


Chapter 1 discusses the scope of econometrics and raises general issues that result
from the application of econometric methods. Section 1.3 examines the kinds of
data sets that are used in business, economics, and other social sciences. Section

1.4 provides an intuitive discussion of the difficulties associated with the inference of
causality in the social sciences.

1.1 WHAT IS ECONOMETRICS?

Imagine that you are hired by your state government to evaluate the effectiveness of a
publicly funded job training program. Suppose this program teaches workers various
ways to use computers in the manufacturing process. The twenty-week program offers
courses during nonworking hours. Any hourly manufacturing worker may participate,
and enrollment in all or part of the program is voluntary. You are to determine what, if
any, effect the training program has on each worker’s subsequent hourly wage.

Now suppose you work for an investment bank. You are to study the returns on dif-
ferent investment strategies involving short-term U.S. treasury bills to decide whether
they comply with implied economic theories.

The task of answering such questions may seem daunting at first. At this point,
you may only have a vague idea of the kind of data you would need to collect. By the
end of this introductory econometrics course, you should know how to use econo-
metric methods to formally evaluate a job training program or to test a simple eco-
nomic theory.

Econometrics is based upon the development of statistical methods for estimating
economic relationships, testing economic theories, and evaluating and implementing
government and business policy. The most common application of econometrics is the
forecasting of such important macroeconomic variables as interest rates, inflation rates,
and gross domestic product. While forecasts of economic indicators are highly visible
and are often widely published, econometric methods can be used in economic areas
that have nothing to do with macroeconomic forecasting. For example, we will study
the effects of political campaign expenditures on voting outcomes. We will consider the
effect of school spending on student performance in the field of education. In addition,
we will learn how to use econometric methods for forecasting economic time series.
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Econometrics has evolved as a separate discipline from mathematical statistics
because the former focuses on the problems inherent in collecting and analyzing nonex-
perimental economic data. Nonexperimental data are not accumulated through con-
trolled experiments on individuals, firms, or segments of the economy. (Nonexperimental
data are sometimes called observational data to emphasize the fact that the researcher
is a passive collector of the data.) Experimental data are often collected in laboratory
environments in the natural sciences, but they are much more difficult to obtain in the
social sciences. While some social experiments can be devised, it is often impossible,
prohibitively expensive, or morally repugnant to conduct the kinds of controlled experi-
ments that would be needed to address economic issues. We give some specific exam-
ples of the differences between experimental and nonexperimental data in Section 1.4.

Naturally, econometricians have borrowed from mathematical statisticians when-
ever possible. The method of multiple regression analysis is the mainstay in both fields,
but its focus and interpretation can differ markedly. In addition, economists have
devised new techniques to deal with the complexities of economic data and to test the
predictions of economic theories.

1.2 STEPS IN EMPIRICAL ECONOMIC ANALYSIS

Econometric methods are relevant in virtually every branch of applied economics. They
come into play either when we have an economic theory to test or when we have a rela-
tionship in mind that has some importance for business decisions or policy analysis. An
empirical analysis uses data to test a theory or to estimate a relationship.

How does one go about structuring an empirical economic analysis? It may seem
obvious, but it is worth emphasizing that the first step in any empirical analysis is the
careful formulation of the question of interest. The question might deal with testing a
certain aspect of an economic theory, or it might pertain to testing the effects of a gov-
ernment policy. In principle, econometric methods can be used to answer a wide range
of questions.

In some cases, especially those that involve the testing of economic theories, a for-
mal economic model is constructed. An economic model consists of mathematical
equations that describe various relationships. Economists are well-known for their
building of models to describe a vast array of behaviors. For example, in intermediate
microeconomics, individual consumption decisions, subject to a budget constraint, are
described by mathematical models. The basic premise underlying these models is util-
ity maximization. The assumption that individuals make choices to maximize their well-
being, subject to resource constraints, gives us a very powerful framework for creating
tractable economic models and making clear predictions. In the context of consumption
decisions, utility maximization leads to a set of demand equations. In a demand equa-
tion, the quantity demanded of each commodity depends on the price of the goods, the
price of substitute and complementary goods, the consumer’s income, and the individ-
ual’s characteristics that affect taste. These equations can form the basis of an econo-
metric analysis of consumer demand.

Economists have used basic economic tools, such as the utility maximization frame-
work, to explain behaviors that at first glance may appear to be noneconomic in nature.
A classic example is Becker’s (1968) economic model of criminal behavior.
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E X A M P L E  1 . 1
( E c o n o m i c  M o d e l  o f  C r i m e )

In a seminal article, Nobel prize winner Gary Becker postulated a utility maximization frame-
work to describe an individual’s participation in crime. Certain crimes have clear economic
rewards, but most criminal behaviors have costs. The opportunity costs of crime prevent the
criminal from participating in other activities such as legal employment. In addition, there
are costs associated with the possibility of being caught and then, if convicted, the costs
associated with incarceration. From Becker’s perspective, the decision to undertake illegal
activity is one of resource allocation, with the benefits and costs of competing activities
taken into account.

Under general assumptions, we can derive an equation describing the amount of time
spent in criminal activity as a function of various factors. We might represent such a func-
tion as

y � f (x1,x2,x3,x4,x5,x6,x7), (1.1)

where

y � hours spent in criminal activities

x1 � “wage” for an hour spent in criminal activity

x2 � hourly wage in legal employment

x3 � income other than from crime or employment

x4 � probability of getting caught

x5 � probability of being convicted if caught

x6 � expected sentence if convicted

x7 � age

Other factors generally affect a person’s decision to participate in crime, but the list above
is representative of what might result from a formal economic analysis. As is common in
economic theory, we have not been specific about the function f(�) in (1.1). This function
depends on an underlying utility function, which is rarely known. Nevertheless, we can use
economic theory—or introspection—to predict the effect that each variable would have on
criminal activity. This is the basis for an econometric analysis of individual criminal activity.

Formal economic modeling is sometimes the starting point for empirical analysis,
but it is more common to use economic theory less formally, or even to rely entirely on
intuition. You may agree that the determinants of criminal behavior appearing in equa-
tion (1.1) are reasonable based on common sense; we might arrive at such an equation
directly, without starting from utility maximization. This view has some merit,
although there are cases where formal derivations provide insights that intuition can
overlook.
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Here is an example of an equation that was derived through somewhat informal
reasoning.

E X A M P L E  1 . 2
( J o b  T r a i n i n g  a n d  W o r k e r  P r o d u c t i v i t y )

Consider the problem posed at the beginning of Section 1.1. A labor economist would like
to examine the effects of job training on worker productivity. In this case, there is little need
for formal economic theory. Basic economic understanding is sufficient for realizing that
factors such as education, experience, and training affect worker productivity. Also, econ-
omists are well aware that workers are paid commensurate with their productivity. This sim-
ple reasoning leads to a model such as

wage � f (educ,exper, training) (1.2)

where wage is hourly wage, educ is years of formal education, exper is years of workforce
experience, and training is weeks spent in job training. Again, other factors generally affect
the wage rate, but (1.2) captures the essence of the problem.

After we specify an economic model, we need to turn it into what we call an econo-
metric model. Since we will deal with econometric models throughout this text, it is
important to know how an econometric model relates to an economic model. Take equa-
tion (1.1) as an example. The form of the function f (�) must be specified before we can
undertake an econometric analysis. A second issue concerning (1.1) is how to deal with
variables that cannot reasonably be observed. For example, consider the wage that a
person can earn in criminal activity. In principle, such a quantity is well-defined, but it
would be difficult if not impossible to observe this wage for a given individual. Even
variables such as the probability of being arrested cannot realistically be obtained for a
given individual, but at least we can observe relevant arrest statistics and derive a vari-
able that approximates the probability of arrest. Many other factors affect criminal
behavior that we cannot even list, let alone observe, but we must somehow account for
them.

The ambiguities inherent in the economic model of crime are resolved by specify-
ing a particular econometric model:

crime � �0 + �1wagem + �2othinc � �3 freqarr � �4 freqconv

� �5avgsen � �6age � u,
(1.3)

where crime is some measure of the frequency of criminal activity, wagem is the wage
that can be earned in legal employment, othinc is the income from other sources (assets,
inheritance, etc.), freqarr is the frequency of arrests for prior infractions (to approxi-
mate the probability of arrest), freqconv is the frequency of conviction, and avgsen is
the average sentence length after conviction. The choice of these variables is deter-
mined by the economic theory as well as data considerations. The term u contains unob-
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served factors, such as the wage for criminal activity, moral character, family back-
ground, and errors in measuring things like criminal activity and the probability of
arrest. We could add family background variables to the model, such as number of sib-
lings, parents’ education, and so on, but we can never eliminate u entirely. In fact, deal-
ing with this error term or disturbance term is perhaps the most important component
of any econometric analysis.

The constants �0, �1, …, �6 are the parameters of the econometric model, and they
describe the directions and strengths of the relationship between crime and the factors
used to determine crime in the model.

A complete econometric model for Example 1.2 might be

wage � �0 � �1educ � �2exper � �3training � u, (1.4)

where the term u contains factors such as “innate ability,” quality of education, family
background, and the myriad other factors that can influence a person’s wage. If we 
are specifically concerned about the effects of job training, then �3 is the parameter of
interest.

For the most part, econometric analysis begins by specifying an econometric model,
without consideration of the details of the model’s creation. We generally follow this
approach, largely because careful derivation of something like the economic model of
crime is time consuming and can take us into some specialized and often difficult areas
of economic theory. Economic reasoning will play a role in our examples, and we will
merge any underlying economic theory into the econometric model specification. In the
economic model of crime example, we would start with an econometric model such as
(1.3) and use economic reasoning and common sense as guides for choosing the vari-
ables. While this approach loses some of the richness of economic analysis, it is com-
monly and effectively applied by careful researchers.

Once an econometric model such as (1.3) or (1.4) has been specified, various
hypotheses of interest can be stated in terms of the unknown parameters. For example,
in equation (1.3) we might hypothesize that wagem, the wage that can be earned in legal
employment, has no effect on criminal behavior. In the context of this particular econo-
metric model, the hypothesis is equivalent to �1 � 0.

An empirical analysis, by definition, requires data. After data on the relevant vari-
ables have been collected, econometric methods are used to estimate the parameters in
the econometric model and to formally test hypotheses of interest. In some cases, the
econometric model is used to make predictions in either the testing of a theory or the
study of a policy’s impact.

Because data collection is so important in empirical work, Section 1.3 will describe
the kinds of data that we are likely to encounter.

1.3 THE STRUCTURE OF ECONOMIC DATA

Economic data sets come in a variety of types. While some econometric methods can
be applied with little or no modification to many different kinds of data sets, the spe-
cial features of some data sets must be accounted for or should be exploited. We next
describe the most important data structures encountered in applied work.
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Cross-Sectional Data

A cross-sectional data set consists of a sample of individuals, households, firms, cities,
states, countries, or a variety of other units, taken at a given point in time. Sometimes
the data on all units do not correspond to precisely the same time period. For example,
several families may be surveyed during different weeks within a year. In a pure cross
section analysis we would ignore any minor timing differences in collecting the data. If
a set of families was surveyed during different weeks of the same year, we would still
view this as a cross-sectional data set.

An important feature of cross-sectional data is that we can often assume that they
have been obtained by random sampling from the underlying population. For exam-
ple, if we obtain information on wages, education, experience, and other characteristics
by randomly drawing 500 people from the working population, then we have a random
sample from the population of all working people. Random sampling is the sampling
scheme covered in introductory statistics courses, and it simplifies the analysis of cross-
sectional data. A review of random sampling is contained in Appendix C.

Sometimes random sampling is not appropriate as an assumption for analyzing
cross-sectional data. For example, suppose we are interested in studying factors that
influence the accumulation of family wealth. We could survey a random sample of fam-
ilies, but some families might refuse to report their wealth. If, for example, wealthier
families are less likely to disclose their wealth, then the resulting sample on wealth is
not a random sample from the population of all families. This is an illustration of a sam-
ple selection problem, an advanced topic that we will discuss in Chapter 17.

Another violation of random sampling occurs when we sample from units that are
large relative to the population, particularly geographical units. The potential problem
in such cases is that the population is not large enough to reasonably assume the obser-
vations are independent draws. For example, if we want to explain new business activ-
ity across states as a function of wage rates, energy prices, corporate and property tax
rates, services provided, quality of the workforce, and other state characteristics, it is
unlikely that business activities in states near one another are independent. It turns out
that the econometric methods that we discuss do work in such situations, but they some-
times need to be refined. For the most part, we will ignore the intricacies that arise in
analyzing such situations and treat these problems in a random sampling framework,
even when it is not technically correct to do so.

Cross-sectional data are widely used in economics and other social sciences. In eco-
nomics, the analysis of cross-sectional data is closely aligned with the applied micro-
economics fields, such as labor economics, state and local public finance, industrial
organization, urban economics, demography, and health economics. Data on individu-
als, households, firms, and cities at a given point in time are important for testing micro-
economic hypotheses and evaluating economic policies.

The cross-sectional data used for econometric analysis can be represented and
stored in computers. Table 1.1 contains, in abbreviated form, a cross-sectional data set
on 526 working individuals for the year 1976. (This is a subset of the data in the file
WAGE1.RAW.) The variables include wage (in dollars per hour), educ (years of educa-
tion), exper (years of potential labor force experience), female (an indicator for gender),
and married (marital status). These last two variables are binary (zero-one) in nature
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and serve to indicate qualitative features of the individual. (The person is female or not;
the person is married or not.) We will have much to say about binary variables in
Chapter 7 and beyond.

The variable obsno in Table 1.1 is the observation number assigned to each person
in the sample. Unlike the other variables, it is not a characteristic of the individual. All
econometrics and statistics software packages assign an observation number to each
data unit. Intuition should tell you that, for data such as that in Table 1.1, it does not
matter which person is labeled as observation one, which person is called Observation
Two, and so on. The fact that the ordering of the data does not matter for econometric
analysis is a key feature of cross-sectional data sets obtained from random sampling.

Different variables sometimes correspond to different time periods in cross-
sectional data sets. For example, in order to determine the effects of government poli-
cies on long-term economic growth, economists have studied the relationship between
growth in real per capita gross domestic product (GDP) over a certain period (say 1960
to 1985) and variables determined in part by government policy in 1960 (government
consumption as a percentage of GDP and adult secondary education rates). Such a data
set might be represented as in Table 1.2, which constitutes part of the data set used in
the study of cross-country growth rates by De Long and Summers (1991).
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Table 1.1

A Cross-Sectional Data Set on Wages and Other Individual Characteristics

obsno wage educ exper female married

1 3.10 11 2 1 0

2 3.24 12 22 1 1

3 3.00 11 2 0 0

4 6.00 8 44 0 1

5 5.30 12 7 0 1

� � � � � �

� � � � � �

� � � � � �

525 11.56 16 5 0 1

526 3.50 14 5 1 0
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The variable gpcrgdp represents average growth in real per capita GDP over the period
1960 to 1985. The fact that govcons60 (government consumption as a percentage of
GDP) and second60 (percent of adult population with a secondary education) corre-
spond to the year 1960, while gpcrgdp is the average growth over the period from 1960
to 1985, does not lead to any special problems in treating this information as a cross-
sectional data set. The order of the observations is listed alphabetically by country, but
there is nothing about this ordering that affects any subsequent analysis.

Time Series Data

A time series data set consists of observations on a variable or several variables over
time. Examples of time series data include stock prices, money supply, consumer price
index, gross domestic product, annual homicide rates, and automobile sales figures.
Because past events can influence future events and lags in behavior are prevalent in the
social sciences, time is an important dimension in a time series data set. Unlike the
arrangement of cross-sectional data, the chronological ordering of observations in a
time series conveys potentially important information.

A key feature of time series data that makes it more difficult to analyze than cross-
sectional data is the fact that economic observations can rarely, if ever, be assumed to
be independent across time. Most economic and other time series are related, often
strongly related, to their recent histories. For example, knowing something about the
gross domestic product from last quarter tells us quite a bit about the likely range of the
GDP during this quarter, since GDP tends to remain fairly stable from one quarter to
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Table 1.2

A Data Set on Economic Growth Rates and Country Characteristics

obsno country gpcrgdp govcons60 second60

1 Argentina 0.89 9 32

2 Austria 3.32 16 50

3 Belgium 2.56 13 69

4 Bolivia 1.24 18 12

� � � � �

� � � � �

� � � � �

61 Zimbabwe 2.30 17 6
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the next. While most econometric procedures can be used with both cross-sectional and
time series data, more needs to be done in specifying econometric models for time
series data before standard econometric methods can be justified. In addition, modifi-
cations and embellishments to standard econometric techniques have been developed to
account for and exploit the dependent nature of economic time series and to address
other issues, such as the fact that some economic variables tend to display clear trends
over time.

Another feature of time series data that can require special attention is the data fre-
quency at which the data are collected. In economics, the most common frequencies
are daily, weekly, monthly, quarterly, and annually. Stock prices are recorded at daily
intervals (excluding Saturday and Sunday). The money supply in the U.S. economy is
reported weekly. Many macroeconomic series are tabulated monthly, including infla-
tion and employment rates. Other macro series are recorded less frequently, such as
every three months (every quarter). Gross domestic product is an important example of
a quarterly series. Other time series, such as infant mortality rates for states in the
United States, are available only on an annual basis.

Many weekly, monthly, and quarterly economic time series display a strong 
seasonal pattern, which can be an important factor in a time series analysis. For ex-
ample, monthly data on housing starts differs across the months simply due to changing
weather conditions. We will learn how to deal with seasonal time series in Chapter 10.

Table 1.3 contains a time series data set obtained from an article by Castillo-
Freeman and Freeman (1992) on minimum wage effects in Puerto Rico. The earliest
year in the data set is the first observation, and the most recent year available is the last
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Table 1.3

Minimum Wage, Unemployment, and Related Data for Puerto Rico

obsno year avgmin avgcov unemp gnp

1 1950 0.20 20.1 15.4 878.7

2 1951 0.21 20.7 16.0 925.0

3 1952 0.23 22.6 14.8 1015.9

� � � � � �

� � � � � �

� � � � � �

37 1986 3.35 58.1 18.9 4281.6

38 1987 3.35 58.2 16.8 4496.7

d  7/14/99 4:34 PM  Page 9



observation. When econometric methods are used to analyze time series data, the data
should be stored in chronological order.

The variable avgmin refers to the average minimum wage for the year, avgcov is
the average coverage rate (the percentage of workers covered by the minimum wage
law), unemp is the unemployment rate, and gnp is the gross national product. We will
use these data later in a time series analysis of the effect of the minimum wage on
employment.

Pooled Cross Sections

Some data sets have both cross-sectional and time series features. For example, suppose
that two cross-sectional household surveys are taken in the United States, one in 1985
and one in 1990. In 1985, a random sample of households is surveyed for variables such
as income, savings, family size, and so on. In 1990, a new random sample of households
is taken using the same survey questions. In order to increase our sample size, we can
form a pooled cross section by combining the two years. Because random samples are
taken in each year, it would be a fluke if the same household appeared in the sample
during both years. (The size of the sample is usually very small compared with the num-
ber of households in the United States.) This important factor distinguishes a pooled
cross section from a panel data set.

Pooling cross sections from different years is often an effective way of analyzing
the effects of a new government policy. The idea is to collect data from the years before
and after a key policy change. As an example, consider the following data set on hous-
ing prices taken in 1993 and 1995, when there was a reduction in property taxes in
1994. Suppose we have data on 250 houses for 1993 and on 270 houses for 1995. One
way to store such a data set is given in Table 1.4.

Observations 1 through 250 correspond to the houses sold in 1993, and observations
251 through 520 correspond to the 270 houses sold in 1995. While the order in which
we store the data turns out not to be crucial, keeping track of the year for each obser-
vation is usually very important. This is why we enter year as a separate variable.

A pooled cross section is analyzed much like a standard cross section, except that
we often need to account for secular differences in the variables across the time. In fact,
in addition to increasing the sample size, the point of a pooled cross-sectional analysis
is often to see how a key relationship has changed over time.

Panel or Longitudinal Data

A panel data (or longitudinal data) set consists of a time series for each cross-
sectional member in the data set. As an example, suppose we have wage, education, and
employment history for a set of individuals followed over a ten-year period. Or we
might collect information, such as investment and financial data, about the same set of
firms over a five-year time period. Panel data can also be collected on geographical
units. For example, we can collect data for the same set of counties in the United States
on immigration flows, tax rates, wage rates, government expenditures, etc., for the years
1980, 1985, and 1990.

The key feature of panel data that distinguishes it from a pooled cross section is the
fact that the same cross-sectional units (individuals, firms, or counties in the above
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examples) are followed over a given time period. The data in Table 1.4 are not consid-
ered a panel data set because the houses sold are likely to be different in 1993 and 1995;
if there are any duplicates, the number is likely to be so small as to be unimportant. In
contrast, Table 1.5 contains a two-year panel data set on crime and related statistics for
150 cities in the United States.

There are several interesting features in Table 1.5. First, each city has been given a
number from 1 through 150. Which city we decide to call city 1, city 2, and so on, is
irrelevant. As with a pure cross section, the ordering in the cross section of a panel data
set does not matter. We could use the city name in place of a number, but it is often use-
ful to have both.
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Table 1.4

Pooled Cross Sections: Two Years of Housing Prices

obsno year hprice proptax sqrft bdrms bthrms

1 1993 85500 42 1600 3 2.0

2 1993 67300 36 1440 3 2.5

3 1993 134000 38 2000 4 2.5

� � � � � � �

� � � � � � �

� � � � � � �

250 1993 243600 41 2600 4 3.0

251 1995 65000 16 1250 2 1.0

252 1995 182400 20 2200 4 2.0

253 1995 97500 15 1540 3 2.0

� � � � � � �

� � � � � � �

� � � � � � �

520 1995 57200 16 1100 2 1.5
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A second useful point is that the two years of data for city 1 fill the first two rows
or observations. Observations 3 and 4 correspond to city 2, and so on. Since each of the
150 cities has two rows of data, any econometrics package will view this as 300 obser-
vations. This data set can be treated as two pooled cross sections, where the same cities
happen to show up in the same year. But, as we will see in Chapters 13 and 14, we can
also use the panel structure to respond to questions that cannot be answered by simply
viewing this as a pooled cross section.

In organizing the observations in Table 1.5, we place the two years of data for each
city adjacent to one another, with the first year coming before the second in all cases.
For just about every practical purpose, this is the preferred way for ordering panel data
sets. Contrast this organization with the way the pooled cross sections are stored in
Table 1.4. In short, the reason for ordering panel data as in Table 1.5 is that we will need
to perform data transformations for each city across the two years.

Because panel data require replication of the same units over time, panel data sets,
especially those on individuals, households, and firms, are more difficult to obtain than
pooled cross sections. Not surprisingly, observing the same units over time leads to sev-
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Table 1.5

A Two-Year Panel Data Set on City Crime Statistics

obsno city year murders population unem police

1 1 1986 5 350000 8.7 440

2 1 1990 8 359200 7.2 471

3 2 1986 2 64300 5.4 75

4 2 1990 1 65100 5.5 75

� � � � � � �

� � � � � � �

� � � � � � �

297 149 1986 10 260700 9.6 286

298 149 1990 6 245000 9.8 334

299 150 1986 25 543000 4.3 520

300 150 1990 32 546200 5.2 493
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eral advantages over cross-sectional data or even pooled cross-sectional data. The ben-
efit that we will focus on in this text is that having multiple observations on the same
units allows us to control certain unobserved characteristics of individuals, firms, and
so on. As we will see, the use of more than one observation can facilitate causal infer-
ence in situations where inferring causality would be very difficult if only a single cross
section were available. A second advantage of panel data is that it often allows us to
study the importance of lags in behavior or the result of decision making. This infor-
mation can be significant since many economic policies can be expected to have an
impact only after some time has passed.

Most books at the undergraduate level do not contain a discussion of econometric
methods for panel data. However, economists now recognize that some questions are
difficult, if not impossible, to answer satisfactorily without panel data. As you will see,
we can make considerable progress with simple panel data analysis, a method which is
not much more difficult than dealing with a standard cross-sectional data set.

A Comment on Data Structures

Part 1 of this text is concerned with the analysis of cross-sectional data, as this poses
the fewest conceptual and technical difficulties. At the same time, it illustrates most of
the key themes of econometric analysis. We will use the methods and insights from
cross-sectional analysis in the remainder of the text.

While the econometric analysis of time series uses many of the same tools as cross-
sectional analysis, it is more complicated due to the trending, highly persistent nature
of many economic time series. Examples that have been traditionally used to illustrate
the manner in which econometric methods can be applied to time series data are now
widely believed to be flawed. It makes little sense to use such examples initially, since
this practice will only reinforce poor econometric practice. Therefore, we will postpone
the treatment of time series econometrics until Part 2, when the important issues con-
cerning trends, persistence, dynamics, and seasonality will be introduced.

In Part 3, we treat pooled cross sections and panel data explicitly. The analysis of
independently pooled cross sections and simple panel data analysis are fairly straight-
forward extensions of pure cross-sectional analysis. Nevertheless, we will wait until
Chapter 13 to deal with these topics.

1.4 CAUSALITY AND THE NOTION OF CETERIS PARIBUS
IN ECONOMETRIC ANALYSIS

In most tests of economic theory, and certainly for evaluating public policy, the econo-
mist’s goal is to infer that one variable has a causal effect on another variable (such 
as crime rate or worker productivity). Simply finding an association between two or
more variables might be suggestive, but unless causality can be established, it is rarely
compelling.

The notion of ceteris paribus—which means “other (relevant) factors being
equal”—plays an important role in causal analysis. This idea has been implicit in some
of our earlier discussion, particularly Examples 1.1 and 1.2, but thus far we have not
explicitly mentioned it.

Chapter 1 The Nature of Econometrics and Economic Data
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You probably remember from introductory economics that most economic ques-
tions are ceteris paribus by nature. For example, in analyzing consumer demand, we
are interested in knowing the effect of changing the price of a good on its quantity de-
manded, while holding all other factors—such as income, prices of other goods, and
individual tastes—fixed. If other factors are not held fixed, then we cannot know the
causal effect of a price change on quantity demanded.

Holding other factors fixed is critical for policy analysis as well. In the job training
example (Example 1.2), we might be interested in the effect of another week of job
training on wages, with all other components being equal (in particular, education and
experience). If we succeed in holding all other relevant factors fixed and then find a link
between job training and wages, we can conclude that job training has a causal effect
on worker productivity. While this may seem pretty simple, even at this early stage it
should be clear that, except in very special cases, it will not be possible to literally hold
all else equal. The key question in most empirical studies is: Have enough other factors
been held fixed to make a case for causality? Rarely is an econometric study evaluated
without raising this issue.

In most serious applications, the number of factors that can affect the variable of
interest—such as criminal activity or wages—is immense, and the isolation of any 
particular variable may seem like a hopeless effort. However, we will eventually see
that, when carefully applied, econometric methods can simulate a ceteris paribus
experiment.

At this point, we cannot yet explain how econometric methods can be used to esti-
mate ceteris paribus effects, so we will consider some problems that can arise in trying
to infer causality in economics. We do not use any equations in this discussion. For each
example, the problem of inferring causality disappears if an appropriate experiment can
be carried out. Thus, it is useful to describe how such an experiment might be struc-
tured, and to observe that, in most cases, obtaining experimental data is impractical. It
is also helpful to think about why the available data fails to have the important features
of an experimental data set.

We rely for now on your intuitive understanding of terms such as random, inde-
pendence, and correlation, all of which should be familiar from an introductory proba-
bility and statistics course. (These concepts are reviewed in Appendix B.) We begin
with an example that illustrates some of these important issues.

E X A M P L E  1 . 3
( E f f e c t s  o f  F e r t i l i z e r  o n  C r o p  Y i e l d )

Some early econometric studies [for example, Griliches (1957)] considered the effects of
new fertilizers on crop yields. Suppose the crop under consideration is soybeans. Since fer-
tilizer amount is only one factor affecting yields—some others include rainfall, quality of
land, and presence of parasites—this issue must be posed as a ceteris paribus question.
One way to determine the causal effect of fertilizer amount on soybean yield is to conduct
an experiment, which might include the following steps. Choose several one-acre plots of
land. Apply different amounts of fertilizer to each plot and subsequently measure the yields;
this gives us a cross-sectional data set. Then, use statistical methods (to be introduced in
Chapter 2) to measure the association between yields and fertilizer amounts.
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As described earlier, this may not seem like a very good experiment, because we have
said nothing about choosing plots of land that are identical in all respects except for the
amount of fertilizer. In fact, choosing plots of land with this feature is not feasible: some of
the factors, such as land quality, cannot even be fully observed. How do we know the
results of this experiment can be used to measure the ceteris paribus effect of fertilizer? The
answer depends on the specifics of how fertilizer amounts are chosen. If the levels of fer-
tilizer are assigned to plots independently of other plot features that affect yield—that is,
other characteristics of plots are completely ignored when deciding on fertilizer amounts—
then we are in business. We will justify this statement in Chapter 2.

The next example is more representative of the difficulties that arise when inferring
causality in applied economics.

E X A M P L E  1 . 4
( M e a s u r i n g  t h e  R e t u r n  t o  E d u c a t i o n )

Labor economists and policy makers have long been interested in the “return to educa-
tion.” Somewhat informally, the question is posed as follows: If a person is chosen from the
population and given another year of education, by how much will his or her wage
increase? As with the previous examples, this is a ceteris paribus question, which implies
that all other factors are held fixed while another year of education is given to the person.

We can imagine a social planner designing an experiment to get at this issue, much as
the agricultural researcher can design an experiment to estimate fertilizer effects. One
approach is to emulate the fertilizer experiment in Example 1.3: Choose a group of people,
randomly give each person an amount of education (some people have an eighth grade
education, some are given a high school education, etc.), and then measure their wages
(assuming that each then works in a job). The people here are like the plots in the ferti-
lizer example, where education plays the role of fertilizer and wage rate plays the role of
soybean yield. As with Example 1.3, if levels of education are assigned independently of
other characteristics that affect productivity (such as experience and innate ability), then an
analysis that ignores these other factors will yield useful results. Again, it will take some
effort in Chapter 2 to justify this claim; for now we state it without support.

Unlike the fertilizer-yield example, the experiment described in Example 1.4 is
infeasible. The moral issues, not to mention the economic costs, associated with ran-
domly determining education levels for a group of individuals are obvious. As a logis-
tical matter, we could not give someone only an eighth grade education if he or she
already has a college degree.

Even though experimental data cannot be obtained for measuring the return to edu-
cation, we can certainly collect nonexperimental data on education levels and wages for
a large group by sampling randomly from the population of working people. Such data
are available from a variety of surveys used in labor economics, but these data sets have
a feature that makes it difficult to estimate the ceteris paribus return to education.
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People choose their own levels of education, and therefore education levels are proba-
bly not determined independently of all other factors affecting wage. This problem is a
feature shared by most nonexperimental data sets.

One factor that affects wage is experience in the work force. Since pursuing more
education generally requires postponing entering the work force, those with more edu-
cation usually have less experience. Thus, in a nonexperimental data set on wages and
education, education is likely to be negatively associated with a key variable that also
affects wage. It is also believed that people with more innate ability often choose 
higher levels of education. Since higher ability leads to higher wages, we again have a
correlation between education and a critical factor that affects wage.

The omitted factors of experience and ability in the wage example have analogs in
the the fertilizer example. Experience is generally easy to measure and therefore is sim-
ilar to a variable such as rainfall. Ability, on the other hand, is nebulous and difficult to
quantify; it is similar to land quality in the fertilizer example. As we will see through-
out this text, accounting for other observed factors, such as experience, when estimat-
ing the ceteris paribus effect of another variable, such as education, is relatively
straightforward. We will also find that accounting for inherently unobservable factors,
such as ability, is much more problematical. It is fair to say that many of the advances
in econometric methods have tried to deal with unobserved factors in econometric
models.

One final parallel can be drawn between Examples 1.3 and 1.4. Suppose that in the
fertilizer example, the fertilizer amounts were not entirely determined at random.
Instead, the assistant who chose the fertilizer levels thought it would be better to put
more fertilizer on the higher quality plots of land. (Agricultural researchers should have
a rough idea about which plots of land are better quality, even though they may not be
able to fully quantify the differences.) This situation is completely analogous to the
level of schooling being related to unobserved ability in Example 1.4. Because better
land leads to higher yields, and more fertilizer was used on the better plots, any
observed relationship between yield and fertilizer might be spurious.

E X A M P L E  1 . 5
( T h e  E f f e c t  o f  L a w  E n f o r c e m e n t  o n  C i t y  C r i m e  L e v e l s )

The issue of how best to prevent crime has, and will probably continue to be, with us for
some time. One especially important question in this regard is: Does the presence of more
police officers on the street deter crime?

The ceteris paribus question is easy to state: If a city is randomly chosen and given 10
additional police officers, by how much would its crime rates fall? Another way to state the
question is: If two cities are the same in all respects, except that city A has 10 more police
officers than city B, by how much would the two cities’ crime rates differ?

It would be virtually impossible to find pairs of communities identical in all respects
except for the size of their police force. Fortunately, econometric analysis does not require
this. What we do need to know is whether the data we can collect on community crime
levels and the size of the police force can be viewed as experimental. We can certainly
imagine a true experiment involving a large collection of cities where we dictate how many
police officers each city will use for the upcoming year.
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While policies can be used to affect the size of police forces, we clearly cannot tell each
city how many police officers it can hire. If, as is likely, a city’s decision on how many police
officers to hire is correlated with other city factors that affect crime, then the data must be
viewed as nonexperimental. In fact, one way to view this problem is to see that a city’s
choice of police force size and the amount of crime are simultaneously determined. We will
explicitly address such problems in Chapter 16.

The first three examples we have discussed have dealt with cross-sectional data at
various levels of aggregation (for example, at the individual or city levels). The same
hurdles arise when inferring causality in time series problems.

E X A M P L E  1 . 6
( T h e  E f f e c t  o f  t h e  M i n i m u m  W a g e  o n  U n e m p l o y m e n t )

An important, and perhaps contentious, policy issue concerns the effect of the minimum
wage on unemployment rates for various groups of workers. While this problem can be
studied in a variety of data settings (cross-sectional, time series, or panel data), time series
data are often used to look at aggregate effects. An example of a time series data set on
unemployment rates and minimum wages was given in Table 1.3.

Standard supply and demand analysis implies that, as the minimum wage is increased
above the market clearing wage, we slide up the demand curve for labor and total employ-
ment decreases. (Labor supply exceeds labor demand.) To quantify this effect, we can study
the relationship between employment and the minimum wage over time. In addition to
some special difficulties that can arise in dealing with time series data, there are possible
problems with inferring causality. The minimum wage in the United States is not deter-
mined in a vacuum. Various economic and political forces impinge on the final minimum
wage for any given year. (The minimum wage, once determined, is usually in place for sev-
eral years, unless it is indexed for inflation.) Thus, it is probable that the amount of the min-
imum wage is related to other factors that have an effect on employment levels.

We can imagine the U.S. government conducting an experiment to determine the
employment effects of the minimum wage (as opposed to worrying about the welfare of
low wage workers). The minimum wage could be randomly set by the government each
year, and then the employment outcomes could be tabulated. The resulting experimental
time series data could then be analyzed using fairly simple econometric methods. But this
scenario hardly describes how minimum wages are set.

If we can control enough other factors relating to employment, then we can still hope
to estimate the ceteris paribus effect of the minimum wage on employment. In this sense,
the problem is very similar to the previous cross-sectional examples.

Even when economic theories are not most naturally described in terms of causali-
ty, they often have predictions that can be tested using econometric methods. The fol-
lowing is an example of this approach.
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E X A M P L E  1 . 7
( T h e  E x p e c t a t i o n s  H y p o t h e s i s )

The expectations hypothesis from financial economics states that, given all information
available to investors at the time of investing, the expected return on any two investments
is the same. For example, consider two possible investments with a three-month investment
horizon, purchased at the same time: (1) Buy a three-month T-bill with a face value of
$10,000, for a price below $10,000; in three months, you receive $10,000. (2) Buy a six-
month T-bill (at a price below $10,000) and, in three months, sell it as a three-month T-bill.
Each investment requires roughly the same amount of initial capital, but there is an impor-
tant difference. For the first investment, you know exactly what the return is at the time of
purchase because you know the initial price of the three-month T-bill, along with its face
value. This is not true for the second investment: while you know the price of a six-month
T-bill when you purchase it, you do not know the price you can sell it for in three months.
Therefore, there is uncertainty in this investment for someone who has a three-month
investment horizon.

The actual returns on these two investments will usually be different. According to the
expectations hypothesis, the expected return from the second investment, given all infor-
mation at the time of investment, should equal the return from purchasing a three-month
T-bill. This theory turns out to be fairly easy to test, as we will see in Chapter 11.

SUMMARY

In this introductory chapter, we have discussed the purpose and scope of economet-
ric analysis. Econometrics is used in all applied economic fields to test economic the-
ories, inform government and private policy makers, and to predict economic time
series. Sometimes an econometric model is derived from a formal economic model,
but in other cases econometric models are based on informal economic reasoning and
intuition. The goal of any econometric analysis is to estimate the parameters in the
model and to test hypotheses about these parameters; the values and signs of the
parameters determine the validity of an economic theory and the effects of certain
policies.

Cross-sectional, time series, pooled cross-sectional, and panel data are the most
common types of data structures that are used in applied econometrics. Data sets
involving a time dimension, such as time series and panel data, require special treat-
ment because of the correlation across time of most economic time series. Other issues,
such as trends and seasonality, arise in the analysis of time series data but not cross-
sectional data.

In Section 1.4, we discussed the notions of ceteris paribus and causal inference. In
most cases, hypotheses in the social sciences are ceteris paribus in nature: all other rel-
evant factors must be fixed when studying the relationship between two variables.
Because of the nonexperimental nature of most data collected in the social sciences,
uncovering causal relationships is very challenging.
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KEY TERMS

Causal Effect Experimental Data
Ceteris Paribus Nonexperimental Data
Cross-Sectional Data Set Observational Data
Data Frequency Panel Data
Econometric Model Pooled Cross Section
Economic Model Random Sampling
Empirical Analysis Time Series Data
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The simple regression model can be used to study the relationship between two
variables. For reasons we will see, the simple regression model has limita-
tions as a general tool for empirical analysis. Nevertheless, it is sometimes

appropriate as an empirical tool. Learning how to interpret the simple regression
model is good practice for studying multiple regression, which we’ll do in subse-
quent chapters.

2.1 DEFINITION OF THE SIMPLE REGRESSION MODEL

Much of applied econometric analysis begins with the following premise: y and x are
two variables, representating some population, and we are interested in “explaining y in
terms of x,” or in “studying how y varies with changes in x.” We discussed some exam-
ples in Chapter 1, including: y is soybean crop yield and x is amount of fertilizer; y is
hourly wage and x is years of education; y is a community crime rate and x is number
of police officers.

In writing down a model that will “explain y in terms of x,” we must confront three
issues. First, since there is never an exact relationship between two variables, how do
we allow for other factors to affect y? Second, what is the functional relationship
between y and x? And third, how can we be sure we are capturing a ceteris paribus rela-
tionship between y and x (if that is a desired goal)?

We can resolve these ambiguities by writing down an equation relating y to x. A
simple equation is

y � �0 � �1x � u. (2.1)

Equation (2.1), which is assumed to hold in the population of interest, defines the sim-
ple linear regression model. It is also called the two-variable linear regression model
or bivariate linear regression model because it relates the two variables x and y. We now
discuss the meaning of each of the quantities in (2.1). (Incidentally, the term “regres-
sion” has origins that are not especially important for most modern econometric appli-
cations, so we will not explain it here. See Stigler [1986] for an engaging history of
regression analysis.)
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When related by (2.1), the variables y and x have several different names used
interchangeably, as follows. y is called the dependent variable, the explained vari-
able, the response variable, the predicted variable, or the regressand. x is called
the independent variable, the explanatory variable, the control variable, the pre-
dictor variable, or the regressor. (The term covariate is also used for x.) The terms
“dependent variable” and “independent variable” are frequently used in economet-
rics. But be aware that the label “independent” here does not refer to the statistical
notion of independence between random variables (see Appendix B).

The terms “explained” and “explanatory” variables are probably the most descrip-
tive. “Response” and “control” are used mostly in the experimental sciences, where the
variable x is under the experimenter’s control. We will not use the terms “predicted vari-
able” and “predictor,” although you sometimes see these. Our terminology for simple
regression is summarized in Table 2.1.

Table 2.1

Terminology for Simple Regression

y x

Dependent Variable Independent Variable

Explained Variable Explanatory Variable

Response Variable Control Variable

Predicted Variable Predictor Variable

Regressand Regressor

The variable u, called the error term or disturbance in the relationship, represents
factors other than x that affect y. A simple regression analysis effectively treats all fac-
tors affecting y other than x as being unobserved. You can usefully think of u as stand-
ing for “unobserved.”

Equation (2.1) also addresses the issue of the functional relationship between y and
x. If the other factors in u are held fixed, so that the change in u is zero, �u � 0, then x
has a linear effect on y:

�y � �1�x if �u � 0. (2.2)

Thus, the change in y is simply �1 multiplied by the change in x. This means that �1 is
the slope parameter in the relationship between y and x holding the other factors in u
fixed; it is of primary interest in applied economics. The intercept parameter �0 also
has its uses, although it is rarely central to an analysis.
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E X A M P L E  2 . 1
( S o y b e a n  Y i e l d  a n d  F e r t i l i z e r )

Suppose that soybean yield is determined by the model

yield � �0 � �1fertilizer � u, (2.3)

so that y � yield and x � fertilizer. The agricultural researcher is interested in the effect of
fertilizer on yield, holding other factors fixed. This effect is given by �1. The error term u
contains factors such as land quality, rainfall, and so on. The coefficient �1 measures the
effect of fertilizer on yield, holding other factors fixed: �yield � �1�fertilizer.

E X A M P L E  2 . 2
( A  S i m p l e  W a g e  E q u a t i o n )

A model relating a person’s wage to observed education and other unobserved factors is

wage � �0 � �1educ � u. (2.4)

If wage is measured in dollars per hour and educ is years of education, then �1 measures
the change in hourly wage given another year of education, holding all other factors fixed.
Some of those factors include labor force experience, innate ability, tenure with current
employer, work ethics, and innumerable other things.

The linearity of (2.1) implies that a one-unit change in x has the same effect on y,
regardless of the initial value of x. This is unrealistic for many economic applications.
For example, in the wage-education example, we might want to allow for increasing
returns: the next year of education has a larger effect on wages than did the previous
year. We will see how to allow for such possibilities in Section 2.4.

The most difficult issue to address is whether model (2.1) really allows us to draw
ceteris paribus conclusions about how x affects y. We just saw in equation (2.2) that �1

does measure the effect of x on y, holding all other factors (in u) fixed. Is this the end
of the causality issue? Unfortunately, no. How can we hope to learn in general about
the ceteris paribus effect of x on y, holding other factors fixed, when we are ignoring all
those other factors?

As we will see in Section 2.5, we are only able to get reliable estimators of �0 and
�1 from a random sample of data when we make an assumption restricting how the
unobservable u is related to the explanatory variable x. Without such a restriction, we
will not be able to estimate the ceteris paribus effect, �1. Because u and x are random
variables, we need a concept grounded in probability.

Before we state the key assumption about how x and u are related, there is one assump-
tion about u that we can always make. As long as the intercept �0 is included in the equa-
tion, nothing is lost by assuming that the average value of u in the population is zero.

Part 1 Regression Analysis with Cross-Sectional Data
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Mathematically,

E(u) � 0. (2.5)

Importantly, assume (2.5) says nothing about the relationship between u and x but sim-
ply makes a statement about the distribution of the unobservables in the population.
Using the previous examples for illustration, we can see that assumption (2.5) is not very
restrictive. In Example 2.1, we lose nothing by normalizing the unobserved factors affect-
ing soybean yield, such as land quality, to have an average of zero in the population of
all cultivated plots. The same is true of the unobserved factors in Example 2.2. Without
loss of generality, we can assume that things such as average ability are zero in the pop-
ulation of all working people. If you are not convinced, you can work through Problem
2.2 to see that we can always redefine the intercept in equation (2.1) to make (2.5) true.

We now turn to the crucial assumption regarding how u and x are related. A natural
measure of the association between two random variables is the correlation coefficient.
(See Appendix B for definition and properties.) If u and x are uncorrelated, then, as ran-
dom variables, they are not linearly related. Assuming that u and x are uncorrelated goes
a long way toward defining the sense in which u and x should be unrelated in equation
(2.1). But it does not go far enough, because correlation measures only linear depen-
dence between u and x. Correlation has a somewhat counterintuitive feature: it is possi-
ble for u to be uncorrelated with x while being correlated with functions of x, such as
x2. (See Section B.4 for further discussion.) This possibility is not acceptable for most
regression purposes, as it causes problems for interpretating the model and for deriving
statistical properties. A better assumption involves the expected value of u given x.

Because u and x are random variables, we can define the conditional distribution of
u given any value of x. In particular, for any x, we can obtain the expected (or average)
value of u for that slice of the population described by the value of x. The crucial
assumption is that the average value of u does not depend on the value of x. We can
write this as

E(u�x) � E(u) � 0, (2.6)

where the second equality follows from (2.5). The first equality in equation (2.6) is the
new assumption, called the zero conditional mean assumption. It says that, for any
given value of x, the average of the unobservables is the same and therefore must equal
the average value of u in the entire population.

Let us see what (2.6) entails in the wage example. To simplify the discussion,
assume that u is the same as innate ability. Then (2.6) requires that the average level of
ability is the same regardless of years of education. For example, if E(abil�8) denotes
the average ability for the group of all people with eight years of education, and
E(abil�16) denotes the average ability among people in the population with 16 years of
education, then (2.6) implies that these must be the same. In fact, the average ability
level must be the same for all education levels. If, for example, we think that average
ability increases with years of education, then (2.6) is false. (This would happen if, on
average, people with more ability choose to become more educated.) As we cannot
observe innate ability, we have no way of knowing whether or not average ability is the

Chapter 2 The Simple Regression Model

25

d  7/14/99 4:30 PM  Page 25



same for all education levels. But this is an issue that we must address before applying
simple regression analysis.

In the fertilizer example, if fertilizer amounts are chosen independently of other fea-
tures of the plots, then (2.6) will hold: the
average land quality will not depend on the
amount of fertilizer. However, if more fer-
tilizer is put on the higher quality plots of
land, then the expected value of u changes
with the level of fertilizer, and (2.6) fails.

Assumption (2.6) gives �1 another
interpretation that is often useful. Taking
the expected value of (2.1) conditional on
x and using E(u�x) � 0 gives

E(y�x) � �0 � �1x (2.8)

Equation (2.8) shows that the population regression function (PRF), E(y�x), is a lin-
ear function of x. The linearity means that a one-unit increase in x changes the expect-
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Suppose that a score on a final exam, score, depends on classes
attended (attend ) and unobserved factors that affect exam perfor-
mance (such as student ability):

score � �0 � �1attend � u (2.7)

When would you expect this model to satisfy (2.6)?

F i g u r e  2 . 1

E(y�x) as a linear function of x.

y

x1

E(y�x) � �0 � �1x

x2 x3
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ed value of y by the amount �1. For any given value of x, the distribution of y is cen-
tered about E(y�x), as illustrated in Figure 2.1.

When (2.6) is true, it is useful to break y into two components. The piece �0 � �1x
is sometimes called the systematic part of y—that is, the part of y explained by x—and
u is called the unsystematic part, or the part of y not explained by x. We will use
assumption (2.6) in the next section for motivating estimates of �0 and �1. This assump-
tion is also crucial for the statistical analysis in Section 2.5.

2.2 DERIVING THE ORDINARY LEAST SQUARES
ESTIMATES

Now that we have discussed the basic ingredients of the simple regression model, we
will address the important issue of how to estimate the parameters �0 and �1 in equa-
tion (2.1). To do this, we need a sample from the population. Let {(xi,yi): i�1,…,n}
denote a random sample of size n from the population. Since these data come from
(2.1), we can write

yi � �0 � �1xi � ui (2.9)

for each i. Here, ui is the error term for observation i since it contains all factors affect-
ing yi other than xi.

As an example, xi might be the annual income and yi the annual savings for family
i during a particular year. If we have collected data on 15 families, then n � 15. A scat-
ter plot of such a data set is given in Figure 2.2, along with the (necessarily fictitious)
population regression function.

We must decide how to use these data to obtain estimates of the intercept and slope
in the population regression of savings on income.

There are several ways to motivate the following estimation procedure. We will use
(2.5) and an important implication of assumption (2.6): in the population, u has a zero
mean and is uncorrelated with x. Therefore, we see that u has zero expected value and
that the covariance between x and u is zero:

E(u) � 0 (2.10)

Cov(x,u) � E(xu) � 0, (2.11)

where the first equality in (2.11) follows from (2.10). (See Section B.4 for the defini-
tion and properties of covariance.) In terms of the observable variables x and y and the
unknown parameters �0 and �1, equations (2.10) and (2.11) can be written as

E(y � �0 � �1x) � 0 (2.12)

and

E[x(y � �0 � �1x)] � 0, (2.13)

respectively. Equations (2.12) and (2.13) imply two restrictions on the joint probability
distribution of (x,y) in the population. Since there are two unknown parameters to esti-
mate, we might hope that equations (2.12) and (2.13) can be used to obtain good esti-
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mators of �0 and �1. In fact, they can be. Given a sample of data, we choose estimates
�̂0 and �̂1 to solve the sample counterparts of (2.12) and (2.13):

n�1 �
n

i�1
(yi � �̂0 � �̂1xi) � 0. (2.14)

n�1 �
n

i�1
xi(yi � �̂0 � �̂1xi) � 0. (2.15)

This is an example of the method of moments approach to estimation. (See Section C.4
for a discussion of different estimation approaches.) These equations can be solved for
�̂0 and �̂1.

Using the basic properties of the summation operator from Appendix A, equation
(2.14) can be rewritten as

ȳ � �̂0 � �̂1x̄, (2.16)

where ȳ � n�1 �
n

i�1
yi is the sample average of the yi and likewise for x̄. This equation allows

us to write �̂0 in terms of �̂1, ȳ, and x̄:
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Scatterplot of savings and income for 15 families, and the population regression
E(savings�income) � �0 � �1income.

E(savings�income) � �0 � �1income

savings

0
income

0
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�̂0 � ȳ � �̂1x̄. (2.17)

Therefore, once we have the slope estimate �̂1, it is straightforward to obtain the inter-
cept estimate �̂0, given ȳ and x̄.

Dropping the n�1 in (2.15) (since it does not affect the solution) and plugging (2.17)
into (2.15) yields

�
n

i�1
xi(yi � (ȳ � �̂1x̄) � �̂1xi) � 0

which, upon rearrangement, gives

�
n

i�1
xi(yi � ȳ) � �̂1 �

n

i�1
xi(xi � x̄).

From basic properties of the summation operator [see (A.7) and (A.8)],

�
n

i�1
xi(xi � x̄) � �

n

i�1
(xi � x̄)2 and �

n

i�1
xi(yi � ȳ) � �

n

i�1
(xi � x̄)(yi � ȳ).

Therefore, provided that

�
n

i�1
(xi � x̄)2 � 0, (2.18)

the estimated slope is

�̂1 � . (2.19)

Equation (2.19) is simply the sample covariance between x and y divided by the sam-
ple variance of x. (See Appendix C. Dividing both the numerator and the denominator
by n � 1 changes nothing.) This makes sense because �1 equals the population covari-
ance divided by the variance of x when E(u) � 0 and Cov(x,u) � 0. An immediate
implication is that if x and y are positively correlated in the sample, then �̂1 is positive;
if x and y are negatively correlated, then �̂1 is negative.

Although the method for obtaining (2.17) and (2.19) is motivated by (2.6), the only
assumption needed to compute the estimates for a particular sample is (2.18). This is
hardly an assumption at all: (2.18) is true provided the xi in the sample are not all equal
to the same value. If (2.18) fails, then we have either been unlucky in obtaining our
sample from the population or we have not specified an interesting problem (x does not
vary in the population.). For example, if y � wage and x � educ, then (2.18) fails only
if everyone in the sample has the same amount of education. (For example, if everyone
is a high school graduate. See Figure 2.3.) If just one person has a different amount of
education, then (2.18) holds, and the OLS estimates can be computed.

�
n

i�1
(xi � x̄) (yi � ȳ)

�
n

i�1
(xi � x̄)2
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The estimates given in (2.17) and (2.19) are called the ordinary least squares
(OLS) estimates of �0 and �1. To justify this name, for any �̂0 and �̂1, define a fitted
value for y when x � xi such as

ŷi � �̂0 � �̂1xi, (2.20)

for the given intercept and slope. This is the value we predict for y when x � xi. There
is a fitted value for each observation in the sample. The residual for observation i is the
difference between the actual yi and its fitted value:

ûi � yi � ŷi � yi � �̂0 � �̂1xi. (2.21)

Again, there are n such residuals. (These are not the same as the errors in (2.9), a point
we return to in Section 2.5.) The fitted values and residuals are indicated in Figure 2.4.

Now, suppose we choose �̂0 and �̂1 to make the sum of squared residuals,

�
n

i�1
ûi

2 � �
n

i�1
(yi � �̂0 � �̂1xi)

2, (2.22)
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A scatterplot of wage against education when educi � 12 for all i.
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as small as possible. The appendix to this chapter shows that the conditions necessary
for (�̂0,�̂1) to minimize (2.22) are given exactly by equations (2.14) and (2.15), without
n�1. Equations (2.14) and (2.15) are often called the first order conditions for the OLS
estimates, a term that comes from optimization using calculus (see Appendix A). From
our previous calculations, we know that the solutions to the OLS first order conditions
are given by (2.17) and (2.19). The name “ordinary least squares” comes from the fact
that these estimates minimize the sum of squared residuals.

Once we have determined the OLS intercept and slope estimates, we form the OLS
regression line:

ŷ � �̂0 � �̂1x, (2.23)

where it is understood that �̂0 and �̂1 have been obtained using equations (2.17) and
(2.19). The notation ŷ, read as “y hat,” emphasizes that the predicted values from equa-
tion (2.23) are estimates. The intercept, �̂0, is the predicted value of y when x � 0,
although in some cases it will not make sense to set x � 0. In those situations, �̂0 is not,
in itself, very interesting. When using (2.23) to compute predicted values of y for vari-
ous values of x, we must account for the intercept in the calculations. Equation (2.23)
is also called the sample regression function (SRF) because it is the estimated version
of the population regression function E(y�x) � �0 � �1x. It is important to remember
that the PRF is something fixed, but unknown, in the population. Since the SRF is
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Fitted values and residuals.

y � �0 � �1x

y

ˆ ˆˆ

x1 xi x

yi

yi � Fitted valuey1

ûi � residual

ˆ

d  7/14/99 4:30 PM  Page 31



obtained for a given sample of data, a new sample will generate a different slope and
intercept in equation (2.23).

In most cases the slope estimate, which we can write as

�̂1 � �ŷ/�x, (2.24)

is of primary interest. It tells us the amount by which ŷ changes when x increases by
one unit. Equivalently,

�ŷ � �̂1�x, (2.25)

so that given any change in x (whether positive or negative), we can compute the pre-
dicted change in y.

We now present several examples of simple regression obtained by using real data.
In other words, we find the intercept and slope estimates with equations (2.17) and
(2.19). Since these examples involve many observations, the calculations were done
using an econometric software package. At this point, you should be careful not to read
too much into these regressions; they are not necessarily uncovering a causal relation-
ship. We have said nothing so far about the statistical properties of OLS. In Section 2.5,
we consider statistical properties after we explicitly impose assumptions on the popu-
lation model equation (2.1).

E X A M P L E  2 . 3
( C E O  S a l a r y  a n d  R e t u r n  o n  E q u i t y )

For the population of chief executive officers, let y be annual salary (salary) in thousands of
dollars. Thus, y � 856.3 indicates an annual salary of $856,300, and y � 1452.6 indicates
a salary of $1,452,600. Let x be the average return equity (roe) for the CEO’s firm for the
previous three years. (Return on equity is defined in terms of net income as a percentage
of common equity.) For example, if roe � 10, then average return on equity is 10 percent.

To study the relationship between this measure of firm performance and CEO com-
pensation, we postulate the simple model

salary � �0 � �1roe � u.

The slope parameter �1 measures the change in annual salary, in thousands of dollars, when
return on equity increases by one percentage point. Because a higher roe is good for the
company, we think �1 � 0.

The data set CEOSAL1.RAW contains information on 209 CEOs for the year 1990; these
data were obtained from Business Week (5/6/91). In this sample, the average annual salary
is $1,281,120, with the smallest and largest being $223,000 and $14,822,000, respective-
ly. The average return on equity for the years 1988, 1989, and 1990 is 17.18 percent, with
the smallest and largest values being 0.5 and 56.3 percent, respectively.

Using the data in CEOSAL1.RAW, the OLS regression line relating salary to roe is

sal̂ary � 963.191 � 18.501 roe, (2.26)
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where the intercept and slope estimates have been rounded to three decimal places; we
use “salary hat” to indicate that this is an estimated equation. How do we interpret the
equation? First, if the return on equity is zero, roe � 0, then the predicted salary is the inter-
cept, 963.191, which equals $963,191 since salary is measured in thousands. Next, we can
write the predicted change in salary as a function of the change in roe: �sal̂ary � 18.501
(�roe). This means that if the return on equity increases by one percentage point, �roe �
1, then salary is predicted to change by about 18.5, or $18,500. Because (2.26) is a linear
equation, this is the estimated change regardless of the initial salary.

We can easily use (2.26) to compare predicted salaries at different values of roe.
Suppose roe � 30. Then sal̂ary � 963.191 � 18.501(30) � 1518.221, which is just over
$1.5 million. However, this does not mean that a particular CEO whose firm had an
roe � 30 earns $1,518,221. There are many other factors that affect salary. This is just 
our prediction from the OLS regression line (2.26). The estimated line is graphed in Fig-
ure 2.5, along with the population regression function E(salary�roe). We will never know
the PRF, so we cannot tell how close the SRF is to the PRF. Another sample of data will
give a different regression line, which may or may not be closer to the population regres-
sion line.
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The OLS regression line sal̂ary � 963.191 � 18.50 roe and the (unknown) population
regression function.

salary

963.191

salary � 963.191 � 18.501 roe

E(salary�roe) � �0 � �1roe
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ˆ
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E X A M P L E  2 . 4
( W a g e  a n d  E d u c a t i o n )

For the population of people in the work force in 1976, let y � wage, where wage is mea-
sured in dollars per hour. Thus, for a particular person, if wage � 6.75, the hourly wage is
$6.75. Let x � educ denote years of schooling; for example, educ � 12 corresponds to a
complete high school education. Since the average wage in the sample is $5.90, the con-
sumer price index indicates that this amount is equivalent to $16.64 in 1997 dollars.

Using the data in WAGE1.RAW where n � 526 individuals, we obtain the following OLS
regression line (or sample regression function):

wâge � �0.90 � 0.54 educ. (2.27)

We must interpret this equation with caution. The intercept of �0.90 literally means that a
person with no education has a predicted hourly wage of �90 cents an hour. This, of
course, is silly. It turns out that no one in the sample has less than eight years of education,
which helps to explain the crazy prediction for a zero education value. For a person with

eight years of education, the predicted wage
is wâge � �0.90 � 0.54(8) � 3.42, or
$3.42 per hour (in 1976 dollars).

The slope estimate in (2.27) implies that
one more year of education increases hourly
wage by 54 cents an hour. Therefore, four
more years of education increase the pre-

dicted wage by 4(0.54) � 2.16 or $2.16 per hour. These are fairly large effects. Because of
the linear nature of (2.27), another year of education increases the wage by the same
amount, regardless of the initial level of education. In Section 2.4, we discuss some meth-
ods that allow for nonconstant marginal effects of our explanatory variables.

E X A M P L E  2 . 5
( V o t i n g  O u t c o m e s  a n d  C a m p a i g n  E x p e n d i t u r e s )

The file VOTE1.RAW contains data on election outcomes and campaign expenditures for
173 two-party races for the U.S. House of Representatives in 1988. There are two candi-
dates in each race, A and B. Let voteA be the percentage of the vote received by Candidate
A and shareA be the the percentage of total campaign expenditures accounted for by
Candidate A. Many factors other than shareA affect the election outcome (including the
quality of the candidates and possibly the dollar amounts spent by A and B). Nevertheless,
we can estimate a simple regression model to find out whether spending more relative to
one’s challenger implies a higher percentage of the vote.

The estimated equation using the 173 observations is

vot̂eA � 40.90 � 0.306 shareA. (2.28)

This means that, if the share of Candidate A’s expenditures increases by one percent-
age point, Candidate A receives almost one-third of a percentage point more of the
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The estimated wage from (2.27), when educ � 8, is $3.42 in 1976
dollars. What is this value in 1997 dollars? (Hint: You have enough
information in Example 2.4 to answer this question.)
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total vote. Whether or not this is a causal effect is unclear, but the result is what we
might expect.

In some cases, regression analysis is not used to determine causality but to simply
look at whether two variables are positively or negatively related, much like a standard

correlation analysis. An example of this
occurs in Problem 2.12, where you are
asked to use data from Biddle and
Hamermesh (1990) on time spent sleeping
and working to investigate the tradeoff
between these two factors.

A Note on Terminolgy

In most cases, we will indicate the estimation of a relationship through OLS by writing
an equation such as (2.26), (2.27), or (2.28). Sometimes, for the sake of brevity, it is
useful to indicate that an OLS regression has been run without actually writing out the
equation. We will often indicate that equation (2.23) has been obtained by OLS in say-
ing that we run the regression of

y on x, (2.29)

or simply that we regress y on x. The positions of y and x in (2.29) indicate which is the
dependent variable and which is the independent variable: we always regress the depen-
dent variable on the independent variable. For specific applications, we replace y and x
with their names. Thus, to obtain (2.26), we regress salary on roe or to obtain (2.28),
we regress voteA on shareA.

When we use such terminology in (2.29), we will always mean that we plan to esti-
mate the intercept, �̂0, along with the slope, �̂1. This case is appropriate for the vast
majority of applications. Occasionally, we may want to estimate the relationship
between y and x assuming that the intercept is zero (so that x � 0 implies that ŷ � 0);
we cover this case briefly in Section 2.6. Unless explicitly stated otherwise, we always
estimate an intercept along with a slope.

2.3 MECHANICS OF OLS

In this section, we cover some algebraic properties of the fitted OLS regression line.
Perhaps the best way to think about these properties is to realize that they are features
of OLS for a particular sample of data. They can be contrasted with the statistical prop-
erties of OLS, which requires deriving features of the sampling distributions of the esti-
mators. We will discuss statistical properties in Section 2.5.

Several of the algebraic properties we are going to derive will appear mundane.
Nevertheless, having a grasp of these properties helps us to figure out what happens to
the OLS estimates and related statistics when the data are manipulated in certain ways,
such as when the measurement units of the dependent and independent variables change.
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In Example 2.5, what is the predicted vote for Candidate A if shareA
� 60 (which means 60 percent)? Does this answer seem reasonable?
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Fitted Values and Residuals

We assume that the intercept and slope estimates, �̂0 and �̂1, have been obtained for the
given sample of data. Given �̂0 and �̂1, we can obtain the fitted value ŷi for each obser-
vation. [This is given by equation (2.20).] By definition, each fitted value of ŷi is on the
OLS regression line. The OLS residual associated with observation i, ûi, is the differ-
ence between yi and its fitted value, as given in equation (2.21). If ûi is positive, the line
underpredicts yi; if ûi is negative, the line overpredicts yi. The ideal case for observation
i is when ûi � 0, but in most cases every residual is not equal to zero. In other words,
none of the data points must actually lie on the OLS line.

E X A M P L E  2 . 6
( C E O  S a l a r y  a n d  R e t u r n  o n  E q u i t y )

Table 2.2 contains a listing of the first 15 observations in the CEO data set, along with the
fitted values, called salaryhat, and the residuals, called uhat.

Table 2.2

Fitted Values and Residuals for the First 15 CEOs

obsno roe salary salaryhat uhat

1 14.1 1095 1224.058 �129.0581

2 10.9 1001 1164.854 �163.8542

3 23.5 1122 1397.969 �275.9692

4 5.9 578 1072.348 �494.3484

5 13.8 1368 1218.508 149.4923

6 20.0 1145 1333.215 �188.2151

7 16.4 1078 1266.611 �188.6108

8 16.3 1094 1264.761 �170.7606

9 10.5 1237 1157.454 79.54626

10 26.3 833 1449.773 �616.7726

11 25.9 567 1442.372 �875.3721

12 26.8 933 1459.023 �526.0231
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Table 2.2 (concluded)

obsno roe salary salaryhat uhat

13 14.8 1339 1237.009 101.9911

14 22.3 937 1375.768 �438.7678

15 56.3 2011 2004.808 �006.191895

The first four CEOs have lower salaries than what we predicted from the OLS regression line
(2.26); in other words, given only the firm’s roe, these CEOs make less than what we pre-
dicted. As can be seen from the positive uhat, the fifth CEO makes more than predicted
from the OLS regression line.

Algebraic Properties of OLS Statistics

There are several useful algebraic properties of OLS estimates and their associated sta-
tistics. We now cover the three most important of these.

(1) The sum, and therefore the sample average of the OLS residuals, is zero. 
Mathematically,

�
n

i�1
ûi � 0. (2.30)

This property needs no proof; it follows immediately from the OLS first order condi-
tion (2.14), when we remember that the residuals are defined by ûi � yi � �̂0 � �̂1xi.
In other words, the OLS estimates �̂0 and �̂1 are chosen to make the residuals add up to
zero (for any data set). This says nothing about the residual for any particular observa-
tion i.

(2) The sample covariance between the regressors and the OLS residuals is zero.
This follows from the first order condition (2.15), which can be written in terms of the
residuals as

�
n

i�1
xiûi � 0. (2.31)

The sample average of the OLS residuals is zero, so the left hand side of (2.31) is pro-
portional to the sample covariance between xi and ûi.

(3) The point (x̄,ȳ) is always on the OLS regression line. In other words, if we take
equation (2.23) and plug in x̄ for x, then the predicted value is ȳ. This is exactly what
equation (2.16) shows us.
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E X A M P L E  2 . 7
( W a g e  a n d  E d u c a t i o n )

For the data in WAGE1.RAW, the average hourly wage in the sample is 5.90, rounded to
two decimal places, and the average education is 12.56. If we plug educ � 12.56 into the
OLS regression line (2.27), we get wâge � �0.90 � 0.54(12.56) � 5.8824, which equals
5.9 when rounded to the first decimal place. The reason these figures do not exactly agree
is that we have rounded the average wage and education, as well as the intercept and slope
estimates. If we did not initially round any of the values, we would get the answers to agree
more closely, but this practice has little useful effect.

Writing each yi as its fitted value, plus its residual, provides another way to intepret
an OLS regression. For each i, write

yi � ŷi � ûi. (2.32)

From property (1) above, the average of the residuals is zero; equivalently, the sample
average of the fitted values, ŷi, is the same as the sample average of the yi, or ȳ̂ � ȳ.
Further, properties (1) and (2) can be used to show that the sample covariance
between ŷi and ûi is zero. Thus, we can view OLS as decomposing each yi into two
parts, a fitted value and a residual. The fitted values and residuals are uncorrelated in
the sample.

Define the total sum of squares (SST), the explained sum of squares (SSE), and
the residual sum of squares (SSR) (also known as the sum of squared residuals), as
follows:

SST � �
n

i�1
(yi � ȳ)2. (2.33)

SSE � �
n

i�1
(ŷi � ȳ)2. (2.34)

SSR � �
n

i�1
ûi

2. (2.35)

SST is a measure of the total sample variation in the yi; that is, it measures how spread
out the yi are in the sample. If we divide SST by n � 1, we obtain the sample variance
of y, as discussed in Appendix C. Similarly, SSE measures the sample variation in the
ŷi (where we use the fact that ȳ̂ � ȳ), and SSR measures the sample variation in the ûi.
The total variation in y can always be expressed as the sum of the explained variation
and the unexplained variation SSR. Thus,

SST � SSE � SSR. (2.36)
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Proving (2.36) is not difficult, but it requires us to use all of the properties of the sum-
mation operator covered in Appendix A. Write

�
n

i�1
(yi � ȳ)2 � �

n

i�1
[(yi � ŷi) � (ŷi � ȳ)]2

� �
n

i�1
[ûi � (ŷi � ȳ)]2

� �
n

i�1
ûi

2 � 2 �
n

i�1
ûi(ŷi � ȳ) � �

n

i�1
(ŷi � ȳ)2

� SSR � 2 �
n

i�1
ûi(ŷi � ȳ) � SSE.

Now (2.36) holds if we show that

�
n

i�1
ûi(ŷi � ȳ) � 0. (2.37)

But we have already claimed that the sample covariance between the residuals and the
fitted values is zero, and this covariance is just (2.37) divided by n�1. Thus, we have
established (2.36).

Some words of caution about SST, SSE, and SSR are in order. There is no uniform
agreement on the names or abbreviations for the three quantities defined in equations
(2.33), (2.34), and (2.35). The total sum of squares is called either SST or TSS, so there
is little confusion here. Unfortunately, the explained sum of squares is sometimes called
the “regression sum of squares.” If this term is given its natural abbreviation, it can eas-
ily be confused with the term residual sum of squares. Some regression packages refer
to the explained sum of squares as the “model sum of squares.”

To make matters even worse, the residual sum of squares is often called the “error
sum of squares.” This is especially unfortunate because, as we will see in Section 2.5,
the errors and the residuals are different quantities. Thus, we will always call (2.35) the
residual sum of squares or the sum of squared residuals. We prefer to use the abbrevia-
tion SSR to denote the sum of squared residuals, because it is more common in econo-
metric packages.

Goodness-of-Fit

So far, we have no way of measuring how well the explanatory or independent variable,
x, explains the dependent variable, y. It is often useful to compute a number that sum-
marizes how well the OLS regression line fits the data. In the following discussion, be
sure to remember that we assume that an intercept is estimated along with the slope.

Assuming that the total sum of squares, SST, is not equal to zero—which is true
except in the very unlikely event that all the yi equal the same value—we can divide
(2.36) by SST to get 1 � SSE/SST � SSR/SST. The R-squared of the regression,
sometimes called the coefficient of determination, is defined as
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R2 � SSE/SST � 1 � SSR/SST. (2.38)

R2 is the ratio of the explained variation compared to the total variation, and thus it is
interpreted as the fraction of the sample variation in y that is explained by x. The sec-
ond equality in (2.38) provides another way for computing R2.

From (2.36), the value of R2 is always between zero and one, since SSE can be no
greater than SST. When interpreting R2, we usually multiply it by 100 to change it into
a percent: 100	R2 is the percentage of the sample variation in y that is explained by x.

If the data points all lie on the same line, OLS provides a perfect fit to the data. In
this case, R2 � 1. A value of R2 that is nearly equal to zero indicates a poor fit of the
OLS line: very little of the variation in the yi is captured by the variation in the ŷi (which
all lie on the OLS regression line). In fact, it can be shown that R2 is equal to the square
of the sample correlation coefficient between yi and ŷi. This is where the term
“R-squared” came from. (The letter R was traditionally used to denote an estimate of a
population correlation coefficient, and its usage has survived in regression analysis.)

E X A M P L E  2 . 8
( C E O  S a l a r y  a n d  R e t u r n  o n  E q u i t y )

In the CEO salary regression, we obtain the following:

sal̂ary � 963.191 � 18.501 roe (2.39)

n � 209, R2 � 0.0132

We have reproduced the OLS regression line and the number of observations for clarity.
Using the R-squared (rounded to four decimal places) reported for this equation, we can
see how much of the variation in salary is actually explained by the return on equity. The
answer is: not much. The firm’s return on equity explains only about 1.3% of the variation
in salaries for this sample of 209 CEOs. That means that 98.7% of the salary variations for
these CEOs is left unexplained! This lack of explanatory power may not be too surprising
since there are many other characteristics of both the firm and the individual CEO that
should influence salary; these factors are necessarily included in the errors in a simple
regression analysis.

In the social sciences, low R-squareds in regression equations are not uncommon,
especially for cross-sectional analysis. We will discuss this issue more generally under
multiple regression analysis, but it is worth emphasizing now that a seemingly low R-
squared does not necessarily mean that an OLS regression equation is useless. It is still
possible that (2.39) is a good estimate of the ceteris paribus relationship between salary
and roe; whether or not this is true does not depend directly on the size of R-squared.
Students who are first learning econometrics tend to put too much weight on the size of
the R-squared in evaluating regression equations. For now, be aware that using
R-squared as the main gauge of success for an econometric analysis can lead to trouble.

Sometimes the explanatory variable explains a substantial part of the sample varia-
tion in the dependent variable.
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E X A M P L E  2 . 9
( V o t i n g  O u t c o m e s  a n d  C a m p a i g n  E x p e n d i t u r e s )

In the voting outcome equation in (2.28), R2 � 0.505. Thus, the share of campaign expen-
ditures explains just over 50 percent of the variation in the election outcomes for this sam-
ple. This is a fairly sizable portion.

2.4 UNITS OF MEASUREMENT AND FUNCTIONAL
FORM

Two important issues in applied economics are (1) understanding how changing the
units of measurement of the dependent and/or independent variables affects OLS esti-
mates and (2) knowing how to incorporate popular functional forms used in economics
into regression analysis. The mathematics needed for a full understanding of func-
tional form issues is reviewed in Appendix A.

The Effects of Changing Units of Measurement on OLS
Statistics

In Example 2.3, we chose to measure annual salary in thousands of dollars, and the
return on equity was measured as a percent (rather than as a decimal). It is crucial to
know how salary and roe are measured in this example in order to make sense of the
estimates in equation (2.39).

We must also know that OLS estimates change in entirely expected ways when the
units of measurement of the dependent and independent variables change. In Example
2.3, suppose that, rather than measuring salary in thousands of dollars, we measure it in
dollars. Let salardol be salary in dollars (salardol � 845,761 would be interpreted as
$845,761.). Of course, salardol has a simple relationship to the salary measured in
thousands of dollars: salardol � 1,000	salary. We do not need to actually run the
regression of salardol on roe to know that the estimated equation is:

salârdol � 963,191 � 18,501 roe. (2.40)

We obtain the intercept and slope in (2.40) simply by multiplying the intercept and the
slope in (2.39) by 1,000. This gives equations (2.39) and (2.40) the same interpretation.
Looking at (2.40), if roe � 0, then salârdol � 963,191, so the predicted salary is
$963,191 [the same value we obtained from equation (2.39)]. Furthermore, if roe
increases by one, then the predicted salary increases by $18,501; again, this is what we
concluded from our earlier analysis of equation (2.39).

Generally, it is easy to figure out what happens to the intercept and slope estimates
when the dependent variable changes units of measurement. If the dependent variable
is multiplied by the constant c—which means each value in the sample is multiplied by
c—then the OLS intercept and slope estimates are also multiplied by c. (This assumes
nothing has changed about the independent variable.) In the CEO salary example, c �
1,000 in moving from salary to salardol.
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We can also use the CEO salary example to see what happens when we change
the units of measurement of the indepen-
dent variable. Define roedec � roe/100
to be the decimal equivalent of roe; thus,
roedec � 0.23 means a return on equity of
23 percent. To focus on changing the units
of measurement of the independent vari-
able, we return to our original dependent

variable, salary, which is measured in thousands of dollars. When we regress salary on
roedec, we obtain

sal̂ary � 963.191 � 1850.1 roedec. (2.41)

The coefficient on roedec is 100 times the coefficient on roe in (2.39). This is as it
should be. Changing roe by one percentage point is equivalent to �roedec � 0.01. From
(2.41), if �roedec � 0.01, then �sal̂ary � 1850.1(0.01) � 18.501, which is what is
obtained by using (2.39). Note that, in moving from (2.39) to (2.41), the independent
variable was divided by 100, and so the OLS slope estimate was multiplied by 100, pre-
serving the interpretation of the equation. Generally, if the independent variable is
divided or multiplied by some nonzero constant, c, then the OLS slope coefficient is
also multiplied or divided by c respectively.

The intercept has not changed in (2.41) because roedec � 0 still corresponds to a
zero return on equity. In general, changing the units of measurement of only the inde-
pendent variable does not affect the intercept.

In the previous section, we defined R-squared as a goodness-of-fit measure for
OLS regression. We can also ask what happens to R2 when the unit of measurement
of either the independent or the dependent variable changes. Without doing any alge-
bra, we should know the result: the goodness-of-fit of the model should not depend on
the units of measurement of our variables. For example, the amount of variation in
salary, explained by the return on equity, should not depend on whether salary is mea-
sured in dollars or in thousands of dollars or on whether return on equity is a percent
or a decimal. This intuition can be verified mathematically: using the definition of R2,
it can be shown that R2 is, in fact, invariant to changes in the units of y or x.

Incorporating Nonlinearities in Simple Regression

So far we have focused on linear relationships between the dependent and independent
variables. As we mentioned in Chapter 1, linear relationships are not nearly general
enough for all economic applications. Fortunately, it is rather easy to incorporate many
nonlinearities into simple regression analysis by appropriately defining the dependent
and independent variables. Here we will cover two possibilities that often appear in
applied work.

In reading applied work in the social sciences, you will often encounter regression
equations where the dependent variable appears in logarithmic form. Why is this done?
Recall the wage-education example, where we regressed hourly wage on years of edu-
cation. We obtained a slope estimate of 0.54 [see equation (2.27)], which means that
each additional year of education is predicted to increase hourly wage by 54 cents.
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Q U E S T I O N  2 . 4

Suppose that salary is measured in hundreds of dollars, rather than
in thousands of dollars, say salarhun. What will be the OLS intercept
and slope estimates in the regression of salarhun on roe?
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Because of the linear nature of (2.27), 54 cents is the increase for either the first year of
education or the twentieth year; this may not be reasonable.

Suppose, instead, that the percentage increase in wage is the same given one more
year of education. Model (2.27) does not imply a constant percentage increase: the per-
centage increases depends on the initial wage. A model that gives (approximately) a
constant percentage effect is

log(wage) � �0 � �1educ � u, (2.42)

where log(	) denotes the natural logarithm. (See Appendix A for a review of loga-
rithms.) In particular, if �u � 0, then

%�wage � (100 	�1)�educ. (2.43)

Notice how we multiply �1 by 100 to get the percentage change in wage given one addi-
tional year of education. Since the percentage change in wage is the same for each addi-
tional year of education, the change in wage for an extra year of education increases as
education increases; in other words, (2.42) implies an increasing return to education.
By exponentiating (2.42), we can write wage � exp(�0 � �1educ � u). This equation
is graphed in Figure 2.6, with u � 0.
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wage � exp(�0 � �1educ), with �1 � 0.

wage

educ0
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Estimating a model such as (2.42) is straightforward when using simple regression.
Just define the dependent variable, y, to be y � log(wage). The independent variable is
represented by x � educ. The mechanics of OLS are the same as before: the intercept
and slope estimates are given by the formulas (2.17) and (2.19). In other words, we
obtain �̂0 and �̂1 from the OLS regression of log(wage) on educ.

E X A M P L E  2 . 1 0
( A  L o g  W a g e  E q u a t i o n )

Using the same data as in Example 2.4, but using log(wage) as the dependent variable, we
obtain the following relationship:

log(̂wage) � 0.584 � 0.083 educ (2.44)

n � 526, R2 � 0.186.

The coefficient on educ has a percentage interpretation when it is multiplied by 100: wage
increases by 8.3 percent for every additional year of education. This is what economists
mean when they refer to the “return to another year of education.”

It is important to remember that the main reason for using the log of wage in (2.42) is
to impose a constant percentage effect of education on wage. Once equation (2.42) is
obtained, the natural log of wage is rarely mentioned. In particular, it is not correct to say
that another year of education increases log(wage) by 8.3%.

The intercept in (2.42) is not very meaningful, as it gives the predicted log(wage),
when educ � 0. The R-squared shows that educ explains about 18.6 percent of the vari-
ation in log(wage) (not wage). Finally, equation (2.44) might not capture all of the non-
linearity in the relationship between wage and schooling. If there are “diploma effects,”
then the twelfth year of education—graduation from high school—could be worth much
more than the eleventh year. We will learn how to allow for this kind of nonlinearity in
Chapter 7.

Another important use of the natural log is in obtaining a constant elasticity model.

E X A M P L E  2 . 1 1
( C E O  S a l a r y  a n d  F i r m  S a l e s )

We can estimate a constant elasticity model relating CEO salary to firm sales. The data set
is the same one used in Example 2.3, except we now relate salary to sales. Let sales be
annual firm sales, measured in millions of dollars. A constant elasticity model is

log(salary) � �0 � �1log(sales) � u, (2.45)

where �1 is the elasticity of salary with respect to sales. This model falls under the simple
regression model by defining the dependent variable to be y � log(salary) and the inde-
pendent variable to be x � log(sales). Estimating this equation by OLS gives
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log(salâry) � 4.822 � 0.257 log(sales) (2.46)

n � 209, R2 � 0.211.

The coefficient of log(sales) is the estimated elasticity of salary with respect to sales. It
implies that a 1 percent increase in firm sales increases CEO salary by about 0.257 per-
cent—the usual interpretation of an elasticity.

The two functional forms covered in this section will often arise in the remainder of
this text. We have covered models containing natural logarithms here because they
appear so frequently in applied work. The interpretation of such models will not be
much different in the multiple regression case.

It is also useful to note what happens to the intercept and slope estimates if we change
the units of measurement of the dependent variable when it appears in logarithmic form.
Because the change to logarithmic form approximates a proportionate change, it makes
sense that nothing happens to the slope. We can see this by writing the rescaled vari-
able as c1yi for each observation i. The original equation is log(yi) � �0 � �1xi � ui. If
we add log(c1) to both sides, we get log(c1) � log(yi) � [log(c1) � �0] � �1xi � ui, or
log(c1yi) � [log(c1) � �0] � �1xi � ui. (Remember that the sum of the logs is equal to
the log of their product as shown in Appendix A.) Therefore, the slope is still �1, but the
intercept is now log(c1) � �0. Similarly, if the independent variable is log(x), and we
change the units of measurement of x before taking the log, the slope remains the same
but the intercept does not change. You will be asked to verify these claims in Problem 2.9.

We end this subsection by summarizing four combinations of functional forms
available from using either the original variable or its natural log. In Table 2.3, x and y
stand for the variables in their original form. The model with y as the dependent vari-
able and x as the independent variable is called the level-level model, because each vari-
able appears in its level form. The model with log(y) as the dependent variable and x as
the independent variable is called the log-level model. We will not explicitly discuss the
level-log model here, because it arises less often in practice. In any case, we will see
examples of this model in later chapters.
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Table 2.3

Summary of Functional Forms Involving Logarithms

Dependent Independent Interpretation
Model Variable Variable of �1

level-level y x �y � �1�x

level-log y log(x) �y � (�1/100)%�x

log-level log(y) x %�y � (100�1)�x

log-log log(y) log(x) %�y � �1%�x
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The last column in Table 2.3 gives the interpretation of �1. In the log-level model,
100 	�1 is sometimes called the semi-elasticity of y with respect to x. As we mentioned
in Example 2.11, in the log-log model, �1 is the elasticity of y with respect to x. Table
2.3 warrants careful study, as we will refer to it often in the remainder of the text.

The Meaning of “Linear” Regression

The simple regression model that we have studied in this chapter is also called the sim-
ple linear regression model. Yet, as we have just seen, the general model also allows for
certain nonlinear relationships. So what does “linear” mean here? You can see by look-
ing at equation (2.1) that y � �0 � �1x � u. The key is that this equation is linear in the
parameters, �0 and �1. There are no restrictions on how y and x relate to the original
explained and explanatory variables of interest. As we saw in Examples 2.7 and 2.8, y
and x can be natural logs of variables, and this is quite common in applications. But we
need not stop there. For example, nothing prevents us from using simple regression to
estimate a model such as cons � �0 � �1�inc

—
� u, where cons is annual consumption

and inc is annual income.
While the mechanics of simple regression do not depend on how y and x are

defined, the interpretation of the coefficients does depend on their definitions. For suc-
cessful empirical work, it is much more important to become proficient at interpreting
coefficients than to become efficient at computing formulas such as (2.19). We will get
much more practice with interpreting the estimates in OLS regression lines when we
study multiple regression.

There are plenty of models that cannot be cast as a linear regression model because
they are not linear in their parameters; an example is cons � 1/(�0 � �1inc) � u.
Estimation of such models takes us into the realm of the nonlinear regression model,
which is beyond the scope of this text. For most applications, choosing a model that can
be put into the linear regression framework is sufficient.

2.5 EXPECTED VALUES AND VARIANCES OF THE OLS
ESTIMATORS

In Section 2.1, we defined the population model y � �0 � �1x � u, and we claimed that
the key assumption for simple regression analysis to be useful is that the expected value
of u given any value of x is zero. In Sections 2.2, 2.3, and 2.4, we discussed the alge-
braic properties of OLS estimation. We now return to the population model and study
the statistical properties of OLS. In other words, we now view �̂0 and �̂1 as estimators
for the parameters �0 and �1 that appear in the population model. This means that we
will study properties of the distributions of �̂0 and �̂1 over different random samples
from the population. (Appendix C contains definitions of estimators and reviews some
of their important properties.)

Unbiasedness of OLS

We begin by establishing the unbiasedness of OLS under a simple set of assumptions.
For future reference, it is useful to number these assumptions using the prefix “SLR”
for simple linear regression. The first assumption defines the population model.
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A S S U M P T I O N  S L R . 1  ( L I N E A R  I N  P A R A M E T E R S )

In the population model, the dependent variable y is related to the independent variable x
and the error (or disturbance) u as

y � �0 � �1x � u, (2.47)

where �0 and �1 are the population intercept and slope parameters, respectively.

To be realistic, y, x, and u are all viewed as random variables in stating the population
model. We discussed the interpretation of this model at some length in Section 2.1 and
gave several examples. In the previous section, we learned that equation (2.47) is not as
restrictive as it initially seems; by choosing y and x appropriately, we can obtain inter-
esting nonlinear relationships (such as constant elasticity models).

We are interested in using data on y and x to estimate the parameters �0 and, espe-
cially, �1. We assume that our data were obtained as a random sample. (See Appendix
C for a review of random sampling.)

A S S U M P T I O N  S L R . 2  ( R A N D O M  S A M P L I N G )

We can use a random sample of size n, {(xi,yi): i � 1,2,…,n}, from the population
model.

We will have to address failure of the random sampling assumption in later chapters that
deal with time series analysis and sample selection problems. Not all cross-sectional
samples can be viewed as outcomes of random samples, but many can be.

We can write (2.47) in terms of the random sample as

yi � �0 � �1xi � ui, i � 1,2,…,n, (2.48)

where ui is the error or disturbance for observation i (for example, person i, firm i, city
i, etc.). Thus, ui contains the unobservables for observation i which affect yi. The ui

should not be confused with the residuals, ûi, that we defined in Section 2.3. Later on,
we will explore the relationship between the errors and the residuals. For interpret-
ing �0 and �1 in a particular application, (2.47) is most informative, but (2.48) is also
needed for some of the statistical derivations.

The relationship (2.48) can be plotted for a particular outcome of data as shown in
Figure 2.7.

In order to obtain unbiased estimators of �0 and �1, we need to impose the zero con-
ditional mean assumption that we discussed in some detail in Section 2.1. We now
explicitly add it to our list of assumptions.

A S S U M P T I O N  S L R . 3  ( Z E R O  C O N D I T I O N A L  M E A N )

E(u�x) � 0.
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For a random sample, this assumption implies that E(ui�xi) � 0, for all i � 1,2,…,n.
In addition to restricting the relationship between u and x in the population, the zero

conditional mean assumption—coupled with the random sampling assumption—
allows for a convenient technical simplification. In particular, we can derive the statis-
tical properties of the OLS estimators as conditional on the values of the xi in our sam-
ple. Technically, in statistical derivations, conditioning on the sample values of the inde-
pendent variable is the same as treating the xi as fixed in repeated samples. This process
involves several steps. We first choose n sample values for x1, x2, …, xn (These can be
repeated.). Given these values, we then obtain a sample on y (effectively by obtaining
a random sample of the ui). Next another sample of y is obtained, using the same val-
ues for x1, …, xn. Then another sample of y is obtained, again using the same xi. And
so on.

The fixed in repeated samples scenario is not very realistic in nonexperimental con-
texts. For instance, in sampling individuals for the wage-education example, it makes
little sense to think of choosing the values of educ ahead of time and then sampling
individuals with those particular levels of education. Random sampling, where individ-
uals are chosen randomly and their wage and education are both recorded, is represen-
tative of how most data sets are obtained for empirical analysis in the social sciences.
Once we assume that E(u�x) � 0, and we have random sampling, nothing is lost in
derivations by treating the xi as nonrandom. The danger is that the fixed in repeated
samples assumption always implies that ui and xi are independent. In deciding when
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Graph of yi � �0 � �1xi � ui.
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simple regression analysis is going to produce unbiased estimators, it is critical to think
in terms of Assumption SLR.3.

Once we have agreed to condition on the xi, we need one final assumption for unbi-
asedness.

A S S U M P T I O N  S L R . 4  ( S A M P L E  V A R I A T I O N  I N

T H E  I N D E P E N D E N T  V A R I A B L E )

In the sample, the independent variables xi, i � 1,2,…,n, are not all equal to the same con-
stant. This requires some variation in x in the population.

We encountered Assumption SLR.4 when we derived the formulas for the OLS esti-

mators; it is equivalent to �
n

i�1
(xi � x̄)2 � 0. Of the four assumptions made, this is the

least important because it essentially never fails in interesting applications. If Assump-
tion SLR.4 does fail, we cannot compute the OLS estimators, which means statistical
analysis is irrelevant.

Using the fact that �
n

i�1
(xi � x̄)(yi � ȳ) � �

n

i�1
(xi � x̄)yi (see Appendix A), we can

write the OLS slope estimator in equation (2.19) as

�̂1 � . (2.49)

Because we are now interested in the behavior of �̂1 across all possible samples, �̂1 is
properly viewed as a random variable.

We can write �̂1 in terms of the population coefficients and errors by substituting the
right hand side of (2.48) into (2.49). We have

�̂1 � � , (2.50)

where we have defined the total variation in xi as sx
2 � �

n

i�1
(xi � x̄)2 in order to simplify

the notation. (This is not quite the sample variance of the xi because we do not divide
by n � 1.) Using the algebra of the summation operator, write the numerator of �̂1 as

�
n

i�1
(xi � x̄)�0 � �

n

i�1
(xi � x̄)�1xi � �

n

i�1
(xi � x̄)ui

(2.51)

� �0 �
n

i�1
(xi � x̄) � �1 �

n

i�1
(xi � x̄)xi � �

n

i�1
(xi � x̄)ui.

�
n

i�1
(xi � x̄)(�0 � �1xi � ui)

_

sx
2

�
n

i�1
(xi � x̄)yi

_

sx
2

�
n

i�1
(xi � x̄)yi

�
n

i�1
(xi � x̄)2

Chapter 2 The Simple Regression Model

49

d  7/14/99 4:31 PM  Page 49



As shown in Appendix A, �
n

i�1
(xi � x̄) � 0 and �

n

i�1
(xi � x̄)xi � �

n

i�1
(xi � x̄)2 � sx

2.

