM standard errors are, in the limit, 41 percent larger than the

incorrect, nominal Poisson standard errors. It is common to see very significant

coe‰cients reported for Poisson regressions—a recent example is Model (1993)—but

we must interpret the standard errors with caution when they are obtained under as-

sumption (19.2). The GLM standard errors are easily obtained by multiplying the

Poisson standard errors by ŝs1
ffiffiffiffiffi
ŝs2

p
. The most robust standard errors are obtained

from expression (19.14), as these are valid under any conditional variance assump-

tion. In practice, it is a good idea to report the fully robust standard errors along with

the GLM standard errors and ŝs.

If y given x has a Poisson distribution, it follows from the general e‰ciency of the

conditional MLE—see Section 14.5.2—that the Poisson QMLE is fully e‰cient in

the class of estimators that ignores information on the marginal distribution of x.

A nice property of the Poisson QMLE is that it retains some e‰ciency for certain

departures from the Poisson assumption. The e‰ciency results of GMT (1984a) can

be applied here: if the GLM assumption (19.3) holds for some s2 > 0, the Poisson

QMLE is e‰cient in the class of all QMLEs in the linear exponential family of dis-

tributions. In particular, the Poisson QMLE is more e‰cient than the nonlinear least

squares estimator, as well as many other QMLEs in the LEF, some of which we

cover in Sections 19.3 and 19.4.

Wooldridge (1997c) gives an example of Poisson regression to an economic model

of crime, where the response variable is number of arrests of a young man living in

California during 1986. Wooldridge finds overdispersion: ŝs is either 1.228 or 1.172,

depending on the functional form for the conditional mean. The following example

shows that underdispersion is possible.
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Example 19.1 (E¤ects of Education on Fertility): We use the data in FERTIL2.

RAW to estimate the e¤ects of education on women’s fertility in Botswana. The re-

sponse variable, children, is number of living children. We use a standard exponential

regression function, and the explanatory variables are years of schooling (educ), a

quadratic in age, and binary indicators for ever married, living in an urban area,

having electricity, and owning a television. The results are given in Table 19.1. A

linear regression model is also included, with the usual OLS standard errors. For

Poisson regression, the standard errors are the GLM standard errors. A total of 4,358

observations are used.

As expected, the signs of the coe‰cients agree in the linear and exponential mod-

els, but their interpretations di¤er. For Poisson regression, the coe‰cient on educ

implies that another year of education reduces expected number of children by about

2.2 percent, and the e¤ect is very statistically significant. The linear model estimate

implies that another year of education reduces expected number of children by about

.064. (So, if 100 women get another year of education, we estimate they will have

about six fewer children.)

Table 19.1
OLS and Poisson Estimates of a Fertility Equation

Dependent Variable: children

Independent
Variable Linear (OLS)

Exponential
(Poisson QMLE)

educ �.0644
(.0063)

�.0217
(.0025)

age .272
(.017)

.337
(.009)

age2 �.0019
(.0003)

�.0041
(.0001)

evermarr .682
(.052)

.315
(.021)

urban �.228
(.046)

�.086
(.019)

electric �.262
(.076)

�.121
(.034)

tv �.250
(.090)

�.145
(.041)

constant �3.394
(.245)

�5.375
(.141)

Log-likelihood value — �6,497.060

R-squared .590 .598

ŝs 1.424 .867
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The estimate of s in the Poisson regression implies underdispersion: the variance is

less than the mean. (Incidentally, the ŝs’s for the linear and Poisson models are not

comparable.) One implication is that the GLM standard errors are actually less than

the corresponding Poisson MLE standard errors.

For the linear model, the R-squared is the usual one. For the exponential model,

the R-squared is computed as the squared correlation coe‰cient between childreni

and chil̂dreni ¼ expðxib̂bÞ. The exponential regression function fits slightly better.

19.2.4 Hypothesis Testing

Classical hypothesis testing is fairly straightforward in a QMLE setting. Testing

hypotheses about individual parameters is easily carried out using asymptotic t sta-

tistics after computing the appropriate standard error, as we discussed in Section

19.2.3. Multiple hypotheses tests can be carried out using the Wald, quasi–likelihood

ratio, or score test. We covered these generally in Sections 12.6 and 13.6, and they

apply immediately to the Poisson QMLE.

The Wald statistic for testing nonlinear hypotheses is computed as in equation

(12.63), where V̂V is chosen appropriately depending on the degree of robustness

desired, with expression (19.14) being the most robust. The Wald statistic is conve-

nient for testing multiple exclusion restrictions in a robust fashion.

When the GLM assumption (19.3) holds, the quasi–likelihood ratio statistic can be

used. Let �bb be the restricted estimator, where Q restrictions of the form cð �bbÞ ¼ 0 have

been imposed. Let b̂b be the unrestricted QMLE. Let LðbÞ be the quasi–log likeli-

hood for the sample of size N, given in expression (19.6). Let ŝs2 be given in equation

(19.15) (with or without the degrees-of-freedom adjustment), where the ûui are the

residuals from the unconstrained maximization. The QLR statistic,

QLR1 2½Lð b̂bÞ �Lð �bbÞ�=ŝs2 ð19:17Þ

converges in distribution to w2
Q under H0, under the conditions laid out in Section

12.6.3. The division of the usual likelihood ratio statistic by ŝs2 provides for some

degree of robustness. If we set ŝs2 ¼ 1, we obtain the usual LR statistic, which is valid

only under assumption (19.2). There is no usable quasi-LR statistic when the GLM

assumption (19.3) does not hold.

The score test can also be used to test multiple hypotheses. In this case we estimate

only the restricted model. Partition b as ða 0; g 0Þ 0, where a is P1 � 1 and g is P2 � 1,

and assume that the null hypothesis is

H0: go ¼ g ð19:18Þ

where g is a P2 � 1 vector of specified constants (often, g ¼ 0). Let �bb be the estimator

of b obtained under the restriction g ¼ g [so �bb1 ð�aa 0; g 0Þ 0 �, and define quantities under
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the restricted estimation as �mmi 1mðxi; �bbÞ, �uui 1 yi � �mmi, and ‘b �mmi 1 ð‘a �mmi;‘g �mmiÞ1
‘bmðxi; �bbÞ. Now weight the residuals and gradient by the inverse of nominal Poisson

standard deviation, estimated under the null, 1=
ffiffiffiffiffi
�mmi

p
:

~uui 1 �uui=
ffiffiffiffiffi
�mmi

p
; ‘b ~mmi 1‘b �mmi=

ffiffiffiffiffi
�mmi

p
ð19:19Þ

so that the ~uui here are the Pearson residuals obtained under the null. A form of the

score statistic that is valid under the GLM assumption (19.3) [and therefore under

assumption (19.2)] is NR2
u from the regression

~uui on ‘b ~mmi; i ¼ 1; 2; . . . ;N ð19:20Þ

where R2
u denotes the uncentered R-squared. Under H0 and assumption (19.3),

NR2
u @

a
w2

P2
. This is identical to the score statistic in equation (12.68) but where we

use ~BB ¼ ~ss2 ~AA, where the notation is self-explanatory. For more, see Wooldridge

(1991a, 1997c).

Following our development for nonlinear regression in Section 12.6.2, it is easy to

obtain a test that is completely robust to variance misspecification. Let ~rri denote the

1 � P2 residuals from the regression

‘g ~mmi on ‘a ~mmi ð19:21Þ

In other words, regress each element of the weighted gradient with respect to the

restricted parameters on the weighted gradient with respect to the unrestricted

parameters. The residuals are put into the 1 � P2 vector ~rri. The robust score statistic

is obtained as N � SSR from the regression

1 on ~uui~rri; i ¼ 1; 2; . . . ;N ð19:22Þ

where ~uui~rri ¼ ð~uui~rri1; ~uui~rri2; . . . ; ~uui~rriP2
Þ is a 1 � P2 vector.

As an example, consider testing H0: g ¼ 0 in the exponential model Eðy j xÞ ¼
expðxbÞ ¼ expðx1aþ x2gÞ. Then ‘bmðx; bÞ ¼ expðxbÞx. Let �aa be the Poisson QMLE

obtained under g ¼ 0, and define �mmi 1 expðxi1�aaÞ, with �uui the residuals. Now ‘a �mmi ¼
expðxi1�aaÞxi1, ‘g �mmi ¼ expðxi1�aaÞxi2, and ‘b ~mmi ¼ �mmixi=

ffiffiffiffiffi
�mmi

p
¼

ffiffiffiffiffi
�mmi

p
xi. Therefore, the

test that is valid under the GLM variance assumption is NR2
u from the OLS regres-

sion ~uui on
ffiffiffiffiffi
�mmi

p
xi, where the ~uui are the weighted residuals. For the robust test, first

obtain the 1 � P2 residuals ~rri from the regression
ffiffiffiffiffi
�mmi

p
xi2 on

ffiffiffiffiffi
�mmi

p
xi1; then obtain the

statistic from regression (19.22).

19.2.5 Specification Testing

Various specification tests have been proposed in the context of Poisson regression.

The two most important kinds are conditional mean specification tests and condi-
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tional variance specification tests. For conditional mean tests, we usually begin with a

fairly simple model whose parameters are easy to interpret—such as mðx; bÞ ¼
expðxbÞ—and then test this against other alternatives. Once the set of conditioning

variables x has been specified, all such tests are functional form tests.

A useful class of functional form tests can be obtained using the score principle,

where the null model mðx; bÞ is nested in a more general model. Fully robust tests

and less robust tests are obtained exactly as in the previous section. Wooldridge

(1997c, Section 3.5) contains details and some examples, including an extension of

RESET to exponential regression models.

Conditional variance tests are more di‰cult to compute, especially if we want to

maintain only that the first two moments are correctly specified under H0. For ex-

ample, it is very natural to test the GLM assumption (19.3) as a way of determining

whether the Poisson QMLE is e‰cient in the class of estimators using only assump-

tion (19.7). Cameron and Trivedi (1986) propose tests of the stronger assumption

(19.2) and, in fact, take the null to be that the Poisson distribution is correct in its

entirety. These tests are useful if we are interested in whether y given x truly has a

Poisson distribution. However, assumption (19.2) is not necessary for consistency or

relative e‰ciency of the Poisson QMLE.

Wooldridge (1991b) proposes fully robust tests of conditional variances in the

context of the linear exponential family, which contains Poisson regression as a spe-

cial case. To test assumption (19.3), write ui ¼ yi � mðxi; boÞ and note that, under

assumptions (19.3) and (19.7), u2
i � s2

omðxi; boÞ is uncorrelated with any function of

xi. Let hðxi; bÞ be a 1 � Q vector of functions of xi and b, and consider the alterna-

tive model

Eðu2
i j xiÞ ¼ s2

omðxi; boÞ þ hðxi; boÞdo ð19:23Þ

For example, the elements of hðxi; bÞ can be powers of mðxi; bÞ. Popular choices are

unity and fmðxi; bÞg2. A test of H0: do ¼ 0 is then a test of the GLM assumption.

While there are several moment conditions that can be used, a fruitful one is to use

the weighted residuals, as we did with the conditional mean tests. We base the test on

N�1
XN

i¼1

ðĥhi=m̂miÞ0fðûu2
i � ŝs2m̂miÞ=m̂mig ¼ N�1

XN

i¼1

~hh 0
i ð~uu

2
i � ŝs2Þ ð19:24Þ

where ~hhi ¼ ĥhi=m̂mi and ~uui ¼ ûui=
ffiffiffiffiffi
m̂mi

p
. (Note that ĥhi is weighted by 1=m̂mi, not 1=

ffiffiffiffiffi
m̂mi

p
.)

To turn this equation into a test statistic, we must confront the fact that its stan-

dardized limiting distribution depends on the limiting distributions of
ffiffiffiffiffi
N

p
ð b̂b � boÞ

and
ffiffiffiffiffi
N

p
ðŝs2 � s2

oÞ. To handle this problem, we use a trick suggested by Wooldridge
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(1991b) that removes the dependence of the limiting distribution of the test statistic

on that of
ffiffiffiffiffi
N

p
ðŝs2 � s2

oÞ: replace ~hhi in equation (19.24) with its demeaned counter-

part, ~rri 1 ~hhi � h, where h is just the 1 � Q vector of sample averages of each element

of ~hhi. There is an additional purging that then leads to a simple regression-based

statistic. Let ‘bm̂mi be the unweighted gradient of the conditional mean function,

evaluated at the Poisson QMLE b̂b, and define ‘bm̂mi 1‘bm̂mi=
ffiffiffiffiffi
m̂mi

p
, as before. The fol-

lowing steps come from Wooldridge (1991b, Procedure 4.1):

1. Obtain ŝs2 as in equation (19.15) and ÂA as in equation (19.16), and define the

P � Q matrix ĴJ ¼ ŝs2ðN�1
PN

i¼1 ‘bm̂m 0
i~rri=m̂miÞ.

2. For each i, define the 1 � Q vector

ẑzi 1 ð~uu2
i � ŝs2Þ~rri � ŝs 0i ÂA

�1ĴJ ð19:25Þ

where ŝsi 1‘b ~mm
0
i ~uui is the Poisson score for observation i.

3. Run the regression

1 on ẑzi; i ¼ 1; 2; . . . ;N ð19:26Þ

Under assumptions (19.3) and (19.7), N � SSR from this regression is distributed

asymptotically as w2
Q.

The leading case occurs when m̂mi ¼ expðxib̂bÞ and ‘bm̂mi ¼ expðxib̂bÞxi ¼ m̂mixi. The

subtraction of ŝs 0i ÂA
�1ĴJ in equation (19.25) is a simple way of handling the fact that the

limiting distribution of
ffiffiffiffiffi
N

p
ð b̂b � boÞ a¤ects the limiting distribution of the unadjusted

statistic in equation (19.24). This particular adjustment ensures that the tests are just

as e‰cient as any maximum-likelihood-based statistic if s2
o ¼ 1 and the Poisson as-

sumption is correct. But this procedure is fully robust in the sense that only assump-

tions (19.3) and (19.7) are maintained under H0. For further discussion the reader is

referred to Wooldridge (1991b).

In practice, it is probably su‰cient to choose the number of elements in Q to be

small. Setting ĥhi ¼ ð1; m̂m2
i Þ, so that ~hhi ¼ ð1=m̂mi; m̂miÞ, is likely to produce a fairly power-

ful two-degrees-of-freedom test against a fairly broad class of alternatives.

The procedure is easily modified to test the more restrictive assumption (19.2). First,

replace ŝs2 everywhere with unity. Second, there is no need to demean the auxiliary

regressors ~hhi (so that now ~hhi can contain a constant); thus, wherever ~rri appears, sim-

ply use ~hhi. Everything else is the same. For the reasons discussed earlier, when the

focus is on Eðy j xÞ, we are more interested in testing assumption (19.3) than as-

sumption (19.2).
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19.3 Other Count Data Regression Models

19.3.1 Negative Binomial Regression Models

The Poisson regression model nominally maintains assumption (19.2) but retains

some asymptotic e‰ciency under assumption (19.3). A popular alternative to the

Poisson QMLE is full maximum likelihood analysis of the NegBin I model of

Cameron and Trivedi (1986). NegBin I is a particular parameterization of the nega-

tive binomial distribution. An important restriction in the NegBin I model is that it

implies assumption (19.3) with s2 > 1, so that there cannot be underdispersion. (We

drop the ‘‘o’’ subscript in this section for notational simplicity.) Typically, NegBin I

is parameterized through the mean parameters b and an additional parameter,

h2 > 0, where s2 ¼ 1 þ h2. On the one hand, when b and h2 are estimated jointly, the

maximum likelihood estimators are generally inconsistent if the NegBin I assumption

fails. On the other hand, if the NegBin I distribution holds, then the NegBin I MLE is

more e‰cient than the Poisson QMLE (this conclusion follows from Section 14.5.2).

Still, under assumption (19.3), the Poisson QMLE is more e‰cient than an estimator

that requires only the conditional mean to be correctly specified for consistency. On

balance, because of its robustness, the Poisson QMLE has the edge over NegBin I for

estimating the parameters of the conditional mean. If conditional probabilities need

to be estimated, then a more flexible model is probably warranted.

Other count data distributions imply a conditional variance other than assumption

(19.3). A leading example is the NegBin II model of Cameron and Trivedi (1986).

The NegBin II model can be derived from a model of unobserved heterogeneity in a

Poisson model. Specifically, let ci > 0 be unobserved heterogeneity, and assume that

yi j xi; ci @Poisson½cimðxi; bÞ�

If we further assume that ci is independent of xi and has a gamma distribution with

unit mean and VarðciÞ ¼ h2, then the distribution of yi given xi can be shown to be

negative binomial, with conditional mean and variance

Eðyi j xiÞ ¼ mðxi; bÞ; ð19:27Þ

Varðyi j xiÞ ¼ E½Varðyi j xi; ciÞ j xi� þ Var½Eðyi j xi; ciÞ j xi�

¼ mðxi; bÞ þ h2½mðxi; bÞ�2 ð19:28Þ

so that the conditional variance of yi given xi is a quadratic in the conditional mean.

Because we can write equation (19.28) as Eðyi j xiÞ½1 þ h2Eðyi j xiÞ�, NegBin II also
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implies overdispersion, but where the amount of overdispersion increases with

Eðyi j xiÞ.
The log-likelihood function for observation i is

liðb; h2Þ ¼ h�2 log
h�2

h�2 þ mðxi; bÞ

� �
þ yi log

mðxi; bÞ
h�2 þ mðxi; bÞ

� �

þ log½Gðyi þ h�2Þ=Gðh�2Þ� ð19:29Þ

where Gð�Þ is the gamma function defined for r > 0 by GðrÞ ¼
Ðy

0 zr�1 expð�zÞ dz.

You are referred to Cameron and Trivedi (1986) for details. The parameters b and

h2 can be jointly estimated using standard maximum likelihood methods.

It turns out that, for fixed h2, the log likelihood in equation (19.29) is in the linear

exponential family; see GMT (1984a). Therefore, if we fix h2 at any positive value,

say h2, and estimate b by maximizing
PN

i¼1 liðb; h2Þ with respect to b, then the

resulting QMLE is consistent under the conditional mean assumption (19.27) only:

for fixed h2, the negative binomial QMLE has the same robustness properties as the

Poisson QMLE. (Notice that when h2 is fixed, the term involving the gamma func-

tion in equation (19.29) does not a¤ect the QMLE.)

The structure of the asymptotic variance estimators and test statistics is very simi-

lar to the Poisson regression case. Let

v̂vi ¼ m̂mi þ h2m̂m2
i ð19:30Þ

be the estimated nominal variance for the given value h2. We simply weight the

residuals ûui and gradient ‘bm̂mi by 1=
ffiffiffiffî
vvi

p
:

~uui ¼ ûui=
ffiffiffiffî
vvi

p
; ‘b ~mmi ¼ ‘bm̂mi=

ffiffiffiffî
vvi

p
ð19:31Þ

For example, under conditions (19.27) and (19.28), a valid estimator of Avarð b̂bÞ is

XN

i¼1

‘bm̂m 0
i‘bm̂mi=v̂vi

 !�1

If we drop condition (19.28), the estimator in expression (19.14) should be used but

with the standardized residuals and gradients given by equation (19.31). Score sta-

tistics are modified in the same way.

When h2 is set to unity, we obtain the geometric QMLE. A better approach is to

replace h2 by a first-stage estimate, say ĥh2, and then estimate b by two-step QMLE.

As we discussed in Chapters 12 and 13, sometimes the asymptotic distribution of the

first-stage estimator needs to be taken into account. A nice feature of the two-step
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QMLE in this context is that the key condition, assumption (12.37), can be shown

to hold under assumption (19.27). Therefore, we can ignore the first-stage estimation

of h2.

Under assumption (19.28), a consistent estimator of h2 is easy to obtain, given an

initial estimator of b (such as the Poisson QMLE or the geometric QMLE). Given
^̂
bb̂bb, form ^̂mm̂mmi and ^̂uûuui as the usual fitted values and residuals. One consistent estimator

of h2 is the coe‰cient on ^̂mm̂mm2
i in the regression (through the origin) of ^̂uûuu2

i � ^̂mm̂mmi on ^̂mm̂mm2
i ;

this is the estimator suggested by Gourieroux, Monfort, and Trognon (1984b) and

Cameron and Trivedi (1986). An alternative estimator of h2, which is closely related

to the GLM estimator of s2 suggested in equation (19.15), is a weighted least squares

estimate, which can be obtained from the OLS regression ~~uu~uu2
i � 1 on ^̂mm̂mmi, where the ~~uu~uui

are residuals ^̂uûuui weighted by ^̂mm̂mm
�1=2
i . The resulting two-step estimator of b is consistent

under assumption (19.7) only, so it is just as robust as the Poisson QMLE. It makes

sense to use fully robust standard errors and test statistics. If assumption (19.3) holds,

the Poisson QMLE is asymptotically more e‰cient; if assumption (19.28) holds, the

two-step negative binomial estimator is more e‰cient. Notice that neither variance

assumption contains the other as a special case for all parameter values; see Wool-

dridge (1997c) for additional discussion.

The variance specification tests discussed in Section 19.2.5 can be extended to the

negative binomial QMLE; see Wooldridge (1991b).

19.3.2 Binomial Regression Models

Sometimes we wish to analyze count data conditional on a known upper bound. For

example, Thomas, Strauss, and Henriques (1990) study child mortality within families

conditional on number of children ever born. Another example takes the dependent

variable, yi, to be the number of adult children in family i who are high school gradu-

ates; the known upper bound, ni, is the number of children in family i. By conditioning

on ni we are, presumably, treating it as exogenous.

Let xi be a set of exogenous variables. A natural starting point is to assume that

yi given ðni; xiÞ has a binomial distribution, denoted Binomial ½ni; pðxi; bÞ�, where

pðxi; bÞ is a function bounded between zero and one. Usually, yi is viewed as the sum

of ni independent Bernoulli (zero-one) random variables, and pðxi; bÞ is the (condi-

tional) probability of success on each trial.

The binomial assumption is too restrictive for all applications. The presence of an

unobserved e¤ect would invalidate the binomial assumption (after the e¤ect is inte-

grated out). For example, when yi is the number of children in a family graduating

from high school, unobserved family e¤ects may play an important role.
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As in the case of unbounded support, we assume that the conditional mean is

correctly specified:

Eðyi j xi; niÞ ¼ ni pðxi; bÞ1miðbÞ ð19:32Þ

This formulation ensures that Eðyi j xi; niÞ is between zero and ni. Typically,

pðxi; bÞ ¼ GðxibÞ, where Gð�Þ is a cumulative distribution function, such as the

standard normal or logistic function.

Given a parametric model pðx; bÞ, the binomial quasi–log likelihood for observa-

tion i is

liðbÞ ¼ yi log½ pðxi; bÞ� þ ðni � yiÞ log½1 � pðxi; bÞ� ð19:33Þ

and the binomial QMLE is obtained by maximizing the sum of liðbÞ over all N

observations. From the results of GMT (1984a), the conditional mean parameters are

consistently estimated under assumption (19.32) only. This conclusion follows from

the general M-estimation results after showing that the true value of b maximizes the

expected value of equation (19.33) under assumption (19.32) only.

The binomial GLM variance assumption is

Varðyi j xi; niÞ ¼ s2ni pðxi; bÞ½1 � pðxi; bÞ� ¼ s2viðbÞ ð19:34Þ

which generalizes the nominal binomial assumption with s2 ¼ 1. [McCullagh and

Nelder (1989, Section 4.5) discuss a model that leads to assumption (19.34) with s2 >

1. But underdispersion is also possible.] Even the GLM assumption can fail if the

binary outcomes comprising yi are not independent conditional on ðxi; niÞ. Therefore,

it makes sense to use the fully robust asymptotic variance estimator for the binomial

QMLE.

Owing to the structure of LEF densities, and given our earlier analysis of the

Poisson and negative binomial cases, it is straightforward to describe the econometric

analysis for the binomial QMLE: simply take m̂mi 1 ni pðxi; b̂bÞ, ûui 1 yi � m̂mi, ‘bm̂mi 1
ni‘bp̂pi, and v̂vi 1 nip̂pið1 � p̂piÞ in equations (19.31). An estimator of s2 under assump-

tion (19.34) is also easily obtained: replace m̂mi in equation (19.15) with v̂vi. The struc-

ture of asymptotic variances and score tests is identical.

19.4 Other QMLES in the Linear Exponential Family

Sometimes we want to use a quasi-MLE analysis for other kinds of response vari-

ables. We will consider two here. The exponential regression model is well suited to

strictly positive, roughly continuous responses. Fractional logit regression can be used

when the response variable takes on values in the unit interval.
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19.4.1 Exponential Regression Models

Just as in the Poisson regression model, in an exponential regression model we specify

a conditional mean function, mðx; bÞ. However, we now use the exponential quasi–

log likelihood function, liðbÞ ¼ �yi=mðxi; bÞ � log½mðxi; bÞ�. [The ‘‘exponential’’ in

‘‘exponential regression model’’ refers to the quasi-likelihood used, and not to the

mean function mðx; bÞ.] The most popular choice of mðx; bÞ happens to be expðxbÞ.
The results of GMT (1984a) imply that, provided the conditional mean is correctly

specified, the exponential QMLE consistently estimates the conditional mean param-

eters. Thus the exponential QMLE enjoys the same robustness properties as the

Poisson QMLE.

The GLM variance assumption for exponential regression is

Varðy j xÞ ¼ s2½Eðy j xÞ�2 ð19:35Þ

When s2 ¼ 1, assumption (19.35) gives the variance-mean relationship for the expo-

nential distribution. Under assumption (19.35), s is the coe‰cient of variation: it is

the ratio of the conditional standard deviation of y to its conditional mean.

Whether or not assumption (19.35) holds, an asymptotic variance matrix can be

estimated. The fully robust form is expression (19.14), but, in defining the score and

expected Hessian, the residuals and gradients are weighted by 1=m̂mi rather than

m̂m
�1=2
i . Under assumption (19.35), a valid estimator is

ŝs2
XN

i¼1

‘bm̂m 0
i‘bm̂mi=v̂vi

 !�1

where ŝs2 ¼ N�1
PN

i¼1 ûu2
i =m̂m2

i and v̂vi ¼ m̂m2
i . Score tests and quasi–likelihood ratio tests

can be computed just as in the Poisson case. Most statistical packages implement

exponential regression with an exponential mean function; it is sometimes called the

gamma regression model because the exponential distribution is a special case of the

gamma distribution.

19.4.2 Fractional Logit Regression

Quasi-likelihood methods are also available when y is a variable restricted to the unit

interval, ½0; 1�. fBy rescaling, we can cover the case where y is restricted to the in-

terval ½a; b� for known constants a < b. The transformation is ðy � aÞ=ðb � aÞ.g
Examples include fraction of income contributed to charity, fraction of weekly hours

spent working, proportion of a firm’s total capitalization accounted for by debt cap-

ital, and high school graduation rates. In some cases, each yi might be obtained by

dividing a count variable by an upper bound, ni.
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Given explanatory variables x, a linear model for Eðy j xÞ has the same strengths

and weaknesses as the linear probability model for binary y. When y is strictly be-

tween zero and one, a popular alternative is to assume that the log-odds transforma-

tion, log½y=ð1 � yÞ�, has a conditional expectation of the form xb. The motivation for

using log½y=ð1 � yÞ� as a dependent variable in a linear model is that log½y=ð1 � yÞ�
ranges over all real values as y ranges between zero and one. This approach leads to

estimation of b by OLS. Unfortunately, using the log-odds transformation has two

drawbacks. First, it cannot be used directly if y takes on the boundary values, zero

and one. While we can always use adjustments for the boundary values, such

adjustments are necessarily arbitrary. Second, even if y is strictly inside the unit in-

terval, b is di‰cult to interpret: without further assumptions, it is not possible to re-

cover an estimate of Eðy j xÞ, and with further assumptions, it is still nontrivial to

estimate Eðy j xÞ. See Papke and Wooldridge (1996) and Problem 19.8 for further

discussion.

An approach that avoids both these problems is to model Eðy j xÞ as a logistic

function:

Eðy j xÞ ¼ expðxbÞ=½1 þ expðxbÞ� ð19:36Þ

This model ensures that predicted values for y are in ð0; 1Þ and that the e¤ect of any

xj on Eðy j xÞ diminishes as xb ! y. Just as in the binary logit model, qEðy j xÞ=qxj

¼ bjgðxbÞ, where gðzÞ ¼ expðzÞ=½1 þ expðzÞ�2. In applications, the partial e¤ects

should be evaluated at the b̂bj and interesting values of x. Plugging in the sample

averages, x, makes the partial e¤ects from equation (19.36) roughly comparable to

the coe‰cients from a linear regression for Eðy j xÞ: ĝgj A b̂bjgðxb̂bÞ, where the ĝgj are the

OLS estimates from the linear regression of y on x.

Given equation (19.36), one approach to estimating b is nonlinear least squares, as

we discussed in Chapter 12. However, the assumption that implies relative e‰ciency

of NLS—namely, Varðy j xÞ ¼ s2—is unlikely to hold for fractional y. A method

that is just as robust [in the sense that it consistently estimates b under assumption

(19.36) only] is quasi-MLE, where the quasi-likelihood function is the binary choice

log likelihood. Therefore, quasi–log likelihood for observation i is exactly as in

equation (15.17) [with Gð�Þ the logistic function], although yi can be any value in

½0; 1�. The mechanics of obtaining b̂b are identical to the binary response case.

Inference is complicated by the fact that the binary response density cannot be the

actual density of y given x. Generally, a fully robust variance matrix estimator and

test statistics should be obtained. These are gotten by applying the formulas for the

binomial case with ni 1 1 and pðx; bÞ1 expðxbÞ=½1 þ expðxbÞ�. The GLM assump-

tion for fractional logit regression is given in assumption (19.34) with ni ¼ 1. See
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Papke and Wooldridge (1996) for more details, as well as suggestions for specifica-

tion tests and for an application to participation rates in 401(k) pension plans.

19.5 Endogeneity and Sample Selection with an Exponential Regression Function

With all of the previous models, standard econometric problems can arise. In this

section, we will study two of the problems when the regression function for y has an

exponential form: endogeneity of an explanatory variable and incidental truncation.

We follow the methods in Wooldridge (1997c), which are closely related to those

suggested by Terza (1998). Gurmu and Trivedi (1994) and the references therein dis-

cuss the problems of data censoring, truncation, and two-tier or hurdle models.

19.5.1 Endogeneity

We approach the problem of endogenous explanatory variables from an omitted

variables perspective. Let y1 be the nonnegative, in principle unbounded variable to

be explained, and let z and y2 be observable explanatory variables (of dimension

1 � L and 1 � G1, respectively). Let c1 be an unobserved latent variable (or unob-

served heterogeneity). We assume that the (structural) model of interest is an omitted

variables model of exponential form, written in the population as

Eðy1 j z; y2; c1Þ ¼ expðz1d1 þ y2g1 þ c1Þ ð19:37Þ

where z1 is a 1 � L1 subset of z containing unity; thus, the model (19.37) incorporates

some exclusion restrictions. On the one hand, the elements in z are assumed to be

exogenous in the sense that they are independent of c1. On the other hand, y2 and c1

are allowed to be correlated, so that y2 is potentially endogenous.

To use a quasi-likelihood approach, we assume that y2 has a linear reduced form

satisfying certain assumptions. Write

y2 ¼ zP2 þ v2 ð19:38Þ

where P2 is an L � G1 matrix of reduced form parameters and v2 is a 1 � G1 vector

of reduced form errors. We assume that the rank condition for identification holds,

which requires the order condition L � L1 bG1. In addition, we assume that ðc1; v2Þ
is independent of z, and that

c1 ¼ v2r1 þ e1 ð19:39Þ

where e1 is independent of v2 (and necessarily of z). (We could relax the independence

assumptions to some degree, but we cannot just assume that v2 is uncorrelated with z
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and that e1 is uncorrelated with v2.) It is natural to assume that v2 has zero mean, but

it is convenient to assume that E½expðe1Þ� ¼ 1 rather than Eðe1Þ ¼ 0. This assumption

is without loss of generality whenever a constant appears in z1, which should almost

always be the case.

If ðc1; v2Þ has a multivariate normal distribution, then the representation in equa-

tion (19.39) under the stated assumptions always holds. We could also extend equa-

tion (19.39) by putting other functions of v2 on the right-hand side, such as squares

and cross products, but we do not show these explicitly. Note that y2 is exogenous if

and only if r1 ¼ 0.

Under the maintained assumptions, we have

Eðy1 j z; y2; v2Þ ¼ expðz1d1 þ y2g1 þ v2r1Þ ð19:40Þ

and this equation suggests a strategy for consistently estimating d1, g1, and r1. If v2

were observed, we could simply use this regression function in one of the QMLE

earlier methods (for example, Poisson, two-step negative binomial, or exponential).

Because these methods consistently estimate correctly specified conditional means,

we can immediately conclude that the QMLEs would be consistent. [If y1 conditional

on ðz; y2; c1Þ has a Poisson distribution with mean in equation (19.37), then the dis-

tribution of y1 given ðz; y2; v2Þ has overdispersion of the type (19.28), so the two-step

negative binomial estimator might be preferred in this context.]

To operationalize this procedure, the unknown quantities v2 must be replaced with

estimates. Let P̂P2 be the L � G1 matrix of OLS estimates from the first-stage esti-

mation of equation (19.38); these are consistent estimates of P2. Define v̂v2 ¼ y2 �
zP̂P2 (where the observation subscript is suppressed). Then estimate the exponential

regression model using regressors ðz1; y2; v̂v2Þ by one of the QMLEs. The estimates

ðd̂d1; ĝg1; r̂r1Þ from this procedure are consistent using standard arguments from two-

step estimation in Chapter 12.

This method is similar in spirit to the methods we saw for binary response (Chapter

15) and censored regression models (Chapter 16). There is one di¤erence: here, we do

not need to make distributional assumptions about y1 or y2. However, we do assume

that the reduced-form errors v2 are independent of z. In addition, we assume that c1

and v2 are linearly related with e1 in equation (19.39) independent of v2. Later we will

show how to relax these assumptions using a method of moments approach.

Because v̂v2 depends on P̂P2, the variance matrix estimators for d̂d1, ĝg1, and r̂r1 should

generally be adjusted to account for this dependence, as described in Sections 12.5.2

and 14.1. Using the results from Section 12.5.2, it can be shown that estimation of P2

does not a¤ect the asymptotic variance of the QMLEs when r1 ¼ 0, just as we saw
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when testing for endogeneity in probit and Tobit models. Therefore, testing for

endogeneity of y2 is relatively straightforward: simply test H0: r1 ¼ 0 using a Wald

or LM statistic. When G1 ¼ 1, the most convenient statistic is probably the t statistic

on v̂v2, with the fully robust form being the most preferred (but the GLM form is also

useful). The LM test for omitted variables is convenient when G1 > 1 because it can

be computed after estimating the null model ðr1 ¼ 0Þ and then doing a variable ad-

dition test for v̂v2. The test has G1 degrees of freedom in the chi-square distribution.

There is a final comment worth making about this test. The null hypothesis is the

same as Eðy1 j z; y2Þ ¼ expðz1d1 þ y2g1Þ. The test for endogeneity of y2 simply looks

for whether a particular linear combination of y2 and z appears in this conditional

expectation. For the purposes of getting a limiting chi-square distribution, it does not

matter where the linear combination v̂v2 comes from. In other words, under the null

hypothesis none of the assumptions we made about ðc1; v2Þ need to hold: v2 need

not be independent of z, and e1 in equation (19.39) need not be independent of

v2. Therefore, as a test, this procedure is very robust, and it can be applied when y2

contains binary, count, or other discrete variables. Unfortunately, if y2 is endoge-

nous, the correction does not work without something like the assumptions made

previously.

Example 19.2 (Is Education Endogenous in the Fertility Equation?): We test for

endogeneity of educ in Example 19.1. The IV for educ is a binary indicator for whether

the woman was born in the first half of the year ( frsthalf ), which we assume is ex-

ogenous in the fertility equation. In the reduced-form equation for educ, the coe‰-

cient on frsthalf is �:636 (se ¼ :104), and so there is a significant negative partial

relationship between years of schooling and being born in the first half of the year.

When we add the first-stage residuals, v̂v2, to the Poisson regression, its coe‰cient is

.025, and its GLM standard error is .028. Therefore, there is little evidence against

the null hypothesis that educ is exogenous. The coe‰cient on educ actually becomes

larger in magnitude ð�:046Þ, but it is much less precisely estimated.

Mullahy (1997) has shown how to estimate exponential models when some ex-

planatory variables are endogenous without making assumptions about the reduced

form of y2. This approach is especially attractive for dummy endogenous and other

discrete explanatory variables, where the linearity in equation (19.39) coupled with

independence of z and v2 is unrealistic. To sketch Mullahy’s approach, write x1 ¼
ðz1; y2Þ and b1 ¼ ðd 0

1; g
0
1Þ

0. Then, under the model (19.37), we can write

y1 expð�x1b1Þ ¼ expðc1Þa1; Eða1 j z; y2; c1Þ ¼ 1 ð19:41Þ
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If we assume that c1 is independent of z—a standard assumption concerning

unobserved heterogeneity and exogenous variables—and use the normalization

E½expðc1Þ� ¼ 1, we have the conditional moment restriction

E½ y1 expð�x1b1Þ j z� ¼ 1 ð19:42Þ

Because y1, x1, and z are all observable, condition (19.42) can be used as the basis

for generalized method of moments estimation. The function gðy1; y2; z1; b1Þ1
y1 expð�x1b1Þ � 1, which depends on observable data and the parameters, is uncor-

related with any function of z (at the true value of b1). GMM estimation can be used

as in Section 14.2 once a vector of instrumental variables has been chosen.

An important feature of Mullahy’s approach is that no assumptions, other than the

standard rank condition for identification in nonlinear models, are made about the

distribution of y2 given z: we need not assume the existence of a linear reduced form

for y2 with errors independent of z. Mullahy’s procedure is computationally more

di‰cult, and testing for endogeneity in his framework is harder than in the QMLE

approach. Therefore, we might first use the two-step quasi-likelihood method pro-

posed earlier for testing, and if endogeneity seems to be important, Mullahy’s GMM

estimator can be implemented. See Mullahy (1997) for details and an empirical

example.

19.5.2 Sample Selection

It is also possible to test and correct for sample selection in exponential regression

models. The case where selection is determined by the dependent variable being

above or below a known threshold requires full maximum likelihood methods using a

truncated count distribution; you are referred to the book by Cameron and Trivedi

(1998). Here, we assume that sample selection is related to an unobservable in the

population model

Eðy1 j x; c1Þ ¼ expðx1b1 þ c1Þ ð19:43Þ

where x1 is a 1 � K1 vector of exogenous variables containing a constant, and c1 is an

unobserved random variable. The full set of exogenous variables is x, and c1 is inde-

pendent of x. Therefore, if a random sample on ðx1; y1Þ were available, b1 could be

consistently estimated by a Poisson regression of y1 on x1 (or by some other QMLE)

under the normalization E½expðc1Þ� ¼ 1.

A sample selection problem arises when a random sample on ðx1; y1Þ from the

relevant population is not available. Let y2 denote a binary selection indicator, which

is unity if ðx1; y1Þ is observed and zero otherwise. We assume that y2 is determined by

y2 ¼ 1½x2d2 þ v2 > 0�, where 1½�� is the indicator function, x2 is a subset of x (typi-
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cally, x2 ¼ x), and v2 is unobserved. This is a standard sample selection mechanism,

where y2 and x2 must be observable for all units in the population.

In this setting, sample selection bias arises when v2 is correlated with c1. In partic-

ular, if we write equation (19.43) with a multiplicative error, y1 ¼ expðx1b1 þ c1Þa1,

with Eða1 j x; c1Þ ¼ 1 by definition, we also assume that Eða1 j x; c1; v2Þ ¼ Eða1Þ ¼ 1.

In other words, selection may be correlated with c1 but not a1. This model is similar

to the linear model with sample selection in Section 17.4.1 where the error in the

regression equation can be decomposed into two parts, one that is correlated with

v2 ðc1Þ and one that is not ða1Þ.
To derive a simple correction, assume that ðc1; v2Þ is independent of x and bivari-

ate normal with zero mean; v2 also has a unit variance, so that y2 given x follows a

probit model. These assumptions imply that E½expðc1Þ j x; v2� ¼ E½expðc1Þ j v2� ¼
expðr0 þ r1v2Þ for parameters r0 and r1. Provided x1 contains a constant, we can use

the normalization expðr0Þ ¼ 1, and we do so in what follows. Then Eðy1 j x; v2Þ ¼
expðx1b1 þ r1v2Þ, and so by iterated expectations,

Eðy1 j x; y2 ¼ 1Þ ¼ expðx1b1Þgðx2d2; r1Þ ð19:44Þ

where gðx2d2; r1Þ1E½expðr1v2Þ j v2 > �x2d2�. By integrating the function expðr1v2Þ
against the truncated standard normal density conditional on v2 > �x2d2, it can be

shown that gðx2d2; r1Þ ¼ expðr2
1ÞFðr1 þ x2d2Þ=Fðx2d2Þ, where Fð�Þ is the standard

normal cdf.

Given equation (19.44), we can apply a two-step method similar to Heckman’s

(1976) method for linear models that we covered in Chapter 17. First, run a probit of

y2 on x2 using the entire sample. Let d̂d2 be the probit estimator of d2. Next, on the

selected subsample for which ðy1; x1Þ is observed, use a QMLE analysis with condi-

tional mean function expðx1b1Þgðx2d̂d2; r1Þ to estimate b1 and r1. If r1 0 0, then, as

usual, the asymptotic variance of b̂b1 and r̂r1 should be adjusted for estimation of d2.

Testing r1 ¼ 0 is simple if we use the robust score test. This requires the derivative

of the mean function with respect to r1, evaluated at r1 ¼ 0. But qgðx2d2; 0Þ=qr1 ¼
lðx2d2Þ, where lð�Þ is the usual inverse Mills ratio that appears in linear sample

selection contexts. Thus the derivative of the mean function with respect to r1, eval-

uated at all estimates under the null, is simply expðx1b̂b1Þlðx2d̂d2Þ. This result gives the

following procedure to test for sample selection: (1) let b̂b1 be a QMLE (for example,

the Poisson) using the selected sample, and define ŷyi1 1 expðxi1b̂b1Þ, ûui1 1 yi1 � ŷyi1,

and ~uui1 1 ûui1=
ffiffiffiffiffiffi
ŷyi1

p
for all i in the selected sample; (2) obtain d̂d2 from the probit of y2

onto x2, using the entire sample; denote the estimated inverse Mills ratio for each

observation i by l̂li2; and (3) regress ~uui1 onto
ffiffiffiffiffiffi
ŷyi1

p
xi1,

ffiffiffiffiffiffi
ŷyi1

p
l̂li2 using the selected

sample, and use N1R2
u as asymptotically w2

1 , where N1 is the number of observations
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in the selected sample. This approach assumes that the GLM assumption holds under

H0. For the fully robust test, first regress
ffiffiffiffiffiffi
ŷyi1

p
l̂li2 onto

ffiffiffiffiffiffi
ŷyi1

p
xi1 using the selected

sample and save the residuals, ~rri1; then regress 1 on ~uui1~rri1, i ¼ 1; 2; . . . ;N1, and use

N1 � SSR as asymptotically w2
1 .

19.6 Panel Data Methods

In this final section, we discuss estimation of panel data models, primarily focusing

on count data. Our main interest is in models that contain unobserved e¤ects, but we

initially cover pooled estimation when the model does not explicitly contain an

unobserved e¤ect.

The pioneering work in unobserved e¤ects count data models was done by Haus-

man, Hall, and Griliches (1984) (HHG), who were interested in explaining patent

applications by firms in terms of spending on research and development. HHG devel-

oped random and fixed e¤ects models under full distributional assumptions. Wool-

dridge (1999a) has shown that one of the approaches suggested by HHG, which is

typically called the fixed e¤ects Poisson model, has some nice robustness properties.

We will study those here.

Other count panel data applications include (with response variable in parentheses)

Rose (1990) (number of airline accidents), Papke (1991) (number of firm births in an

industry), Downes and Greenstein (1996) (number of private schools in a public

school district), and Page (1995) (number of housing units shown to individuals). The

time series dimension in each of these studies allows us to control for unobserved het-

erogeneity in the cross section units, and to estimate certain dynamic relationships.

As with the rest of the book, we explicitly consider the case with N large relative to

T, as the asymptotics hold with T fixed and N ! y.

19.6.1 Pooled QMLE

As with the linear case, we begin by discussing pooled estimation after specifying a

model for a conditional mean. Let fðxt; ytÞ: t ¼ 1; 2; . . . ;Tg denote the time series

observations for a random draw from the cross section population. We assume that,

for some bo A B,

Eðyt j xtÞ ¼ mðxt; boÞ; t ¼ 1; 2; . . . ;T ð19:45Þ

This assumption simply means that we have a correctly specified parametric model

for Eðyt j xtÞ. For notational convenience only, we assume that the function m itself

does not change over time. Relaxing this assumption just requires a notational
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change, or we can include time dummies in xt. For yt b 0 and unbounded from

above, the most common conditional mean is expðxtbÞ. There is no restriction on the

time dependence of the observations under assumption (19.45), and xt can contain

any observed variables. For example, a static model has xt ¼ zt, where zt is dated

contemporaneously with yt. A finite distributed lag has xt containing lags of zt. Strict

exogeneity of ðx1; . . . ; xTÞ, that is, Eðyt j x1; . . . ; xTÞ ¼ Eðyt j xtÞ, is not assumed. In

particular, xt can contain lagged dependent variables, although how these might ap-

pear in nonlinear models is not obvious (see Wooldridge, 1997c, for some possibil-

ities). A limitation of model (19.45) is that it does not explicitly incorporate an

unobserved e¤ect.

For each i ¼ 1; 2; . . . ;N; fðxit; yitÞ: t ¼ 1; 2; . . . ;Tg denotes the time series obser-

vations for cross section unit i. We assume random sampling from the cross section.

One approach to estimating bo is pooled nonlinear least squares, which was intro-

duced in Problem 12.6. When y is a count variable, a Poisson QMLE can be used.

This approach is completely analogous to pooled probit and pooled Tobit estimation

with panel data. Note, however, that we are not assuming that the Poisson distribu-

tion is true.

For each i the quasi–log likelihood for pooled Poisson estimation is (up to additive

constants)

liðbÞ ¼
XT

t¼1

fyit log½mðxit; bÞ� � mðxit; bÞg1
XT

t¼1

litðbÞ ð19:46Þ

The pooled Poisson QMLE then maximizes the sum of liðbÞ across i ¼ 1; . . . ;N.

Consistency and asymptotic normality of this estimator follows from the Chapter 12

results, once we use the fact that bo maximizes E½liðbÞ�; this follows from GMT

(1984a). Thus pooled Poisson estimation is robust in the sense that it consistently

estimates bo under assumption (19.45) only.

Without further assumptions we must be careful in estimating the asymptotic

variance of b̂b. Let siðbÞ be the P � 1 score of liðbÞ, which can be written as siðbÞ ¼PT
t¼1 sitðbÞ, where sitðbÞ is the score of litðbÞ; each sitðbÞ has the form (19.12) but

with ðxit; yitÞ in place of ðxi; yiÞ.
The asymptotic variance of

ffiffiffiffiffi
N

p
ð b̂b � boÞ has the usual form A�1

o BoA�1
o , where

Ao 1
PT

t¼1 E½‘bmitðboÞ
0‘bmitðboÞ=mitðboÞ� and Bo 1E½siðboÞsiðboÞ

0 �. Consistent

estimators are

ÂA ¼ N�1
XN

i¼1

XT

t¼1

‘bm̂m 0
it‘bm̂mit=m̂mit ð19:47Þ
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B̂B ¼ N�1
XN

i¼1

sið b̂bÞsið b̂bÞ0 ð19:48Þ

and we can use ÂA�1B̂BÂA�1=N for Avâarð b̂bÞ. This procedure is fully robust to the pres-

ence of serial correlation in the score and arbitrary conditional variances. It should be

used in the construction of standard errors and Wald statistics. The quasi-LR statistic

is not usually valid in this setup because of neglected time dependence and possible

violations of the Poisson variance assumption.

If the conditional mean is dynamically complete in the sense that

Eðyt j xt; yt�1; xt�1; . . . ; y1; x1Þ ¼ Eðyt j xtÞ ð19:49Þ

then fsitðboÞ: t ¼ 1; 2; . . . ;Tg is serially uncorrelated. Consequently, under assump-

tion (19.49), a consistent estimator of B is

B̂B ¼ N�1
XN

i¼1

XT

t¼1

sitð b̂bÞsitð b̂bÞ0 ð19:50Þ

Using this equation along with ÂA produces the asymptotic variance that results from

treating the observations as one long cross section, but without the Poisson or GLM

variance assumptions. Thus, equation (19.50) a¤ords a certain amount of robustness,

but it requires the dynamic completeness assumption (19.49).

There are many other possibilities. If we impose the GLM assumption

Varðyit j xitÞ ¼ s2
omðxit; boÞ; t ¼ 1; 2; . . . ;T ð19:51Þ

along with dynamic completeness, then Avarð b̂bÞ can be estimated by

ŝs2
XN

i¼1

XT

t¼1

‘bm̂m 0
it‘bm̂mit=m̂mit

 !�1

ð19:52Þ

where ŝs2 ¼ ðNT � PÞ�1PN
i¼1

PT
t¼1 ~uu

2
it, ~uuit ¼ ûuit=

ffiffiffiffiffiffi
m̂mit

p
, and ûuit ¼ yit � mitð b̂bÞ. This

estimator results in a standard GLM analysis on the pooled data.

19.6.2 Specifying Models of Conditional Expectations with Unobserved E¤ects

We now turn to models that explicitly contain an unobserved e¤ect. The issues that

arise here are similar to those that arose in linear panel data models. First, we must

know whether the explanatory variables are strictly exogenous conditional on an

unobserved e¤ect. Second, we must decide how the unobserved e¤ect should appear

in the conditional mean.
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Given conditioning variables xt, strict exogeneity conditional on the unobserved

e¤ect c is defined just as in the linear case:

Eðyt j x1; . . . ; xT ; cÞ ¼ Eðyt j xt; cÞ ð19:53Þ

As always, this definition rules out lagged values of y in xt, and it can rule out feed-

back from yt to future explanatory variables. In static models, where xt ¼ zt for

variables zt dated contemporaneously with yt, assumption (19.53) implies that neither

past nor future values of z a¤ect the expected value of yt, once zt and c have been

controlled for. This can be too restrictive, but it is often the starting point for ana-

lyzing static models.

A finite distributed lag relationship assumes that

Eðyt j zt; zt�1; . . . ; z1; cÞ ¼ Eðyt j zt; zt�1; . . . ; zt�Q; cÞ; t > Q ð19:54Þ

where Q is the length of the distributed lag. Under assumption (19.54), the strict

exogeneity assumption conditional on c becomes

Eðyt j z1; z2; . . . ; zT ; cÞ ¼ Eðyt j z1; . . . ; zt; cÞ ð19:55Þ

which is less restrictive than in the purely static model because lags of zt explicitly

appear in the model; it still rules out general feedback from yt to ðztþ1; . . . ; zTÞ.
With count variables, a multiplicative unobserved e¤ect is an attractive functional

form:

Eðyt j xt; cÞ ¼ c � mðxt; boÞ ð19:56Þ

where mðxt; bÞ is a parametric function known up to the P � 1 vector of parameters

bo. Equation (19.56) implies that the partial e¤ect of xtj on log Eðyt j xt; cÞ does not

depend on the unobserved e¤ect c. Thus quantities such as elasticities and semi-

elasticities depend only on xt and bo. The most popular special case is the exponential

model Eðyt j xt; aÞ ¼ expða þ xtbÞ, which is obtained by taking c ¼ expðaÞ.