Therefore, we can write the numerator of �̂1 as �1sx
2 � �

n

i�1
(xi � x̄)ui. Writing this over 

the denominator gives

�̂1 � �1 � � �1 � (1/sx
2) �

n

i�1
diui, (2.52)

where di � xi � x̄. We now see that the estimator �̂1 equals the population slope �1, plus
a term that is a linear combination in the errors {u1,u2,…,un}. Conditional on the val-
ues of xi, the randomness in �̂1 is due entirely to the errors in the sample. The fact that
these errors are generally different from zero is what causes �̂1 to differ from �1.

Using the representation in (2.52), we can prove the first important statistical prop-
erty of OLS.

T H E O R E M  2 . 1  ( U N B I A S E D N E S S  O F  O L S )

Using Assumptions SLR.1 through SLR.4,

E(�̂0) � �0, and E(�̂1) � �1 (2.53)

for any values of �0 and �1. In other words, �̂0 is unbiased for �0, and �̂1 is unbiased for �1.

P R O O F :  In this proof, the expected values are conditional on the sample values of
the independent variable. Since sx

2 and di are functions only of the xi, they are nonrandom
in the conditioning. Therefore, from (2.53),

E(�̂1) � �1 � E[(1/sx
2) �

n

i�1
diui] � �1 � (1/sx

2) �
n

i�1
E(diui)

� �1 � (1/sx
2) �

n

i�1
diE(ui) � �1 � (1/sx

2) �
n

i�1
di	0 � �1,

where we have used the fact that the expected value of each ui (conditional on {x1,x2,...,xn})
is zero under Assumptions SLR.2 and SLR.3.

The proof for �̂0 is now straightforward. Average (2.48) across i to get ȳ � �0 � �1x̄ �

ū, and plug this into the formula for �̂0:

�̂0 � ȳ � �̂1x̄ � �0 � �1x̄ � ū � �̂1x̄ � �0 � (�1 � �̂1)x̄ � ū.

Then, conditional on the values of the xi,

E(�̂0) � �0 � E[(�1 � �̂1)x̄] � E(ū) � �0 � E[(�1 � �̂1)]x̄,

since E(ū) � 0 by Assumptions SLR.2 and SLR.3. But, we showed that E(�̂1) � �1, which
implies that E[(�̂1 � �1)] � 0. Thus, E(�̂0) � �0. Both of these arguments are valid for any
values of �0 and �1, and so we have established unbiasedness.

�
n

i�1
(xi � x̄)ui

_

sx
2
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Remember that unbiasedness is a feature of the sampling distributions of �̂1 and �̂0,
which says nothing about the estimate that we obtain for a given sample. We hope that,
if the sample we obtain is somehow “typical,” then our estimate should be “near” the
population value. Unfortunately, it is always possible that we could obtain an unlucky
sample that would give us a point estimate far from �1, and we can never know for sure
whether this is the case. You may want to review the material on unbiased estimators in
Appendix C, especially the simulation exercise in Table C.1 that illustrates the concept
of unbiasedness.

Unbiasedness generally fails if any of our four assumptions fail. This means that it
is important to think about the veracity of each assumption for a particular application.
As we have already discussed, if Assumption SLR.4 fails, then we will not be able to
obtain the OLS estimates. Assumption SLR.1 requires that y and x be linearly related,
with an additive disturbance. This can certainly fail. But we also know that y and x can
be chosen to yield interesting nonlinear relationships. Dealing with the failure of (2.47)
requires more advanced methods that are beyond the scope of this text.

Later, we will have to relax Assumption SLR.2, the random sampling assumption,
for time series analysis. But what about using it for cross-sectional analysis? Random
sampling can fail in a cross section when samples are not representative of the under-
lying population; in fact, some data sets are constructed by intentionally oversampling
different parts of the population. We will discuss problems of nonrandom sampling in
Chapters 9 and 17.

The assumption we should concentrate on for now is SLR.3. If SLR.3 holds, the
OLS estimators are unbiased. Likewise, if SLR.3 fails, the OLS estimators generally
will be biased. There are ways to determine the likely direction and size of the bias,
which we will study in Chapter 3.

The possibility that x is correlated with u is almost always a concern in simple
regression analysis with nonexperimental data, as we indicated with several examples
in Section 2.1. Using simple regression when u contains factors affecting y that are also
correlated with x can result in spurious correlation: that is, we find a relationship
between y and x that is really due to other unobserved factors that affect y and also hap-
pen to be correlated with x.

E X A M P L E  2 . 1 2
( S t u d e n t  M a t h  P e r f o r m a n c e  a n d  t h e  S c h o o l  L u n c h  P r o g r a m )

Let math10 denote the percentage of tenth graders at a high school receiving a passing
score on a standardized mathematics exam. Suppose we wish to estimate the effect of
the federally funded school lunch program on student performance. If anything, we
expect the lunch program to have a positive ceteris paribus effect on performance: all
other factors being equal, if a student who is too poor to eat regular meals becomes eli-
gible for the school lunch program, his or her performance should improve. Let lnchprg
denote the percentage of students who are eligible for the lunch program. Then a simple
regression model is

math10 � �0 � �1lnchprg � u, (2.54)
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where u contains school and student characteristics that affect overall school performance.
Using the data in MEAP93.RAW on 408 Michigan high schools for the 1992–93 school
year, we obtain

mat̂h10 � 32.14 � 0.319 lnchprg

n � 408, R2 � 0.171

This equation predicts that if student eligibility in the lunch program increases by 10 per-
centage points, the percentage of students passing the math exam falls by about 3.2 per-
centage points. Do we really believe that higher participation in the lunch program actually
causes worse performance? Almost certainly not. A better explanation is that the error term
u in equation (2.54) is correlated with lnchprg. In fact, u contains factors such as the pover-
ty rate of children attending school, which affects student performance and is highly corre-
lated with eligibility in the lunch program. Variables such as school quality and resources are
also contained in u, and these are likely correlated with lnchprg. It is important to remem-
ber that the estimate �0.319 is only for this particular sample, but its sign and magnitude
make us suspect that u and x are correlated, so that simple regression is biased.

In addition to omitted variables, there are other reasons for x to be correlated with
u in the simple regression model. Since the same issues arise in multiple regression
analysis, we will postpone a systematic treatment of the problem until then.

Variances of the OLS Estimators

In addition to knowing that the sampling distribution of �̂1 is centered about �1 (�̂1 is
unbiased), it is important to know how far we can expect �̂1 to be away from �1 on aver-
age. Among other things, this allows us to choose the best estimator among all, or at
least a broad class of, the unbiased estimators. The measure of spread in the distribu-
tion of �̂1 (and �̂0) that is easiest to work with is the variance or its square root, the stan-
dard deviation. (See Appendix C for a more detailed discussion.)

It turns out that the variance of the OLS estimators can be computed under
Assumptions SLR.1 through SLR.4. However, these expressions would be somewhat
complicated. Instead, we add an assumption that is traditional for cross-sectional analy-
sis. This assumption states that the variance of the unobservable, u, conditional on x, is
constant. This is known as the homoskedasticity or “constant variance” assumption.

A S S U M P T I O N  S L R . 5  ( H O M O S K E D A S T I C I T Y )

Var(u�x) � 
2.

We must emphasize that the homoskedasticity assumption is quite distinct from 
the zero conditional mean assumption, E(u�x) � 0. Assumption SLR.3 involves the
expected value of u, while Assumption SLR.5 concerns the variance of u (both condi-
tional on x). Recall that we established the unbiasedness of OLS without Assumption
SLR.5: the homoskedasticity assumption plays no role in showing that �̂0 and �̂1 are
unbiased. We add Assumption SLR.5 because it simplifies the variance calculations for
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�̂0 and �̂1 and because it implies that ordinary least squares has certain efficiency prop-
erties, which we will see in Chapter 3. If we were to assume that u and x are indepen-
dent, then the distribution of u given x does not depend on x, and so E(u�x) � E(u) � 0
and Var(u�x) � 
2. But independence is sometimes too strong of an assumption.

Because Var(u�x) � E(u2�x) � [E(u�x)]2 and E(u�x) � 0, 
2 � E(u2�x), which means

2 is also the unconditional expectation of u2. Therefore, 
2 � E(u2) � Var(u), because
E(u) � 0. In other words, 
2 is the unconditional variance of u, and so 
2 is often called
the error variance or disturbance variance. The square root of 
2, 
, is the standard
deviation of the error. A larger 
 means that the distribution of the unobservables affect-
ing y is more spread out.

It is often useful to write Assumptions SLR.3 and SLR.5 in terms of the condi-
tional mean and conditional variance of y:

E(y�x) � �0 � �1x. (2.55)

Var(y�x) � 
2. (2.56)

In other words, the conditional expectation of y given x is linear in x, but the variance of
y given x is constant. This situation is graphed in Figure 2.8 where �0 � 0 and �1 � 0.
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F i g u r e  2 . 8

The simple regression model under homoskedasticity.
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E(y�x) � �0 � �1x
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When Var(u�x) depends on x, the error term is said to exhibit heteroskedasticity (or
nonconstant variance). Since Var(u�x) � Var(y�x), heteroskedasticity is present when-
ever Var(y�x) is a function of x.

E X A M P L E  2 . 1 3
( H e t e r o s k e d a s t i c i t y  i n  a  W a g e  E q u a t i o n )

In order to get an unbiased estimator of the ceteris paribus effect of educ on wage, we
must assume that E(u�educ) � 0, and this implies E(wage�educ) � �0 � �1educ. If we also
make the homoskedasticity assumption, then Var(u�educ) � 
2 does not depend on the
level of education, which is the same as assuming Var(wage�educ) � 
2. Thus, while aver-
age wage is allowed to increase with education level—it is this rate of increase that we
are interested in describing—the variability in wage about its mean is assumed to be con-
stant across all education levels. This may not be realistic. It is likely that people with more
education have a wider variety of interests and job opportunities, which could lead to
more wage variability at higher levels of education. People with very low levels of educa-
tion have very few opportunities and often must work at the minimum wage; this serves
to reduce wage variability at low education levels. This situation is shown in Figure 2.9.
Ultimately, whether Assumption SLR.5 holds is an empirical issue, and in Chapter 8 we will
show how to test Assumption SLR.5.

Part 1 Regression Analysis with Cross-Sectional Data

54

F i g u r e  2 . 9

Var (wage�educ) increasing with educ.
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With the homoskedasticity assumption in place, we are ready to prove the fol-
lowing:

T H E O R E M  2 . 2  ( S A M P L I N G  V A R I A N C E S  O F  T H E

O L S  E S T I M A T O R S )

Under Assumptions SLR.1 through SLR.5,

Var(�̂1) � � 
2/sx
2 (2.57)

Var(�̂0) � , (2.58)

where these are conditional on the sample values {x1,…,xn}.

P R O O F :  We derive the formula for Var(�̂1), leaving the other derivation as an

exercise. The starting point is equation (2.52): �̂1 � �1 � (1/sx
2) �

n

i�1
diui. Since �1 is just a

constant, and we are conditioning on the xi, sx
2 and di � xi � x̄ are also nonrandom.

Furthermore, because the ui are independent random variables across i (by random
sampling), the variance of the sum is the sum of the variances. Using these facts, we have

Var(�̂1) � (1/sx
2)2Var ��

n

i�1
diui� � (1/sx

2)2 ��
n

i�1
d i

2Var(ui)�
� (1/sx

2)2 ��
n

i�1
d i

2
2� [since Var(ui) � 
2 for all i]

� 
2(1/sx
2)2 ��

n

i�1
d i

2� � 
2(1/sx
2)2sx

2 � 
2/sx
2,

which is what we wanted to show.

The formulas (2.57) and (2.58) are the “standard” formulas for simple regression
analysis, which are invalid in the presence of heteroskedasticity. This will be important
when we turn to confidence intervals and hypothesis testing in multiple regression
analysis.

For most purposes, we are interested in Var(�̂1). It is easy to summarize how this
variance depends on the error variance, 
2, and the total variation in {x1,x2,…,xn}, sx

2.
First, the larger the error variance, the larger is Var(�̂1). This makes sense since more
variation in the unobservables affecting y makes it more difficult to precisely estimate
�1. On the other hand, more variability in the independent variable is preferred: as the
variability in the xi increases, the variance of �̂1 decreases. This also makes intuitive


2n�1 �
n

i�1
xi

2

�
n

i�1
(xi � x̄)2


2

�
n

i�1
(xi � x̄)2
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sense since the more spread out is the sample of independent variables, the easier it is
to trace out the relationship between E(y�x) and x. That is, the easier it is to estimate �1.
If there is little variation in the xi, then it can be hard to pinpoint how E(y�x) varies with
x. As the sample size increases, so does the total variation in the xi. Therefore, a larger
sample size results in a smaller variance for �̂1.

This analysis shows that, if we are interested in �̂1, and we have a choice, then we
should choose the xi to be as spread out as possible. This is sometimes possible with
experimental data, but rarely do we have this luxury in the social sciences: usually we

must take the xi that we obtain via random
sampling. Sometimes we have an opportu-
nity to obtain larger sample sizes, although
this can be costly.

For the purposes of constructing confi-
dence intervals and deriving test statistics,
we will need to work with the standard
deviations of �̂1 and �̂0, sd(�̂1) and sd(�̂0).

Recall that these are obtained by taking the square roots of the variances in (2.57) and
(2.58). In particular, sd(�̂1) � 
/sx, where 
 is the square root of 
2, and sx is the square
root of sx

2.

Estimating the Error Variance

The formulas in (2.57) and (2.58) allow us to isolate the factors that contribute to
Var(�̂1) and Var(�̂0). But these formulas are unknown, except in the extremely rare case
that 
2 is known. Nevertheless, we can use the data to estimate 
2, which then allows
us to estimate Var(�̂1) and Var(�̂0).

This is a good place to emphasize the difference between the the errors (or distur-
bances) and the residuals, since this distinction is crucial for constructing an estimator
of 
2. Equation (2.48) shows how to write the population model in terms of a random-
ly sampled observation as yi � �0 � �1xi � ui, where ui is the error for observation i.
We can also express yi in terms of its fitted value and residual as in equation (2.32):
yi � �̂0 � �̂1xi � ûi. Comparing these two equations, we see that the error shows up in
the equation containing the population parameters, �0 and �1. On the other hand, the
residuals show up in the estimated equation with �̂0 and �̂1. The errors are never observ-
able, while the residuals are computed from the data.

We can use equations (2.32) and (2.48) to write the residuals as a function of the
errors:

ûi � yi � �̂0 � �̂1xi � (�0 � �1xi � ui) � �̂0 � �̂1xi,

or

ûi � ui � (�̂0 � �0) � (�̂1 � �1)xi. (2.59)

Although the expected value of �̂0 equals �0, and similarly for �̂1, ûi is not the same as
ui. The difference between them does have an expected value of zero.

Now that we understand the difference between the errors and the residuals, we can
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Q U E S T I O N  2 . 5

Show that, when estimating �0, it is best to have x̄ � 0. What is Var(�̂0)

in this case? (Hint: For any sample of numbers, �
n

i�1
xi

2 � �
n

i�1
(xi � x̄)2,

with equality only if x̄ � 0.)
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return to estimating 
2. First, 
2 � E(u2), so an unbiased “estimator” of 
2 is n�1 �
n

i�1
ui

2.

Unfortunately, this is not a true estimator, because we do not observe the errors ui. But,
we do have estimates of the ui, namely the OLS residuals ûi. If we replace the errors

with the OLS residuals, have n�1 �
n

i�1
ûi

2 � SSR/n. This is a true estimator, because it

gives a computable rule for any sample of data on x and y. One slight drawback
to this estimator is that it turns out to be biased (although for large n the bias is small).
Since it is easy to compute an unbiased estimator, we use that instead.

The estimator SSR/n is biased essentially because it does not account for two
restrictions that must be satisfied by the OLS residuals. These restrictions are given by
the two OLS first order conditions:

�
n

i�1
ûi � 0, �

n

i�1
xiûi � 0. (2.60)

One way to view these restrictions is this: if we know n � 2 of the residuals, we can
always get the other two residuals by using the restrictions implied by the first order
conditions in (2.60). Thus, there are only n � 2 degrees of freedom in the OLS resid-
uals [as opposed to n degrees of freedom in the errors. If we replace ûi with ui in (2.60),
the restrictions would no longer hold.] The unbiased estimator of 
2 that we will use
makes a degrees-of-freedom adjustment:


̂ 2 � �
n

i�1
ûi

2 � SSR/(n � 2). (2.61)

(This estimator is sometimes denoted s2, but we continue to use the convention of
putting “hats” over estimators.)

T H E O R E M  2 . 3  ( U N B I A S E D  E S T I M A T I O N  O F  � 2 )

Under Assumptions SLR.1 through SLR.5,

E(
̂ 2) � 
2.

P R O O F :  If we average equation (2.59) across all i and use the fact that the OLS
residuals average out to zero, we have 0 � ū � (�̂0 � �0) � (�̂1 � �1)x̄; subtracting this
from (2.59) gives ûi � (ui � ū) � (�̂1 � �1)(xi � x̄). Therefore, ûi

2 � (ui � ū)2 � (�̂1 �

�1)
2(xi � x̄)2 � 2(ui � ū)(�̂1 � �1)(xi � x̄). Summing across all i gives �

n

i�1
ûi

2 � �
n

i�1
(ui � ū)2

� (�̂1 � �1)
2 �

n

i�1
(xi � x̄)2 � 2(�̂1 � �1) �

n

i�1
ui(xi � x̄). Now, the expected value of the first

term is (n � 1)
2, something that is shown in Appendix C. The expected value of the second
term is simply 
2  because E[(�̂1 � �1)

2] � Var(�̂1) � 
2/sx
2. Finally, the third term can be

written as 2(�̂1 � �1)
2s2

x; taking expectations gives 2
2. Putting these three terms

together gives E ��
n

i�1
ûi

2� � (n � 1)
2 � 
2 � 2
2 � (n � 2)
2, so that E[SSR/(n � 2)] � 
2.

1

(n � 2)
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If 
̂ 2 is plugged into the variance formulas (2.57) and (2.58), then we have unbiased
estimators of Var(�̂1) and Var(�̂0). Later on, we will need estimators of the standard
deviations of �̂1 and �̂0, and this requires estimating 
. The natural estimator of 
 is


̂ � �
̂2
—

, (2.62)

and is called the standard error of the regression (SER). (Other names for 
̂ are the
standard error of the estimate and the root mean squared error, but we will not use
these.) Although 
̂ is not an unbiased estimator of 
, we can show that it is a consis-
tent estimator of 
 (see Appendix C), and it will serve our purposes well.

The estimate 
̂ is interesting since it is an estimate of the standard deviation in the
unobservables affecting y; equivalently, it estimates the standard deviation in y after the
effect of x has been taken out. Most regression packages report the value of 
̂ along
with the R-squared, intercept, slope, and other OLS statistics (under one of the several
names listed above). For now, our primary interest is in using 
̂ to estimate the stan-
dard deviations of �̂0 and �̂1. Since sd(�̂1) � 
/sx, the natural estimator of 
sd(�̂1) is

se(�̂1) � 
̂/sx � 
̂/ ��
n

i�1
(xi � x̄)2 �1/2

;

this is called the standard error of �̂1. Note that se(�̂1) is viewed as a random variable
when we think of running OLS over different samples of y; this is because 
̂ varies with
different samples. For a given sample, se(�̂1) is a number, just as �̂1 is simply a number
when we compute it from the given data.

Similarly, se(�̂0) is obtained from sd(�̂0) by replacing 
 with 
̂ . The standard error
of any estimate gives us an idea of how precise the estimator is. Standard errors play a
central role throughout this text; we will use them to construct test statistics and confi-
dence intervals for every econometric procedure we cover, starting in Chapter 4.

2.6 REGRESSION THROUGH THE ORIGIN

In rare cases, we wish to impose the restriction that, when x � 0, the expected value of
y is zero. There are certain relationships for which this is reasonable. For example, if
income (x) is zero, then income tax revenues (y) must also be zero. In addition, there
are problems where a model that originally has a nonzero intercept is transformed into
a model without an intercept.

Formally, we now choose a slope estimator, which we call �̃1, and a line of the form

ỹ � �̃1x, (2.63)

where the tildas over �̃1 and y are used to distinguish this problem from the much more
common problem of estimating an intercept along with a slope. Obtaining (2.63) is
called regression through the origin because the line (2.63) passes through the point
x � 0, ỹ � 0. To obtain the slope estimate in (2.63), we still rely on the method of ordi-
nary least squares, which in this case minimizes the sum of squared residuals
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�
n

i�1
(yi � �̃1xi)

2. (2.64)

Using calculus, it can be shown that �̃1 must solve the first order condition

�
n

i�1
xi(yi � �̃1xi) � 0. (2.65)

From this we can solve for �̃1:

�̃1 � , (2.66)

provided that not all the xi are zero, a case we rule out.
Note how �̃1 compares with the slope estimate when we also estimate the intercept

(rather than set it equal to zero). These two estimates are the same if, and only if, x̄ �
0. (See equation (2.49) for �̂1.) Obtaining an estimate of �1 using regression through the
origin is not done very often in applied work, and for good reason: if the intercept �0 �
0 then �̃1 is a biased estimator of �1. You will be asked to prove this in Problem 2.8.

SUMMARY

We have introduced the simple linear regression model in this chapter, and we have cov-
ered its basic properties. Given a random sample, the method of ordinary least squares
is used to estimate the slope and intercept parameters in the population model. We have
demonstrated the algebra of the OLS regression line, including computation of fitted
values and residuals, and the obtaining of predicted changes in the dependent variable
for a given change in the independent variable. In Section 2.4, we discussed two issues
of practical importance: (1) the behavior of the OLS estimates when we change the
units of measurement of the dependent variable or the independent variable; (2) the use
of the natural log to allow for constant elasticity and constant semi-elasticity models.

In Section 2.5, we showed that, under the four Assumptions SLR.1 through SLR.4,
the OLS estimators are unbiased. The key assumption is that the error term u has zero
mean given any value of the independent variable x. Unfortunately, there are reasons to
think this is false in many social science applications of simple regression, where the
omitted factors in u are often correlated with x. When we add the assumption that the
variance of the error given x is constant, we get simple formulas for the sampling vari-
ances of the OLS estimators. As we saw, the variance of the slope estimator �̂1 increases
as the error variance increases, and it decreases when there is more sample variation in
the independent variable. We also derived an unbiased estimator for 
2 � Var(u).

In Section 2.6, we briefly discussed regression through the origin, where the slope
estimator is obtained under the assumption that the intercept is zero. Sometimes this is
useful, but it appears infrequently in applied work.

�
n

i�1
xiyi

�
n

i�1
xi

2
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Much work is left to be done. For example, we still do not know how to test
hypotheses about the population parameters, �0 and �1. Thus, although we know that
OLS is unbiased for the population parameters under Assumptions SLR.1 through
SLR.4, we have no way of drawing inference about the population. Other topics, such
as the efficiency of OLS relative to other possible procedures, have also been omitted.

The issues of confidence intervals, hypothesis testing, and efficiency are central to
multiple regression analysis as well. Since the way we construct confidence intervals
and test statistics is very similar for multiple regression—and because simple regres-
sion is a special case of multiple regression—our time is better spent moving on to mul-
tiple regression, which is much more widely applicable than simple regression. Our
purpose in Chapter 2 was to get you thinking about the issues that arise in econometric
analysis in a fairly simple setting.

KEY TERMS

PROBLEMS

2.1 Let kids denote the number of children ever born to a woman, and let educ denote
years of education for the woman. A simple model relating fertility to years of educa-
tion is

kids � �0 � �1educ � u,

where u is the unobserved error.
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Coefficient of Determination
Constant Elasticity Model
Control Variable
Covariate
Degrees of Freedom
Dependent Variable
Elasticity
Error Term (Disturbance)
Error Variance
Explained Sum of Squares (SSE)
Explained Variable
Explanatory Variable
First Order Conditions
Fitted Value
Heteroskedasticity
Homoskedasticity
Independent Variable
Intercept Parameter
Ordinary Least Squares (OLS)
OLS Regression Line

Population Regression Function (PRF)
Predicted Variable
Predictor Variable
Regressand
Regression Through the Origin
Regressor
Residual
Residual Sum of Squares (SSR)
Response Variable
R-squared
Sample Regression Function (SRF)
Semi-elasticity
Simple Linear Regression Model
Slope Parameter
Standard Error of �̂1

Standard Error of the Regression (SER)
Sum of Squared Residuals
Total Sum of Squares (SST)
Zero Conditional Mean Assumption
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(i) What kinds of factors are contained in u? Are these likely to be corre-
lated with level of education?

(ii) Will a simple regression analysis uncover the ceteris paribus effect of
education on fertility? Explain.

2.2 In the simple linear regression model y � �0 � �1x � u, suppose that E(u) � 0.
Letting 
0 � E(u), show that the model can always be rewritten with the same slope,
but a new intercept and error, where the new error has a zero expected value.

2.3 The following table contains the ACT scores and the GPA (grade point average)
for 8 college students. Grade point average is based on a four-point scale and has been
rounded to one digit after the decimal.

Student GPA ACT

1 2.8 21

2 3.4 24

3 3.0 26

4 3.5 27

5 3.6 29

6 3.0 25

7 2.7 25

8 3.7 30

(i) Estimate the relationship between GPA and ACT using OLS; that is,
obtain the intercept and slope estimates in the equation

GP̂A � �̂0 � �̂1ACT.

Comment on the direction of the relationship. Does the intercept have a
useful interpretation here? Explain. How much higher is the GPA pre-
dicted to be, if the ACT score is increased by 5 points?

(ii) Compute the fitted values and residuals for each observation and verify
that the residuals (approximately) sum to zero.

(iii) What is the predicted value of GPA when ACT � 20?
(iv) How much of the variation in GPA for these 8 students is explained by

ACT? Explain.

2.4 The data set BWGHT.RAW contains data on births to women in the United States.
Two variables of interest are the dependent variable, infant birth weight in ounces
(bwght), and an explanatory variable, average number of cigarettes the mother smoked
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per day during pregnancy (cigs). The following simple regression was estimated using
data on n � 1388 births:

bwĝht � 119.77 � 0.514 cigs

(i) What is the predicted birth weight when cigs � 0? What about when
cigs � 20 (one pack per day)? Comment on the difference.

(ii) Does this simple regression necessarily capture a causal relationship
between the child’s birth weight and the mother’s smoking habits?
Explain.

2.5 In the linear consumption function

côns � �̂0 � �̂1inc,

the (estimated) marginal propensity to consume (MPC) out of income is simply the
slope, �̂1, while the average propensity to consume (APC) is côns/inc � �̂0/inc � �̂1.
Using observations for 100 families on annual income and consumption (both measured
in dollars), the following equation is obtained:

côns � �124.84 � 0.853 inc

n � 100, R2 � 0.692

(i) Interpret the intercept in this equation and comment on its sign and
magnitude.

(ii) What is predicted consumption when family income is $30,000?
(iii) With inc on the x-axis, draw a graph of the estimated MPC and APC.

2.6 Using data from 1988 for houses sold in Andover, MA, from Kiel and McClain
(1995), the following equation relates housing price (price) to the distance from a
recently built garbage incinerator (dist):

log(pr̂ice) � 9.40 � 0.312 log(dist)

n � 135, R2 � 0.162

(i) Interpret the coefficient on log(dist). Is the sign of this estimate what
you expect it to be?

(ii) Do you think simple regression provides an unbiased estimator of the
ceteris paribus elasticity of price with respect to dist? (Think about the
city’s decision on where to put the incinerator.)

(iii) What other factors about a house affect its price? Might these be corre-
lated with distance from the incinerator?

2.7 Consider the savings function

sav � �0 � �1inc � u, u � �inc
—

	e,

where e is a random variable with E(e) � 0 and Var(e) � 
e
2. Assume that e is inde-

pendent of inc.
(i) Show that E(u�inc) � 0, so that the key zero conditional mean assump-

tion (Assumption SLR.3) is satisfied. [Hint: If e is independent of inc,
then E(e�inc) � E(e).]
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(ii) Show that Var(u�inc) � 
e
2inc, so that the homoskedasticity Assumption

SLR.5 is violated. In particular, the variance of sav increases with inc.
[Hint: Var(e�inc) � Var(e), if e and inc are independent.]

(iii) Provide a discussion that supports the assumption that the variance of
savings increases with family income.

2.8 Consider the standard simple regression model y � �0 � �1x � u under
Assumptions SLR.1 through SLR.4. Thus, the usual OLS estimators �̂0 and �̂1 are unbi-
ased for their respective population parameters. Let �̃1 be the estimator of �1 obtained
by assuming the intercept is zero (see Section 2.6).

(i) Find E(�̃1) in terms of the xi, �0, and �1. Verify that �̃1 is unbiased for
�1 when the population intercept (�0) is zero. Are there other cases
where �̃1 is unbiased?

(ii) Find the variance of �̃1. (Hint: The variance does not depend on �0.)

(iii) Show that Var(�̃1) � Var(�̂1). [Hint: For any sample of data, �
n

i�1
xi

2 � �
n

i�1

(xi � x̄)2, with strict inequality unless x̄ � 0.]
(iv) Comment on the tradeoff between bias and variance when choosing

between �̂1 and �̃1.

2.9 (i) Let �̂0 and �̂1 be the intercept and slope from the regression of yi on xi, using n
observations. Let c1 and c2, with c2 � 0, be constants. Let �̃0 and �̃1 be the intercept and
slope from the regression c1yi on c2xi. Show that �̃1 � (c1/c2)�̂1 and �̃0 � c1�̂0, thereby
verifying the claims on units of measurement in Section 2.4. [Hint: To obtain �̃1, plug
the scaled versions of x and y into (2.19). Then, use (2.17) for �̃0, being sure to plug in
the scaled x and y and the correct slope.]

(ii) Now let �̃0 and �̃1 be from the regression (c1 � yi) on (c2 � xi) (with no
restriction on c1 or c2). Show that �̃1 � �̂1 and �̃0 � �̂0 � c1 � c2�̂1.

COMPUTER EXERCISES

2.10 The data in 401K.RAW are a subset of data analyzed by Papke (1995) to study the
relationship between participation in a 401(k) pension plan and the generosity of the
plan. The variable prate is the percentage of eligible workers with an active account;
this is the variable we would like to explain. The measure of generosity is the plan
match rate, mrate. This variable gives the average amount the firm contributes to each
worker’s plan for each $1 contribution by the worker. For example, if mrate � 0.50,
then a $1 contribution by the worker is matched by a 50¢ contribution by the firm.

(i) Find the average participation rate and the average match rate in the
sample of plans.

(ii) Now estimate the simple regression equation

prâte � �̂0 � �̂1mrate,

and report the results along with the sample size and R-squared.
(iii) Interpret the intercept in your equation. Interpret the coefficient on mrate.
(iv) Find the predicted prate when mrate � 3.5. Is this a reasonable predic-

tion? Explain what is happening here.
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(v) How much of the variation in prate is explained by mrate? Is this a lot
in your opinion?

2.11 The data set in CEOSAL2.RAW contains information on chief executive officers
for U.S. corporations. The variable salary is annual compensation, in thousands of dol-
lars, and ceoten is prior number of years as company CEO.

(i) Find the average salary and the average tenure in the sample.
(ii) How many CEOs are in their first year as CEO (that is, ceoten � 0)?

What is the longest tenure as a CEO?
(iii) Estimate the simple regression model

log(salary) � �0 � �1ceoten � u,

and report your results in the usual form. What is the (approximate) pre-
dicted percentage increase in salary given one more year as a CEO?

2.12 Use the data in SLEEP75.RAW from Biddle and Hamermesh (1990) to study whether
there is a tradeoff between the time spent sleeping per week and the time spent in paid
work. We could use either variable as the dependent variable. For concreteness, estimate
the model

sleep � �0 � �1totwrk � u,

where sleep is minutes spent sleeping at night per week and totwrk is total minutes
worked during the week.

(i) Report your results in equation form along with the number of obser-
vations and R2. What does the intercept in this equation mean?

(ii) If totwrk increases by 2 hours, by how much is sleep estimated to fall?
Do you find this to be a large effect?

2.13 Use the data in WAGE2.RAW to estimate a simple regression explaining monthly
salary (wage) in terms of IQ score (IQ).

(i) Find the average salary and average IQ in the sample. What is the stan-
dard deviation of IQ? (IQ scores are standardized so that the average in
the population is 100 with a standard deviation equal to 15.)

(ii) Estimate a simple regression model where a one-point increase in IQ
changes wage by a constant dollar amount. Use this model to find the
predicted increase in wage for an increase in IQ of 15 points. Does IQ
explain most of the variation in wage?

(iii) Now estimate a model where each one-point increase in IQ has the
same percentage effect on wage. If IQ increases by 15 points, what is
the approximate percentage increase in predicted wage?

2.14 For the population of firms in the chemical industry, let rd denote annual expen-
ditures on research and development, and let sales denote annual sales (both are in mil-
lions of dollars).

(i) Write down a model (not an estimated equation) that implies a constant
elasticity between rd and sales. Which parameter is the elasticity?

(ii) Now estimate the model using the data in RDCHEM.RAW. Write out the
estimated equation in the usual form. What is the estimated elasticity of
rd with respect to sales? Explain in words what this elasticity means.
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A P P E N D I X  2 A

Minimizing the Sum of Squared Residuals

We show that the OLS estimates �̂0 and �̂1 do minimize the sum of squared residuals,
as asserted in Section 2.2. Formally, the problem is to characterize the solutions �̂0 and
�̂1 to the minimization problem

min
b0,b1 

�
n

i�1
(yi � b0 � b1xi)

2,

where b0 and b1 are the dummy arguments for the optimization problem; for simplicity,
call this function Q(b0,b1). By a fundamental result from multivariable calculus (see
Appendix A), a necessary condition for �̂0 and �̂1 to solve the minimization problem is
that the partial derivatives of Q(b0,b1) with respect to b0 and b1 must be zero when eval-
uated at �̂0, �̂1: �Q(�̂0,�̂1)/�b0 � 0 and �Q(�̂0,�̂1)/�b1 � 0. Using the chain rule from
calculus, these two equations become

�2 �
n

i�1
(yi � �̂0 � �̂1xi) � 0.

�2 �
n

i�1
xi(yi � �̂0 � �̂1xi) � 0.

These two equations are just (2.14) and (2.15) multiplied by �2n and, therefore, are
solved by the same �̂0 and �̂1.

How do we know that we have actually minimized the sum of squared residuals?
The first order conditions are necessary but not sufficient conditions. One way to veri-
fy that we have minimized the sum of squared residuals is to write, for any b0 and b1,

Q(b0,b1) � �
n

i�1
(yi � �̂0 � �̂1xi � (�̂0 � b0) � (�̂1 � b1)xi)

2

� �
n

i�1
(ûi � (�̂0 � b0) � (�̂1 � b1)xi)

2

� �
n

i�1
ûi

2 � n(�̂0 � b0)
2 � (�̂1 � b1)

2 �
n

i�1
xi

2 � 2(�̂0 � b0)(�̂1 � b1) �
n

i�1
xi,

where we have used equations (2.30) and (2.31). The sum of squared residuals does not
depend on b0 or b1, while the sum of the last three terms can be written as

�
n

i�1
[(�̂0 � b0) � (�̂1 � b1)xi]

2,

as can be verified by straightforward algebra. Because this is a sum of squared terms,
it can be at most zero. Therefore, it is smallest when b0 = �̂0 and b1 = �̂1.
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In Chapter 2, we learned how to use simple regression analysis to explain a depen-
dent variable, y, as a function of a single independent variable, x. The primary draw-
back in using simple regression analysis for empirical work is that it is very diffi-

cult to draw ceteris paribus conclusions about how x affects y: the key assumption,
SLR.3—that all other factors affecting y are uncorrelated with x—is often unrealistic.

Multiple regression analysis is more amenable to ceteris paribus analysis because it
allows us to explicitly control for many other factors which simultaneously affect the
dependent variable. This is important both for testing economic theories and for evaluat-
ing policy effects when we must rely on nonexperimental data. Because multiple regres-
sion models can accommodate many explanatory variables that may be correlated, we can
hope to infer causality in cases where simple regression analysis would be misleading.

Naturally, if we add more factors to our model that are useful for explaining y, then
more of the variation in y can be explained. Thus, multiple regression analysis can be
used to build better models for predicting the dependent variable.

An additional advantage of multiple regression analysis is that it can incorporate
fairly general functional form relationships. In the simple regression model, only one
function of a single explanatory variable can appear in the equation. As we will see, the
multiple regression model allows for much more flexibility.

Section 3.1 formally introduces the multiple regression model and further dis-
cusses the advantages of multiple regression over simple regression. In Section 3.2, we
demonstrate how to estimate the parameters in the multiple regression model using the
method of ordinary least squares. In Sections 3.3, 3.4, and 3.5, we describe various sta-
tistical properties of the OLS estimators, including unbiasedness and efficiency.

The multiple regression model is still the most widely used vehicle for empirical
analysis in economics and other social sciences. Likewise, the method of ordinary least
squares is popularly used for estimating the parameters of the multiple regression model.

3.1 MOTIVATION FOR MULTIPLE REGRESSION

The Model with Two Independent Variables

We begin with some simple examples to show how multiple regression analysis can be
used to solve problems that cannot be solved by simple regression.
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The first example is a simple variation of the wage equation introduced in Chapter
2 for obtaining the effect of education on hourly wage:

wage � �0 � �1educ � �2exper � u, (3.1)

where exper is years of labor market experience. Thus, wage is determined by the two
explanatory or independent variables, education and experience, and by other unob-
served factors, which are contained in u. We are still primarily interested in the effect
of educ on wage, holding fixed all other factors affecting wage; that is, we are interest-
ed in the parameter �1.

Compared with a simple regression analysis relating wage to educ, equation (3.1)
effectively takes exper out of the error term and puts it explicitly in the equation.
Because exper appears in the equation, its coefficient, �2, measures the ceteris paribus
effect of exper on wage, which is also of some interest.

Not surprisingly, just as with simple regression, we will have to make assumptions
about how u in (3.1) is related to the independent variables, educ and exper. However,
as we will see in Section 3.2, there is one thing of which we can be confident: since
(3.1) contains experience explicitly, we will be able to measure the effect of education
on wage, holding experience fixed. In a simple regression analysis—which puts exper
in the error term—we would have to assume that experience is uncorrelated with edu-
cation, a tenuous assumption.

As a second example, consider the problem of explaining the effect of per student
spending (expend) on the average standardized test score (avgscore) at the high school
level. Suppose that the average test score depends on funding, average family income
(avginc), and other unobservables:

avgscore � �0 � �1expend � �2avginc � u. (3.2)

The coefficient of interest for policy purposes is �1, the ceteris paribus effect of expend
on avgscore. By including avginc explicitly in the model, we are able to control for its
effect on avgscore. This is likely to be important because average family income tends
to be correlated with per student spending: spending levels are often determined by both
property and local income taxes. In simple regression analysis, avginc would be in-
cluded in the error term, which would likely be correlated with expend, causing the
OLS estimator of �1 in the two-variable model to be biased.

In the two previous similar examples, we have shown how observable factors other
than the variable of primary interest [educ in equation (3.1), expend in equation (3.2)]
can be included in a regression model. Generally, we can write a model with two inde-
pendent variables as

y � �0 � �1x1 � �2x2 � u, (3.3)

where �0 is the intercept, �1 measures the change in y with respect to x1, holding other
factors fixed, and �2 measures the change in y with respect to x2, holding other factors
fixed.
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Multiple regression analysis is also useful for generalizing functional relationships
between variables. As an example, suppose family consumption (cons) is a quadratic
function of family income (inc):

cons � �0 � �1inc � �2inc2 � u, (3.4)

where u contains other factors affecting consumption. In this model, consumption
depends on only one observed factor, income; so it might seem that it can be handled
in a simple regression framework. But the model falls outside simple regression
because it contains two functions of income, inc and inc2 (and therefore three parame-
ters, �0, �1, and �2). Nevertheless, the consumption function is easily written as a
regression model with two independent variables by letting x1 � inc and x2 � inc2.

Mechanically, there will be no difference in using the method of ordinary least
squares (introduced in Section 3.2) to estimate equations as different as (3.1) and (3.4).
Each equation can be written as (3.3), which is all that matters for computation. There
is, however, an important difference in how one interprets the parameters. In equation
(3.1), �1 is the ceteris paribus effect of educ on wage. The parameter �1 has no such
interpretation in (3.4). In other words, it makes no sense to measure the effect of inc on
cons while holding inc2 fixed, because if inc changes, then so must inc2! Instead, the
change in consumption with respect to the change in income—the marginal propen-
sity to consume—is approximated by

� �1 � 2�2inc.

See Appendix A for the calculus needed to derive this equation. In other words, the mar-
ginal effect of income on consumption depends on �2 as well as on �1 and the level of
income. This example shows that, in any particular application, the definition of the
independent variables are crucial. But for the theoretical development of multiple
regression, we can be vague about such details. We will study examples like this more
completely in Chapter 6.

In the model with two independent variables, the key assumption about how u is
related to x1 and x2 is

E(u�x1,x2) � 0. (3.5)

The interpretation of condition (3.5) is similar to the interpretation of Assumption
SLR.3 for simple regression analysis. It means that, for any values of x1 and x2 in the
population, the average unobservable is equal to zero. As with simple regression, the
important part of the assumption is that the expected value of u is the same for all com-
binations of x1 and x2; that this common value is zero is no assumption at all as long as
the intercept �0 is included in the model (see Section 2.1).

How can we interpret the zero conditional mean assumption in the previous exam-
ples? In equation (3.1), the assumption is E(u�educ,exper) � 0. This implies that other
factors affecting wage are not related on average to educ and exper. Therefore, if we
think innate ability is part of u, then we will need average ability levels to be the same
across all combinations of education and experience in the working population. This

�cons

�inc

Part 1 Regression Analysis with Cross-Sectional Data

68

d  7/14/99 4:55 PM  Page 68



may or may not be true, but, as we will see in Section 3.3, this is the question we need
to ask in order to determine whether the method of ordinary least squares produces
unbiased estimators.

The example measuring student performance [equation (3.2)] is similar to the wage
equation. The zero conditional mean assumption is E(u�expend,avginc) � 0, which
means that other factors affecting test scores—school or student characteristics—are,

on average, unrelated to per student fund-
ing and average family income.

When applied to the quadratic con-
sumption function in (3.4), the zero condi-
tional mean assumption has a slightly dif-
ferent interpretation. Written literally,
equation (3.5) becomes E(u�inc,inc2) � 0.
Since inc2 is known when inc is known,
including inc2 in the expectation is redun-
dant: E(u�inc,inc2) � 0 is the same as

E(u�inc) � 0. Nothing is wrong with putting inc2 along with inc in the expectation when
stating the assumption, but E(u�inc) � 0 is more concise.

The Model with k Independent Variables

Once we are in the context of multiple regression, there is no need to stop with two
independent variables. Multiple regression analysis allows many observed factors to
affect y. In the wage example, we might also include amount of job training, years of
tenure with the current employer, measures of ability, and even demographic variables
like number of siblings or mother’s education. In the school funding example, addi-
tional variables might include measures of teacher quality and school size.

The general multiple linear regression model (also called the multiple regression
model) can be written in the population as

y � �0 � �1x1 � �2x2 � �3x3 � … � �kxk � u, (3.6)

where �0 is the intercept, �1 is the parameter associated with x1, �2 is the parameter
associated with x2, and so on. Since there are k independent variables and an intercept,
equation (3.6) contains k � 1 (unknown) population parameters. For shorthand pur-
poses, we will sometimes refer to the parameters other than the intercept as slope para-
meters, even though this is not always literally what they are. [See equation (3.4),
where neither �1 nor �2 is itself a slope, but together they determine the slope of the
relationship between consumption and income.]

The terminology for multiple regression is similar to that for simple regression and
is given in Table 3.1. Just as in simple regression, the variable u is the error term or
disturbance. It contains factors other than x1, x2, …, xk that affect y. No matter how
many explanatory variables we include in our model, there will always be factors we
cannot include, and these are collectively contained in u.

When applying the general multiple regression model, we must know how to inter-
pret the parameters. We will get plenty of practice now and in subsequent chapters, but
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A simple model to explain city murder rates (murdrate) in terms of
the probability of conviction (prbconv) and average sentence length
(avgsen) is

murdrate � �0 � �1prbconv � �2avgsen � u.

What are some factors contained in u? Do you think the key assum-
ption (3.5) is likely to hold?
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it is useful at this point to be reminded of some things we already know. Suppose that
CEO salary (salary) is related to firm sales and CEO tenure with the firm by

log(salary) � �0 � �1log(sales) � �2ceoten � �3ceoten2 � u. (3.7)

This fits into the multiple regression model (with k � 3) by defining y � log(salary),
x1 � log(sales), x2 � ceoten, and x3 � ceoten2. As we know from Chapter 2, the para-
meter �1 is the (ceteris paribus) elasticity of salary with respect to sales. If �3 � 0, then
100�2 is approximately the ceteris paribus percentage increase in salary when ceoten
increases by one year. When �3 � 0, the effect of ceoten on salary is more compli-
cated. We will postpone a detailed treatment of general models with quadratics until
Chapter 6.

Equation (3.7) provides an important reminder about multiple regression analysis.
The term “linear” in multiple linear regression model means that equation (3.6) is lin-
ear in the parameters, �j. Equation (3.7) is an example of a multiple regression model
that, while linear in the �j, is a nonlinear relationship between salary and the variables
sales and ceoten. Many applications of multiple linear regression involve nonlinear
relationships among the underlying variables.

The key assumption for the general multiple regression model is easy to state in
terms of a conditional expectation:

E(u�x1,x2, …, xk) � 0. (3.8)

At a minimum, equation (3.8) requires that all factors in the unobserved error term be
uncorrelated with the explanatory variables. It also means that we have correctly
accounted for the functional relationships between the explained and explanatory vari-
ables. Any problem that allows u to be correlated with any of the independent variables
causes (3.8) to fail. In Section 3.3, we will show that assumption (3.8) implies that OLS
is unbiased and will derive the bias that arises when a key variable has been omitted
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Table 3.1

Terminology for Multiple Regression

y x1, x2, …, xk

Dependent Variable Independent Variables

Explained Variable Explanatory Variables

Response Variable Control Variables

Predicted Variable Predictor Variables

Regressand Regressors
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from the equation. In Chapters 15 and 16, we will study other reasons that might cause
(3.8) to fail and show what can be done in cases where it does fail.

3.2 MECHANICS AND INTERPRETATION OF ORDINARY
LEAST SQUARES

We now summarize some computational and algebraic features of the method of ordi-
nary least squares as it applies to a particular set of data. We also discuss how to inter-
pret the estimated equation.

Obtaining the OLS Estimates

We first consider estimating the model with two independent variables. The estimated
OLS equation is written in a form similar to the simple regression case:

ŷ � �̂0 � �̂1x1 � �̂2x2, (3.9)

where �̂0 is the estimate of �0, �̂1 is the estimate of �1, and �̂2 is the estimate of �2. But
how do we obtain �̂0, �̂1, and �̂2? The method of ordinary least squares chooses the
estimates to minimize the sum of squared residuals. That is, given n observations on y,
x1, and x2, {(xi1,xi2,yi): i � 1,2, …, n}, the estimates �̂0, �̂1, and �̂2 are chosen simulta-
neously to make

�
n

i�1
(yi � �̂0 � �̂1xi1 � �̂2xi2)2 (3.10)

as small as possible.
In order to understand what OLS is doing, it is important to master the meaning of

the indexing of the independent variables in (3.10). The independent variables have two
subscripts here, i followed by either 1 or 2. The i subscript refers to the observation
number. Thus, the sum in (3.10) is over all i � 1 to n observations. The second index is
simply a method of distinguishing between different independent variables. In the
example relating wage to educ and exper, xi1 � educi is education for person i in the
sample, and xi2 � experi is experience for person i. The sum of squared residuals in

equation (3.10) is �
n

i�1
(wagei � �̂0 � �̂1educi � �̂2experi)

2. In what follows, the i sub-

script is reserved for indexing the observation number. If we write xij, then this means
the ith observation on the jth independent variable. (Some authors prefer to switch the
order of the observation number and the variable number, so that x1i is observation i on
variable one. But this is just a matter of notational taste.)

In the general case with k independent variables, we seek estimates �̂0, �̂1, …, �̂k in
the equation

ŷ � �̂0 � �̂1x1 � �̂2x2 � … � �̂kxk. (3.11)

The OLS estimates, k � 1 of them, are chosen to minimize the sum of squared residuals:

Chapter 3 Multiple Regression Analysis: Estimation

71

d  7/14/99 4:55 PM  Page 71



�
n

i�1
(yi � �̂0 � �̂1xi1 � … � �̂kxik)

2. (3.12)

This minimization problem can be solved using multivariable calculus (see Appendix
3A). This leads to k � 1 linear equations in k � 1 unknowns �̂0, �̂1, …, �̂k:

�
n

i�1
(yi � �̂0 � �̂1xi1 � … � �̂kxik) � 0

�
n

i�1
xi1(yi � �̂0 � �̂1xi1 � … � �̂kxik) � 0

�
n

i�1
xi2(yi � �̂0 � �̂1xi1 � … � �̂kxik) � 0 (3.13)

�
�
�

�
n

i�1
xik(yi � �̂0 � �̂1xi1 � … � �̂kxik) � 0.

These are often called the OLS first order conditions. As with the simple regression
model in Section 2.2, the OLS first order conditions can be motivated by the method of
moments: under assumption (3.8), E(u) � 0 and E(xju) � 0, where j � 1,2, …, k. The
equations in (3.13) are the sample counterparts of these population moments.

For even moderately sized n and k, solving the equations in (3.13) by hand calcula-
tions is tedious. Nevertheless, modern computers running standard statistics and econo-
metrics software can solve these equations with large n and k very quickly.

There is only one slight caveat: we must assume that the equations in (3.13) can be
solved uniquely for the �̂j. For now, we just assume this, as it is usually the case in well-
specified models. In Section 3.3, we state the assumption needed for unique OLS esti-
mates to exist (see Assumption MLR.4).

As in simple regression analysis, equation (3.11) is called the OLS regression line,
or the sample regression function (SRF). We will call �̂0 the OLS intercept estimate
and �̂1, …, �̂k the OLS slope estimates (corresponding to the independent variables x1,
x2, …, xk).

In order to indicate that an OLS regression has been run, we will either write out
equation (3.11) with y and x1, …, xk replaced by their variable names (such as wage,
educ, and exper), or we will say that “we ran an OLS regression of y on x1, x2, …, xk”
or that “we regressed y on x1, x2, …, xk.” These are shorthand for saying that the method
of ordinary least squares was used to obtain the OLS equation (3.11). Unless explicitly
stated otherwise, we always estimate an intercept along with the slopes.

Interpreting the OLS Regression Equation

More important than the details underlying the computation of the �̂j is the
interpretation of the estimated equation. We begin with the case of two independent
variables:
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ŷ � �̂0 � �̂1x1 � �̂2x2. (3.14)

The intercept �̂0 in equation (3.14) is the predicted value of y when x1 � 0 and x2 � 0.
Sometimes setting x1 and x2 both equal to zero is an interesting scenario, but in other
cases it will not make sense. Nevertheless, the intercept is always needed to obtain a
prediction of y from the OLS regression line, as (3.14) makes clear.

The estimates �̂1 and �̂2 have partial effect, or ceteris paribus, interpretations.
From equation (3.14), we have

�ŷ � �̂1�x1 � �̂2�x2,

so we can obtain the predicted change in y given the changes in x1 and x2. (Note how
the intercept has nothing to do with the changes in y.) In particular, when x2 is held
fixed, so that �x2 � 0, then

�ŷ � �̂1�x1,

holding x2 fixed. The key point is that, by including x2 in our model, we obtain a coef-
ficient on x1 with a ceteris paribus interpretation. This is why multiple regression analy-
sis is so useful. Similarly,

�ŷ � �̂2�x2,

holding x1 fixed.

E X A M P L E  3 . 1
( D e t e r m i n a n t s  o f  C o l l e g e  G P A )

The variables in GPA1.RAW include college grade point average (colGPA), high school GPA
(hsGPA), and achievement test score (ACT ) for a sample of 141 students from a large uni-
versity; both college and high school GPAs are on a four-point scale. We obtain the fol-
lowing OLS regression line to predict college GPA from high school GPA and achievement
test score:

col̂GPA � 1.29 � .453 hsGPA � .0094 ACT. (3.15)

How do we interpret this equation? First, the intercept 1.29 is the predicted college GPA if
hsGPA and ACT are both set as zero. Since no one who attends college has either a zero
high school GPA or a zero on the achievement test, the intercept in this equation is not, by
itself, meaningful.

More interesting estimates are the slope coefficients on hsGPA and ACT. As expected,
there is a positive partial relationship between colGPA and hsGPA: holding ACT fixed,
another point on hsGPA is associated with .453 of a point on the college GPA, or almost
half a point. In other words, if we choose two students, A and B, and these students 
have the same ACT score, but the high school GPA of Student A is one point higher than
the high school GPA of Student B, then we predict Student A to have a college GPA .453
higher than that of Student B. [This says nothing about any two actual people, but it is our
best prediction.]
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The sign on ACT implies that, while holding hsGPA fixed, a change in the ACT score of
10 points—a very large change, since the average score in the sample is about 24 with a
standard deviation less than three—affects colGPA by less than one-tenth of a point. This
is a small effect, and it suggests that, once high school GPA is accounted for, the ACT score
is not a strong predictor of college GPA. (Naturally, there are many other factors that con-
tribute to GPA, but here we focus on statistics available for high school students.) Later,
after we discuss statistical inference, we will show that not only is the coefficient on ACT
practically small, it is also statistically insignificant.

If we focus on a simple regression analysis relating colGPA to ACT only, we obtain

col̂GPA � 2.40 � .0271 ACT;

thus, the coefficient on ACT is almost three times as large as the estimate in (3.15). But this
equation does not allow us to compare two people with the same high school GPA; it cor-
responds to a different experiment. We say more about the differences between multiple
and simple regression later.

The case with more than two independent variables is similar. The OLS regression
line is

ŷ � �̂0 � �̂1x1 � �̂2x2 � … � �̂kxk. (3.16)

Written in terms of changes,

�ŷ � �̂1�x1 � �̂2�x2 � … � �̂k�xk. (3.17)

The coefficient on x1 measures the change in ŷ due to a one-unit increase in x1, holding
all other independent variables fixed. That is,

�ŷ � �̂1�x1, (3.18)

holding x2, x3, …, xk fixed. Thus, we have controlled for the variables x2, x3, …, xk when
estimating the effect of x1 on y. The other coefficients have a similar interpretation.

The following is an example with three independent variables.

E X A M P L E  3 . 2
( H o u r l y  W a g e  E q u a t i o n )

Using the 526 observations on workers in WAGE1.RAW, we include educ (years of educa-
tion), exper (years of labor market experience), and tenure (years with the current em-
ployer) in an equation explaining log(wage). The estimated equation is

log(̂wage) � .284 � .092 educ � .0041 exper � .022 tenure. (3.19)

As in the simple regression case, the coefficients have a percentage interpretation. The only
difference here is that they also have a ceteris paribus interpretation. The coefficient .092
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means that, holding exper and tenure fixed, another year of education is predicted to
increase log(wage) by .092, which translates into an approximate 9.2 percent [100(.092)]
increase in wage. Alternatively, if we take two people with the same levels of experience
and job tenure, the coefficient on educ is the proportionate difference in predicted wage
when their education levels differ by one year. This measure of the return to education at
least keeps two important productivity factors fixed; whether it is a good estimate of the
ceteris paribus return to another year of education requires us to study the statistical prop-
erties of OLS (see Section 3.3).

On the Meaning of “Holding Other Factors Fixed” in
Multiple Regression

The partial effect interpretation of slope coefficients in multiple regression analysis can
cause some confusion, so we attempt to prevent that problem now.

In Example 3.1, we observed that the coefficient on ACT measures the predicted dif-
ference in colGPA, holding hsGPA fixed. The power of multiple regression analysis is
that it provides this ceteris paribus interpretation even though the data have not been
collected in a ceteris paribus fashion. In giving the coefficient on ACT a partial effect
interpretation, it may seem that we actually went out and sampled people with the same
high school GPA but possibly with different ACT scores. This is not the case. The data
are a random sample from a large university: there were no restrictions placed on the
sample values of hsGPA or ACT in obtaining the data. Rarely do we have the luxury of
holding certain variables fixed in obtaining our sample. If we could collect a sample of
individuals with the same high school GPA, then we could perform a simple regression
analysis relating colGPA to ACT. Multiple regression effectively allows us to mimic this
situation without restricting the values of any independent variables.

The power of multiple regression analysis is that it allows us to do in nonexperi-
mental environments what natural scientists are able to do in a controlled laboratory set-
ting: keep other factors fixed.

Changing More than One Independent Variable
Simultaneously

Sometimes we want to change more than one independent variable at the same time to
find the resulting effect on the dependent variable. This is easily done using equation
(3.17). For example, in equation (3.19), we can obtain the estimated effect on wage when
an individual stays at the same firm for another year: exper (general workforce experi-
ence) and tenure both increase by one year. The total effect (holding educ fixed) is

�log(̂wage) � .0041 �exper � .022 �tenure � .0041 � .022 � .0261,

or about 2.6 percent. Since exper and tenure each increase by one year, we just add the
coefficients on exper and tenure and multiply by 100 to turn the effect into a percent.

OLS Fitted Values and Residuals

After obtaining the OLS regression line (3.11), we can obtain a fitted or predicted value
for each observation. For observation i, the fitted value is simply
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ŷi � �̂0 � �̂1xi1 � �̂2xi2 � … � �̂kxik, (3.20)

which is just the predicted value obtained by plugging the values of the independent
variables for observation i into equation (3.11). We should not forget about the intercept

in obtaining the fitted values; otherwise,
the answer can be very misleading. As an
example, if in (3.15), hsGPAi � 3.5 and
ACTi � 24, col̂GPAi � 1.29 � .453(3.5) �
.0094(24) � 3.101 (rounded to three
places after the decimal).

Normally, the actual value yi for any
observation i will not equal the predicted
value, ŷi: OLS minimizes the average

squared prediction error, which says nothing about the prediction error for any particu-
lar observation. The residual for observation i is defined just as in the simple regres-
sion case,

ûi � yi � ŷi. (3.21)

There is a residual for each observation. If ûi 	 0, then ŷi is below yi, which means
that, for this observation, yi is underpredicted. If ûi 
 0, then yi 
 ŷi, and yi is over-
predicted.

The OLS fitted values and residuals have some important properties that are imme-
diate extensions from the single variable case:

1. The sample average of the residuals is zero.
2. The sample covariance between each independent variable and the OLS residu-

als is zero. Consequently, the sample covariance between the OLS fitted values
and the OLS residuals is zero.

3. The point (x̄1,x̄2, …, x̄k,ȳ) is always on the OLS regression line: ȳ � �̂0 � �̂1x̄1

� �̂2x̄2 � … � �̂kx̄k.

The first two properties are immediate consequences of the set of equations used to
obtain the OLS estimates. The first equation in (3.13) says that the sum of the residuals

is zero. The remaining equations are of the form �
n

i�1
xijûi � 0, which imply that the each

independent variable has zero sample covariance with ûi. Property 3 follows immedi-
ately from Property 1.

A “Partialling Out” Interpretation of Multiple
Regression

When applying OLS, we do not need to know explicit formulas for the �̂j that solve the
system of equations (3.13). Nevertheless, for certain derivations, we do need explicit
formulas for the �̂j. These formulas also shed further light on the workings of OLS.

Consider again the case with k � 2 independent variables, ŷ � �̂0 � �̂1x1 � �̂2x2.
For concreteness, we focus on �̂1. One way to express �̂1 is
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�̂1 � ��
n

i�1
r̂i1yi � � ��

n

i�1
r̂ i

2
1 �, (3.22)

where the r̂i1 are the OLS residuals from a simple regression of x1 on x2, using the sam-
ple at hand. We regress our first independent variable, x1, on our second independent
variable, x2, and then obtain the residuals (y plays no role here). Equation (3.22) shows
that we can then do a simple regression of y on r̂1 to obtain �̂1. (Note that the residu-
als r̂i1 have a zero sample average, and so �̂1 is the usual slope estimate from simple
regression.)

The representation in equation (3.22) gives another demonstration of �̂1’s partial
effect interpretation. The residuals r̂i1 are the part of xi1 that is uncorrelated with xi2.
Another way of saying this is that r̂i1 is xi1 after the effects of xi2 have been partialled
out, or netted out. Thus, �̂1 measures the sample relationship between y and x1 after x2

has been partialled out.
In simple regression analysis, there is no partialling out of other variables because

no other variables are included in the regression. Problem 3.17 steps you through the
partialling out process using the wage data from Example 3.2. For practical purposes,
the important thing is that �̂1 in the equation ŷ � �̂0 � �̂1x1 � �̂2x2 measures the change
in y given a one-unit increase in x1, holding x2 fixed.

In the general model with k explanatory variables, �̂1 can still be written as in equa-
tion (3.22), but the residuals r̂i1 come from the regression of x1 on x2, …, xk. Thus, �̂1

measures the effect of x1 on y after x2, …, xk have been partialled or netted out.

Comparison of Simple and Multiple Regression
Estimates

Two special cases exist in which the simple regression of y on x1 will produce the same
OLS estimate on x1 as the regression of y on x1 and x2. To be more precise, write the
simple regression of y on x1 as ỹ � �̃0 � �̃1x1 and write the multiple regression as 
ŷ � �̂0 � �̂1x1 � �̂2x2. We know that the simple regression coefficient �̃1 does not usu-
ally equal the multiple regression coefficient �̂1. There are two distinct cases where �̃1

and �̂1 are identical:

1. The partial effect of x2 on y is zero in the sample. That is, �̂2 � 0.
2. x1 and x2 are uncorrelated in the sample.

The first assertion can be proven by looking at two of the equations used to determine

�̂0, �̂1, and �̂2: �
n

i�1
xi1(yi � �̂0 � �̂1xi1 � �̂2xi2) � 0 and �̂0 � ȳ � �̂1x̄1 � �̂2x̄2. Setting

�̂2 � 0 gives the same intercept and slope as does the regression of y on x1.
The second assertion follows from equation (3.22). If x1 and x2 are uncorrelated in

the sample, then regressing x1 on x2 results in no partialling out, and so the simple
regression of y on x1 and the multiple regression of y on x1 and x2 produce identical esti-
mates on x1.

Even though simple and multiple regression estimates are almost never identical,
we can use the previous characterizations to explain why they might be either very dif-
ferent or quite similar. For example, if �̂2 is small, we might expect the simple and mul-
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tiple regression estimates of �1 to be similar. In Example 3.1, the sample correlation
between hsGPA and ACT is about 0.346, which is a nontrivial correlation. But the coef-
ficient on ACT is fairly little. It is not suprising to find that the simple regression of
colGPA on hsGPA produces a slope estimate of .482, which is not much different from
the estimate .453 in (3.15).

E X A M P L E  3 . 3
( P a r t i c i p a t i o n  i n  4 0 1 ( k )  P e n s i o n  P l a n s )

We use the data in 401K.RAW to estimate the effect of a plan’s match rate (mrate) on the
participation rate (prate) in its 401(k) pension plan. The match rate is the amount the firm
contributes to a worker’s fund for each dollar the worker contributes (up to some limit);
thus, mrate � .75 means that the firm contributes 75 cents for each dollar contributed by
the worker. The participation rate is the percentage of eligible workers having a 401(k)
account. The variable age is the age of the 401(k) plan. There are 1,534 plans in the data
set, the average prate is 87.36, the average mrate is .732, and the average age is 13.2.

Regressing prate on mrate, age gives

prâte � 80.12 � 5.52 mrate � .243 age. (3.23)

Thus, both mrate and age have the expected effects. What happens if we do not control
for age? The estimated effect of age is not trivial, and so we might expect a large change
in the estimated effect of mrate if age is dropped from the regression. However, the simple
regression of prate on mrate yields prâte � 83.08 � 5.86 mrate. The simple regression esti-
mate of the effect of mrate on prate is clearly different from the multiple regression esti-
mate, but the difference is not very big. (The simple regression estimate is only about 6.2
percent larger than the multiple regression estimate.) This can be explained by the fact that
the sample correlation between mrate and age is only .12.

In the case with k independent variables, the simple regression of y on x1 and the
multiple regression of y on x1, x2, …, xk produce an identical estimate of x1 only if (1)
the OLS coefficients on x2 through xk are all zero or (2) x1 is uncorrelated with each of
x2, …, xk. Neither of these is very likely in practice. But if the coefficients on x2 through
xk are small, or the sample correlations between x1 and the other independent variables
are insubstantial, then the simple and multiple regression estimates of the effect of x1

on y can be similar.

Goodness-of-Fit

As with simple regression, we can define the total sum of squares (SST), the
explained sum of squares (SSE), and the residual sum of squares or sum of squared
residuals (SSR), as

SST � �
n

i�1
(yi � ȳ)2 (3.24)
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SSE � �
n

i�1
(ŷi � ȳ)2 (3.25)

SSR � �
n

i�1
ûi

2. (3.26)

Using the same argument as in the simple regression case, we can show that

SST � SSE � SSR. (3.27)

In other words, the total variation in {yi} is the sum of the total variations in {ŷi} and
in {ûi}.

Assuming that the total variation in y is nonzero, as is the case unless yi is constant
in the sample, we can divide (3.27) by SST to get

SSR/SST � SSE/SST � 1.

Just as in the simple regression case, the R-squared is defined to be

R2 � SSE/SST � 1 � SSR/SST, (3.28)

and it is interpreted as the proportion of the sample variation in yi that is explained by
the OLS regression line. By definition, R2 is a number between zero and one.

R2 can also be shown to equal the squared correlation coefficient between the 
actual yi and the fitted values ŷi. That is,

R2 � (3.29)

(We have put the average of the ŷi in (3.29) to be true to the formula for a correlation
coefficient; we know that this average equals ȳ because the sample average of the resid-
uals is zero and yi � ŷi � ûi.)

An important fact about R2 is that it never decreases, and it usually increases when
another independent variable is added to a regression. This algebraic fact follows
because, by definition, the sum of squared residuals never increases when additional
regressors are added to the model.

The fact that R2 never decreases when any variable is added to a regression makes
it a poor tool for deciding whether one variable or several variables should be added to
a model. The factor that should determine whether an explanatory variable belongs in
a model is whether the explanatory variable has a nonzero partial effect on y in the pop-
ulation. We will show how to test this hypothesis in Chapter 4 when we cover statisti-
cal inference. We will also see that, when used properly, R2 allows us to test a group of
variables to see if it is important for explaining y. For now, we use it as a goodness-
of-fit measure for a given model.

��
n

i�1
(yi � ȳ) (ŷi � ȳ̂)�

2

��
n

i�1
(yi � ȳ)2� ��

n

i�1
(ŷi � ȳ̂)2�
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E X A M P L E  3 . 4
( D e t e r m i n a n t s  o f  C o l l e g e  G P A )

From the grade point average regression that we did earlier, the equation with R2 is

col̂GPA � 1.29 � .453 hsGPA � .0094 ACT

n � 141, R2 � .176.

This means that hsGPA and ACT together explain about 17.6 percent of the variation in col-
lege GPA for this sample of students. This may not seem like a high percentage, but we
must remember that there are many other factors—including family background, person-
ality, quality of high school education, affinity for college—that contribute to a student’s
college performance. If hsGPA and ACT explained almost all of the variation in colGPA, then
performance in college would be preordained by high school performance!

E X A M P L E  3 . 5
( E x p l a i n i n g  A r r e s t  R e c o r d s )

CRIME1.RAW contains data on arrests during the year 1986 and other information on
2,725 men born in either 1960 or 1961 in California. Each man in the sample was arrest-
ed at least once prior to 1986. The variable narr86 is the number of times the man was
arrested during 1986, it is zero for most men in the sample (72.29 percent), and it varies
from 0 to 12. (The percentage of the men arrested once during 1986 was 20.51.) The vari-
able pcnv is the proportion (not percentage) of arrests prior to 1986 that led to conviction,
avgsen is average sentence length served for prior convictions (zero for most people),
ptime86 is months spent in prison in 1986, and qemp86 is the number of quarters during
which the man was employed in 1986 (from zero to four).

A linear model explaining arrests is

narr86 � �0 � �1pcnv � �2avgsen � �3ptime86 � �4qemp86 � u,

where pcnv is a proxy for the likelihood for being convicted of a crime and avgsen is a mea-
sure of expected severity of punishment, if convicted. The variable ptime86 captures the
incarcerative effects of crime: if an individual is in prison, he cannot be arrested for a crime
outside of prison. Labor market opportunities are crudely captured by qemp86.

First, we estimate the model without the variable avgsen. We obtain

nar̂r86 � .712 � .150 pcnv � .034 ptime86 � .104 qemp86

n � 2,725, R2 � .0413

This equation says that, as a group, the three variables pcnv, ptime86, and qemp86 explain
about 4.1 percent of the variation in narr86.

Each of the OLS slope coefficients has the anticipated sign. An increase in the propor-
tion of convictions lowers the predicted number of arrests. If we increase pcnv by .50 (a
large increase in the probability of conviction), then, holding the other factors fixed,
�nar̂r86 � �.150(.5) � �.075. This may seem unusual because an arrest cannot change
by a fraction. But we can use this value to obtain the predicted change in expected arrests
for a large group of men. For example, among 100 men, the predicted fall in arrests when
pcnv increases by .5 is �7.5.
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Similarly, a longer prison term leads to a lower predicted number of arrests. In fact, if
ptime86 increases from 0 to 12, predicted arrests for a particular man falls by .034(12) �
.408. Another quarter in which legal employment is reported lowers predicted arrests by
.104, which would be 10.4 arrests among 100 men.

If avgsen is added to the model, we know that R2 will increase. The estimated equation is

nar̂r86 � .707 � .151 pcnv � .0074 avgsen � .037 ptime86 � .103 qemp86

n � 2,725, R2 � .0422.

Thus, adding the average sentence variable increases R2 from .0413 to .0422, a practically
small effect. The sign of the coefficient on avgsen is also unexpected: it says that a longer
average sentence length increases criminal activity.

Example 3.5 deserves a final word of caution. The fact that the four explanatory
variables included in the second regression explain only about 4.2 percent of the varia-
tion in narr86 does not necessarily mean that the equation is useless. Even though these
variables collectively do not explain much of the variation in arrests, it is still possible
that the OLS estimates are reliable estimates of the ceteris paribus effects of each inde-
pendent variable on narr86. As we will see, whether this is the case does not directly
depend on the size of R2. Generally, a low R2 indicates that it is hard to predict individ-
ual outcomes on y with much accuracy, something we study in more detail in Chapter
6. In the arrest example, the small R2 reflects what we already suspect in the social sci-
ences: it is generally very difficult to predict individual behavior.

Regression Through the Origin

Sometimes, an economic theory or common sense suggests that �0 should be zero, and
so we should briefly mention OLS estimation when the intercept is zero. Specifically,
we now seek an equation of the form

ỹ � �̃1x1 � �̃2x2 � … � �̃kxk, (3.30)

where the symbol “~” over the estimates is used to distinguish them from the OLS esti-
mates obtained along with the intercept [as in (3.11)]. In (3.30), when x1 � 0, x2 � 0,
…, xk � 0, the predicted value is zero. In this case, �̃1, …, �̃k are said to be the OLS esti-
mates from the regression of y on x1, x2, …, xk through the origin.

The OLS estimates in (3.30), as always, minimize the sum of squared residuals, but
with the intercept set at zero. You should be warned that the properties of OLS that 
we derived earlier no longer hold for regression through the origin. In particular, the
OLS residuals no longer have a zero sample average. Further, if R2 is defined as

1 � SSR/SST, where SST is given in (3.24) and SSR is now �
n

i�1
(yi � �̃1xi1 � … �

�̃kxik)
2, then R2 can actually be negative. This means that the sample average, ȳ,

“explains” more of the variation in the yi than the explanatory variables. Either we
should include an intercept in the regression or conclude that the explanatory variables
poorly explain y. In order to always have a nonnegative R-squared, some economists
prefer to calculate R2 as the squared correlation coefficient between the actual and fit-
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ted values of y, as in (3.29). (In this case, the average fitted value must be computed
directly since it no longer equals ȳ.) However, there is no set rule on computing R-
squared for regression through the origin.

One serious drawback with regression through the origin is that, if the intercept �0

in the population model is different from zero, then the OLS estimators of the slope
parameters will be biased. The bias can be severe in some cases. The cost of estimating
an intercept when �0 is truly zero is that the variances of the OLS slope estimators are
larger.

3.3 THE EXPECTED VALUE OF THE OLS ESTIMATORS

We now turn to the statistical properties of OLS for estimating the parameters in an
underlying population model. In this section, we derive the expected value of the OLS
estimators. In particular, we state and discuss four assumptions, which are direct exten-
sions of the simple regression model assumptions, under which the OLS estimators are
unbiased for the population parameters. We also explicitly obtain the bias in OLS when
an important variable has been omitted from the regression.

You should remember that statistical properties have nothing to do with a particular
sample, but rather with the property of estimators when random sampling is done
repeatedly. Thus, Sections 3.3, 3.4, and 3.5 are somewhat abstract. While we give exam-
ples of deriving bias for particular models, it is not meaningful to talk about the statis-
tical properties of a set of estimates obtained from a single sample.

The first assumption we make simply defines the multiple linear regression (MLR)
model.

A S S U M P T I O N  M L R . 1  ( L I N E A R  I N  P A R A M E T E R S )

The model in the population can be written as

y � �0 � �1x1 � �2x2 � … � �kxk � u, (3.31)

where �0, �1, …, �k are the unknown parameters (constants) of interest, and u is an unob-
servable random error or random disturbance term.

Equation (3.31) formally states the population model, sometimes called the true
model, to allow for the possibility that we might estimate a model that differs from
(3.31). The key feature is that the model is linear in the parameters �0, �1, …, �k. As
we know, (3.31) is quite flexible because y and the independent variables can be arbi-
trary functions of the underlying variables of interest, such as natural logarithms and
squares [see, for example, equation (3.7)].

A S S U M P T I O N  M L R . 2  ( R A N D O M  S A M P L I N G )

We have a random sample of n observations, {(xi1,xi2,…,xik,yi): i � 1,2,…,n}, from the pop-
ulation model described by (3.31).
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Sometimes we need to write the equation for a particular observation i: for a ran-
domly drawn observation from the population, we have

yi � �0 � �1xi1 � �2xi2 � … � �kxik � ui. (3.32)

Remember that i refers to the observation, and the second subscript on x is the variable
number. For example, we can write a CEO salary equation for a particular CEO i as

log(salaryi) � �0 � �1log(salesi) � �2ceoteni � �3ceoteni
2 � ui. (3.33)

The term ui contains the unobserved factors for CEO i that affect his or her salary. For
applications, it is usually easiest to write the model in population form, as in (3.31). It
contains less clutter and emphasizes the fact that we are interested in estimating a pop-
ulation relationship.

In light of model (3.31), the OLS estimators �̂0, �̂1, �̂2, …, �̂k from the regression
of y on x1, …, xk are now considered to be estimators of �0, �1, …, �k. We saw, in
Section 3.2, that OLS chooses the estimates for a particular sample so that the residu-
als average out to zero and the sample correlation between each independent variable
and the residuals is zero. For OLS to be unbiased, we need the population version of
this condition to be true.

A S S U M P T I O N  M L R . 3  ( Z E R O  C O N D I T I O N A L  M E A N )

The error u has an expected value of zero, given any values of the independent variables.
In other words,

E(u�x1,x2, …, xk) � 0. (3.34)

One way that Assumption MLR.3 can fail is if the functional relationship between
the explained and explanatory variables is misspecified in equation (3.31): for example,
if we forget to include the quadratic term inc2 in the consumption function cons �
�0 � �1inc � �2inc2 � u when we estimate the model. Another functional form mis-
specification occurs when we use the level of a variable when the log of the variable is what
actually shows up in the population model, or vice versa. For example, if the true model
has log(wage) as the dependent variable but we use wage as the dependent variable in our
regression analysis, then the estimators will be biased. Intuitively, this should be pretty
clear. We will discuss ways of detecting functional form misspecification in Chapter 9.

Omitting an important factor that is correlated with any of x1, x2, …, xk causes
Assumption MLR.3 to fail also. With multiple regression analysis, we are able to
include many factors among the explanatory variables, and omitted variables are less
likely to be a problem in multiple regression analysis than in simple regression analy-
sis. Nevertheless, in any application there are always factors that, due to data limitations
or ignorance, we will not be able to include. If we think these factors should be con-
trolled for and they are correlated with one or more of the independent variables, then
Assumption MLR.3 will be violated. We will derive this bias in some simple models
later.
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There are other ways that u can be correlated with an explanatory variable. In
Chapter 15, we will discuss the problem of measurement error in an explanatory vari-
able. In Chapter 16, we cover the conceptually more difficult problem in which one or
more of the explanatory variables is determined jointly with y. We must postpone our
study of these problems until we have a firm grasp of multiple regression analysis under
an ideal set of assumptions.

When Assumption MLR.3 holds, we often say we have exogenous explanatory
variables. If xj is correlated with u for any reason, then xj is said to be an endogenous
explanatory variable. The terms “exogenous” and “endogenous” originated in simul-
taneous equations analysis (see Chapter 16), but the term “endogenous explanatory
variable” has evolved to cover any case where an explanatory variable may be cor-
related with the error term.

The final assumption we need to show that OLS is unbiased ensures that the OLS
estimators are actually well-defined. For simple regression, we needed to assume that
the single independent variable was not constant in the sample. The corresponding
assumption for multiple regression analysis is more complicated.

A S S U M P T I O N  M L R . 4  ( N O  P E R F E C T  C O L L I N E A R I T Y )

In the sample (and therefore in the population), none of the independent variables is con-
stant, and there are no exact linear relationships among the independent variables.

The no perfect collinearity assumption concerns only the independent variables.
Beginning students of econometrics tend to confuse Assumptions MLR.4 and MLR.3,
so we emphasize here that MLR.4 says nothing about the relationship between u and
the explanatory variables.

Assumption MLR.4 is more complicated than its counterpart for simple regression
because we must now look at relationships between all independent variables. If an
independent variable in (3.31) is an exact linear combination of the other independent
variables, then we say the model suffers from perfect collinearity, and it cannot be esti-
mated by OLS.

It is important to note that Assumption MLR.4 does allow the independent variables
to be correlated; they just cannot be perfectly correlated. If we did not allow for any cor-
relation among the independent variables, then multiple regression would not be very
useful for econometric analysis. For example, in the model relating test scores to edu-
cational expenditures and average family income,

avgscore � �0 � �1expend � �2avginc � u,

we fully expect expend and avginc to be correlated: school districts with high average
family incomes tend to spend more per student on education. In fact, the primary moti-
vation for including avginc in the equation is that we suspect it is correlated with
expend, and so we would like to hold it fixed in the analysis. Assumption MLR.4 only
rules out perfect correlation between expend and avginc in our sample. We would be
very unlucky to obtain a sample where per student expenditures are perfectly corre-
lated with average family income. But some correlation, perhaps a substantial amount,
is expected and certainly allowed.
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The simplest way that two independent variables can be perfectly correlated is when
one variable is a constant multiple of another. This can happen when a researcher inad-
vertently puts the same variable measured in different units into a regression equation.
For example, in estimating a relationship between consumption and income, it makes
no sense to include as independent variables income measured in dollars as well as
income measured in thousands of dollars. One of these is redundant. What sense would
it make to hold income measured in dollars fixed while changing income measured in
thousands of dollars?

We already know that different nonlinear functions of the same variable can appear
among the regressors. For example, the model cons � �0 � �1inc � �2inc2 � u does
not violate Assumption MLR.4: even though x2 � inc2 is an exact function of x1 � inc,
inc2 is not an exact linear function of inc. Including inc2 in the model is a useful way to
generalize functional form, unlike including income measured in dollars and in thou-
sands of dollars.

Common sense tells us not to include the same explanatory variable measured in
different units in the same regression equation. There are also more subtle ways that one
independent variable can be a multiple of another. Suppose we would like to estimate
an extension of a constant elasticity consumption function. It might seem natural to
specify a model such as

log(cons) � �0 � �1log(inc) � �2log(inc2) � u, (3.35)

where x1 � log(inc) and x2 � log(inc2). Using the basic properties of the natural log (see
Appendix A), log(inc2) � 2�log(inc). That is, x2 � 2x1, and naturally this holds for all
observations in the sample. This violates Assumption MLR.4. What we should do
instead is include [log(inc)]2, not log(inc2), along with log(inc). This is a sensible exten-
sion of the constant elasticity model, and we will see how to interpret such models in
Chapter 6.

Another way that independent variables can be perfectly collinear is when one inde-
pendent variable can be expressed as an exact linear function of two or more of the
other independent variables. For example, suppose we want to estimate the effect of
campaign spending on campaign outcomes. For simplicity, assume that each election
has two candidates. Let voteA be the percent of the vote for Candidate A, let expendA
be campaign expenditures by Candidate A, let expendB be campaign expenditures by
Candidate B, and let totexpend be total campaign expenditures; the latter three variables
are all measured in dollars. It may seem natural to specify the model as

voteA � �0 � �1expendA � �2expendB � �3totexpend � u, (3.36)

in order to isolate the effects of spending by each candidate and the total amount of
spending. But this model violates Assumption MLR.4 because x3 � x1 � x2 by defini-
tion. Trying to interpret this equation in a ceteris paribus fashion reveals the problem.
The parameter of �1 in equation (3.36) is supposed to measure the effect of increasing
expenditures by Candidate A by one dollar on Candidate A’s vote, holding Candidate
B’s spending and total spending fixed. This is nonsense, because if expendB and totex-
pend are held fixed, then we cannot increase expendA.
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The solution to the perfect collinearity in (3.36) is simple: drop any one of the three
variables from the model. We would probably drop totexpend, and then the coefficient
on expendA would measure the effect of increasing expenditures by A on the percent-
age of the vote received by A, holding the spending by B fixed.

The prior examples show that Assumption MLR.4 can fail if we are not careful in
specifying our model. Assumption MLR.4 also fails if the sample size, n, is too small

in relation to the number of parameters
being estimated. In the general regression
model in equation (3.31), there are k � 1
parameters, and MLR.4 fails if n 
 k � 1.
Intuitively, this makes sense: to estimate 
k � 1 parameters, we need at least k � 1
observations. Not surprisingly, it is better

to have as many observations as possible, something we will see with our variance cal-
culations in Section 3.4.

If the model is carefully specified and n � k � 1, Assumption MLR.4 can fail in
rare cases due to bad luck in collecting the sample. For example, in a wage equation
with education and experience as variables, it is possible that we could obtain a random
sample where each individual has exactly twice as much education as years of experi-
ence. This scenario would cause Assumption MLR.4 to fail, but it can be considered
very unlikely unless we have an extremely small sample size.

We are now ready to show that, under these four multiple regression assumptions,
the OLS estimators are unbiased. As in the simple regression case, the expectations are
conditional on the values of the independent variables in the sample, but we do not
show this conditioning explicitly.

T H E O R E M  3 . 1  ( U N B I A S E D N E S S  O F  O L S )

Under Assumptions MLR.1 through MLR.4,

E(�̂j) � �j, j � 0,1, …, k, (3.37)

for any values of the population parameter �j. In other words, the OLS estimators are unbi-
ased estimators of the population parameters.

In our previous empirical examples, Assumption MLR.4 has been satisfied (since
we have been able to compute the OLS estimates). Furthermore, for the most part, the
samples are randomly chosen from a well-defined population. If we believe that the
specified models are correct under the key Assumption MLR.3, then we can conclude
that OLS is unbiased in these examples.

Since we are approaching the point where we can use multiple regression in serious
empirical work, it is useful to remember the meaning of unbiasedness. It is tempting, in
examples such as the wage equation in equation (3.19), to say something like “9.2 per-
cent is an unbiased estimate of the return to education.” As we know, an estimate can-
not be unbiased: an estimate is a fixed number, obtained from a particular sample,
which usually is not equal to the population parameter. When we say that OLS is unbi-
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Q U E S T I O N  3 . 3

In the previous example, if we use as explanatory variables expendA,
expendB, and shareA, where shareA � 100�(expendA/totexpend) is
the percentage share of total campaign expenditures made by
Candidate A, does this violate Assumption MLR.4?
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ased under Assumptions MLR.1 through MLR.4, we mean that the procedure by which
the OLS estimates are obtained is unbiased when we view the procedure as being
applied across all possible random samples. We hope that we have obtained a sample
that gives us an estimate close to the population value, but, unfortunately, this cannot
be assured.

Including Irrelevant Variables in a Regression Model

One issue that we can dispense with fairly quicky is that of inclusion of an irrelevant
variable or overspecifying the model in multiple regression analysis. This means that
one (or more) of the independent variables is included in the model even though it has
no partial effect on y in the population. (That is, its population coefficient is zero.)

To illustrate the issue, suppose we specify the model as

y � �0 � �1x1 � �2x2 � �3x3 � u, (3.38)

and this model satisfies Assumptions MLR.1 through MLR.4. However, x3 has no effect
on y after x1 and x2 have been controlled for, which means that �3 � 0. The variable x3

may or may not be correlated with x1 or x2; all that matters is that, once x1 and x2 are
controlled for, x3 has no effect on y. In terms of conditional expectations, E(y�x1,x2,x3)
� E(y�x1,x2) � �0 � �1x1 � �2x2.

Because we do not know that �3 � 0, we are inclined to estimate the equation
including x3:

ŷ � �̂0 � �̂1x1 � �̂2x2 � �̂3x3. (3.39)

We have included the irrelevant variable, x3, in our regression. What is the effect of
including x3 in (3.39) when its coefficient in the population model (3.38) is zero? In
terms of the unbiasedness of �̂1 and �̂2, there is no effect. This conclusion requires no
special derivation, as it follows immediately from Theorem 3.1. Remember, unbiased-
ness means E(�̂j) � �j for any value of �j, including �j � 0. Thus, we can conclude that
E(�̂0) � �0, E(�̂1) � �1, E(�̂2) � �2, and E(�̂3) � 0 (for any values of �0, �1, and �2).
Even though �̂3 itself will never be exactly zero, its average value across many random
samples will be zero.

The conclusion of the preceding example is much more general: including one or
more irrelevant variables in a multiple regression model, or overspecifying the model,
does not affect the unbiasedness of the OLS estimators. Does this mean it is harmless
to include irrelevant variables? No. As we will see in Section 3.4, including irrelevant
variables can have undesirable effects on the variances of the OLS estimators.

Omitted Variable Bias: The Simple Case

Now suppose that, rather than including an irrelevant variable, we omit a variable that
actually belongs in the true (or population) model. This is often called the problem of
excluding a relevant variable or underspecifying the model. We claimed in Chapter
2 and earlier in this chapter that this problem generally causes the OLS estimators to be
biased. It is time to show this explicitly and, just as importantly, to derive the direction
and size of the bias.
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Deriving the bias caused by omitting an important variable is an example of mis-
specification analysis. We begin with the case where the true population model has two
explanatory variables and an error term:

y � �0 � �1x1 � �2x2 � u, (3.40)

and we assume that this model satisfies Assumptions MLR.1 through MLR.4.
Suppose that our primary interest is in �1, the partial effect of x1 on y. For example,

y is hourly wage (or log of hourly wage), x1 is education, and x2 is a measure of innate
ability. In order to get an unbiased estimator of �1, we should run a regression of y on
x1 and x2 (which gives unbiased estimators of �0, �1, and �2). However, due to our igno-
rance or data inavailability, we estimate the model by excluding x2. In other words, we
perform a simple regression of y on x1 only, obtaining the equation

ỹ � �̃0 � �̃1x1. (3.41)

We use the symbol “~” rather than “^” to emphasize that �̃1 comes from an underspec-
ified model.

When first learning about the omitted variables problem, it can be difficult for the
student to distinguish between the underlying true model, (3.40) in this case, and the
model that we actually estimate, which is captured by the regression in (3.41). It may
seem silly to omit the variable x2 if it belongs in the model, but often we have no choice.
For example, suppose that wage is determined by

wage � �0 � �1educ � �2abil � u. (3.42)

Since ability is not observed, we instead estimate the model

wage � �0 � �1educ � v,

where v � �2abil � u. The estimator of �1 from the simple regression of wage on educ
is what we are calling �̃1.

We derive the expected value of �̃1 conditional on the sample values of x1 and x2.
Deriving this expectation is not difficult because �̃1 is just the OLS slope estimator from
a simple regression, and we have already studied this estimator extensively in Chapter
2. The difference here is that we must analyze its properties when the simple regression
model is misspecified due to an omitted variable.

From equation (2.49), we can express �̃1 as

�̃1 � . (3.43)

The next step is the most important one. Since (3.40) is the true model, we write y for
each observation i as

�
n

i�1
(xi1 � x̄1)yi

�
n

i�1
(xi1 � x̄1)

2
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yi � �0 � �1xi1 � �2xi2 � ui (3.44)

(not yi � �0 � �1xi1 � ui, because the true model contains x2). Let SST1 be the denom-
inator in (3.43). If we plug (3.44) in for yi in (3.43), the numerator in (3.43) becomes

�
n

i�1
(xi1 � x̄1)(�0 � �1xi1 � �2xi2 � ui)

� �1 �
n

i�1
(xi1 � x̄1)2 � �2 �

n

i�1
(xi1 � x̄1)xi2 � �

n

i�1
(xi1 � x̄1)ui

� �1 SST1 � �2 �
n

i�1
(xi1 � x̄1)xi2 � �

n

i�1
(xi1 � x̄1)ui. (3.45)

If we divide (3.45) by SST1, take the expectation conditional on the values of the inde-
pendent variables, and use E(ui) � 0, we obtain

E(�̃1) � �1 � �2 . (3.46)

Thus, E(�̃1) does not generally equal �1: �̃1 is biased for �1.
The ratio multiplying �2 in (3.46) has a simple interpretation: it is just the slope

coefficient from the regression of x2 on x1, using our sample on the independent vari-
ables, which we can write as

x̃2 � �̃0 � �̃1x1. (3.47)

Because we are conditioning on the sample values of both independent variables, �̃1 is
not random here. Therefore, we can write (3.46) as

E(�̃1) � �1 � �2�̃1, (3.48)

which implies that the bias in �̃1 is E(�̃1) � �1 � �2�̃1. This is often called the omitted
variable bias.

From equation (3.48), we see that there are two cases where �̃1 is unbiased. The first
is pretty obvious: if �2 � 0—so that x2 does not appear in the true model (3.40)—then
�̃1 is unbiased. We already know this from the simple regression analysis in Chapter 2.
The second case is more interesting. If �̃1 � 0, then �̃1 is unbiased for �1, even if �2 � 0.