19.6.3 Random E¤ects Methods

A multiplicative random e¤ects model maintains, at a minimum, two assumptions for

a random draw i from the population:

Eðyit j xi1; . . . ; xiT ; ciÞ ¼ cimðxit; boÞ; t ¼ 1; 2; . . . ;T ð19:57Þ

Eðci j xi1; . . . ; xiTÞ ¼ EðciÞ ¼ 1 ð19:58Þ

where ci is the unobserved, time-constant e¤ect, and the observed explanatory vari-

ables, xit, may be time constant or time varying. Assumption (19.57) is the strict

Count Data and Related Models 671



exogeneity assumption of the xit conditional on ci, combined with a regression func-

tion multiplicative in ci. When yit b 0, such as with a count variable, the most pop-

ular choice of the parametric regression function is mðxt; bÞ ¼ expðxtbÞ, in which

case xit would typically contain a full set of time dummies. Assumption (19.58) says

that the unobserved e¤ect, ci, is mean independent of xi; we normalize the mean to be

one, a step which is without loss of generality for common choices of m, including the

exponential function with unity in xt. Under assumptions (19.57) and (19.58), we can

‘‘integrate out’’ ci by using the law of iterated expectations:

Eðyit j xiÞ ¼ Eðyit j xitÞ ¼ mðxit; boÞ; t ¼ 1; 2; . . . ;T ð19:59Þ

Equation (19.59) shows that bo can be consistently estimated by the pooled Poisson

method discussed in Section 19.6.1. The robust variance matrix estimator that allows

for an arbitrary conditional variance and serial correlation produces valid inference.

Just as in a linear random e¤ects model, the presence of the unobserved heterogeneity

causes the yit to be correlated over time, conditional on xi.

When we introduce an unobserved e¤ect explicitly, a random e¤ects analysis typi-

cally accounts for the overdispersion and serial dependence implied by assumptions

(19.57) and (19.58). For count data, the Poisson random e¤ects model is given by

yit j xi; ci @Poisson½cimðxit; boÞ� ð19:60Þ

yit; yir are independent conditional on xi; ci; t0 r ð19:61Þ

ci is independent of xi and distributed as Gammaðdo; doÞ ð19:62Þ

where we parameterize the gamma distribution so that EðciÞ ¼ 1 and VarðciÞ ¼
1=do 1 h2

o. While Varðyit j xi; ciÞ ¼ Eðyit j xi; ciÞ under assumption (19.60), by equa-

tion (19.28), Varðyit j xiÞ ¼ Eðyit j xiÞ½1 þ h2
oEðyit j xiÞ�, and so assumptions (19.60)

and (19.62) imply overdispersion in Varðyit j xiÞ. Although other distributional

assumptions for ci can be used, the gamma distribution leads to a tractable density

for ðyi1; . . . ; yiT Þ given xi, which is obtained after ci has been integrated out. (See

HHG, p. 917, and Problem 19.11.) Maximum likelihood analysis (conditional on xi)

is relatively straightforward and is implemented by some econometrics packages.

If assumptions (19.60), (19.61), and (19.62) all hold, the conditional MLE is e‰-

cient among all estimators that do not use information on the distribution of xi; see

Section 14.5.2. The main drawback with the random e¤ects Poisson model is that it is

sensitive to violations of the maintained assumptions, any of which could be false.

(Problem 19.5 covers some ways to allow ci and xi to be correlated, but they still rely

on stronger assumptions than the fixed e¤ects Poisson estimator that we cover in

Section 19.6.4.)
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A quasi-MLE random e¤ects analysis keeps some of the key features of assump-

tions (19.60)–(19.62) but produces consistent estimators under just the conditional

mean assumptions (19.57) and (19.58). Nominally, we maintain assumptions (19.60)–

(19.62). Define uit 1 yit � Eðyit j xitÞ ¼ yit � mðxit; bÞ. Then we can write uit ¼
cimitðboÞ þ eit � mitðboÞ ¼ eit þ mitðboÞðci � 1Þ, where eit 1 yit � Eðyit j xit; ciÞ. As we

showed in Section 19.3.1,

Eðu2
it j xiÞ ¼ mitðboÞ þ h2

om2
itðboÞ ð19:63Þ

Further, for t0 r,

Eðuituir j xiÞ ¼ E½ðci � 1Þ2�mitðboÞmirðboÞ ¼ h2
omitðboÞmirðboÞ ð19:64Þ

where h2
o ¼ VarðciÞ. The serial correlation in equation (19.64) is reminiscent of the

serial correlation that arises in linear random e¤ects models under standard assump-

tions. This shows explicitly that we must correct for serial dependence in computing

the asymptotic variance of the pooled Poisson QMLE in Section 19.6.1. The over-

dispersion in equation (19.63) is analogous to the variance of the composite error in a

linear model. A QMLE random e¤ects analysis exploits these nominal variance and

covariance expressions but does not rely on either of them for consistency. If we

use equation (19.63) while ignoring equation (19.64), we are led to a pooled negative

binomial analysis, which is very similar to the pooled Poisson analysis except that the

quasi–log likelihood for each time period is the negative binomial discussed in Sec-

tion 19.3.1. See Wooldridge (1997c) for details.

If assumption (19.64) holds, it is more e‰cient—possibly much more e‰cient—to

use this information. Multivariate weighted nonlinear least squares (MWNLS)—see

Problem 12.10—can be used for these purposes. (See GMT, 1984b, for an applica-

tion to a related model.) The MWNLS estimator in this context is essentially the

same as the generalized estimating equation (GEE) approach of Zeger, Liang, and

Albert (1988). In the GEE literature, the estimated model is called the population-

averaged model (see Section 15.8.2 for the binary response case). For multiplicative

models where ci and xi are independent, the distinction is unimportant.

The MWNLS estimator solves the problem

min
b

XN

i¼1

½yi � miðbÞ�0ŴW�1
i ½yi � miðbÞ�

where ŴWi is the T � T matrix with the elements from equation (19.63) down its di-

agonal and the elements from equation (19.64) as its o¤-diagonals; bo is replaced with

Count Data and Related Models 673



the pooled Poisson estimate, and h2
o is replaced by the estimate from the pooled

regression ~uu2
it � 1 on m̂mit, t ¼ 1; . . . ;T , i ¼ 1; . . . ;N, where ~uuit ¼ ðyit � m̂mitÞ=

ffiffiffiffiffiffi
m̂mit

p
is

the standardized residual. Under assumptions (19.63) and (19.64), the MWNLS esti-

mator is relatively e‰cient among estimators that only require a correct conditional

mean for consistency, and its asymptotic variance can be estimated as

Avâarð b̂bÞ ¼
XN

i¼1

‘bm̂m 0
i ŴW

�1
i ‘bm̂mi

 !�1

As with the other QMLEs, the WNLS estimator is consistent under assumptions

(19.57) and (19.58) only, but if assumption (19.63) or (19.64) is violated, the variance

matrix needs to be made robust. Letting ûui 1 yi � mið b̂bÞ (a T � 1 vector), the robust

estimator is

XN

i¼1

‘bm̂m 0
i ŴW

�1
i ‘bm̂mi

 !�1 XN

i¼1

‘bm̂m 0
i ŴW

�1
i ûuiûu

0
i ŴW

�1
i ‘bm̂mi

 ! XN

i¼1

‘bm̂m 0
i ŴW

�1
i ‘bm̂mi

 !�1

This expression gives a way to obtain fully robust inference while having a relatively

e‰cient estimator under the random e¤ects assumptions (19.63) and (19.64).

GMT (1984b) cover a model that suggests an alternative form of ŴWi. The matrix

ŴWi can be modified for other nominal distributional assumptions, such as the expo-

nential (which would be natural to apply to continuous, nonnegative yit.) Any WNLS

method is more robust than a fully parametric maximum likelihood analysis, such as

that in assumptions (19.60)–(19.62). We must be aware that none of these methods

produces consistent estimators if either the strict exogeneity assumption fails or

Eðci j xiÞ depends on xi.

19.6.4 Fixed E¤ects Poisson Estimation

HHG first showed how to do a fixed-e¤ect-type analysis of count panel data models,

which allows for arbitrary dependence between ci and xi. Their fixed e¤ects Poisson

assumptions are (19.60) and (19.61), with the conditional mean given still by as-

sumption (19.57). The key is that neither assumption (19.62) nor assumption (19.58)

is maintained; in other words, arbitrary dependence between ci and xi is allowed.

HHG take mðxit; bÞ ¼ expðxitbÞ, which is by far the leading case.

HHG use Andersen’s (1970) conditional ML methodology to estimate b. Let

ni 1
PT

t¼1 yit denote the sum across time of the counts across t. Using standard

results on obtaining a joint distribution conditional on the sum of its components,

HHG show that
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yi j ni; xi; ci @Multinomialfni; p1ðxi; boÞ; . . . ; pTðxi; boÞg ð19:65Þ

where

ptðxi; bÞ1mðxit; bÞ=
XT

r¼1

mðxir; bÞ
" #

ð19:66Þ

Because this distribution does not depend on ci, equation (19.65) is also the distribu-

tion of yi conditional on ni and xi. Therefore, bo can be estimated by standard con-

ditional MLE techniques using the multinomial log likelihood. The conditional log

likelihood for observation i, apart from terms not depending on b, is

liðbÞ ¼
XT

t¼1

yit log½ ptðxi; bÞ� ð19:67Þ

The estimator b̂b that maximizes
PN

i¼1 liðbÞ will be called the fixed e¤ects Poisson

(FEP) estimator. (Note that when yit ¼ 0 for all t, the cross section observation i does

not contribute to the estimation.)

Obtaining the FEP estimator is computationally fairly easy, especially when

mðxit; bÞ ¼ expðxitbÞ. But the assumptions used to derive the conditional log likeli-

hood in equation (19.67) can be restrictive in practice. Fortunately, the FEP estimator

has very strong robustness properties for estimating the parameters in the conditional

mean. As shown in Wooldridge (1999a), the FEP estimator is consistent for bo under

the conditional mean assumption (19.57) only. Except for the conditional mean, the

distribution of yit given ðxi; ciÞ is entirely unrestricted; in particular, there can be

overdispersion or underdispersion in the latent variable model. Also, there is no re-

striction on the dependence between yit and yir, t0 r. This is another case where the

QMLE derived under fairly strong nominal assumptions turns out to have very de-

sirable robustness properties.

The argument that the FEP estimator is consistent under assumption (19.57)

hinges on showing that bo maximizes the expected value of equation (19.67) under

assumption (19.57) only. This result is shown in Wooldridge (1999a). Uniqueness

holds under general identification assumptions, but certain kinds of explanatory

variables are ruled out. For example, when the conditional mean has an exponential

form, it is easy to see that the coe‰cients on time-constant explanatory variables

drop out of equation (19.66), just as in the linear case. Interactions between time-

constant and time-varying explanatory variables are allowed.

Consistent estimation of the asymptotic variance of b̂b follows from the results on

M-estimation in Chapter 12. The score for observation i can be written as
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siðbÞ1‘bliðbÞ ¼
XT

t¼1

yit½‘bptðxi; bÞ0=ptðxi; bÞ�

1‘bpðxi; bÞ0Wðxi; bÞfyi � pðxi; bÞnig ð19:68Þ

where Wðxi; bÞ1 ½diagfp1ðxi; bÞ; . . . ; pTðxi; bÞg��1, uiðbÞ1 yi � pðxi; bÞni, pðxi; bÞ
1 ½ p1ðxi; bÞ; . . . ; pTðxi; bÞ� 0, and ptðxi; bÞ is given by equation (19.66).

The expected Hessian for observation i can be shown to be

Ao 1E½ni‘bpðxi; boÞ
0
Wðxi; boÞ‘bpðxi; boÞ�

The asymptotic variance of b̂b is A�1
o BoA�1

o =N, where Bo 1E½siðboÞsiðboÞ
0 �. A con-

sistent estimate of A is

ÂA ¼ N�1
XN

i¼1

ni‘bpðxi; b̂bÞ0Wðxi; b̂bÞ‘bpðxi; b̂bÞ ð19:69Þ

and B is estimated as

B̂B ¼ N�1
XN

i¼1

sið b̂bÞsið b̂bÞ0 ð19:70Þ

The robust variance matrix estimator, ÂA�1B̂BÂA�1=N, is valid under assumption

(19.57); in particular, it allows for any deviations from the Poisson distribution and

arbitrary time dependence. The usual maximum likelihood estimate, ÂA�1=N, is valid

under assumptions (19.60) and (19.61). For more details, including methods for

specification testing, see Wooldridge (1999a).

Applications of the fixed e¤ects Poisson estimator, which compute the robust

variance matrix and some specification test statistics, are given in Papke (1991),

Page (1995), and Gordy (1999). We must emphasize that, while the leading applica-

tion is to count data, the fixed e¤ects Poisson estimator works whenever assumption

(19.57) holds. Therefore, yit could be a nonnegative continuous variable, or even a

binary response if we believe the unobserved e¤ect is multiplicative (in contrast to the

models in Sections 15.8.2 and 15.8.3).

19.6.5 Relaxing the Strict Exogeneity Assumption

We end this chapter with a brief discussion about how to relax the strict exogeneity

assumption in a multiplicative unobserved e¤ects panel data model. In place of as-

sumption (19.57) we assume
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Eðyit j xi1; . . . ; xit; ciÞ ¼ cimðxit; boÞ; t ¼ 1; 2; . . . ;T ð19:71Þ

These are sequential moment restrictions of the kind we discussed in Chapter 11. The

model (19.71) is applicable to static and distributed lag models with possible feed-

back, as well as to models with lagged dependent variables. Again, yit need not be a

count variable here.

Chamberlain (1992b) and Wooldridge (1997a) have suggested residual functions

that lead to conditional moment restrictions. Assuming that mðxit; bÞ > 0, define

ritðbÞ1 yit � yi; tþ1½mðxit; bÞ=mðxi; tþ1; bÞ�; t ¼ 1; . . . ;T � 1 ð19:72Þ

Under assumption (19.72), we can use iterated expectations to show that

E½ritðboÞ j xi1; . . . ; xit� ¼ 0. This expression means that any function of xi1; . . . ; xit is

uncorrelated with ritðboÞ and is the basis for generalized method of moments esti-

mation. One can easily test the strict exogeneity assumption in a GMM framework.

For further discussion and details on implementation, as well as an alternative re-

sidual function, see Wooldridge (1997a).

Blundell, Gri‰th, and Windmeijer (1998) consider variants of moment conditions

in a linear feedback model, where the mean function contains a lagged dependent

variable, which enters additively, in addition to an exponential regression function in

other conditioning variables with a multiplicated unobserved e¤ect. They apply their

model to the patents and R&D relationship.

A di¤erent approach is conditional maximum likelihood, as we discussed in

Sections 15.8.4 and 16.8.3—see Section 13.9 for a general discussion. For example,

if we want to estimate a model for yit given ðzit; yi; t�1; ciÞ, where zit contains con-

temporaneous variables, we can model it as a Poisson variable with exponential

mean ci expðzitbo þ royi; t�1Þ. Then, assuming that Dðyit j zi; yi; t�1; . . . ; yi0; ciÞ ¼
Dðyit j zit; yi; t�1; ciÞ, we can obtain the density of ðyi1; . . . ; yiT Þ given ðyi0; zi; ciÞ by

multiplication; see equation (13.60). Given a density specification for Dðci j yi0; ziÞ,
we can obtain the conditional log likelihood for each i as in equation (13.62). A very

convenient specification is ci ¼ expðao þ xoyi0 þ zigoÞai, where ai is independent of

ðyi0; ziÞ and distributed as Gammaðdo; doÞ. Then, for each t, yit given ðyi; t�1; . . . ;

yi0; zi; aiÞ has a Poisson distribution with mean

ai expðao þ zitbo þ royi; t�1 þ xoyi0 þ zigoÞ

(As always, we would probably want aggregate time dummies included in this equa-

tion.) It is easy to see that the distribution of ðyi1; . . . ; yiTÞ given ðyi0; ziÞ has the

random e¤ects Poisson form with gamma heterogeneity; therefore, standard random
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e¤ects Poisson software can be used to estimate ao; bo; ro; xo; go, and do. The usual

conditional MLE standard errors, t statistics, Wald statistics, and likelihood ratio

statistics are asymptotically valid for large N. See Wooldridge (2000e) for further

details.

Problems

19.1. a. For estimating the mean of a nonnegative random variable y, the Poisson

quasi–log likelihood for a random draw is

liðmÞ ¼ yi logðmÞ � m; m > 0

(where terms not depending on m have been dropped). Letting mo 1EðyiÞ, we have

E½liðmÞ� ¼ mo logðmÞ � m. Show that this function is uniquely maximized at m ¼ mo.

This simple result is the basis for the consistency of the Poisson QMLE in the general

case.

b. The exponential quasi–log likelihood is

liðmÞ ¼ �yi=m� logðmÞ; m > 0

Show that E½liðmÞ� is uniquely maximized at m ¼ mo.

19.2. Carefully write out the robust variance matrix estimator (19.14) when

mðx; bÞ ¼ expðxbÞ.

19.3. Use the data in SMOKE.RAW to answer this question.

a. Use a linear regression model to explain cigs, the number of cigarettes smoked per

day. Use as explanatory variables logðcigpricÞ, logðincomeÞ, restaurn, white, educ,

age, and age2. Are the price and income variables significant? Does using hetero-

skedasticity-robust standard errors change your conclusions?

b. Now estimate a Poisson regression model for cigs, with an exponential conditional

mean and the same explanatory variables as in part a. Using the usual MLE standard

errors, are the price and income variables each significant at the 5 percent level? In-

terpret their coe‰cients.

c. Find ŝs. Is there evidence of overdispersion? Using the GLM standard errors, dis-

cuss the significance of logðcigpricÞ and logðincomeÞ.
d. Compare the usual MLE likelihood ratio statistic for joint significance of

logðcigpricÞ and logðincomeÞ with the QLR statistic in equation (19.17).
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e. Compute the fully robust standard errors, and compare these with the GLM

standard errors.

f. In the model estimated from part b, at what point does the e¤ect of age on

expected cigarette consumption become negative?

g. Do you think a two-part, or double-hurdle, model for count variables is a better

way to model cigs?

19.4. Show that, under the conditional moment restriction Eðy j xÞ ¼ mðx; boÞ, the

Poisson QMLE achieves the e‰ciency bound in equation (14.66) when the GLM

variance assumption holds.

19.5. Consider an unobserved e¤ects model for count data with exponential re-

gression function

Eðyit j xi1; . . . ; xiT ; ciÞ ¼ ci expðxitbÞ

a. If Eðci j xi1; . . . ; xiT Þ ¼ expðaþ xigÞ, find Eðyit j xi1; . . . ; xiT Þ.
b. Use part a to derive a test of mean independence between ci and xi. Assume under

H0 that Varðyit j xi; ciÞ ¼ Eðyit j xi; ciÞ, that yit and yir are uncorrelated conditional on

ðxi; ciÞ, and that ci and xi are independent. (Hint: You should devise a test in the

context of multivariate weighted nonlinear least squares.)

c. Suppose now that assumptions (19.60) and (19.61) hold, with mðxit; bÞ ¼
expðxitbÞ, but assumption (19.62) is replaced by ci ¼ ai expðaþ xigÞ, where ai j x@
Gammaðd; dÞ. Now how would you estimate b, a, and g, and how would you test

H0: g ¼ 0?

19.6. A model with an additive unobserved e¤ect, strictly exogenous regressors, and

a nonlinear regression function is

Eðyit j xi; ciÞ ¼ ci þ mðxit; boÞ; t ¼ 1; . . . ;T

a. For each i and t define the time-demeaned variables €yyit 1 yit � yi and, for each b,

€mmitðbÞ ¼ mðxit; bÞ � ð1=TÞ
PT

r¼1 mðxir; b). Argue that, under standard regularity

conditions, the pooled nonlinear least squares estimator of bo that solves

min
b

XN

i¼1

XT

t¼1

½ €yyit � €mmitðbÞ�2 ð19:73Þ

is generally consistent and
ffiffiffiffiffi
N

p
-asymptotically normal (with T fixed). [Hint: Show

that Eð€yyit j xiÞ ¼ €mmitðboÞ for all t.]
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b. If Varðyi j xi; ciÞ ¼ s2
oIT , how would you estimate the asymptotic variance of the

pooled NLS estimator?

c. If the variance assumption in part b does not hold, how would you estimate the

asymptotic variance?

d. Show that the NLS estimator based on time demeaning from part a is in fact

identical to the pooled NLS estimator that estimates fc1; c2; . . . ; cNg along with bo:

min
fc1; c2;...; cN ;bg

XN

i¼1

XT

t¼1

½ yit � ci � mðxit; bÞ�2 ð19:74Þ

Thus, this is another case where treating the unobserved e¤ects as parameters to es-

timate does not result in an inconsistent estimator of bo. [Hint: It is easiest to con-

centrate out the ci from the sum of square residuals; see Section 12.7.4. In the current

context, for given b, find ĉci as functions of yi; xi, and b. Then plug these back into

equation (19.74) and show that the concentrated sum of squared residuals function is

identical to equation (19.73).]

19.7. Assume that the standard Poisson fixed e¤ects assumptions hold, so that,

conditional on ðxi; ciÞ; yi1; . . . ; yiT are independent Poisson random variables with

means cimðxit; boÞ.
a. Show that, if we treat the ci as parameters to estimate along with bo, then the con-

ditional log likelihood for observation i (apart from terms not depending on ci or b) is

liðci; bÞ1 log½ f ðyi1; . . . ; yiT j xi; ci; bÞ�

¼
XT

t¼1

f�cimðxit; bÞ þ yit½logðciÞ� þ log½mðxit; bÞ�g

where we now group ci with b as a parameter to estimate. (Note that ci > 0 is a

needed restriction.)

b. Let ni ¼ yi1 þ � � � þ yiT , and assume that ni > 0. For given b, maximize liðci; bÞ
only with respect to ci. Find the solution, ciðbÞ > 0.

c. Plug the solution from part b into li½ciðbÞ; b �, and show that

li½ciðbÞ; b � ¼
XT

t¼1

yit log½ ptðxi; bÞ� þ ðni � 1Þ logðniÞ

d. Conclude from part c that the log-likelihood function for all N cross section

observations, with ðc1; . . . ; cNÞ concentrated out, is
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XN

i¼1

XT

t¼1

yit log½ ptðxi; bÞ� þ
XN

i¼1

ðni � 1Þ logðniÞ

What does this mean about the conditional MLE from Section 19.6.4 and the esti-

mator that treats the ci as parameters to estimate along with bo?

19.8. Let y be a fractional response, so that 0a ya 1.

a. Suppose that 0 < y < 1, so that w1 log½y=ð1 � yÞ� is well defined. If we assume

the linear model Eðw j xÞ ¼ xa, does Eðy j xÞ have any simple relationship to xa?

What would we need to know to obtain Eðy j xÞ? Let âa be the OLS estimator from

the regression wi on xi, i ¼ 1; . . . ;N.

b. If we estimate the fractional logit model for Eðy j xÞ from Section 19.4.2, should

we expect the estimated parameters, b̂b, to be close to âa from part a? Explain.

c. Now suppose that y takes on the values zero and one with positive probability. To

model this population feature we use a latent variable model:

y� j x@Normalðxg; s2Þ

y ¼ 0; y�
a 0

¼ y�; 0 < y� < 1

¼ 1; y�
b 1

How should we estimate g and s2? (Hint: See Problem 16.3.)

d. Given the estimate ĝg from part c, does it make sense to compare the magnitude of

ĝgj to the corresponding âaj from part a or the b̂bj from part b? Explain.

e. How might we choose between the models estimated in parts b and c? (Hint:

Think about goodness of fit for the conditional mean.)

f. Now suppose that 0a y < 1. Suppose we apply fractional logit, as in part b, and

fractional logit to the subsample with 0 < yi < 1. Should we necessarily get similar

answers?

g. With 0a y < 1 suppose that Eðyi j xi; yi > 0Þ ¼ expðxidÞ=½1 þ expðxidÞ�. If we

estimate d using the QMLE from Section 19.4.2, using only observations with

0 < yi < 1, is there a sample selection bias? Explain.

h. To the assumptions from part g add Pðyi ¼ 0 j xiÞ ¼ 1 � GðxihÞ, where Gð�Þ is a

di¤erentiable, strictly increasing cumulative distribution function. How should we

estimate Eðyi j xiÞ?
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19.9. Use the data in ATTEND.RAW to answer this question.

a. Estimate a linear regression relating atndrte to ACT, priGPA, frosh, and soph;

compute the usual OLS standard errors. Interpret the coe‰cients on ACT and

priGPA. Are any fitted values outside the unit interval?

b. Model Eðatndrte j xÞ as a logistic function, as in Section 19.4.2. Use the QMLE for

the Bernoulli log likelihood, and compute the GLM standard errors. What is ŝs, and

how does it a¤ect the standard errors?

c. For priGPA ¼ 3:0 and frosh ¼ soph ¼ 0, estimate the e¤ect of increasing ACT

from 25 to 30 using the estimated equation from part b. How does the estimate

compare with that from the linear model?

d. Does a linear model or a logistic model provide a better fit to Eðatndrte j xÞ?

19.10. Use the data in PATENT.RAW for this exercise.

a. Estimate a pooled Poisson regression model relating patents to lsales ¼ logðsalesÞ
and current and four lags of lrnd ¼ logð1 þ rnd Þ, where we add one before taking the

log to account for the fact that rnd is zero for some firms in some years. Use an ex-

ponential mean function and include a full set of year dummies. Which lags of lrnd

are significant using the usual Poisson MLE standard errors?

b. Give two reasons why the usual Poisson MLE standard errors from part a might

be invalid.

c. Obtain ŝs for the pooled Poisson estimation. Using the GLM standard errors

(but without an adjustment for possible serial dependence), which lags of lrnd are

significant?

d. Obtain the QLR statistic for joint significance of lags one through four of lrnd. (Be

careful here; you must use the same set of years in estimating the restricted version of

the model.) How does it compare to the usual LR statistic?

e. Compute the standard errors that are robust to an arbitrary conditional variance

and serial dependence. How do they compare with the standard errors from parts a

and c?

f. What is the estimated long-run elasticity of expected patents with respect to R&D

spending? (Ignore the fact that one has been added to the R&D numbers before

taking the log.) Obtain a fully robust standard error for the long-run elasticity.

g. Now use the fixed e¤ects Poisson estimator, and compare the estimated lag coef-

ficients to those from the pooled Poisson analysis. Estimate the long-run elasticity,

and obtain its standard error. (Assume that the full set of FEP assumptions hold.)
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19.11. a. For a random draw i from the cross section, assume that (1) for each time

period t, yit j xi; ci @PoissonðcimitÞ, where ci > 0 is unobserved heterogeneity and

mit > 0 is typically a function of only xit; and (2) ðyi1; . . . ; yiT Þ are independent con-

ditional on ðxi; ciÞ. Derive the density of ðyi1; . . . ; yiT Þ conditional on ðxi; ciÞ.
b. To the assumptions from part a, add the assumption that ci j xi @Gammaðd; dÞ,
so that EðciÞ ¼ 1 and VarðciÞ ¼ 1=d. fThe density of ci is hðcÞ ¼ ½dd=
GðdÞ�cd�1 expð�dcÞ, where GðdÞ is the gamma function.g Let s ¼ y1 þ � � � þ yT and

Mi ¼ mi1 þ � � � þ miT . Show that the density of ðyi1; . . . ; yiT Þ given xi is

YT
t¼1

m
yt

it =yt!