Since �̃1 is the sample covariance between x1 and x2 over the sample variance of x1,
�̃1 � 0 if, and only if, x1 and x2 are uncorrelated in the sample. Thus, we have the impor-
tant conclusion that, if x1 and x2 are uncorrelated in the sample, then �̃1 is unbiased. This
is not surprising: in Section 3.2, we showed that the simple regression estimator �̃1 and
the multiple regression estimator �̂1 are the same when x1 and x2 are uncorrelated in
the sample. [We can also show that �̃1 is unbiased without conditioning on the xi2 if

�
n

i�1
(xi1 � x̄1)xi2

�
n

i�1
(xi1 � x̄1)

2
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E(x2�x1) � E(x2); then, for estimating �1, leaving x2 in the error term does not violate the
zero conditional mean assumption for the error, once we adjust the intercept.]

When x1 and x2 are correlated, �̃1 has the same sign as the correlation between x1 and
x2: �̃1 	 0 if x1 and x2 are positively correlated and �̃1 
 0 if x1 and x2 are negatively cor-
related. The sign of the bias in �̃1 depends on the signs of both �2 and �̃1 and is sum-
marized in Table 3.2 for the four possible cases when there is bias. Table 3.2 warrants
careful study. For example, the bias in �̃1 is positive if �2 	 0 (x2 has a positive effect
on y) and x1 and x2 are positively correlated. The bias is negative if �2 	 0 and x1 and
x2 are negatively correlated. And so on.

Table 3.2 summarizes the direction of the bias, but the size of the bias is also very
important. A small bias of either sign need not be a cause for concern. For example, if
the return to education in the population is 8.6 percent and the bias in the OLS estima-
tor is 0.1 percent (a tenth of one percentage point), then we would not be very con-
cerned. On the other hand, a bias on the order of three percentage points would be much
more serious. The size of the bias is determined by the sizes of �2 and �̃1.

In practice, since �2 is an unknown population parameter, we cannot be certain
whether �2 is positive or negative. Nevertheless, we usually have a pretty good idea
about the direction of the partial effect of x2 on y. Further, even though the sign of 
the correlation between x1 and x2 cannot be known if x2 is not observed, in many cases
we can make an educated guess about whether x1 and x2 are positively or negatively 
correlated.

In the wage equation (3.42), by definition more ability leads to higher productivity
and therefore higher wages: �2 	 0. Also, there are reasons to believe that educ and 
abil are positively correlated: on average, individuals with more innate ability choose
higher levels of education. Thus, the OLS estimates from the simple regression equa-
tion wage � �0 � �1educ � v are on average too large. This does not mean that the
estimate obtained from our sample is too big. We can only say that if we collect many
random samples and obtain the simple regression estimates each time, then the average
of these estimates will be greater than �1.

E X A M P L E  3 . 6
( H o u r l y  W a g e  E q u a t i o n )

Suppose the model log(wage) � �0 � �1educ � �2abil � u satisfies Assumptions MLR.1
through MLR.4. The data set in WAGE1.RAW does not contain data on ability, so we esti-
mate �1 from the simple regression
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Table 3.2

Summary of Bias in �̃1 When x2 is Omitted in Estimating Equation (3.40)

Corr(x1,x2) > 0 Corr(x1,x2) < 0

�2 	 0 positive bias negative bias

�2 
 0 negative bias positive bias
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log(̂wage) � .584 � .083 educ

n � 526, R2 � .186.

This is only the result from a single sample, so we cannot say that .083 is greater than �1;
the true return to education could be lower or higher than 8.3 percent (and we will never
know for sure). Nevertheless, we know that the average of the estimates across all random
samples would be too large.

As a second example, suppose that, at the elementary school level, the average score
for students on a standardized exam is determined by

avgscore � �0 � �1expend � �2povrate � u,

where expend is expenditure per student and povrate is the poverty rate of the children
in the school. Using school district data, we only have observations on the percent of
students with a passing grade and per student expenditures; we do not have information
on poverty rates. Thus, we estimate �1 from the simple regression of avgscore on
expend.

We can again obtain the likely bias in �̃1. First, �2 is probably negative: there is
ample evidence that children living in poverty score lower, on average, on standardized
tests. Second, the average expenditure per student is probably negatively correlated
with the poverty rate: the higher the poverty rate, the lower the average per-student
spending, so that Corr(x1,x2) 
 0. From Table 3.2, �̃1 will have a positive bias. This
observation has important implications. It could be that the true effect of spending is
zero; that is, �1 � 0. However, the simple regression estimate of �1 will usually be
greater than zero, and this could lead us to conclude that expenditures are important
when they are not.

When reading and performing empirical work in economics, it is important to mas-
ter the terminology associated with biased estimators. In the context of omitting a vari-
able from model (3.40), if E(�̃1) 	 �1, then we say that �̃1 has an upward bias. When
E(�̃1) 
 �1, �̃1 has a downward bias. These definitions are the same whether �1 is pos-
itive or negative. The phrase biased towards zero refers to cases where E(�̃1) is closer
to zero than �1. Therefore, if �1 is positive, then �̃1 is biased towards zero if it has a
downward bias. On the other hand, if �1 
 0, then �̃1 is biased towards zero if it has an
upward bias.

Omitted Variable Bias: More General Cases

Deriving the sign of omitted variable bias when there are multiple regressors in the esti-
mated model is more difficult. We must remember that correlation between a single
explanatory variable and the error generally results in all OLS estimators being biased.
For example, suppose the population model

y � �0 � �1x1 � �2x2 � �3x3 � u, (3.49)

satisfies Assumptions MLR.1 through MLR.4. But we omit x3 and estimate the model as
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ỹ � �̃0 � �̃1x1 � �̃2x2. (3.50)

Now, suppose that x2 and x3 are uncorrelated, but that x1 is correlated with x3. In other
words, x1 is correlated with the omitted variable, but x2 is not. It is tempting to think that,
while �̃1 is probably biased based on the derivation in the previous subsection, �̃2 is
unbiased because x2 is uncorrelated with x3. Unfortunately, this is not generally the
case: both �̃1 and �̃2 will normally be biased. The only exception to this is when x1 and
x2 are also uncorrelated.

Even in the fairly simple model above, it is difficult to obtain the direction of the
bias in �̃1 and �̃2. This is because x1, x2, and x3 can all be pairwise correlated.
Nevertheless, an approximation is often practically useful. If we assume that x1 and x2

are uncorrelated, then we can study the bias in �̃1 as if x2 were absent from both the pop-
ulation and the estimated models. In fact, when x1 and x2 are uncorrelated, it can be
shown that

E(�̃1) � �1 � �3 .

This is just like equation (3.46), but �3 replaces �2 and x3 replaces x2. Therefore, the bias
in �̃1 is obtained by replacing �2 with �3 and x2 with x3 in Table 3.2. If �3 	 0 and
Corr(x1,x3) 	 0, the bias in �̃1 is positive. And so on.

As an example, suppose we add exper to the wage model:

wage � �0 � �1educ � �2exper � �3abil � u.

If abil is omitted from the model, the estimators of both �1 and �2 are biased, even if
we assume exper is uncorrelated with abil. We are mostly interested in the return to edu-
cation, so it would be nice if we could conclude that �̃1 has an upward or downward bias
due to omitted ability. This conclusion is not possible without further assumptions. As
an approximation, let us suppose that, in addition to exper and abil being uncorrelated,
educ and exper are also uncorrelated. (In reality, they are somewhat negatively corre-
lated.) Since �3 	 0 and educ and abil are positively correlated, �̃1 would have an
upward bias, just as if exper were not in the model.

The reasoning used in the previous example is often followed as a rough guide for
obtaining the likely bias in estimators in more complicated models. Usually, the focus
is on the relationship between a particular explanatory variable, say x1, and the key
omitted factor. Strictly speaking, ignoring all other explanatory variables is a valid prac-
tice only when each one is uncorrelated with x1, but it is still a useful guide.

3.4 THE VARIANCE OF THE OLS ESTIMATORS

We now obtain the variance of the OLS estimators so that, in addition to knowing the
central tendencies of �̂j, we also have a measure of the spread in its sampling distribu-
tion. Before finding the variances, we add a homoskedasticity assumption, as in Chapter
2. We do this for two reasons. First, the formulas are simplified by imposing the con-

�
n

i�1
(xi1 � x̄1)xi3

�
n

i�1
(xi1 � x̄1)

2
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stant error variance assumption. Second, in Section 3.5, we will see that OLS has an
important efficiency property if we add the homoskedasticity assumption.

In the multiple regression framework, homoskedasticity is stated as follows:

A S S U M P T I O N  M L R . 5  ( H O M O S K E D A S T I C I T Y )

Var(u�x1,…,xk) � 
2.

Assumption MLR.5 means that the variance in the error term, u, conditional on the
explanatory variables, is the same for all combinations of outcomes of the explanatory
variables. If this assumption fails, then the model exhibits heteroskedasticity, just as in
the two-variable case.

In the equation

wage � �0 � �1educ � �2exper � �3tenure � u,

homoskedasticity requires that the variance of the unobserved error u does not depend
on the levels of education, experience, or tenure. That is,

Var(u�educ, exper, tenure) � 
2.

If this variance changes with any of the three explanatory variables, then heteroskedas-
ticity is present.

Assumptions MLR.1 through MLR.5 are collectively known as the Gauss-Markov
assumptions (for cross-sectional regression). So far, our statements of the assumptions
are suitable only when applied to cross-sectional analysis with random sampling. As we
will see, the Gauss-Markov assumptions for time series analysis, and for other situa-
tions such as panel data analysis, are more difficult to state, although there are many
similarities.

In the discussion that follows, we will use the symbol x to denote the set of all inde-
pendent variables, (x1, …, xk). Thus, in the wage regression with educ, exper, and tenure
as independent variables, x � (educ, exper, tenure). Now we can write Assumption
MLR.3 as

E(y�x) � �0 � �1x1 � �2x2 � … � �kxk,

and Assumption MLR.5 is the same as Var(y�x) � 
2. Stating the two assumptions in
this way clearly illustrates how Assumption MLR.5 differs greatly from Assumption
MLR.3. Assumption MLR.3 says that the expected value of y, given x, is linear in the
parameters, but it certainly depends on x1, x2, …, xk. Assumption MLR.5 says that the
variance of y, given x, does not depend on the values of the independent variables.

We can now obtain the variances of the �̂j, where we again condition on the sample
values of the independent variables. The proof is in the appendix to this chapter.

T H E O R E M  3 . 2  ( S A M P L I N G  V A R I A N C E S  O F  T H E

O L S  S L O P E  E S T I M A T O R S )

Under Assumptions MLR.1 through MLR.5, conditional on the sample values of the inde-
pendent variables,
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Var(�̂j) � , (3.51)

for j � 1,2,…,k, where SSTj � �
n

i�1
(xij � x̄j)

2 is the total sample variation in xj, and R2
j is

the R-squared from regressing xj on all other independent variables (and including an
intercept).

Before we study equation (3.51) in more detail, it is important to know that all of
the Gauss-Markov assumptions are used in obtaining this formula. While we did not
need the homoskedasticity assumption to conclude that OLS is unbiased, we do need it
to validate equation (3.51).

The size of Var(�̂j) is practically important. A larger variance means a less precise
estimator, and this translates into larger confidence intervals and less accurate hypothe-
ses tests (as we will see in Chapter 4). In the next subsection, we discuss the elements
comprising (3.51).

The Components of the OLS Variances: Multicollinearity

Equation (3.51) shows that the variance of �̂j depends on three factors: 
2, SSTj, and
Rj

2. Remember that the index j simply denotes any one of the independent variables
(such as education or poverty rate). We now consider each of the factors affecting
Var(�̂j) in turn.

THE ERROR VARIANCE, �2. From equation (3.51), a larger 
2 means larger variances
for the OLS estimators. This is not at all surprising: more “noise” in the equation (a
larger 
2) makes it more difficult to estimate the partial effect of any of the independent
variables on y, and this is reflected in higher variances for the OLS slope estimators.
Since 
2 is a feature of the population, it has nothing to do with the sample size. It is
the one component of (3.51) that is unknown. We will see later how to obtain an unbi-
ased estimator of 
2.

For a given dependent variable y, there is really only one way to reduce the error
variance, and that is to add more explanatory variables to the equation (take some fac-
tors out of the error term). This is not always possible, nor is it always desirable for rea-
sons discussed later in the chapter.

THE TOTAL SAMPLE VARIATION IN xj, SSTj. From equation (3.51), the larger the
total variation in xj, the smaller is Var(�̂j). Thus, everything else being equal, for esti-
mating �j we prefer to have as much sample variation in xj as possible. We already dis-
covered this in the simple regression case in Chapter 2. While it is rarely possible for
us to choose the sample values of the independent variables, there is a way to increase
the sample variation in each of the independent variables: increase the sample size. In
fact, when sampling randomly from a population, SSTj increases without bound as the
sample size gets larger and larger. This is the component of the variance that systemat-
ically depends on the sample size.


2

SSTj(1 � Rj
2)
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When SSTj is small, Var(�̂j) can get very large, but a small SSTj is not a violation of
Assumption MLR.4. Technically, as SSTj goes to zero, Var(�̂j) approaches infinity. The
extreme case of no sample variation in xj, SSTj � 0, is not allowed by Assumption
MLR.4.

THE LINEAR RELATIONSHIPS AMONG THE INDEPENDENT VARIABLES, Rj
2. The

term Rj
2 in equation (3.51) is the most difficult of the three components to understand.

This term does not appear in simple regression analysis because there is only one inde-
pendent variable in such cases. It is important to see that this R-squared is distinct from
the R-squared in the regression of y on x1, x2, …, xk: Rj

2 is obtained from a regression
involving only the independent variables in the original model, where xj plays the role
of a dependent variable.

Consider first the k � 2 case: y � �0 � �1x1 � �2x2 � u. Then Var(�̂1) 
� 
2/[SST1(1 � R1

2)], where R1
2 is the R-squared from the simple regression of x1 on x2

(and an intercept, as always). Since the R-squared measures goodness-of-fit, a value of
R1

2 close to one indicates that x2 explains much of the variation in x1 in the sample. This
means that x1 and x2 are highly correlated.

As R1
2 increases to one, Var(�̂1) gets larger and larger. Thus, a high degree of linear

relationship between x1 and x2 can lead to large variances for the OLS slope estimators.
(A similar argument applies to �̂2.) See Figure 3.1 for the relationship between Var(�̂1)
and the R-squared from the regression of x1 on x2.

In the general case, Rj
2 is the proportion of the total variation in xj that can be

explained by the other independent variables appearing in the equation. For a given 
2

and SSTj, the smallest Var(�̂j) is obtained when Rj
2 � 0, which happens if, and only if,

xj has zero sample correlation with every other independent variable. This is the best
case for estimating �j, but it is rarely encountered.

The other extreme case, Rj
2 � 1, is ruled out by Assumption MLR.4, because 

Rj
2 � 1 means that, in the sample, xj is a perfect linear combination of some of the other

independent variables in the regression. A more relevant case is when Rj
2 is “close” to

one. From equation (3.51) and Figure 3.1, we see that this can cause Var(�̂j) to be large:
Var(�̂j) * � as Rj

2
* 1. High (but not perfect) correlation between two or more of the

independent variables is called multicollinearity.
Before we discuss the multicollinearity issue further, it is important to be very clear

on one thing: a case where Rj
2 is close to one is not a violation of Assumption MLR.4.

Since multicollinearity violates none of our assumptions, the “problem” of multi-
collinearity is not really well-defined. When we say that multicollinearity arises for esti-
mating �j when Rj

2 is “close” to one, we put “close” in quotation marks because there
is no absolute number that we can cite to conclude that multicollinearity is a problem.
For example, Rj

2 � .9 means that 90 percent of the sample variation in xj can be
explained by the other independent variables in the regression model. Unquestionably,
this means that xj has a strong linear relationship to the other independent variables. But
whether this translates into a Var(�̂j) that is too large to be useful depends on the sizes
of 
2 and SSTj. As we will see in Chapter 4, for statistical inference, what ultimately
matters is how big �̂j is in relation to its standard deviation.

Just as a large value of Rj
2 can cause large Var(�̂j), so can a small value of SSTj.

Therefore, a small sample size can lead to large sampling variances, too. Worrying
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about high degrees of correlation among the independent variables in the sample is 
really no different from worrying about a small sample size: both work to increase
Var(�̂j). The famous University of Wisconsin econometrician Arthur Goldberger, react-
ing to econometricians’ obsession with multicollinearity, has [tongue-in-cheek] coined
the term micronumerosity, which he defines as the “problem of small sample size.”
[For an engaging discussion of multicollinearity and micronumerosity, see Goldberger
(1991).]

Although the problem of multicollinearity cannot be clearly defined, one thing is
clear: everything else being equal, for estimating �j it is better to have less correlation
between xj and the other independent variables. This observation often leads to a dis-
cussion of how to “solve” the multicollinearity problem. In the social sciences, where
we are usually passive collectors of data, there is no good way to reduce variances of
unbiased estimators other than to collect more data. For a given data set, we can try
dropping other independent variables from the model in an effort to reduce multi-
collinearity. Unfortunately, dropping a variable that belongs in the population model
can lead to bias, as we saw in Section 3.3.

Perhaps an example at this point will help clarify some of the issues raised con-
cerning multicollinearity. Suppose we are interested in estimating the effect of various
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school expenditure categories on student performance. It is likely that expenditures on
teacher salaries, instructional materials, athletics, and so on, are highly correlated:
wealthier schools tend to spend more on everything, and poorer schools spend less on
everything. Not surprisingly, it can be difficult to estimate the effect of any particular
expenditure category on student performance when there is little variation in one cate-
gory that cannot largely be explained by variations in the other expenditure categories
(this leads to high Rj

2 for each of the expenditure variables). Such multicollinearity
problems can be mitigated by collecting more data, but in a sense we have imposed the
problem on ourselves: we are asking questions that may be too subtle for the available
data to answer with any precision. We can probably do much better by changing the
scope of the analysis and lumping all expenditure categories together, since we would
no longer be trying to estimate the partial effect of each separate category.

Another important point is that a high degree of correlation between certain inde-
pendent variables can be irrelevant as to how well we can estimate other parameters in
the model. For example, consider a model with three independent variables:

y � �0 � �1x1 � �2x2 � �3x3 � u,

where x2 and x3 are highly correlated. Then Var(�̂2) and Var(�̂3) may be large. But the
amount of correlation between x2 and x3 has no direct effect on Var(�̂1). In fact, if x1 is
uncorrelated with x2 and x3, then R1

2 � 0 and Var(�̂1) � 
2/SST1, regardless of how
much correlation there is between x2 and x3. If �1 is the parameter of interest, we do not

really care about the amount of correlation
between x2 and x3.

The previous observation is important
because economists often include many
controls in order to isolate the causal effect
of a particular variable. For example, in
looking at the relationship between loan
approval rates and percent of minorities in
a neighborhood, we might include vari-
ables like average income, average hous-
ing value, measures of creditworthiness,

and so on, because these factors need to be accounted for in order to draw causal con-
clusions about discrimination. Income, housing prices, and creditworthiness are gener-
ally highly correlated with each other. But high correlations among these variables do
not make it more difficult to determine the effects of discrimination.

Variances in Misspecified Models

The choice of whether or not to include a particular variable in a regression model can
be made by analyzing the tradeoff between bias and variance. In Section 3.3, we derived
the bias induced by leaving out a relevant variable when the true model contains two
explanatory variables. We continue the analysis of this model by comparing the vari-
ances of the OLS estimators.

Write the true population model, which satisfies the Gauss-Markov assumptions, as

y � �0 � �1x1 � �2x2 � u.
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Suppose you postulate a model explaining final exam score in terms
of class attendance. Thus, the dependent variable is final exam
score, and the key explanatory variable is number of classes attend-
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score, and measures of high school performance. Someone says,
“You cannot hope to learn anything from this exercise because
cumulative GPA, SAT score, and high school performance are likely
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We consider two estimators of �1. The estimator �̂1 comes from the multiple regression

ŷ � �̂0 � �̂1x1 � �̂2x2. (3.52)

In other words, we include x2, along with x1, in the regression model. The estimator �̃1

is obtained by omitting x2 from the model and running a simple regression of y on x1:

ỹ � �̃0 � �̃1x1. (3.53)

When �2 � 0, equation (3.53) excludes a relevant variable from the model and, as we
saw in Section 3.3, this induces a bias in �̃1 unless x1 and x2 are uncorrelated. On the
other hand, �̂1 is unbiased for �1 for any value of �2, including �2 � 0. It follows that,
if bias is used as the only criterion, �̂1 is preferred to �̃1.

The conclusion that �̂1 is always preferred to �̃1 does not carry over when we bring
variance into the picture. Conditioning on the values of x1 and x2 in the sample, we have,
from (3.51),

Var(�̂1) � 
2/[SST1(1 � R1
2)], (3.54)

where SST1 is the total variation in x1, and R1
2 is the R-squared from the regression of

x1 on x2. Further, a simple modification of the proof in Chapter 2 for two-variable
regression shows that

Var(�̃1) � 
2/SST1. (3.55)

Comparing (3.55) to (3.54) shows that Var(�̃1) is always smaller than Var(�̂1), unless x1

and x2 are uncorrelated in the sample, in which case the two estimators �̃1 and �̂1 are 
the same. Assuming that x1 and x2 are not uncorrelated, we can draw the following
conclusions:

1. When �2 � 0, �̃1 is biased, �̂1 is unbiased, and Var(�̃1) 
 Var(�̂1).
2. When �2 � 0, �̃1 and �̂1 are both unbiased, and Var(�̃1) 
 Var(�̂1).

From the second conclusion, it is clear that �̃1 is preferred if �2 � 0. Intuitively, if x2

does not have a partial effect on y, then including it in the model can only exacerbate
the multicollinearity problem, which leads to a less efficient estimator of �1. A higher
variance for the estimator of �1 is the cost of including an irrelevant variable in a model.

The case where �2 � 0 is more difficult. Leaving x2 out of the model results in a
biased estimator of �1. Traditionally, econometricians have suggested comparing the
likely size of the bias due to omitting x2 with the reduction in the variance—summa-
rized in the size of R1

2—to decide whether x2 should be included. However, when 
�2 � 0, there are two favorable reasons for including x2 in the model. The most impor-
tant of these is that any bias in �̃1 does not shrink as the sample size grows; in fact, the
bias does not necessarily follow any pattern. Therefore, we can usefully think of the
bias as being roughly the same for any sample size. On the other hand, Var(�̃1) and
Var(�̂1) both shrink to zero as n gets large, which means that the multicollinearity
induced by adding x2 becomes less important as the sample size grows. In large sam-
ples, we would prefer �̂1.
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The other reason for favoring �̂1 is more subtle. The variance formula in (3.55) is
conditional on the values of xi1 and xi2 in the sample, which provides the best scenario
for �̃1. When �2 � 0, the variance of �̃1 conditional only on x1 is larger than that pre-
sented in (3.55). Intuitively, when �2 � 0 and x2 is excluded from the model, the error
variance increases because the error effectively contains part of x2. But formula (3.55)
ignores the error variance increase because it treats both regressors as nonrandom. A
full discussion of which independent variables to condition on would lead us too far
astray. It is sufficient to say that (3.55) is too generous when it comes to measuring the
precision in �̃1.

Estimating �2: Standard Errors of the OLS Estimators

We now show how to choose an unbiased estimator of 
2, which then allows us to
obtain unbiased estimators of Var(�̂j).

Since 
2 � E(u2), an unbiased “estimator” of 
2 is the sample average of the

squared errors: n-1�
n

i�1
u2

i . Unfortunately, this is not a true estimator because we do not

observe the ui. Nevertheless, recall that the errors can be written as ui � yi � �0 � �1xi1

� �2xi2 � … � �kxik, and so the reason we do not observe the ui is that we do not know
the �j. When we replace each �j with its OLS estimator, we get the OLS residuals:

ûi � yi � �̂0 � �̂1xi1 � �̂2xi2 � … � �̂kxik.

It seems natural to estimate 
2 by replacing ui with the ûi. In the simple regression case,
we saw that this leads to a biased estimator. The unbiased estimator of 
2 in the gen-
eral multiple regression case is


̂2 � ��
n

i�1
û2

i��(n � k � 1) � SSR�(n � k � 1). (3.56)

We already encountered this estimator in the k � 1 case in simple regression.
The term n � k � 1 in (3.56) is the degrees of freedom (df ) for the general OLS

problem with n observations and k independent variables. Since there are k � 1 para-
meters in a regression model with k independent variables and an intercept, we can write

df � n � (k � 1)
� (number of observations) � (number of estimated parameters). (3.57)

This is the easiest way to compute the degrees of freedom in a particular application:
count the number of parameters, including the intercept, and subtract this amount from
the number of observations. (In the rare case that an intercept is not estimated, the num-
ber of parameters decreases by one.)

Technically, the division by n � k � 1 in (3.56) comes from the fact that the ex-
pected value of the sum of squared residuals is E(SSR) � (n � k � 1)
2. Intuitively,
we can figure out why the degrees of freedom adjustment is necessary by returning to

the first order conditions for the OLS estimators. These can be written as �
n

i�1 
ûi � 0 and
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�
n

i�1
xijûi � 0, where j � 1,2, …, k. Thus, in obtaining the OLS estimates, k � 1 restric-

tions are imposed on the OLS residuals. This means that, given n � (k � 1) of the
residuals, the remaining k � 1 residuals are known: there are only n � (k � 1) degrees
of freedom in the residuals. (This can be contrasted with the errors ui, which have n
degrees of freedom in the sample.)

For reference, we summarize this discussion with Theorem 3.3. We proved this the-
orem for the case of simple regression analysis in Chapter 2 (see Theorem 2.3). (A gen-
eral proof that requires matrix algebra is provided in Appendix E.)

T H E O R E M  3 . 3  ( U N B I A S E D  E S T I M A T I O N  O F  
 2 )

Under the Gauss-Markov Assumptions MLR.1 through MLR.5, E(
̂2) � 
2.

The positive square root of 
̂2, denoted 
̂, is called the standard error of the
regression or SER. The SER is an estimator of the standard deviation of the error term.
This estimate is usually reported by regression packages, although it is called different
things by different packages. (In addition to ser, 
̂ is also called the standard error of
the estimate and the root mean squared error.)

Note that 
̂ can either decrease or increase when another independent variable is
added to a regression (for a given sample). This is because, while SSR must fall when
another explanatory variable is added, the degrees of freedom also falls by one. Because
SSR is in the numerator and df is in the denominator, we cannot tell beforehand which
effect will dominate.

For constructing confidence intervals and conducting tests in Chapter 4, we need to
estimate the standard deviation of �̂j, which is just the square root of the variance:

sd(�̂j) � 
/[SSTj(1 � Rj
2)]1/2.

Since 
 is unknown, we replace it with its estimator, 
̂ . This gives us the standard
error of �̂j:

se(�̂j) � 
̂ /[SSTj(1 � Rj
2)]1/2. (3.58)

Just as the OLS estimates can be obtained for any given sample, so can the standard
errors. Since se(�̂j) depends on 
̂ , the standard error has a sampling distribution, which
will play a role in Chapter 4.

We should emphasize one thing about standard errors. Because (3.58) is obtained
directly from the variance formula in (3.51), and because (3.51) relies on the
homoskedasticity Assumption MLR.5, it follows that the standard error formula in
(3.58) is not a valid estimator of sd(�̂j) if the errors exhibit heteroskedasticity. Thus,
while the presence of heteroskedasticity does not cause bias in the �̂j, it does lead to
bias in the usual formula for Var(�̂j), which then invalidates the standard errors. This is
important because any regression package computes (3.58) as the default standard error
for each coefficient (with a somewhat different representation for the intercept). If we
suspect heteroskedasticity, then the “usual” OLS standard errors are invalid and some
corrective action should be taken. We will see in Chapter 8 what methods are available
for dealing with heteroskedasticity.
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3.5 EFFICIENCY OF OLS: THE GAUSS-MARKOV
THEOREM

In this section, we state and discuss the important Gauss-Markov Theorem, which jus-
tifies the use of the OLS method rather than using a variety of competing estimators.
We know one justification for OLS already: under Assumptions MLR.1 through
MLR.4, OLS is unbiased. However, there are many unbiased estimators of the �j under
these assumptions (for example, see Problem 3.12). Might there be other unbiased esti-
mators with variances smaller than the OLS estimators?

If we limit the class of competing estimators appropriately, then we can show that
OLS is best within this class. Specifically, we will argue that, under Assumptions
MLR.1 through MLR.5, the OLS estimator �̂j for �j is the best linear unbiased esti-
mator (BLUE). In order to state the theorem, we need to understand each component
of the acronym “BLUE.” First, we know what an estimator is: it is a rule that can be
applied to any sample of data to produce an estimate. We also know what an unbiased
estimator is: in the current context, an estimator, say �̃j, of �j is an unbiased estimator
of �j if E(�̃j) � �j for any �0, �1, …, �k.

What about the meaning of the term “linear”? In the current context, an estimator
�̃j of �j is linear if, and only if, it can be expressed as a linear function of the data on the
dependent variable:

�̃j � �
n

i�1
wijyi, (3.59)

where each wij can be a function of the sample values of all the independent variables.
The OLS estimators are linear, as can be seen from equation (3.22).

Finally, how do we define “best”? For the current theorem, best is defined as small-
est variance. Given two unbiased estimators, it is logical to prefer the one with the
smallest variance (see Appendix C).

Now, let �̂0, �̂1, …, �̂k denote the OLS estimators in the model (3.31) under
Assumptions MLR.1 through MLR.5. The Gauss-Markov theorem says that, for any
estimator �̃j which is linear and unbiased, Var(�̂j) � Var(�̃j), and the inequality is usu-
ally strict. In other words, in the class of linear unbiased estimators, OLS has the small-
est variance (under the five Gauss-Markov assumptions). Actually, the theorem says
more than this. If we want to estimate any linear function of the �j, then the corre-
sponding linear combination of the OLS estimators achieves the smallest variance
among all linear unbiased estimators. We conclude with a theorem, which is proven in
Appendix 3A.

T H E O R E M  3 . 4  ( G A U S S - M A R K O V  T H E O R E M )

Under Assumptions MLR.1 through MLR.5, �̂0, �̂1, …, �̂k are the best linear unbiased esti-
mators (BLUEs) of �0, �1, …, �k, respectively.

It is because of this theorem that Assumptions MLR.1 through MLR.5 are known as the
Gauss-Markov assumptions (for cross-sectional analysis).
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The importance of the Gauss-Markov theorem is that, when the standard set of
assumptions holds, we need not look for alternative unbiased estimators of the form
(3.59): none will be better than OLS. Equivalently, if we are presented with an esti-
mator that is both linear and unbiased, then we know that the variance of this estima-
tor is at least as large as the OLS variance; no additional calculation is needed to show
this.

For our purposes, Theorem 3.4 justifies the use of OLS to estimate multiple regres-
sion models. If any of the Gauss-Markov assumptions fail, then this theorem no longer
holds. We already know that failure of the zero conditional mean assumption
(Assumption MLR.3) causes OLS to be biased, so Theorem 3.4 also fails. We also
know that heteroskedasticity (failure of Assumption MLR.5) does not cause OLS to be
biased. However, OLS no longer has the smallest variance among linear unbiased esti-
mators in the presence of heteroskedasticity. In Chapter 8, we analyze an estimator that
improves upon OLS when we know the brand of heteroskedasticity.

SUMMARY

1. The multiple regression model allows us to effectively hold other factors fixed
while examining the effects of a particular independent variable on the dependent vari-
able. It explicitly allows the independent variables to be correlated.

2. Although the model is linear in its parameters, it can be used to model nonlinear
relationships by appropriately choosing the dependent and independent variables.

3. The method of ordinary least squares is easily applied to the multiple regression
model. Each slope estimate measures the partial effect of the corresponding indepen-
dent variable on the dependent variable, holding all other independent variables fixed.

4. R2 is the proportion of the sample variation in the dependent variable explained by
the independent variables, and it serves as a goodness-of-fit measure. It is important not
to put too much weight on the value of R2 when evaluating econometric models.

5. Under the first four Gauss-Markov assumptions (MLR.1 through MLR.4), the
OLS estimators are unbiased. This implies that including an irrelevant variable in a
model has no effect on the unbiasedness of the intercept and other slope estimators. On
the other hand, omitting a relevant variable causes OLS to be biased. In many circum-
stances, the direction of the bias can be determined.

6. Under the five Gauss-Markov assumptions, the variance of an OLS slope estima-
tor is given by Var(�̂j) � 
2/[SSTj(1 � Rj

2)]. As the error variance 
2 increases, so does
Var(�̂j), while Var(�̂j) decreases as the sample variation in xj, SSTj, increases. The term
Rj

2 measures the amount of collinearity between xj and the other explanatory variables.
As Rj

2 approaches one, Var(�̂j) is unbounded.

7. Adding an irrelevant variable to an equation generally increases the variances of
the remaining OLS estimators because of multicollinearity.

8. Under the Gauss-Markov assumptions (MLR.1 through MLR.5), the OLS estima-
tors are best linear unbiased estimators (BLUE).
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KEY TERMS

PROBLEMS

3.1 Using the data in GPA2.RAW on 4,137 college students, the following equation
was estimated by OLS:

col̂gpa � 1.392 � .0135 hsperc � .00148 sat

n � 4,137, R2 � .273,

where colgpa is measured on a four-point scale, hsperc is the percentile in the high
school graduating class (defined so that, for example, hsperc � 5 means the top five
percent of the class), and sat is the combined math and verbal scores on the student
achievement test.

(i) Why does it make sense for the coefficient on hsperc to be negative?
(ii) What is the predicted college GPA when hsperc � 20 and sat � 1050?
(iii) Suppose that two high school graduates, A and B, graduated in the same

percentile from high school, but Student A’s SAT score was 140 points
higher (about one standard deviation in the sample). What is the pre-
dicted difference in college GPA for these two students? Is the differ-
ence large?

(iv) Holding hsperc fixed, what difference in SAT scores leads to a predict-
ed colgpa difference of .50, or one-half of a grade point? Comment on
your answer.
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3.2 The data in WAGE2.RAW on working men was used to estimate the following
equation:

edûc � 10.36 � .094 sibs � .131 meduc � .210 feduc

n � 722, R2 � .214,

where educ is years of schooling, sibs is number of siblings, meduc is mother’s years
of schooling, and feduc is father’s years of schooling.

(i) Does sibs have the expected effect? Explain. Holding meduc and feduc
fixed, by how much does sibs have to increase to reduce predicted years
of education by one year? (A noninteger answer is acceptable here.)

(ii) Discuss the interpretation of the coefficient on meduc.
(iii) Suppose that Man A has no siblings, and his mother and father each

have 12 years of education. Man B has no siblings, and his mother and
father each have 16 years of education. What is the predicted difference
in years of education between B and A?

3.3 The following model is a simplified version of the multiple regression model used
by Biddle and Hamermesh (1990) to study the tradeoff between time spent sleeping and
working and to look at other factors affecting sleep:

sleep � �0 � �1totwrk � �2educ � �3age � u,

where sleep and totwrk (total work) are measured in minutes per week and educ and
age are measured in years. (See also Problem 2.12.)

(i) If adults trade off sleep for work, what is the sign of �1?
(ii) What signs do you think �2 and �3 will have?
(iii) Using the data in SLEEP75.RAW, the estimated equation is

slêep � 3638.25 � .148 totwrk � 11.13 educ � 2.20 age

n � 706, R2 � .113.

If someone works five more hours per week, by how many minutes is
sleep predicted to fall? Is this a large tradeoff?

(iv) Discuss the sign and magnitude of the estimated coefficient on educ.
(v) Would you say totwrk, educ, and age explain much of the variation in

sleep? What other factors might affect the time spent sleeping? Are
these likely to be correlated with totwrk?

3.4 The median starting salary for new law school graduates is determined by

log(salary) � �0 � �1LSAT � �2GPA � �3log(libvol) � �4log(cost)

� �5rank � u,

where LSAT is median LSAT score for the graduating class, GPA is the median college
GPA for the class, libvol is the number of volumes in the law school library, cost is the
annual cost of attending law school, and rank is a law school ranking (with rank � 1
being the best).

(i) Explain why we expect �5 � 0.
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(ii) What signs to you expect for the other slope parameters? Justify your
answers.

(iii) Using the data in LAWSCH85.RAW, the estimated equation is

log(sâlary) � 8.34 � .0047 LSAT � .248 GPA � .095 log(libvol)

� .038 log(cost) � .0033 rank

n � 136, R2 � .842.

What is the predicted ceteris paribus difference in salary for schools
with a median GPA different by one point? (Report your answer as a
percent.)

(iv) Interpret the coefficient on the variable log(libvol).
(v) Would you say it is better to attend a higher ranked law school? How

much is a difference in ranking of 20 worth in terms of predicted start-
ing salary?

3.5 In a study relating college grade point average to time spent in various activities,
you distribute a survey to several students. The students are asked how many hours they
spend each week in four activities: studying, sleeping, working, and leisure. Any activ-
ity is put into one of the four categories, so that for each student the sum of hours in the
four activities must be 168.

(i) In the model

GPA � �0 � �1study � �2sleep � �3work � �4leisure � u,

does it make sense to hold sleep, work, and leisure fixed, while chang-
ing study?

(ii) Explain why this model violates Assumption MLR.4.
(iii) How could you reformulate the model so that its parameters have a use-

ful interpretation and it satisfies Assumption MLR.4?

3.6 Consider the multiple regression model containing three independent variables,
under Assumptions MLR.1 through MLR.4:

y � �0 � �1x1 � �2x2 � �3x3 � u.

You are interested in estimating the sum of the parameters on x1 and x2; call this �1 �
�1 � �2. Show that �̂1 � �̂1 � �̂2 is an unbiased estimator of �1.

3.7 Which of the following can cause OLS estimators to be biased?
(i) Heteroskedasticity.
(ii) Omitting an important variable.
(iii) A sample correlation coefficient of .95 between two independent vari-

ables both included in the model.

3.8 Suppose that average worker productivity at manufacturing firms (avgprod)
depends on two factors, average hours of training (avgtrain) and average worker 
ability (avgabil):

avgprod � �0 � �1avgtrain � �2avgabil � u.
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Assume that this equation satisfies the Gauss-Markov assumptions. If grants have been
given to firms whose workers have less than average ability, so that avgtrain and avga-
bil are negatively correlated, what is the likely bias in �̃1 obtained from the simple
regression of avgprod on avgtrain?

3.9 The following equation describes the median housing price in a community in
terms of amount of pollution (nox for nitrous oxide) and the average number of rooms
in houses in the community (rooms):

log(price) � �0 � �1log(nox) � �2rooms � u.

(i) What are the probable signs of �1 and �2? What is the interpretation of
�1? Explain.

(ii) Why might nox [more precisely, log(nox)] and rooms be negatively cor-
related? If this is the case, does the simple regression of log(price) on
log(nox) produce an upward or downward biased estimator of �1?

(iii) Using the data in HPRICE2.RAW, the following equations were esti-
mated:

log(pr̂ice) � 11.71 � 1.043 log(nox), n � 506, R2 � .264.

log(pr̂ice) � 9.23 � .718 log(nox) � .306 rooms, n � 506, R2 � .514.

Is the relationship between the simple and multiple regression estimates of the elastic-
ity of price with respect to nox what you would have predicted, given your answer in
part (ii)? Does this mean that �.718 is definitely closer to the true elasticity than
�1.043?

3.10 Suppose that the population model determining y is

y � �0 � �1x1 � �2x2 � �3x3 � u,

and this model satisifies the Gauss-Markov assumptions. However, we estimate the
model that omits x3. Let �̃0, �̃1, and �̃2 be the OLS estimators from the regression of y
on x1 and x2. Show that the expected value of �̃1 (given the values of the independent
variables in the sample) is

E(�̃1) � �1 � �3 ,

where the r̂i1 are the OLS residuals from the regression of x1 on x2. [Hint: The formula
for �̃1 comes from equation (3.22). Plug yi � �0 � �1xi1 � �2xi2 � �3xi3 � ui into this
equation. After some algebra, take the expectation treating xi3 and r̂i1 as nonrandom.]

3.11 The following equation represents the effects of tax revenue mix on subsequent
employment growth for the population of counties in the United States:

growth � �0 � �1shareP � �2shareI � �3shareS � other factors,

where growth is the percentage change in employment from 1980 to 1990, shareP is the
share of property taxes in total tax revenue, shareI is the share of income tax revenues,

�
n

i�1
r̂i1xi3

�
n

i�1
r̂ 2

i1
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and shareS is the share of sales tax revenues. All of these variables are measured in
1980. The omitted share, shareF, includes fees and miscellaneous taxes. By definition,
the four shares add up to one. Other factors would include expenditures on education,
infrastructure, and so on (all measured in 1980).

(i) Why must we omit one of the tax share variables from the equation?
(ii) Give a careful interpretation of �1.

3.12 (i) Consider the simple regression model y � �0 � �1x � u under the first four
Gauss-Markov assumptions. For some function g(x), for example g(x) � x2 or g(x) �
log(1 � x2), define zi � g(xi). Define a slope estimator as

�̃1 � ��
n

i�1
(zi � z̄)yi����

n

i�1
(zi � z̄)xi� .

Show that �̃1 is linear and unbiased. Remember, because E(u�x) � 0, you can treat both
xi and zi as nonrandom in your derivation.

(ii) Add the homoskedasticity assumption, MLR.5. Show that

Var(�̃1) � 
2 ��
n

i�1
(zi � z̄)2����

n

i�1
(zi � z̄)xi�2

.

(iii) Show directly that, under the Gauss-Markov assumptions, Var(�̂1) �
Var(�̃1), where �̂1 is the OLS estimator. [Hint: The Cauchy-Schwartz
inequality in Appendix B implies that

�n-1 �
n

i�1
(zi � z̄)(xi � x̄)�2

� �n-1 �
n

i�1
(zi � z̄)2��n-1 �

n

i�1
(xi � x̄)2�;

notice that we can drop x̄ from the sample covariance.]

COMPUTER EXERCISES

3.13 A problem of interest to health officials (and others) is to determine the effects of
smoking during pregnancy on infant health. One measure of infant health is birth
weight; a birth rate that is too low can put an infant at risk for contracting various ill-
nesses. Since factors other than cigarette smoking that affect birth weight are likely to
be correlated with smoking, we should take those factors into account. For example,
higher income generally results in access to better prenatal care, as well as better nutri-
tion for the mother. An equation that recognizes this is

bwght � �0 � �1cigs � �2 faminc � u.

(i) What is the most likely sign for �2?
(ii) Do you think cigs and faminc are likely to be correlated? Explain why

the correlation might be positive or negative.
(iii) Now estimate the equation with and without faminc, using the data in

BWGHT.RAW. Report the results in equation form, including the sam-
ple size and R-squared. Discuss your results, focusing on whether
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adding faminc substantially changes the estimated effect of cigs on
bwght.

3.14 Use the data in HPRICE1.RAW to estimate the model

price � �0 � �1sqrft � �2bdrms � u,

where price is the house price measured in thousands of dollars.
(i) Write out the results in equation form.
(ii) What is the estimated increase in price for a house with one more bed-

room, holding square footage constant?
(iii) What is the estimated increase in price for a house with an additional

bedroom that is 140 square feet in size? Compare this to your answer in
part (ii).

(iv) What percentage of the variation in price is explained by square footage
and number of bedrooms?

(v) The first house in the sample has sqrft � 2,438 and bdrms � 4. Find the
predicted selling price for this house from the OLS regression line.

(vi) The actual selling price of the first house in the sample was $300,000
(so price � 300). Find the residual for this house. Does it suggest that
the buyer underpaid or overpaid for the house?

3.15 The file CEOSAL2.RAW contains data on 177 chief executive officers, which can
be used to examine the effects of firm performance on CEO salary.

(i) Estimate a model relating annual salary to firm sales and market value.
Make the model of the constant elasticity variety for both independent
variables. Write the results out in equation form.

(ii) Add profits to the model from part (i). Why can this variable not be
included in logarithmic form? Would you say that these firm perfor-
mance variables explain most of the variation in CEO salaries?

(iii) Add the variable ceoten to the model in part (ii). What is the estimated
percentage return for another year of CEO tenure, holding other factors
fixed?

(iv) Find the sample correlation coefficient between the variables
log(mktval) and profits. Are these variables highly correlated? What
does this say about the OLS estimators?

3.16 Use the data in ATTEND.RAW for this exercise.
(i) Obtain the minimum, maximum, and average values for the variables

atndrte, priGPA, and ACT.
(ii) Estimate the model

atndrte � �0 � �1priGPA � �2ACT � u

and write the results in equation form. Interpret the intercept. Does it have a
useful meaning?

(iii) Discuss the estimated slope coefficients. Are there any surprises?
(iv) What is the predicted atndrte, if priGPA � 3.65 and ACT � 20? What

do you make of this result? Are there any students in the sample with
these values of the explanatory variables?
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(v) If Student A has priGPA � 3.1 and ACT � 21 and Student B has
priGPA � 2.1 and ACT � 26, what is the predicted difference in their
attendance rates?

3.17 Confirm the partialling out interpretation of the OLS estimates by explicitly doing
the partialling out for Example 3.2. This first requires regressing educ on exper and
tenure, and saving the residuals, r̂1. Then, regress log(wage) on r̂1. Compare the coeffi-
cient on r̂1 with the coefficient on educ in the regression of log(wage) on educ, exper,
and tenure.

A P P E N D I X  3 A

3A.1 Derivation of the First Order Conditions, Equations (3.13)

The analysis is very similar to the simple regression case. We must characterize the
solutions to the problem

�
n

i�1
(yi � b0 � b1xi1 � … � bkxik)

2.

Taking the partial derivatives with respect to each of the bj (see Appendix A), evaluat-
ing them at the solutions, and setting them equal to zero gives

�2 �
n

i�1
(yi � �̂0 � �̂1xi1v� … � �̂kxik) � 0

�2 �
n

i�1
xij(yi � �̂0 � �̂1xi1 � … � �̂kxik) � 0, j � 1, …, k.

Cancelling the �2 gives the first order conditions in (3.13).

3A.2 Derivation of Equation (3.22)

To derive (3.22), write xi1 in terms of its fitted value and its residual from the regression
of x1 on to x2, …, xk: xi1 � x̂i1 � r̂i1, i � 1, …, n. Now, plug this into the second equa-
tion in (3.13):

�
n

i�1
(x̂i1 � r̂i1)(yi � �̂0 � �̂1xi1 � … � �̂kxik) � 0. (3.60)

By the definition of the OLS residual ûi, since x̂i1 is just a linear function of the explana-

tory variables xi2, …, xik, it follows that �
n

i�1
x̂i1ûi � 0. Therefore, (3.60) can be expressed

as

�
n

i�1
r̂i1(yi � �̂0 � �̂1xi1 � … � �̂kxik) � 0. (3.61)

min
b0, b1, …, bk
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Since the r̂i1 are the residuals from regressing x1 onto x2, …, xk, �
n

i�1
xijr̂i1 � 0 for j � 2,

…, k. Therefore, (3.61) is equivalent to �
n

i�1
r̂i1(yi � �̂1xi1) � 0. Finally, we use the fact

that �
n

i�1
x̂i1r̂i1 � 0, which means that �̂1 solves

�
n

i�1
r̂i1(yi � �̂1r̂i1) � 0.

Now straightforward algebra gives (3.22), provided, of course, that �
n

i�1
r̂ i

2
1 	 0; this is

ensured by Assumption MLR.4.

3A.3 Proof of Theorem 3.1

We prove Theorem 3.1 for �̂1; the proof for the other slope parameters is virtually iden-
tical. (See Appendix E for a more succinct proof using matrices.) Under Assumption
MLR.4, the OLS estimators exist, and we can write �̂1 as in (3.22). Under Assumption
MLR.1, we can write yi as in (3.32); substitute this for yi in (3.22). Then, using

�
n

i�1
r̂i1 � 0, �

n

i�1
xijr̂i1 � 0 for all j � 2, …, k, and �

n

i�1
xi1r̂i1 � �

n

i�1
r̂ i

2
1, we have

�̂1 � �1 � ��
n

i�1
r̂i1ui����

n

i�1
r̂ i

2
1�. (3.62)

Now, under Assumptions MLR.2 and MLR.4, the expected value of each ui, given all
independent variables in the sample, is zero. Since the r̂i1 are just functions of the sam-
ple independent variables, it follows that

E(�̂1�X) � �1 � ��
n

i�1
r̂i1E(ui�X)����

n

i�1
r̂ i

2
1�

� �1 � ��
n

i�1
r̂i1�0����

n

i�1
r̂ i

2
1� � �1,

where X denotes the data on all independent variables and E(�̂1�X ) is the expected value
of �̂1, given xi1, …, xik for all i � 1, …, n. This completes the proof.

3A.4 Proof of Theorem 3.2

Again, we prove this for j � 1. Write �̂1 as in equation (3.62). Now, under MLR.5,
Var(ui�X) � 
2 for all i � 1, …, n. Under random sampling, the ui are independent, even
conditional on X, and the r̂i1 are nonrandom conditional on X. Therefore,

Var(�̂1�X) � ��
n

i�1
r̂ i

2
1 Var(ui�X)����

n

i�1
r̂ i

2
1�

2

� ��
n

i�1
r̂ i

2
1


2����
n

i�1
r̂ i

2
1�

2

� 
2���
n

i�1
r̂ i

2
1�.
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Now, since �
n

i�1
r̂ i

2
1 is the sum of squared residuals from regressing x1 on to x2, …, xk,

�
n

i�1
r̂ i

2
1 � SST1(1 � R1

2). This completes the proof.

3A.5 Proof of Theorem 3.4

We show that, for any other linear unbiased estimator �̃1 of �1, Var(�̃1) � Var(�̂1),
where �̂1 is the OLS estimator. The focus on j � 1 is without loss of generality.

For �̃1 as in equation (3.59), we can plug in for yi to obtain

�̃1 � �0 �
n

i�1
wi1 � �1 �

n

i�1
wi1xi1 � �2 �

n

i�1
wi1xi2 � … � �k �

n

i�1
wi1xik � �

n

i�1
wi1ui.

Now, since the wi1 are functions of the xij,

E(�̃1�X) � �0 �
n

i�1
wi1 � �1 �

n

i�1
wi1xi1 � �2 �

n

i�1
wi1xi2 � … � �k �

n

i�1
wi1xik � �

n

i�1
wi1E(ui�X)

� �0 �
n

i�1
wi1 � �1 �

n

i�1
wi1xi1 � �2 �

n

i�1
wi1xi2 � … � �k �

n

i�1
wi1xik

because E(ui�X ) � 0, for all i � 1, …, n under MLR.3. Therefore, for E(�̃1�X ) to equal
�1 for any values of the parameters, we must have

�
n

i�1
wi1 � 0, �

n

i�1
wi1xi1 � 1, �

n

i�1
wi1xij � 0, j � 2, …, k. (3.63)

Now, let r̂i1 be the residuals from the regression of xi1 on to xi2, …, xik. Then, from
(3.63), it follows that

�
n

i�1
wi1r̂i1 � 1. (3.64)

Now, consider the difference between Var(�̃1�X ) and Var(�̂1�X ) under MLR.1 through
MLR.5:


2 �
n

i�1
w i

2
1 � 
2���

n

i�1
r̂ i

2
1�. (3.65)

Because of (3.64), we can write the difference in (3.65), without 
2, as

�
n

i�1
wi

2
1 � ��

n

i�1
wi1r̂i1�

2

���
n

i�1
r̂ i

2
1�. (3.66)

But (3.66) is simply

�
n

i�1
(wi1 � �̂1r̂i1)2, (3.67)
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where �̂1 � ��
n

i�1
wi1r̂i1��� �

n

i�1
r̂ i

2
1�, as can be seen by squaring each term in (3.67),

summing, and then cancelling terms. Because (3.67) is just the sum of squared residu-
als from the simple regression of wi1 on to r̂i1—remember that the sample average of
r̂i1 is zero—(3.67) must be nonnegative. This completes the proof.
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This chapter continues our treatment of multiple regression analysis. We now turn
to the problem of testing hypotheses about the parameters in the population
regression model. We begin by finding the distributions of the OLS estimators

under the added assumption that the population error is normally distributed. Sections
4.2 and 4.3 cover hypothesis testing about individual parameters, while Section 4.4 dis-
cusses how to test a single hypothesis involving more than one parameter. We focus on
testing multiple restrictions in Section 4.5 and pay particular attention to determining
whether a group of independent variables can be omitted from a model.

4.1 SAMPLING DISTRIBUTIONS OF THE OLS
ESTIMATORS

Up to this point, we have formed a set of assumptions under which OLS is unbiased,
and we have also derived and discussed the bias caused by omitted variables. In Section
3.4, we obtained the variances of the OLS estimators under the Gauss-Markov assump-
tions. In Section 3.5, we showed that this variance is smallest among linear unbiased
estimators.

Knowing the expected value and variance of the OLS estimators is useful for
describing the precision of the OLS estimators. However, in order to perform statistical
inference, we need to know more than just the first two moments of �̂j; we need to know
the full sampling distribution of the �̂j. Even under the Gauss-Markov assumptions, the
distribution of �̂j can have virtually any shape.

When we condition on the values of the independent variables in our sample, it is
clear that the sampling distributions of the OLS estimators depend on the underlying
distribution of the errors. To make the sampling distributions of the �̂j tractable, we now
assume that the unobserved error is normally distributed in the population. We call this
the normality assumption.

A S S U M P T I O N  M L R . 6  ( N O R M A L I T Y )

The population error u is independent of the explanatory variables x1, x2, …, xk and is nor-
mally distributed with zero mean and variance �2: u ~ Normal(0,�2).
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Assumption MLR.6 is much stronger than any of our previous assumptions. In fact,
since u is independent of the xj under MLR.6, E(u�x1, …, xk) � E(u) � 0, and Var(u�x1,
…, xk) � Var(u) � �2. Thus, if we make Assumption MLR.6, then we are necessarily
assuming MLR.3 and MLR.5. To emphasize that we are assuming more than before, we
will refer to the the full set of assumptions MLR.1 through MLR.6.

For cross-sectional regression applications, the six assumptions MLR.1 through
MLR.6 are called the classical linear model (CLM) assumptions. Thus, we will refer
to the model under these six assumptions as the classical linear model. It is best to
think of the CLM assumptions as containing all of the Gauss-Markov assumptions plus
the assumption of a normally distributed error term.

Under the CLM assumptions, the OLS estimators �̂0, �̂1, …, �̂k have a stronger effi-
ciency property than they would under the Gauss-Markov assumptions. It can be shown
that the OLS estimators are the minimum variance unbiased estimators, which
means that OLS has the smallest variance among unbiased estimators; we no longer
have to restrict our comparison to estimators that are linear in the yi. This property of
OLS under the CLM assumptions is discussed further in Appendix E.

A succinct way to summarize the population assumptions of the CLM is

y�x ~ Normal(�0 � �1x1 � �2x2 � … � �kxk,�
2),

where x is again shorthand for (x1, …, xk). Thus, conditional on x, y has a normal dis-
tribution with mean linear in x1, …, xk and a constant variance. For a single independent
variable x, this situation is shown in Figure 4.1.

The argument justifying the normal distribution for the errors usually runs some-
thing like this: Because u is the sum of many different unobserved factors affecting y,
we can invoke the central limit theorem (see Appendix C) to conclude that u has an
approximate normal distribution. This argument has some merit, but it is not without
weaknesses. First, the factors in u can have very different distributions in the popula-
tion (for example, ability and quality of schooling in the error in a wage equation).
While the central limit theorem (CLT) can still hold in such cases, the normal approx-
imation can be poor depending on how many factors appear in u and how different are
their distributions.

A more serious problem with the CLT argument is that it assumes that all unob-
served factors affect y in a separate, additive fashion. Nothing guarantees that this is so.
If u is a complicated function of the unobserved factors, then the CLT argument does
not really apply.

In any application, whether normality of u can be assumed is really an empirical
matter. For example, there is no theorem that says wage conditional on educ, exper, and
tenure is normally distributed. If anything, simple reasoning suggests that the opposite
is true: since wage can never be less than zero, it cannot, strictly speaking, have a nor-
mal distribution. Further, since there are minimum wage laws, some fraction of the pop-
ulation earns exactly the minimum wage, which also violates the normality assumption.
Nevertheless, as a practical matter we can ask whether the conditional wage distribu-
tion is “close” to being normal. Past empirical evidence suggests that normality is not
a good assumption for wages.

Often, using a transformation, especially taking the log, yields a distribution that is
closer to normal. For example, something like log(price) tends to have a distribution
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that looks more normal than the distribution of price. Again, this is an empirical issue,
which we will discuss further in Chapter 5.

There are some examples where MLR.6 is clearly false. Whenever y takes on just a
few values, it cannot have anything close to a normal distribution. The dependent vari-
able in Example 3.5 provides a good example. The variable narr86, the number of times
a young man was arrested in 1986, takes on a small range of integer values and is zero
for most men. Thus, narr86 is far from being normally distributed. What can be done
in these cases? As we will see in Chapter 5—and this is important—nonnormality of
the errors is not a serious problem with large sample sizes. For now, we just make the
normality assumption.

Normality of the error term translates into normal sampling distributions of the OLS
estimators:

T H E O R E M  4 . 1  ( N O R M A L  S A M P L I N G  D I S T R I B U T I O N S )

Under the CLM assumptions MLR.1 through MLR.6, conditional on the sample values of the
independent variables,

�̂j ~ Normal[�j,Var(�̂j)], (4.1)
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where Var(�̂j) was given in Chapter 3 [equation (3.51)]. Therefore,

(�̂j � �j)/sd(�̂j) ~ Normal(0,1).

The proof of (4.1) is not that difficult, given the properties of normally distributed ran-

dom variables in Appendix B. Each �̂j can be written as �̂j � �j � �
n

i�1 
wijui, where wij �

r̂ij/SSRj, r̂ij is the ith residual from the regression of the xj on all the other independent
variables, and SSRj is the sum of squared residuals from this regression [see equation
(3.62)]. Since the wij depend only on the independent variables, they can be treated as

nonrandom. Thus, �̂j is just a linear combi-
nation of the errors in the sample, {ui: i �
1,2, …, n}. Under Assumption MLR.6
(and the random sampling Assumption
MLR.2), the errors are independent, iden-
tically distributed Normal(0,�2) random
variables. An important fact about inde-
pendent normal random variables is that a

linear combination of such random variables is normally distributed (see Appendix B).
This basically completes the proof. In Section 3.3, we showed that E(�̂j) � �j, and we
derived Var(�̂j) in Section 3.4; there is no need to re-derive these facts.

The second part of this theorem follows immediately from the fact that when we
standardize a normal random variable by dividing it by its standard deviation, we end
up with a standard normal random variable.

The conclusions of Theorem 4.1 can be strengthened. In addition to (4.1), any lin-
ear combination of the �̂0, �̂1, …, �̂k is also normally distributed, and any subset of the
�̂j has a joint normal distribution. These facts underlie the testing results in the remain-
der of this chapter. In Chapter 5, we will show that the normality of the OLS estimators
is still approximately true in large samples even without normality of the errors.

4.2 TESTING HYPOTHESES ABOUT A SINGLE
POPULATION PARAMETER: THE t TEST

This section covers the very important topic of testing hypotheses about any single para-
meter in the population regression function. The population model can be written as

y � �0 � �1x1 � … � �kxk � u, (4.2)

and we assume that it satisfies the CLM assumptions. We know that OLS produces
unbiased estimators of the �j. In this section, we study how to test hypotheses about a
particular �j. For a full understanding of hypothesis testing, one must remember that the
�j are unknown features of the population, and we will never know them with certainty.
Nevertheless, we can hypothesize about the value of �j and then use statistical inference
to test our hypothesis.

In order to construct hypotheses tests, we need the following result:
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Suppose that u is independent of the explanatory variables, and it
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T H E O R E M  4 . 2  ( t  D I S T R I B U T I O N  F O R  T H E

S T A N D A R D I Z E D  E S T I M A T O R S )

Under the CLM assumptions MLR.1 through MLR.6,

(�̂j � �j)/se(�̂j) ~ tn�k�1, (4.3)

where k � 1 is the number of unknown parameters in the population model y � �0 �

�1x1 � … � �kxk � u (k slope parameters and the intercept �0).

This result differs from Theorem 4.1 in some notable respects. Theorem 4.1 showed
that, under the CLM assumptions, (�̂j � �j)/sd(�̂j) ~ Normal(0,1). The t distribution in
(4.3) comes from the fact that the constant � in sd(�̂j) has been replaced with the ran-
dom variable �̂ . The proof that this leads to a t distribution with n � k � 1 degrees of
freedom is not especially insightful. Essentially, the proof shows that (4.3) can be writ-
ten as the ratio of the standard normal random variable (�̂j � �j)/sd(�̂j) over the square
root of �̂2/�2. These random variables can be shown to be independent, and (n � k �
1)�̂2/�2 � �2

n�k�1. The result then follows from the definition of a t random variable
(see Section B.5).

Theorem 4.2 is important in that it allows us to test hypotheses involving the �j. In
most applications, our primary interest lies in testing the null hypothesis

H0: �j � 0, (4.4)

where j corresponds to any of the k independent variables. It is important to understand
what (4.4) means and to be able to describe this hypothesis in simple language for a par-
ticular application. Since �j measures the partial effect of xj on (the expected value of)
y, after controlling for all other independent variables, (4.4) means that, once x1, x2, …,
xj�1, xj�1, …, xk have been accounted for, xj has no effect on the expected value of y. We
cannot state the null hypothesis as “xj does have a partial effect on y” because this is true
for any value of �j other than zero. Classical testing is suited for testing simple hypothe-
ses like (4.4).

As an example, consider the wage equation

log(wage) � �0 � �1educ � �2exper � �3tenure � u.

The null hypothesis H0: �2 � 0 means that, once education and tenure have been
accounted for, the number of years in the work force (exper) has no effect on hourly
wage. This is an economically interesting hypothesis. If it is true, it implies that a per-
son’s work history prior to the current employment does not affect wage. If �2 	 0, then
prior work experience contributes to productivity, and hence to wage.

You probably remember from your statistics course the rudiments of hypothesis
testing for the mean from a normal population. (This is reviewed in Appendix C.) The
mechanics of testing (4.4) in the multiple regression context are very similar. The hard
part is obtaining the coefficient estimates, the standard errors, and the critical values,
but most of this work is done automatically by econometrics software. Our job is to
learn how regression output can be used to test hypotheses of interest.

The statistic we use to test (4.4) (against any alternative) is called “the” t statistic
or “the” t ratio of �̂j and is defined as
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t�̂j
� �̂j/se(�̂j). (4.5)

We have put “the” in quotation marks because, as we will see shortly, a more general
form of the t statistic is needed for testing other hypotheses about �j. For now, it is
important to know that (4.5) is suitable only for testing (4.4). When it causes no confu-
sion, we will sometimes write t in place of t�̂j

.
The t statistic for �̂j is simple to compute given �̂j and its standard error. In fact, most

regression packages do the division for you and report the t statistic along with each
coefficient and its standard error.

Before discussing how to use (4.5) formally to test H0: �j � 0, it is useful to see why
t�̂j

has features that make it reasonable as a test statistic to detect �j 
 0. First, since
se(�̂j) is always positive, t�̂j

has the same sign as �̂j: if �̂j is positive, then so is t�̂j
, and if

�̂j is negative, so is t�̂j
. Second, for a given value of se(�̂j), a larger value of �̂j leads to

larger values of t�̂j
. If �̂j becomes more negative, so does t�̂j

.
Since we are testing H0: �j � 0, it is only natural to look at our unbiased estimator

of �j, �̂j, for guidance. In any interesting application, the point estimate �̂j will never
exactly be zero, whether or not H0 is true. The question is: How far is �̂j from zero? A
sample value of �̂j very far from zero provides evidence against H0: �j � 0. However,
we must recognize that there is a sampling error in our estimate �̂j, so the size of �̂j must
be weighed against its sampling error. Since the the standard error of �̂j is an estimate
of the standard deviation of �̂j, t�̂j

measures how many estimated standard deviations �̂j

is away from zero. This is precisely what we do in testing whether the mean of a pop-
ulation is zero, using the standard t statistic from introductory statistics. Values of t�̂j
sufficiently far from zero will result in a rejection of H0. The precise rejection rule
depends on the alternative hypothesis and the chosen significance level of the test.

Determining a rule for rejecting (4.4) at a given significance level—that is, the prob-
ability of rejecting H0 when it is true—requires knowing the sampling distribution of t�̂j
when H0 is true. From Theorem 4.2, we know this to be tn�k�1. This is the key theoret-
ical result needed for testing (4.4).

Before proceeding, it is important to remember that we are testing hypotheses about
the population parameters. We are not testing hypotheses about the estimates from a
particular sample. Thus, it never makes sense to state a null hypothesis as “H0: �̂1 � 0”
or, even worse, as “H0: .237 � 0” when the estimate of a parameter is .237 in the sam-
ple. We are testing whether the unknown population value, �1, is zero.

Some treatments of regression analysis define the t statistic as the absolute value of
(4.5), so that the t statistic is always positive. This practice has the drawback of making
testing against one-sided alternatives clumsy. Throughout this text, the t statistic always
has the same sign as the corresponding OLS coefficient estimate.

Testing Against One-Sided Alternatives

In order to determine a rule for rejecting H0, we need to decide on the relevant alter-
native hypothesis. First consider a one-sided alternative of the form

H1: �j 	 0. (4.6)
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This means that we do not care about alternatives to H0 of the form H1: �j � 0; for some
reason, perhaps on the basis of introspection or economic theory, we are ruling out pop-
ulation values of �j less than zero. (Another way to think about this is that the null hypoth-
esis is actually H0: �j � 0; in either case, the statistic t�̂j

is used as the test statistic.)
How should we choose a rejection rule? We must first decide on a significance level

or the probability of rejecting H0 when it is in fact true. For concreteness, suppose we
have decided on a 5% significance level, as this is the most popular choice. Thus, we
are willing to mistakenly reject H0 when it is true 5% of the time. Now, while t�̂j

has a
t distribution under H0—so that it has zero mean—under the alternative �j 	 0, the
expected value of t�̂j

is positive. Thus, we are looking for a “sufficiently large” positive
value of t�̂j

in order to reject H0: �j � 0 in favor of H1: �j 	 0. Negative values of t�̂j
provide no evidence in favor of H1.

The definition of “sufficiently large,” with a 5% significance level, is the 95th per-
centile in a t distribution with n � k � 1 degrees of freedom; denote this by c. In
other words, the rejection rule is that H0 is rejected in favor of H1 at the 5% signifi-
cance level if

t�̂j
	 c. (4.7)
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By our choice of the critical value c, rejection of H0 will occur for 5% of all random
samples when H0 is true.

The rejection rule in (4.7) is an example of a one-tailed test. In order to obtain c,
we only need the significance level and the degrees of freedom. For example, for a 5%
level test and with n � k � 1 � 28 degrees of freedom, the critical value is c � 1.701.
If t�̂j

� 1.701, then we fail to reject H0 in favor of (4.6) at the 5% level. Note that a neg-
ative value for t�̂j

, no matter how large in absolute value, leads to a failure in rejecting
H0 in favor of (4.6). (See Figure 4.2.)

The same procedure can be used with other significance levels. For a 10% level test
and if df � 21, the critical value is c � 1.323. For a 1% significance level and if df �
21, c � 2.518. All of these critical values are obtained directly from Table G.2. You
should note a pattern in the critical values: as the significance level falls, the critical
value increases, so that we require a larger and larger value of t�̂j

in order to reject H0.
Thus, if H0 is rejected at, say, the 5% level, then it is automatically rejected at the 10%
level as well. It makes no sense to reject the null hypothesis at, say, the 5% level and
then to redo the test to determine the outcome at the 10% level.

As the degrees of freedom in the t distribution get large, the t distribution
approaches the standard normal distribution. For example, when n � k � 1 � 120, the
5% critical value for the one-sided alternative (4.7) is 1.658, compared with the stan-
dard normal value of 1.645. These are close enough for practical purposes; for degrees
of freedom greater than 120, one can use the standard normal critical values.

E X A M P L E  4 . 1
( H o u r l y  W a g e  E q u a t i o n )

Using the data in WAGE1.RAW gives the estimated equation

log(ŵage) � (.284) � (.092) educ � (.0041) exper � (.022) tenure

log(ŵage) � (.104) � (.007) educ � (.0017) exper � (.003) tenure

n � 526, R2 � .316,

where standard errors appear in parentheses below the estimated coefficients. We will fol-
low this convention throughout the text. This equation can be used to test whether the
return to exper, controlling for educ and tenure, is zero in the population, against the alter-
native that it is positive. Write this as H0: �exper � 0 versus H1: �exper 	 0. (In applications,
indexing a parameter by its associated variable name is a nice way to label parameters, since
the numerical indices that we use in the general model are arbitrary and can cause confu-
sion.) Remember that �exper denotes the unknown population parameter. It is nonsense to
write “H0: .0041 � 0” or “H0: �̂exper � 0.”

Since we have 522 degrees of freedom, we can use the standard normal critical values.
The 5% critical value is 1.645, and the 1% critical value is 2.326. The t statistic for �̂exper is

t�̂exper
� .0041/.0017 � 2.41,

and so �̂exper, or exper, is statistically significant even at the 1% level. We also say that
“�̂exper is statistically greater than zero at the 1% significance level.”

The estimated return for another year of experience, holding tenure and education
fixed, is not large. For example, adding three more years increases log(wage) by 3(.0041) �
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.0123, so wage is only about 1.2% higher. Nevertheless, we have persuasively shown that
the partial effect of experience is positive in the population.

The one-sided alternative that the parameter is less than zero,

H1: �j � 0, (4.8)

also arises in applications.
The rejection rule for alternative (4.8) is just the mirror image of the previous case.

Now, the critical value comes from the left tail of the t distribution. In practice, it is eas-
iest to think of the rejection rule as

t�̂j
� �c, (4.9)

where c is the critical value for the alterna-
tive H1: �j 	 0. For simplicity, we always
assume c is positive, since this is how crit-
ical values are reported in t tables, and so
the critical value �c is a negative number.

For example, if the significance level is
5% and the degrees of freedom is 18, then
c � 1.734, and so H0: �j � 0 is rejected in
favor of H1: �j � 0 at the 5% level if t�̂j

�
�1.734. It is important to remember that,
to reject H0 against the negative alternative

(4.8), we must get a negative t statistic. A positive t ratio, no matter how large, provides
no evidence in favor of (4.8). The rejection rule is illustrated in Figure 4.3.

E X A M P L E  4 . 2
( S t u d e n t  P e r f o r m a n c e  a n d  S c h o o l  S i z e )

There is much interest in the effect of school size on student performance. (See, for exam-
ple, The New York Times Magazine, 5/28/95.) One claim is that, everything else being
equal, students at smaller schools fare better than those at larger schools. This hypothesis
is assumed to be true even after accounting for differences in class sizes across schools.

The file MEAP93.RAW contains data on 408 high schools in Michigan for the year
1993. We can use these data to test the null hypothesis that school size has no effect on
standardized test scores, against the alternative that size has a negative effect. Performance
is measured by the percentage of students receiving a passing score on the Michigan
Educational Assessment Program (MEAP) standardized tenth grade math test (math10).
School size is measured by student enrollment (enroll). The null hypothesis is H0: �enroll �

0, and the alternative is H1: �enroll � 0. For now, we will control for two other factors, aver-
age annual teacher compensation (totcomp) and the number of staff per one thousand
students (staff ). Teacher compensation is a measure of teacher quality, and staff size is a
rough measure of how much attention students receive.
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Q U E S T I O N  4 . 2

Let community loan approval rates be determined by

apprate � �0 � �1percmin � �2avginc �
�3avgwlth � �4avgdebt � u,

where percmin is the percent minority in the community, avginc is
average income, avgwlth is average wealth, and avgdebt is some
measure of average debt obligations. How do you state the null
hypothesis that there is no difference in loan rates across neighbor-
hoods due to racial and ethnic composition, when average income,
average wealth, and average debt have been controlled for? How
do you state the alternative that there is discrimination against
minorities in loan approval rates?
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The estimated equation, with standard errors in parentheses, is

mat̂h10 � (2.274) � (.00046) totcomp � (.048) staff � (.00020) enroll

mat̂h10 � (6.113) � (.00010) totcomp � (.040) staff � (.00022) enroll

n � 408, R2 � .0541.

The coefficient on enroll, �.0002, is in accordance with the conjecture that larger schools
hamper performance: higher enrollment leads to a lower percentage of students with a
passing tenth grade math score. (The coefficients on totcomp and staff also have the signs
we expect.) The fact that enroll has an estimated coefficient different from zero could just
be due to sampling error; to be convinced of an effect, we need to conduct a t test.

Since n � k � 1 � 408 � 4 � 404, we use the standard normal critical value. At the
5% level, the critical value is �1.65; the t statistic on enroll must be less than �1.65 to
reject H0 at the 5% level.

The t statistic on enroll is �.0002/.00022 � �.91, which is larger than �1.65: we fail
to reject H0 in favor of H1 at the 5% level. In fact, the 15% critical value is �1.04, and since
�.91 	 �1.04, we fail to reject H0 even at the 15% level. We conclude that enroll is not
statistically significant at the 15% level.
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5% rejection rule for the alternative H1: �j � 0 with 18 df.

0

–1.734rejection
region

Area = .05
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The variable totcomp is statistically significant even at the 1% significance level because
its t statistic is 4.6. On the other hand, the t statistic for staff is 1.2, and so we cannot reject
H0: �staff � 0 against H1: �staff 	 0 even at the 10% significance level. (The critical value is
c � 1.28 from the standard normal distribution.)

To illustrate how changing functional form can affect our conclusions, we also estimate
the model with all independent variables in logarithmic form. This allows, for example, the
school size effect to diminish as school size increases. The estimated equation is

mat̂h10 � (�207.66) � (21.16) log(totcomp) � (3.98) log(staff ) � (1.29) log(enroll)

mat̂h10 � �(48.70) � (4.06) log(totcomp) � (4.19) log(staff ) � (0.69) log(enroll)

n � 408, R2 � .0654.

The t statistic on log(enroll ) is about �1.87; since this is below the 5% critical value �1.65,
we reject H0: �log(enroll) � 0 in favor of H1: �log(enroll) � 0 at the 5% level.

In Chapter 2, we encountered a model where the dependent variable appeared in its
original form (called level form), while the independent variable appeared in log form
(called level-log model). The interpretation of the parameters is the same in the multiple
regression context, except, of course, that we can give the parameters a ceteris paribus
interpretation. Holding totcomp and staff fixed, we have 
mat̂h10 � �1.29[
log(enroll)],
so that


mat̂h10 � �(1.29/100)(%
enroll ) � �.013(%
enroll ).

Once again, we have used the fact that the change in log(enroll ), when multiplied by 100,
is approximately the percentage change in enroll. Thus, if enrollment is 10% higher at a
school, mat̂h10 is predicted to be 1.3 percentage points lower (math10 is measured as a
percent).

Which model do we prefer: the one using the level of enroll or the one using
log(enroll )? In the level-level model, enrollment does not have a statistically significant
effect, but in the level-log model it does. This translates into a higher R-squared for the
level-log model, which means we explain more of the variation in math10 by using enroll
in logarithmic form (6.5% to 5.4%). The level-log model is preferred, as it more closely cap-
tures the relationship between math10 and enroll. We will say more about using R-squared
to choose functional form in Chapter 6.

Two-Sided Alternatives

In applications, it is common to test the null hypothesis H0: �j � 0 against a two-sided
alternative, that is,

H1: �j 
 0. (4.10)

Under this alternative, xj has a ceteris paribus effect on y without specifying whether the
effect is positive or negative. This is the relevant alternative when the sign of �j is not
well-determined by theory (or common sense). Even when we know whether �j is pos-
itive or negative under the alternative, a two-sided test is often prudent. At a minimum,
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using a two-sided alternative prevents us from looking at the estimated equation and
then basing the alternative on whether �̂j is positive or negative. Using the regression
estimates to help us formulate the null or alternative hypotheses is not allowed because
classical statistical inference presumes that we state the null and alternative about the
population before looking at the data. For example, we should not first estimate the
equation relating math performance to enrollment, note that the estimated effect is neg-
ative, and then decide the relevant alternative is H1: �enroll � 0.

When the alternative is two-sided, we are interested in the absolute value of the t
statistic. The rejection rule for H0: �j � 0 against (4.10) is

�t�̂j
� 	 c, (4.11)

where ��� denotes absolute value and c is an appropriately chosen critical value. To find
c, we again specify a significance level, say 5%. For a two-tailed test, c is chosen to
make the area in each tail of the t distribution equal 2.5%. In other words, c is the 97.5th

percentile in the t distribution with n � k � 1 degrees of freedom. When n � k � 1 �
25, the 5% critical value for a two-sided test is c � 2.060. Figure 4.4 provides an illus-
tration of this distribution.
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5% rejection rule for the alternative H1: �j 
 0 with 25 df.
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When a specific alternative is not stated, it is usually considered to be two-sided. In
the remainder of this text, the default will be a two-sided alternative, and 5% will be the
default significance level. When carrying out empirical econometric analysis, it is
always a good idea to be explicit about the alternative and the significance level. If H0

is rejected in favor of (4.10) at the 5% level, we usually say that “xj is statistically sig-
nificant, or statistically different from zero, at the 5% level.” If H0 is not rejected, we
say that “xj is statistically insignificant at the 5% level.”

E X A M P L E  4 . 3
( D e t e r m i n a n t s  o f  C o l l e g e  G P A )

We use GPA1.RAW to estimate a model explaining college GPA (colGPA), with the average
number of lectures missed per week (skipped) as an additional explanatory variable. The
estimated model is

col̂GPA � (1.39) � (.412) hsGPA � (.015) ACT � (.083) skipped

col̂GPA � (0.33) � (.094) hsGPA � (.011) ACT � (.026) skipped

n � 141, R2 � .234.

We can easily compute t statistics to see which variables are statistically significant, using a
two-sided alternative in each case. The 5% critical value is about 1.96, since the degrees of
freedom (141 � 4 � 137) is large enough to use the standard normal approximation. The
1% critical value is about 2.58.

The t statistic on hsGPA is 4.38, which is significant at very small significance levels.
Thus, we say that “hsGPA is statistically significant at any conventional significance level.”
The t statistic on ACT is 1.36, which is not statistically significant at the 10% level against
a two-sided alternative. The coefficient on ACT is also practically small: a 10-point increase
in ACT, which is large, is predicted to increase colGPA by only .15 point. Thus, the variable
ACT is practically, as well as statistically, insignificant.

The coefficient on skipped has a t statistic of �.083/.026 � �3.19, so skipped is statisti-
cally significant at the 1% significance level (3.19 	 2.58). This coefficient means that another
lecture missed per week lowers predicted colGPA by about .083. Thus, holding hsGPA and
ACT fixed, the predicted difference in colGPA between a student who misses no lectures per
week and a student who misses five lectures per week is about .42. Remember that this says
nothing about specific students, but pertains to average students across the population.

In this example, for each variable in the model, we could argue that a one-sided alter-
native is appropriate. The variables hsGPA and skipped are very significant using a two-tailed
test and have the signs that we expect, so there is no reason to do a one-tailed test. On the
other hand, against a one-sided alternative (�3 	 0), ACT is significant at the 10% level but
not at the 5% level. This does not change the fact that the coefficient on ACT is pretty small.

Testing Other Hypotheses About �j

Although H0: �j � 0 is the most common hypothesis, we sometimes want to test
whether �j is equal to some other given constant. Two common examples are �j � 1 and
�j � �1. Generally, if the null is stated as
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H0: �j � aj, (4.12)

where aj is our hypothesized value of �j, then the appropriate t statistic is

t � (�̂j � aj)/se(�̂j).

As before, t measures how many estimated standard deviations �̂j is from the hypothe-
sized value of �j. The general t statistic is usefully written as

t � . (4.13)

Under (4.12), this t statistic is distributed as tn�k�1 from Theorem 4.2. The usual t sta-
tistic is obtained when aj � 0.

We can use the general t statistic to test against one-sided or two-sided alternatives.
For example, if the null and alternative hypotheses are H0: �j � 1 and H1: �j 	 1, then
we find the critical value for a one-sided alternative exactly as before: the difference is
in how we compute the t statistic, not in how we obtain the appropriate c. We reject H0

in favor of H1 if t 	 c. In this case, we would say that “�̂j is statistically greater than
one” at the appropriate significance level.

E X A M P L E  4 . 4
( C a m p u s  C r i m e  a n d  E n r o l l m e n t )

Consider a simple model relating the annual number of crimes on college campuses (crime)
to student enrollment (enroll):

log(crime) � �0 � �1log(enroll) � u.

This is a constant elasticity model, where �1 is the elasticity of crime with respect to enroll-
ment. It is not much use to test H0: �1 � 0, as we expect the total number of crimes to
increase as the size of the campus increases. A more interesting hypothesis to test would
be that the elasticity of crime with respect to enrollment is one: H0: �1 � 1. This means that
a 1% increase in enrollment leads to, on average, a 1% increase in crime. A noteworthy
alternative is H1: �1 	 1, which implies that a 1% increase in enrollment increases campus
crime by more than 1%. If �1 	 1, then, in a relative sense—not just an absolute sense—
crime is more of a problem on larger campuses. One way to see this is to take the expo-
nential of the equation:

crime � exp(�0)enroll
�
1exp(u).

(See Appendix A for properties of the natural logarithm and exponential functions.) For
�0 � 0 and u � 0, this equation is graphed in Figure 4.5 for �1 � 1, �1 � 1, and �1 	 1.

We test �1 � 1 against �1 	 1 using data on 97 colleges and universities in the United
States for the year 1992. The data come from the FBI’s Uniform Crime Reports, and the
average number of campus crimes in the sample is about 394, while the average enroll-
ment is about 16,076. The estimated equation (with estimates and standard errors rounded
to two decimal places) is

(estimate � hypothesized value)
standard error
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log(̂crime) � �6.63 � 1.27 log(enroll )

(1.03) (0.11)

n � 97, R2 � .585.

(4.14)

The estimated elasticity of crime with respect to enroll, 1.27, is in the direction of the alter-
native �1 	 1. But is there enough evidence to conclude that �1 	 1? We need to be care-
ful in testing this hypothesis, especially because the statistical output of standard regression
packages is much more complex than the simplified output reported in equation (4.14). Our
first instinct might be to construct “the” t statistic by taking the coefficient on log(enroll )
and dividing it by its standard error, which is the t statistic reported by a regression pack-
age. But this is the wrong statistic for testing H0: �1 � 1. The correct t statistic is obtained
from (4.13): we subtract the hypothesized value, unity, from the estimate and divide the
result by the standard error of �̂1: t � (1.27 � 1)/.11 � .27/.11 � 2.45. The one-sided 5%
critical value for a t distribution with 97 � 2 � 95 df is about 1.66 (using df � 120), so we
clearly reject �1 � 1 in favor of �1 	 1 at the 5% level. In fact, the 1% critical value is about
2.37, and so we reject the null in favor of the alternative at even the 1% level.

We should keep in mind that this analysis holds no other factors constant, so the elas-
ticity of 1.27 is not necessarily a good estimate of ceteris paribus effect. It could be that
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Graph of crime � enroll
�
1 for �1 � 1, �1 � 1, and �1 	 1.
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larger enrollments are correlated with other factors that cause higher crime: larger schools
might be located in higher crime areas. We could control for this by collecting data on crime
rates in the local city.

For a two-sided alternative, for example H0: �j � �1, H1: �j 
 �1, we still com-
pute the t statistic as in (4.13): t � (�̂j � 1)/se(�̂j) (notice how subtracting �1 means
adding 1). The rejection rule is the usual one for a two-sided test: reject H0 if �t� 	 c,
where c is a two-tailed critical value. If H0 is rejected, we say that “�̂j is statistically dif-
ferent from negative one” at the appropriate significance level.

E X A M P L E  4 . 5
( H o u s i n g  P r i c e s  a n d  A i r  P o l l u t i o n )

For a sample of 506 communities in the Boston area, we estimate a model relating median
housing price (price) in the community to various community characteristics: nox is the
amount of nitrous oxide in the air, in parts per million; dist is a weighted distance of the
community from five employment centers, in miles; rooms is the average number of rooms
in houses in the community; and stratio is the average student-teacher ratio of schools in
the community. The population model is

log(price) � �0 � �1log(nox) � �2log(dist) � �3rooms � �4stratio � u.

Thus, �1 is the elasticity of price with respect to nox. We wish to test H0: �1 � �1 against
the alternative H1: �1 
 �1. The t statistic for doing this test is t � (�̂1 � 1)/se(�̂1).

Using the data in HPRICE2.RAW, the estimated model is

log(pr̂ice) � (11.08) � (.954) log(nox) � (.134) log(dist) � (.255) rooms � (.052) stratio

log(pr̂ice) � (0.32) � (.117) log(nox) � (.043) log(dist) � (.019) rooms � (.006) stratio

n � 506, R2 � .581.

The slope estimates all have the anticipated signs. Each coefficient is statistically different
from zero at very small significance levels, including the coefficient on log(nox). But we do
not want to test that �1 � 0. The null hypothesis of interest is H0: �1 � �1, with corre-
sponding t statistic (�.954 � 1)/.117 � .393. There is little need to look in the t table for
a critical value when the t statistic is this small: the estimated elasticity is not statistically dif-
ferent from �1 even at very large significance levels. Controlling for the factors we have
included, there is little evidence that the elasticity is different from �1.

Computing p-values for t tests

So far, we have talked about how to test hypotheses using a classical approach: after
stating the alternative hypothesis, we choose a significance level, which then deter-
mines a critical value. Once the critical value has been identified, the value of the t sta-
tistic is compared with the critical value, and the null is either rejected or not rejected
at the given significance level.
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Even after deciding on the appropriate alternative, there is a component of arbi-
trariness to the classical approach, which results from having to choose a significance
level ahead of time. Different researchers prefer different significance levels, depend-
ing on the particular application. There is no “correct” significance level.

Committing to a significance level ahead of time can hide useful information about
the outcome of a hypothesis test. For example, suppose that we wish to test the null
hypothesis that a parameter is zero against a two-sided alternative, and with 40 degrees
of freedom we obtain a t statistic equal to 1.85. The null hypothesis is not rejected at
the 5% level, since the t statistic is less than the two-tailed critical value of c � 2.021.
A researcher whose agenda is not to reject the null could simply report this outcome
along with the estimate: the null hypothesis is not rejected at the 5% level. Of course,
if the t statistic, or the coefficient and its standard error, are reported, then we can also
determine that the null hypothesis would be rejected at the 10% level, since the 10%
critical value is c � 1.684.

Rather than testing at different significance levels, it is more informative to answer
the following question: Given the observed value of the t statistic, what is the smallest
significance level at which the null hypothesis would be rejected? This level is known
as the p-value for the test (see Appendix C). In the previous example, we know the
p-value is greater than .05, since the null is not rejected at the 5% level, and we know
that the p-value is less than .10, since the null is rejected at the 10% level. We obtain
the actual p-value by computing the probability that a t random variable, with 40 df, is
larger than 1.85 in absolute value. That is, the p-value is the significance level of the test
when we use the value of the test statistic, 1.85 in the above example, as the critical
value for the test. This p-value is shown in Figure 4.6.

Since a p-value is a probability, its value is always between zero and one. In order
to compute p-values, we either need extremely detailed printed tables of the t distri-
bution—which is not very practical—or a computer program that computes areas
under the probability density function of the t distribution. Most modern regression
packages have this capability. Some packages compute p-values routinely with each
OLS regression, but only for certain hypotheses. If a regression package reports a
p-value along with the standard OLS output, it is almost certainly the p-value for test-
ing the null hypothesis H0: �j � 0 against the two-sided alternative. The p-value in
this case is

P(�T � 	 �t�), (4.15)

where, for clarity, we let T denote a t distributed random variable with n � k � 1 degrees
of freedom and let t denote the numerical value of the test statistic.

The p-value nicely summarizes the strength or weakness of the empirical evidence
against the null hypothesis. Perhaps its most useful interpretation is the following: the
p-value is the probability of observing a t statistic as extreme as we did if the null
hypothesis is true. This means that small p-values are evidence against the null; large
p-values provide little evidence against H0. For example, if the p-value � .50 (reported
always as a decimal, not a percent), then we would observe a value of the t statistic as
extreme as we did in 50% of all random samples when the null hypothesis is true; this
is pretty weak evidence against H0.
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In the example with df � 40 and t � 1.85, the p-value is computed as

p-value � P(�T � 	 1.85) � 2P(T 	 1.85) � 2(.0359) � .0718,

where P(T 	 1.85) is the area to the right of 1.85 in a t distribution with 40 df. (This
value was computed using the econometrics package Stata; it is not available in Table
G.2.) This means that, if the null hypothesis is true, we would observe an absolute value
of the t statistic as large as 1.85 about 7.2% of the time. This provides some evidence
against the null hypothesis, but we would not reject the null at the 5% significance level.

The previous example illustrates that once the p-value has been computed, a classi-
cal test can be carried out at any desired level. If � denotes the significance level of the
test (in decimal form), then H0 is rejected if p-value � �; otherwise H0 is not rejected
at the 100��% level.

Computing p-values for one-sided alternatives is also quite simple. Suppose, for
example, that we test H0: �j � 0 against H1: �j 	 0. If �̂j � 0, then computing a p-value
is not important: we know that the p-value is greater than .50, which will never cause
us to reject H0 in favor of H1. If �̂j 	 0, then t 	 0 and the p-value is just the probabil-
ity that a t random variable with the appropriate df exceeds the value t. Some regression
packages only compute p-values for two-sided alternatives. But it is simple to obtain the
one-sided p-value: just divide the two-sided p-value by 2.
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Obtaining the p-value against a two-sided alternative, when t � 1.85 and df � 40.
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If the alternative is H1: �j � 0, it makes sense to compute a p-value if �̂j � 0 (and
hence t � 0): p-value � P(T � t ) � P(T 	 �t�) because the t distribution is symmetric
about zero. Again, this can be obtained as one-half of the p-value for the two-tailed test.

Because you will quickly become
familiar with the magnitudes of t statistics
that lead to statistical significance, espe-
cially for large sample sizes, it is not
always crucial to report p-values for t sta-
tistics. But it does not hurt to report them.
Further, when we discuss F testing in

Section 4.5, we will see that it is important to compute p-values, because critical values
for F tests are not so easily memorized.

A Reminder on the Language of Classical Hypothesis
Testing

When H0 is not rejected, we prefer to use the language “we fail to reject H0 at the x%
level,” rather than “H0 is accepted at the x% level.” We can use Example 4.5 to illustrate
why the former statement is preferred. In this example, the estimated elasticity of price
with respect to nox is �.954, and the t statistic for testing H0: �nox � �1 is t � .393;
therefore, we cannot reject H0. But there are many other values for �nox (more than we
can count) that cannot be rejected. For example, the t statistic for H0: �nox � �.9 is
(�.954 � .9)/.117 � �.462, and so this null is not rejected either. Clearly �nox � �1
and �nox � �.9 cannot both be true, so it makes no sense to say that we “accept” either
of these hypotheses. All we can say is that the data do not allow us to reject either of
these hypotheses at the 5% significance level.

Economic, or Practical, versus Statistical Significance

Since we have emphasized statistical significance throughout this section, now is a
good time to remember that we should pay attention to the magnitude of the coefficient
estimates in addition to the size of the t statistics. The statistical significance of a vari-
able xj is determined entirely by the size of t�̂j

, whereas the economic significance or
practical significance of a variable is related to the size (and sign) of �̂j.