 !
½dd=GðdÞ�½GðMi þ sÞ=ðMi þ dÞðsþdÞ�

[Hint: The easiest way to show this result is to turn the integral into one involving a

Gammaðs þ d;Mi þ dÞ density and a multiplicative term. Naturally, the density must

integrate to unity, and so what is left over is the density we seek.]

19.12. For a random draw i from the cross section, assume that (1) for each t,

yit j xi; ci @Gammaðmit; 1=ciÞ, where ci > 0 is unobserved heterogeneity and mit > 0;

and (2) ðyi1; . . . ; yiT Þ are independent conditional on ðxi; ciÞ. The gamma distribution

is parameterized so that Eðyit j xi; ciÞ ¼ cimit and Varðyit j xi; ciÞ ¼ c2
i mit.

a. Let si ¼ yi1 þ � � � þ yiT . Show that the density of ðyi1; yi2; . . . ; yiT Þ conditional on

ðsi; xi; ciÞ is

f ðy1; . . . ; yT j si; xi; ciÞ ¼ Gðmi1 þ � � � þ miT Þ=
YT
t¼1

GðmitÞ
" #

�
YT
t¼1

ymit�1
t

 !
=s

fðmi1þ���þmiT Þ�1g
i

" #

where Gð�Þ is the gamma function. Note that the density does not depend on ci. fHint:

If Y1; . . . ;YT are independent random variables and S ¼ Y1 þ � � � þ YT , the joint

density of Y1; . . . ;YT given S ¼ s is f1ðy1Þ � � � fT�1ðyT�1Þ fTðs � y1 � � � � � yT�1Þ=
gðsÞ, where gðsÞ is the density of S. When Yt has a Gammaðat; lÞ distribution for each

t, so that ftðytÞ ¼ ½lat=GðatÞ�yðat�1Þ
t expð�lytÞ, S @Gammaða1 þ � � � þ aT ; lÞ.g

b. Let mtðxi; bÞ be a parametric function for mit—for example, expðxitbÞ. Write

down the log-likelihood function for observation i. The conditional MLE in this case

is called the fixed e¤ects gamma estimator.
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20 Duration Analysis

20.1 Introduction

Some response variables in economics come in the form of a duration, which is the

time elapsed until a certain event occurs. A few examples include weeks unemployed,

months spent on welfare, days until arrest after incarceration, and quarters until an

Internet firm files for bankruptcy.

The recent literature on duration analysis is quite rich. In this chapter we focus on

the developments that have been used most often in applied work. In addition to

providing a rigorous introduction to modern duration analysis, this chapter should

prepare you for more advanced treatments, such as Lancaster’s (1990) monograph.

Duration analysis has its origins in what is typically called survival analysis, where

the duration of interest is survival time of a subject. In survival analysis we are

interested in how various treatments or demographic characteristics a¤ect survival

times. In the social sciences, we are interested in any situation where an individual—

or family, or firm, and so on—begins in an initial state and is either observed to exit

the state or is censored. (We will discuss the exact nature of censoring in Sections 20.3

and 20.4.) The calendar dates on which units enter the initial state do not have to

be the same. (When we introduce covariates in Section 20.2.2, we note how dummy

variables for di¤erent calendar dates can be included in the covariates, if necessary,

to allow for systematic di¤erences in durations by starting date.)

Traditional duration analysis begins by specifying a population distribution for the

duration, usually conditional on some explanatory variables (covariates) observed at

the beginning of the duration. For example, for the population of people who became

unemployed during a particular period, we might observe education levels, experi-

ence, marital status—all measured when the person becomes unemployed—wage on

prior job, and a measure of unemployment benefits. Then we specify a distribution

for the unemployment duration conditional on the covariates. Any reasonable dis-

tribution reflects the fact that an unemployment duration is nonnegative. Once a

complete conditional distribution has been specified, the same maximum likelihood

methods that we studied in Chapter 16 for censored regression models can be used. In

this framework, we are typically interested in estimating the e¤ects of the covariates

on the expected duration.

Recent treatments of duration analysis tend to focus on the hazard function. The

hazard function allows us to approximate the probability of exiting the initial state

within a short interval, conditional on having survived up to the starting time of the

interval. In econometric applications, hazard functions are usually conditional on

some covariates. An important feature for policy analysis is allowing the hazard

function to depend on covariates that change over time.



In Section 20.2 we define and discuss hazard functions, and we settle certain issues

involved with introducing covariates into hazard functions. In Section 20.3 we show

how censored regression models apply to standard duration models with single-cycle

flow data, when all covariates are time constant. We also discuss the most common

way of introducing unobserved heterogeneity into traditional duration analysis.

Given parametric assumptions, we can test for duration dependence—which means

that the probability of exiting the initial state depends on the length of time in the

state—as well as for the presence of unobserved heterogeneity.

In Section 20.4 we study methods that allow flexible estimation of a hazard func-

tion, both with time-constant and time-varying covariates. We assume that we have

grouped data; this term means that durations are observed to fall into fixed intervals

(often weekly or monthly intervals) and that any time-varying covariates are assumed

to be constant within an interval. We focus attention on the case with two states, with

everyone in the population starting in the initial state, and single-cycle data, where

each person either exits the initial state or is censored before exiting. We also show

how heterogeneity can be included when the covariates are strictly exogenous.

We touch on some additional issues in Section 20.5.

20.2 Hazard Functions

The hazard function plays a central role in modern duration analysis. In this section,

we discuss various features of the hazard function, both with and without covariates,

and provide some examples.

20.2.1 Hazard Functions without Covariates

Often in this chapter it is convenient to distinguish random variables from particular

outcomes of random variables. Let T b 0 denote the duration, which has some dis-

tribution in the population; t denotes a particular value of T. (As with any econo-

metric analysis, it is important to be very clear about the relevant population, a topic

we consider in Section 20.3.) In survival analysis, T is the length of time a subject

lives. Much of the current terminology in duration analysis comes from survival

applications. For us, T is the time at which a person (or family, firm, and so on)

leaves the initial state. For example, if the initial state is unemployment, T would be

the time, measured in, say, weeks, until a person becomes employed.

The cumulative distribution function (cdf ) of T is defined as

FðtÞ ¼ PðT a tÞ; tb 0 ð20:1Þ
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The survivor function is defined as SðtÞ1 1 � F ðtÞ ¼ PðT > tÞ, and this is the prob-

ability of ‘‘surviving’’ past time t. We assume in the rest of this section that T is

continuous—and, in fact, has a di¤erentiable cdf—because this assumption simplifies

statements of certain probabilities. Discreteness in observed durations can be viewed

as a consequence of the sampling scheme, as we discuss in Section 20.4. Denote the

density of T by f ðtÞ ¼ dF

dt
ðtÞ.

For h > 0,

PðtaT < t þ h jT b tÞ ð20:2Þ

is the probabilty of leaving the initial state in the interval ½t; t þ hÞ given survival up

until time t. The hazard function for T is defined as

lðtÞ ¼ lim
h#0

PðtaT < t þ h jT b tÞ
h

ð20:3Þ

For each t, lðtÞ is the instantaneous rate of leaving per unit of time. From equation

(20.3) it follows that, for ‘‘small’’ h,

PðtaT < t þ h jT b tÞAlðtÞh ð20:4Þ

Thus the hazard function can be used to approximate a conditional probability in

much the same way that the height of the density of T can be used to approximate an

unconditional probability.

Example 20.1 (Unemployment Duration): If T is length of time unemployed, mea-

sured in weeks, then lð20Þ is (approximately) the probability of becoming employed

between weeks 20 and 21. The phrase ‘‘becoming employed’’ reflects the fact that the

person was unemployed up through week 20. That is, lð20Þ is roughly the probability

of becoming employed between weeks 20 and 21, conditional on having been unem-

ployed through week 20.

Example 20.2 (Recidivism Duration): Suppose T is the number of months before a

former prisoner is arrested for a crime. Then lð12Þ is roughly the probability of being

arrested during the 13th month, conditional on not having been arrested during the

first year.

We can express the hazard function in terms of the density and cdf very simply.

First, write

PðtaT < t þ h jT b tÞ ¼ PðtaT < t þ hÞ=PðT b tÞ ¼ F ðt þ hÞ � FðtÞ
1 � FðtÞ
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When the cdf is di¤erentiable, we can take the limit of the right-hand side, divided by

h, as h approaches zero from above:

lðtÞ ¼ lim
h#0

Fðt þ hÞ � FðtÞ
h

� 1

1 � F ðtÞ ¼
f ðtÞ

1 � F ðtÞ ¼
f ðtÞ
SðtÞ ð20:5Þ

Because the derivative of SðtÞ is �f ðtÞ, we have

lðtÞ ¼ � d log SðtÞ
dt

ð20:6Þ

and, using Fð0Þ ¼ 0, we can integrate to get

FðtÞ ¼ 1 � exp �
ð t

0

lðsÞ ds

� �
; tb 0 ð20:7Þ

Straightforward di¤erentiation of equation (20.7) gives the density of T as

f ðtÞ ¼ lðtÞ exp �
ð t

0

lðsÞ ds

� �
ð20:8Þ

Therefore, all probabilities can be computed using the hazard function. For example,

for points a1 < a2,

PðT b a2 jT b a1Þ ¼
1 � Fða2Þ
1 � Fða1Þ

¼ exp �
ð a2

a1

lðsÞ ds

� �

and

Pða1 aT < a2 jT b a1Þ ¼ 1 � exp �
ð a2

a1

lðsÞ ds

� �
ð20:9Þ

This last expression is especially useful for constructing the log-likelihood functions

needed in Section 20.4.

The shape of the hazard function is of primary interest in many empirical appli-

cations. In the simplest case, the hazard function is constant:

lðtÞ ¼ l; all tb 0 ð20:10Þ

This function means that the process driving T is memoryless: the probability of exit

in the next interval does not depend on how much time has been spent in the initial

state. From equation (20.7), a constant hazard implies

FðtÞ ¼ 1 � expð�ltÞ ð20:11Þ
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which is the cdf of the exponential distribution. Conversely, if T has an exponential

distribution, it has a constant hazard.

When the hazard function is not constant, we say that the process exhibits duration

dependence. Assuming that lð�Þ is di¤erentiable, there is positive duration dependence

at time t if dlðtÞ=dt > 0; if dlðtÞ=dt > 0 for all t > 0, then the process exhibits posi-

tive duration dependence. With positive duration dependence, the probability of

exiting the initial state increases the longer one is in the initial state. If the derivative

is negative, then there is negative duration dependence.

Example 20.3 (Weibull Distribution): If T has a Weibull distribution, its cdf is given

by F ðtÞ ¼ 1 � expð�gtaÞ, where g and a are nonnegative parameters. The density is

f ðtÞ ¼ gata�1 expð�gtaÞ. By equation (20.5), the hazard function is

lðtÞ ¼ f ðtÞ=SðtÞ ¼ gata�1 ð20:12Þ

When a ¼ 1, the Weibull distribution reduces to the exponential with l ¼ g. If a > 1,

the hazard is monotonically increasing, so the hazard everywhere exhibits positive

duration dependence; for a < 1, the hazard is monotonically decreasing. Provided we

think the hazard is monotonically increasing or decreasing, the Weibull distribution

is a relatively simple way to capture duration dependence.

We often want to specify the hazard directly, in which case we can use equation

(20.7) to determine the duration distribution.

Example 20.4 (Log-Logistic Hazard Function): The log-logistic hazard function is

specified as

lðtÞ ¼ gata�1

1 þ gta
ð20:13Þ

where g and a are positive parameters. When a ¼ 1, the hazard is monotonically

decreasing from g at t ¼ 0 to zero as t ! y; when a < 1, the hazard is also monot-

onically decreasing to zero as t ! y, but the hazard is unbounded as t approaches

zero. When a > 1, the hazard is increasing until t ¼ ½ða� 1Þ=g�1�a, and then it

decreases to zero.

Straightforward integration givesð t

0

lðsÞ ds ¼ logð1 þ gtaÞ ¼ �log½ð1 þ gtaÞ�1�

so that, by equation (20.7),
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FðtÞ ¼ 1 � ð1 þ gtaÞ�1; tb 0 ð20:14Þ

Di¤erentiating with respect to t gives

f ðtÞ ¼ gata�1ð1 þ gtaÞ�2

Using this density, it can be shown that Y 1 logðTÞ has density gðyÞ ¼
a exp½aðy � mÞ�=f1 þ exp½aðy � mÞ�g2, where m ¼ �a�1 logðgÞ is the mean of Y. In

other words, logðTÞ has a logistic distribution with mean m and variance p2=ð3a2Þ
(hence the name ‘‘log-logistic’’).

20.2.2 Hazard Functions Conditional on Time-Invariant Covariates

Usually in economics we are interested in hazard functions conditional on a set of

covariates or regressors. When these do not change over time—as is often the case

given the way many duration data sets are collected—then we simply define the

hazard (and all other features of T ) conditional on the covariates. Thus, the condi-

tional hazard is

lðt; xÞ ¼ lim
h#0

PðtaT < t þ h jT b t; xÞ
h

where x is a vector of explanatory variables. All of the formulas from the previous

subsection continue to hold provided the cdf and density are defined conditional on

x. For example, if the conditional cdf F ð� j xÞ is di¤erentiable, we have

lðt; xÞ ¼ f ðt j xÞ
1 � Fðt j xÞ ð20:15Þ

where f ð� j xÞ is the density of T given x. Often we are interested in the partial e¤ects

of the xj on lðt; xÞ, which are defined as partial derivatives for continuous xj and as

di¤erences for discrete xj.

If the durations start at di¤erent calendar dates—which is usually the case—we

can include indicators for di¤erent starting dates in the covariates. These allow us to

control for seasonal di¤erences in duration distributions.

An especially important class of models with time-invariant regressors consists of

proportional hazard models. A proportional hazard can be written as

lðt; xÞ ¼ kðxÞl0ðtÞ ð20:16Þ

where kð�Þ > 0 is a nonnegative function of x and l0ðtÞ > 0 is called the baseline

hazard. The baseline hazard is common to all units in the population; individual haz-

ard functions di¤er proportionately based on a function kðxÞ of observed covariates.
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Typically, kð�Þ is parameterized as kðxÞ ¼ expðxbÞ, where b is a vector of param-

eters. Then

log lðt; xÞ ¼ xb þ log l0ðtÞ ð20:17Þ

and bj measures the semielasticity of the hazard with respect to xj. [If xj is the log of

an underlying variable, say xj ¼ logðzjÞ, bj is the elasticity of the hazard with respect

to zj.]

Occasionally we are interested only in how the covariates shift the hazard function,

in which case estimation of l0 is not necessary. Cox (1972) obtained a partial maxi-

mum likelihood estimator for b that does not require estimating l0ð�Þ. We discuss

Cox’s approach briefly in Section 20.5. In economics, much of the time we are inter-

ested in the shape of the baseline hazard. We discuss estimation of proportional

hazard models with a flexible baseline hazard in Section 20.4.

If in the Weibull hazard function (20.12) we replace g with expðxbÞ, where the first

element of x is unity, we obtain a proportional hazard model with l0ðtÞ1 ata�1.

However, if we replace g in equation (20.13) with expðxbÞ—which is the most com-

mon way of introducing covariates into the log-logistic model—we do not obtain a

hazard with the proportional hazard form.

Example 20.1 (continued): If T is an unemployment duration, x might contain

education, labor market experience, marital status, race, and number of children, all

measured at the beginning of the unemployment spell. Policy variables in x might

reflect the rules governing unemployment benefits, where these are known before

each person’s unemployment duration.

Example 20.2 (continued): To explain the length of time before arrest after release

from prison, the covariates might include participation in a work program while in

prison, years of education, marital status, race, time served, and past number of

convictions.

20.2.3 Hazard Functions Conditional on Time-Varying Covariates

Studying hazard functions is more complicated when we wish to model the e¤ects of

time-varying covariates on the hazard function. For one thing, it makes no sense to

specify the distribution of the duration T conditional on the covariates at only one

time period. Nevertheless, we can still define the appropriate conditional probabilities

that lead to a conditional hazard function.

Let xðtÞ denote the vector of regressors at time t; again, this is the random vector

describing the population. For tb 0, let XðtÞ, tb 0, denote the covariate path up
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through time t: XðtÞ1 fxðsÞ: 0a sa tg. Following Lancaster (1990, Chapter 2), we

define the conditional hazard function at time t by

l½t;XðtÞ� ¼ lim
h#0

P½taT < t þ h jT b t;Xðt þ hÞ�
h

ð20:18Þ

assuming that this limit exists. A discussion of assumptions that ensure existence of

equation (20.18) is well beyond the scope of this book; see Lancaster (1990, Chapter

2). One case where this limit exists very generally occurs when T is continuous and,

for each t, xðt þ hÞ is constant for all h A ½0; hðtÞ� for some function hðtÞ > 0. Then we

can replace Xðt þ hÞ with XðtÞ in equation (20.18) [because Xðt þ hÞ ¼ XðtÞ for h

su‰ciently small]. For reasons we will see in Section 20.4, we must assume that time-

varying covariates are constant over the interval of observation (such as a week or a

month), anyway, in which case there is no problem in defining equation (20.18).

For certain purposes, it is important to know whether time-varying covariates are

strictly exogenous. With the hazard defined as in equation (20.18), Lancaster (1990,

Definition 2.1) provides a definition that rules out feedback from the duration to

future values of the covariates. Specifically, if Xðt; t þ hÞ denotes the covariate path

from time t to t þ h, then Lancaster’s strict exogeneity condition is

P½Xðt; t þ hÞ jT b t þ h;XðtÞ� ¼ P½Xðt; t þ hÞ jXðtÞ� ð20:19Þ

for all tb 0, h > 0. Actually, when condition (20.19) holds, Lancaster says fxðtÞ:
t > 0g is ‘‘exogenous.’’ We prefer the name ‘‘strictly exogenous’’ because condition

(20.19) is closely related to the notions of strict exogeneity that we have encoun-

tered throughout this book. Plus, it is important to see that condition (20.19) has

nothing to do with contemporaneous endogeneity: by definition, the covariates are

sequentially exogenous (see Section 11.1.1) because, by specifying l½t;XðtÞ�, we are

conditioning on current and past covariates.

Equation (20.19) applies to covariates whose entire path is well-defined whether or

not the agent is in the initial state. One such class of covariates, called external

covariates by Kalbfleisch and Prentice (1980), has the feature that the covariate path

is independent of whether any particular agent has or has not left the initial state. In

modeling time until arrest, these covariates might include law enforcement per capita

in the person’s city of residence or the city unemployment rate.

Other covariates are not external to each agent but have paths that are still defined

after the agent leaves the initial state. For example, marital status is well-defined be-

fore and after someone is arrested, but it is possibly related to whether someone has

been arrested. Whether marital status satisfies condition (20.19) is an empirical issue.
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The definition of strict exogeneity in condition (20.19) cannot be applied to time-

varying covariates whose path is not defined once the agent leaves the initial state.

Kalbfleisch and Prentice (1980) call these internal covariates. Lancaster (1990, p. 28)

gives the example of job tenure duration, where a time-varying covariate is wage paid

on the job: if a person leaves the job, it makes no sense to define the future wage path

in that job. As a second example, in modeling the time until a former prisoner is

arrested, a time-varying covariate at time t might be wage income in the previous

month, t � 1. If someone is arrested and reincarcerated, it makes little sense to define

future labor income.

It is pretty clear that internal covariates cannot satisfy any reasonable strict exo-

geneity assumption. This fact will be important in Section 20.4 when we discuss esti-

mation of duration models with unobserved heterogeneity and grouped duration

data. We will actually use a slightly di¤erent notion of strict exogeneity that is directly

relevant for conditional maximum likelihood estimation. Nevertheless, it is in the

same spirit as condition (20.19).

With time-varying covariates there is not, strictly speaking, such a thing as a pro-

portional hazard model. Nevertheless, it has become common in econometrics to call

a hazard of the form

l½t; xðtÞ� ¼ k½xðtÞ�l0ðtÞ ð20:20Þ

a proportional hazard with time-varying covariates. The function multiplying the

baseline hazard is usually k½xðtÞ� ¼ exp½xðtÞb �; for notational reasons, we show this

depending only on xðtÞ and not on past covariates [which can always be included in

xðtÞ]. We will discuss estimation of these models, without the strict exogeneity as-

sumption, in Section 20.4.2. In Section 20.4.3, when we multiply equation (20.20) by

unobserved heterogeneity, strict exogeneity becomes very important.

The log-logistic hazard is also easily modified to have time-varying covariates. One

way to include time-varying covariates parametrically is

l½t; xðtÞ� ¼ exp½xðtÞb �ata�1=f1 þ exp½xðtÞb �tag

We will see how to estimate a and b in Section 20.4.2.

20.3 Analysis of Single-Spell Data with Time-Invariant Covariates

We assume that the population of interest is individuals entering the initial state

during a given interval of time, say ½0; b�, where b > 0 is a known constant. (Naturally,

‘‘individual’’ can be replaced with any population unit of interest, such as ‘‘family’’

or ‘‘firm.’’) As in all econometric contexts, it is very important to be explicit about the
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underlying population. By convention, we let zero denote the earliest calendar date

that an individual can enter the initial state, and b is the last possible date. For ex-

ample, if we are interested in the population of U.S. workers who became unem-

ployed at any time during 1998, and unemployment duration is measured in years

(with .5 meaning half a year), then b ¼ 1. If duration is measured in weeks, then

b ¼ 52; if duration is measured in days, then b ¼ 365; and so on.

In using the methods of this section, we typically ignore the fact that durations are

often grouped into discrete intervals—for example, measured to the nearest week or

month—and treat them as continuously distributed. If we want to explicitly recog-

nize the discreteness of the measured durations, we should treat them as grouped

data, as we do in Section 20.4.

We restrict attention to single-spell data. That is, we use, at most, one completed

spell per individual. If, after leaving the initial state, an individual subsequently

reenters the initial state in the interval ½0; b�, we ignore this information. In addition,

the covariates in the analysis are time invariant, which means we collect covariates on

individuals at a given point in time—usually, at the beginning of the spell—and we

do not re-collect data on the covariates during the course of the spell. Time-varying

covariates are more naturally handled in the context of grouped duration data in

Section 20.4.

We study two general types of sampling from the population that we have de-

scribed. The most common, and the easiest to handle, is flow sampling. In Section

20.3.3 we briefly consider various kinds of stock sampling.

20.3.1 Flow Sampling

With flow sampling, we sample individuals who enter the state at some point during

the interval ½0; b�, and we record the length of time each individual is in the initial

state. We collect data on covariates known at the time the individual entered the initial

state. For example, suppose we are interested in the population of U.S. workers who

became unemployed at any time during 1998, and we randomly sample from U.S.

male workers who became unemployed during 1998. At the beginning of the unem-

ployment spell we might obtain information on tenure in last job, wage on last job,

gender, marital status, and information on unemployment benefits.

There are two common ways to collect flow data on unemployment spells. First,

we may randomly sample individuals from a large population, say, all working-age

individuals in the United States for a given year, say, 1998. Some fraction of these

people will be in the labor force and will become unemployed during 1998—that is,

enter the initial state of unemployment during the specified interval—and this group

of people who become unemployed is our random sample of all workers who become
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unemployed during 1998. Another possibility is retrospective sampling. For example,

suppose that, for a given state in the United States, we have access to unemployment

records for 1998. We can then obtain a random sample of all workers who became

unemployed during 1998.

Flow data are usually subject to right censoring. That is, after a certain amount of

time, we stop following the individuals in the sample, which we must do in order to

analyze the data. (Right censoring is the only kind that occurs with flow data, so we

will often refer to right censoring as ‘‘censoring’’ in this and the next subsection.) For

individuals who have completed their spells in the initial state, we observe the exact

duration. But for those still in the initial state, we only know that the duration lasted

as long as the tracking period. In the unemployment duration example, we might

follow each individual for a fixed length of time, say, two years. If unemployment

spells are measured in weeks, we would have right censoring at 104 weeks. Alter-

natively, we might stop tracking individuals at a fixed calendar date, say, the last

week in 1999. Because individuals can become unemployed at any time during 1998,

calendar-date censoring results in censoring times that di¤er across individuals.

20.3.2 Maximum Likelihood Estimation with Censored Flow Data

For a random draw i from the population, let ai A ½0; b� denote the time at which in-

dividual i enters the initial state (the ‘‘starting time’’), let t�i denote the length of time

in the initial state (the duration), and let xi denote the vector of observed covariates.

We assume that t�i has a continuous conditional density f ðt j xi; yÞ, tb 0, where y is

the vector of unknown parameters.

Without right censoring we would observe a random sample on ðai; t�i ; xiÞ, and

estimation would be a standard exercise in conditional maximum likelihood. To ac-

count for right censoring, we assume that the observed duration, ti, is obtained as

ti ¼ minðt�i ; ciÞ ð20:21Þ

where ci is the censoring time for individual i. In some cases, ci is constant across i.

For example, suppose t�i is unemployment duration for person i, measured in weeks.

If the sample design specifies that we follow each person for at most two years, at

which point all people remaining unemployed after two years are censored, then c ¼
104. If we have a fixed calendar date at which we stop tracking individuals, the cen-

soring time di¤ers by individual because the workers typically would become unem-

ployed on di¤erent calendar dates. If b ¼ 1 year and we censor everyone at two years

from the start of the study, the censoring times could range from 52 to 104 weeks.)

We assume that, conditional on the covariates, the true duration is independent of

the starting point, ai, and the censoring time, ci:
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Dðt�i j xi; ai; ciÞ ¼ Dðt�i j xiÞ ð20:22Þ

where Dð� j �Þ denotes conditional distribution. Assumption (20.22) clearly holds

when ai and ci are constant for all i, but it holds under much weaker assumptions.

Sometimes ci is constant for all i, in which case assumption (20.22) holds when the

duration is independent of the starting time, conditional on xi. If there are seasonal

e¤ects on the duration—for example, unemployment durations that start in the

summer have a di¤erent expected length than durations that start at other times of

the year—then we may have to put dummy variables for di¤erent starting dates in xi

to ensure that assumption (20.22) holds. This approach would also ensure that as-

sumption (20.22) holds when a fixed calendar date is used for censoring, implying

that ci is not constant across i. Assumption (20.22) holds for certain nonstandard

censoring schemes, too. For example, if an element of xi is education, assumption

(20.22) holds if, say, individuals with more education are censored more quickly.

Under assumption (20.22), the distribution of t�i given ðxi; ai; ciÞ does not depend

on ðai; ciÞ. Therefore, if the duration is not censored, the density of ti ¼ t�i given

ðxi; ai; ciÞ is simply f ðt j xi; yÞ. The probability that ti is censored is

Pðt�i b ci j xiÞ ¼ 1 � Fðci j xi; yÞ

where Fðt j xi; yÞ is the conditional cdf of t�i given xi. Letting di be a censoring indi-

cator (di ¼ 1 if uncensored, di ¼ 0 if censored), the conditional likelihood for obser-

vation i can be written as

f ðti j xi; yÞdi ½1 � Fðti j xi; yÞ�ð1�diÞ ð20:23Þ

Importantly, neither the starting times, ai, nor the length of the interval, b, plays a

role in the analysis. [In fact, in the vast majority of treatments of flow data, b and ai

are not even introduced. However, it is important to know that the reason ai is not

relevant for the analysis of flow data is the conditional independence assumption in

equation (20.22).] By contrast, the censoring times ci do appear in the likelihood for

censored observations because then ti ¼ ci. Given data on ðti; di; xiÞ for a random

sample of size N, the maximum likelihood estimator of y is obtained by maximizing

XN

i¼1

fdi log½ f ðti j xi; yÞ� þ ð1 � diÞ log½1 � Fðti j xi; yÞ�g ð20:24Þ

For the choices of f ð� j x; yÞ used in practice, the conditional MLE regularity

conditions—see Chapter 13—hold, and the MLE is
ffiffiffiffiffi
N

p
-consistent and asymptoti-

cally normal. [If there is no censoring, the second term in expression (20.24) is simply

dropped.]
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Because the hazard function can be expressed as in equation (20.15), once we

specify f , the hazard function can be estimated once we have the MLE, ŷy. For ex-

ample, the Weibull distribution with covariates has conditional density

f ðt j xi; yÞ ¼ expðxibÞata�1 exp½�expðxibÞta� ð20:25Þ

where xi contains unity as its first element for all i. [We obtain this density from Ex-

ample 20.3 with g replaced by expðxibÞ.] The hazard function in this case is simply

lðt; xÞ ¼ expðxbÞata�1.

Example 20.5 (Weibull Model for Recidivism Duration): Let durat be the length

of time, in months, until an inmate is arrested after being released from prison.

Although the duration is rounded to the nearest month, we treat durat as a continu-

ous variable with a Weibull distribution. We are interested in how certain covariates

a¤ect the hazard function for recidivism, and also whether there is positive or nega-

tive duration dependence, once we have conditioned on the covariates. The variable

workprg—a binary indicator for participation in a prison work program—is of par-

ticular interest.

The data in RECID.RAW, which comes from Chung, Schmidt, and Witte (1991),

are flow data because it is a random sample of convicts released from prison during

the period July 1, 1977, through June 30, 1978. The data are retrospective in that they

were obtained by looking at records in April 1984, which served as the common

censoring date. Because of the di¤erent starting times, the censoring times, ci, vary

from 70 to 81 months. The results of the Weibull estimation are in Table 20.1.

In interpreting the estimates, we use equation (20.17). For small b̂bj, we can multi-

ply the coe‰cient by 100 to obtain the semielasticity of the hazard with respect to xj.

(No covariates appear in logarithmic form, so there are no elasticities among the b̂bj.)

For example, if tserved increases by one month, the hazard shifts up by about 1.4

percent, and the e¤ect is statistically significant. Another year of education reduces

the hazard by about 2.3 percent, but the e¤ect is insignificant at even the 10 percent

level against a two-sided alternative.

The sign of the workprg coe‰cient is unexpected, at least if we expect the work

program to have positive benefits after the inmates are released from prison. (The

result is not statistically di¤erent from zero.) The reason could be that the program is

ine¤ective or that there is self-selection into the program.

For large b̂bj , we should exponentiate and subtract unity to obtain the proportion-

ate change. For example, at any point in time, the hazard is about 100½expð:477Þ � 1�
¼ 61:1 percent greater for someone with an alcohol problem than for someone

without.
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The estimate of a is .806, and the standard error of âa leads to a strong rejection of

H0: a ¼ 1 against H0: a < 1. Therefore, there is evidence of negative duration de-

pendence, conditional on the covariates. This means that, for a particular ex-convict,

the instantaneous rate of being arrested decreases with the length of time out of prison.

When the Weibull model is estimated without the covariates, âa ¼ :770 (se ¼ :031),

which shows slightly more negative duration dependence. This is a typical finding in

applications of Weibull duration models: estimated a without covariate tends to be

less than the estimate with covariates. Lancaster (1990, Section 10.2) contains a the-

oretical discussion based on unobserved heterogeneity.

When we are primarily interested in the e¤ects of covariates on the expected

duration (rather than on the hazard), we can apply a censored Tobit analysis to the

Table 20.1
Weibull Estimation of Criminal Recidivism

Explanatory
Variable

Coe‰cient
(Standard Error)

workprg .091
(.091)

priors .089
(.013)

tserved .014
(.002)

felon �.299
(.106)

alcohol .447
(.106)

drugs .281
(.098)

black .454
(.088)

married �.152
(.109)

educ �.023
(.019)

age �.0037
(.0005)

constant �3.402
(0.301)

Observations 1,445

Log likelihood �1,633.03

âa .806
(.031)
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log of the duration. A Tobit analysis assumes that, for each random draw i, logðt�i Þ
given xi has a Normalðxid; s

2Þ distribution, which implies that t�i given xi has a log-

normal distribution. (The first element of xi is unity.) The hazard function for a log-

normal distribution, conditional on x, is lðt; xÞ ¼ h½ðlog t � xdÞ=s�=st, where hðzÞ1
fðzÞ=½1 �FðzÞ�, fð�Þ is the standard normal probability density function (pdf ), and

Fð�Þ is the standard normal cdf. The lognormal hazard function is not monotonic

and does not have the proportional hazard form. Nevertheless, the estimates of the dj

are easy to interpret because the model is equivalent to

logðt�i Þ ¼ xidþ ei ð20:26Þ

where ei is independent of xi and normally distributed. Therefore, the dj are

semielasticities—or elasticities if the covariates are in logarithmic form—of the

covariates on the expected duration.

The Weibull model can also be represented in regression form. When t�i given xi

has density (20.25), expðxibÞðt�i Þ
a is independent of xi and has a unit exponential

distribution. Therefore, its natural log has a type I extreme value distribution; there-

fore, we can write a logðt�i Þ ¼ �xib þ ui, where ui is independent of xi and has density

gðuÞ ¼ expðuÞ expfexpð�uÞg. The mean of ui is not zero, but, because ui is indepen-

dent of xi, we can write logðt�i Þ exactly as in equation (20.26), where the slope coef-

ficents are given by dj ¼ �bj=a, and the intercept is more complicated. Now, ei does

not have a normal distribution, but it is independent of xi with zero mean. Censoring

can be handled by maximum likelihood estimation. The estimated coe‰cients can be

compared with the censored Tobit estimates described previously to see if the esti-

mates are sensitive to the distributional assumption.

In Example 20.5, we can obtain the Weibull estimates of the dj as d̂dj ¼ �b̂bj=âa. (Some

econometrics packages, such as Stata, allow direct estimation of the dj and provide

standard errors.) For example, d̂ddrugs ¼ �:281=:806A�:349. When the lognormal

model is used, the coe‰cient on drugs is somewhat smaller in magnitude, about

�.298. As another example, d̂dage ¼ :0046 in the Weibull estimation and d̂dage ¼ :0039

in the lognormal estimation. In both cases, the estimates have t statistics over six. For

obtaining estimates on the expected duration, the Weibull and lognormal models give

similar results. [Interestingly, the lognormal model fits the data notably better, with

log likelihood ¼ �1,597.06. This result is consistent with the findings of Chung,

Schmidt, and Witte (1991).]

Sometimes we begin by specifying a parametric model for the hazard conditional

on x and then use the formulas from Section 20.2 to obtain the cdf and density. This

approach is easiest when the hazard leads to a tractable duration distribution, but

there is no reason the hazard function must be of the proportional hazard form.
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Example 20.6 (Log-Logistic Hazard with Covariates): A log-logistic hazard func-

tion with covariates is

lðt; xÞ ¼ expðxbÞata�1=½1 þ expðxbÞta� ð20:27Þ

where x1 1 1. From equation (20.14) with g ¼ expðxbÞ, the cdf is

Fðt j x; yÞ ¼ 1 � ½1 þ expðxbÞta��1; tb 0 ð20:28Þ

The distribution of logðt�i Þ given xi is logistic with mean �a�1 logfexpðxbÞg ¼
�a�1xb and variance p2=ð3a2Þ. Therefore, logðt�i Þ can be written as in equation

(20.26) where ei has a zero mean logistic distribution and is independent of xi and

d ¼ �a�1b. This is another example where the e¤ects of the covariates on the mean

duration can be obtained by an OLS regression when there is no censoring. With

censoring, the distribution of ei must be accounted for using the log likelihood in

expression (20.24).

20.3.3 Stock Sampling

Flow data with right censoring are common, but other sampling schemes are also

used. With stock sampling we randomly sample from individuals that are in the initial

state at a given point in time. The population is again individuals who enter the ini-

tial state during a specified interval, ½0; b�. However, rather than observe a random

sample of people flowing into the initial state, we can only obtain a random sample

of individuals that are in the initial state at time b. In addition to the possibility of

right censoring, we may also face the problem of left censoring, which occurs when

some or all of the starting times, ai, are not observed. For now, we assume that (1) we

observe the starting times ai for all individuals we sample at time b and (2) we can

follow sampled individuals for a certain length of time after we observe them at time

b. We also allow for right censoring.

In the unemployment duration example, where the population comprises workers

who became unemployed at some point during 1998, stock sampling would occur if

we randomly sampled from workers who were unemployed during the last week of

1998. This kind of sampling causes a clear sample selection problem: we necessarily

exclude from our sample any individual whose unemployment spell ended before the

last week of 1998. Because these spells were necessarily shorter than a year, we can-

not just assume that the missing observations are randomly missing.

The sample selection problem caused by stock sampling is essentially the same

situation we faced in Section 17.3, where we covered the truncated regression model.

Therefore, we will call this the left truncation problem. Kiefer (1988) calls it length-

biased sampling.
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Under the assumptions that we observe the ai and can observe some spells past

the sampling date b, left truncation is fairly easy to deal with. With the exception of

replacing flow sampling with stock sampling, we make the same assumptions as in

Section 20.3.2.

To account for the truncated sampling, we must modify the density in equation

(20.23) to reflect the fact that part of the population is systematically omitted from

the sample. Let ðai; ci; xi; tiÞ denote a random draw from the population of all spells

starting in ½0; b�. We observe this vector if and only if the person is still in the initial

state at time b, that is, if and only if ai þ t�i b b or t�i b b � ai, where t�i is the true

duration. But, under the conditional independence assumption (20.22),

Pðt�i b b � ai j ai; ci; xiÞ ¼ 1 � Fðb � ai j xi; yÞ ð20:29Þ

where Fð� j xi; yÞ is the cdf of t�i given xi, as before. The correct conditional density

function is obtained by dividing equation (20.23) by equation (20.29). In Problem

20.5 you are asked to adapt the arguments in Section 17.3 to also allow for right

censoring. The log-likelihood function can be written as

XN

i¼1

fdi log½ f ðti j xi; yÞ� þ ð1 � diÞ log½1 � Fðti j xi; yÞ� � log½1 � Fðb � ai j xi; yÞ�g

ð20:30Þ

where, again, ti ¼ ci when di ¼ 0. Unlike in the case of flow sampling, with stock

sampling both the starting dates, ai, and the length of the sampling interval, b, appear

in the conditional likelihood function. Their presence makes it clear that specifying

the interval ½0; b� is important for analyzing stock data. [Lancaster (1990, p. 183) es-

sentially derives equation (20.30) under a slightly di¤erent sampling scheme; see also

Lancaster (1979).]

Equation (20.30) has an interesting implication. If observation i is right censored at

calendar date b—that is, if we do not follow the spell after the initial data collection—

then the censoring time is ci ¼ b � ai. Because di ¼ 0 for censored observations, the log

likelihood for such an observation is log½1 � F ðci j xi; yÞ� � log½1 � Fðb � ai j xi; yÞ� ¼
0. In other words, observations that are right censored at the data collection time

provide no information for estimating y, at least when we use equation (20.30).

Consequently, the log likelihood in equation (20.30) does not identify y if all units are

right censored at the interview date: equation (20.30) is identically zero. The intuition

for why equation (20.30) fails in this case is fairly clear: our data consist only of

ðai; xiÞ, and equation (20.30) is a log likelihood that is conditional on ðai; xiÞ. E¤ec-

tively, there is no random response variable.
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Even when we censor all observed durations at the interview date, we can still es-

timate y, provided—at least in a parametric context—we specify a model for the

conditional distribution of the starting times, Dðai j xiÞ. (This is essentially the prob-

lem analyzed by Nickell, 1979.) We are still assuming that we observe the ai. So, for

example, we randomly sample from the pool of people unemployed in the last week

of 1998 and find out when their unemployment spells began (along with covariates).

We do not follow any spells past the interview date. (As an aside, if we sample un-

employed people during the last week of 1998, we are likely to obtain some obser-

vations where spells began before 1998. For the population we have specified, these

people would simply be discarded. If we want to include people whose spells began

prior to 1998, we need to redefine the interval. For example, if durations are mea-

sured in weeks and if we want to consider durations beginning in the five-year period

prior to the end of 1998, then b ¼ 260.)

For concreteness, we assume that Dðai j xiÞ is continuous on ½0; b� with density

kð� j xi; hÞ. Let si denote a sample selection indicator, which is unity if we observe

random draw i, that is, if t�i b b � ai. Estimation of y (and h) can proceed by apply-

ing CMLE to the density of ai conditional on xi and si ¼ 1. [Note that this is the only

density we can hope to estimate, as our sample only consists of observations ðai; xiÞ
when si ¼ 1.] This density is informative for y even if h is not functionally related to y

(as would typically be assumed) because there are some durations that started and

ended in ½0; b�; we simply do not observe them. Knowing something about the start-

ing time distribution gives us information about the duration distribution. (In the

context of flow sampling, when h is not functionally related to y, the density of ai

given xi is uninformative for estimating y; in other words, ai is ancillary for y.)

In Problem 20.6 you are asked to show that the density of ai conditional on

observing ðai; xiÞ is

pða j xi; si ¼ 1Þ ¼ kða j xi; hÞ½1 � Fðb � a j xi; yÞ�=Pðsi ¼ 1 j xi; y; hÞ ð20:31Þ

0 < a < b, where

Pðsi ¼ 1 j xi; y; hÞ ¼
ð b

0

½1 � F ðb � u j xi; yÞ�kðu j xi; hÞ du ð20:32Þ

[Lancaster (1990, Section 8.3.3) essentially obtains the right-hand side of equation

(20.31) but uses the notion of backward recurrence time. The argument in Problem

20.6 is more straightforward because it is based on a standard truncation argument.]

Once we have specified the duration cdf, F, and the starting time density, k, we can

use conditional MLE to estimate y and h: the log likelihood for observation i is just

the log of equation (20.31), evaluated at ai. If we assume that ai is independent of

Chapter 20702



xi and has a uniform distribution on ½0; b�, the estimation simplifies somewhat; see

Problem 20.6. Allowing for a discontinuous starting time density kð� j xi; hÞ does not

materially a¤ect equation (20.31). For example, if the interval [0,1] represents one

year, we might want to allow di¤erent entry rates over the di¤erent seasons. This

would correspond to a uniform distribution over each subinterval that we choose.

We now turn to the problem of left censoring, which arises with stock sampling

when we do not actually know when any spell began. In other words, the ai are not

observed, and therefore neither are the true durations, t�i . However, we assume that

we can follow spells after the interview date. Without right censoring, this assump-

tion means we can observe the time in the current spell since the interview date, say,

ri, which we can write as ri ¼ t�i þ ai � b. We still have a left truncation problem

because we only observe ri when t�i > b � ai, that is, when ri > 0. The general

approach is the same as with the earlier problems: we obtain the density of the vari-

able that we can at least partially observe, ri in this case, conditional on observing

ri. Problem 20.8 asks you to fill in the details, accounting also for possible right

censoring.

We can easily combine stock sampling and flow sampling. For example, in the case

that we observe the starting times, ai, suppose that, at time m < b, we sample a stock

of individuals already in the initial state. In addition to following spells of individuals

already in the initial state, suppose we can randomly sample individuals flowing into

the initial state between times m and b. Then we follow all the individuals appearing

in the sample, at least until right censoring. For starting dates after m ðai bmÞ, there

is no truncation, and so the log likelihood for these observations is just as in equation

(20.24). For ai < m, the log likelihood is identical to equation (20.30) except that m

replaces b. Other combinations are easy to infer from the preceding results.

20.3.4 Unobserved Heterogeneity

One way to obtain more general duration models is to introduce unobserved hetero-

geneity into fairly simple duration models. In addition, we sometimes want to test for

duration dependence conditional on observed covariates and unobserved heteroge-

neity. The key assumptions used in most models that incorporate unobserved heter-

ogeneity are that (1) the heterogeneity is independent of the observed covariates, as

well as starting times and censoring times; (2) the heterogeneity has a distribution

known up to a finite number of parameters; and (3) the heterogeneity enters the

hazard function multiplicatively. We will make these assumptions. In the context of

single-spell flow data, it is di‰cult to relax any of these assumptions. (In the special

case of a lognormal duration distribution, we can relax assumption 1 by using Tobit

methods with endogenous explanatory variables; see Section 16.6.2.)
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Before we cover the general case, it is useful to cover an example due to Lancaster

(1979). For a random draw i from the population, a Weibull hazard function condi-

tional on observed covariates xi and unobserved heterogeneity vi is

lðt; xi; viÞ ¼ vi expðxibÞata�1 ð20:33Þ

where xi1 1 1 and vi > 0. [Lancaster (1990) calls equation (20.33) a conditional haz-

ard, because it conditions on the unobserved heterogeneity vi. Technically, almost all

hazards in econometrics are conditional because we almost always condition on

observed covariates.] Notice how vi enters equation (20.33) multiplicatively. To

identify the parameters a and b we need a normalization on the distribution of vi; we

use the most common, EðviÞ ¼ 1. This implies that, for a given vector x, the average

hazard is expðxbÞata�1. An interesting hypothesis is H0: a ¼ 1, which means that,

conditional on xi and vi, there is no duration dependence.

In the general case where the cdf of t�i given ðxi; viÞ is Fðt j xi; vi; yÞ, we can obtain

the distribution of t�i given xi by integrating out the unobserved e¤ect. Because vi and

xi are independent, the cdf of t�i given xi is

Gðt j xi; y; rÞ ¼
ðy

0

F ðt j xi; v; yÞhðv; rÞ dv ð20:34Þ

where, for concreteness, the density of vi, hð�; rÞ, is assumed to be continuous and

depends on the unknown parameters r. From equation (20.34) the density of t�i given

xi, gðt j xi; y; rÞ, is easily obtained. We can now use the methods of Sections 20.3.2

and 20.3.3. For flow data, the log-likelihood function is as in equation (20.24), but

with Gðt j xi; y; rÞ replacing F ðt j xi; yÞ and gðt j xi; y; rÞ replacing f ðt j xi; yÞ. We

should assume that Dðt�i j xi; vi; ai; ciÞ ¼ Dðt�i j xi; viÞ and Dðvi j xi; ai; ciÞ ¼ DðviÞ;
these assumptions ensure that the key condition (20.22) holds. The methods for stock

sampling described in Section 20.3.3 also apply to the integrated cdf and density.

If we assume gamma-distributed heterogeneity—that is, vi @Gammaðd; dÞ, so that

EðviÞ ¼ 1 and VarðviÞ ¼ 1=d—we can find the distribution of t�i given xi for a broad

class of hazard functions with multiplicative heterogeneity. Suppose that the hazard

function is lðt; xi; viÞ ¼ vikðt; xiÞ, where kðt; xÞ > 0 (and need not have the propor-

tional hazard form). For simplicity, we suppress the dependence of kð�; �Þ on un-

known parameters. From equation (20.7), the cdf of t�i given ðxi; viÞ is

Fðt j xi; viÞ ¼ 1 � exp �vi

ð t

0

kðs; xiÞ ds

� �
1 1 � exp½�vixðt; xiÞ� ð20:35Þ

where xðt; xiÞ1
Ð t

0 kðs; xiÞ ds. We can obtain the cdf of t�i given xi by using equation

(20.34). The density of vi is hðvÞ ¼ ddvd�1 expð�dvÞ=GðdÞ, where VarðviÞ ¼ 1=d and
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Gð�Þ is the gamma function. Let xi 1 xðt; xiÞ for given t. Thenðy
0

expð�xivÞddvd�1 expð�dvÞ=GðdÞ dv

¼ ½d=ðdþ xiÞ�d
ðy

0

ðdþ xiÞdvd�1 exp½�ðdþ xiÞv�=GðdÞ dv

¼ ½d=ðdþ xiÞ�d ¼ ð1 þ xi=dÞ�d

where the second-to-last equality follows because the integrand is the Gamma ðd;
dþ xiÞ density and must integrate to unity. Now we use equation (20.34):

Gðt j xiÞ ¼ 1 � ½1 þ xðt; xiÞ=d��d ð20:36Þ

Taking the derivative of equation (20.36) with respect to t, using the fact that kðt; xiÞ
is the derivative of xðt; xiÞ, yields the density of t�i given xi as

gðt j xiÞ ¼ kðt; xiÞ½1 þ xðt; xiÞ=d��ðd�1Þ ð20:37Þ

The function kðt; xÞ depends on parameters y, and so gðt j xÞ should be gðt j x; y; dÞ.
With censored data the vector y can be estimated along with d by using the log-

likelihood function in equation (20.24) (again, with G replacing F ).

With the Weibull hazard in equation (20.33), xðt; xÞ ¼ expðxbÞta, which leads to a

very tractable analysis when plugged into equations (20.36) and (20.37); the resulting

duration distribution is called the Burr distribution. In the log-logistic case with

kðt; xÞ ¼ expðxbÞata�1½1 þ expðxbÞta��1, xðt; xÞ ¼ log½1 þ expðxbÞta�. These equa-

tions can be plugged into the preceding formulas for a maximum likelihood analysis.

Before we end this section, we should recall why we might want to explicitly in-

troduce unobserved heterogeneity when the heterogeneity is assumed to be indepen-

dent of the observed covariates. The strongest case is seen when we are interested in

testing for duration dependence conditional on observed covariates and unobserved

heterogeneity, where the unobserved heterogeneity enters the hazard multiplicatively.

As carefully exposited by Lancaster (1990, Section 10.2), ignoring multiplicative

heterogeneity in the Weibull model results in asymptotically underestimating a.

Therefore, we could very well conclude that there is negative duration dependence

conditional on x, whereas there is no duration dependence ða ¼ 1Þ conditional on x

and v.

In a general sense, it is somewhat heroic to think we can distinguish between dura-

tion dependence and unobserved heterogeneity when we observe only a single cycle

for each agent. The problem is simple to describe: because we can only estimate the

distribution of T given x, we cannot uncover the distribution of T given ðx; vÞ unless
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we make extra assumptions, a point Lancaster (1990, Section 10.1) illustrates with an

example. Therefore, we cannot tell whether the hazard describing T given ðx; vÞ
exhibits duration dependence. But, when the hazard has the proportional hazard

form lðt; x; vÞ ¼ vkðxÞl0ðtÞ, it is possible to identify the function kð�Þ and the baseline

hazard l0ð�Þ quite generally (along with the distribution of v). See Lancaster (1990,

Section 7.3) for a presentation of the results of Elbers and Ridder (1982). Recently,

Horowitz (1999) has demonstrated how to nonparametrically estimate the baseline

hazard and the distribution of the unobserved heterogeneity under fairly weak

assumptions.

When interest centers on how the observed covariates a¤ect the mean duration,

explicitly modeling unobserved heterogeneity is less compelling. Adding unobserved

heterogeneity to equation (20.26) does not change the mean e¤ects; it merely changes

the error distribution. Without censoring, we would probably estimate b in equation

(20.26) by OLS (rather than MLE) so that the estimators would be robust to dis-

tributional misspecification. With censoring, to perform maximum likelihood, we

must know the distribution of t�i given xi, and this depends on the distribution of vi

when we explicitly introduce unobserved heterogeneity. But introducing unobserved

heterogeneity is indistinguishable from simply allowing a more flexible duration dis-

tribution.

20.4 Analysis of Grouped Duration Data

Continuously distributed durations are, strictly speaking, rare in social science appli-

cations. Even if an underlying duration is properly viewed as being continuous, mea-

surements are necessarily discrete. When the measurements are fairly precise, it is

sensible to treat the durations as continuous random variables. But when the mea-

surements are coarse—such as monthly, or perhaps even weekly—it can be impor-

tant to account for the discreteness in the estimation.

Grouped duration data arise when each duration is only known to fall into a certain

time interval, such as a week, a month, or even a year. For example, unemployment

durations are often measured to the nearest week. In Example 20.2 the time until next

arrest is measured to the nearest month. Even with grouped data we can generally

estimate the parameters of the duration distribution.

The approach we take here to analyzing grouped data summarizes the information

on staying in the initial state or exiting in each time interval in a sequence of binary

outcomes. (Kiefer, 1988; Han and Hausman, 1990; Meyer, 1990; Lancaster, 1990;

McCall, 1994; and Sueyoshi, 1995, all take this approach.) In e¤ect, we have a panel

data set where each cross section observation is a vector of binary responses, along
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with covariates. In addition to allowing us to treat grouped durations, the panel data

approach has at least two additional advantages. First, in a proportional hazard

specification, it leads to easy methods for estimating flexible hazard functions. Sec-

ond, because of the sequential nature of the data, time-varying covariates are easily

introduced.