Recall that the t statistic for testing H0: �j � 0 is defined by dividing the estimate
by its standard error: t�̂j

� �̂j/se(�̂j). Thus, t�̂j
can indicate statistical significance either

because �̂j is “large” or because se(�̂j) is “small.” It is important in practice to distin-
guish between these reasons for statistically significant t statistics. Too much focus on
statistical significance can lead to the false conclusion that a variable is “important” for
explaining y even though its estimated effect is modest.

E X A M P L E  4 . 6
[ P a r t i c i p a t i o n  R a t e s  i n  4 0 1 ( k )  P l a n s ]

In Example 3.3, we used the data on 401(k) plans to estimate a model describing participa-
tion rates in terms of the firm’s match rate and the age of the plan. We now include a mea-
sure of firm size, the total number of firm employees (totemp). The estimated equation is
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Suppose you estimate a regression model and obtain �̂1 � .56 and
p-value � .086 for testing H0: �1 � 0 against H1: �1 
 0. What is the
p-value for testing H0: �1 � 0 against H1: �1 	 0?
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prâte � (80.29) � (5.44) mrate � (.269) age � (.00013) totemp

prâte � (0.78) � (0.52) mrate � (.045) age � (.00004) totemp

n � 1,534, R2 � .100.

The smallest t statistic in absolute value is that on the variable totemp: t � �.00013/.00004
� �3.25, and this is statistically significant at very small significance levels. (The two-tailed
p-value for this t statistic is about .001.) Thus, all of the variables are statistically significant
at rather small significance levels.

How big, in a practical sense, is the coefficient on totemp? Holding mrate and age
fixed, if a firm grows by 10,000 employees, the participation rate falls by 10,000(.00013)
� 1.3 percentage points. This is a huge increase in number of employees with only a mod-
est effect on the participation rate. Thus, while firm size does affect the participation rate,
the effect is not practically very large.

The previous example shows that it is especially important to interpret the magni-
tude of the coefficient, in addition to looking at t statistics, when working with large
samples. With large sample sizes, parameters can be estimated very precisely: standard
errors are often quite small relative to the coefficient estimates, which usually results in
statistical significance.

Some researchers insist on using smaller significance levels as the sample size
increases, partly as a way to offset the fact that standard errors are getting smaller. For
example, if we feel comfortable with a 5% level when n is a few hundred, we might use
the 1% level when n is a few thousand. Using a smaller significance level means that
economic and statistical significance are more likely to coincide, but there are no guar-
antees: in the the previous example, even if we use a significance level as small as .1%
(one-tenth of one percent), we would still conclude that totemp is statistically signifi-
cant.

Most researchers are also willing to entertain larger significance levels in applica-
tions with small sample sizes, reflecting the fact that it is harder to find significance
with smaller sample sizes (the critical values are larger in magnitude and the estimators
are less precise). Unfortunately, whether or not this is the case can depend on the
researcher’s underlying agenda.

E X A M P L E  4 . 7
( E f f e c t  o f  J o b  T r a i n i n g  G r a n t s  o n  F i r m  S c r a p  R a t e s )

The scrap rate for a manufacturing firm is the number of defective items out of every 100
items produced that must be discarded. Thus, a decrease in the scrap rate reflects higher
productivity.

We can use the scrap rate to measure the effect of worker training on productivity. For
a sample of Michigan manufacturing firms in 1987, the following equation is estimated:

log(ŝcrap) � (13.72) � (.028) hrsemp � (1.21) log(sales) � (1.48) log(employ)

log(ŝcrap) � (4.91) � (.019) hrsemp � (0.41) log(sales) � (0.43) log(employ)

n � 30, R2 � .431.
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(This regression uses a subset of the data in JTRAIN.RAW.) The variable hrsemp is annual
hours of training per employee, sales is annual firm sales (in dollars), and employ is number
of firm employees. The average scrap rate in the sample is about 3.5, and the average
hrsemp is about 7.3.

The main variable of interest is hrsemp. One more hour of training per employee low-
ers log(scrap) by .028, which means the scrap rate is about 2.8% lower. Thus, if hrsemp
increases by 5—each employee is trained 5 more hours per year—the scrap rate is esti-
mated to fall by 5(2.8) � 14%. This seems like a reasonably large effect, but whether the
additional training is worthwhile to the firm depends on the cost of training and the ben-
efits from a lower scrap rate. We do not have the numbers needed to do a cost benefit
analysis, but the estimated effect seems nontrivial.

What about the statistical significance of the training variable? The t statistic on hrsemp
is �.028/.019 � �1.47, and now you probably recognize this as not being large enough
in magnitude to conclude that hrsemp is statistically significant at the 5% level. In fact, with
30 � 4 � 26 degrees of freedom for the one-sided alternative H1: �hrsemp � 0, the 5% crit-
ical value is about �1.71. Thus, using a strict 5% level test, we must conclude that hrsemp
is not statistically significant, even using a one-sided alternative.

Because the sample size is pretty small, we might be more liberal with the significance
level. The 10% critical value is �1.32, and so hrsemp is significant against the one-sided
alternative at the 10% level. The p-value is easily computed as P(T26 � �1.47) � .077. This
may be a low enough p-value to conclude that the estimated effect of training is not just
due to sampling error, but some economists would have different opinions on this.

Remember that large standard errors can also be a result of multicollinearity (high
correlation among some of the independent variables), even if the sample size seems
fairly large. As we discussed in Section 3.4, there is not much we can do about this
problem other than to collect more data or change the scope of the analysis by dropping
certain independent variables from the model. As in the case of a small sample size, it
can be hard to precisely estimate partial effects when some of the explanatory variables
are highly correlated. (Section 4.5 contains an example.)

We end this section with some guidelines for discussing the economic and statisti-
cal significance of a variable in a multiple regression model:

1. Check for statistical significance. If the variable is statistically significant, dis-
cuss the magnitude of the coefficient to get an idea of its practical or economic
importance. This latter step can require some care, depending on how the inde-
pendent and dependent variables appear in the equation. (In particular, what are
the units of measurement? Do the variables appear in logarithmic form?)

2. If a variable is not statistically significant at the usual levels (10%, 5% or 1%),
you might still ask if the variable has the expected effect on y and whether that
effect is practically large. If it is large, you should compute a p-value for the t
statistic. For small sample sizes, you can sometimes make a case for p-values as
large as .20 (but there are no hard rules). With large p-values, that is, small t sta-
tistics, we are treading on thin ice because the practically large estimates may be
due to sampling error: a different random sample could result in a very different
estimate.
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3. It is common to find variables with small t statistics that have the “wrong” sign.
For practical purposes, these can be ignored: we conclude that the variables are
statistically insignificant. A significant variable that has the unexpected sign and
a practically large effect is much more troubling and difficult to resolve. One
must usually think more about the model and the nature of the data in order to
solve such problems. Often a counterintuitive, significant estimate results from
the omission of a key variable or from one of the important problems we will dis-
cuss in Chapters 9 and 15.

4.3 CONFIDENCE INTERVALS

Under the classical linear model assumptions, we can easily construct a confidence
interval (CI) for the population parameter �j. Confidence intervals are also called
interval estimates because they provide a range of likely values for the population para-
meter, and not just a point estimate.

Using the fact that (�̂j � �j)/se(�̂j) has a t distribution with n � k � 1 degrees of
freedom [see (4.3)], simple manipulation leads to a CI for the unknown �j. A 95% con-
fidence interval, given by

�̂j � c�se(�̂j), (4.16)

where the constant c is the 97.5th percentile in a tn�k�1 distribution. More precisely, the
lower and upper bounds of the confidence interval are given by

�
¯ j � �̂j � c�se(�̂j)

and

�̄j � �̂j � c�se(�̂j),

respectively.
At this point, it is useful to review the meaning of a confidence interval. If random

samples were obtained over and over again, with �
¯ j, and �̄j computed each time, then

the (unknown) population value �j would lie in the interval (�
¯ j, �̄j) for 95% of the sam-

ples. Unfortunately, for the single sample that we use to contruct the CI, we do not
know whether �j is actually contained in the interval. We hope we have obtained a sam-
ple that is one of the 95% of all samples where the interval estimate contains �j, but we
have no guarantee.

Constructing a confidence interval is very simple when using current computing
technology. Three quantities are needed: �̂j, se(�̂j), and c. The coefficient estimate and
its standard error are reported by any regression package. To obtain the value c, we must
know the degrees of freedom, n � k � 1, and the level of confidence—95% in this case.
Then, the value for c is obtained from the tn-k-1 distribution.

As an example, for df � n � k � 1 � 25, a 95% confidence interval for any �j is
given by [�̂j � 2.06�se(�̂j), �̂j � 2.06�se(�̂j)].

When n � k � 1 	 120, the tn�k�1 distribution is close enough to normal to use the
97.5th percentile in a standard normal distribution for constructing a 95% CI: �̂j �
1.96�se(�̂j). In fact, when n � k � 1 	 50, the value of c is so close to 2 that we can
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use a simple rule of thumb for a 95% confidence interval: �̂j plus or minus two of its
standard errors. For small degrees of freedom, the exact percentiles should be obtained
from the t tables.

It is easy to construct confidence intervals for any other level of confidence. For
example, a 90% CI is obtained by choosing c to be the 95th percentile in the tn�k�1 dis-
tribution. When df � n � k � 1 � 25, c � 1.71, and so the 90% CI is �̂j � 1.71�se(�̂j),
which is necessarily  narrower than the 95% CI. For a 99% CI, c is the 99.5th percentile
in the t25 distribution. When df � 25, the 99% CI is roughly �̂j � 2.79�se(�̂j), which is
inevitably wider than the 95% CI.

Many modern regression packages save us from doing any calculations by report-
ing a 95% CI along with each coefficient and its standard error. Once a confidence inter-
val is constructed, it is easy to carry out two-tailed hypotheses tests. If the null
hypothesis is H0: �j � aj, then H0 is rejected against H1: �j 
 aj at (say) the 5% signif-
icance level if, and only if, aj is not in the 95% confidence interval.

E X A M P L E  4 . 8
( H e d o n i c  P r i c e  M o d e l  f o r  H o u s e s )

A model that explains the price of a good in terms of the good’s characteristics is called an
hedonic price model. The following equation is an hedonic price model for housing prices;
the characteristics are square footage (sqrft), number of bedrooms (bdrms), and number of
bathrooms (bthrms). Often price appears in logarithmic form, as do some of the explana-
tory variables. Using n � 19 observations on houses that were sold in Waltham,
Massachusetts, in 1990, the estimated equation (with standard errors in parentheses below
the coefficient estimates) is

log(p̂rice) � (7.46) � (.634) log(sqrft) � (.066) bdrms � (.158) bthrms

log(p̂rice) � (1.15) � (.184) log(sqrft) � (.059) bdrms � (.075) bthrms

n � 19, R2 � .806.

Since price and sqrft both appear in logarithmic form, the price elasticity with respect to
square footage is .634, so that, holding number of bedrooms and bathrooms fixed, a 1%
increase in square footage increases the predicted housing price by about .634%. We can
construct a 95% confidence interval for the population elasticity using the fact that the esti-
mated model has n � k � 1 � 19 � 3 � 1 � 15 degrees of freedom. From Table G.2, we
find the 97.5th percentile in the t15 distribution: c � 2.131. Thus, the 95% confidence inter-
val for �log(sqrft ) is .634 � 2.131(.184), or (.242,1.026). Since zero is excluded from this con-
fidence interval, we reject H0: �log(sqrft ) � 0 against the two-sided alternative at the 5% level.

The coefficient on bdrms is negative, which seems counterintuitive. However, it is
important to remember the ceteris paribus nature of this coefficient: it measures the effect
of another bedroom, holding size of the house and number of bathrooms fixed. If two
houses are the same size but one has more bedrooms, then the house with more bedrooms
has smaller bedrooms; more bedrooms that are smaller is not necessarily a good thing. In
any case, we can see that the 95% confidence interval for �bdrms is fairly wide, and it con-
tains the value zero: �.066 � 2.131(.059) or (�.192,.060). Thus, bdrms does not have a
statistically significant ceteris paribus effect on housing price.
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Given size and number of bedrooms, one more bathroom is predicted to increase hous-
ing price by about 15.8%. (Remember that we must multiply the coefficient on bthrms by
100 to turn the effect into a percent.) The 95% confidence interval for �bthrms is
(�.002,.318). In this case, zero is barely in the confidence interval, so technically speaking
�̂bthrms is not statistically significant at the 5% level against a two-sided alternative. Since it
is very close to being significant, we would probably conclude that number of bathrooms
has an effect on log(price).

You should remember that a confidence interval is only as good as the underlying
assumptions used to construct it. If we have omitted important factors that are corre-
lated with the explanatory variables, then the coefficient estimates are not reliable: OLS
is biased. If heteroskedasticity is present—for instance, in the previous example, if the
variance of log(price) depends on any of the explanatory variables—then the standard
error is not valid as an estimate of sd(�̂j) (as we discussed in Section 3.4), and the con-
fidence interval computed using these standard errors will not truly be a 95% CI. We
have also used the normality assumption on the errors in obtaining these CIs, but, as we
will see in Chapter 5, this is not as important for applications involving hundreds of
observations.

4.4 TESTING HYPOTHESES ABOUT A SINGLE LINEAR
COMBINATION OF THE PARAMETERS

The previous two sections have shown how to use classical hypothesis testing or confi-
dence intervals to test hypotheses about a single �j at a time. In applications, we must
often test hypotheses involving more than one of the population parameters. In this sec-
tion, we show how to test a single hypothesis involving more than one of the �j. Section
4.5 shows how to test multiple hypotheses.

To illustrate the general approach, we will consider a simple model to compare the
returns to education at junior colleges and four-year colleges; for simplicity, we refer to
the latter as “universities.” [This example is motivated by Kane and Rouse (1995), who
provide a detailed analysis of this question.] The population includes working people
with a high school degree, and the model is

log(wage) � �0 � �1 jc � �2univ � �3exper � u, (4.17)

where jc is number of years attending a two-year college and univ is number of years
at a four-year college. Note that any combination of junior college and college is
allowed, including jc � 0 and univ � 0.

The hypothesis of interest is whether a year at a junior college is worth a year at a
university: this is stated as

H0: �1 � �2. (4.18)

Under H0, another year at a junior college and another year at a university lead to the
same ceteris paribus percentage increase in wage. For the most part, the alternative of
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interest is one-sided: a year at a junior college is worth less than a year at a university.
This is stated as

H1: �1 � �2. (4.19)

The hypotheses in (4.18) and (4.19) concern two parameters, �1 and �2, a situation
we have not faced yet. We cannot simply use the individual t statistics for �̂1 and �̂2 to
test H0. However, conceptually, there is no difficulty in constructing a t statistic for test-
ing (4.18). In order to do so, we rewrite the null and alternative as H0: �1 � �2 � 0 and
H1: �1 � �2 � 0, respectively. The t statistic is based on whether the estimated differ-
ence �̂1 � �̂2 is sufficiently less than zero to warrant rejecting (4.18) in favor of (4.19).
To account for the sampling error in our estimators, we standardize this difference by
dividing by the standard error:

t � . (4.20)

Once we have the t statistic in (4.20), testing proceeds as before. We choose a signifi-
cance level for the test and, based on the df, obtain a critical value. Because the alter-
native is of the form in (4.19), the rejection rule is of the form t � �c, where c is a
positive value chosen from the appropriate t distribution. Or, we compute the t statistic
and then compute the p-value (see Section 4.2).

The only thing that makes testing the equality of two different parameters more dif-
ficult than testing about a single �j is obtaining the standard error in the denominator of
(4.20). Obtaining the numerator is trivial once we have peformed the OLS regression.
For concreteness, suppose the following equation has been obtained using n � 285 indi-
viduals:

log(ŵage) � 1.43 � .098 jc � .124 univ � .019 exper

log(ŵage) � (0.27) (.031) jc (.035) univ (.008) exper

n � 285, R2 � .243.

(4.21)

It is clear from (4.21) that jc and univ have both economically and statistically signifi-
cant effects on wage. This is certainly of interest, but we are more concerned about test-
ing whether the estimated difference in the coefficients is statistically significant. The
difference is estimated as �̂1 � �̂2 � �.026, so the return to a year at a junior college
is about 2.6 percentage points less than a year at a university. Economically, this is not
a trivial difference. The difference of �.026 is the numerator of the t statistic in (4.20).

Unfortunately, the regression results in equation (4.21) do not contain enough in-
formation to obtain the standard error of �̂1 � �̂2. It might be tempting to claim that
se(�̂1 � �̂2) � se(�̂1) � se(�̂2), but this does not make sense in the current example
because se(�̂1) � se(�̂2) � �.038. Standard errors must always be positive because
they are estimates of standard deviations. While the standard error of the difference
�̂1 � �̂2 certainly depends on se(�̂1) and se(�̂2), it does so in a somewhat complicated
way. To find se(�̂1 � �̂2), we first obtain the variance of the difference. Using the results
on variances in Appendix B, we have

�̂1 � �̂2

se(�̂1 � �̂2)
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Var(�̂1 � �̂2) � Var(�̂1) � Var(�̂2) � 2 Cov(�̂1,�̂2). (4.22)

Observe carefully how the two variances are added together, and twice the covariance
is then subtracted. The standard deviation of �̂1 � �̂2 is just the square root of (4.22)
and, since [se(�̂1)]

2 is an unbiased estimator of Var(�̂1), and similarly for [se(�̂2)]
2, we

have

se(�̂1 � �̂2) � �[se(�̂1)]
2 � [se(�̂2)]

2 � 2s12�1/ 2, (4.23)

where s12 denotes an estimate of Cov(�̂1,�̂2). We have not displayed a formula for
Cov(�̂1,�̂2). Some regression packages have features that allow one to obtain s12, in
which case one can compute the standard error in (4.23) and then the t statistic in (4.20).
Appendix E shows how to use matrix algebra to obtain s12.

We suggest another route that is much simpler to compute, less likely to lead to
an error, and readily applied to a variety of problems. Rather than trying to compute
se(�̂1 � �̂2) from (4.23), it is much easier to estimate a different model that directly
delivers the standard error of interest. Define a new parameter as the difference between
�1 and �2: �1 � �1 � �2. Then we want to test

H0: �1 � 0 against H1: �1 � 0. (4.24)

The t statistic (4.20) in terms of �̂1 is just t � �̂1/se(�̂1). The challenge is finding se(�̂1).
We can do this by rewriting the model so that �1 appears directly on one of the inde-

pendent variables. Since �1 � �1 � �2, we can also write �1 � �1 � �2. Plugging this
into (4.17) and rearranging gives the equation

log(wage) � �0 � (�1 � �2)jc � �2univ � �3exper � u

� �0 � �1 jc � �2( jc � univ) � �3exper � u.
(4.25)

The key insight is that the parameter we are interested in testing hypotheses about, �1,
now multiplies the variable jc. The intercept is still �0, and exper still shows up as being
multiplied by �3. More importantly, there is a new variable multiplying �2, namely
jc � univ. Thus, if we want to directly estimate �1 and obtain the standard error �̂1, then
we must construct the new variable jc � univ and include it in the regression model in
place of univ. In this example, the new variable has a natural interpretation: it is total
years of college, so define totcoll � jc � univ and write (4.25) as

log(wage) � �0 � �1 jc � �2totcoll � �3exper � u. (4.26)

The parameter �1 has disappeared from the model, while �1 appears explicitly. This
model is really just a different way of writing the original model. The only reason we
have defined this new model is that, when we estimate it, the coefficient on jc is �̂1

and, more importantly, se(�̂1) is reported along with the estimate. The t statistic that we
want is the one reported by any regression package on the variable jc (not the variable
totcoll).
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When we do this with the 285 observations used earlier, the result is

log(ŵage) � 1.43 � .026 jc � .124 totcoll � .019 exper

log(ŵage) � (0.27) (.018) jc (.035) totcoll (.008) exper

n � 285, R2 � .243.

(4.27)

The only number in this equation that we could not get from (4.21) is the standard error
for the estimate �.026, which is .018. The t statistic for testing (4.18) is �.026/.018 �
�1.44. Against the one-sided alternative (4.19), the p-value is about .075, so there is
some, but not strong, evidence against (4.18).

The intercept and slope estimate on exper, along with their standard errors, are the
same as in (4.21). This fact must be true, and it provides one way of checking whether
the transformed equation has been properly estimated. The coefficient on the new vari-
able, totcoll, is the same as the coefficient on univ in (4.21), and the standard error is
also the same. We know that this must happen by comparing (4.17) and (4.25).

It is quite simple to compute a 95% confidence interval for �1 � �1 � �2. Using the
standard normal approximation, the CI is obtained as usual: �̂1 � 1.96 se(�̂1), which in
this case leads to �.026 � .035.

The strategy of rewriting the model so that it contains the parameter of interest
works in all cases and is easy to implement. (See Problems 4.12 and 4.14 for other
examples.)

4.5 TESTING MULTIPLE LINEAR RESTRICTIONS: 
THE F TEST

The t statistic associated with any OLS coefficient can be used to test whether the cor-
responding unknown parameter in the population is equal to any given constant (which
is usually, but not always, zero). We have just shown how to test hypotheses about a sin-
gle linear combination of the �j by rearranging the equation and running a regression
using transformed variables. But so far, we have only covered hypotheses involving a
single restriction. Frequently, we wish to test multiple hypotheses about the underlying
parameters �0 ,�1 , …, �k. We begin with the leading case of testing whether a set of
independent variables has no partial effect on a dependent variable.

Testing Exclusion Restrictions

We already know how to test whether a particular variable has no partial effect on the
dependent variable: use the t statistic. Now we want to test whether a group of variables
has no effect on the dependent variable. More precisely, the null hypothesis is that a set
of variables has no effect on y, once another set of variables has been controlled.

As an illustration of why testing significance of a group of variables is useful, we
consider the following model that explains major league baseball players’ salaries:

log(salary) � �0 � �1years � �2gamesyr � �3bavg �

�4hrunsyr � �5rbisyr � u,
(4.28)
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where salary is the 1993 total salary, years is years in the league, gamesyr is aver-
age games played per year, bavg is career batting average (for example, bavg � 250),
hrunsyr is home runs per year, and rbisyr is runs batted in per year. Suppose we want
to test the null hypothesis that, once years in the league and games per year have been
controlled for, the statistics measuring performance—bavg, hrunsyr, and rbisyr—have
no effect on salary. Essentially, the null hypothesis states that productivity as measured
by baseball statistics has no effect on salary.

In terms of the parameters of the model, the null hypothesis is stated as

H0: �3 � 0, �4 � 0, �5 � 0. (4.29)

The null (4.29) constitutes three exclusion restrictions: if (4.29) is true, then bavg,
hrunsyr, and rbisyr have no effect on log(salary) after years and gamesyr have been con-
trolled for and therefore should be excluded from the model. This is an example of a set
of multiple restrictions because we are putting more than one restriction on the para-
meters in (4.28); we will see more general examples of multiple restrictions later. A test
of multiple restrictions is called a multiple hypotheses test or a joint hypotheses test.

What should be the alternative to (4.29)? If what we have in mind is that “perfor-
mance statistics matter, even after controlling for years in the league and games per
year,” then the appropriate alternative is simply

H1: H0 is not true. (4.30)

The alternative (4.30) holds if at least one of �3, �4, or �5 is different from zero. (Any
or all could be different from zero.) The test we study here is constructed to detect any
violation of H0. It is also valid when the alternative is something like H1: �3 	 0, or
�4 	 0, or �5 	 0, but it will not be the best possible test under such alternatives. We
do not have the space or statistical background necessary to cover tests that have more
power under multiple one-sided alternatives.

How should we proceed in testing (4.29) against (4.30)? It is tempting to test (4.29)
by using the t statistics on the variables bavg, hrunsyr, and rbisyr to determine whether
each variable is individually significant. This option is not appropriate. A particular t
statistic tests a hypothesis that puts no restrictions on the other parameters. Besides, we
would have three outcomes to contend with—one for each t statistic. What would con-
stitute rejection of (4.29) at, say, the 5% level? Should all three or only one of the three
t statistics be required to be significant at the 5% level? These are hard questions, and
fortunately we do not have to answer them. Furthermore, using separate t statistics to
test a multiple hypothesis like (4.29) can be very misleading. We need a way to test the
exclusion restrictions jointly.

To illustrate these issues, we estimate equation (4.28) using the data in MLB1.RAW.
This gives

log(sâlary) � (11.10) � (.0689) years � (.0126) gamesyr
log(sâlary) � (0.29) � (.0121) years � (.0026) gamesyr

� (.00098) bavg � (.0144) hrunsyr � (.0108) rbisyr
� (.00110) bavg � (.0161) hrunsyr � (.0072) rbisyr

n � 353, SSR � 183.186, R2 � .6278,

(4.31)
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where SSR is the sum of squared residuals. (We will use this later.) We have left sev-
eral terms after the decimal in SSR and R-squared to facilitate future comparisons.
Equation (4.31) reveals that, while years and gamesyr are statistically significant, none
of the variables bavg, hrunsyr, and rbisyr has a statistically significant t statistic against
a two-sided alternative, at the 5% significance level. (The t statistic on rbisyr is the clos-
est to being significant; its two-sided p-value is .134.) Thus, based on the three t statis-
tics, it appears that we cannot reject H0.

This conclusion turns out to be wrong. In order to see this, we must derive a test of
multiple restrictions whose distribution is known and tabulated. The sum of squared
residuals now turns out to provide a very convenient basis for testing multiple hypothe-
ses. We will also show how the R-squared can be used in the special case of testing for
exclusion restrictions.

Knowing the sum of squared residuals in (4.31) tells us nothing about the truth of
the hypothesis in (4.29). However, the factor that will tell us something is how much
the SSR increases when we drop the variables bavg, hrunsyr, and rbisyr from the
model. Remember that, because the OLS estimates are chosen to minimize the sum of
squared residuals, the SSR always increases when variables are dropped from the
model; this is an algebraic fact. The question is whether this increase is large enough,
relative to the SSR in the model with all of the variables, to warrant rejecting the null
hypothesis.

The model without the three variables in question is simply

log(salary) � �0 � �1years � �2gamesyr � u. (4.32)

In the context of hypothesis testing, equation (4.32) is the restricted model for testing
(4.29); model (4.28) is called the unrestricted model. The restricted model always has
fewer parameters than the unrestricted model.

When we estimate the restricted model using the data in MLB1.RAW, we obtain

log(sâlary) � (11.22) � (.0713) years � ( .0202) gamesyr

log(sâlary) � (0.11) � (.0125) years � (.0013) gamesyr

n � 353, SSR � 198.311, R2 � .5971.

(4.33)

As we surmised, the SSR from (4.33) is greater than the SSR from (4.31), and the R-
squared from the restricted model is less than the R-squared from the unrestricted
model. What we need to decide is whether the increase in the SSR in going from the
unrestricted model to the restricted model (183.186 to 198.311) is large enough to war-
rant rejection of (4.29). As with all testing, the answer depends on the significance level
of the test. But we cannot carry out the test at a chosen significance level until we have
a statistic whose distribution is known, and can be tabulated, under H0. Thus, we need
a way to combine the information in the two SSRs to obtain a test statistic with a known
distribution under H0.

Since it is no more difficult, we might as well derive the test for the general case.
Write the unrestricted model with k independent variables as

y � �0 � �1x1 � … � �kxk � u; (4.34)
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the number of parameters in the unrestricted model is k � 1. (Remember to add one for
the intercept.) Suppose that we have q exclusion restrictions to test: that is, the null
hypothesis states that q of the variables in (4.34) have zero coefficients. For notational
simplicity, assume that it is the last q variables in the list of independent variables:
xk�q+1, …, xk. (The order of the variables, of course, is arbitrary and unimportant.) The
null hypothesis is stated as

H0: �k�q�1 � 0, …, �k � 0, (4.35)

which puts q exclusion restrictions on the model (4.34). The alternative to (4.35) is sim-
ply that it is false; this means that at least one of the parameters listed in (4.35) is dif-
ferent from zero. When we impose the restrictions under H0, we are left with the
restricted model:

y � �0 � �1x1 � … � �k�qxk�q � u. (4.36)

In this subsection, we assume that both the unrestricted and restricted models contain
an intercept, since that is the case most widely encountered in practice.

Now for the test statistic itself. Earlier, we suggested that looking at the relative
increase in the SSR when moving from the unrestricted to the restricted model should be
informative for testing the hypothesis (4.35). The F statistic (or F ratio) is defined by

F � , (4.37)

where SSRr is the sum of squared residuals from the restricted model and SSRur is the
sum of squared residuals from the unrestricted model.

You should immediately notice that,
since SSRr can be no smaller than SSRur,
the F statistic is always nonnegative (and
almost always strictly positive). Thus, if
you compute a negative F statistic, then
something is wrong; the order of the SSRs
in the numerator of F has usually been
reversed. Also, the SSR in the denominator
of F is the SSR from the unrestricted
model. The easiest way to remember
where the SSRs appear is to think of F as
measuring the relative increase in SSR
when moving from the unrestricted to the
restricted model.

The difference in SSRs in the numera-
tor of F is divided by q, which is the num-
ber of restrictions imposed in moving from

the unrestricted to the restricted model (q independent variables are dropped).
Therefore, we can write

(SSRr � SSRur)/q
SSRur/(n � k � 1)
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Consider relating individual performance on a standardized test,
score, to a variety of other variables. School factors include average
class size, per student expenditures, average teacher compensation,
and total school enrollment. Other variables specific to the student
are family income, mother’s education, father’s education, and num-
ber of siblings. The model is

score � �0 � �1classize � �2expend � �3tchcomp �
�4enroll � �5 faminc � �6motheduc �
�7 fatheduc � �8siblings � u.

State the null hypothesis that student-specific variables have no
effect on standardized test performance, once school-related factors
have been controlled for. What are k and q for this example? Write
down the restricted version of the model.
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q � numerator degrees of freedom � dfr � dfur, (4.38)

which also shows that q is the difference in degrees of freedom between the restricted
and unrestricted models. (Recall that df � number of observations � number of esti-
mated parameters.) Since the restricted model has fewer parameters—and each model
is estimated using the same n observations—dfr is always greater than dfur.

The SSR in the denominator of F is divided by the degrees of freedom in the unre-
stricted model:

n � k � 1 � denominator degrees of freedom � dfur. (4.39)

In fact, the denominator of F is just the unbiased estimator of �2 � Var(u) in the unre-
stricted model.

In a particular application, computing the F statistic is easier than wading through
the somewhat cumbersome notation used to describe the general case. We first obtain
the degrees of freedom in the unrestricted model, dfur. Then, we count how many vari-
ables are excluded in the restricted model; this is q. The SSRs are reported with every
OLS regression, and so forming the F statistic is simple.

In the major league baseball salary regression, n � 353, and the full model (4.28)
contains six parameters. Thus, n � k � 1 � dfur � 353 � 6 � 347. The restricted model
(4.32) contains three fewer independent variables than (4.28), and so q � 3. Thus, we
have all of the ingredients to compute the F statistic; we hold off doing so until we know
what to do with it.

In order to use the F statistic, we must know its sampling distribution under the null
in order to choose critical values and rejection rules. It can be shown that, under H0 (and
assuming the CLM assumptions hold), F is distributed as an F random variable with
(q,n � k � 1) degrees of freedom. We write this as

F ~ Fq,n�k�1.

The distribution of Fq,n�k�1 is readily tabulated and available in statistical tables (see
Table G.3) and, even more importantly, in statistical software.

We will not derive the F distribution because the mathematics is very involved.
Basically, it can be shown that equation (4.37) is actually the ratio of two independent
chi-square random variables, divided by their respective degrees of freedom. The
numerator chi-square random variable has q degrees of freedom, and the chi-square in
the denominator has n � k � 1 degrees of freedom. This is the definition of an F dis-
tributed random variable (see Appendix B).

It is pretty clear from the definition of F that we will reject H0 in favor of H1 when
F is sufficiently “large.” How large depends on our chosen significance level. Suppose
that we have decided on a 5% level test. Let c be the 95th percentile in the Fq,n�k�1 dis-
tribution. This critical value depends on q (the numerator df ) and n � k � 1 (the
denominator df ). It is important to keep the numerator and denominator degrees of free-
dom straight.

The 10%, 5%, and 1% critical values for the F distribution are given in Table G.3.
The rejection rule is simple. Once c has been obtained, we reject H0 in favor of H1 at
the chosen significance level if
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F 	 c. (4.40)

With a 5% significance level, q � 3, n � k � 1 � 60, and the critical value is c � 2.76.
We would reject H0 at the 5% level if the computed value of the F statistic exceeds 2.76.
The 5% critical value and rejection region are shown in Figure 4.7. For the same
degrees of freedom, the 1% critical value is 4.13.

In most applications, the numerator degrees of freedom (q) will be notably smaller
than the denominator degrees of freedom (n � k � 1). Applications where n � k � 1
is small are unlikely to be successful because the parameters in the null model will
probably not be precisely estimated. When the denominator df reaches about 120, the F
distribution is no longer sensitive to it. (This is entirely analogous to the t distribution
being well-approximated by the standard normal distribution as the df gets large.) Thus,
there is an entry in the table for the denominator df � �, and this is what we use with
large samples (since n � k � 1 is then large). A similar statement holds for a very large
numerator df, but this rarely occurs in applications.

If H0 is rejected, then we say that xk�q�1, …, xk are jointly statistically significant
(or just jointly significant) at the appropriate significance level. This test alone does not
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The 5% critical value and rejection region in an F3,60 distribution.

0
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area = .05

area = .95
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allow us to say which of the variables has a partial effect on y; they may all affect y or
maybe only one affects y. If the null is not rejected, then the variables are jointly
insignificant, which often justifies dropping them from the model.

For the major league baseball example with three numerator degrees of freedom and
347 denominator degrees of freedom, the 5% critical value is 2.60, and the 1% critical
value is 3.78. We reject H0 at the 1% level if F is above 3.78; we reject at the 5% level
if F is above 2.60.

We are now in a position to test the hypothesis that we began this section with: after
controlling for years and gamesyr, the variables bavg, hrunsyr, and rbisyr have no
effect on players’ salaries. In practice, it is easiest to first compute (SSRr �
SSRur)/SSRur and to multiply the result by (n � k � 1)/q; the reason the formula is
stated as in (4.37) is that it makes it easier to keep the numerator and denominator
degrees of freedom straight. Using the SSRs in (4.31) and (4.33), we have

F � � � 9.55.

This number is well above the 1% critical value in the F distribution with 3 and 347
degrees of freedom, and so we soundly reject the hypothesis that bavg, hrunsyr, and
rbisyr have no effect on salary.

The outcome of the joint test may seem surprising in light of the insignificant t sta-
tistics for the three variables. What is happening is that the two variables hrunsyr and
rbisyr are highly correlated, and this multicollinearity makes it difficult to uncover the
partial effect of each variable; this is reflected in the individual t statistics. The F sta-
tistic tests whether these variables (including bavg) are jointly significant, and multi-
collinearity between hrunsyr and rbisyr is much less relevant for testing this hypothesis.
In Problem 4.16, you are asked to reestimate the model while dropping rbisyr, in which
case hrunsyr becomes very significant. The same is true for rbisyr when hrunsyr is
dropped from the model.

The F statistic is often useful for testing exclusion of a group of variables when the
variables in the group are highly correlated. For example, suppose we want to test
whether firm performance affects the salaries of chief executive officers. There are
many ways to measure firm performance, and it probably would not be clear ahead of
time which measures would be most important. Since measures of firm performance are
likely to be highly correlated, hoping to find individually significant measures might be
asking too much due to multicollinearity. But an F test can be used to determine
whether, as a group, the firm performance variables affect salary.

Relationship Between F and t Statistics

We have seen in this section how the F statistic can be used to test whether a group of
variables should be included in a model. What happens if we apply the F statistic to the
case of testing significance of a single independent variable? This case is certainly not
ruled out by the previous development. For example, we can take the null to be H0:
�k � 0 and q � 1 (to test the single exclusion restriction that xk can be excluded from
the model). From Section 4.2, we know that the t statistic on �k can be used to test this
hypothesis. The question, then, is do we have two separate ways of testing hypotheses

347
3

(198.311 � 183.186)
183.186
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about a single coefficient? The answer is no. It can be shown that the F statistic for test-
ing exclusion of a single variable is equal to the square of the corresponding t statistic.
Since t2

n�k�1 has an F1,n�k�1 distribution, the two approaches lead to exactly the same
outcome, provided that the alternative is two-sided. The t statistic is more flexible for
testing a single hypothesis because it can be used to test against one-sided alternatives.
Since t statistics are also easier to obtain than F statistics, there is really no reason to
use an F statistic to test hypotheses about a single parameter.

The R-Squared Form of the F Statistic

In most applications, it turns out to be more convenient to use a form of the F statistic
that can be computed using the R-squareds from the restricted and unrestricted models.
One reason for this is that the R-squared is always between zero and one, whereas the
SSRs can be very large depending on the units of measurement of y, making the cal-
culation based on the SSRs tedious. Using the fact that SSRr � SST(1 � Rr

2) and
SSRur � SST(1 � R2

ur), we can substitute into (4.37) to obtain

F � (4.41)

(note that the SST terms cancel everywhere). This is called the R-squared form of the
F statistic.

Since the R-squared is reported with almost all regressions (whereas the SSR is
not), it is easy to use the R-squareds from the unrestricted and restricted models to test
for exclusion of some variables. Particular attention should be paid to the order of the
R-squareds in the numerator: the unrestricted R-squared comes first [contrast this with
the SSRs in (4.37)]. Since R2

ur 	 Rr
2, this shows again that F will always be positive.

In using the R-squared form of the test for excluding a set of variables, it is impor-
tant to not square the R-squared before plugging it into formula (4.41); the squaring has
already been done. All regressions report R2, and these numbers are plugged directly
into (4.41). For the baseball salary example, we can use (4.41) to obtain the F statistic:

F � � � 9.54,

which is very close to what we obtained before. (The difference is due to a rounding
error.)

E X A M P L E  4 . 9
( P a r e n t s ’  E d u c a t i o n  i n  a  B i r t h  W e i g h t  E q u a t i o n )

As another example of computing an F statistic, consider the following model to explain
child birth weight in terms of various factors:

bwght � �0 � �1cigs � �2parity � �3 faminc �

�4motheduc � �5 fatheduc � u,
(4.42)

347
3

(.6278 � .5971)
1 � .6278

(R2
ur � Rr

2)/q
(1 � R2

ur)/(n � k � 1)
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where bwght is birth weight, in pounds, cigs is average number of cigarettes the mother
smoked per day during pregnancy, parity is the birth order of this child, faminc is annual
family income, motheduc is years of schooling for the mother, and fatheduc is years of
schooling for the father. Let us test the null hypothesis that, after controlling for cigs, par-
ity, and faminc, parents’ education has no effect on birth weight. This is stated as H0: �4 �

0, �5 � 0, and so there are q � 2 exclusion restrictions to be tested. There are k � 1 � 6
parameters in the unrestricted model (4.42), so the df in the unrestricted model is n � 6,
where n is the sample size.

We will test this hypothesis using the data in BWGHT.RAW. This data set contains infor-
mation on 1,388 births, but we must be careful in counting the observations used in test-
ing the null hypothesis. It turns out that information on at least one of the variables
motheduc and fatheduc is missing for 197 births in the sample; these observations cannot
be included when estimating the unrestricted model. Thus, we really have n � 1,191 obser-
vations, and so there are 1,191 � 6 � 1,185 df in the unrestricted model. We must be sure
to use these same 1,191 observations when estimating the restricted model (not the full
1,388 observations that are available). Generally, when estimating the restricted model to
compute an F test, we must use the same observations to estimate the unrestricted model;
otherwise the test is not valid. When there are no missing data, this will not be an issue.

The numerator df is 2, and the denominator df is 1,185; from Table G.3, the 5% criti-
cal value is c � 3.0. Rather than report the complete results, for brevity we present only the
R-squareds. The R-squared for the full model turns out to be R2

ur � .0387. When motheduc
and fatheduc are dropped from the regression, the R-squared falls to Rr

2 � .0364. Thus, the
F statistic is F � [(.0387 � .0364)/(1 � .0387)](1,185/2) � 1.42; since this is well below the
5% critical value, we fail to reject H0. In other words, motheduc and fatheduc are jointly
insignificant in the birth weight equation.

Computing p-values for F Tests

For reporting the outcomes of F tests, p-values are especially useful. Since the F distri-
bution depends on the numerator and denominator df, it is difficult to get a feel for how

strong or weak the evidence is against the
null hypothesis simply by looking at the
value of the F statistic and one or two crit-
ical values.

In the F testing context, the p-value is
defined as

p-value � P(� 	 F ), (4.43)

where, for emphasis, we let � denote an F
random variable with (q,n � k � 1)
degrees of freedom, and F is the actual
value of the test statistic. The p-value still
has the same interpretation as it did for t
statistics: it is the probability of observing
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The data in ATTEND.RAW were used to estimate the two equations

atn̂drte � (47.13) � (13.37) priGPA
atn̂drte � (2.87) � (1.09) priGPA

n � 680, R2 � .183,
and

atn̂drte � (75.70) � (17.26) priGPA � 1.72 ACT,
atn̂drte � (3.88) � (1.08) priGPA � 1(?) ACT,

n � 680, R2 � .291,

where, as always, standard errors are in parentheses; the standard
error for ACT is missing in the second equation. What is the t statis-
tic for the coefficient on ACT? (Hint: First compute the F statistic for
significance of ACT.)
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a value of the F at least as large as we did, given that the null hypothesis is true. A small
p-value is evidence against H0. For example, p-value � .016 means that the chance of
observing a value of F as large as we did when the null hypothesis was true is only
1.6%; we usually reject H0 in such cases. If the p-value � .314, then the chance of
observing a value of the F statistic as large as we did under the null hypothesis is 31.4%.
Most would find this to be pretty weak evidence against H0.

As with t testing, once the p-value has been computed, the F test can be carried out
at any significance level. For example, if the p-value � .024, we reject H0 at the 5% sig-
nificance level but not at the 1% level.

The p-value for the F test in Example 4.9 is .238, and so the null hypothesis that
�motheduc and �fatheduc are both zero is not rejected at even the 20% significance level.

Many econometrics packages have a built-in feature for testing multiple exclusion
restrictions. These packages have several advantages over calculating the statistics by
hand: we will less likely make a mistake, p-values are computed automatically, and the
problem of missing data, as in Example 4.9, is handled without any additional work on
our part.

The F Statistic for Overall Significance of a Regression

A special set of exclusion restrictions is routinely tested by most regression packages.
These restrictions have the same interpretation, regardless of the model. In the model
with k independent variables, we can write the null hypothesis as

H0: x1, x2, …, xk do not help to explain y.

This null hypothesis is, in a way, very pessimistic. It states that none of the explanatory
variables has an effect on y. Stated in terms of the parameters, the null is that all slope
parameters are zero:

H0: �1 � �2 � … � �k � 0, (4.44)

and the alternative is that at least one of the �j is different from zero. Another useful way
of stating the null is that H0: E(y�x1,x2, …, xk) � E(y), so that knowing the values of x1,
x2, …, xk does not affect the expected value of y.

There are k restrictions in (4.44), and when we impose them, we get the restricted
model

y � �0 � u; (4.45)

all independent variables have been dropped from the equation. Now, the R-squared
from estimating (4.45) is zero; none of the variation in y is being explained because
there are no explanatory variables. Therefore, the F statistic for testing (4.44) can be
written as

, (4.46)

where R2 is just the usual R-squared from the regression of y on x1, x2, …, xk.

R2/k
(1 � R2)/(n � k � 1)
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Most regression packages report the F statistic in (4.46) automatically, which makes
it tempting to use this statistic to test general exclusion restrictions. You must avoid this
temptation. The F statistic in (4.41) is used for general exclusion restrictions; it depends
on the R-squareds from the restricted and unrestricted models. The special form of
(4.46) is valid only for testing joint exclusion of all independent variables. This is some-
times called testing the overall significance of the regression.

If we fail to reject (4.44), then there is no evidence that any of the independent vari-
ables help to explain y. This usually means that we must look for other variables to
explain y. For Example 4.9, the F statistic for testing (4.44) is about 9.55 with k � 5
and n � k � 1 � 1,185 df. The p-value is zero to four places after the decimal point,
so that (4.44) is rejected very strongly. Thus, we conclude that the variables in the
bwght equation do explain some variation in bwght. The amount explained is not large:
only 3.87%. But the seemingly small R-squared results in a highly significant F statis-
tic. That is why we must compute the F statistic to test for joint significance and not
just look at the size of the R-squared.

Occasionally, the F statistic for the hypothesis that all independent variables are
jointly insignificant is the focus of a study. Problem 4.10 asks you to use stock return
data to test whether stock returns over a four-year horizon are predictable based on
information known only at the beginning of the period. Under the efficient markets
hypothesis, the returns should not be predictable; the null hypothesis is precisely (4.44).

Testing General Linear Restrictions

Testing exclusion restrictions is by far the most important application of F statistics.
Sometimes, however, the restrictions implied by a theory are more complicated than
just excluding some independent variables. It is still straightforward to use the F statis-
tic for testing.

As an example, consider the following equation:

log(price) � �0 � �1log(assess) � �2log(lotsize)

� �3log(sqrft) � �4bdrms � u,
(4.47)

where price is house price, assess is the assessed housing value (before the house was
sold), lotsize is size of the lot, in feet, sqrft is square footage, and bdrms is number of
bedrooms. Now, suppose we would like to test whether the assessed housing price is a
rational valuation. If this is the case, then a 1% change in assess should be associated
with a 1% change in price; that is, �1 � 1. In addition, lotsize, sqrft, and bdrms should
not help to explain log(price), once the assessed value has been controlled for.
Together, these hypotheses can be stated as

H0: �1 � 1, �2 � 0, �3 � 0, �4 � 0. (4.48)

There are four restrictions here to be tested; three are exclusion restrictions, but �1 � 1
is not. How can we test this hypothesis using the F statistic?

As in the exclusion restriction case, we estimate the unrestricted model, (4.47) in
this case, and then impose the restrictions in (4.48) to obtain the restricted model. It is
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the second step that can be a little tricky. But all we do is plug in the restrictions. If we
write (4.47) as

y � �0 � �1x1 � �2x2 � �3x3 � �4x4 � u, (4.49)

then the restricted model is y � �0 � x1 � u. Now, in order to impose the restriction
that the coefficient on x1 is unity, we must estimate the following model:

y � x1 � �0 � u. (4.50)

This is just a model with an intercept (�0) but with a different dependent variable than
in (4.49). The procedure for computing the F statistic is the same: estimate (4.50),
obtain the SSR (SSRr), and use this with the unrestricted SSR from (4.49) in the F sta-
tistic (4.37). We are testing q � 4 restrictions, and there are n � 5 df in the unrestricted
model. The F statistic is simply [(SSRr � SSRur)/SSRur][(n � 5)/4].

Before illustrating this test using a data set, we must emphasize one point: we can-
not use the R-squared form of the F statistic for this example because the dependent
variable in (4.50) is different from the one in (4.49). This means the total sum of squares
from the two regressions will be different, and (4.41) is no longer equivalent to (4.37).
As a general rule, the SSR form of the F statistic should be used if a different depen-
dent variable is needed in running the restricted regression.

The estimated unrestricted model using the data in HPRICE1.RAW is

log(pr̂ice) � �(.034) � (1.043) log(assess) � (.0074) log(lotsize)

log(pr̂ice) � � (.972) � (.151) log(assess) � (.0386) log(lotsize)

log(pr̂ice) � ( ) � (.1032) log(sqrft) � (.0338) bdrms

log(pr̂ice) � ( ) � (.1384) log(sqrft) � (.0221) bdrms

n � 88, SSR � 1.822, R2 � .773.

If we use separate t statistics to test each hypothesis in (4.48), we fail to reject each one.
But rationality of the assessment is a joint hypothesis, so we should test the restrictions
jointly. The SSR from the restricted model turns out to be SSRr � 1.880, and so the F
statistic is [(1.880 � 1.822)/1.822](83/4) � .661. The 5% critical value in an F distri-
bution with (4,83) df is about 2.50, and so we fail to reject H0. There is essentially no
evidence against the hypothesis that the assessed values are rational.

4.6 REPORTING REGRESSION RESULTS

We end this chapter by providing a few guidelines on how to report multiple regression
results for relatively complicated empirical projects. This should teach you to read pub-
lished works in the applied social sciences, while also preparing you to write your own
empirical papers. We will expand on this topic in the remainder of the text by reporting
results from various examples, but many of the key points can be made now.

Naturally, the estimated OLS coefficients should always be reported. For the key
variables in an analysis, you should interpret the estimated coefficients (which often
requires knowing the units of measurement of the variables). For example, is an esti-
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mate an elasticity, or does it have some other interpretation that needs explanation? The
economic or practical importance of the estimates of the key variables should be dis-
cussed.

The standard errors should always be included along with the estimated coeffi-
cients. Some authors prefer to report the t statistics rather than the standard errors (and
often just the absolute value of the t statistics). While nothing is really wrong with this,
there is some preference for reporting standard errors. First, it forces us to think care-
fully about the null hypothesis being tested; the null is not always that the population
parameter is zero. Second, having standard errors makes it easier to compute confi-
dence intervals.

The R-squared from the regression should always be included. We have seen that,
in addition to providing a goodness-of-fit measure, it makes calculation of F statistics
for exclusion restrictions simple. Reporting the sum of squared residuals and the stan-
dard error of the regression is sometimes a good idea, but it is not crucial. The number
of observations used in estimating any equation should appear near the estimated equa-
tion.

If only a couple of models are being estimated, the results can be summarized in
equation form, as we have done up to this point. However, in many papers, several
equations are estimated with many different sets of independent variables. We may esti-
mate the same equation for different groups of people, or even have equations explain-
ing different dependent variables. In such cases, it is better to summarize the results in
one or more tables. The dependent variable should be indicated clearly in the table, and
the independent variables should be listed in the first column. Standard errors (or t sta-
tistics) can be put in parentheses below the estimates.

E X A M P L E  4 . 1 0
( S a l a r y - P e n s i o n  T r a d e o f f  f o r  T e a c h e r s )

Let totcomp denote average total annual compensation for a teacher, including salary and
all fringe benefits (pension, health insurance, and so on). Extending the standard wage
equation, total compensation should be a function of productivity and perhaps other char-
acteristics. As is standard, we use logarithmic form:

log(totcomp) � f (productivity characteristics,other factors),

where f(�) is some function (unspecified for now). Write

totcomp � salary � benefits � salary �1 � 	.

This equation shows that total compensation is the product of two terms: salary and 1 �
b/s, where b/s is shorthand for the “benefits to salary ratio.” Taking the log of this equa-
tion gives log(totcomp) � log(salary) � log(1 � b/s). Now, for “small” b/s, log(1 � b/s) �
b/s; we will use this approximation. This leads to the econometric model

log(salary) � �0 � �1(b/s) � other factors.

Testing the wage-benefits tradeoff then is the same as a test of H0: �1 � �1 against H1:
�1 
 �1.

benefits
salary
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We use the data in MEAP93.RAW to test this hypothesis. These data are averaged at
the school level, and we do not observe very many other factors that could affect total
compensation. We will include controls for size of the school (enroll ), staff per thousand
students (staff ), and measures such as the school dropout and graduation rates. The aver-
age b/s in the sample is about .205, and the largest value is .450.

The estimated equations are given in Table 4.1, where standard errors are given in
parentheses below the coefficient estimates. The key variable is b/s, the benefits-salary
ratio.

From the first column in Table 4.1, we see that, without controlling for any other
factors, the OLS coefficient for b/s is �.825. The t statistic for testing the null hypoth-
esis H0: �1 � �1 is t � (�.825 � 1)/.200 � .875, and so the simple regression fails
to reject H0. After adding controls for school size and staff size (which roughly cap-
tures the number of students taught by each teacher), the estimate of the b/s coef-
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Table 4.1

Testing the Salary-Benefits Tradeoff

Dependent Variable: log(salary)

Independent Variables (1) (2) (3)

b/s �.825 �.605 �.589
(.200) (.165) (.165)

log(enroll) — .0874 .0881
(.0073) (.0073)

log(staff ) — �.222 �.218
(.050) (.050)

droprate — — �.00028
(.00161)

gradrate — — .00097
(.00066)

intercept 10.523 10.884 10.738
(0.042) (0.252) (0.258)

Observations 408 408 408
R-Squared .040 .353 .361
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ficient becomes �.605. Now the test of
�1 � �1 gives a t statistic of about 2.39;
thus, H0 is rejected at the 5% level against
a two-sided alternative. The variables
log(enroll) and log(staff ) are very statisti-
cally significant.

SUMMARY

In this chapter, we have covered the very important topic of statistical inference, which
allows us to infer something about the population model from a random sample. We
summarize the main points:

1. Under the classical linear model assumptions MLR.1 through MLR.6, the OLS
estimators are normally distributed.

2. Under the CLM assumptions, the t statistics have t distributions under the null
hypothesis.

3. We use t statistics to test hypotheses about a single parameter against one- or two-
sided alternatives, using one- or two-tailed tests, respectively. The most common
null hypothesis is H0: �j � 0, but we sometimes want to test other values of �j

under H0.
4. In classical hypothesis testing, we first choose a significance level, which, along

with the df and alternative hypothesis, determines the critical value against which
we compare the t statistic. It is more informative to compute the p-value for a t
test—the smallest significance level for which the null hypothesis is rejected—so
that the hypothesis can be tested at any significance level.

5. Under the CLM assumptions, confidence intervals can be constructed for each �j.
These CIs can be used to test any null hypothesis concerning �j against a two-
sided alternative.

6. Single hypothesis tests concerning more than one �j can always be tested by
rewriting the model to contain the parameter of interest. Then, a standard t statis-
tic can be used.

7. The F statistic is used to test multiple exclusion restrictions, and there are two
equivalent forms of the test. One is based on the SSRs from the restricted and
unrestricted models. A more convenient form is based on the R-squareds from the
two models.

8. When computing an F statistic, the numerator df is the number of restrictions
being tested, while the denominator df is the degrees of freedom in the unrestricted
model.

9. The alternative for F testing is two-sided. In the classical approach, we specify a
significance level which, along with the numerator df and the denominator df,
determines the critical value. The null hypothesis is rejected when the statistic, F,
exceeds the critical value, c. Alternatively, we can compute a p-value to summa-
rize the evidence against H0.

10. General multiple linear restrictions can be tested using the sum of squared resid-
uals form of the F statistic.
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Q U E S T I O N  4 . 6

How does adding droprate and gradrate affect the estimate of the
salary-benefits tradeoff? Are these variables jointly significant at the
5% level? What about the 10% level?
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11. The F statistic for the overall significance of a regression tests the null hypothesis
that all slope parameters are zero, with the intercept unrestricted. Under H0, the
explanatory variables have no effect on the expected value of y.

KEY TERMS
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Alternative Hypothesis
Classical Linear Model
Classical Linear Model (CLM) 

Assumptions
Confidence Interval (CI)
Critical Value
Denominator Degrees of Freedom
Economic Significance
Exclusion Restrictions
F Statistic
Joint Hypotheses Test
Jointly Insignificant
Jointly Statistically Significant
Minimum Variance Unbiased Estimators
Multiple Hypotheses Test
Multiple Restrictions
Normality Assumption
Null Hypothesis

Numerator Degrees of Freedom
One-Sided Alternative
One-Tailed Test
Overall Significance of the Regression
p-Value
Practical Significance
R-squared Form of the F Statistic
Rejection Rule
Restricted Model
Significance Level
Statistically Insignificant
Statistically Significant
t Ratio
t Statistic
Two-Sided Alternative
Two-Tailed Test
Unrestricted Model

PROBLEMS

4.1 Which of the following can cause the usual OLS t statistics to be invalid (that is,
not to have t distributions under H0)?

(i) Heteroskedasticity.
(ii) A sample correlation coefficient of .95 between two independent vari-

ables that are in the model.
(iii) Omitting an important explanatory variable.

4.2 Consider an equation to explain salaries of CEOs in terms of annual firm sales,
return on equity (roe, in percent form), and return on the firm’s stock (ros, in percent
form):

log(salary) � �0 � �1log(sales) � �2roe � �3ros � u.

(i) In terms of the model parameters, state the null hypothesis that, after con-
trolling for sales and roe, ros has no effect on CEO salary. State the alter-
native that better stock market performance increases a CEO’s salary.

(ii) Using the data in CEOSAL1.RAW, the following equation was
obtained by OLS:
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log(sâlary) � (4.32) � (.280) log(sales) � (.0174) roe � (.00024) ros

log(sâlary) � (0.32) � (.035) log(sales) � (.0041) roe � (.00054) ros

n � 209, R2 � .283

By what percent is salary predicted to increase, if ros increases by 50
points? Does ros have a practically large effect on salary?

(iii) Test the null hypothesis that ros has no effect on salary, against the
alternative that ros has a positive effect. Carry out the test at the 10%
significance level.

(iv) Would you include ros in a final model explaining CEO compensation
in terms of firm performance? Explain.

4.3 The variable rdintens is expenditures on research and development (R&D) as a
percentage of sales. Sales are measured in millions of dollars. The variable profmarg is
profits as a percentage of sales.

Using the data in RDCHEM.RAW for 32 firms in the chemical industry, the fol-
lowing equation is estimated:

rdin̂tens � (.472) � (.321) log(sales) � (.050) profmarg

rdin̂tens � (1.369) � (.216) log(sales) � (.046) profmarg

n � 32, R2 � .099

(i) Interpret the coefficient on log(sales). In particular, if sales increases by
10%, what is the estimated percentage point change in rdintens? Is this
an economically large effect?

(ii) Test the hypothesis that R&D intensity does not change with sales,
against the alternative that it does increase with sales. Do the test at the
5% and 10% levels.

(iii) Does profmarg have a statistically significant effect on rdintens?

4.4 Are rent rates influenced by the student population in a college town? Let rent
be the average monthly rent paid on rental units in a college town in the United States.
Let pop denote the total city population, avginc the average city income, and pctstu the
student population as a percent of the total population. One model to test for a rela-
tionship is

log(rent) � �0 � �1log( pop) � �2log(avginc) � �3pctstu � u.

(i) State the null hypothesis that size of the student body relative to the
population has no ceteris paribus effect on monthly rents. State the
alternative that there is an effect.

(ii) What signs do you expect for �1 and �2?
(iii) The equation estimated using 1990 data from RENTAL.RAW for 64

college towns is

log(̂rent) � (.043) � (.066) log(pop) � (.507) log(avginc) � (.0056) pctstu

log(̂rent) � (.844) � (.039) log(pop) � (.081) log(avginc) � (.0017) pctstu

n � 64, R2 � .458.
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What is wrong with the statement: “A 10% increase in population is
associated with about a 6.6% increase in rent”?

(iv) Test the hypothesis stated in part (i) at the 1% level.

4.5 Consider the estimated equation from Example 4.3, which can be used to study the
effects of skipping class on college GPA:

col̂GPA � (1.39) � (.412) hsGPA � (.015) ACT � (.083) skipped

col̂GPA � (0.33) � (.094) hsGPA � (.011) ACT � (.026) skipped

n � 141, R2 � .234.

(i) Using the standard normal approximation, find the 95% confidence
interval for �hsGPA.

(ii) Can you reject the hypothesis H0: �hsGPA � .4 against the two-sided
alternative at the 5% level?

(iii) Can you reject the hypothesis H0: �hsGPA � 1 against the two-sided
alternative at the 5% level?

4.6 In Section 4.5, we used as an example testing the rationality of assessments of
housing prices. There, we used a log-log model in price and assess [see equation
(4.47)]. Here, we use a level-level formulation.

(i) In the simple regression model

price � �0 � �1assess � u,

the assessment is rational if �1 � 1 and �0 � 0. The estimated equa-
tion is

(prîce � �14.47) � (.976) assess

prîce � �(16.27) � (.049) assess

n � 88, SSR � 165,644.51, R2 � .820.

First, test the hypothesis that H0: �0 � 0 against the two-sided alterna-
tive. Then, test H0: �1 � 1 against the two-sided alternative. What do
you conclude?

(ii) To test the joint hypothesis that �0 � 0 and �1 � 1, we need the SSR in

the restricted model. This amounts to computing �
n

i�1
(pricei � assessi)

2,

where n � 88, since the residuals in the restricted model are just pricei

� assessi. (No estimation is needed for the restricted model because
both parameters are specified under H0.) This turns out to yield SSR �
209,448.99. Carry out the F test for the joint hypothesis.

(iii) Now test H0: �2 � 0, �3 � 0, and �4 � 0 in the model

price � �0 � �1assess � �2sqrft � �3lotsize � �4bdrms � u.

The R-squared from estimating this model using the same 88 houses
is .829.

(iv) If the variance of price changes with assess, sqrft, lotsize, or bdrms,
what can you say about the F test from part (iii)?
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4.7 In Example 4.7, we used data on Michigan manufacturing firms to estimate the
relationship between the scrap rate and other firm characteristics. We now look at this
example more closely and use a larger sample of firms.

(i) The population model estimated in Example 4.7 can be written as

log(scrap) � �0 � �1hrsemp � �2log(sales) � �3log(employ) � u.

Using the 43 observations available for 1987, the estimated equation is

log(ŝcrap) � (11.74) � (.042) hrsemp � (.951) log(sales) � (.992) log(employ)

log(ŝcrap) � (4.57) � (.019) hrsemp � (.370) log(sales) � (.360) log(employ)

n � 43, R2 � .310.

Compare this equation to that estimated using only 30 firms in the
sample.

(ii) Show that the population model can also be written as

log(scrap) � �0 � �1hrsemp � �2log(sales/employ) � �3log(employ) � u,

where �3 � �2 � �3. [Hint: Recall that log(x2/x3) � log(x2) � log(x3).]
Interpret the hypothesis H0: �3 � 0.

(iii) When the equation from part (ii) is estimated, we obtain

log(ŝcrap) � (11.74) � (.042) hrsemp � (.951) log(sales/employ) � (.041) log(employ)

log(ŝcrap) � (4.57) � (.019) hrsemp � (.370) log(sales/employ) � (.205) log(employ)

n � 43, R2 � .310.

Controlling for worker training and for the sales-to-employee ratio, do
bigger firms have larger statistically significant scrap rates?

(iv) Test the hypothesis that a 1% increase in sales/employ is associated
with a 1% drop in the scrap rate.

4.8 Consider the multiple regression model with three independent variables, under
the classical linear model assumptions MLR.1 through MLR.6:

y � �0 � �1x1 � �2x2 � �3x3 � u.

You would like to test the null hypothesis H0: �1 � 3�2 � 1.
(i) Let �̂1 and �̂2 denote the OLS estimators of �1 and �2. Find Var(�̂1 �

3�̂2) in terms of the variances of �̂1 and �̂2 and the covariance between
them. What is the standard error of �̂1 � 3�̂2?

(ii) Write the t statistic for testing H0: �1 � 3�2 � 1.
(iii) Define �1 � �1 � 3�2 and �̂1 � �̂1 � 3�̂2. Write a regression equation

involving �0, �1, �2, and �3 that allows you to directly obtain �̂1 and its
standard error.

4.9 In Problem 3.3, we estimated the equation

slêep � (3,638.25) � (.148) totwrk � (11.13) educ � (2.20) age

slêep � 3,(112.28) � (.017) totwrk � (5.88) educ � (1.45) age

n � 706, R2 � .113,
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where we now report standard errors along with the estimates.
(i) Is either educ or age individually significant at the 5% level against a

two-sided alternative? Show your work.
(ii) Dropping educ and age from the equation gives

slêep � (3,586.38) � (.151) totwrk

slêep � 3, (38.91) � (.017) totwrk

n � 706, R2 � .103.

Are educ and age jointly significant in the original equation at the 5%
level? Justify your answer.

(iii) Does including educ and age in the model greatly affect the estimated
tradeoff between sleeping and working?

(iv) Suppose that the sleep equation contains heteroskedasticity. What does
this mean about the tests computed in parts (i) and (ii)?

4.10 Regression analysis can be used to test whether the market efficiently uses infor-
mation in valuing stocks. For concreteness, let return be the total return from holding
a firm’s stock over the four-year period from the end of 1990 to the end of 1994. The
efficient markets hypothesis says that these returns should not be systematically related
to information known in 1990. If firm characteristics known at the beginning of the
period help to predict stock returns, then we could use this information in choosing
stocks.

For 1990, let dkr be a firm’s debt to capital ratio, let eps denote the earnings per
share, let (log)netinc denote net income, and let (log)salary denote total compensation
for the CEO.

(i) Using the data in RETURN.RAW, the following equation was esti-
mated:

ret̂urn � (40.44) � (.952) dkr � (.472) eps � (.025) netinc � (.003) salary

ret̂urn � (29.30) � (.854) dkr � (.332) eps � (.020) netinc � (.009) salary

n � 142, R2 � .0285.

Test whether the explanatory variables are jointly significant at the 5%
level. Is any explanatory variable individually significant?

(ii) Now reestimate the model using the log form for netinc and salary:

( ret̂urn � �69.12) � (1.056) dkr � (.586) eps � (31.18) netinc � (39.26) salary

ret̂urn � � (164.66) � (.847) dkr � (.336) eps � (14.16) netinc � (26.40) salary

n � 142, R2 � .0531.

Do any of your conclusions from part (i) change?
(iii) Overall, is the evidence for predictability of stock returns strong or

weak?

4.11 The following table was created using the data in CEOSAL2.RAW:
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Dependent Variable: log(salary)

Independent Variables (1) (2) (3)

log(sales) .224 .158 .188
(.027) (.040) (.040)

log(mktval) — .112 .100
(.050) (.049)

profmarg — �.0023 �.0022
(.0022) (.0021)

ceoten — — .0171
(.0055)

comten — — �.0092
(.0033)

intercept 4.94 4.62 4.57
(0.20) (0.25) (0.25)

Observations 177 177 177
R-Squared .281 .304 .353

The variable mktval is market value of the firm, profmarg is profit as a percentage of
sales, ceoten is years as CEO with the current company, and comten is total years with
the company.

(i) Comment on the effect of profmarg on CEO salary.
(ii) Does market value have a significant effect? Explain.
(iii) Interpret the coefficients on ceoten and comten. Are the variables sta-

tistically significant? What do you make of the fact that longer tenure
with the company, holding the other factors fixed, is associated with a
lower salary?

COMPUTER EXERCISES

4.12 The following model can be used to study whether campaign expenditures affect
election outcomes:

voteA � �0 � �1log(expendA) � �2log(expendB) � �3prtystrA � u,

where voteA is the percent of the vote received by Candidate A, expendA and expendB
are campaign expenditures by Candidates A and B, and prtystrA is a measure of party
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strength for Candidate A (the percent of the most recent presidential vote that went to
A’s party).

(i) What is the interpretation of �1?
(ii) In terms of the parameters, state the null hypothesis that a 1% increase

in A’s expenditures is offset by a 1% increase in B’s expenditures.
(iii) Estimate the model above using the data in VOTE1.RAW and report the

results in usual form. Do A’s expenditures affect the outcome? What
about B’s expenditures? Can you use these results to test the hypothe-
sis in part (ii)?

(iv) Estimate a model that directly gives the t statistic for testing the hypoth-
esis in part (ii). What do you conclude? (Use a two-sided alternative.)

4.13 Use the data in LAWSCH85.RAW for this exercise.
(i) Using the same model as Problem 3.4, state and test the null hypothe-

sis that the rank of law schools has no ceteris paribus effect on median
starting salary.

(ii) Are features of the incoming class of students—namely, LSAT and
GPA—individually or jointly significant for explaining salary?

(iii) Test whether the size of the entering class (clsize) or the size of the fac-
ulty ( faculty) need to be added to this equation; carry out a single test.
(Be careful to account for missing data on clsize and faculty.)

(iv) What factors might influence the rank of the law school that are not
included in the salary regression?

4.14 Refer to Problem 3.14. Now, use the log of the housing price as the dependent
variable:

log(price) � �0 � �1sqrft � �2bdrms � u.

(i) You are interested in estimating and obtaining a confidence interval for
the percentage change in price when a 150-square-foot bedroom is
added to a house. In decimal form, this is �1 � 150�1 � �2. Use the data
in HPRICE1.RAW to estimate �1.

(ii) Write �2 in terms of �1 and �1 and plug this into the log(price) equation.
(iii) Use part (ii) to obtain a standard error for �̂1 and use this standard error

to construct a 95% confidence interval.

4.15 In Example 4.9, the restricted version of the model can be estimated using all
1,388 observations in the sample. Compute the R-squared from the regression of bwght
on cigs, parity, and faminc using all observations. Compare this to the R-squared
reported for the restricted model in Example 4.9.

4.16 Use the data in MLB1.RAW for this exercise.
(i) Use the model estimated in equation (4.31) and drop the variable rbisyr.

What happens to the statistical significance of hrunsyr? What about the
size of the coefficient on hrunsyr?

(ii) Add the variables runsyr, fldperc, and sbasesyr to the model from part
(i). Which of these factors are individually significant?

(iii) In the model from part (ii), test the joint significance of bavg, fldperc,
and sbasesyr.
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4.17 Use the data in WAGE2.RAW for this exercise.
(i) Consider the standard wage equation

log(wage) � �0 � �1educ � �2exper � �3tenure � u.

State the null hypothesis that another year of general workforce experi-
ence has the same effect on log(wage) as another year of tenure with the
current employer.

(ii) Test the null hypothesis in part (i) against a two-sided alternative, at the
5% significance level, by constructing a 95% confidence interval. What
do you conclude?
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In Chapters 3 and 4, we covered what are called finite sample, small sample, or exact
properties of the OLS estimators in the population model

y � �0 � �1x1 � �2x2 � … � �kxk � u. (5.1)

For example, the unbiasedness of OLS (derived in Chapter 3) under the first four Gauss-
Markov assumptions is a finite sample property because it holds for any sample size n
(subject to the mild restriction that n must be at least as large as the total number of
parameters in the regression model, k � 1). Similarly, the fact that OLS is the best lin-
ear unbiased estimator under the full set of Gauss-Markov assumptions (MLR.1
through MLR.5) is a finite sample property.

In Chapter 4, we added the classical linear model Assumption MLR.6, which states
that the error term u is normally distributed and independent of the explanatory vari-
ables. This allowed us to derive the exact sampling distributions of the OLS estimators
(conditional on the explanatory variables in the sample). In particular, Theorem 4.1
showed that the OLS estimators have normal sampling distributions, which led directly
to the t and F distributions for t and F statistics. If the error is not normally distributed,
the distribution of a t statistic is not exactly t, and an F statistic does not have an exact
F distribution for any sample size.

In addition to finite sample properties, it is important to know the asymptotic prop-
erties or large sample properties of estimators and test statistics. These properties are
not defined for a particular sample size; rather, they are defined as the sample size
grows without bound. Fortunately, under the assumptions we have made, OLS has
satisfactory large sample properties. One practically important finding is that even
without the normality assumption (Assumption MLR.6), t and F statistics have
approximately t and F distributions, at least in large sample sizes. We discuss this in
more detail in Section 5.2, after we cover consistency of OLS in Section 5.1.

5.1 CONSISTENCY

Unbiasedness of estimators, while important, cannot always be achieved. For example,
as we discussed in Chapter 3, the standard error of the regression, �̂, is not an unbiased

162

C h a p t e r Five

Multiple Regression Analysis: 
OLS Asymptotics

d  7/14/99 5:21 PM  Page 162



estimator for �, the standard deviation of the error u in a multiple regression model.
While the OLS estimators are unbiased under MLR.1 through MLR.4, in Chapter 11 we
will find that there are time series regressions where the OLS estimators are not unbi-
ased. Further, in Part 3 of the text, we encounter several other estimators that are biased.

While not all useful estimators are unbiased, virtually all economists agree that
consistency is a minimal requirement for an estimator. The famous econometrician
Clive W.J. Granger once remarked: “If you can’t get it right as n goes to infinity, you
shouldn’t be in this business.” The implication is that, if your estimator of a particular
population parameter is not consistent, then you are wasting your time.

There are a few different ways to describe consistency. Formal definitions and
results are given in Appendix C; here we focus on an intuitive understanding. For con-
creteness, let �̂j be the OLS estimator of �j for some j. For each n, �̂j has a probability
distribution (representing its possible values in different random samples of size n).
Because �̂j is unbiased under assumptions MLR.1 through MLR.4, this distribution has
mean value �j. If this estimator is consistent, then the distribution of �̂j becomes more
and more tightly distributed around �j as the sample size grows. As n tends to infinity,
the distribution of �̂j collapses to the single point �j. In effect, this means that we can
make our estimator arbitrarily close to �j if we can collect as much data as we want.
This convergence is illustrated in Figure 5.1.
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Sampling distributions of �̂1 for sample sizes n1 � n2 � n3.
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Naturally, for any application we have a fixed sample size, which is the reason an
asymptotic property such as consistency can be difficult to grasp. Consistency involves
a thought experiment about what would happen as the sample size gets large (while at
the same time we obtain numerous random samples for each sample size). If obtaining
more and more data does not generally get us closer to the parameter value of interest,
then we are using a poor estimation procedure.

Conveniently, the same set of assumptions imply both unbiasedness and consistency
of OLS. We summarize with a theorem.

T H E O R E M  5 . 1  ( C O N S I S T E N C Y  O F O L S )

Under assumptions MLR.1 through MLR.4, the OLS estimator �̂j is consistent for �j, for all
j � 0,1, …, k.

A general proof of this result is most easily developed using the matrix algebra meth-
ods described in Appendices D and E. But we can prove Theorem 5.1 without difficulty
in the case of the simple regression model. We focus on the slope estimator, �̂1.

The proof starts out the same as the proof of unbiasedness: we write down the for-
mula for �̂1, and then plug in yi � �0 � �1xi1 � ui:

�̂1 � ��
n

i�1
(xi1 � x̄1)yi ����

n

i�1
(xi1 � x̄1)2�

� �1 � �n�1 �
n

i�1
(xi1 � x̄1)ui���n�1 �

n

i�1
(xi1 � x̄1)2�.

(5.2)

We can apply the law of large numbers to the numerator and denominator, which con-
verge in probability to the population quantities, Cov(x1,u) and Var(x1), respectively.
Provided that Var(x1) � 0—which is assumed in MLR.4—we can use the properties of
probability limits (see Appendix C) to get

plim �̂1 � �1 � Cov(x1,u)/Var(x1)

� �1, because Cov(x1,u) � 0.
(5.3)

We have used the fact, discussed in Chapters 2 and 3, that E(u�x1) � 0 implies that x1

and u are uncorrelated (have zero covariance).
As a technical matter, to ensure that the probability limits exist, we should assume

that Var(x1) � � and Var(u) � � (which means that their probability distributions are not
too spread out), but we will not worry about cases where these assumptions might fail.

The previous arguments, and equation (5.3) in particular, show that OLS is consis-
tent in the simple regression case if we assume only zero correlation. This is also true
in the general case. We now state this as an assumption.

A S S U M P T I O N  M L R . 3 � ( Z E R O  M E A N  A N D  Z E R O

C O R R E L A T I O N )

E(u) � 0 and Cov(xj,u) � 0, for j � 1,2, …, k.
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In Chapter 3, we discussed why assumption MLR.3 implies MLR.3	, but not vice versa.
The fact that OLS is consistent under the weaker assumption MLR.3	 turns out to be
useful in Chapter 15 and in other situations. Interestingly, while OLS is unbiased under
MLR.3, this is not the case under Assumption MLR.3	. (This was the leading reason we
have assumed MLR.3.)

Deriving the Inconsistency in OLS

Just as failure of E(u�x1, …, xk) � 0 causes bias in the OLS estimators, correlation
between u and any of x1, x2, …, xk generally causes all of the OLS estimators to be
inconsistent. This simple but important observation is often summarized as: if the error
is correlated with any of the independent variables, then OLS is biased and inconsis-
tent. This is very unfortunate because it means that any bias persists as the sample size
grows.

In the simple regression case, we can obtain the inconsistency from equation (5.3),
which holds whether or not u and x1 are uncorrelated. The inconsistency in �̂1 (some-
times loosely called the asymptotic bias) is

plim �̂1 � �1 � Cov(x1,u)/Var(x1). (5.4)

Because Var(x1) 
 0, the inconsistency in �̂1 is positive if x1 and u are positively corre-
lated, and the inconsistency is negative if x1 and u are negatively correlated. If the
covariance between x1 and u is small relative to the variance in x1, the inconsistency can
be negligible; unfortunately, we cannot even estimate how big the covariance is because
u is unobserved.

We can use (5.4) to derive the asymptotic analog of the omitted variable bias (see
Table 3.2 in Chapter 3). Suppose the true model,

y � �0 � �1x1 � �2x2 � v,

satisfies the first four Gauss-Markov assumptions. Then v has a zero mean and is uncor-
related with x1 and x2. If �̂0, �̂1, and �̂2 denote the OLS estimators from the regression
of y on x1 and x2, then Theorem 5.1 implies that these estimators are consistent. If we
omit x2 from the regression and do the simple regression of y on x1, then u � �2x2 � v.
Let �̃1 denote the simple regression slope estimator. Then

plim �̃1 � �1 � �2�1 (5.5)

where

�1 � Cov(x1,x2)/Var(x1). (5.6)

Thus, for practical purposes, we can view the inconsistency as being the same as the
bias. The difference is that the inconsistency is expressed in terms of the population
variance of x1 and the population covariance between x1 and x2, while the bias is based
on their sample counterparts (because we condition on the values of x1 and x2 in the
sample).
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If x1 and x2 are uncorrelated (in the population), then �1 � 0, and �̃1 is a consistent
estimator of �1 (although not necessarily unbiased). If x2 has a positive partial effect on
y, so that �2 
 0, and x1 and x2 are positively correlated, so that �1 
 0, then the incon-
sistency in �̃1 is positive. And so on. We can obtain the direction of the inconsistency or
asymptotic bias from Table 3.2. If the covariance between x1 and x2 is small relative to
the variance of x1, the inconsistency can be small.

E X A M P L E  5 . 1
( H o u s i n g  P r i c e s  a n d  D i s t a n c e  f r o m  a n  I n c i n e r a t o r )

Let y denote the price of a house (price), let x1 denote the distance from the house to a 
new trash incinerator (distance), and let x2 denote the “quality” of the house (quality). The
variable quality is left vague so that it can include things like size of the house and lot, num-
ber of bedrooms and bathrooms, and intangibles such as attractiveness of the neighbor-
hood. If the incinerator depresses house prices, then �1 should be positive: everything else
being equal, a house that is farther away from the incinerator is worth more. By definition,
�2 is positive since higher quality houses sell for more, other factors being equal. If the incin-
erator was built farther away, on average, from better homes, then distance and quality are
positively correlated, and so �1 
 0. A simple regression of price on distance [or log(price)
on log(distance)] will tend to overestimate the effect of the incinerator: �1 � �2�1 
 �1.

An important point about inconsistency in OLS estimators is that, by definition, the
problem does not go away by adding more observations to the sample. If anything, the

problem gets worse with more data: the
OLS estimator gets closer and closer to
�1 � �2�1 as the sample size grows.

Deriving the sign and magnitude of the
inconsistency in the general k regressor
case is much harder, just as deriving the
bias is very difficult. We need to remember
that if we have the model in equation (5.1)
where, say, x1 is correlated with u but the
other independent variables are uncorre-
lated with u, all of the OLS estimators are

generally inconsistent. For example, in the k � 2 case,

y � �0 � �1x1 � �2x2 � u,

suppose that x2 and u are uncorrelated but x1 and u are correlated. Then the OLS esti-
mators �̂1 and �̂2 will generally both be inconsistent. (The intercept will also be incon-
sistent.) The inconsistency in �̂2 arises when x1 and x2 are correlated, as is usually the
case. If x1 and x2 are uncorrelated, then any correlation between x1 and u does not result
in the inconsistency of �̂2: plim �̂2 � �2. Further, the inconsistency in �̂1 is the same as
in (5.4). The same statement holds in the general case: if x1 is correlated with u, but x1

and u are uncorrelated with the other independent variables, then only �̂1 is inconsis-
tent, and the inconsistency is given by (5.4).
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Suppose that the model

score � �0 � �1skipped � �2priGPA � u

satisfies the first four Gauss-Markov assumptions, where score is
score on a final exam, skipped is number of classes skipped, and
priGPA is GPA prior to the current semester. If �̃1 is from the simple
regression of score on skipped, what is the direction of the asymp-
totic bias in �̃1?
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5.2 ASYMPTOTIC NORMALITY AND LARGE SAMPLE
INFERENCE

Consistency of an estimator is an important property, but it alone does not allow us
to perform statistical inference. Simply knowing that the estimator is getting closer
to the population value as the sample size grows does not allow us to test hypothe-
ses about the parameters. For testing, we need the sampling distribution of the OLS
estimators. Under the classical linear model assumptions MLR.1 through MLR.6,
Theorem 4.1 shows that the sampling distributions are normal. This result is the basis
for deriving the t and F distributions that we use so often in applied econometrics.

The exact normality of the OLS estimators hinges crucially on the normality of
the distribution of the error, u, in the population. If the errors u1, u2, …, un are ran-
dom draws from some distribution other than the normal, the �̂j will not be normally
distributed, which means that the t statistics will not have t distributions and the F sta-
tistics will not have F distributions. This is a potentially serious problem because our
inference hinges on being able to obtain critical values or p-values from the t or F dis-
tributions.

Recall that Assumption MLR.6 is equivalent to saying that the distribution of y
given x1, x2, …, xk is normal. Since y is observed and u is not, in a particular applica-
tion, it is much easier to think about whether the distribution of y is likely to be nor-
mal. In fact, we have already seen a few examples where y definitely cannot have a
normal distribution. A normally distributed random variable is symmetrically distrib-
uted about its mean, it can take on any positive or negative value (but with zero prob-
ability), and more than 95% of the area under the distribution is within two standard
deviations.

In Example 3.4, we estimated a model explaining the number of arrests of young
men during a particular year (narr86). In the population, most men are not arrested
during the year, and the vast majority are arrested one time at the most. (In the sam-
ple of 2,725 men in the data set CRIME1.RAW, fewer than 8% were arrested more
than once during 1986.) Because narr86 takes on only two values for 92% of the sam-
ple, it cannot be close to being normally distributed in the population.

In Example 4.6, we estimated a model explaining participation percentages
(prate) in 401(k) pension plans. The frequency distribution (also called a histogram)
in Figure 5.2 shows that the distribution of prate is heavily skewed to the right, rather
than being normally distributed. In fact, over 40% of the observations on prate are at
the value 100, indicating 100% participation. This violates the normality assumption
even conditional on the explanatory variables.

We know that normality plays no role in the unbiasedness of OLS, nor does it
affect the conclusion that OLS is the best linear unbiased estimator under the Gauss-
Markov assumptions. But exact inference based on t and F statistics requires
MLR.6. Does this mean that, in our analysis of prate in Example 4.6, we must aban-
don the t statistics for determining which variables are statistically significant?
Fortunately, the answer to this question is no. Even though the yi are not from a nor-
mal distribution, we can use the central limit theorem from Appendix C to conclude
that the OLS estimators are approximately normally distributed, at least in large
sample sizes.
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T H E O R E M  5 . 2  ( A S Y M P T O T I C  N O R M A L I T Y
O F O L S )

Under the Gauss-Markov assumptions MLR.1 through MLR.5,

(i) ��n (�̂j � �j) ~ª Normal(0,�2/aj
2), where �2/aj

2 
 0 is the asymptotic variance of

��n (�̂j � �j); for the slope coefficients, aj
2 � plim �n�1 �

n

i�1
r̂ ij

2�, where the r̂ ij are the resid-

uals from regressing xj on the other independent variables. We say that �̂j is asymptotically
normally distributed (see Appendix C);

(ii) �̂2 is a consistent estimator of �2 � Var(u);
(iii) For each j,

(�̂j � �j)/se(�̂j) ~ª Normal(0,1), (5.7)

where se(�̂j) is the usual OLS standard error.
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Histogram of prate using the data in 401K.RAW.

0 10 20 30 40 50 60 70 80 90 100

0

.2

.4

.6

.8

Participation rate (in percent form)

Pr
op

or
tio

n 
in

 c
el

l

d  7/14/99 5:21 PM  Page 168



The proof of asymptotic normality is somewhat complicated and is sketched in the
appendix for the simple regression case. Part (ii) follows from the law of large numbers,
and part (iii) follows from parts (i) and (ii) and the asymptotic properties discussed in
Appendix C.

Thorem 5.2 is useful because the normality assumption MLR.6 has been dropped;
the only restriction on the distribution of the error is that it has finite variance, some-
thing we will always assume. We have also assumed zero conditional mean and
homoskedasticity of u.

Notice how the standard normal distribution appears in (5.7), as opposed to the
tn�k�1 distribution. This is because the distribution is only approximate. By contrast, in
Theorem 4.2, the distribution of the ratio in (5.7) was exactly tn�k�1 for any sample size.
From a practical perspective, this difference is irrelevant. In fact, it is just as legitimate
to write

(�̂j � �j)/se(�̂j) ~ª tn�k�1, (5.8)

since tn�k�1 approaches the standard normal distribution as the degrees of freedom gets
large.

Equation (5.8) tells us that t testing and the construction of confidence intervals
are carried out exactly as under the classical linear model assumptions. This means
that our analysis of dependent variables like prate and narr86 does not have to change
at all if the Gauss-Markov assumptions hold: in both cases, we have at least 1,500
observations, which is certainly enough to justify the approximation of the central
limit theorem.

If the sample size is not very large, then the t distribution can be a poor approxi-
mation to the distribution of the t statistics when u is not normally distributed.
Unfortunately, there are no general prescriptions on how big the sample size must be
before the approximation is good enough. Some econometricians think that n � 30 is
satisfactory, but this cannot be sufficient for all possible distributions of u. Depending
on the distribution of u, more observations may be necessary before the central limit
theorem takes effect. Further, the quality of the approximation depends not just on n,
but on the df, n � k � 1: with more independent variables in the model, a larger sam-
ple size is usually needed to use the t approximation. Methods for inference with small
degrees of freedom and nonnormal errors are outside the scope of this text. We will
simply use the t statistics as we always have without worrying about the normality
assumption.

It is very important to see that Theorem 5.2 does require the homoskedasticity
assumption (along with the zero conditional mean assumption). If Var(y�x) is not con-
stant, the usual t statistics and confidence intervals are invalid no matter how large the
sample size is; the central limit theorem does not bail us out when it comes to het-
eroskedasticity. For this reason, we devote all of Chapter 8 to discussing what can be
done in the presence of heteroskedasticity.

One conclusion of Theorem 5.2 is that �̂2 is a consistent estimator of �2; we already
know from Theorem 3.3 that �̂2 is unbiased for �2 under the Gauss-Markov assump-
tions. The consistency implies that �̂ is a consistent estimator of �, which is important
in establishing the asymptotic normality result in equation (5.7).
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Remember that �̂ appears in the standard error for each �̂j. In fact, the estimated
variance of �̂j is

Vâr (�̂j) � , (5.9)

where SSTj is the total sum of squares of xj in the sample, and R2
j is the R-squared from

regressing xj on all of the other independent variables. In Section 3.4, we studied each
component of (5.9), which we will now expound on in the context of asymptotic analy-
sis. As the sample size grows, �̂2 converges in probability to the constant �2. Further,
R2

j approaches a number strictly between zero and unity (so that 1 � R2
j converges to

some number between zero and one). The sample variance of xj is SSTj/n, and so SSTj/n
converges to Var(xj) as the sample size grows. This means that SSTj grows at approxi-
mately the same rate as the sample size: SSTj � n�2

j, where �2
j is the population vari-

ance of xj. When we combine these facts,
we find that Vâr(�̂j) shrinks to zero at the
rate of 1/n; this is why larger sample sizes
are better.

When u is not normally distributed, the
square root of (5.9) is sometimes called the
asymptotic standard error, and t statis-

tics are called asymptotic t statistics. Because these are the same quantities we dealt
with in Chapter 4, we will just call them standard errors and t statistics, with the under-
standing that sometimes they have only large sample justification.

Using the preceding argument about the estimated variance, we can write

se(�̂j) � cj/��n , (5.10)

where cj is a positive constant that does not depend on the sample size. Equation (5.10)
is only an approximation, but it is a useful rule of thumb: standard errors can be
expected to shrink at a rate that is the inverse of the square root of the sample size.

E X A M P L E  5 . 2
( S t a n d a r d  E r r o r s  i n  a  B i r t h  W e i g h t  E q u a t i o n )

We use the data in BWGHT.RAW to estimate a relationship where log of birth weight is
the dependent variable, and cigarettes smoked per day (cigs) and log of family income
log(faminc) are independent variables. The total number of observations is 1,388. Using the
first half of the observations (694), the standard error for �̂cigs is about .0013. The standard
error using all of the observations is about .00086. The ratio of the latter standard error to
the former is .00086/.0013 � .662. This is pretty close to ��694/��1,388� � .707, the ratio
obtained from the approximation in (5.10). In other words, equation (5.10) implies that the
standard error using the larger sample size should be about 70.7% of the standard error
using the smaller sample. This percentage is pretty close to the 66.2% we actually compute
from the ratio of the standard errors.

�̂2 

SSTj (1 � Rj
2)
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In a regression model with a large sample size, what is an approxi-
mate 95% confidence interval for �̂j under MLR.1 through MLR.5?
We call this an asymptotic confidence interval.
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The asymptotic normality of the OLS estimators also implies that the F statistics
have approximate F distributions in large sample sizes. Thus, for testing exclusion
restrictions or other multiple hypotheses, nothing changes from what we have done
before.

Other Large Sample Tests: The Lagrange Multiplier
Statistic

Once we enter the realm of asymptotic analysis, there are other test statistics that can
be used for hypothesis testing. For most purposes, there is little reason to go beyond the
usual t and F statistics: as we just saw, these statistics have large sample justification
without the normality assumption. Nevertheless, sometimes it is useful to have other
ways to test multiple exclusion restrictions, and we now cover the Lagrange multiplier
LM statistic, which has achieved some popularity in modern econometrics.

The name “Lagrange multiplier statistic” comes from constrained optimization, a
topic beyond the scope of this text. [See Davidson and MacKinnon (1993).] The name
score statistic—which also comes from optimization using calculus—is used as well.
Fortunately, in the linear regression framework, it is simple to motivate the LM statistic
without delving into complicated mathematics.

The form of the LM statistic we derive here relies on the Gauss-Markov assump-
tions, the same assumptions that justify the F statistic in large samples. We do not need
the normality assumption.

To derive the LM statistic, consider the usual multiple regression model with k inde-
pendent variables:

y � �0 � �1x1 � … � �kxk � u. (5.11)

We would like to test whether, say, the last q of these variables all have zero population
parameters: the null hypothesis is

H0: �k�q+1 � 0, …, �k � 0, (5.12)

which puts q exclusion restrictions on the model (5.11). As with F testing, the alterna-
tive to (5.12) is that at least one of the parameters is different from zero.

The LM statistic requires estimation of the restricted model only. Thus, assume that
we have run the regression

y � �̃0 � �̃1x1 � … � �̃k�qxk�q � ũ, (5.13)

where “~” indicates that the estimates are from the restricted model. In particular, ũ
indicates the residuals from the restricted model. (As always, this is just shorthand to
indicate that we obtain the restricted residual for each observation in the sample.)

If the omitted variables xk�q�1 through xk truly have zero population coefficients
then, at least approximately, ũ should be uncorrelated with each of these variables in
the sample. This suggests running a regression of these residuals on those independent
variables excluded under H0, which is almost what the LM test does. However, it turns
out that, to get a usable test statistic, we must include all of the independent variables
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in the regression (the reasons for this are technical and unimportant). Thus, we run the
regression

ũ on x1, x2, …, xk. (5.14)

This is an example of an auxiliary regression, a regression that is used to compute a
test statistic but whose coefficients are not of direct interest.

How can we use the regression output from (5.14) to test (5.12)? If (5.12) is true,
the R-squared from (5.14) should be “close” to zero, subject to sampling error, because
ũ will be approximately uncorrelated with all the independent variables. The question,
as always with hypothesis testing, is how to determine when the statistic is large enough
to reject the null hypothesis at a chosen significance level. It turns out that, under the
null hypothesis, the sample size multiplied by the usual R-squared from the auxiliary
regression (5.14) is distributed asymptotically as a chi-square random variable with q
degrees of freedom. This leads to a simple procedure for testing the joint significance
of a set of q independent variables.

THE LAGRANGE MULTIPLIER STATISTIC FOR q EXCLUSION RESTRICTIONS:

(i) Regress y on the restricted set of independent variables and save the residu-
als, ũ.

(ii) Regress ũ on all of the independent variables and obtain the R-squared, say R2
u

(to distinguish it from the R-squareds obtained with y as the dependent vari-
able).

(iii) Compute LM � nR2
u [the sample size times the R-squared obtained from step

(ii)].
(iv) Compare LM to the appropriate critical value, c, in a �2

q distribution; if LM 

c, the null hypothesis is rejected. Even better, obtain the p-value as the proba-
bility that a �2

q random variable exceeds the value of the test statistic. If the
p-value is less than the desired significance level, then H0 is rejected. If not, we
fail to reject H0. The rejection rule is essentially the same as for F testing.

Because of its form, the LM statistic is sometimes referred to as the n-R-squared
statistic. Unlike with the F statistic, the degrees of freedom in the unrestricted model
plays no role in carrying out the LM test. All that matters is the number of restrictions
being tested (q), the size of the auxiliary R-squared (R2

u), and the sample size (n). The
df in the unrestricted model plays no role because of the asymptotic nature of the LM
statistic. But we must be sure to multiply R2

u by the sample size to obtain LM; a seem-
ingly low value of the R-squared can still lead to joint significance if n is large.

Before giving an example, a word of caution is in order. If in step (i), we mistak-
enly regress y on all of the independent variables and obtain the residuals from this
unrestricted regression to be used in step (ii), we do not get an interesting statistic: the
resulting R-squared will be exactly zero! This is because OLS chooses the estimates so
that the residuals are uncorrelated in samples with all included independent variables
[see equations (3.13)]. Thus, we can only test (5.12) by regressing the restricted resid-
uals on all of the independent variables. (Regressing the restricted residuals on the
restricted set of independent variables will also produce R2 � 0.)
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E X A M P L E  5 . 3
( E c o n o m i c  M o d e l  o f  C r i m e )

We illustrate the LM test by using a slight extension of the crime model from Example 3.4:

narr86 � �0 � �1pcnv � �2avgsen � �3tottime � �4ptime86 � �5qemp86 � u,

where narr86 is the number of times a man was arrested, pcnv is the proportion of prior
arrests leading to conviction, avgsen is average sentence served from past convictions,
tottime is total time the man has spent in prison prior to 1986 since reaching the age of
18, ptime86 is months spent in prison in 1986, and qemp86 is number of quarters in 1986
during which the man was legally employed. We use the LM statistic to test the null hypoth-
esis that avgsen and tottime have no effect on narr86 once the other factors have been
controlled for.

In step (i), we estimate the restricted model by regressing narr86 on pcnv, ptime86, and
qemp86; the variables avgsen and tottime are excluded from this regression. We obtain the
residuals ũ from this regression, 2,725 of them. Next, we run the regression

ũ on pcnv, ptime86, qemp86, avgsen, and tottime; (5.15)

as always, the order in which we list the independent variables is irrelevant. This second
regression produces R2

u, which turns out to be about .0015. This may seem small, but we
must multiply it by n to get the LM statistic: LM � 2,725(.0015) � 4.09. The 10% critical
value in a chi-square distribution with two degrees of freedom is about 4.61 (rounded to
two decimal places; see Table G.4). Thus, we fail to reject the null hypothesis that �avgsen �

0 and �tottime � 0 at the 10% level. The p-value is P(�2
2 
 4.09) � .129, so we would reject

H0 at the 15% level.
As a comparison, the F test for joint significance of avgsen and tottime yields a p-value

of about .131, which is pretty close to that obtained using the LM statistic. This is not sur-
prising since, asymptotically, the two statistics have the same probability of Type I error.
(That is, they reject the null hypothesis with the same frequency when the null is true.)

As the previous example suggests, with a large sample, we rarely see important dis-
crepancies between the outcomes of LM and F tests. We will use the F statistic for the
most part because it is computed routinely by most regression packages. But you should
be aware of the LM statistic as it is used in applied work.

One final comment on the LM statistic. As with the F statistic, we must be sure to
use the same observations in steps (i) and (ii). If data are missing for some of the inde-
pendent variables that are excluded under the null hypothesis, the residuals from step
(i) should be obtained from a regression on the reduced data set.

5.3 ASYMPTOTIC EFFICIENCY OF OLS

We know that, under the Gauss-Markov assumptions, the OLS estimators are best lin-
ear unbiased. OLS is also asymptotically efficient among a certain class of estimators
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under the Gauss-Markov assumptions. A general treatment is difficult [see Wooldridge
(1999, Chapter 4)]. For now, we describe the result in the simple regression case.

In the model

y � �0 � �1x � u, (5.16)

u has a zero conditional mean under MLR.3: E(u�x) � 0. This opens up a variety of con-
sistent estimators for �0 and �1; as usual, we focus on the slope parameter, �1. Let g(x)
be any function of x; for example, g(x) � x2 or g(x) � 1/(1 � �x�). Then u is uncorre-
lated with g(x) (see Property CE.5 in Appendix B). Let zi � g(xi) for all observations i.
Then the estimator

�̃1 � ��
n

i�1
(zi � z̄)yi����

n

i�1
(zi � z̄)xi� (5.17)

is consistent for �1, provided g(x) and x are correlated. (Remember, it is possible that
g(x) and x are uncorrelated because correlation measures linear dependence.) To see
this, we can plug in yi � �0 � �1xi � ui and write �̃1 as

�̃1 � �1 � �n�1 �
n

i�1
(zi � z̄)ui���n�1 �

n

i�1
(zi � z̄)xi�. (5.18)

Now, we can apply the law of large numbers to the numerator and denominator,
which converge in probability to Cov(z,u) and Cov(z,x), respectively. Provided that
Cov(z,x) � 0—so that z and x are correlated—we have

plim �̃1 � �1 � Cov(z,u)/Cov(z,x) � �1,

because Cov(z,u) � 0 under MLR.3.
It is more difficult to show that �̃1 is asymptotically normal. Nevertheless, using

arguments similar to those in the appendix, it can be shown that ��n (�̃1 � �1) is asymp-
totically normal with mean zero and asymptotic variance �2Var(z)/[Cov(z,x)]2. The
asymptotic variance of the OLS estimator is obtained when z � x, in which case,
Cov(z,x) � Cov(x,x) � Var(x). Therefore, the asymptotic variance of ��n (�̃1 � �1),
where �̂1 is the OLS estimator, is �2Var(x)/[Var(x)]2 � �2/Var(x). Now, the Cauchy-
Schwartz inequality (see Appendix B.4) implies that [Cov(z,x)]2 
 Var(z)Var(x), which
implies that the asymptotic variance of ��n (�̂1 � �1) is no larger than that of
��n (�̃1 � �1). We have shown in the simple regression case that, under the Gauss-
Markov assumptions, the OLS estimator has a smaller asymptotic variance than any
estimator of the form (5.17). [The estimator in (5.17) is an example of an instrumental
variables estimator, which we will study extensively in Chapter 15.] If the homo-
skedasticity assumption fails, then there are estimators of the form (5.17) that have a
smaller asymptotic variance than OLS. We will see this in Chapter 8.

The general case is similar but much more difficult mathematically. In the k regres-
sor case, the class of consistent estimators is obtained by generalizing the OLS first
order conditions:
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�
n

i�1
gj(xi)(yi � �̃0 � �̃1xi1 � … � �̃kxik) � 0, j � 0,1, …, k, (5.19)

where gj(xi) denotes any function of all explanatory variables for observation i. As can
be seen by comparing (5.19) with the OLS first order conditions (3.13), we obtain the
OLS estimators when g0(xi) � 1 and gj(xi) � xij for j � 1,2, …, k. The class of estima-
tors in (5.19) is infinite, because we can use any functions of the xij that we want.

T H E O R E M  5 . 3  ( A S Y M P T O T I C  E F F I C I E N C Y  O F O L S )

Under the Gauss-Markov assumptions, let �̃j denote estimators that solve equations of the
form (5.19) and let �̂j denote the OLS estimators. Then for j � 0,1,2, …, k, the OLS esti-
mators have the smallest asymptotic variances: Avar ��n (�̂j � �j) 
 Avar ��n (�̃j � �j).

Proving consistency of the estimators in (5.19), let alone showing they are asymptoti-
cally normal, is mathematically difficult. [See Wooldridge (1999, Chapter 5).]

SUMMARY

The claims underlying the material in this chapter are fairly technical, but their practi-
cal implications are straightforward. We have shown that the first four Gauss-Markov
assumptions imply that OLS is consistent. Furthermore, all of the methods of testing
and constructing confidence intervals that we learned in Chapter 4 are approximately
valid without assuming that the errors are drawn from a normal distribution (equiva-
lently, the distribution of y given the explanatory variables is not normal). This means
that we can apply OLS and use previous methods for an array of applications where the
dependent variable is not even approximately normally distributed. We also showed that
the LM statistic can be used instead of the F statistic for testing exclusion restrictions.

Before leaving this chapter, we should note that examples such as Example 5.3 may
very well have problems that do require special attention. For a variable such as narr86,
which is zero or one for most men in the population, a linear model may not be able to
adequately capture the functional relationship between narr86 and the explanatory vari-
ables. Moreover, even if a linear model does describe the expected value of arrests, het-
eroskedasticity might be a problem. Problems such as these are not mitigated as the
sample size grows, and we will return to them in later chapters.

KEY TERMS
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PROBLEMS

5.1 In the simple regression model under MLR.1 through MLR.4, we argued that the
slope estimator, �̂1, is consistent for �1. Using �̂0 � ȳ � �̂1x̄1, show that plim �̂0 � �0.
[You need to use the consistency of �̂1 and the law of large numbers, along with the fact
that �0 � E(y) � �1(x1).]

5.2 Suppose that the model

pctstck � �0 � �1funds � �2risktol � u

satisfies the first four Gauss-Markov assumptions, where pctstck is the percentage of a
worker’s pension invested in the stock market, funds is the number of mutual funds that
the worker can choose from, and risktol is some measure of risk tolerance (larger risk-
tol means the person has a higher tolerance for risk). If funds and risktol are positively
correlated, what is the inconsistency in �̃1, the slope coefficient in the simple regression
of pctstck on funds?

5.3 The data set SMOKE.RAW contains information on smoking behavior and other
variables for a random sample of single adults from the United States. The variable cigs
is the (average) number of cigarettes smoked per day. Do you think cigs has a normal
distribution in the U.S. population? Explain.

5.4 In the simple regression model (5.16), under the first four Gauss-Markov assump-
tions, we showed that estimators of the form (5.17) are consistent for the slope, �1.
Given such an estimator, define an estimator of �0 by �̃0 � ȳ � �̃1x̄. Show that plim
�̃0 � �0.

COMPUTER EXERCISES

5.5 Use the data in WAGE1.RAW for this exercise.
(i) Estimate the equation

wage � �0 � �1educ � �2exper � �3tenure � u.

Save the residuals and plot a histogram.
(ii) Repeat part (i), but with log(wage) as the dependent variable.
(iii) Would you say that Assumption MLR.6 is closer to being satisfied for

the level-level model or the log-level model?

5.6 Use the data in GPA2.RAW for this exercise.
(i) Using all 4,137 observations, estimate the equation

colgpa � �0 � �1hsperc � �2sat � u

and report the results in standard form.
(ii) Reestimate the equation in part (i), using the first 2,070 observations.
(iii) Find the ratio of the standard errors on hsperc from parts (i) and (ii).

Compare this with the result from (5.10).

5.7 In equation (4.42) of Chapter 4, compute the LM statistic for testing whether
motheduc and fatheduc are jointly significant. In obtaining the residuals for the
restricted model, be sure that the restricted model is estimated using only those obser-
vations for which all variables in the unrestricted model are available (see Example 4.9).
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A P P E N D I X  5 A

We sketch a proof of the asymptotic normality of OLS (Theorem 5.2[i]) in the simple
regression case. Write the simple regression model as in equation (5.16). Then, by the
usual algebra of simple regression we can write

��n (�̂1 � �1) � (1/sx
2)[n�1/ 2 �

n

i�1
(xi � x̄)ui],

where we use sx
2 to denote the sample variance of {xi: i � 1,2, …, n}. By the law of

large numbers (see Appendix C), sx
2
*
p �x

2 � Var(x). Assumption MLR.4 rules out no
perfect collinearity, which means that Var(x) 
 0 (xi varies in the sample, and therefore

x is not constant in the population). Next, n�1/2 �
n

i�1
(xi � x̄)ui � n�1/2 �

n

i�1
(xi � �)ui �

(� � x̄)[n�1/2 �
n

i�1
ui], where � � E(x) is the population mean of x. Now {ui} is a se-

quence of i.i.d. random variables with mean zero and variance �2, and so n�1/2 �
n

i�1
ui

converges to the Normal(0,�2) distribution as n * �; this is just the central limit the-
orem from Appendix C. By the law of large numbers, plim(� � x̄) � 0. A standard
result in asymptotic theory is that if plim(wn) � 0 and zn has an asymptotic normal dis-
tribution, then plim(wnzn) � 0. [See Wooldridge (1999, Chapter 3) for more discussion.]

This implies that (� � x̄)[n�1/2 �
n

i�1
ui] has zero plim. Next, {(xi � �)ui: i � 1,2,…} is

a sequence of i.i.d. random variables with mean zero—because u and x are uncorrelated
under Assumption MLR.3—and variance �2�2

x by the homoskedasticity Assumption

MLR.5. Therefore, n�1/2 �
n

i�1
(xi � �)ui has an asymptotic Normal(0,�2�2

x) distribution.

We just showed that the difference between n�1/2 �
n

i�1
(xi � x̄)ui and n�1/2 �

n

i�1
(xi � �)ui

has zero plim. A result in asymptotic theory is that if zn has an asymptotic normal dis-
tribution and plim(vn � zn) � 0, then vn has the same asymptotic normal distribution as

zn. It follows that n�1/2 �
n

i�1
(xi � x̄)ui also has an asymptotic Normal(0,�2�2

x) distribu-

tion. Putting all of the pieces together gives

��n (�̂1 � �1) � (1/�x
2)[n�1/2 �

n

i�1
(xi � x̄)ui]

� [(1/sx
2) � (1/�x

2)[n�1/2 �
n

i�1
(xi � x̄)ui],

and since plim(1/sx
2) � 1/�x

2, the second term has zero plim. Therefore, the asymptotic
distribution of ��n (�̂1 � �1) is Normal(0,{�2�2

x}/{�x
2}2) � Normal(0,�2/�2

x). This
completes the proof in the simple regression case, as a1

2 � �x
2 in this case. See

Wooldridge (1999, Chapter 4) for the general case.
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This chapter brings together several issues in multiple regression analysis that we
could not conveniently cover in earlier chapters. These topics are not as funda-
mental as the material in Chapters 3 and 4, but they are important for applying

multiple regression to a broad range of empirical problems.

6.1 EFFECTS OF DATA SCALING ON OLS STATISTICS

In Chapter 2 on bivariate regression, we briefly discussed the effects of changing the
units of measurement on the OLS intercept and slope estimates. We also showed that
changing the units of measurement did not affect R-squared. We now return to the issue
of data scaling and examine the effects of rescaling the dependent or independent vari-
ables on standard errors, t statistics, F statistics, and confidence intervals.

We will discover that everything we expect to happen, does happen. When variables
are rescaled, the coefficients, standard errors, confidence intervals, t statistics, and F
statistics change in ways that preserve all measured effects and testing outcomes. While
this is no great surprise—in fact, we would be very worried if it were not the case—it
is useful to see what occurs explicitly. Often, data scaling is used for cosmetic purposes,
such as to reduce the number of zeros after a decimal point in an estimated coefficient.
By judiciously choosing units of measurement, we can improve the appearance of an
estimated equation while changing nothing that is essential.

We could treat this problem in a general way, but it is much better illustrated with
examples. Likewise, there is little value here in introducing an abstract notation.

We begin with an equation relating infant birth weight to cigarette smoking and
family income:

bwĝht � �̂0 � �̂1cigs � �̂2 faminc, (6.1)

where bwght is child birth weight, in ounces, cigs is number of cigarettes smoked by
the mother while pregnant, per day, and faminc is annual family income, in thousands
of dollars. The estimates of this equation, obtained using the data in BWGHT.RAW, are
given in the first column of Table 6.1. Standard errors are listed in parentheses. The esti-
mate on cigs says that if a woman smoked 5 more cigarettes per day, birth weight is pre-
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dicted to be about .4634(5) � 2.317 ounces less. The t statistic on cigs is �5.03, so the
variable is very statistically significant.

Now, suppose that we decide to measure birth weight in pounds, rather than in
ounces. Let bwghtlbs � bwght/16 be birth weight in pounds. What happens to our OLS
statistics if we use this as the dependent variable in our equation? It is easy to find the
effect on the coefficient estimates by simple manipulation of equation (6.1). Divide this
entire equation by 16:

bwĝht/16 � �̂0/16 � (�̂1/16)cigs � (�̂2/16)faminc.

Since the left hand side is birth weight in pounds, it follows that each new coefficient
will be the corresponding old coefficient divided by 16. To verify this, the regression of
bwghtlbs on cigs, and faminc is reported in column (2) of Table 6.1. Up to four digits,
the intercept and slopes in column (2) are just those in column (1) divided by 16. For
example, the coefficient on cigs is now �.0289; this means that if cigs were higher by
five, birth weight would be .0289(5) � .1445 pounds lower. In terms of ounces, we have
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Table 6.1

Effects of Data Scaling

(1) (2) (3)
Dependent Variable bwght bwghtlbs bwght

Independent Variables

cigs �.4634 �.0289 —
(.0916) (.0057)

packs — — �9.268
(1.832)

faminc .0927 .0058 .0927
(.0292) (.0018) (.0292)

intercept 116.974 7.3109 116.974
(1.049) (0.0656) (1.049)

Observations: 1,388 1,388 1,388

R-squared: .0298 .0298 .0298

SSR: 557,485.51 2,177.6778 557,485.51

SER: 20.063 1.2539 20.063
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.1445(16) � 2.312, which is slightly different from the 2.32 we obtained earlier due to
rounding error. The point is, once the effects are transformed into the same units, we
get exactly the same answer, regardless of how the dependent variable is measured.

What about statistical significance? As we expect, changing the dependent variable
from ounces to pounds has no effect on how statistically important the independent
variables are. The standard errors in column (2) are 16 times smaller than those in col-
umn (1). A few quick calculations show that the t statistics in column (2) are indeed
identical to the t statistics in column (2). The endpoints for the confidence intervals in
column (2) are just the endpoints in column (1) divided by 16. This is because the CIs
change by the same factor as the standard errors. [Remember that the 95% CI here is
�̂j � 1.96 se(�̂j).]

In terms of goodness-of-fit, the R-squareds from the two regressions are identical,
as should be the case. Notice that the sum of squared residuals, SSR, and the standard
error of the regression, SER, do differ across equations. These differences are easily
explained. Let ûi denote the residual for observation i in the original equation (6.1).
Then the residual when bwghtlbs is the dependent variable is simply ûi/16. Thus, the
squared residual in the second equation is (ûi/16)2 � ûi

2/256. This is why the sum of
squared residuals in column (2) is equal to the SSR in column (1) divided by 256.

Since SER � �̂ � ��S�S�R/�(n �� �k �� �1) � ��S�S�R/�1,�3�8�5, the SER in column (2) is
16 times smaller than that in column (1). Another way to think about this is that the
error in the equation with bwghtlbs as the dependent variable has a standard deviation
16 times smaller than the standard deviation of the original error. This does not mean
that we have reduced the error by changing how birth weight is measured; the smaller
SER simply reflects a difference in units of measurement.

Next, let us return the dependent variable to its original units: bwght is measured in
ounces. Instead, let us change the unit of measurement of one of the independent vari-
ables, cigs. Define packs to be the number of packs of cigarettes smoked per day. Thus,
packs � cigs/20. What happens to the coefficients and other OLS statistics now? Well,
we can write

bwĝht � �̂0 � (20�̂1)(cigs/20) � �̂2 faminc � �̂0 � (20�̂1)packs � �̂2 faminc.

Thus, the intercept and slope coefficient on faminc are unchanged, but the coefficient
on packs is 20 times that on cigs. This is intuitively appealing. The results from the
regression of bwght on packs and faminc are in column (3) of Table 6.1. Incidentally,

remember that it would make no sense to
include both cigs and packs in the same
equation; this would induce perfect multi-
collinearity and would have no interesting
meaning.

Other than the coefficient on packs,
there is one other statistic in column (3)
that differs from that in column (1): the
standard error on packs is 20 times larger

than that on cigs in column (1). This means that the t statistic for testing the significance
of cigarette smoking is the same whether we measure smoking in terms of cigarettes or
packs. This is only natural.
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Q U E S T I O N  6 . 1

In the original birth weight equation (6.1), suppose that faminc is
measured in dollars rather than in thousands of dollars. Thus, define
the variable fincdol � 1,000�faminc. How will the OLS statistics
change when fincdol is substituted for faminc? For the purposes of
presenting the regression results, do you think it is better to measure
income in dollars or in thousands of dollars?
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The previous example spells out most of the possibilities that arise when the depen-
dent and independent variables are rescaled. Rescaling is often done with dollar
amounts in economics, especially when the dollar amounts are very large.

In Chapter 2 we argued that, if the dependent variable appears in logarithmic form,
changing the units of measurement does not affect the slope coefficient. The same is
true here: changing the units of measurement of the dependent variable, when it appears
in logarithmic form, does not affect any of the slope estimates. This follows from the
simple fact that log(c1yi) � log(c1) � log(yi) for any constant c1 � 0. The new intercept
will be log(c1) � �̂0. Similarly, changing the units of measurement of any xj, where
log(xj) appears in the regression, only affects the intercept. This corresponds to what we
know about percentage changes and, in particular, elasticities: they are invariant to the
units of measurement of either y or the xj. For example, if we had specified the depen-
dent variable in (6.1) to be log(bwght), estimated the equation, and then reestimated it
with log(bwghtlbs) as the dependent variable, the coefficients on cigs and faminc would
be the same in both regressions; only the intercept would be different.

Beta Coefficients

Sometimes in econometric applications, a key variable is measured on a scale that is
difficult to interpret. Labor economists often include test scores in wage equations, and
the scale on which these tests are scored is often arbitrary and not easy to interpret (at
least for economists!). In almost all cases, we are interested in how a particular indi-
vidual’s score compares with the population. Thus, instead of asking about the effect on
hourly wage if, say, a test score is 10 points higher, it makes more sense to ask what
happens when the test score is one standard deviation higher.

Nothing prevents us from seeing what happens to the dependent variable when an
independent variable in an estimated model increases by a certain number of standard
deviations, assuming that we have obtained the sample standard deviation (which is
easy in most regression packages). This is often a good idea. So, for example, when we
look at the effect of a standardized test score, such as the SAT score, on college GPA,
we can find the standard deviation of SAT and see what happens when the SAT score
increases by one or two standard deviations.

Sometimes it is useful to obtain regression results when all variables involved, the
dependent as well as all the independent variables, have been standardized. A variable
is standardized in the sample by subtracting off its mean and dividing by its standard
deviation (see Appendix C). This means that we compute the z-score for every variable
in the sample. Then, we run a regression using the z-scores.

Why is standardization useful? It is easiest to start with the original OLS equation,
with the variables in their original forms:

yi � �̂0 � �̂1xi1 � �̂2xi2 � … � �̂kxik � ûi. (6.2)

We have included the observation subscript i to emphasize that our standardization is
applied to all sample values. Now, if we average (6.2), use the fact that the ûi have a zero
sample average, and subtract the result from (6.2), we get

yi � ȳ � �̂1(xi1 � x̄1) � �̂2(xi2 � x̄2) � … � �̂k(xik � x̄k) � ûi.
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Now, let �̂y be the sample standard deviation for the dependent variable, let �̂1 be the
sample sd for x1, let �̂2 be the sample sd for x2, and so on. Then, simple algebra gives
the equation

(yi � ȳ )/�̂y � (�̂1/�̂y)�̂1[(xi1 � x̄1)/�̂1] � …

� (�̂k/�̂y)�̂k[(xik � x̄k)/�̂k] � (ûi/�̂y).
(6.3)

Each variable in (6.3) has been standardized by replacing it with its z-score, and this has
resulted in new slope coefficients. For example, the slope coefficient on (xi1 � x̄1)/�̂1 is
(�̂1/�̂y)�̂1. This is simply the original coefficient, �̂1, multiplied by the ratio of the stan-
dard deviation of x1 to the standard deviation of y. The intercept has dropped out alto-
gether.

It is useful to rewrite (6.3), dropping the i subscript as

zy � b̂1z1 � b̂2z2 … � b̂kzk � error, (6.4)

where zy denotes the z-score of y, z1 is the z-score of x1, and so on. The new coefficients
are

b̂j � (�̂j/�̂y)�̂j for j � 1,…,k. (6.5)

These b̂j are traditionally called standardized coefficients or beta coefficients. (The
latter name is more common, which is unfortunate since we have been using beta hat to
denote the usual OLS estimates.)

Beta coefficients receive their interesting meaning from equation (6.4): If x1

increases by one standard deviation, then ŷ changes by b̂1 standard deviations. Thus, we
are measuring effects not in terms of the original units of y or the xj, but in standard
deviation units. Because it makes the scale of the regressors irrelevant, this equation
puts the explanatory variables on equal footing. In a standard OLS equation, it is not
possible to simply look at the size of different coefficients and conclude that the
explanatory variable with the largest coefficient is “the most important.” We just saw
that the magnitudes of coefficients can be changed at will by changing the units of mea-
surement of the xj. But, when each xj has been standardized, comparing the magnitudes
of the resulting beta coefficients is more compelling.

To obtain the beta coefficients, we can always standardize y, x1,…, xk, and then run
the OLS regression of the z-score of y on the z-scores of x1,…, xk—where it is not nec-
essary to include an intercept, as it will be zero. This can be tedious with many inde-
pendent variables. Some regression packages provide beta coefficients via a simple
command. The following example illustrates the use of beta coefficients.

E X A M P L E  6 . 1
( E f f e c t s  o f  P o l l u t i o n  o n  H o u s i n g  P r i c e s )

We use the data from Example 4.5 (in the file HPRICE2.RAW) to illustrate the use of beta
coefficients. Recall that the key independent variable is nox, a measure of the nitrogen
oxide in the air over each community. One way to understand the size of the pollution
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effect—without getting into the science underlying nitrogen oxide’s effect on air quality—
is to compute beta coefficients. (An alternative approach is contained in Example 4.5: we
obtained a price elasticity with respect to nox by using price and nox in logarithmic form.)

The population equation is the level-level model

price � �0 � �1nox � �2crime � �3rooms � �4dist � �5stratio � u,

where all the variables except crime were defined in Example 4.5; crime is the number of
reported crimes per capita. The beta coefficients are reported in the following equation (so
each variable has been converted to its z-score):

zprîce � �.340 znox � .143 zcrime � .514 zrooms � .235 zdist � .270 zstratio.

This equation shows that a one standard deviation increase in nox decreases price by .34
standard deviations; a one standard deviation increase in crime reduces price by .14 stan-
dard deviation. Thus, the same relative movement of pollution in the population has a
larger effect on housing prices than crime does. Size of the house, as measured by number
of rooms (rooms), has the largest standardized effect. If we want to know the effects of
each independent variable on the dollar value of median house price, we should use the
unstandardized variables.

6.2 MORE ON FUNCTIONAL FORM

In several previous examples, we have encountered the most popular device in econo-
metrics for allowing nonlinear relationships between the explained and explanatory
variables: using logarithms for the dependent or independent variables. We have also
seen models containing quadratics in some explanatory variables, but we have yet to
provide a systematic treatment of them. In this section, we cover some variations and
extensions on functional forms that often arise in applied work.

More on Using Logarithmic Functional Forms

We begin by reviewing how to interpret the parameters in the model

log(price) � �0 � �1log(nox) � �2rooms � u, (6.6)

where these variables are taken from Example 4.5. Recall that throughout the text log(x)
is the natural log of x. The coefficient �1 is the elasticity of price with respect to nox
(pollution). The coefficient �2 is the change in log(price), when 
rooms � 1; as we
have seen many times, when multiplied by 100, this is the approximate percentage
change in price. Recall that 100��2 is sometimes called the semi-elasticity of price with
respect to rooms.

When estimated using the data in HPRICE2.RAW, we obtain

log(prîce) � (9.23) � (.718) log(nox) � (.306) rooms

log(prîce) � (0.19) � (.066) log(nox) � (.019) rooms

n � 506, R2 � .514.

(6.7)
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Thus, when nox increases by 1%, price falls by .718%, holding only rooms fixed. When
rooms increases by one, price increases by approximately 100(.306) � 30.6%.

The estimate that one more room increases price by about 30.6% turns out to be
somewhat inaccurate for this application. The approximation error occurs because, as
the change in log(y) becomes larger and larger, the approximation %
y � 100�
log(y)
becomes more and more inaccurate. Fortunately, a simple calculation is available to
compute the exact percentage change.

To describe the procedure, we consider the general estimated model

lôg(y) � �̂0 � �̂1log(x1) � �̂2x2.

(Adding additional independent variables does not change the procedure.) Now, fixing
x1, we have 
lôg(y) � �̂2
x2. Using simple algebraic properties of the exponential and
logarithmic functions gives the exact percentage change in the predicted y as

%
̂y � 100�[exp(�̂2
x2) � 1], (6.8)

where the multiplication by 100 turns the proportionate change into a percentage
change. When 
x2 � 1,

%
̂y � 100�[exp(�̂2) � 1]. (6.9)

Applied to the housing price example with x2 � rooms and �̂2 � .306, %
prîce �
100[exp(.306) � 1] � 35.8%, which is notably larger than the approximate percentage
change, 30.6%, obtained directly from (6.7). {Incidentally, this is not an unbiased esti-
mator because exp(�) is a nonlinear function; it is, however, a consistent estimator of
100[exp(�2) � 1]. This is because the probability limit passes through continuous func-
tions, while the expected value operator does not. See Appendix C.}

The adjustment in equation (6.8) is not as crucial for small percentage changes. For
example, when we include the student-teacher ratio in equation (6.7), its estimated
coefficient is �.052, which means that if stratio increases by one, price decreases by
approximately 5.2%. The exact proportionate change is exp(�.052) � 1 � �.051, or
�5.1%. On the other hand, if we increase stratio by five, then the approximate per-
centage change in price is �26%, while the exact change obtained from equation (6.8)
is 100[exp(�.26) � 1] � �22.9%.

We have seen that using natural logs leads to coefficients with appealing interpreta-
tions, and we can be ignorant about the units of measurement of variables appearing in
logarithmic form because the slope coefficients are invariant to rescalings. There are
several other reasons logs are used so much in applied work. First, when y � 0, mod-
els using log(y) as the dependent variable often satisfy the CLM assumptions more
closely than models using the level of y. Strictly positive variables often have condi-
tional distributions that are heteroskedastic or skewed; taking the log can mitigate, if not
eliminate, both problems.

Moreover, taking logs usually narrows the range of the variable, in some cases by a
considerable amount. This makes estimates less sensitive to outlying (or extreme)
observations on the dependent or independent variables. We take up the issue of outly-
ing observations in Chapter 9.
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There are some standard rules of thumb for taking logs, although none is written in
stone. When a variable is a positive dollar amount, the log is often taken. We have seen
this for variables such as wages, salaries, firm sales, and firm market value. Variables
such as population, total number of employees, and school enrollment often appear in
logarithmic form; these have the common feature of being large integer values.

Variables that are measured in years—such as education, experience, tenure, age,
and so on—usually appear in their original form. A variable that is a proportion or a per-
cent—such as the unemployment rate, the participation rate in a pension plan, the per-
centage of students passing a standardized exam, the arrest rate on reported crimes—can
appear in either original or logarithmic form, although there is a tendency to use them
in level forms. This is because any regression coefficients involving the original vari-
able—whether it is the dependent or independent variable—will have a percentage
point change interpretation. (See Appendix A for a review of the distinction between a
percentage change and a percentage point change.) If we use, say, log(unem) in a regres-
sion, where unem is the percent of unemployed individuals, we must be very careful to
distinguish between a percentage point change and a percentage change. Remember, if
unem goes from 8 to 9, this is an increase of one percentage point, but a 12.5% increase

from the initial unemployment level. Using
the log means that we are looking at the
percentage change in the unemployment
rate: log(9) � log(8) � .118 or 11.8%,
which is the logarithmic approximation to
the actual 12.5% increase.

One limitation of the log is that it can-
not be used if a variable takes on zero or
negative values. In cases where a variable
y is nonnegative but can take on the value
0, log(1 � y) is sometimes used. The per-
centage change interpretations are often

closely preserved, except for changes beginning at y � 0 (where the percentage change
is not even defined). Generally, using log(1 � y) and then interpreting the estimates as
if the variable were log(y) is acceptable when the data on y are not dominated by zeros.
An example might be where y is hours of training per employee for the population of
manufacturing firms, if a large fraction of firms provide training to at least one worker.

One drawback to using a dependent variable in logarithmic form is that it is more
difficult to predict the original variable. The original model allows us to predict log(y),
not y. Nevertheless, it is fairly easy to turn a prediction for log(y) into a prediction for
y (see Section 6.4). A related point is that it is not legitimate to compare R-squareds
from models where y is the dependent variable in one case and log(y) is the dependent
variable in the other. These measures explained variations in different variables. We dis-
cuss how to compute comparable goodness-of-fit measures in Section 6.4.

Models with Quadratics

Quadratic functions are also used quite often in applied economics to capture decreas-
ing or increasing marginal effects. You may want to review properties of quadratic func-
tions in Appendix A.
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Q U E S T I O N  6 . 2

Suppose that the annual number of drunk driving arrests is deter-
mined by

log(arrests) � �0 � �1log(pop) � �2age16_25
� other factors,

where age16_25 is the proportion of the population between 16 and
25 years of age. Show that �2 has the following (ceteris paribus) inter-
pretation: it is the percentage change in arrests when the percentage
of the people aged 16 to 25 increases by one percentage point.
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In the simplest case, y depends on a single observed factor x, but it does so in a qua-
dratic fashion:

y � �0 � �1x � �2x
2 � u.

For example, take y � wage and x � exper. As we discussed in Chapter 3, this model
falls outside of simple regression analysis but is easily handled with multiple regres-
sion.

It is important to remember that �1 does not measure the change in y with respect
to x; it makes no sense to hold x2 fixed while changing x. If we write the estimated equa-
tion as

ŷ � �̂0 � �̂1x � �̂2x
2 (6.10)

then we have the approximation


ŷ � (�̂1 � 2�̂2x)
x, so 
ŷ/
x � �̂1 � 2�̂2x. (6.11)

This says that the slope of the relationship between x and y depends on the value of x;
the estimated slope is �̂1 � 2�̂2x. If we plug in x � 0, we see that �̂1 can be interpreted
as the approximate slope in going from x � 0 to x � 1. After that, the second term, 2�̂2x,
must be accounted for.

If we are only interested in computing the predicted change in y given a starting
value for x and a change in x, we could use (6.10) directly: there is no reason to use the
calculus approximation at all. However, we are usually more interested in quickly sum-
marizing the effect of x on y, and the interpretation of �̂1 and �̂2 in equation (6.11) pro-
vides that summary. Typically, we might plug the average value of x in the sample,
or some other interesting values, such as the median or the lower and upper quartile
values.

In many applications, �̂1 is positive, and �̂2 is negative. For example, using the wage
data in WAGE1.RAW, we obtain

waĝe � (3.73) � (.298) exper � (.0061) exper2

waĝe � (0.35) � (.041) exper � (.0009) exper2

n � 526, R2 � .093.

(6.12)

This estimated equation implies that exper has a diminishing effect on wage. The first
year of experience is worth roughly 30 cents per hour (.298 dollars). The second year
of experience is worth less [about .298 � 2(.0061)(1) � .286, or 28.6 cents, according
the approximation in (6.11) with x � 1]. In going from 10 to 11 years of experience,
wage is predicted to increase by about .298 � 2(.0061)(10) � .176, or 17.6 cents. And
so on.

When the coefficient on x is positive, and the coefficient on x2 is negative, the qua-
dratic has a  parabolic shape. There is always a positive value of x, where the effect
of x on y is zero; before this point, x has a positive effect on y; after this point, x has
a negative effect on y. In practice, it can be important to know where this turning
point is.
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F i g u r e  6 . 1

Quadratic relationship between wage and exper.

In the estimated equation (6.10) with �̂1 � 0 and �̂2 � 0, the turning point (or max-
imum of the function) is always achieved at the coefficient on x over twice the absolute
value of the coefficient on x2:

x* � ��̂1/(2�̂2)�. (6.13)

In the wage example, x* � exper* is .298/[2(.0061)] � 24.4. (Note how we just drop the
minus sign on �.0061 in doing this calculation.) This quadratic relationship is illus-
trated in Figure 6.1.

In the wage equation (6.12), the return to experience becomes zero at about 24.4
years. What should we make of this? There are at least three possible explanations.
First, it may be that few people in the sample have more than 24 years of experience,
and so the part of the curve to the right of 24 can be ignored. The cost of using a qua-
dratic to capture diminishing effects is that the quadratic must eventually turn around.
If this point is beyond all but a small percentage of the people in the sample, then this
is not of much concern. But in the data set WAGE1.RAW, about 28% of the people in
the sample have more than 24 years of experience; this is too high a percentage to
ignore.

It is possible that the return to exper really become negative at some point, but it
is hard to believe that this happens at 24 years of experience. A more likely possibil-
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ity is that the estimated effect of exper on wage is biased, because we have controlled
for no other factors, or because the functional relationship between wage and exper in
equation (6.12) is not entirely correct. Problem 6.9 asks you to explore this possibil-
ity by controlling for education, in addition to using log(wage) as the dependent vari-
able.

When a model has a dependent variable in logarthmic form and an explanatory vari-
able entering as a quadratic, some care is needed in making a useful interpretation. The
following example also shows the quadratic can have a U-shape, rather than a parabolic
shape. A U-shape arises in the equation (6.10) when �̂1 is negative and �̂2 is positive;
this captures an increasing effect of x on y.

E X A M P L E  6 . 2
( E f f e c t s  o f  P o l l u t i o n  o n  H o u s i n g  P r i c e s )

We modify the housing price model from Example 4.5 to include a quadratic term in rooms:

log(price) � �0 � �1log(nox) � �2log(dist) � �3rooms 

� �4rooms2 � �5stratio � u. (6.14)

The model estimated using the data in HPRICE2.RAW is

log(priĉe) � (13.39) � (.902) log(nox) � (.087) log(dist)
log(prîce) � (0.57) � (.115) log(nox) � (.043) log(dist)

� (.545) rooms � (.062) rooms2 � (.048) stratio
� (.165) rooms � (.013) rooms2 � (.006) stratio

n � 506, R2 � .603.

The quadratic term rooms2 has a t statistic of about 4.77, and so it is very statistically sig-
nificant. But what about interpreting the effect of rooms on log(price)? Initially, the effect
appears to be strange. Since the coefficient on rooms is negative and the coefficient on
rooms2 is positive, this equation literally implies that, at low values of rooms, an additional
room has a negative effect on log(price). At some point, the effect becomes positive, and
the quadratic shape means that the semi-elasticity of price with respect to rooms is increas-
ing as rooms increases. This situation is shown in Figure 6.2.

We obtain the turnaround value of rooms using equation (6.13) (even though �̂1 is neg-
ative and �̂2 is positive). The absolute value of the coefficient on rooms, .545, divided by
twice the coefficient on rooms2, .062, gives rooms* � .545/[2(.062)] � 4.4; this point is
labeled in Figure 6.2.

Do we really believe that starting at three rooms and increasing to four rooms actually
reduces a house’s expected value? Probably not. It turns out that only five of the 506 com-
munities in the sample have houses averaging 4.4 rooms or less, about 1% of the sample.
This is so small that the quadratic to the left of 4.4 can, for practical purposes, be ignored.
To the right of 4.4, we see that adding another room has an increasing effect on the per-
centage change in price:


log(̂price) � {[�.545 � 2(.062)]rooms}
rooms
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and so

%
p̂rice � 100{[�.545 � 2(.062)]rooms}
rooms

� (�54.5 � 12.4 rooms)
rooms.

Thus, an increase in rooms from, say, five to six increases price by about �54.5 � 12.4(5)
� 7.5%; the increase from six to seven increases price by roughly �54.5 � 12.4(6) �

19.9%. This is a very strong increasing effect.

There are many other possibilities for using quadratics along with logarithms. For
example, an extension of (6.14) that allows a nonconstant elasticity between price and
nox is

log(price) � �0 � �1log(nox) � �2[log(nox)]2

� �3crime � �4rooms � �5rooms2 � �6stratio � u. (6.15)
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log(price) as a quadratic function of rooms.
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log(price)
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If �2 � 0, then �1 is the elasticity of price with respect to nox. Otherwise, this elastic-
ity depends on the level of nox. To see this, we can combine the arguments for the par-
tial effects in the quadratic and logarithmic models to show that

%
price � [�1 � 2�2log(nox)]%
nox, (6.16)

and therefore the elasticity of price with respect to nox is �1 � 2�2log(nox), so that it
depends on log(nox).

Finally, other polynomial terms can be included in regression models. Certainly the
quadratic is seen most often, but a cubic and even a quartic term appear now and then.
An often reasonable functional form for a total cost function is

cost � �0 � �1quantity � �2quantity2 � �3quantity3 � u.

Estimating such a model causes no complications. Interpreting the parameters is more
involved (though straightforward using calculus); we do not study these models further.

Models with Interaction Terms

Sometimes it is natural for the partial effect, elasticity, or semi-elasticity of the depen-
dent variable with respect to an explanatory variable to depend on the magnitude of yet
another explanatory variable. For example, in the model

price � �0 � �1sqrft � �2bdrms � �3sqrft�bdrms � �4bthrms � u,

the partial effect of bdrms on price (holding all other variables fixed) is

� �2 � �3sqrft. (6.17)

If �3 � 0, then (6.17) implies that an additional bedroom yields a higher increase in
housing price for larger houses. In other words, there is an interaction effect between
square footage and number of bedrooms. In summarizing the effect of bdrms on price,
we must evaluate (6.17) at interesting values of sqrft, such as the mean value, or the
lower and upper quartiles in the sample. Whether or not �3 is zero is something we can
easily test.

E X A M P L E  6 . 3
( E f f e c t s  o f  A t t e n d a n c e  o n  F i n a l  E x a m  P e r f o r m a n c e )

A model to explain the standardized outcome on a final exam (stndfnl ) in terms of per-
centage of classes attended, prior college grade point average, and ACT score is

stndfnl � �0 � �1atndrte � �2priGPA � �3ACT � �4priGPA2

� �5ACT 2 � �6priGPA�atndrte � u. (6.18)

(We use the standardized exam score for the reasons discussed in Section 6.1: it is easier to
interpret a student’s performance relative to the rest of the class.) In addition to quadratics


price

bdrms
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in priGPA and ACT, this model includes an interaction between priGPA and the attendance
rate. The idea is that class attendance might have a different effect for students who have
performed differently in the past, as measured by priGPA. We are interested in the effects
of attendance on final exam score: 
stndfnl/
atndrte � �1 � �6priGPA.

Using the 680 observations in ATTEND.RAW, for students in microeconomic principles,
the estimated equation is

stnd̂fnl � (2.05) � (.0067) atndrte � (1.63) priGPA � (.128) ACT
stnd̂fnl � (1.36) � (.0102) atndrte � (0.48) priGPA � (.098) ACT

� (.296) priGPA2 � (.0045) ACT 2 � (.0056) priGPA�atndrte
� (.101) priGPA2 � (.0022) ACT 2 � (.0043) priGPA�atndrte

n � 680, R2 � .229, R̄2 � .222.

(6.19)

We must interpret this equation with extreme care. If we simply look at the coefficient on
atndrte, we will incorrectly conclude that attendance has a negative effect on final exam
score. But this coefficient supposedly measures the effect when priGPA � 0, which is not
interesting (in this sample, the smallest prior GPA is about .86). We must also take care not
to look separately at the estimates of �1 and �6 and conclude that, because each t statistic
is insignificant, we cannot reject H0: �1 � 0, �6 � 0. In fact, the p-value for the F test of
this joint hypothesis is .014, so we certainly reject H0 at the 5% level. This is a good exam-
ple of where looking at separate t statistics when testing a joint hypothesis can lead one far
astray.

How should we estimate the partial effect of atndrte on stndfnl? We must plug in in-
teresting values of priGPA to obtain the partial effect. The mean value of priGPA in the 
sample is 2.59, so at the mean priGPA, the effect of atndrte on stndfnl is �.0067 �

.0056(2.59) � .0078. What does this mean? Because atndrte is measured as a percent, it
means that a 10 percentage point increase in atndrte increases stnd̂fnl by .078 standard
deviations from the mean final exam score.

How can we tell whether the estimate .0078 is statistically different from zero? We
need to rerun the regression, where we replace priGPA�atndrte with (priGPA �

2.59)�atndrte. This gives, as the new coefficient on atndrte, the estimated effect at priGPA
� 2.59, along with its standard error; nothing else in the regression changes. (We described
this device in Section 4.4.) Running this new regression gives the standard error of �̂1 �

�̂6(2.59) � .0078 as .0026, which yields t �
.0078/.0026 � 3. Therefore, at the average
priGPA, we conclude that attendance has a
statistically significant positive effect on final
exam score.

Things are even more complicated for
finding the effect of priGPA on stndfnl because of the quadratic term priGPA2. To find the
effect at the mean value of priGPA and the mean attendance rate, .82, we would replace
priGPA2 with (priGPA � 2.59)2 and priGPA�atndrte with priGPA�(atndrte � .82). The coef-
ficient on priGPA becomes the partial effect at the mean values, and we would have its
standard error. (See Problem 6.14.)
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Q U E S T I O N  6 . 3

If we add the term �7ACT�atndrte to equation (6.18), what is the
partial effect of atndrte on stndfnl?
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6.3 MORE ON GOODNESS-OF-FIT AND SELECTION OF
REGRESSORS

Until now, we have not focused much on the size of R2 in evaluating our regression
models, because beginning students tend to put too much weight on R-squared. As we
will see now, choosing a set of explanatory variables based on the size of the R-squared
can lead to nonsensical models. In Chapter 10, we will discover that R-squareds
obtained from time series regressions can be artificially high and can result in mislead-
ing conclusions.

Nothing about the classical linear model assumptions requires that R2 be above any
particular value; R2 is simply an estimate of how much variation in y is explained by x1,
x2,…,xk in the population. We have seen several regressions that have had pretty small
R-squareds. While this means that we have not accounted for several factors that affect
y, this does not mean that the factors in u are correlated with the independent variables.
The zero conditional mean assumption MLR.3 is what determines whether we get unbi-
ased estimators of the ceteris paribus effects of the independent variables, and the size
of the R-squared has no direct bearing on this.

Remember, though, that the relative change in the R-squared, when variables are
added to an equation, is very useful: the F statistic in (4.41) for testing the joint signif-
icance crucially depends on the difference in R-squareds between the unrestricted and
restricted models.

Adjusted R-Squared

Most regression packages will report, along with the R-squared, a statistic called the
adjusted R-squared. Since the adjusted R-squared is reported in much applied work,
and since it has some useful features, we cover it in this subsection.

To see how the usual R-squared might be adjusted, it is usefully written as

R2 � 1 � (SSR/n)/(SST/n), (6.20)

where SSR is the sum of squared residuals and SST is the total sum of squares; com-
pared with equation (3.28), all we have done is divide both SSR and SST by n. This
expression reveals what R2 is actually estimating. Define �2

y as the population variance
of y and let �2

u denote the population variance of the error term, u. (Until now, we have
used �2 to denote �2

u, but it is helpful to be more specific here.) The population
R-squared is defined as 1 � �2

u/�
2
y; this is the proportion of the variation in y in the

population explained by the independent variables. This is what R2 is supposed to be
estimating.

R2 estimates �2
u by SSR/n, which we know to be biased. So why not replace SSR/n

with SSR/(n � k � 1)? Also, we can use SST/(n � 1) in place of SST/n, as the former
is the unbiased estimator of �2

y. Using these estimators, we arrive at the adjusted
R-squared:

R̄2 � 1 � [SSR/(n � k � 1)]/[SST/(n � 1)]

� 1 � �̂2/[SST/(n � 1)], (6.21)
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since �̂2 � SSR/(n � k � 1). Because of the notation used to denote the adjusted
R-squared, it is sometimes called R-bar squared.

The adjusted R-squared is sometimes called the corrected R-squared, but this is not
a good name because it implies that R̄2 is somehow better than R2 as an estimator of the
population R-squared. Unfortunately, R̄2 is not generally known to be a better estima-
tor. It is tempting to think that R̄2 corrects the bias in R2 for estimating the population
R-squared, but it does not: the ratio of two unbiased estimators is not an unbiased esti-
mator.

The primary attractiveness of R̄2 is that it imposes a penalty for adding additional
independent variables to a model. We know that R2 can never fall when a new indepen-
dent variable is added to a regression equation: this is because SSR never goes up (and
usually falls) as more independent variables are added. But the formula for R̄2 shows
that it depends explicitly on k, the number of independent variables. If an independent
variable is added to a regression, SSR falls, but so does the df in the regression,
n � k � 1. SSR/(n � k � 1) can go up or down when a new independent variable is
added to a regression.

An interesting algebraic fact is the following: if we add a new independent variable
to a regression equation, R̄2 increases if, and only if, the t statistic on the new variable
is greater than one in absolute value. (An extension of this is that R̄2 increases when a
group of variables is added to a regression if, and only if, the F statistic for joint sig-
nificance of the new variables is greater than unity.) Thus, we see immediately that
using R̄2 to decide whether a certain independent variable (or set of variables) belongs
in a model gives us a different answer than standard t or F testing (since a t or F statis-
tic of unity is not statistically significant at traditional significance levels).

It is sometimes useful to have a formula for R̄2 in terms of R2. Simple algebra
gives

R̄2 � 1 � (1 � R2)(n � 1)/(n � k � 1). (6.22)

For example, if R2 � .30, n � 51, and k � 10, then R̄2 � 1 � .70(50)/40 � .125. Thus,
for small n and large k, R̄2 can be substantially below R2. In fact, if the usual R-squared
is small, and n � k � 1 is small, R̄2 can actually be negative! For example, you can plug
in R2 � .10, n � 51, and k � 10 to verify that R̄2 � �.125. A negative R̄2 indicates a
very poor model fit relative to the number of degrees of freedom.

The adjusted R-squared is sometimes reported along with the usual R-squared in
regressions, and sometimes R̄2 is reported in place of R2. It is important to remember
that it is R2, not R̄2, that appears in the F statistic in (4.41). The same formula with R̄2

r

and R̄2
ur is not valid.

Using Adjusted R-Squared to Choose Between
Nonnested Models

In Section 4.5, we learned how to compute an F statistic for testing the joint signifi-
cance of a group of variables; this allows us to decide, at a particular significance level,
whether at least one variable in the group affects the dependent variable. This test does
not allow us to decide which of the variables has an effect. In some cases, we want to
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choose a model without redundant independent variables, and the adjusted R-squared
can help with this.

In the major league baseball salary example in Section 4.4, we saw that neither
hrunsyr nor rbisyr was individually significant. These two variables are highly corre-
lated, so we might want to choose between the models

log(salary) � �0 � �1years � �2gamesyr � �3bavg � �4hrunsyr � u

and

log(salary) � �0 � �1years � �2gamesyr � �3bavg � �4rbisyr � u.

These two examples are nonnested models, because neither equation is a special case
of the other. The F statistics we studied in Chapter 4 only allow us to test nested mod-
els: one model (the restricted model) is a special case of the other model (the unre-
stricted model). See equations (4.32) and (4.28) for examples of restricted and
unrestricted models. One possibility is to create a composite model that contains all
explanatory variables from the original models and then to test each model against the
general model using the F test. The problem with this process is that either both mod-
els might be rejected, or neither model might be rejected (as happens with the major
league baseball salary example in Section 4.4). Thus, it does not always provide a way
to distinguish between models with nonnested regressors.

In the baseball player salary regression, R̄2 for the regression containing hrunsyr is
.6211, and R̄2 for the regression containing rbisyr is .6226. Thus, based on the adjusted
R-squared, there is a very slight preference for the model with rbisyr. But the difference
is practically very small, and we might obtain a different answer by controlling for
some of the variables in Problem 4.16. (Because both nonnested models contain five
parameters, the usual R-squared can be used to draw the same conclusion.)

Comparing R̄2 to choose among different nonnested sets of independent variables
can be valuable when these variables represent different functional forms. Consider two
models relating R&D intensity to firm sales:

rdintens � �0 � �1log(sales) � u. (6.23)

rdintens � �0 � �1sales � �2sales2 � u. (6.24)

The first model captures a diminishing return by including sales in logarithmic form;
the second model does this by using a quadratic. Thus, the second model contains one
more parameter than the first.

When equation (6.23) is estimated using the 32 observations on chemical firms in
RDCHEM.RAW, R2 is .061, and R2 for equation (6.24) is .148. Therefore, it appears that
the quadratic fits much better. But a comparison of the usual R-squareds is unfair to the
first model because it contains one less parameter than (6.24). That is, (6.23) is a more
parsimonious model than (6.24).

Everything else being equal, simpler models are better. Since the usual R-squared
does not penalize more complicated models, it is better to use R̄2. R̄2 for (6.23) is .030,
while R̄2 for (6.24) is .090. Thus, even after adjusting for the difference in degrees of
freedom, the quadratic model wins out. The quadratic model is also preferred when
profit margin is added to each regression.

Part 1 Regression Analysis with Cross-Sectional Data

194

d  7/14/99 5:33 PM  Page 194



There is an important limitation in using R̄2 to choose between nonnested models: we
cannot use it to choose between different functional forms for the dependent variable.
This is unfortunate, because we often want to decide on whether y or log(y) (or maybe

some other transformation) should be
used as the dependent variable based on
goodness-of-fit. But neither R2 nor R̄2 can
be used for this. The reason is simple:
these R-squareds measure the explained
proportion of the total variation in what-

ever dependent variable we are using in the regression, and different functions of the
dependent variable will have different amounts of variation to explain. For example, the
total variations in y and log(y) are not the same. Comparing the adjusted R-squareds from
regressions with these different forms of the dependent variables does not tell us any-
thing about which model fits better; they are fitting two separate dependent variables.

E X A M P L E  6 . 4
( C E O  C o m p e n s a t i o n  a n d  F i r m  P e r f o r m a n c e )

Consider two estimated models relating CEO compensation to firm performance:

sal̂ary � (830.63) � (.0163) sales � (19.63) roe
sal̂ary � (223.90) � (.0089) sales � (11.08) roe

n � 209, R2 � .029, R̄2 � .020

(6.25)

and 

lsal̂ary � (4.36) � (.275) lsales � (.0179) roe
lsal̂ary � (0.29) � (.033) lsales � (.0040) roe

n � 209, R2 � .282, R̄2 � .275,

(6.26)

where roe is the return on equity discussed in Chapter 2. For simplicity, lsalary and lsales
denote the natural logs of salary and sales. We already know how to interpret these dif-
ferent estimated equations. But can we say that one model fits better than the other?

The R-squared for equation (6.25) shows that sales and roe explain only about 2.9% of
the variation in CEO salary in the sample. Both sales and roe have marginal statistical sig-
nificance.

Equation (6.26) shows that log(sales) and roe explain about 28.2% of the variation in
log(salary). In terms of goodness-of-fit, this much higher R-squared would seem to imply
that model (6.26) is much better, but this is not necessarily the case. The total sum of squares
for salary in the sample is 391,732,982, while the total sum of squares for log(salary) is only
66.72. Thus, there is much less variation in log(salary) that needs to be explained.

At this point, we can use features other than R2 or R̄2 to decide between these models.
For example, log(sales) and roe are much more statistically significant in (6.26) than are
sales and roe in (6.25), and the coefficients in (6.26) are probably of more interest. To be
sure, however, we will need to make a valid goodness-of-fit comparison.
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In Section 6.4, we will offer a goodness-of-fit measure that does allow us to com-
pare models where y appears in both level and log form.

Controlling for Too Many Factors in Regression Analysis

In many of the examples we have covered, and certainly in our discussion of omitted
variables bias in Chapter 3, we have worried about omitting important factors from a
model that might be correlated with the independent variables. It is also possible to con-
trol for too many variables in a regression analysis.

If we overemphasize goodness-of-fit, we open ourselves to controlling for factors
in a regression model that should not be controlled for. To avoid this mistake, we need
to remember the ceteris paribus interpretation of multiple regression models.

To illustrate this issue, suppose we are doing a study to assess the impact of state
beer taxes on traffic fatalities. The idea is that a higher tax on beer will reduce alcohol
consumption, and likewise drunk driving, resulting in fewer traffic fatalities. To mea-
sure the ceteris paribus effect of taxes on fatalities, we can model fatalities as a func-
tion of several factors, including the beer tax:

fatalities � �0 � �1tax � �2miles � �3percmale � �4perc16_21 � …,

where miles is total miles driven, percmale is percent of the state population that is
male, and perc16_21 is percent of the population between ages 16 and 21, and so on.
Notice how we have not included a variable measuring per capita beer consumption.
Are we committing an omitted variables error? The answer is no. If we control for beer
consumption in this equation, then how would beer taxes affect traffic fatalities? In the
equation

fatalities � �0 � �1tax � �2beercons � …,

�1 measures the difference in fatalities due to a one percentage point increase in tax,
holding beercons fixed. It is difficult to understand why this would be interesting. We
should not be controlling for differences in beercons across states, unless we want to
test for some sort of indirect effect of beer taxes. Other factors, such as gender and age
distribution, should be controlled for.

The issue of whether or not to control for certain factors is not always clear-cut. For
example, Betts (1995) studies the effect of high school quality on subsequent earnings.
He points out that, if better school quality results in more education, then controlling
for education in the regression along with measures of quality will underestimate the
return to quality. Betts does the analysis with and without years of education in the
equation to get a range of estimated effects for quality of schooling.

To see explicitly how focusing on high R-squareds can lead to trouble, consider the
housing price example from Section 4.5 that illustrates the testing of multiple hypothe-
ses. In that case, we wanted to test the rationality of housing price assessments. We
regressed log(price) on log(assess), log(lotsize), log(sqrft), and bdrms and tested
whether the latter three variables had zero population coefficients while log(assess) had
a coefficient of unity. But what if we want to estimate a hedonic price model, as in
Example 4.8, where the marginal values of various housing attributes are obtained?
Should we include log(assess) in the equation? The adjusted R-squared from the regres-
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sion with log(assess) is .762, while the adjusted R-squared without it is .630. Based on
goodness-of-fit only, we should include log(assess). But this is incorrect if our goal is
to determine the effects of lot size, square footage, and number of bedrooms on hous-
ing values. Including log(assess) in the equation amounts to holding one measure of
value fixed and then asking how much an additional bedroom would change another
measure of value. This makes no sense for valuing housing attributes.

If we remember that different models serve different purposes, and we focus on the
ceteris paribus interpretation of regression, then we will not include the wrong factors
in a regression model.

Adding Regressors to Reduce the Error Variance
We have just seen some examples of where certain independent variables should not be
included in a regression model, even though they are correlated with the dependent vari-
able. From Chapter 3, we know that adding a new independent variable to a regression
can exacerbate the multicollinearity problem. On the other hand, since we are taking
something out of the error term, adding a variable generally reduces the error variance.
Generally, we cannot know which effect will dominate.

However, there is one case that is obvious: we should always include independent
variables that affect y and are uncorrelated with all of the independent variables of
interest. The reason for this inclusion is simple: adding such a variable does not induce
multicollinearity in the population (and therefore multicollinearity in the sample should
be negligible), but it will reduce the error variance. In large sample sizes, the standard
errors of all OLS estimators will be reduced.

As an example, consider estimating the individual demand for beer as a function of
the average county beer price. It may be reasonable to assume that individual charac-
teristics are uncorrelated with county-level prices, and so a simple regression of beer
consumption on county price would suffice for estimating the effect of price on indi-
vidual demand. But it is possible to get a more precise estimate of the price elasticity
of beer demand by including individual characteristics, such as age and amount of edu-
cation. If these factors affect demand and are uncorrelated with price, then the standard
error of the price variable will be smaller, at least in large samples.

Unfortunately, cases where we have information on additional explanatory variables
that are uncorrelated with the explanatory variables of interest are rare in the social sci-
ences. But it is worth remembering that when these variables are available, they can be
included in a model to reduce the error variance without inducing multicollinearity.

6.4 PREDICTION AND RESIDUAL ANALYSIS

In Chapter 3, we defined the OLS predicted or fitted values and the OLS residuals.
Predictions are certainly useful, but they are subject to sampling variation, since they
are obtained using the OLS estimators. Thus, in this section, we show how to obtain
confidence intervals for a prediction from the OLS regression line.

From Chapters 3 and 4, we know that the residuals are used to obtain the sum of
squared residuals and the R-squared, so they are important for goodness-of-fit and test-
ing. Sometimes economists study the residuals for particular observations to learn about
individuals (or firms, houses, etc.) in the sample.
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Confidence Intervals for Predictions

Suppose we have estimated the equation

ŷ � �̂0 � �̂1x1 � �̂2x2 � … � �̂kxk. (6.27)

When we plug in particular values of the independent variables, we obtain a prediction
for y, which is an estimate of the expected value of y given the particular values for the
explanatory variables. For emphasis, let c1, c2,…,ck denote particular values for each of
the k independent variables; these may or may not correspond to an actual data point in
our sample. The parameter we would like to estimate is

�0 � �0 � �1c1 � �2c2 � … � �kck

� E(y�x1 � c1,x2 � c2, …, xk � ck).
(6.28)

The estimator of �0 is

�̂0 � �̂0 � �̂1c1 � �̂2c2 � … � �̂kck. (6.29)

In practice, this is easy to compute. But what if we want some measure of the uncer-
tainty in this predicted value? It is natural to construct a confidence interval for �0,
which is centered at �̂0.

To obtain a confidence interval for �0, we need a standard error for �̂0. Then, with a
large df, we can construct a 95% confidence interval using the rule of thumb �̂0 �
2�se(�̂0). (As always, we can use the exact percentiles in a t distribution.)

How do we obtain the standard error of �̂0? This is the same problem we encoun-
tered in Section 4.4: we need to obtain a standard error for a linear combination of the
OLS estimators. Here, the problem is even more complicated, because all of the OLS
estimators generally appear in �̂0 (unless some cj are zero). Nevertheless, the same trick
that we used in Section 4.4 will work here. Write �0 � �0 � �1c1 � … � �kck and plug
this into the equation

y � �0 � �1x1 � … � �kxk � u

to obtain

y � �0 � �1(x1 � c1) � �2(x2 � c2) � … � �k(xk � ck) � u. (6.30)

In other words, we subtract the value cj from each observation on xj, and then we run
the regression of

yi on (xi1 � c1), …, (xik � ck), i � 1,2, …, n. (6.31)

The predicted value in (6.29) and, more importantly, its standard error, are obtained
from the intercept (or constant) in regression (6.31).

As an example, we obtain a confidence interval for a prediction from a college GPA
regression, where we use high school information.
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E X A M P L E  6 . 5
( C o n f i d e n c e  I n t e r v a l  f o r  P r e d i c t e d  C o l l e g e  G P A )

Using the data in GPA2.RAW, we obtain the following equation for predicting college GPA:

col̂gpa � (1.493) � (.00149) sat � (.01386) hsperc
col̂gpa � (0.075) � (.00007) sat � (.00056) hsperc

� (.06088) hsize � (.00546) hsize2

� (.01650) hsize � (.00227) hsize2

n � 4,137, R2 � .278, R̄2 � .277, �̂ � .560,

(6.32)

where we have reported estimates to several digits to reduce round-off error. What is pre-
dicted college GPA, when sat � 1,200, hsperc � 30, and hsize � 5 (which means 500)?
This is easy to get by plugging these values into equation (6.32): col̂gpa � 2.70 (rounded
to two digits). Unfortunately, we cannot use equation (6.32) directly to get a confidence
interval for the expected colgpa at the given values of the independent variables. One sim-
ple way to obtain a confidence interval is to define a new set of independent variables:
sat0 � sat � 1,200, hsperc0 � hsperc � 30, hsize0 � hsize � 5, and hsizesq0 � hsize2 �

25. When we regress colgpa on these new independent variables, we get

col̂gpa � (2.700) � (.00149) sat0 � (.01386) hsperc0
col̂gpa � (0.020) � (.00007) sat0 � (.00056) hsperc0

� (.06088) hsize0 � (.00546) hsizesq0
� (.01650) hsize0 � (.00227) hsizesq0

n � 4,137, R2 � .278, R̄2 � .277, �̂ � .560.

The only difference between this regression and that in (6.32) is the intercept, which is the
prediction we want, along with its standard error, .020. It is not an accident that the slope
coefficents, their standard errors, R-squared, and so on are the same as before; this pro-
vides a way to check that the proper transformations were done. We can easily construct a
95% confidence interval for the expected college GPA: 2.70 � 1.96(.020) or about 2.66 to
2.74. This confidence interval is rather narrow due to the very large sample size.

Because the variance of the intercept estimator is smallest when each explanatory
variable has zero sample mean (see Question 2.5 for the simple regression case), it fol-
lows from the regression in (6.31) that the variance of the prediction is smallest at the
mean values of the xj. (That is, cj � x̄j for all j .) This result is not too surprising, since
we have the most faith in our regression line near the middle of the data. As the values
of the cj get farther away from the x̄j, Var( ŷ) gets larger and larger.

The previous method allows us to put a confidence interval around the OLS esti-
mate of E(y�x1,…,xk), for any values of the explanatory variables. But this is not the
same as obtaining a confidence interval for a new, as yet unknown, outcome on y. In
forming a confidence interval for an outcome on y, we must account for another very
important source of variation: the variance in the unobserved error.
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Let y0 denote the value for which we would like to construct a confidence interval,
which we sometimes call a prediction interval. For example, y0 could represent a per-
son or firm not in our original sample. Let x1

0, …, xk
0 be the new values of the indepen-

dent variables, which we assume we observe, and let u0 be the unobserved error.
Therefore, we have

y0 � �0 � �1x1
0 � �2x2

0 � … � �kxk
0 � u0. (6.33)

As before, our best prediction of y0 is the expected value of y0 given the explana-
tory variables, which we estimate from the OLS regression line: ŷ0 � �̂0 � �̂1x1

0 �
�̂2x2

0 � … � �̂kxk
0. The prediction error in using ŷ0 to predict y0 is

ê0 � y0 � ŷ0 � (�0 � �1x1
0 � … � �kxk

0) � u0 � ŷ0. (6.34)

Now, E( ŷ0) � E(�̂0) � E(�̂1)x1
0 � E(�̂2)x2

0 � … � E(�̂k)xk
0 � �0 � �1x1

0 � … � �kxk
0,

because the �̂j are unbiased. (As before, these expectations are all conditional on the
sample values of the independent variables.) Because u0 has zero mean, E(ê0) � 0. We
have showed that the expected prediction error is zero.

In finding the variance of ê0, note that u0 is uncorrelated with each �̂j, because u0 is
uncorrelated with the errors in the sample used to obtain the �̂j. By basic properties of
covariance (see Appendix B), u0 and ŷ0 are uncorrelated. Therefore, the variance of the
prediction error (conditional on all in-sample values of the independent variables) is
the sum of the variances:

Var(ê0) � Var(ŷ0) � Var(u0) � Var( ŷ0) � �2, (6.35)

where �2 � Var(u0) is the error variance. There are two sources of variance in ê0. The
first is the sampling error in ŷ0, which arises because we have estimated the �j. Because
each �̂j has a variance proportional to 1/n, where n is the sample size, Var( ŷ0) is pro-
portional to 1/n. This means that, for large samples, Var( ŷ0) can be very small. By con-
trast, �2 is the variance of the error in the population; it does not change with the sample
size. In many examples, �2 will be the dominant term in (6.35).

Under the classical linear model assumptions, the �̂j and u0 are normally distributed,
and so ê0 is also normally distributed (conditional on all sample values of the explana-
tory variables). Earlier, we described how to obtain an unbiased estimator of Var( ŷ0),
and we obtained our unbiased estimator of �2 in Chapter 3. By using these estimators,
we can define the standard error of ê0 as

se(ê0) � {[se( ŷ0)]
2 � �̂ 2}1/2. (6.36)

Using the same reasoning for the t statistics of the �̂j, ê0/se(ê0) has a t distribution with
n � (k � 1) degrees of freedom. Therefore,

P[�t.025 
 ê0/se(ê0) 
 t.025] � .95,

where t.025 is the 97.5th percentile in the tn�k�1 distribution. For large n � k � 1,
remember that t.025 � 1.96. Plugging in ê0 � y0 � ŷ0 and rearranging gives a 95% 
prediction interval for y0:
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ŷ0 � t.025�se(ê0); (6.37)

as usual, except for small df, a good rule of thumb is ŷ0 � 2se(ê0). This is wider than
the confidence interval for ŷ0 itself, because of �̂2 in (6.36); it often is much wider to
reflect the factors in u0 that we have not controlled for.

E X A M P L E  6 . 6
( C o n f i d e n c e  I n t e r v a l  f o r  F u t u r e  C o l l e g e  G P A )

Suppose we want a 95% CI for the future college GPA for a high school student with 
sat � 1,200, hsperc � 30, and hsize � 5. Remember, in Example 6.5 we obtained a confi-
dence interval for the expected GPA; now we must account for the unobserved factors in
the error term. We have everything we need to obtain a CI for colgpa. se(ŷ0) � .020 and �̂
� .560 and so, from (6.36), se(ê0) � [(.020)2 � (.560)2]1/2 � .560. Notice how small se(ŷ0)
is relative to � ̂ : virtually all of the variation in ê0 comes from the variation in u0. The 95%
CI is 2.70 � 1.96(.560) or about 1.60 to 3.80. This is a wide confidence interval, and it
shows that, based on the factors used in the regression, we cannot significantly narrow the
likely range of college GPA.

Residual Analysis

Sometimes it is useful to examine individual observations to see whether the actual
value of the dependent variable is above or below the predicted value; that is, to exam-
ine the residuals for the individual observations. This process is called residual analy-
sis. Economists have been known to examine the residuals from a regression in order to
aid in the purchase of a home. The following housing price example illustrates residual
analysis. Housing price is related to various observable characteristics of the house. We
can list all of the characteristics that we find important, such as size, number of bed-
rooms, number of bathrooms, and so on. We can use a sample of houses to estimate a
relationship between price and attributes, where we end up with a predicted value and
an actual value for each house. Then, we can construct the residuals, ûi � yi � ŷi. The
house with the most negative residual is, at least based on the factors we have controlled
for, the most underpriced one relative to its characteristics. It also makes sense to com-
pute a confidence interval for what the future selling price of the home could be, using
the method described in equation (6.37).

Using the data in HPRICE1.RAW, we run a regression of price on lotsize, sqrft, and
bdrms. In the sample of 88 homes, the most negative residual is �120.206, for the 81st

house. Therefore, the asking price for this house is $120,206 below its predicted price.
There are many other uses of residual analysis. One way to rank law schools is to

regress median starting salary on a variety of student characteristics (such as median
LSAT scores of entering class, median college GPA of entering class, and so on) and to
obtain a predicted value and residual for each law school. The law school with the
largest residual has the highest predicted value added. (Of course, there is still much
uncertainty about how an individual’s starting salary would compare with the median
for a law school overall.) These residuals can be used along with the costs of attending
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each law school to determine the best value; this would require an appropriate dis-
counting of future earnings.

Residual analysis also plays a role in legal decisions. A New York Times article enti-
tled “Judge Says Pupil’s Poverty, Not Segregation, Hurts Scores” (6/28/95) describes
an important legal case. The issue was whether the poor performance on standardized
tests in the Hartford School District, relative to performance in surrounding suburbs,
was due to poor school quality at the highly segregated schools. The judge concluded
that “the disparity in test scores does not indicate that Hartford is doing an inadequate

or poor job in educating its students or that
its schools are failing, because the pre-
dicted scores based upon the relevant
socioeconomic factors are about at the lev-
els that one would expect.” This conclu-
sion is almost certainly based on a re-

gression analysis of average or median scores on socioeconomic characteristics of var-
ious school districts in Connecticut. The judge’s conclusion suggests that, given the
poverty levels of students at Hartford schools, the actual test scores were similar to
those predicted from a regression analysis: the residual for Hartford was not sufficiently
negative to conclude that the schools themselves were the cause of low test scores.

Predicting y When log(y) Is the Dependent Variable

Since the natural log transformation is used so often for the dependent variable in
empirical economics, we devote this subsection to the issue of predicting y when log(y)
is the dependent variable. As a byproduct, we will obtain a goodness-of-fit measure for
the log model that can be compared with the R-squared from the level model.

To obtain a prediction, it is useful to define logy � log(y); this emphasizes that it is
the log of y that is predicted in the model

logy � �0 � �1x1 � �2x2 � … � �kxk � u. (6.38)

In this equation, the xj might be transformations of other variables; for example, we
could have x1 � log(sales), x2 � log(mktval), x3 � ceoten in the CEO salary example.

Given the OLS estimators, we know how to predict logy for any value of the inde-
pendent variables:

lôgy � �̂0 � �̂1x1 � �̂2x2 � … � �̂k xk. (6.39)

Now, since the exponential undoes the log, our first guess for predicting y is to simply
exponentiate the predicted value for log(y): ŷ � exp(lôgy). This does not work; in fact,
it will systematically underestimate the expected value of y. In fact, if model (6.38) fol-
lows the CLM assumptions MLR.1 through MLR.6, it can be shown that

E(y�x) � exp(�2/2)�exp(�0 � �1x1 � �2x2 � … � �kxk),

where x denotes the independent variables and �2 is the variance of u. [If u ~
Normal(0,�2), then the expected value of exp(u) is exp(�2/2).] This equation shows that
a simple adjustment is needed to predict y:
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ŷ � exp(�̂ 2/2)exp(lôgy), (6.40)

where �̂2 is simply the unbiased estimator of �2. Since �̂ , the standard error of the
regression, is always reported, obtaining predicted values for y is easy. Because �̂2 �
0, exp(�̂2/2) � 1. For large �̂2, this adjustment factor can be substantially larger than
unity.

The prediction in (6.40) is not unbiased, but it is consistent. There are no unbiased
predictions of y, and in many cases, (6.40) works well. However, it does rely on the nor-
mality of the error term, u. In Chapter 5, we showed that OLS has desirable properties,
even when u is not normally distributed. Therefore, it is useful to have a prediction that
does not rely on normality. If we just assume that u is independent of the explanatory
variables, then we have

E(y�x) � �0exp(�0 � �1x1 � �2x2 � … � �kxk), (6.41)

where �0 is the expected value of exp(u), which must be greater than unity.
Given an estimate �̂0, we can predict y as

ŷ � �̂0exp(lôgy), (6.42)

which again simply requires exponentiating the predicted value from the log model and
multiplying the result by �̂0.

It turns out that a consistent estimator of �̂0 is easily obtained.

PREDICTING y WHEN THE DEPENDENT VARIABLE IS log(y):

(i) Obtain the fitted values lôgyi from the regression of logy on x1, …, xk.
(ii) For each observation i, create m̂i � exp(lôgyi).

(iii) Now regress y on the single variable m̂ without an intercept; that is, perform a
simple regression through the origin. The coefficient on m̂, the only coefficient
there is, is the estimate of �0.

Once �̂0 is obtained, it can be used along with predictions of logy to predict y. The
steps are as follows:

(i) For given values of x1, x2, …, xk, obtain lôgy from (6.39).
(ii) Obtain the prediction ŷ from (6.42).

E X A M P L E  6 . 7
( P r e d i c t i n g  C E O  S a l a r i e s )

The model of interest is

log(salary) � �0 � �1log(sales) � �2log(mktval) � �3ceoten � u,

so that �1 and �2 are elasticities and 100��3 is a semi-elasticity. The estimated equation
using CEOSAL2.RAW is
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lsal̂ary � (4.504) � (.163) lsales � (.109) lmktval � (.0117) ceoten
lsal̂ary � (0.257) � (.039) lsales � (.050) lmktval � (.0053) ceoten

n � 177, R2 � .318,

(6.43)

where, for clarity, we let lsalary denote the log of salary, and similarly for lsales and 
lmktval. Next, we obtain m̂i � exp(lsal̂aryi) for each observation in the sample. Regressing
salary on m̂ (without a constant) produces �̂0 � 1.117.

We can use this value of �̂0 along with (6.43) to predict salary for any values of sales,
mktval, and ceoten. Let us find the prediction for sales � 5,000 (which means $5 billion,
since sales is in millions of dollars), mktval � 10,000 (or $10 billion), and ceoten � 10. From
(6.43), the prediction for lsalary is 4.504 � .163�log(5,000) � .109�log(10,000) �

.0117(10) � 7.013. The predicted salary is therefore 1.117�exp(7.013) � 1,240.967, or
$1,240,967. If we forget to multiply by �̂0 � 1.117, we get a prediction of $1,110,983.

We can use the previous method of obtaining predictions to determine how well the
model with log(y) as the dependent variable explains y. We already have measures for
models when y is the dependent variable: the R-squared and the adjusted R-squared.
The goal is to find a goodness-of-fit measure in the log(y) model that can be compared
with an R-squared from a model where y is the dependent variable.

There are several ways to find this measure, but we present an approach that is easy
to implement. After running the regression of y on m̂ through the origin in step (iii), we
obtain the fitted values for this regression, ŷi � �̂0m̂i. Then, we find the sample corre-
lation between ŷi and the actual yi in the sample. The square of this can be compared
with the R-squared we get by using y as the dependent variable in a linear regression
model. Remember that the R-squared in the fitted equation

ŷ � �̂0 � �̂1x1 � … � �̂kxk

is just the squared correlation between the yi and the ŷi (see Section 3.2).

E X A M P L E  6 . 8
( P r e d i c t i n g  C E O  S a l a r i e s )

After step (iii) in the preceding procedure, we obtain the fitted values salâryi � �̂0m̂i. The
simple correlation between salaryi and salâryi in the sample is .493; the square of this value
is about .243. This is our measure of how much salary variation is explained by the log
model; it is not the R-squared from (6.43), which is .318.

Suppose we estimate a model with all variables in levels:

salary � �0 � �1sales � �2mktval � �3ceoten � u.

The R-squared obtained from estimating this model using the same 177 observations is
.201. Thus, the log model explains more of the variation in salary, and so we prefer it on
goodness-of-fit grounds. The log model is also chosen because it seems more realistic and
the parameters are easier to interpret.
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SUMMARY

In this chapter, we have covered some important multiple regression analysis topics.
Section 6.1 showed that a change in the units of measurement of an independent

variable changes the OLS coefficient in the expected manner: if xj is multiplied by c, its
coefficient is divided by c. If the dependent variable is multiplied by c, all OLS coeffi-
cients are multiplied by c. Neither t nor F statistics are affected by changing the units
of measurement of any variables.

We discussed beta coefficients, which measure the effects of the independent vari-
ables on the dependent variable in standard deviation units. The beta coefficients are
obtained from a standard OLS regression after the dependent and independent variables
have been transformed into z-scores.

As we have seen in several examples, the logarithmic functional form provides
coefficients with percentage effect interpretations. We discussed its additional advan-
tages in Section 6.2. We also saw how to compute the exact percentage effect when a
coefficient in a log-level model is large. Models with quadratics allow for either dimin-
ishing or increasing marginal effects. Models with interactions allow the marginal effect
of one explanatory variable to depend upon the level of another explanatory variable.

We introduced the adjusted R-squared, R̄2, as an alternative to the usual R-squared
for measuring goodness-of-fit. While R2 can never fall when another variable is added
to a regression, R̄2 penalizes the number of regressors and can drop when an indepen-
dent variable is added. This makes R̄2 preferable for choosing between nonnested mod-
els with different numbers of explanatory variables. Neither R2 nor R̄2 can be used to
compare models with different dependent variables. Nevertheless, it is fairly easy to
obtain goodness-of-fit measures for choosing between y and log(y) as the dependent
variable, as shown in Section 6.4.

In Section 6.3, we discussed the somewhat subtle problem of relying too much on
R2 or R̄2 in arriving at a final model: it is possible to control for too many factors in a
regression model. For this reason, it is important to think ahead about model specifica-
tion, particularly the ceteris paribus nature of the multiple regression equation.
Explanatory variables that affect y and are uncorrelated with all the other explanatory
variables can be used to reduce the error variance without inducing multicollinearity.

In Section 6.4, we demonstrated how to obtain a confidence interval for a predic-
tion made from an OLS regression line. We also showed how a confidence interval can
be constructed for a future, unknown value of y.

Occasionally, we want to predict y when log(y) is used as the dependent variable in
a regression model. Section 6.4 explains this simple method. Finally, we are sometimes
interested in knowing about the sign and magnitude of the residuals for particular obser-
vations. Residual analysis can be used to determine whether particular members of the
sample have predicted values that are well above or well below the actual outcomes.

KEY TERMS
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PROBLEMS

6.1 The following equation was estimated using the data in CEOSAL1.RAW:

log(sal̂ary) � (4.322) � (.276) log(sales) � (.0215) roe � (.00008) roe2

log(sal̂ary) � (.324) � (.033) log(sales) � (.0129) roe � (.00026) roe2

n � 209, R2 � .282.

This equation allows roe to have a diminishing effect on log(salary). Is this generality
necessary? Explain why or why not.

6.2 Let �̂0, �̂1, …, �̂k be the OLS estimates from the regression of yi on xi1, …, xik,
i � 1,2, …, n. For nonzero constants c1, …, ck, argue that the OLS intercept and slopes
from the regression of c0yi on c1xi1, …, ckxik, i � 1,2, …, n, are given by �̃0 � c0�̂0,
�̃1 � (c0/c1)�̂1, …, �̃k � (c0/ck)�̂k. (Hint: Use the fact that the �̂j solve the first order
conditions in (3.13), and the �̃j must solve the first order conditions involving the
rescaled dependent and independent variables.)

6.3 Using the data in RDCHEM.RAW, the following equation was obtained by OLS:

rdin̂tens � (2.613) � (.00030) sales � (.0000000070) sales2

rdin̂tens � (0.429) � (.00014) sales � (.0000000037) sales2

n � 32, R2 � .1484.

(i) At what point does the marginal effect of sales on rdintens become neg-
ative?

(ii) Would you keep the quadratic term in the model? Explain.
(iii) Define salesbil as sales measured in billions of dollars: salesbil �

sales/1,000. Rewrite the estimated equation with salesbil and salesbil2

as the independent variables. Be sure to report standard errors and the
R-squared. [Hint: Note that salesbil2 � sales2/(1,000)2.]

(iv) For the purpose of reporting the results, which equation do you prefer?

6.4 The following model allows the return to education to depend upon the total
amount of both parents’ education, called pareduc:

log(wage) � �0 � �1educ � �2educ�pareduc � �3exper � �4tenure � u.

(i) Show that, in decimal form, the return to another year of education in
this model is


log(wage)/
educ � �1 � �2pareduc.

What sign do you expect for �2? Why?
(ii) Using the data in WAGE2.RAW, the estimated equation is
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log(ŵage) � (5.65) � (.047) educ � (.00078) educ�pareduc �
log(ŵage) � (0.13) � (.010) educ � (.00021) educ�pareduc �

(.019) exper � (.010) tenure
(.004) exper � (.003) tenure

n � 722, R2 � .169.

(Only 722 observations contain full information on parents’ education.)
Interpret the coefficient on the interaction term. It might help to choose
two specific values for pareduc—for example, pareduc � 32 if both
parents have a college education, or pareduc � 24 if both parents have
a high school education—and to compare the estimated return to educ.

(iii) When pareduc is added as a separate variable to the equation, we get:

log(ŵage) � (4.94) � (.097) educ � (.033) pareduc � (.0016) educ�pareduc
log(ŵage) � (0.38) � (.027) educ � (.017) pareduc � (.0012) educ�pareduc

� (.020) exper � (.010) tenure
� (.004) exper � (.003) tenure

n � 722, R2 � .174.

Does the estimated return to education now depend positively on parent
education? Test the null hypothesis that the return to education does not
depend on parent education.

6.5 In Example 4.2, where the percentage of students receiving a passing score on a
10th grade math exam (math10) is the dependent variable, does it make sense to include
sci11—the percentage of 11th graders passing a science exam—as an additional
explanatory variable?

6.6 When atndrte2 and ACT�atndrte are added to the equation estimated in (6.19), the
R-squared becomes .232. Are these additional terms jointly significant at the 10% level?
Would you include them in the model?

6.7 The following three equations were estimated using the 1,534 observations in
401K.RAW:

prâte � (80.29) � (5.44) mrate � (.269) age � (.00013) totemp
prâte � (0.78) � (0.52) mrate � (.045) age � (.00004) totemp

R2 � .100, R̄2 � .098.

prâte � (97.32) � (5.02) mrate � (.314) age � (2.66) log(totemp)
prâte � (1.95) � (0.51) mrate � (.044) age � (0.28) log(totemp)

R2 � .144, R̄2 � .142.

prâte � (80.62) � (5.34) mrate � (.290) age � (.00043) totemp
prâte � (0.78) � (0.52) mrate � (.045) age � (.00009) totemp

� ).0000000039) totemp2

� (.0000000010) totemp2

R2 � .108, R̄2 � .106.

Which of these three models do you prefer. Why?
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COMPUTER EXERCISES

6.8 Use the data in HPRICE3.RAW, only for the year 1981, to answer the following
questions. The data are for houses that sold during 1981 in North Andover, MA; 1981
was the year construction began on a local garbage incinerator.

(i) To study the effects of the incinerator location on housing price, con-
sider the simple regression model

log(price) � �0 � �1log(dist) � u,

where price is housing price in dollars and dist is distance from the
house to the incinerator measured in feet. Interpreting this equation
causally, what sign do you expect for �1 if the presence of the incinera-
tor depresses housing prices? Estimate this equation and interpret the
results.

(ii) To the simple regression model in part (i), add the variables log(inst),
log(area), log(land), rooms, baths, and age, where inst is distance from
the home to the interstate, area is square footage of the house, land is
the lot size in square feet, rooms is total number of rooms, baths is num-
ber of bathrooms, and age is age of the house in years. Now what do
you conclude about the effects of the incinerator? Explain why (i) and
(ii) give conflicting results.

(iii) Add [log(inst)]2 to the model from part (ii). Now what happens? What
do you conclude about the importance of functional form?

(iv) Is the square of log(dist) significant when you add it to the model from
part (iii)?

6.9 Use the data in WAGE1.RAW for this exercise.
(i) Use OLS to estimate the equation

log(wage) � �0 � �1educ � �2exper � �3exper2 � u

and report the results using the usual format.
(ii) Is exper2 statistically significant at the 1% level?
(iii) Using the approximation

%
wâge � 100(�̂2 � 2�̂3exper)
exper,

find the approximate return to the fifth year of experience. What is the
approximate return to the twentieth year of experience?

(iv) At what value of exper does additional experience actually lower pre-
dicted log(wage)? How many people have more experience in this sam-
ple?

6.10 Consider a model where the return to education depends upon the amount of work
experience (and vice versa):

log(wage) � �0 � �1educ � �2exper � �3educ�exper � u.

(i) Show that the return to another year of education (in decimal form),
holding exper fixed, is �1 � �3exper.
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(ii) State the null hypothesis that the return to education does not depend on
the level of exper. What do you think is the appropriate alternative?

(iii) Use the data in WAGE2.RAW to test the null hypothesis in (ii) against
your stated alternative.

(iv) Let �1 denote the return to education (in decimal form), when exper �
10: �1 � �1 � 10�3. Obtain �̂1 and a 95% confidence interval for �1.
(Hint: Write �1 � �1 � 10�3 and plug this into the equation; then re-
arrange. This gives the regression for obtaining the confidence interval
for �1.)

6.11 Use the data in GPA2.RAW for this exercise.
(i) Estimate the model

sat � �0 � �1hsize � �2hsize2 � u,

where hsize is size of graduating class (in hundreds), and write the
results in the usual form. Is the quadratic term statistically significant?

(ii) Using the estimated equation from part (i), what is the “optimal” high
school size? Justify your answer.

(iii) Is this analysis representative of the academic performance of all high
school seniors? Explain.

(iv) Find the estimated optimal high school size, using log(sat) as the
dependent variable. Is it much different from what you obtained in part
(ii)?

6.12 Use the housing price data in HPRICE1.RAW for this exercise.
(i) Estimate the model

log(price) � �0 � �1log(lotsize) � �2log(sqrft) � �3bdrms � u

and report the results in the usual OLS format.
(ii) Find the predicted value of log(price), when lotsize � 20,000, sqrft �

2,500, and bdrms � 4. Using the methods in Section 6.4, find the pre-
dicted value of price at the same values of the explanatory variables.

(iii) For explaining variation in price, decide whether you prefer the model
from part (i) or the model

price � �0 � �1lotsize � �2sqrft � �3bdrms � u.

6.13 Use the data in VOTE1.RAW for this exercise.
(i) Consider a model with an interaction between expenditures:

voteA � �0 � �1prtystrA � �2expendA � �3expendB � �4expendA�expendB � u.

What is the partial effect of expendB on voteA, holding prtystrA and
expendA fixed? What is the partial effect of expendA on voteA? Is the
expected sign for �4 obvious?

(ii) Estimate the equation in part (i) and report the results in the usual form.
Is the interaction term statistically significant?

(iii) Find the average of expendA in the sample. Fix expendA at 300 (for
$300,000). What is the estimated effect of another $100,000 dollars
spent by Candidate B on voteA? Is this a large effect?
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(iv) Now fix expendB at 100. What is the estimated effect of 
expendA �
100 on voteA. Does this make sense?

(v) Now estimate a model that replaces the interaction with shareA,
Candidate A’s percentage share of total campaign expenditures. Does it
make sense to hold both expendA and expendB fixed, while changing
shareA?

(vi) (Requires calculus) In the model from part (v), find the partial effect of
expendB on voteA, holding prtystrA and expendA fixed. Evaluate this at
expendA � 300 and expendB � 0 and comment on the results.