We assume flow sampling so that we do not have to address the sample selection

problem that arises with stock sampling. We divide the time line into M þ 1 inter-

vals, ½0; a1Þ; ½a1; a2Þ; . . . ; ½aM�1; aMÞ; ½aM ;yÞ, where the am are known constants. For

example, we might have a1 ¼ 1; a2 ¼ 2; a3 ¼ 3, and so on, but unequally spaced

intervals are allowed. The last interval, ½aM ;yÞ, is chosen so that any duration fall-

ing into it is censored at aM : no observed durations are greater than aM . For a ran-

dom draw from the population, let cm be a binary censoring indicator equal to unity

if the duration is censored in interval m, and zero otherwise. Notice that cm ¼ 1

implies cmþ1 ¼ 1: if the duration was censored in interval m, it is still censored in in-

terval m þ 1. Because durations lasting into the last interval are censored, cMþ1 1 1.

Similarly, ym is a binary indicator equal to unity if the duration ends in the mth in-

terval and zero otherwise. Thus, ymþ1 ¼ 1 if ym ¼ 1. If the duration is censored in

interval m ðcm ¼ 1Þ, we set ym 1 1 by convention.

As in Section 20.3, we allow individuals to enter the initial state at di¤erent calen-

dar times. In order to keep the notation simple, we do not explicitly show the con-

ditioning on these starting times, as the starting times play no role under flow

sampling when we assume that, conditional on the covariates, the starting times are

independent of the duration and any unobserved heterogeneity. If necessary, starting-

time dummies can be included in the covariates.

For each person i, we observe ðyi1; ci1Þ; . . . ; ðyiM ; ciMÞ, which is a balanced panel

data set. To avoid confusion with our notation for a duration (T for the random

variable, t for a particular outcome on T ), we use m to index the time intervals. The

string of binary indicators for any individual is not unrestricted: we must observe a

string of zeros followed by a string of ones. The important information is the interval

in which yim becomes unity for the first time, and whether that represents a true exit

from the initial state or censoring.

20.4.1 Time-Invariant Covariates

With time-invariant covariates, each random draw from the population consists of

information on fðy1; c1Þ; . . . ; ðyM ; cMÞ; xg. We assume that a parametric hazard

function is specified as lðt; x; yÞ, where y is the vector of unknown parameters. Let T

denote the time until exit from the initial state. While we do not fully observe T,

either we know which interval it falls into, or we know whether it was censored in a
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particular interval. This knowledge is enough to obtain the probability that ym takes

on the value unity given ðym�1; . . . ; y1Þ, ðcm; . . . ; c1Þ, and x. In fact, by definition this

probability depends only on ym�1, cm, and x, and only two combinations yield

probabilities that are not identically zero or one. These probabilities are

Pðym ¼ 0 j ym�1 ¼ 0; x; cm ¼ 0Þ ð20:38Þ

Pðym ¼ 1 j ym�1 ¼ 0; x; cm ¼ 0Þ; m ¼ 1; . . . ;M ð20:39Þ

(We define y0 1 0 so that these equations hold for all mb 1.) To compute these

probabilities in terms of the hazard for T, we assume that the duration is condition-

ally independent of censoring:

T is independent of c1; . . . ; cM , given x ð20:40Þ

This assumption allows the censoring to depend on x but rules out censoring that

depends on unobservables, after conditioning on x. Condition (20.40) holds for fixed

censoring or completely randomized censoring. (It may not hold if censoring is due to

nonrandom attrition.) Under assumption (20.40) we have, from equation (20.9),

Pðym ¼ 1 j ym�1 ¼ 0; x; cm ¼ 0Þ ¼ Pðam�1 aT < am jT b am�1; xÞ

¼ 1 � exp �
ð am

am�1

lðs; x; yÞ ds

� �
1 1 � amðx; yÞ

ð20:41Þ

for m ¼ 1; 2; . . . ;M, where

amðx; yÞ1 exp �
ð am

am�1

lðs; x; yÞ ds

� �
ð20:42Þ

Therefore,

Pðym ¼ 0 j ym�1 ¼ 0; x; cm ¼ 0Þ ¼ amðx; yÞ ð20:43Þ

We can use these probabilities to construct the likelihood function. If, for observation

i, uncensored exit occurs in interval mi, the likelihood is

Ymi�1

h¼1

ahðxi; yÞ
" #

½1 � ami
ðxi; yÞ� ð20:44Þ

The first term represents the probability of remaining in the initial state for the first

mi � 1 intervals, and the second term is the (conditional) probability that T falls into

interval mi. [Because an uncensored duration must have mi aM, expression (20.44)
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at most depends on a1ðxi; yÞ; . . . ; aMðxi; yÞ.] If the duration is censored in interval mi,

we know only that exit did not occur in the first mi � 1 intervals, and the likelihood

consists of only the first term in expression (20.44).

If di is a censoring indicator equal to one if duration i is uncensored, the log like-

lihood for observation i can be written as

Xmi�1

h¼1

log½ahðxi; yÞ� þ di log½1 � ami
ðxi; yÞ� ð20:45Þ

The log likelihood for the entire sample is obtained by summing expression (20.45)

across all i ¼ 1; . . . ;N. Under the assumptions made, this log likelihood represents

the density of ðy1; . . . ; yMÞ given ðc1; . . . ; cMÞ and x, and so the conditional maxi-

mum likelihood theory covered in Chapter 13 applies directly. The various ways of

estimating asymptotic variances and computing test statistics are available.

To implement conditional MLE, we must specify a hazard function. One hazard

function that has become popular because of its flexibility is a piecewise-constant

proportional hazard: for m ¼ 1; . . . ;M,

lðt; x; yÞ ¼ kðx; bÞlm; am�1 a t < am ð20:46Þ

where kðx; bÞ > 0 [and typically kðx; bÞ ¼ expðxbÞ]. This specification allows the

hazard to be di¤erent (albeit constant) over each time interval. The parameters to be

estimated are b and l, where the latter is the vector of lm, m ¼ 1; . . . ;M. {Because

durations in ½aM ;yÞ are censored at aM , we cannot estimate the hazard over the

interval ½aM ;yÞ.} As an example, if we have unemployment duration measured in

weeks, the hazard can be di¤erent in each week. If the durations are sparse, we might

assume a di¤erent hazard rate for every two or three weeks (this assumption places

restrictions on the lm). With the piecewise-constant hazard and kðx; bÞ ¼ expðxbÞ,
for m ¼ 1; . . . ;M, we have

amðx; yÞ1 exp½�expðxbÞlmðam � am�1Þ� ð20:47Þ

Remember, the am are known constants (often am ¼ m) and not parameters to

be estimated. Usually the lm are unrestricted, in which case x does not contain an

intercept.

The piecewise-constant hazard implies that the duration distribution is discontin-

uous at the endpoints, whereas in our discussion in Section 20.2, we assumed that the

duration had a continuous distribution. A piecewise-continuous distribution causes

no real problems, and the log likelihood is exactly as specified previously. Alter-

natively, as in Han and Hausman (1990) and Meyer (1990), we can assume that T
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has a proportional hazard as in equation (20.16) with continuous baseline hazard,

l0ð�Þ. Then, we can estimate b along with the parametersð am

am�1

l0ðsÞ ds; m ¼ 1; 2; . . . ;M

In practice, the approaches are the same, and it is easiest to just assume a piecewise-

constant proportional hazard, as in equation (20.46).

Once the lm have been estimated along with b, an estimated hazard function is

easily plotted: graph l̂lm at the midpoint of the interval ½am�1; amÞ, and connect the

points.

Without covariates, maximum likelihood estimation of the lm leads to a well-

known estimator of the survivor function. Rather than derive the MLE of the survi-

vor function, it is easier to motivate the estimator from the representation of the

survivor function as a product of conditional probabilities. For m ¼ 1; . . . ;M, the

survivor function at time am can be written as

SðamÞ ¼ PðT > amÞ ¼
Ym
r¼1

PðT > ar jT > ar�1Þ ð20:48Þ

[Because a0 ¼ 0 and PðT > 0Þ ¼ 1, the r ¼ 1 term on the right-hand side of equation

(20.48) is simply PðT > a1Þ.] Now, for each r ¼ 1; 2; . . . ;M, let Nr denote the number

of people in the risk set for interval r: Nr is the number of people who have neither

left the initial state nor been censored at time ar�1, which is the beginning of interval

r. Therefore, N1 is the number of individuals in the initial random sample; N2 is the

number of individuals who did not exit the initial state in the first interval, less the

number of individuals censored in the first interval; and so on. Let Er be the number

of people observed to leave in the rth interval—that is, in the interval ½ar�1; arÞ. A

consistent estimator of PðT > ar jT > ar�1Þ is ðNr � ErÞ=Nr, r ¼ 1; 2; . . . ;M. [We

must use the fact that the censoring is ignorable in the sense of assumption (20.40), so

that there is no sample selection bias in using only the uncensored observations.] It

follows from equation (20.48) that a consistent estimator of the survivor function at

time am is

ŜSðamÞ ¼
Ym
r¼1

½ðNr � ErÞ=Nr�; m ¼ 1; 2; . . . ;M ð20:49Þ

This is the Kaplan-Meier estimator of the survivor function (at the points a1; a2;

. . . ; aM ). Lancaster (1990, Section 8.2) contains a proof that maximum likelihood

estimation of the lm (without covariates) leads to the Kaplan-Meier estimator of the
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survivor function. If there are no censored durations before time am, ŜSðamÞ is simply

the fraction of people who have not left the initial state at time am, which is obviously

consistent for PðT > amÞ ¼ SðamÞ.
In the general model, we do not need to assume a proportional hazard specification

within each interval. For example, we could assume a log-logistic hazard within each

interval, with di¤erent parameters for each m. Because the hazard in such cases does

not depend on the covariates multiplicatively, we must plug in values of x in order to

plot the hazard. Sueyoshi (1995) studies such models in detail.

If the intervals ½am�1; amÞ are coarser than the data—for example, unemployment

is measured in weeks, but we choose ½am�1; amÞ to be four weeks for all m—then we

can specify nonconstant hazards within each interval. The piecewise-constant hazard

corresponds to an exponential distribution within each interval. But we could specify,

say, a Weibull distribution within each interval. See Sueyoshi (1995) for details.

20.4.2 Time-Varying Covariates

Deriving the log likelihood is more complicated with time-varying covariates, espe-

cially when we do not assume that the covariates are strictly exogenous. Nevertheless,

we will show that, if the covariates are constant within each time interval ½am�1; amÞ,
the form of the log likelihood is the same as expression (20.45), provided xi is

replaced with xim in interval m.

For the population, let x1; x2; . . . ; xM denote the outcomes of the covariates in

each of the M time intervals, where we assume that the covariates are constant within

an interval. This assumption is clearly an oversimplification, but we cannot get very

far without it (and it reflects how data sets with time-varying covariates are usually

constructed). When the covariates are internal and are not necessarily defined after

exit from the initial state, the definition of the covariates in the time intervals is

irrelevant; but it is useful to list covariates for all M time periods.

We assume that the hazard at time t conditional on the covariates up through time

t depends only on the covariates at time t. If past values of the covariates matter, they

can simply be included in the covariates at time t. The conditional independence

assumption on the censoring indicators is now stated as

DðT jT b am�1; xm; cmÞ ¼ DðT jT b am�1; xmÞ; m ¼ 1; . . . ;M ð20:50Þ

This assumption allows the censoring decision to depend on the covariates during the

time interval (as well as past covariates, provided they are either included in xm or do

not a¤ect the distribution of T given xm). Under this assumption, the probability of

exit (without censoring) is
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Pðym ¼ 1 j ym�1 ¼ 0; xm; cm ¼ 0Þ ¼ Pðam�1 aT < am jT b am�1; xmÞ

¼ 1 � exp �
ð am

am�1

lðs; xm; yÞ ds

� �
1 1 � amðxm; yÞ

ð20:51Þ

We can use equation (20.51), along with Pðym ¼ 0 j ym�1 ¼ 0; xm; cm ¼ 0Þ ¼ amðxm; yÞ,
to build up a partial log likelihood for person i. As we discussed in Section 13.8, this

is only a partial likelihood because we are not necessarily modeling the joint distri-

bution of ðy1; . . . ; yMÞ given fðx1; c1Þ; . . . ; ðcM ; xMÞg.

For someone censored in interval m, the information on the duration is contained

in yi1 ¼ 0; . . . ; yi;m�1 ¼ 0. For someone who truly exits in interval m, there is addi-

tional information in yim ¼ 1. Therefore, the partial log likelihood is given by ex-

pression (20.45), but, to reflect the time-varying covariates, ahðxi; yÞ is replaced by

ahðxih; yÞ and ami
ðxi; yÞ is replaced by ami

ðxi;mi
; yÞ.

Each term in the partial log likelihood represents the distribution of ym given

ðym�1; . . . ; y1Þ, ðxm; . . . ; x1Þ, and ðcm; . . . ; c1Þ. [Most of the probabilities in this con-

ditional distribution are either zero or one; only the probabilities that depend on y

are shown in expression (20.45).] Therefore, the density is dynamically complete, in

the terminology of Section 13.8.3. As shown there, the usual maximum likelihood

variance matrix estimators and statistics are asymptotically valid, even though we

need not have the full conditional distribution of y given ðx; cÞ. This result would

change if, for some reason, we chose not to include past covariates when in fact they

a¤ect the current probability of exit even after conditioning on the current covariates.

Then the robust forms of the statistics covered in Section 13.8 should be used. In

most duration applications we want dynamic completeness.

If the covariates are strictly exogenous and if the censoring is strictly exogenous,

then the partial likelihood is the full conditional likelihood. The precise strict exoge-

neity assumption is

DðT jT b am�1; x; cÞ ¼ DðT jT b am�1; xmÞ; m ¼ 1; . . . ;M ð20:52Þ

where x is the vector of covariates across all time periods and c is the vector of cen-

soring indicators. There are two parts to this assumption. Ignoring the censoring,

assumption (20.52) means that neither future nor past covariates appear in the haz-

ard, once current covariates are controlled for. The second implication of assumption

(20.52) is that the censoring is also strictly exogenous.

With time-varying covariates, the hazard specification

lðt; xm; yÞ ¼ kðxm; bÞlm; am�1 a t < am ð20:53Þ
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m ¼ 1; . . . ;M, is still attractive. It implies that the covariates have a multiplicative

e¤ect in each time interval, and it allows the baseline hazard—the part common to

all members of the population—to be flexible.

Meyer (1990) essentially uses the specification (20.53) to estimate the e¤ect of un-

employment insurance on unemployment spells. McCall (1994) shows how to allow

for time-varying coe‰cients when kðxm; bÞ ¼ expðxmbÞ. In other words, b is replaced

with bm, m ¼ 1; . . . ;M.

20.4.3 Unobserved Heterogeneity

We can also add unobserved heterogeneity to hazards specified for grouped data,

even if we have time-varying covariates. With time-varying covariates and unob-

served heterogeneity, it is di‰cult to relax the strict exogeneity assumption. Also,

with single-spell data, we cannot allow general correlation between the unobserved

heterogeneity and the covariates. Therefore, we assume that the covariates are strictly

exogenous conditional on unobserved heterogeneity and that the unobserved hetero-

geneity is independent of the covariates.

The precise assumptions are given by equation (20.52) but where unobserved het-

erogeneity, v, appears in both conditioning sets. In addition, we assume that v is in-

dependent of ðx; cÞ (which is a further sense in which the censoring is exogenous).

In the leading case of the piecewise-constant baseline hazard, equation (20.53)

becomes

lðt; v; xm; yÞ ¼ vkðxm; bÞlm; am�1 a t < am ð20:54Þ

where v > 0 is a continuously distributed heterogeneity term. Using the same rea-

soning as in Sections 20.4.1 and 20.4.2, the density of ðyi1; . . . ; yiMÞ given ðvi; xi; ciÞ is

Ymi�1

h¼1

ahðvi; xih; yÞ
" #

½1 � ami
ðvi; xi;mi

; yÞ�di ð20:55Þ

where di ¼ 1 if observation i is uncensored. Because expression (20.55) depends on

the unobserved heterogeneity, vi, we cannot use it directly to consistently estimate y.

However, because vi is independent of ðxi; ciÞ, with density gðv; dÞ, we can integrate

expression (20.55) against gð� ; dÞ to obtain the density of ðyi1; . . . ; yiMÞ given ðxi; ciÞ.
This density depends on the observed data—ðmi; di; xiÞ—and the parameters y and d.

From this density, we construct the conditional log likelihood for observation i, and

we can obtain the conditional MLE, just as in other nonlinear models with unob-

served heterogeneity—see Chapters 15, 16, and 19. Meyer (1990) assumes that the

distribution of vi is gamma, with unit mean, and obtains the log-likelihood function
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in closed form. McCall (1994) analyzes a heterogeneity distribution that contains the

gamma as a special case.

It is possible to consistently estimate b and l without specifying a parametric form

for the heterogeneity distribution; this approach results in a semiparametric maxi-

mum likelihood estimator. Heckman and Singer (1984) first showed how to perform

this method with a Weibull baseline hazard, and Meyer (1990) proved consistency

when the hazard has the form (20.54). The estimated heterogeneity distribution is

discrete and, in practice, has relatively few mass points. The consistency argument

works by allowing the number of mass points to increase with the sample size.

Computation is a di‰cult issue, and the asymptotic distribution of the semiparametric

maximum likelihood estimator has not been worked out.

20.5 Further Issues

The methods we have covered in this chapter have been applied in many contexts.

Nevertheless, there are several important topics that we have neglected.

20.5.1 Cox’s Partial Likelihood Method for the Proportional Hazard Model

Cox (1972) suggested a partial likelihood method for estimating the parameters b in a

proportional hazard model without specifying the baseline hazard. The strength of

Cox’s approach is that the e¤ects of the covariates can be estimated very generally,

provided the hazard is of the form (20.16). However, Cox’s method is intended to be

applied to flow data as opposed to grouped data. If we apply Cox’s methods to

grouped data, we must confront the practically important issue of individuals

with identical observed durations. In addition, with time-varying covariates, Cox’s

method evidently requires the covariates to be strictly exogenous. Estimation of the

hazard function itself is more complicated than the methods for grouped data that

we covered in Section 20.4. See Amemiya (1985, Chapter 11) and Lancaster (1990,

Chapter 9) for treatments of Cox’s partial likelihood estimator.

20.5.2 Multiple-Spell Data

All the methods we have covered assume a single spell for each sample unit. In other

words, each individual begins in the initial state and then either is observed leaving

the state or is censored. But at least some individuals might have multiple spells,

especially if we follow them for long periods. For example, we may observe a person

who is initially unemployed, becomes employed, and then after a time becomes

unemployed again. If we assume constancy across time about the process driving
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unemployment duration, we can use multiple spells to aid in identification, particu-

larly in models with heterogeneity that can be correlated with time-varying covari-

ates. Chamberlain (1985) and Honoré (1993b) contain identification results when

multiple spells are observed. Chamberlain allowed for correlation between the het-

erogeneity and the time-varying covariates.

Multiple-spell data are also useful for estimating models with unobserved hetero-

geneity when the regressors are not strictly exogenous. Ham and Lalonde (1996) give

an example in which participation in a job training program can be related to past

unemployment duration, even though eligibility is randomly assigned. See also

Wooldridge (2000c) for a general framework that allows feedback to future explan-

atory variables in models with unobserved heterogeneity.

20.5.3 Competing Risks Models

Another important topic is allowing for more than two possible states. Competing

risks models allow for the possibility that an individual may exit into di¤erent alter-

natives. For example, a person working full-time may choose to retire completely or

work part-time. Han and Hausman (1990) and Sueyoshi (1992) contain discussions

of the assumptions needed to estimate competing risks models, with and without

unobserved heterogeneity.

Problems

20.1. Use the data in RECID.RAW for this problem.

a. Using the covariates in Table 20.1, estimate equation (20.26) by censored Tobit.

Verify that the log-likelihood value is �1,597.06.

b. Plug in the mean values for priors, tserved, educ, and age, and the values

workprg ¼ 0, felon ¼ 1, alcohol ¼ 1, drugs ¼ 1, black ¼ 0, and married ¼ 0, and

plot the estimated hazard for the lognormal distribution. Describe what you find.

c. Using only the uncensored observations, perform an OLS regression of log(durat)

on the covariates in Table 20.1. Compare the estimates on tserved and alcohol with

those from part a. What do you conclude?

d. Now compute an OLS regression using all data—that is, treat the censored

observations as if they are uncensored. Compare the estimates on tserved and alcohol

from those in parts a and c.

20.2. Use the data in RECID.RAW to answer these questions:
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a. To the Weibull model, add the variables super (¼1 if release from prison was

supervised) and rules (number of rules violations while in prison). Do the coe‰-

cient estimates on these new variables have the expected signs? Are they statistically

significant?

b. Add super and rules to the lognormal model, and answer the same questions as in

part a.

c. Compare the estimated e¤ects of the rules variable on the expected duration for

the Weibull and lognormal models. Are they practically di¤erent?

20.3. Consider the case of flow sampling, as in Section 20.3.2, but suppose that all

durations are censored: di ¼ 1, i ¼ 1; . . . ;N.

a. Write down the log-likelihood function when all durations are censored.

b. Find the special case of the Weibull distribution in part a.

c. Consider the Weibull case where xi only contains a constant, so that Fðt; a; bÞ ¼
1 � exp½�expðbÞta�. Show that the Weibull log likelihood cannot be maximized for

real numbers b̂b and âa.

d. From part c, what do you conclude about estimating duration models from flow

data when all durations are right censored?

e. If the duration distribution is continuous, ci > b > 0 for some constant b, and

Pðt�i < tÞ > 0 for all t > 0, is it likely, in a large random sample, to find that all

durations have been censored?

20.4. Suppose that, in the context of flow sampling, we observe covariates xi, the

censoring time ci, and the binary indicator di (¼1 if the observation is uncensored).

We never observe t�i .

a. Show that the conditional likelihood function has the binary response form. What

is the binary ‘‘response’’?

b. Use the Weibull model to demonstrate the following when we only observe

whether durations are censored: if the censoring times ci are constant, the parameters

b and a are not identified. [Hint: Consider the same case as in Problem 20.3c, and

show that the log likelihood depends only on the constant expðbÞca, where c is the

common censoring time.]

c. Use the lognormal model to argue that, provided the ci vary across i in the popu-

lation, the parameters are generally identified. [Hint: In the binary response model,

what is the coe‰cient on logðciÞ?]
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20.5. In this problem you are to derive the log likelihood in equation (20.30). As-

sume that ci > b � ai for all i, so that we always observe part of each spell after the

sampling date, b. In what follows, we supress the parameter vector, y.

a. For b � ai < t < ci, show that Pðt�i at j xi; ai; ci; si ¼ 1Þ ¼ ½F ðt j xiÞ�F ðb�ai j xiÞ�=
½1 � Fðb � ai j xiÞ�.
b. Use part a to obtain the density of t�i conditional on ðxi; ai; ci; si ¼ 1Þ for

b � ai < t < ci.

c. Show that Pðti ¼ ci j xi; ai; ci; si ¼ 1Þ ¼ ½1 � F ðci j xiÞ�=½1 � F ðb � ai j xiÞ�.
d. Explain why parts b and c lead to equation (20.30).

20.6. Consider the problem of stock sampling where we do not follow spells after

the sampling date, b, as described in Section 20.3.3. Let Fð� j xiÞ denote the cdf of t�i
given xi, and let kð� j xiÞ denote the continuous density of ai given xi. We drop de-

pendence on the parameters for most of the derivations. Assume that t�i and ai are

independent conditional on xi.

a. Let si denote a selection indicator, so that si ¼ 1ðt�i b b � aiÞ. For any 0 < a < b,

show that

Pðai a a; si ¼ 1 j xiÞ ¼
ð a

0

kðu j xiÞ½1 � Fðb � u j xiÞ� du

b. Derive equation (20.32). {Hint: Pðsi ¼ 1 j xiÞ ¼ Eðsi j xiÞ ¼ E½Eðsi j ai; xiÞ j xi�, and

Eðsi j ai; xiÞ ¼ Pðt�i b b � ai j xiÞ.}
c. For 0 < a < b, what is the cdf of ai given xi and si ¼ 1? Now derive equation

(20.31).

d. Take b ¼ 1, and assume that the starting time distribution is uniform on ½0; 1�
(independent of xi). Find the density (20.31) in this case.

e. For the setup in part d, assume that the duration cdf has the Weibull form,

1 � exp½�expðxibÞta�. What is the log likelihood for observation i?

20.7. Consider the original stock sampling problem that we covered in Section

20.3.3. There, we derived the log likelihood (20.30) by conditioning on the starting

times, ai. This approach is convenient because we do not have to specify a distribu-

tion for the starting times. But suppose we have an acceptable model for kð� j xi; hÞ,
the (continuous) density of ai given xi. Further, we maintain assumption (20.22) and

assume Dðai j ci; xiÞ ¼ Dðai j xiÞ.
a. Show that the log-likelihood function conditional on xi, which accounts for trun-

cation, is

Duration Analysis 717



XN

i¼1

fdi log½ f ðti j xi; yÞ� þ ð1 � diÞ log½1 � Fðti j xi; yÞ�

þ log½kðai j xi; hÞ� � log½Pðsi ¼ 1 j xi; y; hÞ�g ð20:56Þ

where Pðsi ¼ 1 j xi; y; hÞ is given in equation (20.32).

b. Discuss the trade-o¤s in using equation (20.30) or the log likelihood in (20.56).

20.8. In the context of stock sampling, where we are interested in the population of

durations starting in ½0; b�, suppose that we interview at date b, as usual, but we do

not observe any starting times. {This assumption raises the issue of how we know

individual i ’s starting time is in the specified interval, ½0; b�. We assume that the in-

terval is defined to make this condition true for all i.} Let r�i ¼ ai þ t�i � b, which can

be interpreted as the calendar date at which the spell ends minus the interview date.

Even without right censoring, we observe r�i only if r�i > 0, in which case r�i is simply

the time in the spell since the interview date, b. Assume that t�i and ai are independent

conditional on xi.

a. Show that for r > 0, the density of r�i given xi is

hðr j xi; y; hÞ1
ð b

0

kðu j xi; hÞ f ðr þ b � u j xi; yÞ du

where, as before, kða j xi; hÞ is the density of ai given xi and f ðt j xi; yÞ is the duration

density.

b. Let q > 0 be a fixed censoring time after the interview date, and define ri ¼
minðr�i ; qÞ. Find Pðri ¼ q j xiÞ in terms of the cdf of r�i , say, Hðr j xi; y; hÞ.
c. Use parts a and b, along with equation (20.32), to show that the log likelihood

conditional on observing ðri; xiÞ is

di log½hðri j xi; y; hÞ� þ ð1 � diÞ log½1 � Hðri j xi; y; hÞ�

� log

ð b

0

½1 � F ðb � u j xi; yÞ�kðu j xi; hÞ du

� �
ð20:57Þ

where di ¼ 1 if observation i has not been right censored.

d. Simplify the log likelihood from part c when b ¼ 1 and kða j xi; hÞ is the uniform

density on ½0; 1�.