6.14 Use the data in ATTEND.RAW for this exercise.
(i) In the model of Example 6.3, argue that


stndfnl/
priGPA � �2 � 2�4priGPA � �6atndrte.

Use equation (6.19) to estimate the partial effect, when priGPA � 2.59
and atndrte � .82. Interpret your estimate.

(ii) Show that the equation can be written as

stndfnl � �0 � �1atndrte � �2priGPA � �3ACT � �4(priGPA � 2.59)2

� �5ACT2 � �6priGPA(atndrte � .82) � u,

where �2 � �2 � 2�4(2.59) � �6(.82). (Note that the intercept has
changed, but this is unimportant.) Use this to obtain the standard error
of �̂2 from part (i).

6.15 Use the data in HPRICE1.RAW for this exercise.
(i) Estimate the model

price � �0 � �1lotsize � �2sqrft � �3bdrms � u

and report the results in the usual form, including the standard error of
the regression. Obtain predicted price, when we plug in lotsize �
10,000, sqrft � 2,300, and bdrms � 4; round this price to the nearest
dollar.

(ii) Run a regression that allows you to put a 95% confidence interval
around the predicted value in part (i). Note that your prediction will dif-
fer somewhat due to rounding error.

(iii) Let price0 be the unknown future selling price of the house with the
characteristics used in parts (i) and (ii). Find a 95% CI for price0 and
comment on the width of this confidence interval.
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In previous chapters, the dependent and independent variables in our multiple regres-
sion models have had quantitative meaning. Just a few examples include hourly
wage rate, years of education, college grade point average, amount of air pollution,

level of firm sales, and number of arrests. In each case, the magnitude of the variable
conveys useful information. In empirical work, we must also incorporate qualitative
factors into regression models. The gender or race of an individual, the industry of a
firm (manufacturing, retail, etc.), and the region in the United States where a city is
located (south, north, west, etc.) are all considered to be qualitative factors.

Most of this chapter is dedicated to qualitative independent variables. After we dis-
cuss the appropriate ways to describe qualitative information in Section 7.1, we show
how qualitative explanatory variables can be easily incorporated into multiple regres-
sion models in Sections 7.2, 7.3, and 7.4. These sections cover almost all of the popu-
lar ways that qualitative independent variables are used in cross-sectional regression
analysis.

In Section 7.5, we discuss a binary dependent variable, which is a particular kind of
qualitative dependent variable. The multiple regression model has an interesting inter-
pretation in this case and is called the linear probability model. While much maligned
by some econometricians, the simplicity of the linear probability model makes it use-
ful in many empirical contexts. We will describe its drawbacks in Section 7.5, but they
are often secondary in empirical work.

7.1 DESCRIBING QUALITATIVE INFORMATION

Qualitative factors often come in the form of binary information: a person is female or
male; a person does or does not own a personal computer; a firm offers a certain kind
of employee pension plan or it does not; a state administers capital punishment or it
does not. In all of these examples, the relevant information can be captured by defin-
ing a binary variable or a zero-one variable. In econometrics, binary variables are
most commonly called dummy variables, although this name is not especially
descriptive.

In defining a dummy variable, we must decide which event is assigned the value one
and which is assigned the value zero. For example, in a study of individual wage deter-
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mination, we might define female to be a binary variable taking on the value one for
females and the value zero for males. The name in this case indicates the event with the

value one. The same information is cap-
tured by defining male to be one if the per-
son is male and zero if the person is
female. Either of these is better than using
gender because this name does not make it
clear when the dummy variable is one:
does gender � 1 correspond to male or

female? What we call our variables is unimportant for getting regression results, but it
always helps to choose names that clarify equations and expositions.

Suppose in the wage example that we have chosen the name female to indicate gen-
der. Further, we define a binary variable married to equal one if a person is married
and zero if otherwise. Table 7.1 gives a partial listing of a wage data set that might
result. We see that Person 1 is female and not married, Person 2 is female and married,
Person 3 is male and not married, and so on.

Why do we use the values zero and one to describe qualitative information? In a
sense, these values are arbitrary: any two different values would do. The real benefit of
capturing qualitative information using zero-one variables is that it leads to regression
models where the parameters have very natural interpretations, as we will see now.
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Suppose that, in a study comparing election outcomes between
Democratic and Republican candidates, you wish to indicate the
party of each candidate. Is a name such as party a wise choice for a
binary variable in this case? What would be a better name?

Table 7.1

A Partial Listing of the Data in WAGE1.RAW

person wage educ exper female married

1 3.10 11 2 1 0

2 3.24 12 22 1 1

3 3.00 11 2 0 0

4 6.00 8 44 0 1

5 5.30 12 7 0 1

� � � � � �
� � � � � �
� � � � � �

525 11.56 16 5 0 1

526 3.50 14 5 1 0
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7.2 A SINGLE DUMMY INDEPENDENT VARIABLE

How do we incorporate binary information into regression models? In the simplest
case, with only a single dummy explanatory variable, we just add it as an independent
variable in the equation. For example, consider the following simple model of hourly
wage determination:

wage � �0 � �0 female � �1educ � u. (7.1)

We use �0 as the parameter on female in order to highlight the interpretation of the pa-
rameters multiplying dummy variables; later, we will use whatever notation is most
convenient.

In model (7.1), only two observed factors affect wage: gender and education. Since
female � 1 when the person is female, and female � 0 when the person is male, the
parameter �0 has the following interpretation: �0 is the difference in hourly wage
between females and males, given the same amount of education (and the same error
term u). Thus, the coefficient �0 determines whether there is discrimination against
women: if �0 � 0, then, for the same level of other factors, women earn less than men
on average.

In terms of expectations, if we assume the zero conditional mean assumption
E(u� female,educ) � 0, then

�0 � E(wage� female � 1,educ) � E(wage� female � 0,educ).

Since female � 1 corresponds to females and female � 0 corresponds to males, we can
write this more simply as

�0 � E(wage� female,educ) � E(wage�male,educ). (7.2)

The key here is that the level of education is the same in both expectations; the differ-
ence, �0, is due to gender only.

The situation can be depicted graphically as an intercept shift between males and
females. In Figure 7.1, the case �0 � 0 is shown, so that men earn a fixed amount more
per hour than women. The difference does not depend on the amount of education, and
this explains why the wage-education profiles for women and men are parallel.

At this point, you may wonder why we do not also include in (7.1) a dummy vari-
able, say male, which is one for males and zero for females. The reason is that this
would be redundant. In (7.1), the intercept for males is �0, and the intercept for females
is �0 � �0. Since there are just two groups, we only need two different intercepts. This
means that, in addition to �0, we need to use only one dummy variable; we have cho-
sen to include the dummy variable for females. Using two dummy variables would
introduce perfect collinearity because female � male � 1, which means that male is a
perfect linear function of female. Including dummy variables for both genders is the
simplest example of the so-called dummy variable trap, which arises when too many
dummy variables describe a given number of groups. We will discuss this problem later.

In (7.1), we have chosen males to be the base group or benchmark group, that is,
the group against which comparisons are made. This is why �0 is the intercept for
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males, and �0 is the difference in intercepts between females and males. We could
choose females as the base group by writing the model as

wage � �0 � �0male � �1educ � u,

where the intercept for females is �0 and the intercept for males is �0 � �0; this implies
that �0 � �0 � �0 and �0 � �0 � �0. In any application, it does not matter how we
choose the base group, but it is important to keep track of which group is the base
group.

Some researchers prefer to drop the overall intercept in the model and to include
dummy variables for each group. The equation would then be wage � �0male �
�0 female � �1educ � u, where the intercept for men is �0 and the intercept for women
is �0. There is no dummy variable trap in this case because we do not have an overall
intercept. However, this formulation has little to offer, since testing for a difference in
the intercepts is more difficult, and there is no generally agreed upon way to compute
R-squared in regressions without an intercept. Therefore, we will always include an
overall intercept for the base group.
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Nothing much changes when more explanatory variables are involved. Taking
males as the base group, a model that controls for experience and tenure in addition to
education is

wage � �0 � �0 female � �1educ � �2exper � �3tenure � u. (7.3)

If educ, exper, and tenure are all relevant productivity characteristics, the null hypoth-
esis of no difference between men and women is H0: �0 � 0. The alternative that there
is discrimination against women is H1: �0 � 0.

How can we actually test for wage discrimination? The answer is simple: just esti-
mate the model by OLS, exactly as before, and use the usual t statistic. Nothing changes
about the mechanics of OLS or the statistical theory when some of the independent
variables are defined as dummy variables. The only difference with what we have done
up until now is in the interpretation of the coefficient on the dummy variable.

E X A M P L E  7 . 1
( H o u r l y  W a g e  E q u a t i o n )

Using the data in WAGE1.RAW, we estimate model (7.3). For now, we use wage, rather
than log(wage), as the dependent variable:

(wâge � �1.57) � (1.81) female � (.572) educ
wâge � �(0.72) � (0.26) female � (.049) educ

� (.025) exper � (.141) tenure
� (.012) exper � (.021) tenure

n � 526, R2 � .364.

(7.4)

The negative intercept—the intercept for men, in this case—is not very meaningful, since
no one has close to zero years of educ, exper, and tenure in the sample. The coefficient on
female is interesting, because it measures the average difference in hourly wage between
a woman and a man, given the same levels of educ, exper, and tenure. If we take a woman
and a man with the same levels of education, experience, and tenure, the woman earns,
on average, $1.81 less per hour than the man. (Recall that these are 1976 wages.)

It is important to remember that, because we have performed multiple regression and
controlled for educ, exper, and tenure, the $1.81 wage differential cannot be explained by
different average levels of education, experience, or tenure between men and women. We
can conclude that the differential of $1.81 is due to gender or factors associated with gen-
der that we have not controlled for in the regression.

It is informative to compare the coefficient on female in equation (7.4) to the estimate
we get when all other explanatory variables are dropped from the equation:

wâge � (7.10) � (2.51) female
wâge � (0.21) � (0.30) female

n � 526, R2 � .116.

(7.5)
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The coefficients in (7.5) have a simple interpretation. The intercept is the average wage for
men in the sample (let female � 0), so men earn $7.10 per hour on average. The coeffi-
cient on female is the difference in the average wage between women and men. Thus, the
average wage for women in the sample is 7.10 � 2.51 � 4.59, or $4.59 per hour.
(Incidentally, there are 274 men and 252 women in the sample.)

Equation (7.5) provides a simple way to carry out a comparison-of-means test between
the two groups, which in this case are men and women. The estimated difference, �2.51,
has a t statistic of �8.37, which is very statistically significant (and, of course, $2.51 is eco-
nomically large as well). Generally, simple regression on a constant and a dummy variable
is a straightforward way to compare the means of two groups. For the usual t test to be
valid, we must assume that the homoskedasticity assumption holds, which means that the
population variance in wages for men is the same as that for women.

The estimated wage differential between men and women is larger in (7.5) than in (7.4)
because (7.5) does not control for differences in education, experience, and tenure, and
these are lower, on average, for women than for men in this sample. Equation (7.4) gives
a more reliable estimate of the ceteris paribus gender wage gap; it still indicates a very large
differential.

In many cases, dummy independent variables reflect choices of individuals or other
economic units (as opposed to something predetermined, such as gender). In such situ-
ations, the matter of causality is again a central issue. In the following example, we
would like to know whether personal computer ownership causes a higher college grade
point average.

E X A M P L E  7 . 2
( E f f e c t s  o f  C o m p u t e r  O w n e r s h i p  o n  C o l l e g e  G P A )

In order to determine the effects of computer ownership on college grade point average,
we estimate the model

colGPA � �0 � �0PC � �1hsGPA � �2ACT � u,

where the dummy variable PC equals one if a student owns a personal computer and zero
otherwise. There are various reasons PC ownership might have an effect on colGPA. A stu-
dent’s work might be of higher quality if it is done on a computer, and time can be saved by
not having to wait at a computer lab. Of course, a student might be more inclined to play
computer games or surf the Internet if he or she owns a PC, so it is not obvious that �0 is pos-
itive. The variables hsGPA (high school GPA) and ACT (achievement test score) are used as con-
trols: it could be that stronger students, as measured by high school GPA and ACT scores, are
more likely to own computers. We control for these factors because we would like to know
the average effect on colGPA if a student is picked at random and given a personal computer.

Using the data in GPA1.RAW, we obtain

col̂GPA � (1.26) � (.157) PC � (.447) hsGPA � (.0087) ACT
col̂GPA � (0.33) � (.057) PC � (.094) hsGPA � (.0105) ACT

n � 141, R2 � .219.

(7.6)
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This equation implies that a student who owns a PC has a predicted GPA about .16 point
higher than a comparable student without a PC (remember, both colGPA and hsGPA are on
a four-point scale). The effect is also very statistically significant, with tPC � .157/.057 �
2.75.

What happens if we drop hsGPA and ACT from the equation? Clearly, dropping the lat-
ter variable should have very little effect, as its coefficient and t statistic are very small. But
hsGPA is very significant, and so dropping it could affect the estimate of �PC. Regressing
colGPA on PC gives an estimate on PC equal to about .170, with a standard error of .063;
in this case, �̂PC and its t statistic do not change by much.

In the exercises at the end of the chapter, you will be asked to control for other factors
in the equation to see if the computer ownership effect disappears, or if it at least gets
notably smaller.

Each of the previous examples can be viewed as having relevance for policy analy-
sis. In the first example, we were interested in gender discrimination in the work force.
In the second example, we were concerned with the effect of computer ownership on
college performance. A special case of policy analysis is program evaluation, where
we would like to know the effect of economic or social programs on individuals, firms,
neighborhoods, cities, and so on.

In the simplest case, there are two groups of subjects. The control group does not
participate in the program. The experimental group or treatment group does take part
in the program. These names come from literature in the experimental sciences, and
they should not be taken literally. Except in rare cases, the choice of the control and
treatment groups is not random. However, in some cases, multiple regression analysis
can be used to control for enough other factors in order to estimate the causal effect of
the program.

E X A M P L E  7 . 3
( E f f e c t s  o f  T r a i n i n g  G r a n t s  o n  H o u r s  o f  T r a i n i n g )

Using the 1988 data for Michigan manufacturing firms in JTRAIN.RAW, we obtain the fol-
lowing estimated equation:

hrsêmp � (46.67) � (26.25) grant � (.98) log(sales)
hrsêmp � (43.41) � (5.59) grant � (3.54) log(sales)

� (6.07) log(employ)
� (3.88) log(employ)

n � 105, R2 � .237.

(7.7)

The dependent variable is hours of training per employee, at the firm level. The variable
grant is a dummy variable equal to one if the firm received a job training grant for 1988
and zero otherwise. The variables sales and employ represent annual sales and number of
employees, respectively. We cannot enter hrsemp in logarithmic form, because hrsemp is
zero for 29 of the 105 firms used in the regression.

Chapter 7 Multiple Regression Analysis With Qualitative Information: Binary (or Dummy) Variables

217

d  7/14/99 5:55 PM  Page 217



The variable grant is very statistically significant, with tgrant � 4.70. Controlling for sales
and employment, firms that received a grant trained each worker, on average, 26.25 hours
more. Since the average number of hours of per worker training in the sample is about 17,
with a maximum value of 164, grant has a large effect on training, as is expected.

The coefficient on log(sales) is small and very insignificant. The coefficient on
log(employ) means that, if a firm is 10% larger, it trains its workers about .61 hour less. Its
t statistic is �1.56, which is only marginally statistically significant.

As with any other independent variable, we should ask whether the measured effect
of a qualitative variable is causal. In equation (7.7), is the difference in training between
firms that receive grants and those that do not due to the grant, or is grant receipt sim-
ply an indicator of something else? It might be that the firms receiving grants would
have, on average, trained their workers more even in the absence of a grant. Nothing in
this analysis tells us whether we have estimated a causal effect; we must know how the
firms receiving grants were determined. We can only hope we have controlled for as
many factors as possible that might be related to whether a firm received a grant and to
its levels of training.

We will return to policy analysis with dummy variables in Section 7.6, as well as in
later chapters.

Interpreting Coefficients on Dummy Explanatory
Variables When the Dependent Variable Is log(y)

A common specification in applied work has the dependent variable appearing in loga-
rithmic form, with one or more dummy variables appearing as independent variables.
How do we interpret the dummy variable coefficients in this case? Not surprisingly, the
coefficients have a percentage interpretation.

E X A M P L E  7 . 4
( H o u s i n g  P r i c e  R e g r e s s i o n )

Using the data in HPRICE1.RAW, we obtain the equation

log(prîce) � (5.56) � (.168)log(lotsize) � (.707)log(sqrft)
log(prîce) � (0.65) � (.038)log(lotsize) � (.093)log(sqrft)

� (.027) bdrms � (.054)colonial
� (.029) bdrms � (.045)colonial

n � 88, R2 � .649.

(7.8)

All the variables are self-explanatory except colonial, which is a binary variable equal to one
if the house is of the colonial style. What does the coefficient on colonial mean? For given
levels of lotsize, sqrft, and bdrms, the difference in log(̂price) between a house of colonial
style and that of another style is .054. This means that a colonial style house is predicted to
sell for about 5.4% more, holding other factors fixed.
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This example shows that, when log(y) is the dependent variable in a model, the
coefficient on a dummy variable, when multiplied by 100, is interpreted as the percent-
age difference in y, holding all other factors fixed. When the coefficient on a dummy
variable suggests a large proportionate change in y, the exact percentage difference can
be obtained exactly as with the semi-elasticity calculation in Section 6.2.

E X A M P L E  7 . 5
( L o g  H o u r l y  W a g e  E q u a t i o n )

Let us reestimate the wage equation from Example 7.1, using log(wage) as the dependent
variable and adding quadratics in exper and tenure:

log(ŵage) � (.417) � (.297)female � (.080)educ � (.029)exper
log(ŵage) � (.099) � (.036)female � (.007)educ � (.005)exper

� (.00058)exper2 � (.032)tenure � (.00059)tenure2

� (.00010)exper2 � (.007)tenure � (.00023)tenure2

n � 526, R2 � .441.

(7.9)

Using the same approximation as in Example 7.4, the coefficient on female implies that,
for the same levels of educ, exper, and tenure, women earn about 100(.297) � 29.7%
less than men. We can do better than this by computing the exact percentage difference
in predicted wages. What we want is the proportionate difference in wages between
females and males, holding other factors fixed: (wâgeF � wâgeM)/wâgeM. What we have
from (7.9) is

log(̂wageF) � log(̂wageM) � �.297.

Exponentiating and subtracting one gives

(wâgeF � wâgeM)/wâgeM � exp(�.297) � 1 � �.257.

This more accurate estimate implies that a woman’s wage is, on average, 25.7% below a
comparable man’s wage.

If we had made the same correction in Example 7.4, we would have obtained
exp(.054) � 1 � .0555, or about 5.6%. The correction has a smaller effect in Example
7.4 than in the wage example, because the magnitude of the coefficient on the dummy
variable is much smaller in (7.8) than in (7.9).

Generally, if �̂1 is the coefficient on a dummy variable, say x1, when log(y) is the
dependent variable, the exact percentage difference in the predicted y when x1 � 1 ver-
sus when x1 � 0 is

100 	 [exp(�̂1) � 1]. (7.10)

The estimate �̂1 can be positive or negative, and it is important to preserve its sign in
computing (7.10).

Chapter 7 Multiple Regression Analysis With Qualitative Information: Binary (or Dummy) Variables

219

d  7/14/99 5:55 PM  Page 219



7.3 USING DUMMY VARIABLES FOR MULTIPLE
CATEGORIES

We can use several dummy independent variables in the same equation. For example,
we could add the dummy variable married to equation (7.9). The coefficient on mar-
ried gives the (approximate) proportional differential in wages between those who are
and are not married, holding gender, educ, exper, and tenure fixed. When we estimate
this model, the coefficient on married (with standard error in parentheses) is .053
(.041), and the coefficient on female becomes �.290 (.036). Thus, the “marriage pre-
mium” is estimated to be about 5.3%, but it is not statistically different from zero (t �
1.29). An important limitation of this model is that the marriage premium is assumed to
be the same for men and women; this is relaxed in the following example.

E X A M P L E  7 . 6
( L o g  H o u r l y  W a g e  E q u a t i o n )

Let us estimate a model that allows for wage differences among four groups: married men,
married women, single men, and single women. To do this, we must select a base group;
we choose single men. Then, we must define dummy variables for each of the remaining
groups. Call these marrmale, marrfem, and singfem. Putting these three variables into (7.9)
(and, of course, dropping female, since it is now redundant) gives

log(ŵage) � (.321) � (.213)marrmale � (.198)marrfem
log(ŵage) � (.100) � (.055)marrmale � (.058)marrfem

� (.110)singfem � (.079)educ � (.027)exper � (.00054)exper2

� (.056)singfem � (.007)educ � (.005)exper � (.00011)exper2

(7.11)
� (.029)tenure � (.00053)tenure2

� (.007)tenure � (.00023)tenure2

n � 526, R2 � .461.

All of the coefficients, with the exception of singfem, have t statistics well above two in
absolute value. The t statistic for singfem is about �1.96, which is just significant at the 5%
level against a two-sided alternative.

To interpret the coefficients on the dummy variables, we must remember that the base
group is single males. Thus, the estimates on the three dummy variables measure the pro-
portionate difference in wage relative to single males. For example, married men are esti-
mated to earn about 21.3% more than single men, holding levels of education, experience,
and tenure fixed. [The more precise estimate from (7.10) is about 23.7%.] A married
woman, on the other hand, earns a predicted 19.8% less than a single man with the same
levels of the other variables.

Since the base group is represented by the intercept in (7.11), we have included dummy
variables for only three of the four groups. If we were to add a dummy variable for single
males to (7.11), we would fall into the dummy variable trap by introducing perfect
collinearity. Some regression packages will automatically correct this mistake for you, while
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others will just tell you there is perfect collinearity. It is best to carefully specify the dummy
variables, because it forces us to properly interpret the final model.

Even though single men is the base group in (7.11), we can use this equation to obtain
the estimated difference between any two groups. Since the overall intercept is common to
all groups, we can ignore that in finding differences. Thus, the estimated proportionate dif-
ference between single and married women is �.110 � (�.198) � .088, which means that
single women earn about 8.8% more than married women. Unfortunately, we cannot use
equation (7.11) for testing whether the estimated difference between single and married
women is statistically significant. Knowing the standard errors on marrfem and singfem is
not enough to carry out the test (see Section 4.4). The easiest thing to do is to choose one
of these groups to be the base group and to reestimate the equation. Nothing substantive
changes, but we get the needed estimate and its standard error directly. When we use mar-
ried women as the base group, we obtain

log(ŵage) � (.123) � (.411)marrmale � (.198)singmale � (.088)singfem � …,
log(ŵage) � (.106) � (.056)marrmale � (.058)singmale � (.052)singfem � …,

where, of course, none of the unreported coefficients or standard errors have changed. The
estimate on singfem is, as expected, .088. Now, we have a standard error to go along with
this estimate. The t statistic for the null that there is no difference in the population
between married and single women is tsingfem � .088/.052 � 1.69. This is marginal evi-
dence against the null hypothesis. We also see that the estimated difference between mar-
ried men and married women is very statistically significant (tmarrmale � 7.34).

The previous example illustrates a general principle for including dummy variables
to indicate different groups: if the regression model is to have different intercepts for,
say g groups or categories, we need to include g � 1 dummy variables in the model
along with an intercept. The intercept for the base group is the overall intercept in the

model, and the dummy variable coefficient
for a particular group represents the esti-
mated difference in intercepts between that
group and the base group. Including g
dummy variables along with an intercept
will result in the dummy variable trap. An
alternative is to include g dummy variables
and to exclude an overall intercept. This is

not advisable because testing for differences relative to a base group becomes difficult,
and some regression packages alter the way the R-squared is computed when the regres-
sion does not contain an intercept.

Incorporating Ordinal Information by Using Dummy
Variables

Suppose that we would like to estimate the effect of city credit ratings on the munici-
pal bond interest rate (MBR). Several financial companies, such as Moody’s Investment
Service and Standard and Poor’s, rate the quality of debt for local governments, where
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the ratings depend on things like probability of default. (Local governments prefer
lower interest rates in order to reduce their costs of borrowing.) For simplicity, suppose
that rankings range from zero to four, with zero being the worst credit rating and four
being the best. This is an example of an ordinal variable. Call this variable CR for con-
creteness. The question we need to address is: How do we incorporate the variable CR
into a model to explain MBR?

One possibility is to just include CR as we would include any other explanatory
variable:

MBR � �0 � �1CR � other factors,

where we do not explicitly show what other factors are in the model. Then �1 is the per-
centage point change in MBR when CR increases by one unit, holding other factors
fixed. Unfortunately, it is rather hard to interpret a one-unit increase in CR. We know
the quantitative meaning of another year of education, or another dollar spent per stu-
dent, but things like credit ratings typically have only ordinal meaning. We know that a
CR of four is better than a CR of three, but is the difference between four and three the
same as the difference between one and zero? If not, then it might not make sense to
assume that a one-unit increase in CR has a constant effect on MBR.

A better approach, which we can implement because CR takes on relatively few val-
ues, is to define dummy variables for each value of CR. Thus, let CR1 � 1 if CR � 1,
and CR1 � 0 otherwise; CR2 � 1 if CR � 2, and CR2 � 0 otherwise. And so on.
Effectively, we take the single credit rating and turn it into five categories. Then, we can
estimate the model

MBR � �0 � �1CR1 � �2CR2 � �3CR3 � �4CR4 � other factors. (7.12)

Following our rule for including dummy variables in a model, we include four dummy
variables since we have five categories. The omitted category here is a credit rating of
zero, and so it is the base group. (This is why we do not need to define a dummy vari-
able for this category.) The coefficients are easy to interpret: �1 is the difference in MBR

(other factors fixed) between a municipal-
ity with a credit rating of one and a munic-
ipality with a credit rating of zero; �2 is the
difference in MBR between a municipality
with a credit rating of two and a munici-
pality with a credit rating of zero; and so

on. The movement between each credit rating is allowed to have a different effect, so
using (7.12) is much more flexible than simply putting CR in as a single variable. Once
the dummy variables are defined, estimating (7.12) is straightforward.

E X A M P L E  7 . 7
( E f f e c t s  o f  P h y s i c a l  A t t r a c t i v e n e s s  o n  W a g e )

Hamermesh and Biddle (1994) used measures of physical attractiveness in a wage equation.
Each person in the sample was ranked by an interviewer for physical attractiveness, using
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five categories (homely, quite plain, average, good looking, and strikingly beautiful or hand-
some). Because there are so few people at the two extremes, the authors put people into
one of three groups for the regression analysis: average, below average, and above aver-
age, where the base group is average. Using data from the 1977 Quality of Employment
Survey, after controlling for the usual productivity characteristics, Hamermesh and Biddle
estimated an equation for men:

log(̂wage) � �̂0 � (.164)belavg � (.016)abvavg � other factors
log(̂wage) � �̂0 � (.046)belavg � (.033)abvavg � other factors

n � 700, R̄2 � .403

and an equation for women:

log(̂wage) � �̂0 � (.124)belavg � (.035)abvavg � other factors
log(̂wage) � �̂0 � (.066)belavg � (.049)abvavg � other factors

n � 409, R̄2 � .330.

The other factors controlled for in the regressions include education, experience, tenure,
marital status, and race; see Table 3 in Hamermesh and Biddle’s paper for a more complete
list. In order to save space, the coefficients on the other variables are not reported in the
paper and neither is the intercept.

For men, those with below average looks are estimated to earn about 16.4% less than
an average looking man who is the same in other respects (including education, experience,
tenure, marital status, and race). The effect is statistically different from zero, with
t � �3.57. Similarly, men with above average looks earn an estimated 1.6% more,
although the effect is not statistically significant (t � .5).

A woman with below average looks earns about 12.4% less than an otherwise com-
parable average looking woman, with t � �1.88. As was the case for men, the estimate
on abvavg is not statistically different from zero.

In some cases, the ordinal variable takes on too many values so that a dummy vari-
able cannot be included for each value. For example, the file LAWSCH85.RAW con-
tains data on median starting salaries for law school graduates. One of the key
explanatory variables is the rank of the law school. Since each law school has a differ-
ent rank, we clearly cannot include a dummy variable for each rank. If we do not wish
to put the rank directly in the equation, we can break it down into categories. The fol-
lowing example shows how this is done.

E X A M P L E  7 . 8
( E f f e c t s  o f  L a w  S c h o o l  R a n k i n g s  o n  S t a r t i n g  S a l a r i e s )

Define the dummy variables top10, r11_25, r26_40, r41_60, r61_100 to take on the value
unity when the variable rank falls into the appropriate range. We let schools ranked below
100 be the base group. The estimated equation is
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log(sâlary) � (9.17)�(.700)top10 �(.594)r11_25 �(.375)r26_40
(0.41) (.053) (.039) (.034)

�(.263)r41_60 �(.132)r61_100 �(.0057)LSAT
(.028) (.021) (.0031)

(7.13)
�(.014)GPA �(.036)log(libvol) �(.0008)log(cost)

(.074) (.026) (.0251)

n � 136, R2 � .911, R̄2 � .905.

We see immediately that all of the dummy variables defining the different ranks are very
statistically significant. The estimate on r61_100 means that, holding LSAT, GPA, libvol, and
cost fixed, the median salary at a law school ranked between 61 and 100 is about 13.2%
higher than that at a law school ranked below 100. The difference between a top 10 school
and a below 100 school is quite large. Using the exact calculation given in equation (7.10)
gives exp(.700) � 1 � 1.014, and so the predicted median salary is more than 100% higher
at a top 10 school than it is at a below 100 school.

As an indication of whether breaking the rank into different groups is an improvement,
we can compare the adjusted R-squared in (7.13) with the adjusted R-squared from includ-
ing rank as a single variable: the former is .905 and the latter is .836, so the additional flex-
ibility of (7.13) is warranted.

Interestingly, once the rank is put into the (admittedly somewhat arbitrary) given cate-
gories, all of the other variables become insignificant. In fact, a test for joint significance of
LSAT, GPA, log(libvol), and log(cost) gives a p-value of .055, which is borderline significant.
When rank is included in its original form, the p-value for joint significance is zero to four
decimal places.

One final comment about this example. In deriving the properties of ordinary least
squares, we assumed that we had a random sample. The current application violates that
assumption because of the way rank is defined: a school’s rank necessarily depends on the
rank of the other schools in the sample, and so the data cannot represent independent
draws from the population of all law schools. This does not cause any serious problems pro-
vided the error term is uncorrelated with the explanatory variables.

7.4 INTERACTIONS INVOLVING DUMMY VARIABLES

Interactions Among Dummy Variables

Just as variables with quantitative meaning can be interacted in regression models,
so can dummy variables. We have effectively seen an example of this in Example
7.6, where we defined four categories based on marital status and gender. In fact,
we can recast that model by adding an interaction term between female and mar-
ried to the model where female and married appear separately. This allows the
marriage premium to depend on gender, just as it did in equation (7.11). For pur-
poses of comparison, the estimated model with the female-married interaction
term is
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log(̂wage) � (.321) � (.110) female � (.213) married
log(̂wage) � (.100) � (.056) female � (.055) married

� (.301) female 	married � …,
� (.072) female 	married � …,

(7.14)

where the rest of the regression is necessarily identical to (7.11). Equation (7.14) shows
explicitly that there is a statistically significant interaction between gender and marital
status. This model also allows us to obtain the estimated wage differential among all
four groups, but here we must be careful to plug in the correct combination of zeros and
ones.

Setting female � 0 and married � 0 corresponds to the group single men, which is
the base group, since this eliminates female, married, and female	married. We can find
the intercept for married men by setting female � 0 and married � 1 in (7.14); this
gives an intercept of .321 � .213 � .534. And so on.

Equation (7.14) is just a different way of finding wage differentials across all gen-
der-marital status combinations. It has no real advantages over (7.11); in fact, equation
(7.11) makes it easier to test for differentials between any group and the base group of
single men.

E X A M P L E  7 . 9
( E f f e c t s  o f  C o m p u t e r  U s a g e  o n  W a g e s )

Krueger (1993) estimates the effects of computer usage on wages. He defines a dummy vari-
able, which we call compwork, equal to one if an individual uses a computer at work. Another
dummy variable, comphome, equals one if the person uses a computer at home. Using
13,379 people from the 1989 Current Population Survey, Krueger (1993, Table 4) obtains

log(̂wage) � �̂0 � (.177) compwork � (.070) comphome
log(̂wage) � �̂0 � (.009) compwork � (.019) comphome

� (.017) compwork	comphome � other factors.
� (.023) compwork	comphome � other factors.

(7.15)

(The other factors are the standard ones for wage regressions, including education, experi-
ence, gender, and marital status; see Krueger’s paper for the exact list.) Krueger does not
report the intercept because it is not of any importance; all we need to know is that the base
group consists of people who do not use a computer at home or at work. It is worth notic-
ing that the estimated return to using a computer at work (but not at home) is about 17.7%.
(The more precise estimate is 19.4%.) Similarly, people who use computers at home but not
at work have about a 7% wage premium over those who do not use a computer at all. The
differential between those who use a computer at both places, relative to those who use a
computer in neither place, is about 26.4% (obtained by adding all three coefficients and
multiplying by 100), or the more precise estimate 30.2% obtained from equation (7.10).

The interaction term in (7.15) is not statistically significant, nor is it very big economi-
cally. But it is causing little harm by being in the equation.
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F i g u r e  7 . 2

Graphs of equation (7.16). (a) �0 � 0, �1 � 0; (b) �0 � 0, �1 � 0. 

Allowing for Different Slopes

We have now seen several examples of how to allow different intercepts for any num-
ber of groups in a multiple regression model. There are also occasions for interacting
dummy variables with explanatory variables that are not dummy variables to allow for
differences in slopes. Continuing with the wage example, suppose that we wish to test
whether the return to education is the same for men and women, allowing for a constant
wage differential between men and women (a differential for which we have already
found evidence). For simplicity, we include only education and gender in the model.
What kind of model allows for a constant wage differential as well as different returns
to education? Consider the model

log(wage) � (�0 � �0 female) � (�1 � �1 female)educ � u. (7.16)

If we plug female � 0 into (7.16), then we find that the intercept for males is �0, and
the slope on education for males is �1. For females, we plug in female � 1; thus, the
intercept for females is �0 � �0, and the slope is �1 � �1. Therefore, �0 measures the
difference in intercepts between women and men, and �1 measures the difference in the
return to education between women and men. Two of the four cases for the signs of �0

and �1 are presented in Figure 7.2.
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Graph (a) shows the case where the intercept for women is below that for men, and
the slope of the line is smaller for women than for men. This means that women earn
less than men at all levels of education, and the gap increases as educ gets larger. In
graph (b), the intercept for women is below that for men, but the slope on education is
larger for women. This means that women earn less than men at low levels of educa-
tion, but the gap narrows as education increases. At some point, a woman earns more
than a man, given the same levels of education (and this point is easily found given the
estimated equation).

How can we estimate model (7.16)? In order to apply OLS, we must write the
model with an interaction between female and educ:

log(wage) � �0 � �0 female � �1educ � �1 female	educ � u. (7.17)

The parameters can now be estimated from the regression of log(wage) on female, educ,
and female	educ. Obtaining the interaction term is easy in any regression package. Do
not be daunted by the odd nature of female	educ, which is zero for any man in the sam-
ple and equal to the level of education for any woman in the sample.

An important hypothesis is that the return to education is the same for women and
men. In terms of model (7.17), this is stated as H0: �1 � 0, which means that the slope
of log(wage) with respect to educ is the same for men and women. Note that this
hypothesis puts no restrictions on the difference in intercepts, �0. A wage differential
between men and women is allowed under this null, but it must be the same at all lev-
els of education. This situation is described by Figure 7.1.

We are also interested in the hypothesis that average wages are identical for men
and women who have the same levels of education. This means that �0 and �1 must both
be zero under the null hypothesis. In equation (7.17), we must use an F test to test
H0: �0 � 0, �1 � 0. In the model with just an intercept difference, we reject this hypoth-
esis because H0: �0 � 0 is soundly rejected against H1: �0 � 0.

E X A M P L E  7 . 1 0
( L o g  H o u r l y  W a g e  E q u a t i o n )

We add quadratics in experience and tenure to (7.17):

log(̂wage) � (.389) � (.227) female � (.082) educ
log(̂wage) � (.119) � (.168) female �(.008) educ

� (.0056) female	educ � (.029) exper � (.00058) exper2

� (.0131) female c � (.005) exper � (.00011) exper2

(7.18)
� (.032) tenure � (.00059) tenure2

� (.007) tenure � (.00024) tenure2

n � 526, R2 � .441.

The estimated return to education for men in this equation is .082, or 8.2%. For women,
it is .082 � .0056 � .0764, or about 7.6%. The difference, �.56%, or just over one-half
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a percentage point less for women, is not economically large nor statistically significant: the
t statistic is �.0056/.0131 � �.43. Thus, we conclude that there is no evidence against the
hypothesis that the return to education is the same for men and women.

The coefficient on female, while remaining economically large, is no longer significant
at conventional levels (t � �1.35). Its coefficient and t statistic in the equation without
the interaction were �.297 and �8.25, respectively [see equation (7.9)]. Should we now
conclude that there is no statistically significant evidence of lower pay for women at the
same levels of educ, exper, and tenure? This would be a serious error. Since we have
added the interaction female	educ to the equation, the coefficient on female is now esti-
mated much less precisely than it was in equation (7.9): the standard error has increased
by almost five-fold (.168/.036 � 4.67). The reason for this is that female and female	educ
are highly correlated in the sample. In this example, there is a useful way to think about
the multicollinearity: in equation (7.17) and the more general equation estimated in
(7.18), �0 measures the wage differential between women and men when educ � 0. As
there is no one in the sample with even close to zero years of education, it is not surpris-
ing that we have a difficult time estimating the differential at educ � 0 (nor is the differ-
ential at zero years of education very informative). More interesting would be to estimate
the gender differential at, say, the average education level in the sample (about 12.5).
To do this, we would replace female	educ with female	(educ � 12.5) and rerun the
regression; this only changes the coefficient on female and its standard error. (See Exer-
cise 7.15.)

If we compute the F statistic for H0: �0 � 0, �1 � 0, we obtain F � 34.33, which is a
huge value for an F random variable with numerator df � 2 and denominator df � 518:
the p-value is zero to four decimal places. In the end, we prefer model (7.9), which allows
for a constant wage differential between women and men.

As a more complicated example in-
volving interactions, we now look at the ef-
fects of race and city racial composition on
major league baseball player salaries.

E X A M P L E  7 . 1 1
( E f f e c t s  o f  R a c e  o n  B a s e b a l l  P l a y e r  S a l a r i e s )

The following equation is estimated for the 330 major league baseball players for which city
racial composition statistics are available. The variables black and hispan are binary indica-
tors for the individual players. (The base group is white players.) The variable percblck is the
percentage of the team’s city that is black, and perchisp is the percentage of Hispanics. The
other variables measure aspects of player productivity and longevity. Here, we are interested
in race effects after controlling for these other factors.

In addition to including black and hispan in the equation, we add the interactions
black	percblck and hispan	perchisp. The estimated equation is
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log(sâlary) � (10.34) � (.0673)years � (.0089)gamesyr
log(sâlary) � (2.18) � (.0129)years � (.0034)gamesyr

� (.00095)bavg � (.0146)hrunsyr � (.0045)rbisyr
� (.00151)bavg � (.0164)hrunsyr � (.0076)rbisyr

� (.0072)runsyr � (.0011)fldperc � (.0075)allstar
� (.0046)runsyr � (.0021) fldperc � (.0029)allstar

(7.19)

� (.198)black � (.190)hispan � (.0125)black	percblck
� (.125)black � (.153)hispan � (.0050)black	percblck

� (.0201)hispan	perchisp, n � 330, R2 � .638.
� (.0098)hispan	perchisp, n � 330, R2 � .638.

First, we should test whether the four race variables, black, hispan, black	percblck, and
hispan	perchisp are jointly significant. Using the same 330 players, the R-squared when the
four race variables are dropped is .626. Since there are four restrictions and df � 330 � 13
in the unrestricted model, the F statistic is about 2.63, which yields a  p-value of .034. Thus,
these variables are jointly significant at the 5% level (though not at the 1% level).

How do we interpret the coefficients on the race variables? In the following discussion,
all productivity factors are held fixed. First, consider what happens for black players, hold-
ing perchisp fixed. The coefficient �.198 on black literally means that, if a black player is in
a city with no blacks (percblck � 0), then the black player earns about 19.8% less than a
comparable white player. As percblck increases—which means the white population
decreases, since perchisp is held fixed—the salary of blacks increases relative to that for
whites. In a city with 10% blacks, log(salary) for blacks compared to that for whites is
�.198 � .0125(10) � �.073, so salary is about 7.3% less for blacks than for whites in such
a city. When percblck � 20, blacks earn about 5.2% more than whites. The largest per-
centage of blacks in a city is about 74% (Detroit).

Similarly, Hispanics earn less than whites in cities with a low percentage of Hispanics.
But we can easily find the value of perchisp that makes the differential between whites and
Hispanics equal zero: it must make �.190 � .0201 perchisp � 0, which gives perchisp �
9.45. For cities in which the percent of Hispanics is less than 9.45%, Hispanics are predicted
to earn less than whites (for a given black population), and the opposite is true if the num-
ber of Hispanics is above 9.45%. Twelve of the twenty-two cities represented in the sam-
ple have Hispanic populations that are less than 6% of the total population. The largest
percentage of Hispanics is about 31%.

How do we interpret these findings? We cannot simply claim discrimination exists
against blacks and Hispanics, because the estimates imply that whites earn less than blacks
and Hispanics in cities heavily populated by minorities. The importance of city composition
on salaries might be due to player preferences: perhaps the best black players live dispro-
portionately in cities with more blacks and the best Hispanic players tend to be in cities with
more Hispanics. The estimates in (7.19) allow us to determine that some relationship is pre-
sent, but we cannot distinguish between these two hypotheses.
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Testing for Differences in Regression Functions 
Across Groups

The previous examples illustrate that interacting dummy variables with other indepen-
dent variables can be a powerful tool. Sometimes, we wish to test the null hypothesis
that two populations or groups follow the same regression function, against the alter-
native that one or more of the slopes differ across the groups. We will also see exam-
ples of this in Chapter 13, when we discuss pooling different cross sections over time.

Suppose we want to test whether the same regression model describes college grade
point averages for male and female college athletes. The equation is

cumgpa � �0 � �1sat � �2hsperc � �3tothrs � u,

where sat is SAT score, hsperc is high school rank percentile, and tothrs is total hours
of college courses. We know that, to allow for an intercept difference, we can include a
dummy variable for either males or females. If we want any of the slopes to depend on
gender, we simply interact the appropriate variable with, say, female, and include it in
the equation.

If we are interested in testing whether there is any difference between men and
women, then we must allow a model where the intercept and all slopes can be different
across the two groups:

cumgpa � �0 � �0 female � �1sat � �1 female	sat � �2hsperc
� �2 female	hsperc � �3tothrs � �3 female	tothrs � u.

(7.20)

The parameter �0 is the difference in the intercept between women and men, �1 is the
slope difference with respect to sat between women and men, and so on. The null
hypothesis that cumgpa follows the same model for males and females is stated as

H0: �0 � 0, �1 � 0, �2 � 0, �3 � 0. (7.21)

If one of the �j is different from zero, then the model is different for men and women.
Using the spring semester data from the file GPA3.RAW, the full model is estimated

as

cum̂gpa �(1.48) �(.353)female �(.0011)sat �(.00075)female	sat
cum̂gpa �(0.21) �(.411)female �(.0002)sat �(.00039)female	sat

�(.0085)hsperc �(.00055)female	hsperc �(.0023)tothrs
�(.0014)hsperc �(.00316)female	hsperc �(.0009)tothrs

(7.22)
�(.00012)female	tothrs
�(.00163)female	tothrs

n � 366, R2 � .406, R̄2 � .394.

The female dummy variable and none of the interaction terms are very significant; only
the female	sat interaction has a t statistic close to two. But we know better than to rely
on the individual t statistics for testing a joint hypothesis such as (7.21). To compute the
F statistic, we must estimate the restricted model, which results from dropping female
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and all of the interactions; this gives an R2 (the restricted R2) of about .352, so the F sta-
tistic is about 8.14; the p-value is zero to five decimal places, which causes us to
soundly reject (7.21). Thus, men and women athletes do follow different GPA models,
even though each term in (7.22) that allows women and men to be different is individ-
ually insignificant at the 5% level.

The large standard errors on female and the interaction terms make it difficult to tell
exactly how men and women differ. We must be very careful in interpreting equation
(7.22) because, in obtaining differences between women and men, the interaction terms
must be taken into account. If we look only at the female variable, we would wrongly
conclude that cumgpa is about .353 less for women than for men, holding other factors
fixed. This is the estimated difference only when sat, hsperc, and tothrs are all set to
zero, which is not an interesting scenario. At sat � 1,100, hsperc � 10, and tothrs �
50, the predicted difference between a woman and a man is �.353 � .00075(1,100) �
.00055(10) �.00012(50) � .461. That is, the female athlete is predicted to have a GPA
that is almost one-half a point higher than the comparable male athlete.

In a model with three variables, sat, hsperc, and tothrs, it is pretty simple to add all
of the interactions to test for group differences. In some cases, many more explanatory
variables are involved, and then it is convenient to have a different way to compute the
statistic. It turns out that the sum of squared residuals form of the F statistic can be com-
puted easily even when many independent variables are involved.

In the general model with k explanatory variables and an intercept, suppose we have
two groups, call them g � 1 and g � 2. We would like to test whether the intercept and
all slopes are the same across the two groups. Write the model as

y � �g,0 � �g,1x1 � �g,2x2 � … � �g,k xk � u, (7.23)

for g � 1 and g � 2. The hypothesis that each beta in (7.23) is the same across the two
groups involves k � 1 restrictions (in the GPA example, k � 1 � 4). The unrestricted
model, which we can think of as having a group dummy variable and k interaction terms
in addition to the intercept and variables themselves, has n � 2(k � 1) degrees of free-
dom. [In the GPA example, n � 2(k � 1) � 366 � 2(4) � 358.] So far, there is noth-
ing new. The key insight is that the sum of squared residuals from the unrestricted
model can be obtained from two separate regressions, one for each group. Let SSR1 be
the sum of squared residuals obtained estimating (7.23) for the first group; this involves
n1 observations. Let SSR2 be the sum of squared residuals obtained from estimating the
model using the second group (n2 observations). In the previous example, if group 1 is
females, then n1 � 90 and n2 � 276. Now, the sum of squared residuals for the unre-
stricted model is simply SSRur � SSR1 � SSR2. The restricted sum of squared residu-
als is just the SSR from pooling the groups and estimating a single equation. Once we
have these, we compute the F statistic as usual:

F � 	 (7.24)

where n is the total number of observations. This particular F statistic is usually called
the Chow statistic in econometrics.

[n � 2(k � 1)]
k � 1

[SSR � (SSR1 � SSR2)]
SSR1 � SSR2
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To apply the Chow statistic to the GPA example, we need the SSR from the re-
gression that pooled the groups together: this is SSRr � 85.515. The SSR for the 90
women in the sample is SSR1 � 19.603, and the SSR for the men is SSR2 � 58.752.
Thus, SSRur � 19.603 � 58.752 � 78.355. The F statistic is [(85.515 �
78.355)/78.355](358/4) � 8.18; of course, subject to rounding error, this is what we get
using the R-squared form of the test in the models with and without the interaction
terms. (A word of caution: there is no simple R-squared form of the test if separate
regressions have been estimated for each group; the R-squared form of the test can be
used only if interactions have been included to create the unrestricted model.)

One important limitation of the Chow test, regardless of the method used to imple-
ment it, is that the null hypothesis allows for no differences at all between the groups.
In many cases, it is more interesting to allow for an intercept difference between the
groups and then to test for slope differences; we saw one example of this in the wage
equation in Example 7.10. To do this, we must use the approach of putting interactions
directly in the equation and testing joint significance of all interactions (without restrict-
ing the intercepts). In the GPA example, we now take the null to be H0: �1 � 0, �2 � 0,
�3 � 0. (�0 is not restricted under the null.) The F statistic for these three restrictions
is about 1.53, which gives a p-value equal to .205. Thus, we do not reject the null
hypothesis.

Failure to reject the hypothesis that the parameters multiplying the interaction terms
are all zero suggests that the best model allows for an intercept difference only:

cum̂gpa �(1.39)�(.310)female �(.0012)sat �(.0084)hsperc
cum̂gpa �(0.18)�(.059)female �(.0002)SAT �(.0012)hsperc

�(.0025)tothrs
�(.0007)tothrs

n � 366, R2 � .398, R̄2 � .392.

(7.25)

The slope coefficients in (7.25) are close to those for the base group (males) in (7.22);
dropping the interactions changes very little. However, female in (7.25) is highly sig-
nificant: its t statistic is over 5, and the estimate implies that, at given levels of sat,
hsperc, and tothrs, a female athlete has a predicted GPA that is .31 points higher than a
male athlete. This is a practically important difference.

7.5 A BINARY DEPENDENT VARIABLE: THE LINEAR
PROBABILITY MODEL

By now we have learned much about the properties and applicability of the multiple lin-
ear regression model. In the last several sections, we studied how, through the use of
binary independent variables, we can incorporate qualitative information as explanatory
variables in a multiple regression model. In all of the models up until now, the depen-
dent variable y has had quantitative meaning (for example, y is a dollar amount, a test
score, a percent, or the logs of these). What happens if we want to use multiple regres-
sion to explain a qualitative event?
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In the simplest case, and one that often arises in practice, the event we would like
to explain is a binary outcome. In other words, our dependent variable, y, takes on only
two values: zero and one. For example, y can be defined to indicate whether an adult
has a high school education; or y can indicate whether a college student used illegal
drugs during a given school year; or y can indicate whether a firm was taken over by
another firm during a given year. In each of these examples, we can let y � 1 denote
one of the outcomes and y � 0 the other outcome.

What does it mean to write down a multiple regression model, such as

y � �0 � �1x1 � … � �kxk � u, (7.26)

when y is a binary variable? Since y can take on only two values, �j cannot be inter-
preted as the change in y given a one-unit increase in xj, holding all other factors fixed:
y either changes from zero to one or from one to zero. Nevertheless, the �j still have
useful interpretations. If we assume that the zero conditional mean assumption MLR.3
holds, that is, E(u�x1,…,xk) � 0, then we have, as always,

E(y�x) � �0 � �1x1 � … � �kxk.

where x is shorthand for all of the explanatory variables.
The key point is that when y is a binary variable taking on the values zero and one,

it is always true that P(y � 1�x) � E(y�x): the probability of “success”—that is, the
probability that y � 1—is the same as the expected value of y. Thus, we have the impor-
tant equation

P(y � 1�x) � �0 � �1x1 � … � �kxk, (7.27)

which says that the probability of success, say p(x) � P(y � 1�x), is a linear function
of the xj. Equation (7.27) is an example of a binary response model, and P(y � 1�x) is
also called the response probability. (We will cover other binary response models in
Chapter 17.) Because probabilities must sum to one, P(y � 0�x) � 1 � P(y � 1�x) is
also a linear function of the xj.

The multiple linear regression model with a binary dependent variable is called the
linear probability model (LPM) because the response probability is linear in the para-
meters �j. In the LPM, �j measures the change in the probability of success when xj

changes, holding other factors fixed:

�P(y � 1�x) � �j�xj. (7.28)

With this in mind, the multiple regression model can allow us to estimate the effect of
various explanatory variables on qualitative events. The mechanics of OLS are the same
as before.

If we write the estimated equation as

ŷ � �̂0 � �̂1x1 � … � �̂kxk,

we must now remember that ŷ is the predicted probability of success. Therefore, �̂0 is
the predicted probability of success when each xj is set to zero, which may or may not
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be interesting. The slope coefficient �̂1 measures the predicted change in the probabil-
ity of success when x1 increases by one unit.

In order to correctly interpret a linear probability model, we must know what con-
stitutes a “success.” Thus, it is a good idea to give the dependent variable a name that
describes the event y � 1. As an example, let inlf (“in the labor force”) be a binary vari-
able indicating labor force participation by a married woman during 1975: inlf � 1 if
the woman reports working for a wage outside the home at some point during the year,
and zero otherwise. We assume that labor force participation depends on other sources
of income, including husband’s earnings (nwifeinc, measured in thousands of dollars),
years of education (educ), past years of labor market experience (exper), age, number
of children less than six years old (kidslt6), and number of kids between 6 and 18 years
of age (kidsge6). Using the data from Mroz (1987), we estimate the following linear
probability model, where 428 of the 753 women in the sample report being in the labor
force at some point during 1975:

in̂lf �(.586)�(.0034)nwifeinc �(.038)educ �(.039)exper
in̂lf �(.154) �(.0014)nwifei �(.007)educ �(.006)exper

�(.00060)exper2 �(.016)age �(.262)kidslt6 �(.0130)kidsge6
�(.00018)exper�(.002)age �(.034)kidslt6 �(.0132)kidsge6

n � 753, R2 � .264.

(7.29)

Using the usual t statistics, all variables in (7.29) except kidsge6 are statistically signif-
icant, and all of the significant variables have the effects we would expect based on eco-
nomic theory (or common sense).

To interpret the estimates, we must remember that a change in the independent vari-
able changes the probability that inlf � 1. For example, the coefficient on educ means
that, everything else in (7.29) held fixed, another year of education increases the prob-
ability of labor force participation by .038. If we take this equation literally, 10 more
years of education increases the probability of being in the labor force by .038(10) �
.38, which is a pretty large increase in a probability. The relationship between the
probability of labor force participation and educ is plotted in Figure 7.3. The other
independent variables are fixed at the values nwifeinc � 50, exper � 5, age � 30,
kidslt6 � 1, and kidsge6 � 0 for illustration purposes. The predicted probability is
negative until education equals 3.84 years. This should not cause too much concern
because, in this sample, no woman has less than five years of education. The largest
reported education is 17 years, and this leads to a predicted probability of .5. If we set
the other independent variables at different values, the range of predicted probabilities
would change. But the marginal effect of another year of education on the probability
of labor force participation is always .038.

The coefficient on nwifeinc implies that, if �nwifeinc � 10 (which means an
increase of $10,000), the probability that a woman is in the labor force falls by .034.
This is not an especially large effect given that an increase in income of $10,000 is very
significant in terms of 1975 dollars. Experience has been entered as a quadratic to allow
the effect of past experience to have a diminishing effect on the labor force participa-
tion probability. Holding other factors fixed, the estimated change in the probability is
approximated as .039 � 2(.0006)exper � .039 � .0012 exper. The point at which past
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experience has no effect on the probability of labor force participation is .039/.0012 �
32.5, which is a high level of experience: only 13 of the 753 women in the sample have
more than 32 years of experience.

Unlike the number of older children, the number of young children has a huge
impact on labor force participation. Having one additional child less than six years old
reduces the probability of participation by �.262, at given levels of the other variables.
In the sample, just under 20% of the women have at least one young child.

This example illustrates how easy linear probability models are to estimate and
interpret, but it also highlights some shortcomings of the LPM. First, it is easy to see
that, if we plug in certain combinations of values for the independent variables into
(7.29), we can get predictions either less than zero or greater than one. Since these are
predicted probabilities, and probabilities must be between zero and one, this can be a lit-
tle embarassing. For example, what would it mean to predict that a woman is in the labor
force with a probability of �.10? In fact, of the 753 women in the sample, 16 of the fit-
ted values from (7.29) are less than zero, and 17 of the fitted values are greater than one.

A related problem is that a probability cannot be linearly related to the independent
variables for all their possible values. For example, (7.29) predicts that the effect of
going from zero children to one young child reduces the probability of working by .262.
This is also the predicted drop if the woman goes from have one young child to two. It
seems more realistic that the first small child would reduce the probability by a large
amount, but then subsequent children would have a smaller marginal effect. In fact,
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Estimated relationship between the probability of being in the labor force and years of
education, with other explanatory variables fixed.
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when taken to the extreme, (7.29) implies that going from zero to four young children
reduces the probability of working by �in̂lf � .262(�kidslt6) � .262(4) � 1.048, which
is impossible.

Even with these problems, the linear probability model is useful and often applied
in economics. It usually works well for values of the independent variables that are near
the averages in the sample. In the labor force participation example, there are no women
in the sample with four young children; in fact, only three women have three young
children. Over 96% of the women have either no young children or one small child, and
so we should probably restrict attention to this case when interpreting the estimated
equation.

Predicted probabilities outside the unit interval are a little troubling when we want
to make predictions, but this is rarely central to an analysis. Usually, we want to know
the ceteris paribus effect of certain variables on the probability.

Due to the binary nature of y, the linear probability model does violate one of the
Gauss-Markov assumptions. When y is a binary variable, its variance, conditional on
x, is

Var(y�x) � p(x)[1 � p(x)], (7.30)

where p(x) is shorthand for the probability of success: p(x) � �0 � �1x1 � … � �kxk.
This means that, except in the case where the probability does not depend on any of the
independent variables, there must be heteroskedasticity in a linear probability model.
We know from Chapter 3 that this does not cause bias in the OLS estimators of the �j.
But we also know from Chapters 4 and 5 that homoskedasticity is crucial for justifying
the usual t and F statistics, even in large samples. Because the standard errors in (7.29)
are not generally valid, we should use them with caution. We will show how to correct
the standard errors for heteroskedasticity in Chapter 8. It turns out that, in many appli-
cations, the usual OLS statistics are not far off, and it is still acceptable in applied work
to present a standard OLS analysis of a linear probability model.

E X A M P L E  7 . 1 2
( A  L i n e a r  P r o b a b i l i t y  M o d e l  o f  A r r e s t s )

Let arr86 be a binary variable equal to unity if a man was arrested during 1986, and zero
otherwise. The population is a group of young men in California born in 1960 or 1961 who
have at least one arrest prior to 1986. A linear probability model for describing arr86 is

arr86 � �0 � �1pcnv � �2avgsen � �3tottime � �4ptime86 � �5qemp86 � u,

where pcnv is the proportion of prior arrests that led to a conviction, avgsen is the average
sentence served from prior convictions (in months), tottime is months spent in prison since
age 18 prior to 1986, ptime86 is months spent in prison in 1986, and qemp86 is the num-
ber of quarters (0 to 4) that the man was legally employed in 1986.

The data we use are in CRIME1.RAW, the same data set used for Example 3.5. Here we
use a binary dependent variable, because only 7.2% of the men in the sample were
arrested more than once. About 27.7% of the men were arrested at least once during
1986. The estimated equation is
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arr̂86 �(.441)�(.162)pcnv �(.0061)avgsen �(.0023)tottime
arr̂86 �(.017)�(.021)pcnv �(.0065)avgsen �(.0050)tottime

�(.022)ptime86 �(.043)qemp86
�(.005)ptime86 �(.005)qemp86

n � 2,725, R2 � .0474.

(7.31)

The intercept, .441, is the predicted probability of arrest for someone who has not been
convicted (and so pcnv and avgsen are both zero), has spent no time in prison since age
18, spent no time in prison in 1986, and was unemployed during the entire year. The vari-
ables avgsen and tottime are insignificant both individually and jointly (the F test gives
p-value � .347), and avgsen has a counterintuitive sign if longer sentences are supposed
to deter crime. Grogger (1991), using a superset of these data and different econometric
methods, found that tottime has a statistically significant positive effect on arrests and con-
cluded that tottime is a measure of human capital built up in criminal activity.

Increasing the probability of conviction does lower the probability of arrest, but we
must be careful when interpreting the magnitude of the coefficient. The variable pcnv is a
proportion between zero and one; thus, changing pcnv from zero to one essentially means
a change from no chance of being convicted to being convicted with certainty. Even this
large change reduces the probability of arrest only by .162; increasing pcnv by .5 decreases
the probability of arrest by .081.

The incarcerative effect is given by the coefficient on ptime86. If a man is in prison, he
cannot be arrested. Since ptime86 is measured in months, six more months in prison
reduces the probability of arrest by .022(6) � .132. Equation (7.31) gives another example
of where the linear probability model cannot be true over all ranges of the independent
variables. If a man is in prison all 12 months of 1986, he cannot be arrested in 1986. Setting
all other variables equal to zero, the predicted probability of arrest when ptime86 � 12 is
.441 � .022(12) � .177, which is not zero. Nevertheless, if we start from the unconditional
probability of arrest, .277, 12 months in prison reduces the probability to essentially zero:
.277 � .022(12) � .013.

Finally, employment reduces the probability of arrest in a significant way. All other fac-
tors fixed, a man employed in all four quarters is .172 less likely to be arrested than a man
who was not employed at all.

We can also include dummy independent variables in models with dummy depen-
dent variables. The coefficient measures the predicted difference in probability when
the dummy variable goes from zero to one. For example, if we add two race dummies,
black and hispan, to the arrest equation, we obtain

arr̂86 �(.380)�(.152)pcnv �(.0046)avgsen �(.0026)tottime
arr̂86 �(.019)�(.021)pcnv �(.0064)avgsen �(.0049)tottime

�(.024)ptime86 �(.038)qemp86 �(.170)black �(.096)hispan
�(.005)ptime86 �(.005)qemp86 �(.024)black �(.021)hispan

n � 2,725, R2 � .0682.

(7.32)
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The coefficient on black means that, all other factors being equal, a black man has a .17
higher chance of being arrested than a white man (the base group). Another way to say

this is that the probability of arrest is 17
percentage points higher for blacks than
for whites. The difference is statistically
significant as well. Similarly, Hispanic
men have a .096 higher chance of being
arrested than white men.

7.6 MORE ON POLICY ANALYSIS AND PROGRAM
EVALUATION

We have seen some examples of models containing dummy variables that can be use-
ful for evaluating policy. Example 7.3 gave an example of program evaluation, where
some firms received job training grants and others did not.

As we mentioned earlier, we must be careful when evaluating programs because in
most examples in the social sciences the control and treatment groups are not randomly
assigned. Consider again the Holzer et al. (1993) study, where we are now interested in
the effect of the job training grants on worker productivity (as opposed to amount of job
training). The equation of interest is

log(scrap) � �0 � �1grant � �2log(sales) � �3log(employ) � u,

where scrap is the firm’s scrap rate, and the latter two variables are included as con-
trols. The binary variable grant indicates whether the firm received a grant in 1988 for
job training.

Before we look at the estimates, we might be worried that the unobserved factors
affecting worker productivity—such as average levels of education, ability, experience,
and tenure—might be correlated with whether the firm receives a grant. Holzer et al.
point out that grants were given on a first-come, first-serve basis. But this is not the
same as giving out grants randomly. It might be that firms with less productive workers
saw an opportunity to improve productivity and therefore were more diligent in apply-
ing for the grants.

Using the data in JTRAIN.RAW for 1988—when firms actually were eligible to
receive the grants—we obtain

log(ŝcrap) �(4.99)�(.052)grant �(.455)log(sales)
log(ŝcrap) �(4.66) �(.431)grant � (.373)log(sales)

�(.639)log(employ)
�(.365)log(employ)

n � 50, R2 � .072.

(7.33)

(17 out of the 50 firms received a training grant, and the average scrap rate is 3.47
across all firms.) The point estimate of �.052 on grant means that, for given sales and
employ, firms receiving a grant have scrap rates about 5.2% lower than firms without
grants. This is the direction of the expected effect if the training grants are effective, but
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Q U E S T I O N  7 . 5

What is the predicted probability of arrest for a black man with no
prior convictions—so that pcnv, avgsen, tottime, and ptime86 are all
zero—who was employed all four quarters in 1986? Does this seem
reasonable?

d  7/14/99 5:55 PM  Page 238



the t statistic is very small. Thus, from this cross-sectional analysis, we must conclude
that the grants had no effect on firm productivity. We will return to this example in
Chapter 9 and show how adding information from a prior year leads to a much differ-
ent conclusion.

Even in cases where the policy analysis does not involve assigning units to a con-
trol group and a treatment group, we must be careful to include factors that might be
systematically related to the binary independent variable of interest. A good example of
this is testing for racial discrimination. Race is something that is not determined by an
individual or by government administrators. In fact, race would appear to be the perfect
example of an exogenous explanatory variable, given that it is determined at birth.
However, for historical reasons, this is not the case: there are systematic differences in
backgrounds across race, and these differences can be important in testing for current
discrimination.

As an example, consider testing for discrimination in loan approvals. If we can col-
lect data on, say, individual mortgage applications, then we can define the dummy
dependent variable approved as equal to one if a mortgage application was approved,
and zero otherwise. A systematic difference in approval rates across races is an indica-
tion of discrimination. However, since approval depends on many other factors, includ-
ing income, wealth, credit ratings, and a general ability to pay back the loan, we must
control for them if there are systematic differences in these factors across race. A linear
probability model to test for discrimination might look like the following:

approved � �0 � �1nonwhite � �2income � �3wealth � �4credrate � other factors.

Discrimination against minorities is indicated by a rejection of H0: �1 � 0 in favor of
H0: �1 � 0, because �1 is the amount by which the probability of a nonwhite getting an
approval differs from the probability of a white getting an approval, given the same lev-
els of other variables in the equation. If income, wealth, and so on are systematically
different across races, then it is important to control for these factors in a multiple
regression analysis.

Another problem that often arises in policy and program evaluation is that individ-
uals (or firms or cities) choose whether or not to participate in certain behaviors or pro-
grams. For example, individuals choose to use illegal drugs or drink alcohol. If we want
to examine the effects of such behaviors on unemployment status, earnings, or criminal
behavior, we should be concerned that drug usage might be correlated with other fac-
tors that can affect employment and criminal outcomes. Children eligible for programs
such as Head Start participate based on parental decisions. Since family background
plays a role in Head Start decisions and affects student outcomes, we should control for
these factors when examining the effects of Head Start [see, for example, Currie and
Thomas (1995)]. Individuals selected by employers or government agencies to partici-
pate in job training programs can participate or not, and this decision is unlikely to be
random [see, for example, Lynch (1991)]. Cities and states choose whether to imple-
ment certain gun control laws, and it is likely that this decision is systematically related
to other factors that affect violent crime [see, for example, Kleck and Patterson (1993)].

The previous paragraph gives examples of what are generally known as self-
selection problems in economics. Literally, the term comes from the fact that individu-
als self-select into certain behaviors or programs: participation is not randomly deter-
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mined. The term is used generally when a binary indicator of participation might be
systematically related to unobserved factors. Thus, if we write the simple model

y � �0 � �1partic � u, (7.34)

where y is an outcome variable and partic is a binary variable equal to unity if the indi-
vidual, firm, or city participates in a behavior, a program, or has a certain kind of law,
then we are worried that the average value of u depends on participation: E(u�partic �
1) 
 E(u�partic � 0). As we know, this causes the simple regression estimator of �1 to
be biased, and so we will not uncover the true effect of participation. Thus, the self-
selection problem is another way that an explanatory variable (partic in this case) can
be endogenous.

By now we know that multiple regression analysis can, to some degree, alleviate the
self-selection problem. Factors in the error term in (7.34) that are correlated with
partic can be included in a multiple regression equation, assuming, of course, that we
can collect data on these factors. Unfortunately, in many cases, we are worried that
unobserved factors are related to participation, in which case multiple regression pro-
duces biased estimators.

With standard multiple regression analysis using cross-sectional data, we must be
aware of finding spurious effects of programs on outcome variables due to the self-
selection problem. A good example of this is contained in Currie and Cole (1993).
These authors examine the effect of AFDC (aid for families with dependent children)
participation on the birth weight of a child. Even after controlling for a variety of fam-
ily and background characteristics, the authors obtain OLS estimates that imply partic-
ipation in AFDC lowers birth weight. As the authors point out, it is hard to believe that
AFDC participation itself causes lower birth weight. [See Currie (1995) for additional
examples.] Using a different econometric method that we will discuss in Chapter 15,
Currie and Cole find evidence for either no effect or a positive effect of AFDC partici-
pation on birth weight.

When the self-selection problem causes standard multiple regression analysis to be
biased due to a lack of sufficient control variables, the more advanced methods covered
in Chapters 13, 14, and 15 can be used instead.

SUMMARY

In this chapter, we have learned how to use qualitative information in regression analysis.
In the simplest case, a dummy variable is defined to distinguish between two groups, and
the coefficient estimate on the dummy variable estimates the ceteris paribus difference
between the two groups. Allowing for more than two groups is accomplished by defining
a set of dummy variables: if there are g groups, then g � 1 dummy variables are included
in the model. All estimates on the dummy variables are interpreted relative to the base or
benchmark group (the group for which no dummy variable is included in the model).

Dummy variables are also useful for incorporating ordinal information, such as a
credit or a beauty rating, in regression models. We simply define a set of dummy vari-
ables representing different outcomes of the ordinal variable, allowing one of the cate-
gories to be the base group.
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Dummy variables can be interacted with quantitative variables to allow slope dif-
ferences across different groups. In the extreme case, we can allow each group to have
its own slope on every variable, as well as its own intercept. The Chow test can be used
to detect whether there are any differences across groups. In many cases, it is more
interesting to test whether, after allowing for an intercept difference, the slopes for two
different groups are the same. A standard F test can be used for this purpose in an unre-
stricted model that includes interactions between the group dummy and all variables.

The linear probability model, which is simply estimated by OLS, allows us to explain
a binary response using regression analysis. The OLS estimates are now interpreted as
changes in the probability of “success” (y � 1), given a one-unit increase in the corre-
sponding explanatory variable. The LPM does have some drawbacks: it can produce pre-
dicted probabilities that are less than zero or greater than one, it implies a constant
marginal effect of each explanatory variable that appears in its original form, and it con-
tains heteroskedasticity. The first two problems are often not serious when we are obtain-
ing estimates of the partial effects of the explanatory variables for the middle ranges of
the data. Heteroskedasticity does invalidate the usual OLS standard errors and test statis-
tics, but, as we will see in the next chapter, this is easily fixed in large enough samples.

We ended this chapter with a discussion of how binary variables are used to evalu-
ate policies and programs. As in all regression analysis, we must remember that pro-
gram participation, or some other binary regressor with policy implications, might be
correlated with unobserved factors that affect the dependent variable, resulting in the
usual omitted variables bias.

KEY TERMS
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Base Group
Benchmark Group
Binary Variable
Chow Statistic
Control Group
Difference in Slopes
Dummy Variable Trap
Dummy Variables
Experimental Group

Interaction Term
Intercept Shift
Linear Probability Model (LPM)
Ordinal Variable
Policy Analysis
Program Evaluation
Response Probability
Self-selection
Treatment Group

PROBLEMS

7.1 Using the data in SLEEP75.RAW (see also Problem 3.3), we obtain the estimated
equation

slêep �(3,840.83)�(.163)totwrk �(11.71)educ �( 8.70)age
slêep � (235.11)�(.018)totwrk � (5.86)educ �(11.21)age

�(.128)age2 �(87.75)male
�(.134)age2 �(34.33)male

n � 706, R2 � .123, R̄2 � .117.
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The variable sleep is total minutes per week spent sleeping at night, totwrk is total
weekly minutes spent working, educ and age are measured in years, and male is a gen-
der dummy.

(i) All other factors being equal, is there evidence that men sleep more than
women? How strong is the evidence?

(ii) Is there a statistically significant tradeoff between working and sleep-
ing? What is the estimated tradeoff?

(iii) What other regression do you need to run to test the null hypothesis
that, holding other factors fixed, age has no effect on sleeping?

7.2 The following equations were estimated using the data in BWGHT.RAW:

log(bŵght) �(4.66)�(.0044)cigs �(.0093)log( faminc) �(.016)parity
log(bŵght) �(0.22)�(.0009)cigs �(.0059)log( faminc) �(.006)parity

�(.027)male �(.055)white
�(.010)male �(.013)white

n � 1,388, R2 � .0472

and

log(bŵght) �(4.65)�(.0052)cigs �(.0110)log( faminc) �(.017)parity
log(bŵght) �(0.38)�(.0010)cigs �(.0085)log( faminc) �(.006)parity

�(.034)male �(.045)white �(.0030)motheduc �(.0032)fatheduc
�(.011)male �(.015)white �(.0030)motheduc �(.0026)fatheduc

n � 1,191, R2 � .0493.

The variables are defined as in Example 4.9, but we have added a dummy variable for
whether the child is male and a dummy variable indicating whether the child is classi-
fied as white.

(i) In the first equation, interpret the coefficient on the variable cigs. In par-
ticular, what is the effect on birth weight from smoking 10 more ciga-
rettes per day?

(ii) How much more is a white child predicted to weigh than a nonwhite
child, holding the other factors in the first equation fixed? Is the differ-
ence statistically significant?

(iii) Comment on the estimated effect and statistical significance of 
motheduc.

(iv) From the given information, why are you unable to compute the F sta-
tistic for joint significance of motheduc and fatheduc? What would you
have to do to compute the F statistic?

7.3 Using the data in GPA2.RAW, the following equation was estimated:

sât �(1,028.10)�(19.30)hsize �(2.19)hsize2 �(45.09)female
sât �1,02(6.29)�1(3.83)hsize �(0.53)hsize2 �5(4.29) female

�(169.81)black �(62.31)female	black
�0(12.71)black �(18.15) female	black

n � 4,137, R2 � .0858.
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The variable sat is the combined SAT score, hsize is size of the student’s high school
graduating class, in hundreds, female is a gender dummy variable, and black is a race
dummy variable equal to one for blacks, and zero otherwise.

(i) Is there strong evidence that hsize2 should be included in the model?
From this equation, what is the optimal high school size?

(ii) Holding hsize fixed, what is the estimated difference in SAT score
between nonblack females and nonblack males? How statistically sig-
nificant is this estimated difference?

(iii) What is the estimated difference in SAT score between nonblack males
and black males? Test the null hypothesis that there is no difference
between their scores, against the alternative that there is a difference.

(iv) What is the estimated difference in SAT score between black females
and nonblack females? What would you need to do to test whether the
difference is statistically significant?

7.4 An equation explaining chief executive officer salary is

log(sâlary) �(4.59)�(.257)log(sales) �(.011)roe �(.158) finance
log(sâlary) �(0.30)�(.032)log(sales) �(.004)roe �(.089) finance

�(.181)consprod �(.283)utility
�(.085)consprod �(.099)utility

n � 209, R2 � .357.

The data used are in CEOSAL1.RAW, where finance, consprod, and utility are binary
variables indicating the financial, consumer products, and utilities industries. The omit-
ted industry is transportation.

(i) Compute the approximate percentage difference in estimated salary
between the utility and transportation industries, holding sales and roe
fixed. Is the difference statistically significant at the 1% level?

(ii) Use equation (7.10) to obtain the exact percentage difference in esti-
mated salary between the utility and transportation industries and com-
pare this with the answer obtained in part (i).

(iii) What is the approximate percentage difference in estimated salary
between the consumer products and finance industries? Write an equa-
tion that would allow you to test whether the difference is statistically
significant.

7.5 In Example 7.2, let noPC be a dummy variable equal to one if the student does not
own a PC, and zero otherwise.

(i) If noPC is used in place of PC in equation (7.6), what happens to the
intercept in the estimated equation? What will be the coefficient on
noPC? (Hint: Write PC � 1 � noPC and plug this into the equation
col̂GPA � �̂0 � �̂0PC � �̂1hsGPA � �̂2ACT.)

(ii) What will happen to the R-squared if noPC is used in place of PC?
(iii) Should PC and noPC both be included as independent variables in the

model? Explain.

7.6 To test the effectiveness of a job training program on the subsequent wages of
workers, we specify the model
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log(wage) � �0 � �1train � �2educ � �3exper � u,

where train is a binary variable equal to unity if a worker participated in the program.
Think of the error term u as containing unobserved worker ability. If less able workers
have a greater chance of being selected for the program, and you use an OLS analysis,
what can you say about the likely bias in the OLS estimator of �1? (Hint: Refer back to
Chapter 3.)

7.7 In the example in equation (7.29), suppose that we define outlf to be one if the
woman is out of the labor force, and zero otherwise.

(i) If we regress outlf on all of the independent variables in equation (7.29),
what will happen to the intercept and slope estimates? (Hint: inlf � 1 �
outlf. Plug this into the population equation inlf � �0 � �1nwifeinc �
�2educ � … and rearrange.)

(ii) What will happen to the standard errors on the intercept and slope esti-
mates?

(iii) What will happen to the R-squared?

7.8 Suppose you collect data from a survey on wages, education, experience, and gen-
der. In addition, you ask for information about marijuana usage. The original question
is: “On how many separate occasions last month did you smoke marijuana?”

(i) Write an equation that would allow you to estimate the effects of mari-
juana usage on wage, while controlling for other factors. You should be
able to make statements such as, “Smoking marijuana five more times
per month is estimated to change wage by x%.”

(ii) Write a model that would allow you to test whether drug usage has dif-
ferent effects on wages for men and women. How would you test that
there are no differences in the effects of drug usage for men and
women?

(iii) Suppose you think it is better to measure marijuana usage by putting
people into one of four categories: nonuser, light user (1 to 5 times per
month), moderate user (6 to 10 times per month), and heavy user (more
than 10 times per month). Now write a model that allows you to esti-
mate the effects of marijuana usage on wage.

(iv) Using the model in part (iii), explain in detail how to test the null
hypothesis that marijuana usage has no effect on wage. Be very specific
and include a careful listing of degrees of freedom.

(v) What are some potential problems with drawing causal inference using
the survey data that you collected?

COMPUTER EXERCISES

7.9 Use the data in GPA1.RAW for this exercise.
(i) Add the variables mothcoll and fathcoll to the equation estimated in

(7.6) and report the results in the usual form. What happens to the esti-
mated effect of PC ownership? Is PC still statistically significant?
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(ii) Test for joint significance of mothcoll and fathcoll in the equation from
part (i) and be sure to report the p-value.

(iii) Add hsGPA2 to the model from part (i) and decide whether this gener-
alization is needed.

7.10 Use the data in WAGE2.RAW for this exercise.
(i) Estimate the model

log(wage) � �0 � �1educ � �2exper � �3tenure � �4married
� �5black � �6south � �7urban � u

and report the results in the usual form. Holding other factors fixed,
what is the approximate difference in monthly salary between blacks
and nonblacks? Is this difference statistically significant?

(ii) Add the variables exper2 and tenure2 to the equation and show that they
are jointly insignificant at even the 20% level.

(iii) Extend the original model to allow the return to education to depend on
race and test whether the return to education does depend on race.

(iv) Again, start with the original model, but now allow wages to differ
across four groups of people: married and black, married and nonblack,
single and black, and single and nonblack. What is the estimated wage
differential between married blacks and married nonblacks?

7.11 A model that allows major league baseball player salary to differ by position is

log(salary) � �0 � �1 years � �2gamesyr � �3bavg � �4hrunsyr
� �5rbisyr � �6runsyr � �7fldperc � �8allstar

� �9 frstbase � �10scndbase � �11thrdbase � �12shrtstop
� �13catcher � u,

where outfield is the base group.
(i) State the null hypothesis that, controlling for other factors, catchers and

outfielders earn, on average, the same amount. Test this hypothesis
using the data in MLB1.RAW and comment on the size of the estimated
salary differential.

(ii) State and test the null hypothesis that there is no difference in average
salary across positions, once other factors have been controlled for.

(iii) Are the results from parts (i) and (ii) consistent? If not, explain what is
happening.

7.12 Use the data in GPA2.RAW for this exercise.
(i) Consider the equation

colgpa � �0 � �1hsize � �2hsize2 � �3hsperc � �4sat
� �5 female � �6athlete � u,

where colgpa is cumulative college grade point average, hsize is size of
high school graduating class, in hundreds, hsperc is academic percentile
in graduating class, sat is combined SAT score, female is a binary gen-
der variable, and athlete is a binary variable, which is one for student-
athletes. What are your expectations for the coefficients in this
equation? Which ones are you unsure about?
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(ii) Estimate the equation in part (i) and report the results in the usual form.
What is the estimated GPA differential between athletes and nonath-
letes? Is it statistically significant?

(iii) Drop sat from the model and reestimate the equation. Now what is the
estimated effect of being an athlete? Discuss why the estimate is differ-
ent than that obtained in part (ii).

(iv) In the model from part (i), allow the effect of being an athlete to differ
by gender and test the null hypothesis that there is no ceteris paribus
difference between women athletes and women nonathletes.

(v) Does the effect of sat on colgpa differ by gender? Justify your answer.

7.13 In Problem 4.2, we added the return on the firm’s stock, ros, to a model explain-
ing CEO salary; ros turned out to be insignificant. Now, define a dummy variable, ros-
neg, which is equal to one if ros � 0 and equal to zero if ros � 0. Use CEOSAL1.RAW
to estimate the model

log(salary) � �0 � �1log(sales) � �2roe � �3rosneg � u.

Discuss the interpretation and statistical significance of �̂3.

7.14 Use the data in SLEEP75.RAW for this exercise. The equation of interest is

sleep � �0 � �1totwrk � �2educ � �3age � �4age2 � �5yngkid � u.

(i) Estimate this equation separately for men and women and report the
results in the usual form. Are there notable differences in the two esti-
mated equations?

(ii) Compute the Chow test for equality of the parameters in the sleep equa-
tion for men and women. Use the form of the test that adds male and
the interaction terms male	totwrk, …, male	yngkid and uses the full set
of observations. What are the relevant df for the test? Should you reject
the null at the 5% level?

(iii) Now allow for a different intercept for males and females and determine
whether the interaction terms involving male are jointly significant.

(iv) Given the results from parts (ii) and (iii), what would be your final
model?

7.15 Use the data in WAGE1.RAW for this exercise.
(i) Use equation (7.18) to estimate the gender differential when educ �

12.5. Compare this with the estimated differential when educ � 0.
(ii) Run the regression used to obtain (7.18), but with female	(educ � 12.5)

replacing female	educ. How do you intepret the coefficient on female
now?

(iii) Is the coefficient on female in part (ii) statistically significant? Compare
this with (7.18) and comment.

7.16 Use the data in LOANAPP.RAW for this exercise. The binary variable to be
explained is approve, which is equal to one if a mortgage loan to an individual was
approved. The key explanatory variable is white, a dummy variable equal to one if the
applicant was white. The other applicants in the data set are black and Hispanic.
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To test for discrimination in the mortgage loan market, a linear probability model
can be used:

approve � �0 � �1white � other factors.

(i) If there is discrimination against minorities, and the appropriate factors
have been controlled for, what is the sign of �1?

(ii) Regress approve on white and report the results in the usual form.
Interpret the coefficient on white. Is it statistically significant? Is it prac-
tically large?

(iii) As controls, add the variables hrat, obrat, loanprc, unem, male,
married, dep, sch, cosign, chist, pubrec, mortlat1, mortlat2, and vr.
What happens to the coefficient on white? Is there still evidence of dis-
crimination against nonwhites?

(iv) Now allow the effect of race to interact with the variable measuring
other obligations as a percent of income (obrat). Is the interaction term
significant?

(v) Using the model from part (iv), what is the effect of being white on the
probability of approval when obrat � 32, which is roughly the mean
value in the sample? Obtain a 95% confidence interval for this effect.
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The homoskedasticity assumption, introduced in Chapter 3 for multiple regres-
sion, states that the variance of the unobservable error, u, conditional on the
explanatory variables, is constant. Homoskedasticity fails whenever the variance

of the unobservables changes across different segments of the population, which are
determined by the different values of the explanatory variables. For example, in a sav-
ings equation, heteroskedasticity is present if the variance of the unobserved factors
affecting savings increases with income.

In Chapters 3 and 4, we saw that homoskedasticity is needed to justify the usual t
tests, F tests, and confidence intervals for OLS estimation of the linear regression model,
even with large sample sizes. In this chapter, we discuss the available remedies when het-
eroskedasticity occurs, and we also show how to test for its presence. We begin by briefly
reviewing the consequences of heteroskedasticity for ordinary least squares estimation.

8.1 CONSEQUENCES OF HETEROSKEDASTICITY FOR OLS

Consider again the multiple linear regression model:

y � �0 � �1x1 � �2x2 � … � �kxk � u. (8.1)

In Chapter 3, we proved unbiasedness of the OLS estimators �̂0, �̂1, �̂2, …, �̂k under the
first four Gauss-Markov assumptions, MLR.1 through MLR.4. In Chapter 5, we showed
that the same four assumptions imply consistency of OLS. The homoskedasticity assump-
tion MLR.5, stated in terms of the error variance as Var(u�x1,x2,…,xk) � �2, played no
role in showing whether OLS was unbiased or consistent. It is important to remember that
heteroskedasticity does not cause bias or inconsistency in the OLS estimators of the �j,
whereas something like omitting an important variable would have this effect.

If heteroskedasticity does not cause bias or inconsistency, why did we introduce it
as one of the Gauss-Markov assumptions? Recall from Chapter 3 that the estimators of
the variances, Var(�̂j), are biased without the homoskedasticity assumption. Since the
OLS standard errors are based directly on these variances, they are no longer valid for
constructing confidence intervals and t statistics. The usual OLS t statistics do not have
t distributions in the presence of heteroskedasticity, and the problem is not resolved by
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using large sample sizes. Similarly, F statistics are no longer F distributed, and the LM
statistic no longer has an asymptotic chi-square distribution. In summary, the statistics
we used to test hypotheses under the Gauss-Markov assumptions are not valid in the
presence of heteroskedasticity.

We also know that the Gauss-Markov theorem, which says that OLS is best linear
unbiased, relies crucially on the homoskedasticity assumption. If Var(u�x) is not con-
stant, OLS is no longer BLUE. In addition, OLS is no longer asymptotically efficient
in the class of estimators described in Theorem 5.3. As we will see in Section 8.4, it is
possible to find estimators that are more efficient than OLS in the presence of het-
eroskedasticity (although it requires knowing the form of the heteroskedasticity). With
relatively large sample sizes, it might not be so important to obtain an efficient estima-
tor. In the next section, we show how the usual OLS test statistics can be modified so
that they are valid, at least asymptotically.

8.2 HETEROSKEDASTICITY-ROBUST INFERENCE AFTER
OLS ESTIMATION

Since testing hypotheses is such an important component of any econometric analysis
and the usual OLS inference is generally faulty in the presence of heteroskedasticity,
we must decide if we should entirely abandon OLS. Fortunately, OLS is still useful. In
the last two decades, econometricians have learned how to adjust standard errors, t, F,
and LM statistics so that they are valid in the presence of heteroskedasticity of
unknown form. This is very convenient because it means we can report new statistics
that work, regardless of the kind of heteroskedasticity present in the population. The
methods in this section are known as heteroskedasticity-robust procedures because they
are valid—at least in large samples—whether or not the errors have constant variance,
and we do not need to know which is the case.

We begin by sketching how the variances, Var(�̂j), can be estimated in the presence
of heteroskedasticity. A careful derivation of the theory is well-beyond the scope of this
text, but the application of heteroskedasticity-robust methods is very easy now because
many statistics and econometrics packages compute these statistics as an option.

First, consider the model with a single independent variable, where we include an i
subscript for emphasis:

yi � �0 � �1xi � ui.

We assume throughout that the first four Gauss-Markov assumptions hold. If the errors
contain heteroskedasticity, then

Var(ui�xi) � �2
i ,

where we put an i subscript on �2 to indicate that the variance of the error depends upon
the particular value of xi.

Write the OLS estimator as

�̂1 � �1 � .
�
n

i�1
(xi � x̄)ui

�
n

i�1
(xi � x̄)2
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Under Assumptions MLR.1 through MLR.4 (that is, without the homoskedasticity
assumption), and conditioning on the values xi in the sample, we can use the same argu-
ments from Chapter 2 to show that

Var(�̂1) � , (8.2)

where SSTx � �
n

i�1
(xi � x̄)2 is the total sum of squares of the xi. When � i

2 � �2 for all i,

this formula reduces to the usual form, �2/SSTx. Equation (8.2) explicitly shows that,
for the simple regression case, the variance formula derived under homoskedasticity is
no longer valid when heteroskedasticity is present.

Since the standard error of �̂1 is based directly on estimating Var(�̂1), we need a way
to estimate equation (8.2) when heteroskedasticity is present. White (1980) showed how
this can be done. Let ûi denote the OLS residuals from the initial regression of y on x.
Then a valid estimator of Var(�̂1), for heteroskedasticity of any form (including
homoskedasticity), is

, (8.3)

which is easily computed from the data after the OLS regression.
In what sense is (8.3) a valid estimator of Var(�̂1)? This is pretty subtle. Briefly, it

can be shown that when equation (8.3) is multiplied by the sample size n, it converges
in probability to E[(xi � �x)

2ui
2]/(�x

2)2, which is the probability limit of n times (8.2).
Ultimately, this is what is necessary for justifying the use of standard errors to construct
confidence intervals and t statistics. The law of large numbers and the central limit the-
orem play key roles in establishing these convergences. You can refer to White’s origi-
nal paper for details, but that paper is quite technical. See also Wooldridge (1999,
Chapter 4).

A similar formula works in the general multiple regression model

y � �0 � �1x1 � … � �kxk � u.

It can be shown that a valid estimator of Var(�̂j), under Assumptions MLR.1 through
MLR.4, is

Var̂(�̂j) � , (8.4)

where r̂ij denotes the ith residual from regressing xj on all other independent variables,
and SSRj is the sum of squared residuals from this regression (see Section 3.2 for the
partialling out a representation of the OLS estimates). The square root of the quantity

�
n

i�1
r̂ 2

i j ûi
2

SST2
j

�
n

i�1
(xi � x̄)2ûi

2

SST2
x

�
n

i�1
(xi � x̄)2� i

2

SST2
x
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in (8.4) is called the heteroskedasticity-robust standard error for �̂j. In econometrics,
these robust standard errors are usually attributed to White (1980). Earlier works in sta-
tistics, notably those by Eicker (1967) and Huber (1967), pointed to the possibility of
obtaining such robust standard errors. In applied work, these are sometimes called
White, Huber, or Eicker standard errors (or some hyphenated combination of these
names). We will just refer to them as heteroskedasticity-robust standard errors, or even
just robust standard errors when the context is clear.

Sometimes, as a degree of freedom correction, (8.4) is multiplied by n/(n � k � 1)
before taking the square root. The reasoning for this adjustment is that, if the squared
OLS residuals û2

i were the same for all observations i—the strongest possible form of
homoskedasticity in a sample—we would get the usual OLS standard errors. Other
modifications of (8.4) are studied in MacKinnon and White (1985). Since all forms
have only asymptotic justification and they are asymptotically equivalent, no form is
uniformly preferred above all others. Typically, we use whatever form is computed by
the regression package at hand.

Once heteroskedasticity-robust standard errors are obtained, it is simple to construct
a heteroskedasticity-robust t statistic. Recall that the general form of the t statistic is

t � . (8.5)

Since we are still using the OLS estimates and we have chosen the hypothesized value
ahead of time, the only difference between the usual OLS t statistic and the
heteroskedasticity-robust t statistic is in how the standard error is computed.