20.9. Consider the Weibull model with multiplicative heterogeneity, as in equation

(20.33), where vi takes on only two values, 1=r and 0, with probabilities r and 1 � r,
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respectively, where 0 < r < 1. This parameterization imposes the normalization

EðviÞ ¼ 1. You can think of a situation where there are only two types of people, type

A ðvi ¼ 0Þ and type B ðvi ¼ 1=rÞ.
a. Show that, as the di¤erence between the two types grows, the probability of being

type B must shrink to zero.

b. Find the cdf of t�i given xi.

c. Find the log-likelihood function for observation i in terms of a, b, and r.

20.10. Let 0 < a1 < a2 < � � � < aM�1 < aM be a positive, increasing set of con-

stants, and let T be a nonnegative random variable with PðT > 0Þ ¼ 1.

a. Show that, for any m ¼ 1; . . . ;M, PðT > amÞ ¼ PðT > am jT > am�1ÞPðT > am�1Þ.
b. Use part a to prove equation (20.48).
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absolute continuity, 418
admissible linear transformation, 216
analogy principle, 53
APEs (average partial e¤ects), 22–24, 68. See also

ATEs
binary response models, 471
partial e¤ects, in general, 3, 15
probit model with continuous endogenous

variables, 473, 475
unobserved e¤ects probit models, 485
unobserved e¤ects Tobit models, 541

asymptotic equivalence theorem, 39
asymptotic independence, 42
asymptotic normality. See also asymptotic

variance analysis
2SLS estimators, 94–96
FGLS estimators, 160
GLS estimators, 156
GMM (generalized method of moments), 191,

421–426
M-estimators, 349–353

two-step M-estimators, 354–356
MLE (maximum likelihood estimation), 392–395

Poisson QMLE, 649–653
two-step MLE, 414

OLS estimators, 55
pooled OLS (see pooled OLS)
system OLS (see system OLS)

asymptotic size of testing procedure, 43
asymptotic standard error, 41, 44
asymptotic variance analysis, 7, 35–45
2SLS estimators, 96
convergence, 35–40
FGLS estimators, 159, 160–162
fixed e¤ects estimator, 269
GLS estimators, 156
GMM (generalized method of moments), 423
linear panel data models, 175
M-estimators, 356–362

two-step M-estimators, 361
MLE (maximum likelihood estimation), 395–397

partial MLE, 405–407
OLS estimators, 51–61

system OLS (SOLS), 148–153
optimal GMM estimator, 193
panel data methods, 250
test statistics, 43–45

asymptotically e‰ciency, 42
asymptotically normal, 38, 40
ATEs (average treatment e¤ects), 68, 603–642. See

also APEs
ATE on the treated, 605
binary and corner solution responses, 636
counterfactual framework, 603–607

ignorability of treatment, 607–621
propensity scores, 614–621
regression methods, 608–614

IV (instrumental variables), 621–636
local (LATE), 605
multiple treatments, 642
nonlinear treatments, 638–642
panel data, 637

attenuation bias, 75
attrition, linear panel data models, 585–590
autonomous equations, 209–211
autonomy in simultaneous equations models

(SEMs), 209–211
average partial e¤ects. See APEs
average treatment e¤ects. See ATEs

balanced panels, 250
baseline hazard, 690
between estimator, 269. See also fixed e¤ects
BHHH algorithm, 374
binary endogenous explanatory variables, 477–478
binary response models, 387, 453, 470–482. See

also discrete response models
ATE estimation, 636
multiple treatments, 642

binary endogenous variables, 477–478
cluster sampling, 496
continuous endogenous variables, 472–477
heteroskedasticity and nonnormality in latent

variable models, 479
index models, 457–459
hypothesis testing, 461–465
MLE (maximum likelihood estimation), 460

linear probability models (LPMs), 454–457
probit and logit estimates vs., 466–469

neglected heterogeneity, 470–472
panel data, 482–493
dynamic unobserved e¤ects models, 493–495
pooled probit and logit, 482
semiparametric approaches, 495
unobserved e¤ects logit models, 490–493
unobserved e¤ects probit models, 483–490

reporting results, 465–469
with sample selection, 570

binomial GLM variance assumption, 660
binomial regression models, 659
bootstrapping, M-estimation, 378
boundedness in probability, 36–38
Breusch-Pagan test, 127
Burr distribution, 705

causal relationships, 3
censored flow data, 695–700
censored normal regression models, 520



censored regression. See corner solution
applications

censored (type I) Tobit models, 519. See also
corner solution applications; Tobit models

alternatives to, 536–538
estimation and testing, 525–527
OLS, inconsistency of, 524
panel data for, 538–544
reporting results, 527–529
specification
conditional median restrictions, 535
endogenous explanatory variables, 530–533
heteroskedasticity and nonnormality in latent
variable models, 533–535

neglected heterogeneity, 529
truncated Tobit models, 558–560
type II Tobit models, 562
type III Tobit models, 571

central limit theorem (CLT), 40
CEs (conditional expectations)
elasticities, 16
error terms, 18
features of, 14–24
law of iterated expectations, 18–22, 29
linear projections, 24–27, 32–34
partial e¤ects, 3, 15 (see also APEs)
properties of, 29–30
role in econometrics, 13
unobserved e¤ects count data models, 670

ceteris paribus analysis, 3
CEV assumption, 74
IV estimation, 107
measurement error in panel data, 311

Chamberlain’s approach for binary probit models,
508

Chamberlain’s approach to unobserved e¤ects
models, 323

Chamberlain’s random e¤ects probit models, 487–
489

changes in objective function, M-estimation
testing, 369–371

charitable Tobit models, 521–524
chi-square estimation. See minimum chi-square

estimation
choice-based sampling, 560
CMD (classical minimum distance estimation),

442–446
CIME (conditional information matrix equality),

394
class of estimators, e‰ciency of, 437–438
classical errors-in-variables assumption. See CEV

assumption
classical minimum distance estimation (CMD),

442–446

CLT (central limit theorem), 40
cluster sampling, 6, 134
binary response models, 496
panel data, 328–331
partial MLE, 409

CMLE. See conditional MLE
coe‰cient of variation, 661
collinearity, proxy variables and, 64
competing risks models, 715
composite errors, unobserved e¤ects models, 256
concentrated objective function (M-estimation),

376
conditional density, 418
conditional distribution, 418
conditional expectations. See CEs
conditional hazard, 704
conditional information matrix equality (CIME),

394
conditional Jensen’s inequality, 30
conditional Kullback-Leibler information

inequality, 389
conditional log likelihood for observations, 390
conditional logit models, 500
conditional mean independence, 607
conditional median restrictions, 535
conditional MLE, 386, 389–391. See also MLE
conditional density, 418–420
consistency, 391
e‰ciency of, 438–439
fixed e¤ects gamma estimator, 683
fixed e¤ects logit estimator, 491
probit model with continuous endogenous

variables, 475–477
under stratified sampling, 594

conditional moment restrictions, 400–401
e‰cient instrument choice, 439–442

conditional probit models, 502
conditional variance, 31, 153
Poisson regression, 655

consistency, 43
2SLS estimators, 92–94

under sample selection, 554
conditional MLE, 391
FE and FD consistency, Hausman test, 285
fixed e¤ects estimators, unobserved e¤ects

models, 265–279
GLS estimation, 153–156
GMM (generalized method of moments), 190,

422
M-estimators, 348, 353–354
OLS estimators, 52–54

system OLS (SOLS), 149
Poisson QMLE, 648

consistent estimator, 40
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contemporaneous exogeneity, 146, 307–314
continuous endogenous explanatory variables,

472–477
continuous mapping theorem, 39
control function, 612
control group, 129
control variables. See explanatory variables
controlled experiments, 3
convergence
of deterministic sequences, 35
in distribution, 38
in probability, 36–38

corner solution applications, 517–544
ATE estimation, 636

multiple treatments, 642
censored normal regression models, 520
censored Tobit models

alternatives to, 536–538
estimation and testing, 525–527
reporting results, 527–529

corner solution outcomes, 518
expected values, derivations of, 521–524
left censoring, 700
OLS, inconsistency of, 524
right censoring, 695
specifying Tobit model

conditional median restrictions, 535
endogenous explanatory variables, 530–533
heteroskedasticity and nonnormality in latent
variable models, 533–535

neglected heterogeneity, 529
correctly specified model for conditional density,

390
correctly specified model for conditional mean, 341
correlation
causal relationships, 3
cross equation correlation, 152
in cross section data set (see cluster sampling)
fixed explanatory variables vs., 9–11
serial correlation, 152, 176
temporal (see panel data)

count data models, 645–678
binomial regression with upper bound, 659
negative binomial regression, 657–659
panel data, 668–678
Poisson regression with cross section data, 646–

656
count variables, 388, 645
covariance restrictions, linear SEMs, 227–228
covariates. See explanatory variables; hazard

functions
Cox’s partial likelihood method, 714
criterion function statistic, 200, 370
cross equation correlation, 152

simultaneous equations models (SEMs), 225–226
SUR systems, 167

cross section data, 5
correlation in (see cluster sampling)

cut points, 505

data censoring, 517. See also corner solution
applications

left censoring, 700
right censoring, 695

data-coding problem, 508
defiers, 635
defining population, 5
delta method, 44–45
Demoivre-Laplace theorem, 38
dependent (explained) variables, 13
measurement error (OLS), 71–72

deterministic sequences, convergence of, 35
DID (di¤erence-in-di¤erences) estimator, 130, 284
discrete response models, 453–509
cluster sampling, 496
index models, 457–459
MLE (maximum likelihood estimation), 460
reporting results, 465–469
specification, 470–482
testing, 461–465

linear probability models (LPMs), 454–457
multinomial response models, 497–504
ordered response models, 504–509
panel data, 482–495

distribution, convergence in, 38
disturbance. See error terms
doubly censored variables, 544
dummy endogenous variable models, 622
dummy variable regression, 272–274
duration analysis, 685–715
competing risks models, 715
grouped duration data, 706–713
time-invariant covariates, 707–711
time-varying covariates, 711–713
unobserved heterogeneity, 713

hazard functions, 686–693
multiple-spell data, 714
proportional hazard models, 690
Cox’s partial likelihood method, 714

single-spell data, time-invariant covariates, 693–
706

flow sampling, 694
MLE with censored flow data, 695–700
stock sampling, 700–703
unobserved heterogeneity, 703–706

duration dependence, 689
dynamic unobserved e¤ects models, 493–495
Tobit models, 542–543
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dynamically complete conditional density, 408
dynamically complete conditional mean, 173, 300

e‰cient estimation, 436–442
e‰ciency bound, 439
MLE (maximum likelihood estimation), 438

elasticities, 16
endogenous variables, 50–51
censored Tobit models, 530–533
dummy endogenous variable models, 622
exponential regression models, 663–666
sample selection, 666–668

instruments for, 83–89
nonlinearity in, 231 (see also nonlinear SEMs)
probit sample selection, 567–570
simultaneous equations models (SEMs), 211
testing for endogeneity, 118–122
Tobit sample selection, 573–575

equivalency
2SLS and 3SLS estimators, 198, 224
equivalent structures, 216ffiffiffiffi

N
p

-equivalency, 42
error terms, 8. See also residuals
2SLS estimators, 95
asymptotic standard error, 41, 44
composite errors, unobserved e¤ects models, 256
conditional expectations, 18
GLM standard errors, 651
heteroskedasticity-robust standard errors, 57
idiosyncratic disturbances, 251, 307–314
linear SEMs, 229
OLS (see OLS)
omitted variables in (IV estimation), 105
structural error, 61

estimable models, 47
exclusion restrictions
order condition with, 215
SEMs (simultaneous equation models), 211–215

exogeneity, strict, 146. See also exogenous variables
FE and FD estimation, 285
FGLS estimation under, 178
multiplicative unobserved e¤ects panel data

models, 676–678
partial MLE, 403–405
random trend models, 315
sequential exogenous variables with, 305–307
time-varying covariates, 692
unobserved e¤ects (with strict exogeneity)
cluster sampling, 330
panel data models, 252–254, 410–412
Tobit models, 540–542

unobserved e¤ects (without strict exogeneity)
contemporaneous correlations, explanatory
variables, 307–314

sequential and strictly exogenous variables
together, 315–322

sequential moment restrictions, 299–305
exogenous variables, 50. See also exogeneity, strict
contemporaneous exogeneity, 146, 307–314
FE and FD estimation, 285
fixed, 10
natural experiments, 88–89
probit model sample selection, 560–566
sequentially exogeneity

hazard functions, 692
unobserved e¤ects models, 299–305

simultaneous equations models (SEMs), 211
stratified sampling, 596–598
Tobit sample selection, 571–573
unobserved e¤ects in linear panel data models,

252–254
expectations, conditional (CEs)
elasticities, 16
error terms, 18
features of, 14–24
LIE (law of iterated expectations), 18–22, 29
linear projections, 24–27, 32–34
partial e¤ects, 3, 15 (see also APEs)
properties of, 29–30
role in econometrics, 13
unobserved e¤ects count data models, 670

expected Hessian form of LM statistic, 366
experimental data, 5
experimental (treatment) group, 129
explained variables, 13
measurement error (OLS), 71–72
sample selection based on, 558–560

explanatory (control) variables, 3, 13
binary endogenous, 477–478
both sequential and strict, models with, 305–307
censored Tobit models, 530–533
contemporaneous correlation between (UEMs),

307–314
continuous endogenous, binary response

variables, 472–477
endogenous (see endogenous variables)
exogeneity (see exogenous variables)
fixed, 9–11
instruments for, 83–89
measurement error, 73–76
simultaneity in, 51
static models, 145
time-invariant, 690, 693–706

flow sampling, 694
grouped duration data analysis, 707–711
MLE with censored flow data, 695–700
stock sampling, 700–703
unobserved heterogeneity, 703–706
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time-varying, 266
hazard functions, 691–693
grouped duration data analysis, 711–713

exponential distribution, 689
exponential regression models, 341, 661
endogeneity of explanatory variables, 663–666

external covariates, 692

F statistic
2SLS estimation, 98
endogeneity tests, 121
RE and FE estimators, comparing, 290–291
UEMs with individual-specific slopes, 320

FD estimation. See first-di¤erencing
FDL (finite distributed lag) models, 146
FE estimation. See fixed e¤ects
FEGLS (fixed e¤ects GLS), 276–278
FEP (fixed e¤ects Poisson), 668, 674–676
FGLS (feasible generalized least squares), 157–

163. See also GLS
OLS vs., SUR systems, 164–166
pooled OLS, linear panel data models, 170–172
random e¤ects estimation, unobserved e¤ects

models, 258–260
SOLS estimation vs., 160–162
under strict exogeneity, 178
unobserved e¤ects models, 263

finite distributed lag (FDL) models, 146
first-di¤erencing (FD)
first-di¤erencing transformation, 279
fixed e¤ects estimation vs., 280–281, 284–285
random trend models, 316
unobserved e¤ects logit models, 491
unobserved e¤ects models, 279–284

first-order asymptotic distribution, 350
first-stage regression, 91
fixed e¤ects (FE)
FEGLS (fixed e¤ects GLS), 276–278
first-di¤erencing estimation vs., 280–281, 284–

285
fixed e¤ects gamma estimator, 683
fixed e¤ects logit estimator, 491
fixed e¤ects Poisson (FEP), 668, 674–676
fixed e¤ects probit analysis, 484
fixed e¤ects residuals, 271
fixed e¤ects transformation, 267, 310
random trend models, 316
random e¤ects estimation, relationship with, 286–

291
Hausman test for endogeneity, 288–291

sequential moment restrictions, 302
unobserved e¤ects models (UEMs), 251–252,

265–279
3SLS vs. FGLS, 323

asymptotic analysis, 269–272
cluster sampling, 330
consistency, 265–269
dummy variable regression, 272–274
fixed e¤ects GLS, 276–280
with individual-specific slopes, 319
logit models, 491
partial e¤ects, 266
for policy analysis, 278–279
serial correlation, 274–276

fixed exogenous variables, 10
fixed explanatory variables, 9–11
fixed regressor assumption, 10
fixing factors for analysis, 3
flow sampling, 694
forbidden regression, 236
fractional logit regression models, 661–663
fully recursive system, 228
functional form, testing, 124

gamma-distributed heterogeneity, 704
Gauss-Newton method (M-estimation), 375
GEE (generalized estimating equations), 486,

673
general linear restrictions (SEMs), 215–220
general minimization problem. See M-estimation
generalized estimating equations (GEE), 486,

673
generalized Gauss-Newton method

(M-estimation), 375
generalized information matrix equality (GIME),

359, 437
generalized IV (GIV) estimator, 327
generalized linear models (GLM), 647
generalized method of moments. See GMM
generalized residual function, 426
generated instruments, 116–118
2SLS estimator, 139–141

generated regressors, 115, 117–118
2SLS estimator, 139–141

geographical stratification, 132–134
GIME (generalized information matrix equality),

359, 437
GIV (generalized IV) estimator, 327
GLM (generalized linear models), 647
binomial GLM variance assumption, 660
GLM standard errors, 651

GLS (generalized least squares)
asymptotic normality, 156
consistency, 153–156
feasible (see FGLS)
fixed e¤ects GLS (FEGLS), 276–278
random e¤ects estimation, unobserved e¤ects

models, 258
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GMM (generalized method of moments), 183
asymptotic normality, 421–426
classical minimum distance estimation, 442–

446
consistency, 422
with generated instruments, 440
GMM 3SLS estimator, 194–198
simultaneous equations models (SEMs), 238

GMM distance (criterion function) statistic, 200,
425

hypothesis tests using, 199–205
linear unobserved e¤ects models, 322–325
nonlinear panel data models, 434–436
orthogonality conditions, estimation under, 426–

428
SIV estimation, 188–198
systems of nonlinear equations, 428–434
unobserved e¤ects models
sequential moment restrictions, 304

grouped duration data, 706–713
time-invariant covariates, 707–711
time-varying covariates, 711–713
unobserved heterogeneity, 713

grouping estimator, 113

Hausman-Taylor UEMs, 325–328
Hausman test for endogeneity, 118–122
FE and FD consistency, 285

Hausman test for endogeneity, 437
RE and FE estimators, comparing, 288–291

hazard functions, 685–693
piecewise-constant proportional hazard, 709
with time-invariant covariates, 690
single-spell data analysis, 693–706

with time-varying covariates, 691–693
without covariates, 686–690

Heckit procedure, 564
hedonic price system, 431–434
Hessian form of LM statistic, 366
Hessian of objective function, 350
heterogeneity, unobserved. See unobserved e¤ects

(latent variable) models
heterokurtosis-robust test for heteroskedasticity,

128
heteroskedasticity
after pooled OLS, 177
latent variable models, 479
corner solution applications, 533–535

ordered response models, 508
robustness
2SLS estimation, 100
endogeneity tests, 121
LM statistic, 59–60
overidentifying restrictions testing, 123

t statistics, 57
variance matrix estimator, 55–58

testing for, 125–128
heteroskedasticity-robust variance matrix

estimator, 359
hierarchical models, 329, 503
holding factors for analysis, 3
homogeneous linear restrictions, 217
homokurtosis, 126–128
homoskedasticity
2SLS estimator, 117
OLS estimators, 54
system homoskedasticity assumption, 161

Huber standard errors, 57
hurdle models for corner solution variable, 536–

538
hypothesis testing
2SLS estimation, 97–100
3SLS estimation, with GMM, 199–205
index models (binary response), 461–465
M-estimation, 362–372
MLE (maximum likelihood estimation), 397
Poisson regression models with cross section data,

653

identification, 13, 52–53
due to a nonlinearity, 234
instrumental variables estimation, 85–86
linear SEMs, 211–221, 229–230

covariance restrictions, 227–228
cross equation correlation, 225–226
estimation after, 221–225
exclusion restrictions, 211–215
general linear restrictions, 215–220
omitted variables or measurement error, 237–
239

overidentifying restrictions, 221
M-estimation, 345
nonlinear SEMs, 230–235

omitted variables or measurement error, 237–
239

nonparametric, 609
order condition for identification, 93

exclusion restrictions, 215
simultaneous equations models (SEMs), 219
SIV estimation, 186

overidentifying restrictions, 92
poorly identified models, 234

idiosyncratic disturbances, 307–314
idiosyncratic errors (disturbances), 251
ignorability (redundancy)
instrumental variables, 86
proxy variables, 63
of selection, 588
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of treatment (ATE), 607–621
propensity scores, 614–621
regression methods, 608–614
strong, 616

IIA (independence from irrelevant alternatives),
501–503

i.i.d. (independent, identically distributed) samples,
5

maximum likelihood estimation (see MLE)
imperfect proxy variables, 64
incidental parameters problem, 484
incidental truncation, 552
independence from irrelevant alternatives (IIA),

501–503
independent identically distributed samples (i.i.d.),

5
independent, not identically distributed samples

(i.n.i.d.), 6, 129
independent variables. See explanatory variables
index models (binary response), 457–459
hypothesis testing, 461–465
MLE (maximum likelihood estimation), 460

indicator assumption, IV estimation, 105–107
indicator function, probit models, 387
individual-specific slopes in unobserved e¤ects

models, 315–322
infeasible GLS. See GLS
influence function representation, 350
information matrix (IM) test statistic, 400
i.n.i.d. (independent, not identically distributed)

sample, 6, 129
initial condition problem
dynamic unobserved e¤ects models, 494
nonlinear unobserved e¤ects panels data models,

412
instrumental variables (IV) estimation. See IV
internal covariates, 693
interval-coded data, ordered probit model with,

508
interval regression, 509
inverse Mills ratio, 522
inverse probability weighting (IPW), 587–590
IPW (inverse probability weighting), 587–590
IV (instrumental variables), 83–113
average treatment e¤ects (ATE), 621–633 (see

also ATEs)
local (LATE), 633–636

motivation for, 83–89
natural experiments, 88

multiple instruments, 90–92
nonlinear, 427
omitted variables, 105–107
system IV (SIV), 183–205

general linear system of equations, 186–188

GMM (generalized method of moments), 188–
198

zero conditional mean assumption, 204

just-identified equations (SEMs), 220

Kaplan-Meier estimator, 710
kernel estimator, 609
Kullback-Leibler information criterion (KLIC),

419

LAD (least absolute deviations), 348, 351
lagged dependent variables, 412
Lagrange multiplier tests. See LM tests
large sample properties of pooled OLS, 171
LATE (local average treatment a¤ect), 605
IV (instrumental variables), 633–636

latent variables. See unobserved e¤ects models
law of iterated expectations (LIE), 18–22, 29
law of iterated projections, 32
least absolute deviations (LAD), 348, 351
least squares estimation
feasible generalized (see FGLS)
generalized (see GLS)
ordinary (see OLS)
three-stage (see 3SLS)
two-stage (see 2SLS)
multivariate nonlinear (see MNLS)
multivariate weighted nonlinear (see MWNLS)
nonlinear (see NLS)
weighted (WLS), 56
weighted nonlinear (see WNLS)

least squares linear predictor, 26. See also linear
projections

LEF (linear exponential family), 649
left censoring, 700
left truncation problem, 700
length-biased sampling, 700
LIE (law of iterated expectations), 18–22, 29
likelihood ratio (LR) statistic
binary response index models, 462
MLE (maximum likelihood estimation), 397

limit theorems for random samples, 39
limited information procedure, 476
linear exponential family (LEF), 649
linear panel data models, 145–147, 169–179. See

also nonlinear panel data models; panel data
asymptotic variance, 175
ignoring sample selection, 552–556
sample selection, 577–590
attrition, 585–590
bias in sample selection, 581–585
fixed e¤ects estimation, unbalanced panels, 577–

581
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linear panel data models (cont.)
time series persistence, 175
unobserved e¤ects (latent variables), 247–291,

299–331
comparisons of estimators, 284–291
count data models, 670–678
estimating with pooled OLS, 256
examples of, 254–256
first-di¤erencing methods, 279–285
fixed e¤ects methods, 265–279, 284–291
random e¤ects methods, 257–265, 286–291
without strict exogeneity, 299–315, 670–678

linear probability models (LPMs), 454–457
linear projections, 24–27, 32–34
probit and logit estimates vs., 466–469

linear SEMs. See SEMs
linear systems of equations, 143–179
FGLS estimation, 157–163
GLS estimation, 153–156
OLS estimation, 147–153
panel data (see linear panel data models)
SIV estimation, 186–188
SUR systems (see SUR systems)

LM tests (score statistic), 58–61
2SLS estimation, 101
binary response index models
multiple restrictions, 462–465

endogeneity tests, 121
GMM under orthogonality conditions, 428
Hessian and expected Hessian forms, 366
heteroskedasticity-robust, 59–60
M-estimators, 363–369
local alternative hypotheses, 371

maximum score estimator, 481
MLE (maximum likelihood estimation), 397
Poisson regression models, 653
score of the log likelihood, 392
score of the objective function, 349

local alternative hypotheses (M-estimation), 371
local average treatment e¤ect (LATE), 605
IV estimation, 633–636

local power analysis, 43
log likelihood for observations, partial, 402
log-logistic hazard function, 689
log-odds transformation, 662
logistic distribution, 690
logistic functions, 341
logit models. See also probit models
binary outcomes, 458 (see also binary response

models)
MLE (maximum likelihood estimation), 460
reporting results, 465–469
with unobserved e¤ects, 490–492

conditional, 500–502

fractional logit regression models, 661–663
multinomial outcomes (MNL models), 497–500

ordered response models, 504–508
nested, 503
panel data models, 482

longitudinal data. See panel data
LPMs (linear probability models), 454–457
linear projections, 24–27, 32–34
probit and logit estimates vs., 466–469

LR statistic
binary response index models, 462
MLE (maximum likelihood estimation), 397

M-estimation, 339–380
asymptotic normality, 349–353, 356–362

two-step M-estimators, 354–356, 361
conditional MLE (see conditional MLE)
consistency, 348, 353–354
hypothesis testing, 362–372
identification of uniform convergence, 345–347
LAD estimator, 351
optimization schemes, 372–376
simulation and resampling, 377–380
two-step, 353–356

asymptotic variance, estimating, 361
consistency, 353–354
objective function changes, 369–371

weighted, 592
matched pairs sample, 328
matching estimators, 620
matrix notation, 8
matrix of instruments, 426
maximum likelihood estimation. See MLE
maximum score estimator, 481
mean independence, 606
measurement error
CEV assumption, 74