E X A M P L E  8 . 1
( L o g  W a g e  E q u a t i o n  w i t h  H e t e r o s k e d a s t i c i t y - R o b u s t

S t a n d a r d  E r r o r s )

We estimate the model in Example 7.6, but we report the heteroskedasticity-robust stan-
dard errors along with the usual OLS standard errors. Some of the estimates are reported
to more digits so that we can compare the usual standard errors with the heteroskedasticity-
robust standard errors:

log(̂wage) �(.321)�(.213)marrmale �(.198)marrfem �(.110)singfem
log(̂wage) �(.100)�(.055)marrmale �(.058)marrfem �(.056)singfem
log(̂wage) �[.109]�[.057]marrmale �[.058]marrfem �[.057]singfem

�(.0789)educ �(.0268)exper �(.00054)exper2

(8.6)�(.0067)educ �(.0055)exper �(.00011)exper2

�[.0074]educ �[.0051]exper �[.00011]exper2

�(.0291)tenure �(.00053)tenure2

�(.0068)tenure �(.00023)tenure2

�[.0069]tenure �[.00024]tenure2

n � 526, R2 � .461.

estimate � hypothesized value
standard error
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The usual OLS standard errors are in parentheses, ( ), below the corresponding OLS esti-
mate, and the heteroskedasticity-robust standard errors are in brackets, [ ]. The numbers in
brackets are the only new things, since the equation is still estimated by OLS.

Several things are apparent from equation (8.6). First, in this particular application, any
variable that was statistically signficant using the usual t statistic is still statistically signifi-
cant using the heteroskedasticity-robust t statistic. This is because the two sets of standard
errors are not very different. (The associated p-values will differ slightly because the robust
t statistics are not identical to the usual, nonrobust, t statistics.) The largest relative change
in standard errors is for the coefficient on educ: the usual standard error is .0067, and the
robust standard error is .0074. Still, the robust standard error implies a robust t statistic
above 10.

Equation (8.6) also shows that the robust standard errors can be either larger or smaller
than the usual standard errors. For example, the robust standard error on exper is .0051,
whereas the usual standard error is .0055. We do not know which will be larger ahead of
time. As an empirical matter, the robust standard errors are often found to be larger than
the usual standard errors.

Before leaving this example, we must emphasize that we do not know, at this point,
whether heteroskedasticity is even present in the population model underlying equation
(8.6). All we have done is report, along with the usual standard errors, those that are valid
(asymptotically) whether or not heteroskedasticity is present. We can see that no important
conclusions are overturned by using the robust standard errors in this example. This often
happens in applied work, but in other cases the differences between the usual and robust
standard errors are much larger. As an example of where the differences are substantial, see
Problem 8.7.

At this point, you may be asking the following question: If the heteroskedasticity-
robust standard errors are valid more often than the usual OLS standard errors, why do
we bother with the usual standard errors at all? This is a valid question. One reason they
are still used in cross-sectional work is that, if the homoskedasticity assumption holds
and the errors are normally distributed, then the usual t statistics have exact t distribu-
tions, regardless of the sample size (see Chapter 4). The robust standard errors and
robust t statistics are justified only as the sample size becomes large. With small sam-
ple sizes, the robust t statistics can have distributions that are not very close to the t dis-
tribution, which would could throw off our inference.

In large sample sizes, we can make a case for always reporting only the
heteroskedasticity-robust standard errors in cross-sectional applications, and this prac-
tice is being followed more and more in applied work. It is also common to report both
standard errors, as in equation (8.6), so that a reader can determine whether any con-
clusions are sensitive to the standard error in use.

It is also possible to obtain F and LM statistics that are robust to heteroskedastic-
ity of an unknown, arbitrary form. The heteroskedasticity-robust F statistic (or a
simple transformation of it) is also called a heteroskedasticity-robust Wald statistic. A
general treatment of this statistic is beyond the scope of this text. Nevertheless, since
many statistics packages now compute these routinely, it is useful to know that
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heteroskedasticity-robust F and LM statistics are available. [See Wooldridge (1999) for
details.]

E X A M P L E  8 . 2
( H e t e r o s k e d a s t i c i t y - R o b u s t  F  S t a t i s t i c )

Using the data for the spring semester in GPA3.RAW, we estimate the following equation:

cum̂gpa �(1.47)�(.00114)sat �(.00857)hsperc �(.00250)tothrs
cum̂gpa �(0.23)�(.00018)sat �(.00124)hsperc �(.00073)tothrs
cum̂gpa �[0.22]�[.00019]sat �[.00140]hsperc �[.00073]tothrs

�(.303)female �(.128)black �(.059)white (8.7)
�(.059)female �(.147)black �(.141)white
�[.059]female �[.118]black �[.110]white

n � 366, R2 � .4006, R̄2 � .3905.

Again, the differences between the usual standard errors and the heteroskedasticity-robust
standard errors are not very big, and use of the robust t statistics does not change the sta-
tistical significance of any independent variable. Joint significance tests are not much
affected either. Suppose we wish to test the null hypothesis that, after the other factors are
controlled for, there are no differences in cumgpa by race. This is stated as H0: �black � 0,
�white � 0. The usual F statistic is easily obtained, once we have the R-squared from the
restricted model; this turns out to be .3983. The F statistic is then [(.4006 � .3983)/
(1 � .4006)](359/2) � .69. If heteroskedasticity is present, this version of the test is invalid.
The heteroskedasticity-robust version has no simple form, but it can be computed using cer-
tain statistical packages. The value of the heteroskedasticity-robust F statistic turns out to
be .75, which differs only slightly from the nonrobust version. The p-value for the robust
test is .474, which is not close to standard significance levels. We fail to reject the null
hypothesis using either test.

Computing Heteroskedasticity-Robust LM Tests

Not all regression packages compute F statistics that are robust to heteroskedasticity.
Therefore, it is sometimes convenient to have a way of obtaining a test of multiple

exclusion restrictions that is robust to het-
eroskedasticity and does not require a par-
ticular kind of econometric software. It
turns out that a heteroskedasticity-robust
LM statistic is easily obtained using virtu-
ally any regression package.

To illustrate computation of the robust LM statistic, consider the model

y � �0 � �1x1 � �2x2 � �3x3 � �4x4 � �5x5 � u,
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and suppose we would like to test H0: �4 � 0, �5 � 0. To obtain the usual LM statistic,
we would first estimate the restricted model (that is, the model without x4 and x5) to
obtain the residuals, ũ. Then, we would regress ũ on all of the independent variables and
the LM � n�R2

ũ, where R2
ũ is the usual R-squared from this regression.

Obtaining a version that is robust to heteroskedasticity requires more work. One
way to compute the statistic requires only OLS regressions. We need the residuals, say
r̃1, from the regression of x4 on x1, x2, x3. Also, we need the residuals, say r̃2, from the
regression of x5 on x1, x2, x3. Thus, we regress each of the independent variables
excluded under the null on all of the included independent variables. We keep the resid-
uals each time. The final step appears odd, but it is, after all, just a computational
device. Run the regression of

1 on r̃1ũ, r̃2ũ, (8.8)

without an intercept. Yes, we actually define a dependent variable equal to the value one
for all observations. We regress this onto the products r̃1ũ and r̃2ũ. The robust LM sta-
tistic turns out to be n � SSR1, where SSR1 is just the usual sum of squared residuals
from regression (8.8).

The reason this works is somewhat technical. Basically, this is doing for the LM test
what the robust standard errors do for the t test. [See Wooldridge (1991b) or Davidson
and MacKinnon (1993) for a more detailed discussion.]

We now summarize the computation of the heteroskedasticity-robust LM statistic in
the general case.

A HETEROSKEDASTICITY-ROBUST LM STATISTIC:

1. Obtain the residuals ũ from the restricted model.
2. Regress each of the independent variables excluded under the null on all of the

included independent variables; if there are q excluded variables, this leads to q
sets of residuals (r̃1, r̃2, …, r̃q).

3. Find the products between each r̃j and ũ (for all observations).
4. Run the regression of 1 on r̃1ũ, r̃2ũ, …, r̃qũ, without an intercept. The

heteroskedasticity-robust LM statistic is n � SSR1, where SSR1 is just the usual
sum of squared residuals from this final regression. Under H0, LM is distributed
approximately as �2

q.

Once the robust LM statistic is obtained, the rejection rule and computation of p-values
is the same as for the usual LM statistic in Section 5.2.

E X A M P L E  8 . 3
( H e t e r o s k e d a s t i c i t y - R o b u s t  L M  S t a t i s t i c )

We use the data in CRIME1.RAW to test whether the average sentence length served for
past convictions affects the number of arrests in the current year (1986). The estimated
model is
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(nar̂r86) �(.567)�(.136)pcnv �(.0178)avgsen �(.00052)avgsen2

(nar̂r86) �(.036)�(.040)pcnv �(.0097)avgsen �(.00030)avgsen2

(nar̂r86) �[.040]�[.034]pcnv �[.0101]avgsen �[.00021]avgsen2

�(.0394)ptime86 �(.0505)qemp86 �(.00148)inc86
(8.9)�(.0087)ptime86 �(.0144)qemp86 �(.00034)inc86

�[.0062]ptime86 �[.0142]qemp86 �[.00023]inc86

�(.325)black �(.193)hispan
�(.045)black �(.040)hispan
�[.058]black �[.040]hispan

n � 2,725, R2 � .0728.

In this example, there are more substantial differences between some of the usual standard
errors and the robust standard errors. For example, the usual t statistic on avgsen2 is about
�1.73, while the robust t statistic is about �2.48. Thus, avgsen2 is more significant using
the robust standard error.

The effect of avgsen on narr86 is somewhat difficult to reconcile. Since the relationship
is quadratic, we can figure out where avgsen has a positive effect on narr86 and where the
effect becomes negative. The turning point is .0178/[2(.00052)] � 17.12; recall that this is
measured in months. Literally, this means that narr86 is positively related to avgsen when
avgsen is less than 17 months; then avgsen has the expected deterrent effect after 17
months.

To see whether average sentence length has a statistically significant effect on narr86,
we must test the joint hypothesis H0: �avgsen � 0, �avgsen2 � 0. Using the usual LM statistic
(see Section 5.2), we obtain LM � 3.54; in a chi-square distribution with two df, this yields
a p-value � .170. Thus, we do not reject H0 at even the 15% level. The heteroskedasticity-
robust LM statistic is LM � 4.00 (rounding to two decimal places), with a p-value � .135.
This is still not very strong evidence against H0; avgsen does not appear to have a strong
effect on narr86. [Incidentally, when avgsen appears alone in (8.9), that is, without the qua-
dratic term, its usual t statistic is .658, and its robust t statistic is .592.]

8.3 TESTING FOR HETEROSKEDASTICITY

The heteroskedasticity-robust standard errors provide a simple method for computing t
statistics that are asymptotically t distributed whether or not heteroskedasticity is pres-
ent. We have also seen that heteroskedasticity-robust F and LM statistics are available.
Implementing these tests does not require knowing whether or not heteroskedasticity is
present. Nevertheless, there are still some good reasons for having simple tests that can
detect its presence. First, as we mentioned in the previous section, the usual t statistics
have exact t distributions under the classical linear model assumptions. For this reason,
many economists still prefer to see the usual OLS standard errors and test statistics
reported, unless there is evidence of heteroskedasticity. Second, if heteroskedasticity is
present, the OLS estimator is no longer the best linear unbiased estimator. As we will
see in Section 8.4, it is possible to obtain a better estimator than OLS when the form of
heteroskedasticity is known.
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Many tests for heteroskedasticity have been suggested over the years. Some of
them, while having the ability to detect heteroskedasticity, do not directly test the
assumption that the variance of the error does not depend upon the independent vari-
ables. We will restrict ourselves to more modern tests, which detect the kind of het-
eroskedasticity that invalidates the usual OLS statistics. This also has the benefit of
putting all tests in the same framework.

As usual, we start with the linear model

y � �0 � �1x1 � �2x2 � … � �kxk � u, (8.10)

where Assumptions MLR.1 through MLR.4 are maintained in this section. In particu-
lar, we assume that E(u�x1,x2,…,xk) � 0, so that OLS is unbiased and consistent.

We take the null hypothesis to be that Assumption MLR.5 is true:

H0: Var(u�x1,x2,…,xk) � �2. (8.11)

That is, we assume that the ideal assumption of homoskedasticity holds, and we require
the data to tell us otherwise. If we cannot reject (8.11) at a sufficiently small signifi-
cance level, we usually conclude that heteroskedasticity is not a problem. However,
remember that we never accept H0; we simply fail to reject it.

Because we are assuming that u has a zero conditional expectation, Var(u�x) �
E(u2�x), and so the null hypothesis of homoskedasticity is equivalent to

H0: E(u2�x1,x2,…,xk) � E(u2) � �2.

This shows that, in order to test for violation of the homoskedasticity assumption, we
want to test whether u2 is related (in expected value) to one or more of the explanatory
variables. If H0 is false, the expected value of u2, given the independent variables, can
be any function of the xj. A simple approach is to assume a linear function:

u2 � 	0 � 	1x1 � 	2x2 � … � 	kxk � v, (8.12)

where v is an error term with mean zero given the xj. Pay close attention to the depen-
dent variable in this equation: it is the square of the error in the original regression
equation, (8.10). The null hypothesis of homoskedasticity is

H0: 	1 � 	2 � … � 	k � 0. (8.13)

Under the null hypothesis, it is often reasonable to assume that the error in (8.12), v, is
independent of x1, x2,…,xk. Then, we know from Section 5.2 that either the F or LM
statistics for the overall significance of the independent variables in explaining u2 can
be used to test (8.13). Both statistics would have asymptotic justification, even though
u2 cannot be normally distributed. (For example, if u is normally distributed, then u2/�2

is distributed as �2
1.) If we could observe the u2 in the sample, then we could easily com-

pute this statistic by running the OLS regression of u2 on x1, x2,…,xk, using all n obser-
vations.
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As we have emphasized before, we never know the actual errors in the population
model, but we do have estimates of them: the OLS residual, ûi, is an estimate of the
error ui for observation i. Thus, we can estimate the equation

û2 � 	0 � 	1x1 � 	2x2 � … � 	kxk � error (8.14)

and compute the F or LM statistics for the joint significance of x1,…,xk. It turns out that
using the OLS residuals in place of the errors does not affect the large sample distribu-
tion of the F or LM statistics, although showing this is pretty complicated.

The F and LM statistics both depend on the R-squared from regression (8.14); call
this R2

û2 to distinguish it from the R-squared in estimating equation (8.10). Then, the F
statistic is

F � , (8.15)

where k is the number of regressors in (8.14); this is the same number of independent
variables in (8.10). Computing (8.15) by hand is rarely necessary, since most regression
packages automatically compute the F statistic for overall significance of a regression.
This F statistic has (approximately) an Fk,n�k�1 distribution under the null hypothesis
of homoskedasticity.

The LM statistic for heteroskedasticity is just the sample size times the R-squared
from (8.14):

LM � n�R2
û2. (8.16)

Under the null hypothesis, LM is distributed asymptotically as �k
2. This is also very easy

to obtain after running regression (8.14).
The LM version of the test is typically called the Breusch-Pagan test for het-

eroskedasticity (BP test). Breusch and Pagan (1980) suggested a different form of the
test that assumes the errors are normally distributed. Koenker (1983) suggested the
form of the LM statistic in (8.16), and it is generally preferred due to its greater applic-
ability.

We summarize the steps for testing for heteroskedasticity using the BP test:

THE BREUSCH-PAGAN TEST FOR HETEROSKEDASTICITY.

1. Estimate the model (8.10) by OLS, as usual. Obtain the squared OLS residuals,
û2 (one for each observation).

2. Run the regression in (8.14). Keep the R-squared from this regression, R2
û2.

3. Form either the F statistic or the LM statistic and compute the p-value (using the
Fk,n�k�1 distribution in the former case and the �k

2 distribution in the latter case).
If the p-value is sufficiently small, that is, below the chosen significance level,
then we reject the null hypothesis of homoskedasticity.

If the BP test results in a small enough p-value, some corrective measure should be
taken. One possibility is to just use the heteroskedasticity-robust standard errors and

R2
û2/k

(1 � R2
û2)/(n � k � 1)
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test statistics discussed in the previous section. Another possibility is discussed in
Section 8.4.

E X A M P L E  8 . 4
( H e t e r o s k e d a s t i c i t y  i n  H o u s i n g  P r i c e  E q u a t i o n s )

We use the data in HPRICE1.RAW to test for heteroskedasticity in a simple housing price
equation. The estimated equation using the levels of all variables is

(prîce ��21.77)�(.00207)lotsize �(.123)sqrft �(13.85)bdrms
prîce ��(29.48)�(.00064)lotsize �(.013)sqrft �0(9.01)bdrms

n � 88, R2 � .672.

(8.17)

This equation tells us nothing about whether the error in the population model is het-
eroskedastic. We need to regress the squared OLS residuals on the independent variables.
The R-squared from the regression of û2 on lotsize, sqrft, and bdrms is R2

û2 � .1601. With
n � 88 and k � 3, this produces an F statistic for significance of the independent variables
of F � [.1601/(1 � .1601)](84/3) � 5.34. The associated p-value is .002, which is strong
evidence against the null. The LM statistic is 88(.1601) � 14.09; this gives a p-value �
.0028 (using the �2

3 distribution), giving essentially the same conclusion as the F statistic.
This means that the usual standard errors reported in (8.17) are not reliable.

In Chapter 6, we mentioned that one benefit of using the logarithmic functional form
for the dependent variable is that heteroskedasticity is often reduced. In the current appli-
cation, let us put price, lotsize, and sqrft in logarithmic form, so that the elasticities of price,
with respect to lotsize and sqrft, are constant. The estimated equation is

log(prîce) �(5.61)�(.168)log(lotsize) �(.700)log(sqrft) �(.037)bdrms
log(prîce) �5(.65)�(.038)log(lotsize) �(.093)log(sqrft) �(.028)bdrms

n � 88, R2 � .643.

(8.18)

Regressing the squared OLS residuals from this regression on log(lotsize), log(sqrft), and
bdrms gives R2

û2 � .0480. Thus, F � 1.41 (p-value � .245), and LM � 4.22 (p-value �

.239). Therefore, we fail to reject the null hypothesis of homoskedasticity in the model with
the logarithmic functional forms. The occurrence of less heteroskedasticity with the depen-
dent variable in logarithmic form has been noticed in many empirical applications.

If we suspect that heteroskedasticity
depends only upon certain independent
variables, we can easily modify the
Breusch-Pagan test: we simply regress û2

on whatever independent variables we
choose and carry out the appropriate F or
LM test. Remember that the appropriate
degrees of freedom depends upon the num-
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ber of independent variables in the regression with û2 as the dependent variable; the
number of independent variables showing up in equation (8.10) is irrelevant.

If the squared residuals are regressed on only a single independent variable, the test
for heteroskedasticity is just the usual t statistic on the variable. A significant t statistic
suggests that heteroskedasticity is a problem.

The White Test for Heteroskedasticity

In Chapter 5, we showed that the usual OLS standard errors and test statistics are
asymptotically valid, provided all of the Gauss-Markov assumptions hold. It turns out
that the homoskedasticity assumption, Var(u1�x1,…,xk) � �2, can be replaced with the
weaker assumption that the squared error, u2, is uncorrelated with all the independent
variables (xj), the squares of the independent variables (x j

2), and all the cross products
(xjxh for j � h). This observation motivated White (1980) to propose a test for het-
eroskedasticity that adds the squares and cross products of all of the independent vari-
ables to equation (8.14). The test is explicitly intended to test for forms of
heteroskedasticity that invalidate the usual OLS standard errors and test statistics.

When the model contains k � 3 independent variables, the White test is based on
an estimation of

û2 � 	0 � 	1x1 � 	2x2 � 	3x3 � 	4x1
2 � 	5x2

2 � 	6x3
2

� 	7x1x2 � 	8x1x3 � 	9x2x3 � error.
(8.19)

Compared with the Breusch-Pagan test, this equation has six more regressors. The
White test for heteroskedasticity is the LM statistic for testing that all of the 	j in equa-
tion (8.19) are zero, except for the intercept. Thus, nine restrictions are being tested in
this case. We can also use an F test of this hypothesis; both tests have asymptotic justi-
fication.

With only three independent variables in the original model, equation (8.19) has
nine independent variables. With six independent variables in the original model, the
White regression would generally involve 27 regressors (unless some are redundant).
This abundance of regressors is a weakness in the pure form of the White test: it uses
many degrees of freedom for models with just a moderate number of independent vari-
ables.

It is possible to obtain a test that is easier to implement than the White test and more
conserving on degrees of freedom. To create the test, recall that the difference between
the White and Breusch-Pagan tests is that the former includes the squares and cross
products of the independent variables. We can achieve the same thing by using fewer
functions of the independent variables. One suggestion is to use the OLS fitted values
in a test for heteroskedasticity. Remember that the fitted values are defined, for each
observation i, by

ŷi � �̂0 � �̂1xi1 � �̂2xi2 � … � �̂kxik.

These are just linear functions of the independent variables. If we square the fitted val-
ues, we get a particular function of all the squares and cross products of the indepen-
dent variables. This suggests testing for heteroskedasticity by estimating the equation
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û2 � 	0 � 	1ŷ � 	2ŷ2 � error, (8.20)

where ŷ stands for the fitted values. It is important not to confuse ŷ and y in this equa-
tion. We use the fitted values because they are functions of the independent variables
(and the estimated parameters); using y in (8.20) does not produce a valid test for het-
eroskedasticity.

We can use the F or LM statistic for the null hypothesis H0: 	1 � 0, 	2 � 0 in equa-
tion (8.20). This results in two restrictions in testing the null of homoskedasticity,
regardless of the number of independent variables in the original model. Conserving on
degrees of freedom in this way is often a good idea, and it also makes the test easy to
implement.

Since ŷ is an estimate of the expected value of y, given the xj, using (8.20) to test
for heteroskedasticity is useful in cases where the variance is thought to change with
the level of the expected value, E(y�x). The test from (8.20) can be viewed as a special
case of the White test, since equation (8.20) can be shown to impose restrictions on the
parameters in equation (8.19).

A SPECIAL CASE OF THE WHITE TEST FOR HETEROSKEDASTICITY:
1. Estimate the model (8.10) by OLS, as usual. Obtain the OLS residuals û and the

fitted values ŷ. Compute the squared OLS residuals û2 and the squared fitted val-
ues ŷ2.

2. Run the regression in equation (8.20). Keep the R-squared from this regression,
R2

û2.
3. Form either the F or LM statistic and compute the p-value (using the F2,n�3 dis-

tribution in the former case and the �2
2 distribution in the latter case).

E X A M P L E  8 . 5
( S p e c i a l  F o r m  o f  t h e  W h i t e  T e s t  i n  t h e  L o g  H o u s i n g  P r i c e

E q u a t i o n )

We apply the special case of the White test to equation (8.18), where we use the LM form
of the statistic. The important thing to remember is that the chi-square distribution always
has two df. The regression of û2 on lprîce, (lprîce)2, where lprîce denotes the fitted values
from (8.18), produces R2

û2 � .0392; thus, LM � 88(.0392) � 3.45, and the p-value � .178.
This is stronger evidence of heteroskedasticity than is provided by the Breusch-Pagan test,
but we still fail to reject homoskedasticity at even the 15% level.

Before leaving this section, we should discuss one important caveat. We have inter-
preted a rejection using one of the heteroskedasticity tests as evidence of heteroskedas-
ticity. This is appropriate provided we maintain Assumptions MLR.1 through MLR.4.
But, if MLR.3 is violated—in particular, if the functional form of E(y�x) is misspeci-
fied—then a test for heteroskedastcity can reject H0, even if Var(y�x) is constant. For
example, if we omit one or more quadratic terms in a regression model or use the level
model when we should use the log, a test for heteroskedasticity can be significant. This
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has led some economists to view tests for heteroskedasticity as general misspecification
tests. However, there are better, more direct tests for functional form misspecification,
and we will cover some of them in Section 9.1. It is better to use explicit tests for func-
tional form first, since functional form misspecification is more important than het-
eroskedasticity. Then, once we are satisfied with the functional form, we can test for
heteroskedasticity.

8.4 WEIGHTED LEAST SQUARES ESTIMATION

If heteroskedasticity is detected using one of the tests in Section 8.3, we know from
Section 8.2 that one possible response is to use heteroskedasticity-robust statistics after
estimation by OLS. Before the development of heteroskedasticity-robust statistics, the
response to a finding of heteroskedasticity was to model and estimate its specific form.
As we will see, this leads to a more efficient estimator than OLS, and it produces t and
F statistics that have t and F distributions. While this seems attractive, it actually
requires more work on our part because we must be very specific about the nature of
any heteroskedasticity.

The Heteroskedasticity Is Known up to a 
Multiplicative Constant

Let x denote all the explanatory variables in equation (8.10) and assume that

Var(u�x) � �2h(x), (8.21)

where h(x) is some function of the explanatory variables that determines the het-
eroskedasticity. Since variances must be positive, h(x) � 0 for all possible values of the
independent variables. We assume in this subsection that the function h(x) is known.
The population parameter �2 is unknown, but we will be able to estimate it from a data
sample.

For a random drawing from the population, we can write �2
i � Var(ui�xi) �

�2h(xi) � �2hi, where we again use the notation xi to denote all independent variables
for observation i, and hi changes with each observation because the independent vari-
ables change across observations. For example, consider the simple savings function

savi � �0 � �1inci � ui (8.22)

Var(ui�inci) � �2inci. (8.23)

Here, h(inc) � inc: the variance of the error is proportional to the level of income. This
means that, as income increases, the variability in savings increases. (If �1 � 0, the
expected value of savings also increases with income.) Because inc is always positive,
the variance in equation (8.23) is always guaranteed to be positive. The standard devi-
ation of ui, conditional on inci, is ���inci�.

How can we use the information in equation (8.21) to estimate the �j? Essentially,
we take the original equation,
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yi � �0 � �1xi1 � �2xi2 � … � �kxik � ui, (8.24)

which contains heteroskedastic errors, and transform it into an equation that has
homoskedastic errors (and satisfies the other Gauss-Markov assumptions). Since hi is
just a function of xi, ui/��hi has a zero expected value conditional on xi. Further, since
Var(ui�xi) � E(ui

2�xi) � �2hi, the variance of ui/��hi (conditional on xi) is �2:

E �(ui/��hi)
2� � E(ui

2)/hi � (�2hi)/hi � �2,

where we have suppressed the conditioning on xi for simplicity. We can divide equation
(8.24) by ��hi to get

yi/��hi � �0/��hi � �1(xi1/��hi) � �2(xi2/��hi) � …

� �k(xik /��hi) � (ui/��hi)
(8.25)

or

yi* � �0xi*0 � �1x i*1 � … � �kx i*k � ui*, (8.26)

where xi*0 � 1/��hi and the other starred variables denote the corresponding original
variables divided by ��hi.

Equation (8.26) looks a little peculiar, but the important thing to remember is that
we derived it so we could obtain estimators of the �j that have better efficiency proper-
ties than OLS. The intercept �0 in the original equation (8.24) is now multiplying the
variable xi*0 � 1/��hi. Each slope parameter in �j multiplies a new variable that rarely
has a useful interpretation. This should not cause problems if we recall that, for inter-
preting the parameters and the model, we always want to return to the original equation
(8.24).

In the preceding savings example, the transformed equation looks like

savi / ��inci� � �0(1/ ��inci�) � �1��inci� � ui*,

where we use the fact that inci /��inci� � ��inci�. Nevertheless, �1 is the marginal propen-
sity to save out of income, an interpretation we obtain from equation (8.22).

Equation (8.26) is linear in its parameters (so it satisfies MLR.1), and the random
sampling assumption has not changed. Further, ui* has a zero mean and a constant vari-
ance (�2), conditional on xi*. This means that if the original equation satisfies the first
four Gauss-Markov assumptions, then the transformed equation (8.26) satisfies all five
Gauss-Markov assumptions. Also, if ui has a normal distribution, then ui* has a normal
distribution with variance �2. Therefore, the transformed equation satisfies the classi-
cal linear model assumptions (MLR.1 through MLR.6), if the original model does so,
except for the homoskedasticity assumption.

Since we know that OLS has appealing properties (is BLUE, for example) under the
Gauss-Markov assumptions, the discussion in the previous paragraph suggests estimat-
ing the parameters in equation (8.26) by ordinary least squares. These estimators, �0*,
�1*, …, �k*, will be different from the OLS estimators in the original equation. The �j*
are examples of generalized least squares (GLS) estimators. In this case, the GLS
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estimators are used to account for heteroskedasticity in the errors. We will encounter
other GLS estimators in Chapter 12.

Since equation (8.26) satisfies all of the ideal assumptions, standard errors, t statis-
tics, and F statistics can all be obtained from regressions using the transformed vari-
ables. The sum of squared residuals from (8.26) divided by the degrees of freedom is
an unbiased estimator of �2. Further, the GLS estimators, because they are the best lin-
ear unbiased estimators of the �j, are necessarily more efficient than the OLS estima-
tors �̂j obtained from the untransformed equation. Essentially, after we have
transformed the variables, we simply use standard OLS analysis. But we must remem-
ber to interpret the estimates in light of the original equation.

The R-squared that is obtained from estimating (8.26), while useful for computing
F statistics, is not especially informative as a goodness-of-fit measure: it tells us how
much variation in y* is explained by the xj*, and this is seldom very meaningful.

The GLS estimators for correcting heteroskedasticity are called weighted least
squares (WLS) estimators. This name comes from the fact that the �j* minimize the
weighted sum of squared residuals, where each squared residual is weighted by 1/hi.
The idea is that less weight is given to observations with a higher error variance; OLS
gives each observation the same weight because it is best when the error variance is
identical for all partitions of the population. Mathematically, the WLS estimators are
the values of the bj that make

�
n

i�1
(yi � b0 � b1xi1 � b2xi2 � … � bkxik)

2/hi (8.27)

as small as possible. Bringing the square root of 1/hi inside the squared residual shows
that the weighted sum of squared residuals is identical to the sum of squared residuals
in the transformed variables:

�
n

i�1
(yi* � b0xi*0 � b1xi*1 � b2xi*2 � … � bkxi*k)

2.

It follows that the WLS estimators that minimize (8.27) are simply the OLS estimators
from (8.26).

A weighted least squares estimator can be defined for any set of positive weights.
OLS is the special case that gives equal weight to all observations. The efficient proce-
dure, GLS, weights each squared residual by the inverse of the conditional variance of
ui given xi.

Obtaining the transformed variables in order to perform weighted least squares can
be tedious, and the chance of making mistakes is nontrivial. Fortunately, most modern
regression packages have a feature for doing weighted least squares. Typically, along
with the dependent and independent variables in the original model, we just specify the
weighting function. In addition to making mistakes less likely, this forces us to inter-
pret weighted least squares estimates in the original model. In fact, we can write out the
estimated equation in the usual way. The estimates and standard errors will be different
from OLS, but the way we interpret those estimates, standard errors, and test statistics
is the same.
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E X A M P L E  8 . 6
( F a m i l y  S a v i n g  E q u a t i o n )

Table 8.1 contains estimates of saving functions from the data set SAVING.RAW (on 100
families from 1970). We estimate the simple regression model (8.22) by OLS and by
weighted least squares, assuming in the latter case that the variance is given by (8.23). We
then add variables for family size, age of the household head, years of education for the
household head, and a dummy variable indicating whether the household head is black.

In the simple regression model, the OLS estimate of the marginal propensity to save
(MPS) is .147, with a t statistic of 2.53. (The standard errors in Table 8.1 for OLS are the
nonrobust standard errors. If we really thought heteroskedasticity was a problem, we would
probably compute the heteroskedasticity-robust standard errors as well; we will not do that
here.) The WLS estimate of the MPS is somewhat higher: .172, with t � 3.02. The standard
errors of the OLS and WLS estimates are very similar for this coefficient. The intercept esti-
mates are very different for OLS and WLS, but this should cause no concern since the t sta-
tistics are both very small. Finding fairly large changes in coefficients that are insignificant
is not uncommon when comparing OLS and WLS estimates. The R-squareds in columns (1)
and (2) are not comparable.
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Table 8.1

Dependent Variable: sav

Independent (1) (2) (3) (4)
Variables OLS WLS OLS WLS

inc .147 .172 .109 .101
(.058) (.057) (.071) (.077)

size — — 67.66 �6.87
(222.96) (168.43)

educ — — 151.82 139.48
(117.25) (100.54)

age — — .286 21.75
(50.031) (41.31)

black — — 518.39 137.28
(1,308.06) (844.59)

intercept 124.84 �124.95 �1,605.42 �1,854.81
(655.39) (480.86) (2,830.71) (2,351.80)

Observations 100 100 100 100
R-Squared .0621 .0853 .0828 .1042
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Adding demographic variables reduces the MPS whether OLS or WLS is used; the stan-
dard errors also increase by a fair amount (due to multicollinearity that is induced by adding
these additional variables). It is easy to see, using either the OLS or WLS estimates, that
none of the additional variables is individually significant. Are they jointly significant? The F
test based on the OLS estimates uses the R-squareds from columns (1) and (3). With 94 df
in the unrestricted model and four restrictions, the F statistic is F � [(.0828 � .0621)/(1 �
.0828)](94/4) � .53 and p-value � .715. The F test, using the WLS estimates, uses the
R-squareds from columns (2) and (4): F � .50 and p-value � .739. Thus, using either OLS
or WLS, the demographic variables are jointly insignificant. This suggests that the simple
regression model relating savings to income is sufficient.

What should we choose as our best estimate of the marginal propensity to save? In this
case, it does not matter much whether we use the OLS estimate of .147 or the WLS esti-
mate of .172. Remember, both are just estimates from a relatively small sample, and the
OLS 95% confidence interval contains the WLS estimate, and vice versa.

In practice, we rarely know how the variance depends on a particular independent
variable in a simple form. For example, in the savings equation that includes all demo-
graphic variables, how do we know that the variance of sav does not change with age

or education levels? In most applications,
we are unsure about Var(y�x1,x2…, xk).

There is one case where the weights
needed for WLS arise naturally from an
underlying econometric model. This hap-
pens when, instead of using individual
level data, we only have averages of data

across some group or geographic region. For example, suppose we are interested in
determining the relationship between the amount a worker contributes to his or her
401(k) pension plan as a function of the plan generosity. Let i denote a particular firm
and let e denote an employee within the firm. A simple model is

contribi,e � �0 � �1earnsi,e � �2agei,e � �3mratei � ui,e, (8.28)

where contribi,e is the annual contribution by employee e who works for firm i, earnsi,e

is annual earnings for this person, and agei,e is the person’s age. The variable mratei is
the amount the firm puts into an employee’s account for every dollar the employee con-
tributes.

If (8.28) satisfies the Gauss-Markov assumptions, then we could estimate it, given
a sample on individuals across various employers. Suppose, however, that we only have
average values of contributions, earnings, and age by employer. In other words, indi-
vidual-level data are not available. Thus, let denote average contribution for
people at firm i, and similarly for and . Let mi denote the number of employ-
ees at each firm; we assume that this is a known quantity. Then, if we average equation
(8.28) across all employees at firm i, we obtain the firm-level equation

� �0 � �1 � �2 � �3mratei � , (8.29)uiageiearnsicontribi

ageiearnsi

contribi

Chapter 8 Heteroskedasticity

265

Q U E S T I O N  8 . 3

Using the OLS residuals obtained from the OLS regression reported
in column (1) of Table 8.1, the regression of û2 on inc yields a t sta-
tistic on inc of .96. Is there any need to use weighted least squares
in Example 8.6?
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where ūi � mi
�1�

mi

e�1
ui,e is the average error across all employees in firm i. If we have n

firms in our sample, then (8.29) is just a standard multiple linear regression model that
can be estimated by OLS. The estimators are unbiased if the original model (8.28) sat-
isfies the Gauss-Markov assumptions and the individual errors ui,e are independent of
the firm’s size, mi (because then the expected value of ūi, given the explanatory variables
in (8.29), is zero).

If the equation at the individual level satisfies the homoskedasticity assumption,
then the firm-level equation (8.29) must have heteroskedasticity. In fact, if Var(ui,e) �
�2 for all i and e, then Var(ūi) � �2/mi. In other words, for larger firms, the variance of
the error term ūi decreases with firm size. In this case, hi � 1/mi, and so the most effi-
cient procedure is weighted least squares, with weights equal to the number of employ-
ees at the firm (1/hi � mi). This ensures that larger firms receive more weight. This gives
us an efficient way of estimating the parameters in the individual-level model when we
only have averages at the firm level.

A similar weighting arises when we are using per capita data at the city, county,
state, or country level. If the individual-level equation satisfies the Gauss-Markov
assumptions, then the error in the per capita equation has a variance proportional to one
over the size of the population. Therefore, weighted least squares with weights equal to
the population is appropriate. For example, suppose we have city-level data on per
capita beer consumption (in ounces), the percentage of people in the population over 21
years old, average adult education levels, average income levels, and the city price of
beer. Then the city-level model

beerpc � �0 + �1perc21 � �2avgeduc � �2incpc � �2price � u

can be estimated by weighted least squares, with the weights being the city popu-
lation.

The advantage of weighting by firm size, city population, and so on relies on the
underlying individual equation being homoskedastic. If heteroskedasticity exists at the
individual level, then the proper weighting depends on the form of the heteroskedastic-
ity. This is one reason why more and more researchers simply compute robust standard
errors and test statistics when estimating models using per capita data. An alternative is
to weight by population but to report the heteroskedasticity-robust statistics in the WLS
estimation. This ensures that, while the estimation is efficient if the individual-level
model satisfies the Gauss-Markov assumptions, any heteroskedasticity at the individual
level is accounted for through robust inference.

The Heteroskedasticity Function Must Be Estimated:
Feasible GLS

In the previous subsection, we saw some examples of where the heteroskedasticity is
known up to a multiplicative form. In most cases, the exact form of heteroskedasticity
is not obvious. In other words, it is difficult to find the function h(xi) of the previous
section. Nevertheless, in many cases we can model the function h and use the data to
estimate the unknown parameters in this model. This results in an estimate of each hi,
denoted as ĥi. Using ĥi instead of hi in the GLS transformation yields an estimator called
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the feasible GLS (FGLS) estimator. Feasible GLS is sometimes called estimated GLS,
or EGLS.

There are many ways to model heteroskedasticity, but we will study one particular,
fairly flexible approach. Assume that

Var(u�x) � �2exp(	0 � 	1x1 � 	2x2 � … � 	kxk), (8.30)

where x1, x2,…,xk are the independent variables appearing in the regression model [see
equation (8.1)], and the 	j are unknown parameters. Other functions of the xj can appear,
but we will focus primarily on (8.30). In the notation of the previous subsection,
h(x) � exp(	0 � 	1x1 � 	2x2 � … � 	kxk).

You may wonder why we have used the exponential function in (8.30). After all,
when testing for heteroskedasticity using the Breusch-Pagan test, we assumed that het-
eroskedasticity was a linear function of the xj. Linear alternatives such as (8.12) are fine
when testing for heteroskedasticity, but they can be problematic when correcting for
heteroskedasticity using weighted least squares. We have encountered the reason for
this problem before: linear models do not ensure that predicted values are positive, and
our estimated variances must be positive in order to perform WLS.

If the parameters 	j were known, then we would just apply WLS, as in the previous
subsection. This is not very realistic. It is better to use the data to estimate these para-
meters, and then to use these estimates to construct weights. How can we estimate the
	j? Essentially, we will transform this equation into a linear form that, with slight mod-
ification, can be estimated by OLS.

Under assumption (8.30), we can write

u2 � �2exp(	0 � 	1x1 � 	2x2 � … � 	kxk)v,

where v has a mean equal to unity, conditional on x � (x1, x2,…,xk). If we assume that
v is actually independent of x, we can write

log(u2) � 
0 � 	1x1 � 	2x2 � … � 	kxk � e, (8.31)

where e has a zero mean and is independent of x; the intercept in this equation is dif-
ferent from 	0, but this is not important. The dependent variable is the log of the squared
error. Since (8.31) satisfies the Gauss-Markov assumptions, we can get unbiased esti-
mators of the 	j by using OLS.

As usual, we must replace the unobserved u with the OLS residuals. Therefore, we
run the regression of

log(û2) on x1, x2,…,xk. (8.32)

Actually, what we need from this regression are the fitted values; call these ĝi. Then, the
estimates of hi are simply

ĥi � exp(ĝi). (8.33)

We now use WLS with weights 1/ĥi. We summarize the steps.
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A FEASIBLE GLS PROCEDURE TO CORRECT FOR HETEROSKEDASTICITY:

1. Run the regression of y on x1, x2, ..., xk and obtain the residuals, û.
2. Create log(û2) by first squaring the OLS residuals and then taking the natural

log.
3. Run the regression in equation (8.32) and obtain the fitted values, ĝ.
4. Exponentiate the fitted values from (8.32): ĥ � exp(ĝ).
5. Estimate the equation

y � �0 � �1x1 � … � �kxk � u

by WLS, using weights 1/ĥ.

If we could use hi rather than ĥi in the WLS procedure, we know that our estimators
would be unbiased; in fact, they would be the best linear unbiased estimators, assum-
ing that we have properly modeled the heteroskedasticity. Having to estimate hi using
the same data means that the FGLS estimator is no longer unbiased (so it cannot be
BLUE, either). Nevertheless, the FGLS estimator is consistent and asymptotically more
efficient than OLS. This is difficult to show because of estimation of the variance para-
meters. But if we ignore this—as it turns out we may—the proof is similar to showing
that OLS is efficient in the class of estimators in Theorem 5.3. At any rate, for large
sample sizes, FGLS is an attractive alternative to OLS when there is evidence of het-
eroskedasticity that inflates the standard errors of the OLS estimates.

We must remember that the FGLS estimators are estimators of the parameters in the
equation

y � �0 � �1x1 � … � �kxk � u.

Just as the OLS estimates measure the marginal impact of each xj on y, so do the FGLS
estimates. We use the FGLS estimates in place of the OLS estimates because they are
more efficient and have associated test statistics with the usual t and F distributions, at
least in large samples. If we have some doubt about the variance specified in equation
(8.30), we can use heteroskedasticity-robust standard errors and test statistics in the
transformed equation.

Another useful alternative for estimating hi is to replace the independent variables
in regression (8.32) with the OLS fitted values and their squares. In other words, obtain
the ĝi as the fitted values from the regression of

log(û2) on ŷ, ŷ2 (8.34)

and then obtain the ĥi exactly as in equation (8.33). This changes only step (3) in the
previous procedure.

If we use regression (8.32) to estimate the variance function, you may be wonder-
ing if we can simply test for heteroskedasticity using this same regression (an F or LM
test can be used). In fact, Park (1966) suggested this. Unfortunately, when compared
with the tests discussed in Section 8.3, the Park test has some problems. First, the null
hypothesis must be something stronger than homoskedasticity: effectively, u and x must
be independent. This is not required in the Breusch-Pagan or White tests. Second, using
the OLS residuals û in place of u in (8.32) can cause the F statistic to deviate from the
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F distribution, even in large sample sizes. This is not an issue in the other tests we have
covered. For these reasons, the Park test is not recommended when testing for het-
eroskedasticity. The reason that regression (8.32) works well for weighted least squares
is that we only need consistent estimators of the 	j, and regression (8.32) certainly
delivers those.

E X A M P L E  8 . 7
( D e m a n d  f o r  C i g a r e t t e s )

We use the data in SMOKE.RAW to estimate a demand function for daily cigarette con-
sumption. Since most people do not smoke, the dependent variable, cigs, is zero for most
observations. A linear model is not ideal because it can result in negative predicted values.
Nevertheless, we can still learn something about the determinants of cigarette smoking by
using a linear model.

The equation estimated by ordinary least squares, with the usual OLS standard errors in
parentheses, is

0(cîgs � �3.64)�(.880)log(income) �0(.751)log(cigpric)
�cîgs � (24.08)�(.728)log(income) � (5.773)log(cigpric)

� (.501)educ �(.771)age �(.0090)age2 �(2.83)restaurn
� (.167)educ �(.160)age �(.0017)age2 �(1.11)restaurn

n � 807, R2 � .0526,

(8.35)

where cigs is number of cigarettes smoked per day, income is annual income, cigpric is the
per pack price of cigarettes (in cents), educ is years of schooling, age is measured in years,
and restaurn is a binary indicator equal to unity if the person resides in a state with restau-
rant smoking restrictions. Since we are also going to do weighted least squares, we do not
report the heteroskedasticity-robust standard errors for OLS. (Incidentally, 13 out of the 807
fitted values are less than zero; this is less than 2% of the sample and is not a major cause
for concern.)

Neither income nor cigarette price is statistically significant in (8.35), and their effects
are not practically large. For example, if income increases by 10%, cigs is predicted to
increase by (.880/100)(10) � .088, or less than one-tenth of a cigarette per day. The mag-
nitude of the price effect is similar.

Each year of education reduces the average cigarettes smoked per day by one-half, and
the effect is statistically significant. Cigarette smoking is also related to age, in a quadratic
fashion. Smoking increases with age up until age � .771/[2(.009)] � 42.83, and then
smoking decreases with age. Both terms in the quadratic are statistically significant. The
presence of a restriction on smoking in restaurants decreases cigarette smoking by almost
three cigarettes per day, on average.

Do the errors underlying equation (8.35) contain heteroskedasticity? The Breusch-
Pagan regression of the squared OLS residuals on the independent variables in (8.35) [see
equation (8.14)] produces R2

û2 � .040. This small R-squared may seem to indicate no het-
eroskedasticity, but we must remember to compute either the F or LM statistic. If the
sample size is large, a seemingly small R2

û2 can result in a very strong rejection of
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homoskedasticity. The LM statistic is LM � 807(.040) � 32.28, and this is the outcome of
a �2

6 random variable. The p-value is less than .000015, which is very strong evidence of
heteroskedasticity.

Therefore, we estimate the equation using the previous feasible GLS procedure. The
estimated equation is

0(cîgs � 5.64)�(1.30)log(income) �02.94)log(cigpric)
cîgs � (17.80)���(.44)log(income) � (4.46)log(cigpric)

� (.463)educ �(.482)age �(.0056)age2 �(3.46)restaurn
� (.120)educ �(.097)age �(.0009)age2 ��(.80)restaurn

n � 807, R2 � .1134.

(8.36)

The income effect is now statistically significant and larger in magnitude. The price effect is
also notably bigger, but it is still statistically insignificant. (One reason for this is that cigpric
varies only across states in the sample, and so there is much less variation in log(cigpric)
than in log(income), educ, and age.)

The estimates on the other variables have, naturally, changed somewhat, but the basic
story is still the same. Cigarette smoking is negatively related to schooling, has a quadratic
relationship with age, and is negatively affected by restaurant smoking restrictions.

We must be a little careful in computing F statistics for testing multiple hypotheses
after estimation by WLS. (This is true whether the sum of squared residuals or R-
squared form of the F statistic is used.) It is important that the same weights be used to
estimate the unrestricted and restricted models. We should first estimate the unrestricted
model by OLS. Once we have obtained the weights, we can use them to estimate the
restricted model as well. The F statistic can be computed as usual. Fortunately, many

regression packages have a simple com-
mand for testing joint restrictions after
WLS estimation, so we need not perform
the restricted regression ourselves.

Example 8.7 hints at an issue that
sometimes arises in applications of
weighted least squares: the OLS and WLS
estimates can be substantially different.
This is not such a big problem in the

demand for cigarettes equation because all the coefficients maintain the same signs, and
the biggest changes are on variables that were statistically insignificant when the equa-
tion was estimated by OLS. The OLS and WLS estimates will always differ due to sam-
pling error. The issue is whether their difference is enough to change important
conclusions.

If OLS and WLS produce statistically significant estimates that differ in sign—for
example, the OLS price elasticity is positive and significant, while the WLS price elas-
ticity is negative and signficant—or the difference in magnitudes of the estimates is
practically large, we should be suspicious. Typically, this indicates that one of the other
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Q U E S T I O N  8 . 4

Suppose that the model for heteroskedasticity in equation (8.30) is
not correct, but we use the feasible GLS procedure based on this
variance. WLS is still consistent, but the usual standard errors, t sta-
tistics, and so on will not be valid, even asymptotically. What can we
do instead? [Hint: See equation (8.26), where ui* contains het-
eroskedasticity if Var(u�x) � �2h(x).]

d  7/14/99 6:18 PM  Page 270



Gauss-Markov assumptions is false, particularly the zero conditional mean assumption
on the error (MLR.3). Correlation between u and any independent variable causes bias
and inconsistency in OLS and WLS, and the biases will usually be different. The
Hausman test [Hausman (1978)] can be used to formally compare the OLS and WLS
estimates to see if they differ by more than the sampling error suggests. This test is
beyond the scope of this text. In many cases, an informal “eyeballing” of the estimates
is sufficient to detect a problem.

8.5 THE LINEAR PROBABILITY MODEL REVISITED

As we saw in Section 7.6, when the dependent variable y is a binary variable, the model
must contain heteroskedasticity, unless all of the slope parameters are zero. We are now
in a position to deal with this problem.

The simplest way to deal with heteroskedasticity in the linear probability model is
to continue to use OLS estimation, but to also compute robust standard errors in test sta-
tistics. This ignores the fact that we actually know the form of heteroskedasticity for the
LPM. Nevertheless, OLS estimates of the LPM is simple and often produces satisfac-
tory results.

E X A M P L E  8 . 8
( L a b o r  F o r c e  P a r t i c i p a t i o n  o f  M a r r i e d  W o m e n )

In the labor force participation example in Section 7.6 [see equation (7.29)], we reported
the usual OLS standard errors. Now we compute the heteroskedasticity-robust standard
errors as well. These are reported in brackets below the usual standard errors:

in̂lf �(.586)�(.0034)nwifeinc �(.038)educ �(.039)exper
in̂lf �(.154)�(.0014)nwifeinc �(.007)educ �(.006)exper
in̂lf �[.151]�[.0015]nwifeinc �[.007]educ �[.006]exper

6�(.00060)exper2 �(.016)age �(.262)kidslt6 �(.0130)kidsge6 (8.37)
�(.00018)exper2 �(.002)age �(.034)kidslt6 �(.0132)kidslt6
�[.00019]exper2 �[.002]age �[.032]kidslt6 �[.0135]kidslt6

n � 753, R2 � .264.

Several of the robust and OLS standard errors are the same to the reported degree of pre-
cision; in all cases the differences are practically very small. Therefore, while het-
eroskedasticity is a problem in theory, it is not in practice, at least not for this example. It
often turns out that the usual OLS standard errors and test statistics are similar to their
heteroskedasticity-robust counterparts. Furthermore, it requires a minimal effort to com-
pute both.

Generally, the OLS esimators are inefficient in the LPM. Recall that the conditional
variance of y in the LPM is
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Var(y�x) � p(x)[1 � p(x)], (8.38)

where

p(x) � �0 � �1x1 � … � �kxk (8.39)

is the response probability (probability of success, y � 1). It seems natural to use
weighted least squares, but there are a couple of hitches. The probability p(x) clearly
depends on the unknown population parameters, �j. Nevertheless, we do have unbiased
estimators of these parameters, namely the OLS estimators. When the OLS estimators
are plugged into equation (8.39), we obtain the OLS fitted values. Thus, for each obser-
vation i, Var(yi�xi) is estimated by

ĥi � ŷi(1 � ŷi), (8.40)

where ŷi is the OLS fitted value for observation i. Now we apply feasible GLS, just as
in Section 8.4.

Unfortunately, being able to estimate hi for each i does not mean that we can pro-
ceed directly with WLS estimation. The problem is one that we briefly discussed in
Section 7.6: the fitted values ŷi need not fall in the unit interval. If either ŷi � 0 or ŷi �
1, equation (8.40) shows that ĥi will be negative. Since WLS proceeds by multiplying
observation i by 1/��ĥi , the method will fail if ĥi is negative (or zero) for any observa-
tion. In other words, all of the weights for WLS must be positive.

In some cases, 0 � ŷi � 1 for all i, in which case WLS can be used to estimate the
LPM. In cases with many observations and small probabilities of success or failure, it
is very common to find some fitted values outside the unit interval. If this happens, as
it does in the labor force participation example in equation (8.37), it is easiest to aban-
don WLS and to report the heteroskedasticity-robust statistics. An alternative is to
adjust those fitted values that are less than zero or greater than unity, and then to apply
WLS. One suggestion is to set ŷi � .01 if ŷi � 0 and ŷi � .99 if ŷi � 1. Unfortunately,
this requires an arbitrary choice on the part of the researcher—for example, why not use
.001 and .999 as the adjusted values? If many fitted values are outside the unit interval,
the adjustment to the fitted values can affect the results; in this situation, it is probably
best to just use OLS.

ESTIMATING THE LINEAR PROBABILITY MODEL BY WEIGHTED LEAST
SQUARES:

1. Estimate the model by OLS and obtain the fitted values, ŷ.
2. Determine whether all of the fitted values are inside the unit interval. If so, pro-

ceed to step (3). If not, some adjustment is needed to bring all fitted values into
the unit interval.

3. Construct the estimated variances in equation (8.40).
4. Estimate the equation

y � �0 � �1x1 � … � �kxk � u

by WLS, using weights 1/ĥ.
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E X A M P L E  8 . 9
( D e t e r m i n a n t s  o f  P e r s o n a l  C o m p u t e r  O w n e r s h i p )

We use the data in GPA1.RAW to estimate the probability of owning a computer. Let PC
denote a binary indicator equal to unity if the student owns a computer, and zero other-
wise. The variable hsGPA is high school GPA, ACT is achievement test score, and parcoll is
a binary indicator equal to unity if at least one parent attended college. (Separate college
indicators for the mother and the father do not yield individually significant results, as these
are pretty highly correlated.)

The equation estimated by OLS is

(PĈ � �.0004)�(.065)hsGPA �(.0006)ACT �(.221)parcoll
PĈ � �(.4905)�(.137)hsGPA �(.0155)ACT �(.093)parcoll
PĈ � �[.4888]�[.139]hsGPA �[.0158]ACT �[.087]parcoll

n � 141, R2 � .0415.

(8.41)

Just as with Example 8.8, there are no striking differences between the usual and robust
standard errors. Nevertheless, we also estimate the model by WLS. Because all of the OLS
fitted values are inside the unit interval, no adjustments are needed:

PĈ � (.026)�(.033)hsGPA �(.0043)ACT �(.215)parcoll
PĈ � (.477)�(.130)hsGPA �(.0155)ACT �(.086)parcoll

n � 141, R2 � .0464.

(8.42)

There are no important differences in the OLS and WLS estimates. The only significant
explanatory variable is parcoll, and in both cases we estimate that the probability of PC
ownership is about .22 higher, if at least one parent attended college.

SUMMARY

We began by reviewing the properties of ordinary least squares in the presence of het-
eroskedasticity. Heteroskedasticity does not cause bias or inconsistency in the OLS esti-
mators, but the usual standard errors and test statistics are no longer valid. We showed
how to compute heteroskedasticity-robust standard errors and t statistics, something
that is routinely done by many regression packages. Most regression packages also
compute a heteroskedasticity-robust, F-type statistic.

We discussed two common ways to test for heteroskedasticity: the Breusch-Pagan
test and a special case of the White test. Both of these statistics involve regressing the
squared OLS residuals on either the independent variables (BP) or the fitted and
squared fitted values (White). A simple F test is asymptotically valid; there are also
Lagrange multiplier versions of the tests.

OLS is no longer the best linear unbiased estimator in the presence of het-
eroskedasticity. When the form of heteroskedasticity is known, generalized least
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squares (GLS) estimation can be used. This leads to weighted least squares as a means
of obtaining the BLUE estimator. The test statistics from the WLS estimation are either
exactly valid when the error term is normally distributed or asymptotically valid under
nonnormality. This assumes, of course, that we have the proper model of heteroskedas-
ticity.

More commonly, we must estimate a model for the heteroskedasticity before apply-
ing WLS. The resulting feasible GLS estimator is no longer unbiased, but it is consis-
tent and asymptotically efficient. The usual statistics from the WLS regression are
asymptotically valid. We discussed a method to ensure that the estimated variances are
strictly positive for all observations, something needed to apply WLS.

As we discussed in Chapter 7, the linear probability model for a binary dependent
variable necessarily has a heteroskedastic error term. A simple way to deal with this
problem is to compute heteroskedasticity-robust statistics. Alternatively, if all the fitted
values (that is, the estimated probabilities) are strictly between zero and one, weighted
least squares can be used to obtain asymptotically efficient estimators.

KEY TERMS
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Breusch-Pagan Test for 
Heteroskedasticity (BP Test)

Feasible GLS (FGLS) Estimator 
Generalized Least Squares (GLS)

Estimators 
Heteroskedasticity of Unknown Form
Heteroskedasticity-Robust Standard Error

Heteroskedasticity-Robust F Statistic
Heteroskedasticity-Robust LM Statistic
Heteroskedasticity-Robust t Statistic
Weighted Least Squares (WLS)

Estimators
White Test for Heteroskedasticity

PROBLEMS

8.1 Which of the following are consequences of heteroskedasticity?
(i) The OLS estimators, �̂j, are inconsistent.
(ii) The usual F statistic no longer has an F distribution.
(iii) The OLS estimators are no longer BLUE.

8.2 Consider a linear model to explain monthly beer consumption:

beer � �0 � �1inc � �2price � �3educ � �4 female � u

E(u�inc,price,educ, female) � 0

Var(u�inc,price,educ, female) � �2inc2.

Write the transformed equation that has a homoskedastic error term.

8.3 True or False: WLS is preferred to OLS, when an important variable has been
omitted from the model.

8.4 Using the data in GPA3.RAW, the following equation was estimated for the fall
and second semester students:
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(trm̂gpa � �2.12)�(.900)crsgpa �(.193)cumgpa �(.0014)tothrs
2trmgpa � �(.55)�(.175)crsgpa �(.064)cumgpa �(.0012)tothrs
2trmgpa � �[.55]�[.166]crsgpa �[.074]cumgpa �[.0012]tothrs

�(.0018)sat �(.0039)hsperc �(.351)female �(.157)season
�(.0002)sat �(.0018)hsperc �(.085)female �(.098)season
�[.0002]sat �[.0019]hsperc �[.079]female �[.080]season

n � 269, R2 � .465.

Here, trmgpa is term GPA, crsgpa is a weighted average of overall GPA in courses
taken, tothrs is total credit hours prior to the semester, sat is SAT score, hsperc is grad-
uating percentile in high school class, female is a gender dummy, and season is a
dummy variable equal to unity if the student’s sport is in season during the fall. The
usual and heteroskedasticity-robust standard errors are reported in parentheses and
brackets, respectively.

(i) Do the variables crsgpa, cumgpa, and tothrs have the expected esti-
mated effects? Which of these variables are statistically significant at
the 5% level? Does it matter which standard errors are used?

(ii) Why does the hypothesis H0: �crsgpa � 1 make sense? Test this hypoth-
esis against the two-sided alternative at the 5% level, using both stan-
dard errors. Describe your conclusions.

(iii) Test whether there is an in-season effect on term GPA, using both stan-
dard errors. Does the significance level at which the null can be rejected
depend on the standard error used?

8.5 The variable smokes is a binary variable equal to one if a person smokes, and zero
otherwise. Using the data in SMOKE.RAW, we estimate a linear probability model for
smokes:

smôkes �(.656)�(.069)log(cigpric) �(.012)log(income) �(.029)educ
smôkes �(.855)�(.204)log(cigpric) �(.026)log(income) �(.006)educ
smôkes �[.856]�[.207]log(cigpric) �[.026]log(income) �[.006]educ

�(.020)age �(.00026)age2 �(.101)restaurn �(.026)white
�(.006)age �(.00006)age2 �(.039)restaurn �(.052)white
�[.005]age �[.00006]age2 �[.038]restaurn �[.050]white

n � 807, R2 � .062.

The variable white equals one if the respondent is white, and zero otherwise; the other
independent variables are defined in Example 8.7. Both the usual and heteroskedasticity-
robust standard errors are reported.

(i) Are there any important differences between the two sets of standard
errors?

(ii) Holding other factors fixed, if education increases by four years, what
happens to the estimated probability of smoking?

(iii) At what point does another year of age reduce the probability of smok-
ing?

(iv) Interpret the coefficient on the binary variable restaurn (a dummy vari-
able equal to one if the person lives in a state with restaurant smoking
restrictions).
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(v) Person number 206 in the data set has the following characteristics:
cigpric � 67.44, income � 6,500, educ � 16, age � 77, restaurn � 0,
white � 0, and smokes � 0. Compute the predicted probability of
smoking for this person and comment on the result.

COMPUTER EXERCISES

8.6 Use the data in SLEEP75.RAW to estimate the following sleep equation:

sleep � �0 � �1totwrk � �2educ � �3age � �4age2 � �5yngkid � �6male � u.

(i) Write down a model that allows the variance of u to differ between men
and women. The variance should not depend on other factors.

(ii) Estimate the parameters of the model for heteroskedasticty. (You have
to estimate the sleep equation by OLS, first, to obtain the OLS residu-
als.) Is the estimated variance of u higher for men or for women?

(iii) Is the variance of u statistically different for men and for women?

8.7 (i) Use the data in HPRICE1.RAW to obtain the heteroskedasticity-robust stan-
dard errors for equation (8.17). Discuss any important differences with the
usual standard errors.

(ii) Repeat part (i) for equation (8.18).
(iii) What does this example suggest about heteroskedasticity and the trans-

formation used for the dependent variable?

8.8 Apply the full White test for heteroskedasticity [see equation (8.19)] to equation
(8.18). Using the chi-square form of the statistic, obtain the p-value. What do you con-
clude?

8.9 Use VOTE1.RAW for this exercise.
(i) Estimate a model with voteA as the dependent variable and prtystrA,

democA, log(expendA), and log(expendB) as independent variables.
Obtain the OLS residuals, ûi, and regress these on all of the independent
variables. Explain why you obtain R2 � 0.

(ii) Now compute the Breusch-Pagan test for heteroskedasticity. Use the F
statistic version and report the p-value.

(iii) Compute the special case of the White test for heteroskedasticity, again
using the F statistic form. How strong is the evidence for heteroskedas-
ticity now?

8.10 Use the data in PNTSPRD.RAW for this exercise.
(i) The variable sprdcvr is a binary variable equal to one if the Las Vegas

point spread for a college basketball game was covered. The expected
value of sprdcvr, say �, is the probability that the spread is covered in
a randomly selected game. Test H0: � � .5 against H1: � � .5 at the
10% significance level and discuss your findings. (Hint: This is easily
done using a t test by regressing sprdcvr on an intercept only.)

(ii) How many games in the sample of 553 were played on a neutral court?
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(iii) Estimate the linear probability model

sprdcvr � �0 � �1 favhome � �2neutral � �3 fav25 � �4und25 � u

and report the results in the usual form. (Report the usual OLS standard
errors and the heteroskedasticity-robust standard errors.) Which vari-
able is most significant, both practically and statistically?

(iv) Explain why, under the null hypothesis H0: �1 � �2 � �3 � �4 � 0,
there is no heteroskedasticity in the model.

(v) Use the usual F statistic to test the hypothesis in part (iv). What do you
conclude?

(vi) Given the previous analysis, would you say that it is possible to sys-
tematically predict whether the Las Vegas spread will be covered using
information available prior to the game?

8.11 In Example 7.12, we estimated a linear probability model for whether a young
man was arrested during 1986:

arr86 � �0 � �1pcnv � �2avgsen � �3tottime � �4ptime86 � �5qemp86 � u.

(i) Estimate this model by OLS and verify that all fitted values are strictly
between zero and one. What are the smallest and largest fitted values?

(ii) Estimate the equation by weighted least squares, as discussed in Section
8.5.

(iii) Use the WLS estimates to determine whether avgsen and tottime are
jointly significant at the 5% level.

8.12 Use the data in LOANAPP.RAW for this exercise.
(i) Estimate the equation in part (iii) of Problem 7.16, computing the

heteroskedasticity-robust standard errors. Compare the 95% confidence
interval on �white with the nonrobust confidence interval.

(ii) Obtain the fitted values from the regression in part (i). Are any of them
less than zero? Are any of them greater than one? What does this mean
about applying weighted least squares?
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In Chapter 8, we dealt with one failure of the Gauss-Markov assumptions. Het-
eroskedasticity in the errors can be viewed as a model misspecification, but it is a
relatively minor one. The presence of heteroskedasticity does not cause bias or

inconsistency in the OLS estimators. Also, it is fairly easy to adjust confidence inter-
vals and t and F statistics to obtain valid inference after OLS estimation, or even to get
more efficient estimators by using weighted least squares.

In this chapter, we return to the much more serious problem of correlation between
the error, u, and one or more of the explanatory variables. Remember from Chapter 3
that if u is, for whatever reason, correlated with the explanatory variable xj, then we say
that xj is an endogenous explanatory variable. We also provide a more detailed dis-
cussion on three reasons why an explanatory variable can be endogenous; in some
cases, we discuss possible remedies.

We have already seen in Chapters 3 and 5 that omitting a key variable can cause cor-
relation between the error and some of the explanatory variables, which generally leads
to bias and inconsistency in all of the OLS estimators. In the special case that the omit-
ted variable is a function of an explanatory variable in the model, the model suffers
from functional form misspecification.

We begin in the first section by discussing the consequences of functional form mis-
specification and how to test for it. In Section 9.2, we show how the use of proxy vari-
ables can solve, or at least mitigate, omitted variables bias. In Section 9.3, we derive
and explain the bias in OLS that can arise under certain forms of measurement error.
Additional data problems are discussed in Section 9.4.

All of the procedures in this chapter are based on OLS estimation. As we will see,
certain problems that cause correlation between the error and some explanatory vari-
ables cannot be solved by using OLS on a single cross section. We postpone a treatment
of alternative estimation methods until Part 3.

9.1 FUNCTIONAL FORM MISSPECIFICATION

A multiple regression model suffers from functional form misspecification when it does
not properly account for the relationship between the dependent and the observed explana-
tory variables. For example, if hourly wage is determined by log(wage) � �0 � �1educ �
�2exper � �3exper2 � u, but we omit the squared experience term, exper2, then we are
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committing a functional form misspecification. We already know from Chapter 3 that this
generally leads to biased estimators of �0, �1, and �2. (We do not estimate �3 because
exper2 is excluded from the model.) Thus, misspecifying how exper affects log(wage) gen-
erally results in a biased estimator of the return to education, �1. The amount of this bias
depends on the size of �3 and the correlation among educ, exper, and exper2.

Things are worse for estimating the return to experience: even if we could get an
unbiased estimator of �2, we would not be able to estimate the return to experience
because it equals �2 � 2�3exper (in decimal form). Just using the biased estimator of
�2 can be misleading, especially at extreme values of exper.

As another example, suppose the log(wage) equation is

log(wage) � �0 � �1educ � �2exper � �3exper2

� �4 female � �5 female�educ � u,
(9.1)

where female is a binary variable. If we omit the interaction term, female�educ, then we
are misspecifying the functional form. In general, we will not get unbiased estimators
of any of the other parameters, and since the return to education depends on gender, it
is not clear what return we would be estimating by omitting the interaction term.

Omitting functions of independent variables is not the only way that a model can
suffer from misspecified functional form. For example, if (9.1) is the true model satis-
fying the first four Gauss-Markov assumptions, but we use wage rather than log(wage)
as the dependent variable, then we will not obtain unbiased or consistent estimators of
the partial effects. The tests that follow have some ability to detect this kind of func-
tional form problem, but there are better tests that we will mention in the subsection on
testing against nonnested alternatives.

Misspecifying the functional form of a model can certainly have serious conse-
quences. Nevertheless, in one important respect, the problem is minor: by definition, we
have data on all the necessary variables for obtaining a functional relationship that fits
the data well. This can be contrasted with the problem addressed in the next section,
where a key variable is omitted on which we cannot collect data.

We already have a very powerful tool for detecting misspecified functional form:
the F test for joint exclusion restrictions. It often makes sense to add quadratic terms of
any significant variables to a model and to perform a joint test of significance. If the
additional quadratics are significant, they can be added to the model (at the cost of com-
plicating the interpretation of the model). However, significant quadratic terms can be
symptomatic of other functional form problems, such as using the level of a variable
when the logarithm is more appropriate, or vice versa. It can be difficult to pinpoint the
precise reason that a functional form is misspecified. Fortunately, in many cases, using
logarithms of certain variables and adding quadratics is sufficient for detecting many
important nonlinear relationships in economics.

E X A M P L E  9 . 1
( E c o n o m i c  M o d e l  o f  C r i m e )

Table 9.1 contains OLS estimates of the economic model of crime (see Example 8.3). We
first estimate the model without any quadratic terms; those results are in column (1).
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Table 9.1

Dependent Variable: narr86

Independent Variables (1) (2)

pcnv �.133 .533
(.040) (.154)

pcnv2 — �.730
(.156)

avgsen �.011 �.017
(.012) (.012)

tottime .012 .012
(.009) (.009)

ptime86 �.041 .287
(.009) (.004)

ptime862 — �.0296
(.0039)

qemp86 �.051 �.014
(.014) (.017)

inc86 �.0015 �.0034
(.0003) (.0008)

inc862 — .000007
(.000003)

black .327 .292
(.045) (.045)

hispan .194 .164
(.040) (.039)

intercept .596 .505
(.036) (.037)

Observations .2725 .2725
R-Squared .0723 .1035
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In column (2), the squares of pcnv, ptime86,
and inc86 are added; we chose to include
the squares of these variables because each
one is significant in column (1). The variable
qemp86 is a discrete variable taking on only

five values, so we do not include its square in column (2).
Each of the squared terms is significant and together they are jointly very significant

(F � 31.37, with df � 3 and 2713; the p-value is essentially zero). Thus, it appears that the
initial model overlooked some potentially important nonlinearities.

The presence of the quadratics makes interpreting the model somewhat difficult. For
example, pcnv no longer has a strict deterrent effect: the relationship between narr86 and
pcnv is positive up until pcnv � .365, and then the relationship is negative. We might con-
clude that there is little or no deterrent effect at lower values of pcnv; the effect only kicks
in at higher prior conviction rates. We would have to use more sophisticated functional
forms than the quadratic to verify this conclusion. It may be that pcnv is not entirely exoge-
nous. For example, men who have not been convicted in the past (so that pcnv � 0) are
perhaps casual criminals, and so they are less likely to be arrested in 1986. This could be
biasing the estimates.

Similarly, the relationship between narr86 and ptime86 is positive up until ptime86 �
4.85 (almost five months in prison), and then the relationship is negative. The vast major-
ity of men in the sample spent no time in prison in 1986, so again we must be careful in
interpreting the results.

Legal income has a negative effect on narr86 until inc86 � 242.85; since income is
measured in hundreds of dollars, this means an annual income of $24,285. Only 46 of the
men in the sample have incomes above this level. Thus, we can conclude that narr86 and
inc86 are negatively related with a diminishing effect.

Example 9.1 is a tricky functional form problem due to the nature of the dependent
variable. There are other models that are theoretically better suited for handling depen-
dent variables that take on a small number of integer values. We will briefly cover these
models in Chapter 17.

RESET as a General Test for Functional Form
Misspecification

There are some tests that have been proposed to detect general functional form mis-
specification. Ramsey’s (1969) regression specification error test (RESET) has
proven to be useful in this regard.

The idea behind RESET is fairly simple. If the original model

y � �0 � �1x1 � ... � �kxk � u (9.2)

satisfies MLR.3, then no nonlinear functions of the independent variables should be sig-
nificant when added to equation (9.2). In Example 9.1, we added quadratics in the signif-
icant explanatory variables. While this often detects functional form problems, it has the
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drawback of using up many degrees of freedom if there are many explanatory variables
in the original model (much as the straight form of the White test for heteroskedasticity
consumes degrees of freedom). Further, certain kinds of neglected nonlinearities will not
be picked up by adding quadratic terms. RESET adds polynomials in the OLS fitted val-
ues to equation (9.2) to detect general kinds of functional form misspecification.

In order to implement RESET, we must decide how many functions of the fitted val-
ues to include in an expanded regression. There is no right answer to this question, but
the squared and cubed terms have proven to be useful in most applications.

Let ŷ denote the OLS fitted values from estimating (9.2). Consider the expanded
equation

y � �0 � �1x1 � ... � �kxk � �1ŷ
2 � �2 ŷ3 � error. (9.3)

This equation seems a little odd, because functions of the fitted values from the initial
estimation now appear as explanatory variables. In fact, we will not be interested in the
estimated parameters from (9.3); we only use this equation to test whether (9.2) has
missed important nonlinearities. The thing to remember is that ŷ2 and ŷ3 are just non-
linear functions of the xj.

The null hypothesis is that (9.2) is correctly specified. Thus, RESET is the F statis-
tic for testing H0: �1 � 0, �2 � 0 in the expanded model (9.3). A significant F statistic
suggests some sort of functional form problem. The distribution of the F statistic is
approximately F2,n�k�3 in large samples under the null hypothesis (and the Gauss-
Markov assumptions). The df in the expanded equation (9.3) is n � k � 1 � 2 � n �
k � 3. An LM version is also available (and the chi-square distribution will have two
df ). Further, the test can be made robust to heteroskedasticity using the methods dis-
cussed in Section 8.2.

E X A M P L E  9 . 2
( H o u s i n g  P r i c e  E q u a t i o n )

Using the data in HPRICE1.RAW, we estimate two models for housing prices. The first one
has all variables in level form:

price � �0 � �1lotsize � �2sqrft � �3bdrms � u. (9.4)

The second one uses the logarithms of all variables except bdrms:

lprice � �0 � �1llotsize � �2lsqrft � �3bdrms � u. (9.5)

Using n � 88 houses in HPRICE3.RAW, the RESET statistic for equation (9.4) turns out to
be 4.67; this is the value of an F2,82 random variable (n � 88, k � 3), and the associated
p-value is .012. This is evidence of functional form misspecification in (9.4).

The RESET statistic in (9.5) is 2.56, with p-value � .084. Thus, we do not reject (9.5) at
the 5% significance level (although we would at the 10% level). On the basis of RESET, the
log-log model in (9.5) is preferred.
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In the previous example, we tried two models for explaining housing prices. One
was rejected by RESET, while the other was not (at least at the 5% level). Often, things
are not so simple. A drawback with RESET is that it provides no real direction on how
to proceed if the model is rejected. Rejecting (9.4) by using RESET does not immedi-
ately suggest that (9.5) is the next step. Equation (9.5) was estimated because constant
elasticity models are easy to interpret and can have nice statistical properties. In this
example, it so happens that it passes the functional form test as well.

Some have argued that RESET is a very general test for model misspecification,
including unobserved omitted variables and heteroskedasticity. Unfortunately, such use
of RESET is largely misguided. It can be shown that RESET has no power for detect-
ing omitted variables whenever they have expectations that are linear in the included
independent variables in the model [see Wooldridge (1995) for a precise statement].
Further, if the functional form is properly specified, RESET has no power for detecting
heteroskedasticity. The bottom line is that RESET is a functional form test, and noth-
ing more.

Tests Against Nonnested Alternatives

Obtaining tests for other kinds of functional form misspecification—for example, try-
ing to decide whether an independent variable should appear in level or logarithmic
form—takes us outside the realm of classical hypothesis testing. It is possible to test the
model

y � �0 � �1x1 � �2x2 � u (9.6)

against the model

y � �0 � �1log(x1) � �2log(x2) � u, (9.7)

and vice versa. However, these are nonnested models (see Chapter 6), and so we can-
not simply use a standard F test. Two different approaches have been suggested. The
first is to construct a comprehensive model that contains each model as a special case
and then to test the restrictions that led to each of the models. In the current example,
the comprehensive model is

y � �0 � �1x1 � �2x2 � �3log(x1) � �4log(x2) � u. (9.8)

We can first test H0: �3 � 0, �4 � 0 as a test of (9.6). We can also test H0: �1 � 0, �2 �
0 as a test of (9.7). This approach was suggested by Mizon and Richard (1986).

Another approach has been suggested by Davidson and MacKinnon (1981). They
point out that, if (9.6) is true, then the fitted values from the other model, (9.7), should
be insignificant in (9.6). Thus, to test (9.6), we first estimate model (9.7) by OLS to
obtain the fitted values. Call these ŷ̂. Then, the Davidson-MacKinnon test is based on
the t statistic on ŷ̂ in the equation

y � �0 � �1x1 � �2x2 � 	1ŷ̂ � error.

A signficant t statistic (against a two-sided alternative) is a rejection of (9.6).
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Similarly, if ŷ denotes the fitted values from estimating (9.6), the test of (9.7) is the
t statistic on ŷ in the model

y � �0 � �1log(x1) � �2log(x2) � 	1ŷ � error;

a significant t statistic is evidence against (9.7). The same two tests can be used for test-
ing any two nonnested models with the same dependent variable.

There are a few problems with nonnested testing. First, a clear winner need not
emerge. Both models could be rejected or neither model could be rejected. In the latter
case, we can use the adjusted R-squared to choose between them. If both models are
rejected, more work needs to be done. However, it is important to know the practical
consequences from using one form or the other: if the effects of key independent vari-
ables on y are not very different, then it does not really matter which model is used.

A second problem is that rejecting (9.6) using, say, the Davidson-MacKinnon test,
does not mean that (9.7) is the correct model. Model (9.6) can be rejected for a variety
of functional form misspecifications.

An even more difficult problem is obtaining nonnested tests when the competing
models have different dependent variables. The leading case is y versus log(y). We saw
in Chapter 6 that just obtaining goodness-of-fit measures that can be compared requires
some care. Tests have been proposed to solve this problem, but they are beyond the
scope of this text. [See Wooldridge (1994a) for a test that has a simple interpretation
and is easy to implement.]

9.2 USING PROXY VARIABLES FOR UNOBSERVED
EXPLANATORY VARIABLES

A more difficult problem arises when a model excludes a key variable, usually because
of data inavailability. Consider a wage equation that explicitly recognizes that ability
(abil) affects log(wage):

log(wage) � �0 � �1educ � �2exper � �3abil � u. (9.9)

This model shows explicitly that we want to hold ability fixed when measuring the
return to educ and exper. If, say, educ is correlated with abil, then putting abil in the
error term causes the OLS estimator of �1 (and �2) to be biased, a theme that has
appeared repeatedly.

Our primary interest in equation (9.9) is in the slope parameters �1 and �2. We do
not really care whether we get an unbiased or consistent estimator of the intercept �0;
as we will see shortly, this is not usually possible. Also, we can never hope to estimate
�3 because abil is not observed; in fact, we would not know how to interpret �3 anyway,
since ability is at best a vague concept.

How can we solve, or at least mitigate, the omitted variables bias in an equation like
(9.9)? One possibility is to obtain a proxy variable for the omitted variable. Loosely
speaking, a proxy variable is something that is related to the unobserved variable that
we would like to control for in our analysis. In the wage equation, one possibility is to
use the intelligence quotient, or IQ, as a proxy for ability. This does not require IQ to
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be the same thing as ability; what we need is for IQ to be correlated with ability, some-
thing we clarify in the following discussion.

All of the key ideas can be illustrated in a model with three independent variables,
two of which are observed:

y � �0 � �1x1 � �2x2 � �3x3* � u. (9.10)

We assume that data are available on y, x1, and x2—in the wage example, these are
log(wage), educ, and exper, respectively. The explanatory variable x3* is unobserved, but
we have a proxy variable for x3*. Call the proxy variable x3.

What do we require of x3? At a minimum, it should have some relationship to x3*.
This is captured by the simple regression equation

x3* � �0 � �3x3 � v3, (9.11)

where v3 is an error due to the fact that x3* and x3 are not exactly related. The parameter
�3 measures the relationship between x3* and x3; typically, we think of x3* and x3 as being
positively related, so that �3 
 0. If �3 � 0, then x3 is not a suitable proxy for x3*. The
intercept �0 in (9.11), which can be positive or negative, simply allows x3* and x3 to be
measured on different scales. (For example, unobserved ability is certainly not required
to have the same average value as IQ in the U.S. population.)

How can we use x3 to get unbiased (or at least consistent) estimators of �1 and
�2? The proposal is to pretend that x3 and x3* are the same, so that we run the regres-
sion of

y on x1, x2, x3. (9.12)

We call this the plug-in solution to the omitted variables problem because x3 is just
plugged in for x3* before we run OLS. If x3 is truly related to x3*, this seems like a sen-
sible thing. However, since x3 and x3* are not the same, we should determine when this
procedure does in fact give consistent estimators of �1 and �2.

The assumptions needed for the plug-in solution to provide consistent estimators of
�1 and �2 can be broken down into assumptions about u and v3:

(1) The error u is uncorrelated with x1, x2, and x3*, which is just the standard assump-
tion in model (9.10). In addition, u is uncorrelated with x3. This latter assumption just
means that x3 is irrelevant in the population model, once x1, x2, and x3* have been
included. This is essentially true by definition, since x3 is a proxy variable for x3*: it is
x3* that directly affects y, not x3. Thus, the assumption that u is uncorrelated with x1, x2,
x3*, and x3 is not very controversial. (Another way to state this assumption is that the
expected value of u, given all these variables, is zero.)

(2) The error v3 is uncorrelated with x1, x2, and x3. Assuming that v3 is uncorrelated
with x1 and x2 requires x3 to be a “good” proxy for x3*. This is easiest to see by writing
the analog of these assumptions in terms of conditional expectations:

E(x3*�x1,x2,x3) � E(x3*�x3) � �0 � �3x3. (9.13)
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The first equality, which is the most important one, says that, once x3 is controlled for,
the expected value of x3* does not depend on x1 or x2. Alternatively, x3* has zero corre-
lation with x1 and x2 once x3 is partialled out.

In the wage equation (9.9), where IQ is the proxy for ability, condition (9.13)
becomes

E(abil�educ,exper,IQ) � E(abil�IQ) � �0 � �3IQ.

Thus, the average level of ability only changes with IQ, not with educ and exper. Is this
reasonable? Maybe it is not exactly true, but it may be close to being true. It is certainly
worth including IQ in the wage equation to see what happens to the estimated return to
education.

We can easily see why the previous assumptions are enough for the plug-in solution
to work. If we plug equation (9.11) into equation (9.10) and do simple algebra, we get

y � (�0 � �3�0) � �1x1 � �2x2 � �3�3x3 � u � �3v3.

Call the composite error in this equation e � u � �3v3; it depends on the error in
the model of interest, (9.10), and the error in the proxy variable equation, v3. Since u
and v3 both have zero mean and each is uncorrelated with x1, x2, and x3, e also has zero
mean and is uncorrelated with x1, x2, and x3. Write this equation as

y � �0 � �1x1 � �2x2 � �3x3 � e,

where �0 � (�0 � �3�0) is the new intercept and �3 � �3�3 is the slope parameter on
the proxy variable x3. As we alluded to earlier, when we run the regression in (9.12), we
will not get unbiased estimators of �0 and �3; instead, we will get unbiased (or at least
consistent) estimators of �0, �1, �2, and �3. The important thing is that we get good esti-
mates of the parameters �1 and �2.

In many cases, the estimate of �3 is actually more interesting than an estimate of �3,
anyway. For example, in the wage equation, �3 measures the return to wage, given one
more point on IQ score. Since the distribution of IQ in most populations is readily avail-
able, it is possible to see how large a ceteris paribus effect IQ has on wage.

E X A M P L E  9 . 3
( I Q  a s  a  P r o x y  f o r  A b i l i t y )

The file WAGE2.RAW, from Blackburn and Neumark (1992), contains information on
monthly earnings, education, several demographic variables, and IQ scores for 935 men in
1980. As a method to account for omitted ability bias, we add IQ to a standard log wage
equation. The results are shown in Table 9.2.

Our primary interest is in what happens to the estimated return to education. Column
(1) contains the estimates without using IQ as a proxy variable. The estimated return to edu-
cation is 6.5%. If we think omitted ability is positively correlated with educ, then we assume
that this estimate is too high. (More precisely, the average estimate across all random sam-
ples would be too high.) When IQ is added to the equation, the return to education falls to
5.4%, which corresponds with our prior beliefs about omitted ability bias.
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The effect of IQ on socioeconomic outcomes has been recently documented in the con-
troversial book, The Bell Curve, by Herrnstein and Murray (1994). Column (2) shows that IQ
does have a statistically significant, positive effect on earnings, after controlling for several
other factors. Everything else being equal, an increase of 10 IQ points is predicted to raise
monthly earnings by 3.6%. The standard deviation of IQ in the U.S. population is 15, so a
one standard deviation increase in IQ is associated with an elevation in earnings of 5.4%.
This is identical to the predicted increase in wage due to another year of education. It is
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Table 9.2

Dependent Variable: log(wage)

Independent Variables (1) (2) (3)

educ .065 .054 .018
(.006) (.007) (.041)

exper .014 .014 .014
(.003) (.003) (.003)

tenure .012 .011 .011
(.002) (.002) (.002)

married .199 .200 .201
(.039) (.039) (.039)

south �.091 �.080 �.080
(.026) (.026) (.026)

urban .184 .182 .184
(.027) (.027) (.027)

black �.188 �.143 �.147
(.038) (.039) (.040)

IQ — .0036 �.0009
(.0010) (.0052)

educ�IQ — — .00034
(.00038)

intercept 5.395 5.176 5.648
(.113) (.128) (.546)

Observations .935 .935 .935
R-Squared .253 .263 .263
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clear from column (2) that education still has an important role in increasing earnings, even
though the effect is not as large as originally estimated.

Some other interesting observations emerge from columns (1) and (2). Adding IQ to the
equation only increases the R-squared from .253 to .263. Most of the variation in log(wage)
is not explained by the factors in column (2). Also, adding IQ to the equation does not elim-
inate the estimated earnings difference between black and white men: a black man with
the same IQ, education, experience, and so on as a white man is predicted to earn about
14.3% less, and the difference is very statistically significant.

Column (3) in Table 9.2 includes the interaction term educ�IQ. This allows for the pos-
sibility that educ and abil interact in determining log(wage). We might think that the return

to education is higher for people with more
ability, but this turns out not to be the case:
the interaction term is not significant, and its
addition makes educ and IQ individually
insignificant while complicating the model.
Therefore, the estimates in column (2) are
preferred.

There is no reason to stop at a single proxy variable for ability in this example. The data
set WAGE2.RAW also contains a score for each man on the Knowledge of the World of
Work (KWW) test. This provides a different measure of ability, which can be used in place
of IQ or along with IQ, to estimate the return to education (see Exercise 9.7).

It is easy to see how using a proxy variable can still lead to bias, if the proxy vari-
able does not satisfy the preceding assumptions. Suppose that, instead of (9.11), the
unobserved variable, x3*, is related to all of the observed variables by

x3* � �0 � �1x1 � �2x2 � �3x3 � v3, (9.14)

where v3 has a zero mean and is uncorrelated with x1, x2, and x3. Equation (9.11)
assumes that �1 and �2 are both zero. By plugging equation (9.14) into (9.10), we get

y � (�0 � �3�0) � (�1 � �3�1)x1 � (�2 � �3�2)x2

� �3�3x3 � u � �3v3,
(9.15)

from which it follows that plim(�̂1) � �1 � �3�1 and plim(�̂2) � �2 � �3�2. [This fol-
lows because the error in (9.15), u � �3v3, has zero mean and is uncorrelated with x1,
x2, and x3.] In the previous example where x1 � educ and x3* � abil, �3 
 0, so there is
a positive bias (inconsistency), if abil has a positive partial correlation with educ (�1 

0). Thus, we could still be getting an upward bias in the return to education, using IQ
as a proxy for abil, if IQ is not a good proxy. But we can reasonably hope that this bias
is smaller than if we ignored the problem of omitted ability entirely.

Proxy variables can come in the form of binary information as well. In Example 7.9
[see equation (7.15)], we discussed Krueger’s (1993) estimates of the return to using a
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Q U E S T I O N  9 . 2

What do you conclude about the small and statistically insignificant
coefficient on educ in column (3) of Table 9.2? (Hint: When educ�IQ
is in the equation, what is the interpretation of the coefficient on
educ?)
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computer on the job. Krueger also included a binary variable indicating whether the
worker uses a computer at home (as well as an interaction term between computer
usage at work and at home). His primary reason for including computer usage at home
in the equation was to proxy for unobserved “technical ability” that could affect wage
directly and be related to computer usage at work.

Using Lagged Dependent Variables as Proxy Variables

In some applications, like the earlier wage example, we have at least a vague idea about
which unobserved factor we would like to control for. This facilitates choosing proxy
variables. In other applications, we suspect that one or more of the independent vari-
ables is correlated with an omitted variable, but we have no idea how to obtain a proxy
for that omitted variable. In such cases, we can include, as a control, the value of the
dependent variable from an earlier time period. This is especially useful for policy
analysis.

Using a lagged dependent variable in a cross-sectional equation increases the data
requirements, but it also provides a simple way to account for historical factors that
cause current differences in the dependent variable that are difficult to account for in
other ways. For example, some cities have had high crime rates in the past. Many of the
same unobserved factors contribute to both high current and past crime rates. Likewise,
some universities are traditionally better in academics than other universities. Inertial
effects are also captured by putting in lags of y.

Consider a simple equation to explain city crime rates:

crime � �0 � �1unem � �2expend � �3crime�1 � u, (9.16)

where crime is a measure of per capita crime, unem is the city unemployment rate,
expend is per capita spending on law enforcement, and crime�1 indicates the crime rate
measured in some earlier year (this could be the past year or several years ago). We are
interested in the effects of unem on crime, as well as of law enforcement expenditures
on crime.

What is the purpose of including crime�1 in the equation? Certainly we expect that
�3 
 0, since crime has inertia. But the main reason for putting this in the equation is
that cities with high historical crime rates may spend more on crime prevention. Thus,
factors unobserved to us (the econometricians) that affect crime are likely to be corre-
lated with expend (and unem). If we use a pure cross-sectional analysis, we are unlikely
to get an unbiased estimator of the causal effect of law enforcement expenditures on
crime. But, by including crime�1 in the equation, we can at least do the following exper-
iment: if two cities have the same previous crime rate and current unemployment rate,
then �2 measures the effect of another dollar of law enforcement on crime.

E X A M P L E  9 . 4
( C i t y  C r i m e  R a t e s )

We estimate a constant elasticity version of the crime model in equation (9.16) (unem, since
it is a percent, is left in level form). The data in CRIME2.RAW are from 46 cities for the year
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1987. The crime rate is also available for 1982, and we use that as an additional indepen-
dent variable in trying to control for city unobservables that affect crime and may be cor-
related with current law enforcement expenditures. Table 9.3 contains the results.

Without the lagged crime rate in the equation, the effects of the unemployment rate
and expenditures on law enforcement are counterintuitive; neither is statistically significant,
although the t statistic on log(lawexpc87) is 1.17. One possibility is that increased law
enforcement expenditures improve reporting conventions, and so more crimes are reported.
But it is also likely that cities with high recent crime rates spend more on law enforcement.

Adding the log of the crime rate from five years earlier has a large effect on the expen-
ditures coefficient. The elasticity of the crime rate with respect to expenditures becomes
�.14, with t � �1.28. This is not strongly significant, but it suggests that a more sophisti-
cated model with more cities in the sample could produce significant results.

Not surprisingly, the current crime rate is strongly related to the past crime rate. The
estimate indicates that if the crime rate in 1982 was 1% higher, then the crime rate in 1987
is predicted to be about 1.19% higher. We cannot reject the hypothesis that the elasticity
of current crime with respect to past crime is unity [t � (1.194 � 1)/.132 � 1.47]. Adding
the past crime rate increases the explanatory power of the regression markedly, but this is
no surprise. The primary reason for including the lagged crime rate is to obtain a better esti-
mate of the ceteris paribus effect of log(lawexpc87) on log(crmrte87).