IV estimation, 107
measurement error in panel data, 311

endogeneity and, 51
OLS estimation, 70–76
simultaneous equations models (SEMs), 237–239
unobserved e¤ects in panel data, 311–314

median regression, 348
median restrictions, conditional, 535
method of moments, 53
minimization problem. See M-estimation
minimum chi-square estimation, 194, 424, 443
moment conditions, 204
nonlinear SEMs, 235

minimum mean square linear predictor, 26. See
also linear projections

MLE (maximum likelihood estimation), 385–414
asymptotic normality, 392–395
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asymptotic variance, estimating, 395–397
binary response index models, 460
censored flow data, 695–700
conditional MLE, 386, 389–391

conditional density, 418–420
consistency, 391
e‰ciency of, 438–439
fixed e¤ects gamma estimator, 683
probit model with continuous endogenous
variables, 475–477

under stratified sampling, 594
e‰ciency of, 438
fixed e¤ects logit estimator, 491
hypothesis testing, 397
nonlinear unobserved e¤ects panels, 410–413
PMLE (partial maximum likelihood estimation)

asymptotic variance, estimating, 405–407
cluster sampling, 409, 496
Cox’s, for proportional hazard models, 714
panel data, 401–409
two-step, 413–414

Poisson QMLE (quasi-maximum likelihood
estimator), 648–659

asymptotic normality, 649–653
consistency, 648

pooled Poisson QMLE, 668–670
QMLE, 648–659

exponential regression models, 661
fractional logit regression models, 661–663
quasi-MLE random e¤ects analysis, 673

random e¤ects probit estimator, 486
sample selection, 557
Tobit models, endogenous explanatory variables,

532–533
two-step maximum likelihood estimation, 413–414
two-tiered models for corner solution variable,

536–538
weighted exogenous sample (WESMLE), 596

MNL (multinomial logit) models, 497–500
MNLS (multivariate nonlinear least squares), 383

unobserved e¤ects probit models, 486
unobserved e¤ects panel data models, 674

moment conditions, minimum chi-square
estimator, 204

Monte Carlo simulation, M-estimation, 377
multinomial response models, 497–504
multinomial logit (MNL) models, 497–500
multinomial probit models, 502

multinomial sampling, 591
multiple indicator IV solution, 106
multiple instruments estimation, 90–92
multiple restrictions
binary response index models, 461–463
FGLS estimation, 161–162

multiple-spell data, 714
multiple treatments (ATE), 642
multiplicative measurement error, 72
multiplicative random e¤ects models, 671–674
multivariate NLS (MNLS), 383, 486, 674
multivariate weighted NLS (MWNLS), 383, 673
unobserved e¤ects probit models, 486ffiffiffiffi
N

p
-consistent estimator, 41–42ffiffiffiffi

N
p

-equivalency, 42
N-R-squared test. See LM tests
natural experiments, 88–89, 129
negative binomial regression models, 657–659
pooled negative binomial analysis, 673

negative duration dependence, 689
neglected heterogeneity, 470–472
censored Tobit models, 529

nested logit models, 503
Newey-Tauchen-White (NTW) statistic, MLE,

400
Newton-Raphson method, M-estimation, 372–374
NLS (nonlinear least squares), 343–344
expected Hessian form of LM statistic, 367
heteroskedasticity-robust variance matrix

estimator, 359
M-estimation, 351–352
multivariate (MNLS), 383
multivariate weighted nonlinear (MWNLS), 383,

673
unobserved e¤ects probit models, 486
unobserved e¤ects panel data models, 674

pooled NLS, 382
residuals, M-estimators, 359

nonbinary ATE estimation, 638–642
nonlinear 2SLS (N2SLS), 429–430. See also 2SLS
nonlinear 3SLS (N3SLS), 427, 431. See also 3SLS
nonlinear hypotheses, testing (GMM estimation),

200
nonlinear instrumental variables estimation, 427
nonlinear least squares. See NLS
nonlinear models, ignoring sample selection, 556–

558
nonlinear panel data models. See also linear panel

data models; panel data
attrition and sample selection, 587
GMM (generalized method of moments),

434–436
with unobserved e¤ects, 410–413

nonlinear regression models, 341
nonlinear restrictions, binary response index

models, 463
nonlinear SEMs. See also SEMs
estimation, 235–237
identification, 230–235
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nonlinear SUR estimation, 382
nonlinear system 2SLS estimation, 427
nonlinear systems of equations, 428–434
nonlinearities, detecting, 124
nonnormality
corner solution applications, latent variable

models, 533–535
latent variable models, 479

nonparametric bootstrap, M-estimation, 379
nonparametric regression, 480–481
nonparametric residual bootstrap, M-estimation,

380
nonparametrically identified, 609
nonrandom sampling, 128–135. See also sample

selection
normalization restriction, 217
NTW statistic, MLE, 400

objective function changes, M-estimation, 369–371
OLS (ordinary least squares), 10, 47
asymptotic properties, 51–61
CMD estimation, 445–446
data censoring and, 524
feasible generalized least squares (see FGLS)
generalized least squares (see GLS)
generated regressors, 115
Heckit procedure vs., 565
ignoring sample selection, 552–556
measurement error, 70–76
multivariate linear system, 147–153
nonrandom sampling schemes, 128–135
omitted variables, 50, 61–70
interactions with unobservables, 67–70
proxy variables, 63–67

pooled OLS (POLS), 150
first-di¤erenced equations, 280
linear panel data models, 170–172
serial correlation and heteroskedasticity testing,
176–178

unobserved e¤ects models, 249, 256, 260, 268,
310 (see also fixed e¤ects)

propensity score, 617
system OLS (SOLS)
FGLS estimation vs., 160–162
multivariate linear system, 147–153
UEMs with individual-specific slopes, 319

2SLS (see 2SLS)
3SLS (see 3SLS)

omitted variables, 50–51
instrumental variables estimation, 105–107
linear panel data models, 247–251
neglected heterogeneity, binary response models,

470–472
OLS estimation, 50, 61–70

interactions with unobservables, 67–70
proxy variables, 63–67

simultaneous equations models (SEMs), 185,
237–239

optimal GMM 3SLS, 196
optimal weighting matrix, GMM, 192–194, 202–

204
nonlinear panel data models, 435

optimization schemes, M-estimation, 372–376
order condition for identification, 93
exclusion restrictions, 215
simultaneous equations models (SEMs), 219
SIV estimation, 186

ordered response models, 504–509
logit models, 504–508
probit models, 504–509

interval-coded data, 508
ordinary least squares. See OLS
outer product of score LM statistic, 366
overdispersion, 647
overidentification test statistic, 201
overidentified models, 92
overidentifying restrictions, 92
simultaneous equations models (SEMs), 221
testing, 122–124
testing with GMM, 201

panel data, 6
ATE estimation, 637 (see also ATEs)
balanced panels, 250
binary response models, 482–493 (see also binary

response models)
censored regression, 538–544
linear models (see linear panel data models)
measurement error, 311–314
nonlinear (see nonlinear panel data models)
partial MLE, 401–409 (see also PMLE)
unobserved e¤ects (see unobserved e¤ects models)

parameter space, 341
parametric bootstrap, M-estimation, 379
parametric models, 14
partial e¤ects, 3, 15. See also APEs
partial log likelihood, 402
partial MLE. See PMLE
Pearson residuals, 650
peer e¤ects, 331
percent correctly predicted, 465
piecewise-constant proportional hazard, 709
plim (probability limit), 36
PMLE (partial maximum likelihood estimation).

See also MLE; QMLE
asymptotic variance, estimating, 405–407
cluster sampling, 409

binary choice models, 496
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Cox’s, for proportional hazard models, 714
panel data, 401–409
two-step, 413–414

pointwise convergence in probability, 346
Poisson GLM variance assumption, 647
Poisson QMLE (quasi-maximum likelihood

estimator), 648–659. See also QMLE
asymptotic normality, 649–653
consistency, 648
pooled Poisson QMLE, 668–670

Poisson random e¤ects models, 672
Poisson regression models, 388
with cross section data, 646–656

hypothesis testing, 653
specification testing, 654–656

fixed e¤ects Poisson models, 668
log likelihoods for observations, 392

Poisson variance assumption, 646–647
policy analysis
first-di¤erencing estimation for, 283
fixed e¤ects estimation for, 278

POLS. See pooled OLS
pooled 2SLS, 192
pooled cross section data, 5–6
over time, 128–132

pooled negative binomial analysis, 673
pooled nonlinear least squares, 382
pooled OLS (ordinary least squares), 150
first-di¤erenced equations, 280
linear panel data models, 170–172
serial correlation and heteroskedasticity testing,

176–178
unobserved e¤ects models, 249, 256

contemporaneous correlation between
explanatory variables, 310

fixed e¤ects, 268 (see also fixed e¤ects)
random e¤ects, 260 (see also random e¤ects)

pooled Poisson QMLE, 668–670
pooled probit estimator, 404
binary outcomes, 482

pooled Tobit models, 538–540
poorly identified models, 234
M-estimation, 346

population models, 5
linear (see linear projections)
population-averaged models, 486, 673
population-averaged parameters, 485

population orthogonality condition, 52–54
positive duration dependence, 689
probability, convergence and boundedness in, 36–

38
probability limit (plim), 36
probit models, 387. See also logit models
binary endogenous explanatory variables, 477–478

binary outcomes, 458 (see also binary response
models)

continuous endogenous explanatory variables,
472–477

MLE (maximum likelihood estimation), 460
neglected heterogeneity, 470–472
reporting results, 465–469

log likelihoods for observations, 392
multinomial (conditional), 502
ordered response models, 504–509

panel data models, 482
partial MLE, 404
sample selection, 560–571
binary response models, 570
endogenous explanatory variables, 567–570
exogenous explanatory variables, 560–566

two-step probit estimator, 416
unobserved e¤ects, 483–490

propensity scores, ignorability of treatment (ATE),
614–621

proportional hazard models, 690
Cox’s partial likelihood method, 714
time-varying covariates, 693

proxy variables, 23
OLS estimation, 63–67
interactions with unobservables, 67–70
measurement error, 70

pseudo R-squared, 465

QLR (quasi-likelihood ratio) statistic, 370–371
QMLE (quasi-maximum likelihood estimator),

648–659. See also MLE
exponential regression models, 661
fractional logit regression models, 661–663
Poisson QMLE, 648–659
asymptotic normality, 649–653
consistency, 648

pooled Poisson QMLE, 668–670
quasi-MLE random e¤ects analysis, 673

quantile regression, 348
quasi-likelihood ratio (QLR), 370–371
quasi-time demeaning, 287

random coe‰cient models, 638
random e¤ects (RE)
Poisson random e¤ects models, 672
quasi-MLE random e¤ects analysis, 673
random e¤ects logit models, 490
random e¤ects models, count data, 671–674
random e¤ects probit estimator, 486
random e¤ects structure, 259
random e¤ects Tobit models, 541
relationship with fixed e¤ects estimation, 286–291
Hausman test for endogeneity, 288–291
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random e¤ects (RE) (cont.)
3SLS vs., unobserved e¤ects models, 323
unobserved e¤ects models, 251–252, 257–265

random growth models, 315
random sampling, 5. See also sample selection
alternatives to, 128–135
limit theorems for, 39
temporal correlation (see panel data)

random trend models, 315–317, 315–322
rank condition for identification, 86
first-di¤erencing estimation, 280
GLS estimation, 258
multiple instruments estimation, 91
simultaneous equations models (SEMs), 219
SIV estimation, 186
time-demeaned explanatory variables (UEMs),

269
2SLS estimators, 93
UEMs with individual-specific slopes, 319

RE estimation. See random e¤ects
recursive system, 228
reduced form equation, 84
SEMs (simultaneous equations models), 213–215,

216
redundancy (ignorability)
instrumental variables, 86
proxy variables, 63
of selection, 588
of treatment (ATE), 607–621
propensity scores, 614–621
regression methods, 608–614
strong, 616

regressand. See explained variables
regression
binomial regression models, 659
censored (see corner solution applications)
dummy variable regression, 272–274
exponential regression models, 341, 661
first- and second-stage, 91
forbidden regression, 236
fractional logit regression models, 661–663
ignorability of treatment (ATE), 608–614
interval regression, 509
median regression, 348
negative binomial regression models, 657–659
pooled negative binomial analysis, 673

nonlinear regression models, 341
nonparametric regression, 480–481
Poisson regression (see Poisson regression models)
quantile regression, 348
regression discontinuity designs, 614
seemingly unrelated (see SUR systems)
switching regression models, 611
truncated regression, 558–560

regressors. See explanatory variables
relative asymptotic e‰ciency. See asymptotic

e‰ciency
relative e‰ciency of estimators, 436
resampling, M-estimation, 377–380
RESET test, merits of, 125
residuals. See also error terms
fixed e¤ects residuals, 271
nonparametric residual bootstrap, M-estimation,

380
Pearson residuals, 650
standardized residuals, 361, 462

response probability, 453
response (explained) variables, 13
measurement error (OLS), 71–72
sample selection based on, 558–560

restrictions, overidentifying. See overidentifying
restrictions

right censoring, 695
risk set, 710
robust standard errors, 57
robust variance matrix estimator, 152, 175
first-di¤erencing estimation, 282
fixed e¤ects estimator, 274–276
unobserved e¤ects models, 260

rotating panel, 577

sample selection, 551–598
choice-based sampling, 560
exponential regression models, 666–668
linear panel data models, 577–590

attrition, 585–590
bias in sample selection, 581–585
fixed e¤ects estimation, unbalanced panels, 577–
581

nonrandom sampling, 128–135
probit models, 560–571

binary response models, 570
random sampling, 5

alternatives to, 128–135
limit theorems for, 39
temporal correlation (see panel data)

sampling weights, 593
selection on observables/unobservables, 588, 607
stock sampling, 700–703
stratified sampling, 590–598
Tobit selection, 571–575

estimating structural equations, 575–577
when ignorable, 552–558

saturated models, 613
score statistic (LM tests), 58–61
2SLS estimation, 101
binary response index models

multiple restrictions, 462–465
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endogeneity tests, 121
GMM under orthogonality conditions, 428
Hessian and expected Hessian forms, 366
heteroskedasticity-robust, 59–60
M-estimators, 363–369

local alternative hypotheses, 371
MLE (maximum likelihood estimation), 397
Poisson regression models, 653
score of the log likelihood, 392
score of the objective function, 349

second-stage regression, 91
seemingly unrelated regressions. See SUR systems
selected samples. See sample selection
selection indicators, 553
selection mechanisms, 551
self-selection problem, 254
ATEs (average treatment e¤ects), 606

semielasticities, 16
semiparametric estimators, 480
SEMs (simultaneous equations models), 183, 209–

239
autonomy, 209–211
contemporaneous correlation between

explanatory variables, 309
linear, identification in, 211–221, 229–230

covariance restrictions, 227–228
cross equation restrictions, 225–226
estimation after, 221–225
exclusion restrictions, 211–215
general linear restrictions, 215–220
overidentifying restrictions, 221

nonlinear in endogenous variables
estimation, 235–237
identification, 230–235

omitted variables, 237–239
reduced form, 213–215, 216

estimating parameters, 224–225
sequential exogeneity. See also exogenous variables
both sequential and strict explanatory variables,

305–307
covariates, hazard functions, 692
unobserved e¤ects models, 299–305

sequential moment restrictions, 299, 677
serial correlation, 152, 176
first-di¤erencing estimation, 282
fixed e¤ects estimator, 274–276
measurement error in panel data, 313–314

simulation, M-estimation, 377–380
simultaneity in explanatory variables, 51
simultaneous equations models. See SEMs
single-equation methods, alternatives to, 128–132
single-spell data analysis
hazard functions, time-invariant covariates, 693–

703

flow sampling, 694
MLE with censored flow data, 695–700
stock sampling, 700–703
unobserved heterogeneity, 703–706

singular variance matrices, SUR systems, 167–169
SIV (system instrumental variables), 183–205. See

also IV
general linear system of equations, 186–188
GMM (generalized method of moments), 188–

198
zero conditional mean assumption, 204

Slutsky’s theorem, 37
SOLS (system ordinary least squares). See also

OLS
FGLS estimation vs., 160–162
multivariate linear system, 147–153
UEMs with individual-specific slopes, 319

spatial correlation models, 6, 134
spatial dependence, 134
specification testing, 363
Poisson regression models, 654–656

square-root-of-N-consistent estimator, 41–42
square-root-of-N-equivalency, 42
SS (standard stratified) sampling, 590–592
stable unit treatment value assumption (SUTVA),

604
standard censored Tobit models, 519. See also

corner solution applications; Tobit models
alternatives to, 536–538
estimation and testing, 525–527
OLS, inconsistency of, 524
panel data for, 538–544
reporting results, 527–529
specification
conditional median restrictions, 535
endogenous explanatory variables, 530–533
heteroskedasticity and nonnormality in latent

variable models, 533–535
neglected heterogeneity, 529

truncated Tobit models, 558–560
standard stratified (SS) sampling, 590–592
standardized residuals, 361, 462
state dependence, 300, 493
static models, 145
stochastic setting, choosing, 4–7
stock sampling, 700–703
stratified sampling, 590–598
geographical stratification, 132–134

strict exogeneity, 146. See also exogenous variables
FE and FD estimation, 285
FGLS estimation under, 178
multiplicative unobserved e¤ects panel data

models, 676–678
partial MLE, 403–405
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strict exogeneity (cont.)
random trend models, 315
sequential exogenous variables with, 305–307
time-varying covariates, 692
unobserved e¤ects (with strict exogeneity)
cluster sampling, 330
panel data models, 252–254, 410–412
Tobit models, 540–542

unobserved e¤ects (without strict exogeneity)
contemporaneous correlations, explanatory
variables, 307–314

sequential and strictly exogenous variables
together, 315–322

sequential moment restrictions, 299–305
strong ignorability of treatment, 616
structural conditional expectation, 13
structural equations
SEMs, 211, 215–220
reduced form vs., 224

Tobit, with sample selection, 575–577
structural error, 61
structural models, 47
SUR (seemingly unrelated regressions) systems,

143–146, 163–169
CMD estimation, 445–446
cross equation restrictions, 167
nonlinear SUR estimator, 382
OLS vs. FGLS estimation, 164–166
singular variance matrices, 167–169
time series persistence, 175

survival analysis, 685. See also duration analysis
survivor function, 687
SUTVA (stable unit treatment value assumption),

604
switching regression models, 611
system 2SLS estimation, 430
nonlinear, 427
SIV estimation, 191–192

system homoskedasticity assumption, 161
system instrumental variables. See SIV
system OLS (SOLS). See also OLS
FGLS estimation vs., 160–162
multivariate linear system, 147–153
UEMs with individual-specific slopes, 319

systems of equations
linear, 143–179
FGLS estimation, 157–163
GLS estimation, 153–156
OLS estimation, 147–153
panel data (see linear panel data models)
SIV estimation, 186–188
SUR systems (see SUR systems)

nonlinear, GMM, 428–434
simultaneous (see SEMs)

t statistics
2SLS estimation, 97
heteroskedasticity-robust, 57

temporal correlation. See panel data
test statistics, asymptotic properties, 43–45. See

also asymptotic variance analysis
3SLS (three-stage least squares), 194–198. See also

OLS; 2SLS
equivalency with 2SLS, 198, 224
fixed e¤ects vs., unobserved e¤ects models, 323
GMM vs. traditional, 196–198
hypothesis testing with GMM, 199–205
nonlinear (N3SLS), 427
random e¤ects vs., unobserved e¤ects models,

323
simultaneous equations models (SEMs), 238

linearly homogenous restrictions, 221–224
nonlinear, 235

standard panel data estimators and, 322
threshold parameters, 505
time-demeaning matrix, 268
time-invariant covariates, hazard functions, 690,

693–706
flow sampling, 694
grouped duration data analysis, 707–711
MLE with censored flow data, 695–700
stock sampling, 700–703
unobserved heterogeneity, 703–706

time series persistence, 175
time-varying covariates, 266
hazard functions, 691–693
grouped duration data analysis, 711–713

time-varying variances, 153
Tobit models
censored (see censored Tobit models)
dynamic unobserved e¤ects Tobit models, 542–

543
pooled Tobit models, 538–540
sample selection, 571–575

estimating structural equations, 575–577
truncated, 558–560
type II Tobit models, 562
type III Tobit models, 571
unobserved e¤ects Tobit models, 540–542

top coding, 517
traditional 3SLS estimator, 196–198. See also

3SLS
traditional random e¤ects probit models, 485
treatment. See ATEs
treatment (experimental) group, 129
truncated normal regression models, 558–560
truncated regression, 558–560
truncated sampling, flow data, 700–703
truncated Tobit models, 558–560
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2SLS (two-stage least squares), 90–92. See also
OLS

asymptotic analysis, 139–141
equivalency with 3SLS, 198, 224
generated instruments, 116
hypothesis testing, 97–100
ignoring sample selection, 552–556
nonlinear 2SLS (N2SLS), 429–430
nonrandom sampling schemes, 128–135
pooled 2SLS estimator, 192
potential problems with, 101–105
properties of, 92–101
residuals, 95
SEMs (simultaneous equations models)

linearly homogenous restrictions, 221–224
nonlinear, 235

sequential moment restrictions, 303
system 2SLS, 430

nonlinear, 427
SIV estimation, 191–192

two-step M-estimation, 353–356. See also
M-estimation

asymptotic variance, estimating, 361
objective function changes, 369–371

two-step MLE, 413–414. See also MLE
two-step probit estimator, 416
two-tiered models for corner solution variable,

536–538
type I extreme value distribution, 500, 699
type I Tobit models. See censored Tobit models
type II Tobit models, 562
type III Tobit models, 571

UEMs. See unobserved e¤ects (latent variable)
models

UIME (unconditional information matrix
equality), 395

unbalanced panels, 577
fixed e¤ects estimation, 578–581

uncentered R-squared, 58
unconditional information matrix equality

(UIME), 395
unconditional MLE. See MLE
unconditional variance matrix, 152
underdispersion, 647
unidentified equations (SEMs), 220
uniform convergence in probability, 346
uniform weak law of large numbers (UWLLN),

347
unobservables
IV estimation, 105–107
OLS estimation, 67–70
spatial dependence, 134

unobserved e¤ects (latent variable) models, 457

duration models with unobserved heterogeneity,
703–706

dynamic models, 493–495
fixed e¤ects (FE), 251–252, 265–279
3SLS vs., 323
asymptotic analysis, 269–272
cluster sampling, 330
consistency, 265–269
dummy variable regression, 272–274
fixed e¤ects GLS, 276–280
with individual-specific slopes, 319
logit models, 491
partial e¤ects, 266
for policy analysis, 278–279
serial correlation, 274–276

grouped duration data with unobserved
heterogeneity, 713

heteroskedasticity and nonnormality, 479
corner solution applications, 533–535

linear panel data models (with strict exogeneity),
247–291, 299–331

assumptions about, 251–254
attrition testing and correction, 585–590
estimating with pooled OLS, 256
examples of, 254–256
first-di¤erencing methods, 279–285
fixed e¤ects methods, 265–279
GMM approaches, 322–325
Hausman-Taylor, 325–328
individual-specific slopes, 315–322
matched pairs and cluster samples, 328–331
omitted variables, 247–251
random e¤ects methods, 257–265, 286–291

linear panel data models (without strict
exogeneity), 299–315

contemporaneous correlations, explanatory
variables, 307–314

count data models, 670–678
sequential and strictly exogenous variables

together, 315–322
sequential moment restrictions, 299–305

logit models, 490–492
nonlinear panel data models, 410–413
ordered probit models, 508
probit models, 387, 483–490
testing for unobserved e¤ects, 264
Tobit models under strict exogeneity, 540–542
unobserved heterogeneity, 22, 24

unobserved heterogeneity. See unobserved e¤ects
models

unordered responses, 497
usual variance matrix for FGLS, 161–162
UWLLN (uniform weak law of large numbers),

347
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variable probability (VP) sampling, 590–592
weighted estimators, 592

variables
count variables, 388, 645 (see also count data

models)
endogenous (see endogenous variables)
exogenous (see exogenous variables)
explanatory (see explanatory variables)
instrumental (see IV)
latent (see unobserved e¤ects models)

variance
asymptotic variance analysis, 7, 35–45
2SLS estimators, 96
convergence, 35–40
FGLS estimators, 159, 160–162
fixed e¤ects estimator, 269
GLS estimators, 156
GMM (generalized method of moments), 423
linear panel data models, 175
M-estimators, 356–362
MLE (maximum likelihood estimation), 395–
397

partial MLE, 405–407
OLS estimators, 51–61
optimal GMM estimator, 193
panel data methods, 250
system OLS (SOLS), 148–153
test statistics, 43–45
two-step M-estimators, 361

binomial GLM variance assumption, 660
conditional, properties of, 31
Poisson GLM variance assumption, 647
Poisson variance assumption, 646–647

VP (variable probability) sampling, 590–592
weighted estimators, 592

Wald statistic, 44
2SLS estimation, 98
binary response index models, 462–463
heteroskedasticity-robust, 57
M-estimators, 362
local alternative hypotheses, 371

MLE (maximum likelihood estimation), 397
multiple hypotheses (SOLS estimation), 153
Poisson regression models, 653

weak consistency, 40
weak law of large numbers (WLLN), 39
Weibull distribution, 689
regression, 699

weighted exogenous sample MLE (WESMLE),
596

weighted least squares, 56
weighted M-estimation, 592
weighted nonlinear least squares. See WNLS

weighting matrix, GMM estimation, 188–191,
192–194, 202–204

e‰cient estimation, 436–442
WESMLE (weighted exogenous sample MLE),

596
White standard errors, 57
White’s information matrix (IM) test statistic, 400
White’s test for heteroskedasticity, 127
wild bootstrap, 380
within estimator, 269
within (fixed e¤ects) transformation, 267
WLLN (weak law of large numbers), 39
WLS (weighted least squares), 56
WNLS (weighted nonlinear least squares), 353–

354
expected Hessian form of LM statistic, 368
unobserved e¤ects panel data models, 674

w.p.a.1 (with probability approaching one), 37

zero conditional mean assumption, 49–50
linear SEMs, 229
SIV estimation, 204
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