The practice of putting in a lagged y as a general way of controlling for unobserved
variables is hardly perfect. But it can aid in getting a better estimate of the effects of
policy variables on various outcomes.
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Table 9.3

Dependent Variable: log(crmrte87)

Independent Variables (1) (2)

unem87 �.029 .009
(.032) (.020)

log(lawexpc87) .203 �.140
(.173) (.109)

log(crmrte82) — 1.194
(.132)

intercept 3.34 .076
(1.25) (.821)

Observations .46 .46
R-Squared .057 .680
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Adding a lagged value of y is not the only way to use two years of data to control
for omitted factors. When we discuss panel data methods in Chapters 13 and 14, we will
cover other ways to use repeated data on the same cross-sectional units at different
points in time.

9.3 PROPERTIES OF OLS UNDER MEASUREMENT
ERROR

Sometimes, in economic applications, we cannot collect data on the variable that truly
affects economic behavior. A good example is the marginal income tax rate facing a
family that is trying to choose how much to contribute to charity in a given year. The
marginal rate may be hard to obtain or summarize as a single number for all income lev-
els. Instead, we might compute the average tax rate based on total income and tax pay-
ments.

When we use an imprecise measure of an economic variable in a regression model,
then our model contains measurement error. In this section, we derive the consequences
of measurement error for ordinary least squares estimation. OLS will be consistent
under certain assumptions, but there are others under which it is inconsistent. In some
of these cases, we can derive the size of the asymptotic bias.

As we will see, the measurement error problem has a similar statistical structure to
the omitted variable-proxy variable problem discussed in the previous section, but they
are conceptually different. In the proxy variable case, we are looking for a variable that
is somehow associated with the unobserved variable. In the measurement error case, the
variable that we do not observe has a well-defined, quantitative meaning (such as a mar-
ginal tax rate or annual income), but our recorded measures of it may contain error. For
example, reported annual income is a measure of actual annual income, whereas IQ
score is a proxy for ability.

Another important difference between the proxy variable and measurement error
problems is that, in the latter case, often the mismeasured independent variable is the
one of primary interest. In the proxy variable case, the partial effect of the omitted vari-
able is rarely of central interest: we are usually concerned with the effects of the other
independent variables.

Before we consider details, we should remember that measurement error is an issue
only when the variables for which the econometrician can collect data differ from the
variables that influence decisions by individuals, families, firms, and so on.

Measurement Error in the Dependent Variable

We begin with the case where only the dependent variable is measured with error. Let
y* denote the variable (in the population, as always) that we would like to explain. For
example, y* could be annual family savings. The regression model has the usual form

y* � �0 � �1x1 � ... � �kxk � u, (9.17)

and we assume it satisfies the Gauss-Markov assumptions. We let y represent the
observable measure of y*. In the savings case, y is reported annual savings. Unfor-
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tunately, families are not perfect in their reporting of annual family savings; it is easy
to leave out categories or to overestimate the amount contributed to a fund. Generally,
we can expect y and y* to differ, at least for some subset of families in the population.

The measurement error (in the population) is defined as the difference between the
observed value and the actual value:

e0 � y � y*. (9.18)

For a random draw i from the population, we can write ei0 � yi � yi*, but the important
thing is how the measurement error in the population is related to other factors. To
obtain an estimable model, we write y* � y � e0, plug this into equation (9.17), and
rearrange:

y � �0 � �1x1 � ... � �kxk � u � e0. (9.19)

The error term in equation (9.19) is u � e0. Since y, x1, x2, ..., xk are observed, we can
estimate this model by OLS. In effect, we just ignore the fact that y is an imperfect mea-
sure of y* and proceed as usual.

When does OLS with y in place of y* produce consistent estimators of the �j? Since
the original model (9.17) satisfies the Gauss-Markov assumptions, u has zero mean and
is uncorrelated with each xj. It is only natural to assume that the measurement error has
zero mean; if it does not, then we simply get a biased estimator of the intercept, �0,
which is rarely a cause for concern. Of much more importance is our assumption about
the relationship between the measurement error, e0, and the explanatory variables, xj.
The usual assumption is that the measurement error in y is statistically independent of
each explanatory variable. If this is true, then the OLS estimators from (9.19) are unbi-
ased and consistent. Further, the usual OLS inference procedures (t, F, and LM statis-
tics) are valid.

If e0 and u are uncorrelated, as is usually assumed, then Var(u � e0) � �2
u � �2

0 

�2

u. This means that measurement error in the dependent variable results in a larger error
variance than when no error occurs; this, of course, results in larger variances of the
OLS estimators. This is to be expected, and there is nothing we can do about it (except
collect better data). The bottom line is that, if the measurement error is uncorrelated
with the independent variables, then OLS estimation has good properties.

E X A M P L E  9 . 5
( S a v i n g s  F u n c t i o n  w i t h  M e a s u r e m e n t  E r r o r )

Consider a savings function

sav* � �0 � �1inc � �2size � �3educ � �4age � u,

but where actual savings (sav*) may deviate from reported savings (sav). The question is
whether the size of the measurement error in sav is systematically related to the other vari-
ables. It might be reasonable to assume that the measurement error is not correlated with
inc, size, educ, and age. On the other hand, we might think that families with higher
incomes, or more education, report their savings more accurately. We can never know
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whether the measurement error is correlated with inc or educ, unless we can collect data
on sav*; then the measurement error can be computed for each observation as ei0 �

savi � savi*.

When the dependent variable is in logarithmic form, so that log(y*) is the depen-
dent variable, it is natural for the measurement error equation to be of the form

log(y) � log(y*) � e0. (9.20)

This follows from a multiplicative measurement error for y: y � y*a0, where a0 
 0
and e0 � log(a0).

E X A M P L E  9 . 6
( M e a s u r e m e n t  E r r o r  i n  S c r a p  R a t e s )

In Section 7.6, we discussed an example where we wanted to determine whether job train-
ing grants reduce the scrap rate in manufacturing firms. We certainly might think the scrap
rate reported by firms is measured with error. (In fact, most firms in the sample do not even
report a scrap rate.) In a simple regression framework, this is captured by

log(scrap*) � �0 � �1grant � u,

where scrap* is the true scrap rate and grant is the dummy variable indicating whether a
firm received a grant. The measurement error equation is

log(scrap) � log(scrap*) � e0.

Is the measurement error, e0, independent of whether the firm receives a grant? A cyni-
cal person might think that a firm receiving a grant is more likely to underreport its scrap
rate in order to make the grant look effective. If this happens, then, in the estimable
equation,

log(scrap) � �0 � �1grant � u � e0,

the error u � e0 is negatively correlated with grant. This would produce a downward bias
in �1, which would tend to make the training program look more effective than it actually
was. (Remember, a more negative �1 means the program was more effective, since
increased worker productivity is associated with a lower scrap rate.)

The bottom line of this subsection is that measurement error in the dependent vari-
able can cause biases in OLS if it is systematically related to one or more of the
explanatory variables. If the measurement error is just a random reporting error that is
independent of the explanatory variables, as is often assumed, then OLS is perfectly
appropriate.
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Measurement Error in an Explanatory Variable

Traditionally, measurement error in an explanatory variable has been considered a
much more important problem than measurement error in the dependent variable. In
this subsection, we will see why this is the case.

We begin with the simple regression model

y � �0 � �1x1* � u, (9.21)

and we assume that this satisfies at least the first four Gauss-Markov assumptions. This
means that estimation of (9.21) by OLS would produce unbiased and consistent esti-
mators of �0 and �1. The problem is that x1* is not observed. Instead, we have a measure
of x1*, call it x1. For example, x1* could be actual income, and x1 could be reported
income.

The measurement error in the population is simply

e1 � x1 � x1*, (9.22)

and this can be positive, negative, or zero. We assume that the average measurement
error in the population is zero: E(e1) � 0. This is natural, and, in any case, it does not
affect the important conclusions that follow. A maintained assumption in what follows
is that u is uncorrelated with x1* and x1. In conditional expectation terms, we can write
this as E(y�x1*,x1) � E(y�x1*), which just says that x1 does not affect y after x1* has been
controlled for. We used the same assumption in the proxy variable case, and it is not
controversial; it holds almost by definition.

We want to know the properties of OLS if we simply replace x1* with x1 and run the
regression of y on x1. They depend crucially on the assumptions we make about the
measurement error. Two assumptions have been the focus in econometrics literature,
and they both represent polar extremes. The first assumption is that e1 is uncorrelated
with the observed measure, x1:

Cov(x1,e1) � 0. (9.23)

From the relationship in (9.22), if assumption (9.23) is true, then e1 must be correlated
with the unobserved variable x1*. To determine the properties of OLS in this case, we
write x1* � x1 � e1 and plug this into equation (9.21):

y � �0 � �1x1 � (u � �1e1). (9.24)

Since we have assumed that u and e1 both have zero mean and are uncorrelated with x1,
u � �1e1 has zero mean and is uncorrelated with x1. It follows that OLS estimation with
x1 in place of x1* produces a consistent estimator of �1 (and also �0). Since u is uncor-
related with e1, the variance of the error in (9.23) is Var(u � �1e1) � �2

u � �1
2�2

e1
. Thus,

except when �1 � 0, measurement error increases the error variance. But this does not
affect any of the OLS properties (except that the variances of the �̂j will be larger than
if we observe x1* directly).
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The assumption that e1 is uncorrelated with x1 is analogous to the proxy variable
assumption we made in Section 9.2. Since this assumption implies that OLS has all
of its nice properties, this is not usually what econometricians have in mind when
they refer to measurement error in an explanatory variable. The classical errors-in-
variables (CEV) assumption is that the measurement error is uncorrelated with the
unobserved explanatory variable:

Cov(x1*,e1) � 0. (9.25)

This assumption comes from writing the observed measure as the sum of the true
explanatory variable and the measurement error,

x1 � x1* � e1,

and then assuming the two components of x1 are uncorrelated. (This has nothing to do
with assumptions about u; we always maintain that u is uncorrelated with x1* and x1, and
therefore with e1).

If assumption (9.25) holds, then x1 and e1 must be correlated:

Cov(x1,e1) � E(x1e1) � E(x1*e1) � E(e1
2) � 0 � � 2

e1
� � 2

e1
. (9.26)

Thus, the covariance between x1 and e1 is equal to the variance of the measurement error
under the CEV assumption.

Referring to equation (9.24), we can see that correlation between x1 and e1 is going
to cause problems. Because u and x1 are uncorrelated, the covariance between x1 and the
composite error u � �1e1 is

Cov(x1,u � �1e1) � ��1Cov(x1,e1) � ��1�
2
e1

.

Thus, in the CEV case, the OLS regression of y on x1 gives a biased and inconsistent
estimator.

Using the asymptotic results in Chapter 5, we can determine the amount of incon-
sistency in OLS. The probability limit of �̂1 is �1 plus the ratio of the covariance
between x1 and u � �1e1 and the variance of x1:

plim(�̂1) � �1 � 

� �1 � � �1�1 � �
� �1� �,

(9.27)

where we have used the fact that Var(x1) � Var(x1*) � Var(e1).
Equation (9.27) is very interesting. The term multiplying �1, which is the ratio

Var(x1*)/Var(x1), is always less than one [an implication of the CEV assumption (9.25)].
Thus, plim(�̂1) is always closer to zero than is �1. This is called the attenuation bias

�2
x1*

�2
x1* � �2

e1

�2
e1

�2
x1* � �2

e1

�1�
2
e1

�2
x1* � �2

e1

Cov(x1,u � �1e1)

Var(x1)

Chapter 9 More on Specification and Data Problems

295

d  7/14/99 6:25 PM  Page 295



in OLS due to classical errors-in-variables: on average (or in large samples), the esti-
mated OLS effect will be attenuated. In particular, if �1 is positive, �̂1 will tend to
underestimate �1. This is an important conclusion, but it relies on the CEV setup.

If the variance of x1* is large, relative to the variance in the measurement error, then
the inconsistency in OLS will be small. This is because Var(x1*)/Var(x1) will be close to
unity, when �2

x1*/�2
e1

is large. Therefore, depending on how much variation there is in x1*,
relative to e1, measurement error need not cause large biases.

Things are more complicated when we add more explanatory variables. For illus-
tration, consider the model

y � �0 � �1x1* � �2x2 � �3x3 � u, (9.28)

where the first of the three explanatory variables is measured with error. We make the
natural assumption that u is uncorrelated with x1*, x2, x3, and x1. Again, the crucial
assumption concerns the measurement error e1. In almost all cases, e1 is assumed to be
uncorrelated with x2 and x3—the explanatory variables not measured with error. The key
issue is whether e1 is uncorrelated with x1. If it is, then the OLS regression of y on x1,
x2, and x3 produces consistent estimators. This is easily seen by writing

y � �0 � �1x1 � �2x2 � �3x3 � u � �1e1, (9.29)

where u and e1 are both uncorrelated with all the explanatory variables.
Under the CEV assumption (9.25), OLS will be biased and inconsistent, because e1

is correlated with x1 in equation (9.29). Remember, this means that, in general, all OLS
estimators will be biased, not just �̂1. What about the attenuation bias derived in equa-
tion (9.27)? It turns out that there is still an attentuation bias for estimating �1: It can
be shown that

plim(�̂1) � �1 � �, (9.30)

where r1* is the population error in the equation x1* � �0 � �1x2 � �2x3 � r1*. Formula
(9.30) also works in the general k variable case when x1 is the only mismeasured vari-
able.

Things are less clear-cut for estimating the �j on the variables not measured with
error. In the special case that x1* is uncorrelated with x2 and x3, �̂2 and �̂3 are consistent.
But this is rare in practice. Generally, measurement error in a single variable causes
inconsistency in all estimators. Unfortunately, the sizes, and even the directions of the
biases, are not easily derived.

E X A M P L E  9 . 7
( G P A  E q u a t i o n  w i t h  M e a s u r e m e n t  E r r o r )

Consider the problem of estimating the effect of family income on college grade point aver-
age, after controlling for hsGPA and SAT. It could be that, while family income is important

�2
r1*

�2
r1
* � �2

e1
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for performance before college, it has no direct effect on college performance. To test this,
we might postulate the model

colGPA � �0 � �1 faminc* � �2hsGPA � �3SAT � u,

where faminc* is actual annual family income. (This might appear in logarithmic form, but
for the sake of illustration we leave it in level form.) Precise data on colGPA, hsGPA, and
SAT are relatively easy to obtain. But family income, especially as reported by students,
could be easily mismeasured. If faminc � faminc* � e1 and the CEV assumptions hold,
then using reported family income in place of actual family income will bias the OLS esti-
mator of �1 towards zero. One consequence of this is that a test of H0: �1 � 0 will have less
chance of detecting �1 
 0.

Of course, measurement error can be present in more than one explanatory variable,
or in some explanatory variables and the dependent variable. As we discussed earlier,
any measurement error in the dependent variable is usually assumed to be uncorrelated
with all the explanatory variables, whether it is observed or not. Deriving the bias in the
OLS estimators under extensions of the CEV assumptions is complicated and does not
lead to clear results.

In some cases, it is clear that the CEV assumption in (9.25) cannot be true. Consider
a variant on Example 9.7:

colGPA � �0 � �1smoked* � �2hsGPA � �3SAT � u,

where smoked* is the actual number of times a student smoked marijuana in the last 30
days. The variable smoked is the answer to the question: On how many separate occa-
sions did you smoke marijuana in the last 30 days? Suppose we postulate the standard
measurement error model

smoked � smoked* � e1.

Even if we assume that students try to report the truth, the CEV assumption is unlikely
to hold. People who do not smoke marijuana at all—so that smoked* � 0—are likely
to report smoked � 0, so the measurement error is probably zero for students who never
smoke marijuana. When smoked* 
 0, it is much more likely that the student miscounts
how many times he or she smoked marijuana in the last 30 days. This means that the
measurement error e1 and the actual number of times smoked, smoked*, are correlated,
which violates the CEV assumption in (9.25). Unfortunately, deriving the implications
of measurement error that do not satisfy (9.23) or (9.25) is difficult and beyond the
scope of this text.

Before leaving this section, we empha-
size that, a priori, the CEV assumption
(9.25) is no better or worse than assump-
tion (9.23), which implies that OLS is con-
sistent. The truth is probably somewhere in
between, and if e1 is correlated with both
x1* and x1, OLS is inconsistent. This raises
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Let educ* be actual amount of schooling, measured in years (which
can be a noninteger) and let educ be reported highest grade com-
pleted. Do you think educ and educ* are related by the classical
errors-in-variables model?
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an important question: Must we live with inconsistent estimators under classical errors-
in-variables, or other kinds of measurement error that are correlated with x1? For-
tunately, the answer is no. Chapter 15 shows how, under certain assumptions, the pa-
rameters can be consistently estimated in the presence of general measurement error.
We postpone this discussion until later, because it requires us to leave the realm of OLS
estimation.

9.4 MISSING DATA, NONRANDOM SAMPLES,
AND OUTLYING OBSERVATIONS

The measurement error problem discussed in the previous section can be viewed as a
data problem: we cannot obtain data on the variables of interest. Further, under the clas-
sical errors-in-variables model, the composite error term is correlated with the mis-
measured independent variable, violating the Gauss-Markov assumptions.

Another data problem we discussed frequently in earlier chapters is multicollinear-
ity among the explanatory variables. Remember that correlation among the explanatory
variables does not violate any assumptions. When two independent variables are highly
correlated, it can be difficult to estimate the partial effect of each. But this is properly
reflected in the usual OLS statistics.

In this section, we provide an introduction to data problems that can violate the ran-
dom sampling assumption, MLR.2. We can isolate cases where nonrandom sampling
has no practical effect on OLS. In other cases, nonrandom sampling causes the OLS
estimators to be biased and inconsistent. A more complete treatment that establishes
several of the claims made here is given in Chapter 17.

Missing Data

The missing data problem can arise in a variety of forms. Often, we collect a random
sample of people, schools, cities, and so on, and then discover later that information is
missing on some key variables for several units in the sample. For example, in the data
set BWGHT.RAW, 197 of the 1,388 observations have no information on either
mother’s education, father’s education, or both. In the data set on median starting law
school salaries, LAWSCH85.RAW, six of the 156 schools have no reported information
on median LSAT scores for the entering class; other variables are also missing for some
of the law schools.

If data are missing for an observation on either the dependent variable or one of the
independent variables, then the observation cannot be used in a standard multiple
regression analysis. In fact, provided missing data have been properly indicated, all
modern regression packages keep track of missing data and simply ignore observations
when computing a regression. We saw this explicitly in the birth weight Example 4.9,
when 197 observations were dropped due to missing information on parents’ education.

Other than reducing the sample size available for a regression, are there any statis-
tical consequences of missing data? It depends on why the data are missing. If the data
are missing at random, then the size of the random sample available from the popula-
tion is simply reduced. While this makes the estimators less precise, it does not intro-
duce any bias: the random sampling assumption, MLR.2, still holds. There are ways to
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use the information on observations where only some variables are missing, but this is
not often done in practice. The improvement in the estimators is usually slight, while
the methods are somewhat complicated. In most cases, we just ignore the observations
that have missing information.

Nonrandom Samples

Missing data is more problematic when it results in a nonrandom sample from the
population. For example, in the birth weight data set, what if the probability that edu-
cation is missing is higher for those people with lower than average levels of education?
Or, in Section 9.2, we used a wage data set that included IQ scores. This data set was
constructed by omitting several people from the sample for whom IQ scores were not
available. If obtaining an IQ score is easier for those with higher IQs, the sample is not
representative of the population. The random sampling assumption MLR.2 is violated,
and we must worry about these consequences for OLS estimation.

Certain types of nonrandom sampling do not cause bias or inconsistency in OLS.
Under the Gauss-Markov assumptions (but without MLR.2), it turns out that the sam-
ple can be chosen on the basis of the independent variables without causing any statis-
tical problems. This is called sample selection based on the independent variables, and
it is an example of exogenous sample selection. To illustrate, suppose that we are esti-
mating a saving function, where annual saving depends on income, age, family size,
and perhaps some other factors. A simple model is

saving � �0 � �1income � �2age � �3size � u. (9.31)

Suppose that our data set was based on a survey of people over 35 years of age, thereby
leaving us with a nonrandom sample of all adults. While this is not ideal, we can
still get unbiased and consistent estimators of the parameters in the population model
(9.31), using the nonrandom sample. We will not show this formally here, but the rea-
son OLS on the nonrandom sample is unbiased is that the regression function
E(saving�income,age,size) is the same for any subset of the population described by
income, age, or size. Provided there is enough variation in the independent variables in
the sub-population, selection on the basis of the independent variables is not a serious
problem, other than that it results in inefficient estimators.

In the IQ example just mentioned, things are not so clear-cut, because no fixed rule
based on IQ is used to include someone in the sample. Rather, the probability of being
in the sample increases with IQ. If the other factors determining selection into the sam-
ple are independent of the error term in the wage equation, then we have another case
of exogenous sample selection, and OLS using the selected sample will have all of its
desirable properties under the other Gauss-Markov assumptions.

Things are much different when selection is based on the dependent variable, y,
which is called sample selection based on the dependent variable and is an example of
endogenous sample selection. If the sample is based on whether the dependent vari-
able is above or below a given value, bias always occurs in OLS in estimating the pop-
ulation model. For example, suppose we wish to estimate the relationship between
individual wealth and several other factors in the population of all adults:
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wealth � �0 � �1educ � �2exper � �3age � u. (9.32)

Suppose that only people with wealth below $75,000 dollars are included in the sam-
ple. This is a nonrandom sample from the population of interest, and it is based on the
value of the dependent variable. Using a sample on people with wealth below $75,000
will result in biased and inconsistent estimators of the parameters in (9.32). Briefly, the
reason is that the population regression E(wealth�educ, exper, age) is not the same as
the expected value conditional on wealth being less than $75,000.

Other sample selection issues are more subtle. For instance, in several previous
examples, we have estimated the effects of various variables, particularly education and
experience, on hourly wage. The data set WAGE1.RAW that we have used throughout
is essentially a random sample of working individuals. Labor economists are often
interested in estimating the effect of, say, education on the wage offer. The idea is this:
Every person of working age faces an hourly wage offer, and he or she can either work
at that wage or not work. For someone who does work, the wage offer is just the wage
earned. For people who do not work, we usually cannot observe the wage offer. Now,
since the wage offer equation

log(wageo) � �0 � �1educ � �2exper � u, (9.33)

represents the population of all working age people, we cannot estimate it using a ran-
dom sample from this population; instead, we have data on the wage offer only for
working people (although we can get data on educ and exper for nonworking people).

If we use a random sample on working
people to estimate (9.33), will we get unbi-
ased estimators? This case is not clear-cut.
Since the sample is selected based on
someone’s decision to work (as opposed to
the size of the wage offer), this is not like
the previous case. However, since the deci-
sion to work might be related to unob-

served factors that affect the wage offer, selection might be endogenous, and this can
result in a sample selection bias in the OLS estimators. We will cover methods that can
be used to test and correct for sample selection bias in Chapter 17.

Outlying Observations

In some applications, especially, but not only, with small data sets, the OLS estimates
are influenced by one or several observations. Such observations are called outliers or
influential observations. Loosely speaking, an observation is an outlier if dropping it
from a regression analysis makes the OLS estimates change by a practically “large”
amount.

OLS is susceptible to outlying observations because it minimizes the sum of
squared residuals: large residuals (positive or negative) receive a lot of weight in the
least squares minimization problem. If the estimates change by a practically large
amount when we slightly modify our sample, we should be concerned.
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Suppose we are interested in the effects of campaign expenditures
by incumbents on voter support. Some incumbents choose not to
run for reelection. If we can only collect voting and spending out-
comes on incumbents that actually do run, is there likely to be
endogenous sample selection?
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When statisticians and econometricians study the problem of outliers theoretically,
sometimes the data are viewed as being from a random sample from a given popula-
tion—albeit with an unusual distribution that can result in extreme values—and some-
times the outliers are assumed to come from a different population. From a practical
perspective, outlying observations can occur for two reasons. The easiest case to deal
with is when a mistake has been made in entering the data. Adding extra zeros to a num-
ber or misplacing a decimal point can throw off the OLS estimates, especially in small
sample sizes. It is always a good idea to compute summary statistics, especially mini-
mums and maximums, in order to catch mistakes in data entry. Unfortunately, incorrect
entries are not always obvious.

Outliers can also arise when sampling from a small population if one or several
members of the population are very different in some relevant aspect from the rest of
the population. The decision to keep or drop such observations in a regression analysis
can be a difficult one, and the statistical properties of the resulting estimators are com-
plicated. Outlying observations can provide important information by increasing the
variation in the explanatory variables (which reduces standard errors). But OLS results
should probably be reported with and without outlying observations in cases where one
or several data points substantially change the results.

E X A M P L E  9 . 8
( R & D  I n t e n s i t y  a n d  F i r m  S i z e )

Suppose that R&D expenditures as a percentage of sales (rdintens) are related to sales (in
millions) and profits as a percentage of sales (profmarg):

rdintens � �0 � �1sales � �2 profmarg � u. (9.34)

The OLS equation using data on 32 chemical companies in RDCHEM.RAW is

rdin̂tens �(2.625)�(.000053)sales �(.0446)profmarg
rdintens �(0.586)�(.000044)sales �(.0462)profmarg

n � 32, R2 � .0761, R̄2 � .0124.

Neither sales nor profmarg is statistically significant at even the 10% level in this regression.
Of the 32 firms, 31 have annual sales less than $20 billion. One firm has annual sales

of almost $40 billion. Figure 9.1 shows how far this firm is from the rest of the sample. In
terms of sales, this firm is over twice as large as every other firm, so it might be a good idea
to estimate the model without it. When we do this, we obtain

rdin̂tens �(2.297)�(.000186)sales �(.0478)profmarg
rdintens �(0.592)�(.000084)sales �(.0445)profmarg

n � 31, R2 � .1728, R̄2 � .1137.

If the largest firm is dropped from the regression, the coefficient on sales more than triples,
and it now has a t statistic over two. Using the sample of smaller firms, we would conclude
that there is a statistically significant positive effect between R&D intensity and firm size.
The profit margin is still not significant, and its coefficient has not changed by much.
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Sometimes outliers are defined by the size of the residual in an OLS regression
where all of the observations are used. This is not a good idea. In the previous exam-
ple, using all firms in the regression, a firm with sales of just under $4.6 billion had the
largest residual by far (about 6.37). The residual for the largest firm was �1.62, which
is less than one estimated standard deviation from zero (�̂ � 1.82). Dropping the obser-
vation with the largest residual does not change the results much at all.

Certain functional forms are less sensitive to outlying observations. In Section 6.2,
we mentioned that, for most economic variables, the logarithmic transformation signif-
icantly narrows the range of the data and also yields functional forms—such as constant
elasticity models—that can explain a broader range of data.

E X A M P L E  9 . 9
( R & D  I n t e n s i t y )

We can test whether R&D intensity increases with firm size by starting with the model

rd � sales�1exp(�0 � �2 profmarg � u). (9.35)
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Then, holding other factors fixed, R&D intensity increases with sales if and only if �1 
 1.
Taking the log of (9.35) gives

log(rd ) � �0 � �1log(sales) � �2profmarg � u. (9.36)

When we use all 32 firms, the regression equation is

loĝ(rd ) �(�4.378)�(1.084)log(sales) �(.0217)profmarg,
loĝ(rd ) ��(0.468)�(0.062)log(sales) �(.0128)profmarg,

n � 32, R2 � .9180, R̄2 � .9123,

while dropping the largest firm gives

loĝ(rd ) �(�4.404)�(1.088)log(sales) �(.0218)profmarg,
loĝ(rd ) ��(0.511)�(0.067)log(sales) �(.0130)profmarg,

n � 31, R2 � .9037, R̄2 � .8968.

Practically, these results are the same. In neither case do we reject the null H0: �1 � 1
against H1: �1 
 1 (Why?).

In some cases, certain observations are suspected at the outset of being fundamen-
tally different from the rest of the sample. This often happens when we use data at very
aggregated levels, such as the city, county, or state level. The following is an example.

E X A M P L E  9 . 1 0
( S t a t e  I n f a n t  M o r t a l i t y  R a t e s )

Data on infant mortality, per capita income, and measures of health care can be obtained
at the state level from the Statistical Abstract of the United States. We will provide a fairly
simple analysis here just to illustrate the effect of outliers. The data are for the year 1990,
and we have all 50 states in the United States, plus the District of Columbia (D.C.). The vari-
able infmort is number of deaths within the first year per 1,000 live births, pcinc is per
capita income, physic is physicians per 100,000 members of the civilian population, and
popul is the population (in thousands). We include all independent variables in logarithmic
form:

inf̂mort �(33.86)�(4.68)log(pcinc) �(4.15)log(physic)
inf̂mort �(20.43)�(2.60)log(pcinc) �(1.51)log(physic)

�(.088)log(popul )
�(.287)log(popul)

n � 51, R2 � .139, R̄2 � .084.

(9.37)

Higher per capita income is estimated to lower infant mortality, an expected result. But
more physicians per capita is associated with higher infant mortality rates, something that
is counterintuitive. Infant mortality rates do not appear to be related to population size.
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The District of Columbia is unusual in that it has pockets of extreme poverty and great
wealth in a small area. In fact, the infant mortality rate for D.C. in 1990 was 20.7, com-
pared with 12.4 for the next highest state. It also has 615 physicians per 100,000 of the
civilian population, compared with 337 for the the next highest state. The high number of
physicians coupled with the high infant mortality rate in D.C. could certainly influence the
results. If we drop D.C. from the regression, we obtain

inf̂mort �(23.95)�(4.57)log(pcinc) �(2.74)log(physic)
inf̂mort �(12.42)�(1.64)log(pcinc) �(1.19)log(physic)

�(.629)log(popul )
�(.191)log(popul)

n � 50, R2 � .273, R̄2 � .226.

(9.38)

We now find that more physicians per capita lowers infant mortality, and the estimate is
statistically different from zero at the 5% level. The effect of per capita income has fallen
sharply and is no longer statistically significant. In equation (9.38), infant mortality rates are
higher in more populous states, and the relationship is very statistically significant. Also,
much more variation in infmort is explained when D.C. is dropped from the regression.
Clearly, D.C. had substantial influence on the initial estimates, and we would probably leave
it out of any further analysis.

Rather than having to personally determine the influence of certain observations, it
is sometimes useful to have statistics that can detect such influential observations.
These statistics do exist, but they are beyond the scope of this text. [See, for example,
Belsley, Kuh, and Welsch (1980).]

Before ending this section, we mention another approach to dealing with influential
observations. Rather than trying to find outlying observations in the data before apply-
ing least squares, we can use an estimation method that is less sensitive to outliers than
OLS. This obviates the need to explicitly search for outliers before estimation. One
such method is called least absolute deviations, or LAD. The LAD estimator minimizes
the sum of the absolute deviation of the residuals, rather than the sum of squared resid-
uals. Compared with OLS, LAD gives less weight to large residuals. Thus, it is less
influenced by changes in a small number of observations.

While LAD helps to guard against outliers, it does have some drawbacks. First,
there are no formulas for the estimators; they can only be found by using iterative meth-
ods on a computer. This is not very difficult with the powerful personal computers of
today, but large data sets can involve time-consuming computations. Second, LAD con-
sistently estimates the parameters in the population regression function (the conditional
mean), only when the distribution of the error term u is symmetric. And third, if the
error u is normally distributed, LAD is less efficient (asymptotically) than OLS. Of
course, if the error is truly normally distributed, the probability of getting a large out-
lier is small, and we would probably be satisfied with OLS.

Least absolute deviations is a special case of what is often called robust regression.
In statistical terms, a robust regression estimator is relatively insensitive to extreme
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observations: effectively, larger residuals are given less weight than in the least squares
approach. While this characterization is accurate, usage of the term “robust” in this con-
text can cause confusion. As mentioned earlier, the LAD estimator requires the error
distribution to be symmetric about zero in order to consistently estimate the parameters
in the conditional mean. This is not required of OLS. (Recall that the Gauss-Markov
assumptions do not include symmetry of the error distribution.)

LAD does consistently estimate the parameters in the conditional median, whether
or not the error distribution is symmetric. In some cases, this is of interest, but we will
not pursue this idea now. Berk (1990) contains an introductory treatment of robust
regression methods.

SUMMARY

We have further investigated some important specification and data issues that often
arise in empirical cross-sectional analysis. Misspecified functional form makes the esti-
mated equation difficult to interpret. Nevertheless, incorrect functional form can be
detected by adding quadratics, computing RESET, or testing against a nonnested alter-
native model using the Davidson-MacKinnon test. No additional data collection is
needed.

Solving the omitted variables problem is more difficult. In Section 9.2, we dis-
cussed a possible solution based on using a proxy variable for the omitted variable.
Under reasonable assumptions, including the proxy variable in an OLS regression elim-
inates, or at least reduces, bias. The hurdle in applying this method is that proxy vari-
ables can be difficult to find. A general possibility is to use data on a dependent variable
from a prior year.

Applied economists are often concerned with measurement error. Under the classi-
cal errors-in-variables (CEV) assumptions, measurement error in the dependent vari-
able has no effect on the statistical properties of OLS. In contrast, under the CEV
assumptions for an independent variable, the OLS estimator for the coefficient on the
mismeasured variable is biased towards zero. The bias in coefficients on the other vari-
ables can go either way and is difficult to determine.

Nonrandom samples from an underlying population can lead to biases in OLS.
When sample selection is correlated with the error term u, OLS is generally biased and
inconsistent. On the other hand, exogenous sample selection—which is either based on
the explanatory variables or is otherwise independent of u—does not cause problems
for OLS. Outliers in data sets can have large impacts on the OLS estimates, especially
in small samples. It is important to at least informally identify outliers and to reestimate
models with the suspected outliers excluded.

KEY TERMS
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PROBLEMS

9.1 In Exercise 4.11, the R-squared from estimating the model

log(salary) � �0 � �1log(sales) � �2log(mktval) � �3profmarg
� �4ceoten � �5comten � u,

using the data in CEOSAL2.RAW, is R2 � .353 (n � 177). When ceoten2 and comten2 are
added, R2 � .375. Is there evidence of functional form misspecification in this model?

9.2 Let us modify Exercise 8.9 by using voting outcomes in 1990 for incumbents who
were elected in 1988. Candidate A was elected in 1988 and was seeking reelection in
1990; voteA90 is Candidate A’s share of the two-party vote in 1990. The 1988 voting
share of Candidate A is used as a proxy variable for quality of the candidate. All other
variables are for the 1990 election. The following equations were estimated, using the
data in VOTE2.RAW:

votêA90 �(75.71)�(.312)prtystrA �(4.93)democA
votêA90 �0(9.25)�(.046)prtystrA �(1.01)democA

�(.929)log(expendA) �(1.950)log(expendB)
�(.684)log(expendA) �(0.281)log(expendB)

n � 186, R2 � .495, R̄2 � .483,

and

votêA90 �(70.81)�(.282)prtystrA �(4.52)democA
votêA90 �(10.01)�(.052)prtystrA �(1.06)democA

�(.839)log(expendA) �(1.846)log(expendB) �(.067)voteA88
�(.687)log(expendA) �(0.292)log(expendB) �(.053)voteA88

n � 186, R2 � .499, R̄2 � .485.

(i) Interpret the coefficient on voteA88 and discuss its statistical signifi-
cance.

(ii) Does adding voteA88 have much effect on the other coefficients?

9.3 Let math10 denote the percentage of students at a Michigan high school receiving
a passing score on a standardized math test (see also Example 4.2). We are interested in
estimating the effect of per student spending on math performance. A simple model is

math10 � �0 � �1log(expend ) � �2log(enroll) � �3 poverty � u,

where poverty is the percentage of students living in poverty.
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(i) The variable lnchprg is the percentage of students eligible for the fed-
erally funded school lunch program. Why is this a sensible proxy vari-
able for poverty?

(ii) The table that follows contains OLS estimates, with and without
lnchprg as an explanatory variable.

Dependent Variable: math10

Independent Variables (1) (2)

log(expend ) 11.13 7.75
(3.30) (3.04)

log(enroll) .022 �1.26
(.615) (.58)

lnchprg ——— �.324
(.036)

intercept �69.24 �23.14
(26.72) (24.99)

Observations .428 .428
R-Squared .0297 .1893

Explain why the effect of expenditures on math10 is lower in column (2) than
in column (1). Is the effect in column (2) still statistically greater than zero?

(iii) Does it appear that pass rates are lower at larger schools, other factors
being equal? Explain.

(iv) Interpret the coefficient on lnchprg in column (2).
(v) What do you make of the substantial increase in R2 from column (1) to

column (2)?

9.4 The following equation explains weekly hours of television viewing by a child in
terms of the child’s age, mother’s education, father’s education, and number of siblings:

tvhours* � �0 � �1age � �2age2 � �3motheduc � �4 fatheduc � �5sibs � u.

We are worried that tvhours* is measured with error in our survey. Let tvhours denote
the reported hours of television viewing per week.

(i) What do the classical errors-in-variables (CEV) assumptions require in
this application?

(ii) Do you think the CEV assumptions are likely to hold? Explain.

9.5 In Example 4.4, we estimated a model relating number of campus crimes to stu-
dent enrollment for a sample of colleges. The sample we used was not a random sam-
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ple of colleges in the United States, because many schools in 1992 did not report cam-
pus crimes. Do you think that college failure to report crimes can be viewed as exoge-
nous sample selection? Explain.

COMPUTER EXERCISES

9.6 (i) Apply RESET from equation (9.3) to the model estimated in Problem 7.13.
Is there evidence of functional form misspecification in the equation?

(ii) Compute a heteroskedasticity-robust form of RESET. Does your con-
clusion from part (i) change?

9.7 Use the data set WAGE2.RAW for this exercise.
(i) Use the variable KWW (the “knowledge of the world of work” test

score) as a proxy for ability in place of IQ in Example 9.3. What is the
estimated return to education in this case?

(ii) Now use IQ and KWW together as proxy variables. What happens to the
estimated return to education?

(iii) In part (ii), are IQ and KWW individually significant? Are they jointly
significant?

9.8 Use the data from JTRAIN.RAW for this exercise.
(i) Consider the simple regression model

log(scrap) � �0 � �1grant � u,

where scrap is the firm scrap rate and grant is a dummy variable indi-
cating whether a firm received a job training grant. Can you think of
some reasons why the unobserved factors in u might be correlated with
grant?

(ii) Estimate the simple regression model using the data for 1988. (You
should have 54 observations.) Does receiving a job training grant sig-
nificantly lower a firm’s scrap rate?

(iii) Now add as an explanatory variable log(scrap87). How does this change
the estimated effect of grant? Interpret the coefficient on grant. Is it sta-
tistically significant at the 5% level against the one-sided alternative H1:
�grant 
 0?

(iv) Test the null hypothesis that the parameter on log(scrap87) is one
against the two-sided alternative. Report the p-value for the test.

(v) Repeat parts (iii) and (iv), using heteroskedasticity-robust standard
errors, and briefly discuss any notable differences.

9.9 Use the data for the year 1990 in INFMRT.RAW for this exercise.
(i) Restimate equation (9.37), but now include a dummy variable for the

observation on the District of Columbia (called DC ). Interpret the coef-
ficient on DC and comment on its size and significance.

(ii) Compare the estimates and standard errors from part (i) with those from
equation (9.38). What do you conclude about including a dummy vari-
able for a single observation?
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9.10 Use the data in RDCHEM.RAW to further examine the effects of outliers on OLS
estimates. In particular, estimate the model

rdintens � �0 � �1sales � �2sales2 � �3profmarg � u

with and without the firm having annual sales of almost $40 billion and discuss whether
the results differ in important respects. The equations will be easier to read if you rede-
fine sales to be measured in billions of dollars before proceeding (see Problem 6.3).

9.11 Redo Example 4.10 by dropping schools where teacher benefits are less than 1%
of salary.

(i) How many observations are lost?
(ii) Does dropping these observations have any important effects on the

estimated tradeoff?

9.12 Use the data in LOANAPP.RAW for this exercise.
(i) How many observations have obrat 
 40, that is, other debt obligations

more than 40% of total income?
(ii) Reestimate the model in part (iii) of Exercise 7.16, excluding observa-

tions with obrat 
 40. What happens to the estimate and t statistic on
white?

(iii) Does it appear that the estimate of �white is overly sensitive to the sam-
ple used?
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In this chapter, we begin to study the properties of OLS for estimating linear regression
models using time series data. In Section 10.1, we discuss some conceptual differ-
ences between time series and cross-sectional data. Section 10.2 provides some exam-

ples of time series regressions that are often estimated in the empirical social sciences. We
then turn our attention to the finite sample properties of the OLS estimators and state the
Gauss-Markov assumptions and the classical linear model assumptions for time series
regression. While these assumptions have features in common with those for the cross-
sectional case, they also have some significant differences that we will need to highlight.

In addition, we return to some issues that we treated in regression with cross-
sectional data, such as how to use and interpret the logarithmic functional form and
dummy variables. The important topics of how to incorporate trends and account for
seasonality in multiple regression are taken up in Section 10.5.

10.1 THE NATURE OF TIME SERIES DATA

An obvious characteristic of time series data which distinguishes it from cross-sectional
data is that a time series data set comes with a temporal ordering. For example, in
Chapter 1, we briefly discussed a time series data set on employment, the minimum
wage, and other economic variables for Puerto Rico. In this data set, we must know that
the data for 1970 immediately precede the data for 1971. For analyzing time series data
in the social sciences, we must recognize that the past can effect the future, but not vice
versa (unlike in the Star Trek universe). To emphasize the proper ordering of time series
data, Table 10.1 gives a partial listing of the data on U.S. inflation and unemployment
rates in PHILLIPS.RAW.

Another difference between cross-sectional and time series data is more subtle. In
Chapters 3 and 4, we studied statistical properties of the OLS estimators based on the
notion that samples were randomly drawn from the appropriate population.
Understanding why cross-sectional data should be viewed as random outcomes is fairly
straightforward: a different sample drawn from the population will generally yield dif-
ferent values of the independent and dependent variables (such as education, experi-
ence, wage, and so on). Therefore, the OLS estimates computed from different random
samples will generally differ, and this is why we consider the OLS estimators to be ran-
dom variables.

311

C h a p t e r Ten

Basic Regression Analysis with
Time Series Data



How should we think about randomness in time series data? Certainly, economic
time series satisfy the intuitive requirements for being outcomes of random variables.
For example, today we do not know what the Dow Jones Industrial Average will be at
its close at the end of the next trading day. We do not know what the annual growth in
output will be in Canada during the coming year. Since the outcomes of these variables
are not foreknown, they should clearly be viewed as random variables.

Formally, a sequence of random variables indexed by time is called a stochastic
process or a time series process. (“Stochastic” is a synonym for random.) When we
collect a time series data set, we obtain one possible outcome, or realization, of the sto-
chastic process. We can only see a single realization, because we cannot go back in time
and start the process over again. (This is analogous to cross-sectional analysis where we
can collect only one random sample.) However, if certain conditions in history had been
different, we would generally obtain a different realization for the stochastic process,
and this is why we think of time series data as the outcome of random variables. The
set of all possible realizations of a time series process plays the role of the population
in cross-sectional analysis.

10.2 EXAMPLES OF TIME SERIES REGRESSION MODELS

In this section, we discuss two examples of time series models that have been useful in
empirical time series analysis and that are easily estimated by ordinary least squares.
We will study additional models in Chapter 11.
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Table 10.1

Partial Listing of Data on U.S. Inflation and Unemployment Rates, 1948–1996

Year Inflation Unemployment

1948 8.1 3.8

1949 �1.2� 5.9

1950 1.3 5.3

1951 7.9 3.3

� � �
� � �
� � �

1994 2.6 6.1

1995 2.8 5.6

1996 3.0 5.4



Static Models

Suppose that we have time series data available on two variables, say y and z, where yt

and zt are dated contemporaneously. A static model relating y to z is

yt � �0 � �1zt � ut, t � 1,2, …, n. (10.1)

The name “static model” comes from the fact that we are modeling a contemporaneous
relationship between y and z. Usually, a static model is postulated when a change in z
at time t is believed to have an immediate effect on y: �yt � �1�zt, when �ut � 0. Static
regression models are also used when we are interested in knowing the tradeoff between
y and z.

An example of a static model is the static Phillips curve, given by

inft � �0 � �1unemt � ut, (10.2)

where inft is the annual inflation rate and unemt is the unemployment rate. This form of
the Phillips curve assumes a constant natural rate of unemployment and constant infla-
tionary expectations, and it can be used to study the contemporaneous tradeoff between
them. [See, for example, Mankiw (1994, Section 11.2).]

Naturally, we can have several explanatory variables in a static regression model.
Let mrdrtet denote the murders per 10,000 people in a particular city during year t, let
convrtet denote the murder conviction rate, let unemt be the local unemployment rate,
and let yngmlet be the fraction of the population consisting of males between the ages
of 18 and 25. Then, a static multiple regression model explaining murder rates is

mrdrtet � �0 � �1convrtet � �2unemt � �3yngmlet � ut. (10.3)

Using a model such as this, we can hope to estimate, for example, the ceteris paribus
effect of an increase in the conviction rate on criminal activity.

Finite Distributed Lag Models

In a finite distributed lag (FDL) model, we allow one or more variables to affect y
with a lag. For example, for annual observations, consider the model

gfrt � �0 � 	0pet � 	1pet�1 � 	2pet�2 � ut, (10.4)

where gfrt is the general fertility rate (children born per 1,000 women of childbearing
age) and pet is the real dollar value of the personal tax exemption. The idea is to see
whether, in the aggregate, the decision to have children is linked to the tax value of hav-
ing a child. Equation (10.4) recognizes that, for both biological and behavioral reasons,
decisions to have children would not immediately result from changes in the personal
exemption.

Equation (10.4) is an example of the model

yt � �0 � 	0zt � 	1zt�1 � 	2zt�2 � ut, (10.5)
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which is an FDL of order two. To interpret the coefficients in (10.5), suppose that z is
a constant, equal to c, in all time periods before time t. At time t, z increases by one unit
to c � 1 and then reverts to its previous level at time t � 1. (That is, the increase in z is
temporary.) More precisely,

…, zt�2 � c, zt�1 � c, zt � c � 1, zt�1 � c, zt�2 � c, ….

To focus on the ceteris paribus effect of z on y, we set the error term in each time
period to zero. Then,

yt�1 � �0 � 	0c � 	1c � 	2c,

yt � �0 � 	0(c � 1) � 	1c � 	2c,

yt�1 � �0 � 	0c � 	1(c � 1) � 	2c,

yt�2 � �0 � 	0c � 	1c � 	2(c � 1),

yt�3 � �0 � 	0c � 	1c � 	2c,

and so on. From the first two equations, yt � yt�1 � 	0, which shows that 	0 is the
immediate change in y due to the one-unit increase in z at time t. 	0 is usually called the
impact propensity or impact multiplier.

Similarly, 	1 � yt�1 � yt�1 is the change in y one period after the temporary change,
and 	2 � yt�2 � yt�1 is the change in y two periods after the change. At time t � 3, y
has reverted back to its initial level: yt�3 � yt�1. This is because we have assumed that
only two lags of z appear in (10.5). When we graph the 	j as a function of j, we obtain
the lag distribution, which summarizes the dynamic effect that a temporary increase in
z has on y. A possible lag distribution for the FDL of order two is given in Figure 10.1.
(Of course, we would never know the parameters 	j; instead, we will estimate the 	j and
then plot the estimated lag distribution.)

The lag distribution in Figure 10.1 implies that the largest effect is at the first lag.
The lag distribution has a useful interpretation. If we standardize the initial value of y
at yt�1 � 0, the lag distribution traces out all subsequent values of y due to a one-unit,
temporary increase in z.

We are also interested in the change in y due to a permanent increase in z. Before
time t, z equals the constant c. At time t, z increases permanently to c � 1: zs � c, s 

t and zs � c � 1, s � t. Again, setting the errors to zero, we have

yt�1 � �0 � 	0c � 	1c � 	2c,

yt � �0 � 	0(c � 1) � 	1c � 	2c,

yt�1 � �0 � 	0(c � 1) � 	1(c � 1) � 	2c,

yt�2 � �0 � 	0(c � 1) � 	1(c � 1) � 	2(c � 1),

and so on. With the permanent increase in z, after one period, y has increased by 	0 �
	1, and after two periods, y has increased by 	0 � 	1 � 	2. There are no further changes
in y after two periods. This shows that the sum of the coefficients on current and lagged
z, 	0 � 	1 � 	2, is the long-run change in y given a permanent increase in z and is called
the long-run propensity (LRP) or long-run multiplier. The LRP is often of interest
in distributed lag models.
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As an example, in equation (10.4), 	0 measures the immediate change in fertility
due to a one-dollar increase in pe. As we mentioned earlier, there are reasons to believe
that 	0 is small, if not zero. But 	1 or 	2, or both, might be positive. If pe permanently
increases by one dollar, then, after two years, gfr will have changed by 	0 � 	1 � 	2.
This model assumes that there are no further changes after two years. Whether or not
this is actually the case is an empirical matter.

A finite distributed lag model of order q is written as

yt � �0 � 	0zt � 	1zt�1 � … � 	qzt�q � ut. (10.6)

This contains the static model as a special case by setting 	1, 	2, …, 	q equal to zero.
Sometimes, a primary purpose for estimating a distributed lag model is to test whether
z has a lagged effect on y. The impact propensity is always the coefficient on the con-
temporaneous z, 	0. Occasionally, we omit zt from (10.6), in which case the impact
propensity is zero. The lag distribution is again the 	j graphed as a function of j. The
long-run propensity is the sum of all coefficients on the variables zt�j:

LRP � 	0 � 	1 � … � 	q. (10.7)
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Because of the often substantial correlation in z at different lags—that is, due to multi-
collinearity in (10.6)—it can be difficult to obtain precise estimates of the individual 	j.

Interestingly, even when the 	j cannot be
precisely estimated, we can often get good
estimates of the LRP. We will see an exam-
ple later.

We can have more than one explanatory
variable appearing with lags, or we can add
contemporaneous variables to an FDL
model. For example, the average education
level for women of childbearing age could

be added to (10.4), which allows us to account for changing education levels for women.

A Convention About the Time Index

When models have lagged explanatory variables (and, as we will see in the next chap-
ter, models with lagged y), confusion can arise concerning the treatment of initial obser-
vations. For example, if in (10.5), we assume that the equation holds, starting at t � 1,
then the explanatory variables for the first time period are z1, z0, and z�1. Our conven-
tion will be that these are the initial values in our sample, so that we can always start
the time index at t � 1. In practice, this is not very important because regression pack-
ages automatically keep track of the observations available for estimating models with
lags. But for this and the next few chapters, we need some convention concerning the
first time period being represented by the regression equation.

10.3 FINITE SAMPLE PROPERTIES OF OLS UNDER
CLASSICAL ASSUMPTIONS

In this section, we give a complete listing of the finite sample, or small sample, prop-
erties of OLS under standard assumptions. We pay particular attention to how the
assumptions must be altered from our cross-sectional analysis to cover time series
regressions.

Unbiasedness of OLS

The first assumption simply states that the time series process follows a model which
is linear in its parameters.

A S S U M P T I O N  T S . 1  ( L I N E A R  I N  P A R A M E T E R S )

The stochastic process {(xt1,xt2,…,xtk,yt): t � 1,2,…,n} follows the linear model

yt � �0 � �1xt1 � … � �kxtk � ut, (10.8)

where {ut: t � 1,2,…,n} is the sequence of errors or disturbances. Here, n is the number
of observations (time periods).
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In an equation for annual data, suppose that

intt � 1.6 � .48 inft � .15 inft�1 � .32 inft�2 � ut,

where int is an interest rate and inf is the inflation rate, what are the
impact and long-run propensities?



In the notation xtj, t denotes the time period, and j is, as usual, a label to indicate one
of the k explanatory variables. The terminology used in cross-sectional regression
applies here: yt is the dependent variable, explained variable, or regressand; the xtj are
the independent variables, explanatory variables, or regressors.

We should think of Assumption TS.1 as being essentially the same as Assumption
MLR.1 (the first cross-sectional assumption), but we are now specifying a linear model
for time series data. The examples covered in Section 10.2 can be cast in the form of
(10.8) by appropriately defining xtj. For example, equation (10.5) is obtained by setting
xt1 � zt, xt2 � zt�1, and xt3 � zt�2.

In order to state and discuss several of the remaining assumptions, we let xt �
(xt1,xt2, …, xtk) denote the set all independent variables in the equation at time t. Further,
X denotes the collection of all independent variables for all time periods. It is useful to
think of X as being an array, with n rows and k columns. This reflects how time series
data are stored in econometric software packages: the tth row of X is xt, consisting of all
independent variables for time period t. Therefore, the first row of X corresponds to t �
1, the second row to t � 2, and the last row to t � n. An example is given in Table 10.2,
using n � 8 and the explanatory variables in equation (10.3).

The next assumption is the time series analog of Assumption MLR.3, and it also
drops the assumption of random sampling in Assumption MLR.2.

A S S U M P T I O N  T S . 2  ( Z E R O  C O N D I T I O N A L  M E A N )

For each t, the expected value of the error ut, given the explanatory variables for all time
periods, is zero. Mathematically,
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Table 10.2

Example of X for the Explanatory Variables in Equation (10.3)

t convrte unem yngmle

1 .46 .074 .12

2 .42 .071 .12

3 .42 .063 .11

4 .47 .062 .09

5 .48 .060 .10

6 .50 .059 .11

7 .55 .058 .12

8 .56 .059 .13



E(ut�X ) � 0, t � 1,2, …, n. (10.9)

This is a crucial assumption, and we need to have an intuitive grasp of its meaning. As
in the cross-sectional case, it is easiest to view this assumption in terms of uncorrelat-
edness: Assumption TS.2 implies that the error at time t, ut, is uncorrelated with each
explanatory variable in every time period. The fact that this is stated in terms of the con-
ditional expectation means that we must also correctly specify the functional relation-
ship between yt and the explanatory variables. If ut is independent of X and E(ut) � 0,
then Assumption TS.2 automatically holds.

Given the cross-sectional analysis from Chapter 3, it is not surprising that we
require ut to be uncorrelated with the explanatory variables also dated at time t: in con-
ditional mean terms,

E(ut�xt1, …, xtk) � E(ut�xt) � 0. (10.10)

When (10.10) holds, we say that the xtj are contemporaneously exogenous. Equation
(10.10) implies that ut and the explanatory variables are contemporaneously uncorre-
lated: Corr(xtj,ut) � 0, for all j.

Assumption TS.2 requires more than contemporaneous exogeneity: ut must be
uncorrelated with xsj, even when s � t. This is a strong sense in which the explanatory
variables must be exogenous, and when TS.2 holds, we say that the explanatory vari-
ables are strictly exogenous. In Chapter 11, we will demonstrate that (10.10) is suffi-
cient for proving consistency of the OLS estimator. But to show that OLS is unbiased,
we need the strict exogeneity assumption.

In the cross-sectional case, we did not explicitly state how the error term for, say,
person i, ui, is related to the explanatory variables for other people in the sample. The
reason this was unnecessary is that, with random sampling (Assumption MLR.2), ui is
automatically independent of the explanatory variables for observations other than i. In
a time series context, random sampling is almost never appropriate, so we must explic-
itly assume that the expected value of ut is not related to the explanatory variables in
any time periods.

It is important to see that Assumption TS.2 puts no restriction on correlation in the
independent variables or in the ut across time. Assumption TS.2 only says that the aver-
age value of ut is unrelated to the independent variables in all time periods.

Anything that causes the unobservables at time t to be correlated with any of the
explanatory variables in any time period causes Assumption TS.2 to fail. Two leading
candidates for failure are omitted variables and measurement error in some of the
regressors. But, the strict exogeneity assumption can also fail for other, less obvious
reasons. In the simple static regression model

yt � �0 � �1zt � ut,

Assumption TS.2 requires not only that ut and zt are uncorrelated, but that ut is also
uncorrelated with past and future values of z. This has two implications. First, z can
have no lagged effect on y. If z does have a lagged effect on y, then we should estimate
a distributed lag model. A more subtle point is that strict exogeneity excludes the pos-
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sibility that changes in the error term today can cause future changes in z. This effec-
tively rules out feedback from y on future values of z. For example, consider a simple
static model to explain a city’s murder rate in terms of police officers per capita:

mrdrtet � �0 � �1 polpct � ut.

It may be reasonable to assume that ut is uncorrelated with polpct and even with past
values of polpct; for the sake of argument, assume this is the case. But suppose that the
city adjusts the size of its police force based on past values of the murder rate. This
means that, say, polpct�1 might be correlated with ut (since a higher ut leads to a higher
mrdrtet ). If this is the case, Assumption TS.2 is generally violated.

There are similar considerations in distributed lag models. Usually we do not worry
that ut might be correlated with past z because we are controlling for past z in the model.
But feedback from u to future z is always an issue.

Explanatory variables that are strictly exogenous cannot react to what has happened
to y in the past. A factor such as the amount of rainfall in an agricultural production
function satisfies this requirement: rainfall in any future year is not influenced by the
output during the current or past years. But something like the amount of labor input
might not be strictly exogenous, as it is chosen by the farmer, and the farmer may adjust
the amount of labor based on last year’s yield. Policy variables, such as growth in the
money supply, expenditures on welfare, highway speed limits are often influenced by
what has happened to the outcome variable in the past. In the social sciences, many
explanatory variables may very well violate the strict exogeneity assumption.

Even though Assumption TS.2 can be unrealistic, we begin with it in order to conclude
that the OLS estimators are unbiased. Most treatments of static and finite distributed lag
models assume TS.2 by making the stronger assumption that the explanatory variables are
nonrandom, or fixed in repeated samples. The nonrandomness assumption is obviously
false for time series observations; Assumption TS.2 has the advantage of being more real-
istic about the random nature of the xtj, while it isolates the necessary assumption about
how ut and the explanatory variables are related in order for OLS to be unbiased.

The last assumption needed for unbiasedness of OLS is the standard no perfect
collinearity assumption.

A S S U M P T I O N  T S . 3  ( N O  P E R F E C T  C O L L I N E A R I T Y )

In the sample (and therefore in the underlying time series process), no independent variable
is constant or a perfect linear combination of the others.

We discussed this assumption at length in the context of cross-sectional data in
Chapter 3. The issues are essentially the same with time series data. Remember,
Assumption TS.3 does allow the explanatory variables to be correlated, but it rules out
perfect correlation in the sample.

T H E O R E M  1 0 . 1  ( U N B I A S E D N E S S  O F  O L S )

Under Assumptions TS.1, TS.2, and TS.3, the OLS estimators are unbiased conditional on
X, and therefore unconditionally as well: E(�̂j) � �j, j � 0,1, …, k.
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The proof of this theorem is essentially the
same as that for Theorem 3.1 in Chapter 3,
and so we omit it. When comparing
Theorem 10.1 to Theorem 3.1, we have
been able to drop the random sampling
assumption by assuming that, for each t, ut

has zero mean given the explanatory variables at all time periods. If this assumption
does not hold, OLS cannot be shown to be unbiased.

The analysis of omitted variables bias, which we covered in Section 3.3, is essen-
tially the same in the time series case. In particular, Table 3.2 and the discussion sur-
rounding it can be used as before to determine the directions of bias due to omitted
variables.

The Variances of the OLS Estimators and the
Gauss-Markov Theorem

We need to add two assumptions to round out the Gauss-Markov assumptions for time
series regressions. The first one is familiar from cross-sectional analysis.

A S S U M P T I O N  T S . 4  ( H O M O S K E D A S T I C I T Y )

Conditional on X, the variance of ut is the same for all t: Var(ut�X ) � Var(ut) � 
2,
t � 1,2, …, n.

This assumption means that Var(ut�X) cannot depend on X—it is sufficient that ut and X
are independent—and that Var(ut) must be constant over time. When TS.4 does not hold,
we say that the errors are heteroskedastic, just as in the cross-sectional case. For exam-
ple, consider an equation for determining three-month, T-bill rates (i3t) based on the
inflation rate (inft) and the federal deficit as a percentage of gross domestic product (deft):

i3t � �0 � �1inft � �2deft � ut. (10.11)

Among other things, Assumption TS.4 requires that the unobservables affecting inter-
est rates have a constant variance over time. Since policy regime changes are known to
affect the variability of interest rates, this assumption might very well be false. Further,
it could be that the variability in interest rates depends on the level of inflation or rela-
tive size of the deficit. This would also violate the homoskedasticity assumption.

When Var(ut�X ) does depend on X, it often depends on the explanatory variables at
time t, xt. In Chapter 12, we will see that the tests for heteroskedasticity from Chapter
8 can also be used for time series regressions, at least under certain assumptions.

The final Gauss-Markov assumption for time series analysis is new.

A S S U M P T I O N  T S . 5  ( N O  S E R I A L  C O R R E L A T I O N )

Conditional on X, the errors in two different time periods are uncorrelated: Corr(ut,us �X ) �
0, for all t � s.
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In the FDL model yt � �0 � 	0zt � 	1zt�1 � ut, what do we need
to assume about the sequence {z0, z1, …, zn} in order for As-
sumption TS.3 to hold?



The easiest way to think of this assumption is to ignore the conditioning on X. Then,
Assumption TS.5 is simply

Corr(ut,us) � 0, for all t � s. (10.12)

(This is how the no serial correlation assumption is stated when X is treated as nonran-
dom.) When considering whether Assumption TS.5 is likely to hold, we focus on equa-
tion (10.12) because of its simple interpretation.

When (10.12) is false, we say that the errors in (10.8) suffer from serial correla-
tion, or autocorrelation, because they are correlated across time. Consider the case of
errors from adjacent time periods. Suppose that, when ut�1 � 0 then, on average, the
error in the next time period, ut, is also positive. Then Corr(ut,ut�1) � 0, and the errors
suffer from serial correlation. In equation (10.11) this means that, if interest rates are
unexpectedly high for this period, then they are likely to be above average (for the given
levels of inflation and deficits) for the next period. This turns out to be a reasonable
characterization for the error terms in many time series applications, which we will see
in Chapter 12. For now, we assume TS.5.

Importantly, Assumption TS.5 assumes nothing about temporal correlation in the
independent variables. For example, in equation (10.11), inft is almost certainly corre-
lated across time. But this has nothing to do with whether TS.5 holds.

A natural question that arises is: In Chapters 3 and 4, why did we not assume that
the errors for different cross-sectional observations are uncorrelated? The answer
comes from the random sampling assumption: under random sampling, ui and uh are
independent for any two observations i and h. It can also be shown that this is true, con-
ditional on all explanatory variables in the sample. Thus, for our purposes, serial corre-
lation is only an issue in time series regressions.

Assumptions TS.1 through TS.5 are the appropriate Gauss-Markov assumptions for
time series applications, but they have other uses as well. Sometimes, TS.1 through
TS.5 are satisfied in cross-sectional applications, even when random sampling is not a
reasonable assumption, such as when the cross-sectional units are large relative to the
population. It is possible that correlation exists, say, across cities within a state, but as
long as the errors are uncorrelated across those cities, Assumption TS.5 holds. But we
are primarily interested in applying these assumptions to regression models with time
series data.

T H E O R E M  1 0 . 2  ( O L S  S A M P L I N G  V A R I A N C E S )

Under the time series Gauss-Markov assumptions TS.1 through TS.5, the variance of �̂j,
conditional on X, is

Var(�̂j�X ) � 
2/[SSTj(1 � Rj
2)], j � 1, …, k, (10.13)

where SSTj is the total sum of squares of xtj and Rj
2 is the R-squared from the regression of

xj on the other independent variables.
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Equation (10.13) is the exact variance we derived in Chapter 3 under the cross-
sectional Gauss-Markov assumptions. Since the proof is very similar to the one for
Theorem 3.2, we omit it. The discussion from Chapter 3 about the factors causing large
variances, including multicollinearity among the explanatory variables, applies imme-
diately to the time series case.

The usual estimator of the error variance is also unbiased under Assumptions TS.1
through TS.5, and the Gauss-Markov theorem holds.

T H E O R E M  1 0 . 3  ( U N B I A S E D  E S T I M A T I O N  O F  
 2 )

Under Assumptions TS.1 through TS.5, the estimator 
̂2 � SSR/df is an unbiased estimator
of 
2, where df � n � k � 1.

T H E O R E M  1 0 . 4  ( G A U S S - M A R K O V  T H E O R E M )

Under Assumptions TS.1 through TS.5, the OLS estimators are the best linear unbiased esti-
mators conditional on X.

The bottom line here is that OLS has
the same desirable finite sample properties
under TS.1 through TS.5 that it has under
MLR.1 through MLR.5.

Inference Under the Classical Linear Model Assumptions

In order to use the usual OLS standard errors, t statistics, and F statistics, we need to
add a final assumption that is analogous to the normality assumption we used for cross-
sectional analysis.

A S S U M P T I O N  T S . 6  ( N O R M A L I T Y )

The errors ut are independent of X and are independently and identically distributed as
Normal(0,
2).

Assumption TS.6 implies TS.3, TS.4, and TS.5, but it is stronger because of the
independence and normality assumptions.

T H E O R E M  1 0 . 5  ( N O R M A L  S A M P L I N G

D I S T R I B U T I O N S )

Under Assumptions TS.1 through TS.6, the CLM assumptions for time series, the OLS esti-
mators are normally distributed, conditional on X. Further, under the null hypothesis, each
t statistic has a t distribution, and each F statistic has an F distribution. The usual construc-
tion of confidence intervals is also valid.
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In the FDL model yt � �0 � 	0zt � 	1zt�1 � ut, explain the nature
of any multicollinearity in the explanatory variables.



The implications of Theorem 10.5 are of utmost importance. It implies that, when
Assumptions TS.1 through TS.6 hold, everything we have learned about estimation and
inference for cross-sectional regressions applies directly to time series regressions.
Thus, t statistics can be used for testing statistical significance of individual explanatory
variables, and F statistics can be used to test for joint significance.

Just as in the cross-sectional case, the usual inference procedures are only as good
as the underlying assumptions. The classical linear model assumptions for time series
data are much more restrictive than those for the cross-sectional data—in particular, the
strict exogeneity and no serial correlation assumptions can be unrealistic. Nevertheless,
the CLM framework is a good starting point for many applications.

E X A M P L E  1 0 . 1
( S t a t i c  P h i l l i p s  C u r v e )

To determine whether there is a tradeoff, on average, between unemployment and infla-
tion, we can test H0: �1 � 0 against H0: �1 
 0 in equation (10.2). If the classical linear
model assumptions hold, we can use the usual OLS t statistic. Using annual data for the
United States in PHILLIPS.RAW, for the years 1948 through 1996, we obtain

in̂ft �(1.42)�(.468)unemt

in̂ft �(1.72)�(.289)unemt

n � 49, R2 � .053, R̄2 � .033.
(10.14)

This equation does not suggest a tradeoff between unem and inf: �̂1 � 0. The t statistic for
�̂1 is about 1.62, which gives a p-value against a two-sided alternative of about .11. Thus,
if anything, there is a positive relationship between inflation and unemployment.

There are some problems with this analysis that we cannot address in detail now. In
Chapter 12, we will see that the CLM assumptions do not hold. In addition, the static
Phillips curve is probably not the best model for determining whether there is a short-
run tradeoff between inflation and unemployment. Macroeconomists generally prefer
the expectations augmented Phillips curve, a simple example of which is given in
Chapter 11.

As a second example, we estimate equation (10.11) using anual data on the U.S.
economy.

E X A M P L E  1 0 . 2
( E f f e c t s  o f  I n f l a t i o n  a n d  D e f i c i t s  o n  I n t e r e s t  R a t e s )

The data in INTDEF.RAW come from the 1997 Economic Report of the President and span
the years 1948 through 1996. The variable i3 is the three-month T-bill rate, inf is the annual
inflation rate based on the consumer price index (CPI), and def is the federal budget deficit
as a percentage of GDP. The estimated equation is
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i3̂t �(1.25)�(.613)inft �(.700)deft
i3̂t �(0.44)�(.076)inft �(.118)deft

n � 49, R2 � .697, R̄2 � .683.
(10.15)

These estimates show that increases in inflation and the relative size of the deficit work
together to increase short-term interest rates, both of which are expected from basic eco-
nomics. For example, a ceteris paribus one percentage point increase in the inflation rate
increases i3 by .613 points. Both inf and def are very statistically significant, assuming, of
course, that the CLM assumptions hold.

10.4 FUNCTIONAL FORM, DUMMY VARIABLES, AND
INDEX NUMBERS

All of the functional forms we learned about in earlier chapters can be used in time
series regressions. The most important of these is the natural logarithm: time series
regressions with constant percentage effects appear often in applied work.

E X A M P L E  1 0 . 3
( P u e r t o  R i c a n  E m p l o y m e n t  a n d  t h e  M i n i m u m  W a g e )

Annual data on the Puerto Rican employment rate, minimum wage, and other variables are
used by Castillo-Freedman and Freedman (1992) to study the effects of the U.S. minimum
wage on employment in Puerto Rico. A simplified version of their model is

log( prepopt) � �0 � �1log(mincovt) � �2log(usgnpt) � ut, (10.16)

where prepopt is the employment rate in Puerto Rico during year t (ratio of those working
to total population), usgnpt is real U.S. gross national product (in billions of dollars), and
mincov measures the importance of the minimum wage relative to average wages. In par-
ticular, mincov � (avgmin/avgwage)�avgcov, where avgmin is the average minimum wage,
avgwage is the average overall wage, and avgcov is the average coverage rate (the pro-
portion of workers actually covered by the minimum wage law).

Using data for the years 1950 through 1987 gives

(log(prêpopt) � �1.05)�(.154)log(mincovt) �(.012)log(usgnpt)
log(prêpopt) � �(0.77)�(.065)log(mincovt) �(.089)log(usgnpt)

n � 38, R2 � .661, R̄2 � .641.
(10.17)

The estimated elasticity of prepop with respect to mincov is �.154, and it is statistically sig-
nificant with t � �2.37. Therefore, a higher minimum wage lowers the employment rate,
something that classical economics predicts. The GNP variable is not statistically significant,
but this changes when we account for a time trend in the next section.
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We can use logarithmic functional forms in distributed lag models, too. For exam-
ple, for quarterly data, suppose that money demand (Mt) and gross domestic product
(GDPt) are related by

log(Mt) � �0 � 	0log(GDPt ) � 	1log(GDPt�1) � 	2log(GDPt�2)
� 	3log(GDPt�3) � 	4log(GDPt�4) � ut.

The impact propensity in this equation, 	0, is also called the short-run elasticity: it
measures the immediate percentage change in money demand given a 1% increase in
GDP. The long-run propensity, 	0 � 	1 � … � 	4, is sometimes called the long-run
elasticity: it measures the percentage increase in money demand after four quarters
given a permanent 1% increase in GDP.

Binary or dummy independent variables are also quite useful in time series appli-
cations. Since the unit of observation is time, a dummy variable represents whether, in
each time period, a certain event has occurred. For example, for annual data, we can
indicate in each year whether a Democrat or a Republican is president of the United
States by defining a variable democt, which is unity if the president is a Democrat, and
zero otherwise. Or, in looking at the effects of capital punishment on murder rates in
Texas, we can define a dummy variable for each year equal to one if Texas had capital
punishment during that year, and zero otherwise.

Often dummy variables are used to isolate certain periods that may be systemati-
cally different from other periods covered by a data set.

E X A M P L E  1 0 . 4
( E f f e c t s  o f  P e r s o n a l  E x e m p t i o n  o n  F e r t i l i t y  R a t e s )

The general fertility rate (gfr) is the number of children born to every 1,000 women of child-
bearing age. For the years 1913 through 1984, the equation,

gfrt � �0 � �1pet � �2ww2t � �3pillt � ut,

explains gfr in terms of the average real dollar value of the personal tax exemption (pe) and
two binary variables. The variable ww2 takes on the value unity during the years 1941
through 1945, when the United States was involved in World War II. The variable pill is unity
from 1963 on, when the birth control pill was made available for contraception.

Using the data in FERTIL3.RAW, which were taken from the article by Whittington, Alm,
and Peters (1990), gives

gf̂rt �(98.68)�(.083)pet �(24.24)ww2t �(31.59)pillt
gf̂rt �9(3.21)�(.030)pet �2(7.46)ww2t �3(4.08)pillt

n � 72, R2 � .473, R̄2 � .450.
(10.18)

Each variable is statistically significant at the 1% level against a two-sided alternative. We
see that the fertility rate was lower during World War II: given pe, there were about 24
fewer births for every 1,000 women of childbearing age, which is a large reduction. (From
1913 through 1984, gfr ranged from about 65 to 127.) Similarly, the fertility rate has been
substantially lower since the introduction of the birth control pill.
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The variable of economic interest is pe. The average pe over this time period is $100.40,
ranging from zero to $243.83. The coefficient on pe implies that a 12-dollar increase in pe
increases gfr by about one birth per 1,000 women of childbearing age. This effect is hardly
trivial.

In Section 10.2, we noted that the fertility rate may react to changes in pe with a lag.
Estimating a distributed lag model with two lags gives

gf̂rt �(95.87)�(.073)pet �(.0058)pet�1 �(.034)pet�2

gf̂rt �9(3.28)�(.126)pet �(.1557)pet�1 �(.126)pet�2

�(22.13)ww2t �(31.30)pillt
�(10.73)ww2t �0(3.98)pillt

n � 70, R2 � .499, R̄2 � .459.

In this regression, we only have 70 observations because we lose two when we lag pe
twice. The coefficients on the pe variables are estimated very imprecisely, and each one is
individually insignificant. It turns out that there is substantial correlation between pet, pet�1,
and pet�2, and this multicollinearity makes it difficult to estimate the effect at each lag.
However, pet, pet�1, and pet�2 are jointly significant: the F statistic has a p-value � .012.
Thus, pe does have an effect on gfr [as we already saw in (10.18)], but we do not have
good enough estimates to determine whether it is contemporaneous or with a one- or two-
year lag (or some of each). Actually, pet�1 and pet�2 are jointly insignificant in this equation
(p-value � .95), so at this point, we would be justified in using the static model. But for
illustrative purposes, let us obtain a confidence interval for the long-run propensity in this
model.

The estimated LRP in (10.19) is .073 � .0058 � .034 � .101. However, we do not have
enough information in (10.19) to obtain the standard error of this estimate. To obtain the
standard error of the estimated LRP, we use the trick suggested in Section 4.4. Let �0 �

	0 � 	1 � 	2 denote the LRP and write 	0 in terms of �0, 	1, and 	2 as 	0 � �0 � 	1 � 	2.
Next, substitute for 	0 in the model

gfrt � �0 � 	0 pet � 	1 pet�1 � 	2 pet�2 � …

to get

gfrt � �0 � (�0 � 	1 � 	2)pet � 	1 pet�1 � 	2 pet�2 � …

� �0 � �0pet � 	1(pet�1 � pet) � 	2(pet�2 � pet) � ….

From this last equation, we can obtain �̂0 and its standard error by regressing gfrt on pet,
(pet�1 � pet), (pet�2 � pet), ww2t, and pillt. The coefficient and associated standard error
on pet are what we need. Running this regression gives �̂0 � .101 as the coefficient on pet

(as we already knew from above) and se(�̂0) � .030 [which we could not compute from
(10.19)]. Therefore, the t statistic for �̂0 is about 3.37, so �̂0 is statistically different from zero
at small significance levels. Even though none of the 	̂j is individually significant, the LRP is
very significant. The 95% confidence interval for the LRP is about .041 to .160.

Whittington, Alm, and Peters (1990) allow for further lags but restrict the coefficients
to help alleviate the multicollinearity problem that hinders estimation of the individual 	j.
(See Problem 10.6 for an example of how to do this.) For estimating the LRP, which would
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seem to be of primary interest here, such restrictions are unnecessary. Whittington, Alm,
and Peters also control for additional variables, such as average female wage and the
unemployment rate.

Binary explanatory variables are the key component in what is called an event
study. In an event study, the goal is to see whether a particular event influences some
outcome. Economists who study industrial organization have looked at the effects of
certain events on firm stock prices. For example, Rose (1985) studied the effects of new
trucking regulations on the stock prices of trucking companies.

A simple version of an equation used for such event studies is

Rt
f � �0 � �1 Rt

m � �2dt � ut,

where Rt
f is the stock return for firm f during period t (usually a week or a month), Rt

m

is the market return (usually computed for a broad stock market index), and dt is a
dummy variable indicating when the event occurred. For example, if the firm is an air-
line, dt might denote whether the airline experienced a publicized accident or near acci-
dent during week t. Including Rt

m in the equation controls for the possibility that broad
market movements might coincide with airline accidents. Sometimes, multiple dummy
variables are used. For example, if the event is the imposition of a new regulation that
might affect a certain firm, we might include a dummy variable that is one for a few
weeks before the regulation was publicly announced and a second dummy variable for
a few weeks after the regulation was announced. The first dummy variable might detect
the presence of inside information.

Before we give an example of an event study, we need to discuss the notion of an
index number and the difference between nominal and real economic variables. An
index number typically aggregates a vast amount of information into a single quantity.
Index numbers are used regularly in time series analysis, especially in macroeconomic
applications. An example of an index number is the index of industrial production (IIP),
computed monthly by the Board of Governors of the Federal Reserve. The IIP is a mea-
sure of production across a broad range of industries, and, as such, its magnitude in a
particular year has no quantitative meaning. In order to interpret the magnitude of the
IIP, we must know the base period and the base value. In the 1997 Economic Report
of the President (ERP), the base year is 1987, and the base value is 100. (Setting IIP to
100 in the base period is just a convention; it makes just as much sense to set IIP � 1
in 1987, and some indexes are defined with one as the base value.) Because the IIP was
107.7 in 1992, we can say that industrial production was 7.7% higher in 1992 than in
1987. We can use the IIP in any two years to compute the percentage difference in
industrial output during those two years. For example, since IIP � 61.4 in 1970 and
IIP � 85.7 in 1979, industrial production grew by about 39.6% during the 1970s.

It is easy to change the base period for any index number, and sometimes we must
do this to give index numbers reported with different base years a common base year.
For example, if we want to change the base year of the IIP from 1987 to 1982, we sim-
ply divide the IIP for each year by the 1982 value and then multiply by 100 to make the
base period value 100. Generally, the formula is
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newindext � 100(oldindext /oldindexnewbase), (10.20)

where oldindexnewbase is the original value of the index in the new base year. For exam-
ple, with base year 1987, the IIP in 1992 is 107.7; if we change the base year to 1982,
the IIP in 1992 becomes 100(107.7/81.9) � 131.5 (because the IIP in 1982 was 81.9).

Another important example of an index number is a price index, such as the consumer
price index (CPI). We already used the CPI to compute annual inflation rates in Example
10.1. As with the industrial production index, the CPI is only meaningful when we com-
pare it across different years (or months, if we are using monthly data). In the 1997 ERP,
CPI � 38.8 in 1970, and CPI � 130.7 in 1990. Thus, the general price level grew by
almost 237% over this twenty-year period. (In 1997, the CPI is defined so that its average
in 1982, 1983, and 1984 equals 100; thus, the base period is listed as 1982–1984.)

In addition to being used to compute inflation rates, price indexes are necessary for
turning a time series measured in nominal dollars (or current dollars) into real dollars
(or constant dollars). Most economic behavior is assumed to be influenced by real, not
nominal, variables. For example, classical labor economics assumes that labor supply
is based on the real hourly wage, not the nominal wage. Obtaining the real wage from
the nominal wage is easy if we have a price index such as the CPI. We must be a little
careful to first divide the CPI by 100, so that the value in the base year is one. Then, if
w denotes the average hourly wage in nominal dollars and p � CPI/100, the real wage
is simply w/p. This wage is measured in dollars for the base period of the CPI. For
example, in Table B-45 in the 1997 ERP, average hourly earnings are reported in nom-
inal terms and in 1982 dollars (which means that the CPI used in computing the real
wage had the base year 1982). This table reports that the nominal hourly wage in 1960
was $2.09, but measured in 1982 dollars, the wage was $6.79. The real hourly wage had
peaked in 1973, at $8.55 in 1982 dollars, and had fallen to $7.40 by 1995. Thus, there
has been a nontrivial decline in real wages over the past 20 years. (If we compare nom-
inal wages from 1973 and 1995, we get a very misleading picture: $3.94 in 1973 and
$11.44 in 1995. Since the real wage has actually fallen, the increase in the nominal
wage is due entirely to inflation.)

Standard measures of economic output are in real terms. The most important of
these is gross domestic product, or GDP. When growth in GDP is reported in the pop-
ular press, it is always real GDP growth. In the 1997 ERP, Table B-9, GDP is reported
in billions of 1992 dollars. We used a similar measure of output, real gross national
product, in Example 10.3.

Interesting things happen when real dollar variables are used in combination with
natural logarithms. Suppose, for example, that average weekly hours worked are related
to the real wage as

log(hours) � �0 � �1log(w/p) � u.

Using the fact that log(w/p) � log(w) � log(p), we can write this as

log(hours) � �0 � �1log(w) � �2log(p) � u, (10.21)

but with the restriction that �2 � ��1. Therefore, the assumption that only the real
wage influences labor supply imposes a restriction on the parameters of model (10.21).
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If �2 � ��1, then the price level has an effect on labor supply, something that can hap-
pen if workers do not fully understand the distinction between real and nominal wages.

There are many practical aspects to the actual computation of index numbers, but it
would take us too far afield to cover those here. Detailed discussions of price indexes
can be found in most intermediate macroeconomic texts, such as Mankiw (1994,
Chapter 2). For us, it is important to be able to use index numbers in regression analy-
sis. As mentioned earlier, since the magnitudes of index numbers are not especially
informative, they often appear in logarithmic form, so that regression coefficients have
percentage change interpretations.

We now give an example of an event study that also uses index numbers.

E X A M P L E  1 0 . 5
( A n t i d u m p i n g  F i l i n g s  a n d  C h e m i c a l  I m p o r t s )

Krupp and Pollard (1996) analyzed the effects of antidumping filings by U.S. chemical
industries on imports of various chemicals. We focus here on one industrial chemical, bar-
ium chloride, a cleaning agent used in various chemical processes and in gasoline produc-
tion. In the early 1980s, U.S. barium chloride producers believed that China was offering its
U.S. imports at an unfairly low price (an action known as dumping), and the barium chlo-
ride industry filed a complaint with the U.S. International Trade Commission (ITC) in
October 1983. The ITC ruled in favor of the U.S. barium chloride industry in October 1984.
There are several questions of interest in this case, but we will touch on only a few of them.
First, are imports unusually high in the period immediately preceding the initial filing?
Second, do imports change noticeably after an antidumping filing? Finally, what is the
reduction in imports after a decision in favor of the U.S. industry?

To answer these questions, we follow Krupp and Pollard by defining three dummy vari-
ables: befile6 is equal to one during the six months before filing, affile6 indicates the six
months after filing, and afdec6 denotes the six months after the positive decision. The
dependent variable is the volume of imports of barium chloride from China, chnimp, which
we use in logarithmic form. We include as explanatory variables, all in logarithmic form, an
index of chemical production, chempi (to control for overall demand for barium chloride),
the volume of gasoline production, gas (another demand variable), and an exchange rate
index, rtwex, which measures the strength of the dollar against several other currencies.
The chemical production index was defined to be 100 in June 1977. The analysis here dif-
fers somewhat from Krupp and Pollard in that we use natural logarithms of all variables
(except the dummy variables, of course), and we include all three dummy variables in the
same regression.

Using monthly data from February 1978 through December 1988 gives the following:

log(cĥnimp) � �17.80)�(3.12)log(chempi) �(.196)log(gas)
og(cĥnimp) � �(21.05)�(0.48)log(chempi) �(.907)log(gas)

�(.983)log(rtwex) �(.060)befile6 �(.032)affile6 �(.566)afdec6
�(.400)log(rtwex) �(.261)befile6 �(.264)affile6 �(.286)afdec6

n � 131, R2 � .305, R̄2 � .271.
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The equation shows that befile6 is statistically insignificant, so there is no evidence that
Chinese imports were unusually high during the six months before the suit was filed.
Further, although the estimate on affile6 is negative, the coefficient is small (indicating
about a 3.2% fall in Chinese imports), and it is statistically very insignificant. The coefficient
on afdec6 shows a substantial fall in Chinese imports of barium chloride after the decision
in favor of the U.S. industry, which is not surprising. Since the effect is so large, we com-
pute the exact percentage change: 100[exp(�.566) � 1] � �43.2%. The coefficient is sta-
tistically significant at the 5% level against a two-sided alternative.

The coefficient signs on the control variables are what we expect: an increase in over-
all chemical production increases the demand for the cleaning agent. Gasoline production
does not affect Chinese imports significantly. The coefficient on log(rtwex) shows that an
increase in the value of the dollar relative to other currencies increases the demand for
Chinese imports, as is predicted by economic theory. (In fact, the elasticity is not statistically
different from one. Why?)

Interactions among qualitative and quantitative variables are also used in time series
analysis. An example with practical importance follows.

E X A M P L E  1 0 . 6
( E l e c t i o n  O u t c o m e s  a n d  E c o n o m i c  P e r f o r m a n c e )

Fair (1996) summarizes his work on explaining presidential election outcomes in terms of
economic performance. He explains the proportion of the two-party vote going to the
Democratic candidate using data for the years 1916 through 1992 (every four years) for a
total of 20 observations. We estimate a simplified version of Fair’s model (using variable
names that are more descriptive than his):

demvote � �0 � �1 partyWH � �2incum � �3partyWH�gnews
� �4 partyWH�inf � u,

where demvote is the proportion of the two-party vote going to the Democratic candidate.
The explanatory variable partyWH is similar to a dummy variable, but it takes on the value
one if a Democrat is in the White House and �1 if a Republican is in the White House. Fair
uses this variable to impose the restriction that the effect of a Republican being in the White
House has the same magnitude but opposite sign as a Democrat being in the White House.
This is a natural restriction since the party shares must sum to one, by definition. It also
saves two degrees of freedom, which is important with so few observations. Similarly, the
variable incum is defined to be one if a Democratic incumbent is running, �1 if a
Republican incumbent is running, and zero otherwise. The variable gnews is the number of
quarters during the current administration’s first 15 (out of 16 total), where the quarterly
growth in real per capita output was above 2.9% (at an annual rate), and inf is the aver-
age annual inflation rate over the first 15 quarters of the administration. See Fair (1996) for
precise definitions.

Economists are most interested in the interaction terms partyWH�gnews and
partyWH�inf. Since partyWH equals one when a Democrat is in the White House, �3 mea-
sures the effect of good economic news on the party in power; we expect �3 � 0. Similarly,
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�4 measures the effect that inflation has on the party in power. Because inflation during an
administration is considered to be bad news, we expect �4 
 0.

The estimated equation using the data in FAIR.RAW is

demv̂ote �(.481)�(.0435)partyWH �(.0544)incum
demv̂ote �(.012)�(.0405)partyWH �(.0234)incum

�(.0108)partyWH�gnews �(.0077)partyWH�inf
�(.0041)partyWH�gnews �(.0033)partyWH�inf

n � 20, R2 � .663, R̄2 � .573.

All coefficients, except that on partyWH, are statistically significant at the 5% level.
Incumbency is worth about 5.4 percentage points in the share of the vote. (Remember,
demvote is measured as a proportion.) Further, the economic news variable has a positive
effect: one more quarter of good news is worth about 1.1 percentage points. Inflation, as
expected, has a negative effect: if average annual inflation is, say, two percentage points
higher, the party in power loses about 1.5 percentage points of the two-party vote.

We could have used this equation to predict the outcome of the 1996 presidential elec-
tion between Bill Clinton, the Democrat, and Bob Dole, the Republican. (The independent
candidate, Ross Perot, is excluded because Fair’s equation is for the two-party vote only.)
Since Clinton ran as an incumbent, partyWH � 1 and incum � 1. To predict the election
outcome, we need the variables gnews and inf. During Clinton’s first 15 quarters in office,
per capita real GDP exceeded 2.9% three times, so gnews � 3. Further, using the GDP price
deflator reported in Table B-4 in the 1997 ERP, the average annual inflation rate (computed
using Fair’s formula) from the fourth quarter in 1991 to the third quarter in 1996 was
3.019. Plugging these into (10.23) gives

demv̂ote � .481 � .0435 � .0544 � .0108(3) � .0077(3.019) � .5011.

Therefore, based on information known before the election in November, Clinton was pre-
dicted to receive a very slight majority of the two-party vote: about 50.1%. In fact, Clinton
won more handily: his share of the two-party vote was 54.65%.

10.5 TRENDS AND SEASONALITY

Characterizing Trending Time Series

Many economic time series have a common tendency of growing over time. We must
recognize that some series contain a time trend in order to draw causal inference using
time series data. Ignoring the fact that two sequences are trending in the same or oppo-
site directions can lead us to falsely conclude that changes in one variable are actually
caused by changes in another variable. In many cases, two time series processes appear
to be correlated only because they are both trending over time for reasons related to
other unobserved factors.

Figure 10.2 contains a plot of labor productivity (output per hour of work) in the
United States for the years 1947 through 1987. This series displays a clear upward
trend, which reflects the fact that workers have become more productive over time.

Chapter 10 Basic Regression Analysis with Time Series Data

331

(10.23)



Other series, at least over certain time periods, have clear downward trends. Because
positive trends are more common, we will focus on those during our discussion.

What kind of statistical models adequately capture trending behavior? One popular
formulation is to write the series {yt} as

yt � �0 � �1t � et, t � 1,2, …, (10.24)

where, in the simplest case, {et} is an independent, identically distributed (i.i.d.)
sequence with E(et) � 0, Var(et) � 
2

e. Note how the parameter �1 multiplies time, t,
resulting in a linear time trend. Interpreting �1 in (10.24) is simple: holding all other
factors (those in et) fixed, �1 measures the change in yt from one period to the next due
to the passage of time: when �et � 0,

�yt � yt � yt�1 � �1.

Another way to think about a sequence that has a linear time trend is that its aver-
age value is a linear function of time:

E(yt) � �0 � �1t. (10.25)

If �1 � 0, then, on average, yt is growing over time and therefore has an upward trend.
If �1 
 0, then yt has a downward trend. The values of yt do not fall exactly on the line
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Output per labor hour in the United States during the years 1947–1987; 1977 � 100.
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in (10.25) due to randomness, but the
expected values are on the line. Unlike the
mean, the variance of yt is constant across
time: Var(yt) � Var(et) � 
2

e.
If {et} is an i.i.d. sequence, then {yt} is

an independent, though not identically,
distributed sequence. A more realistic

characterization of trending time series allows {et} to be correlated over time, but this
does not change the flavor of a linear time trend. In fact, what is important for regres-
sion analysis under the classical linear model assumptions is that E(yt) is linear in t.
When we cover large sample properties of OLS in Chapter 11, we will have to discuss
how much temporal correlation in {et} is allowed.

Many economic time series are better approximated by an exponential trend,
which follows when a series has the same average growth rate from period to period.
Figure 10.3 plots data on annual nominal imports for the United States during the years
1948 through 1995 (ERP 1997, Table B–101).

In the early years, we see that the change in the imports over each year is relatively
small, whereas the change increases as time passes. This is consistent with a constant
average growth rate: the percentage change is roughly the same in each period.

In practice, an exponential trend in a time series is captured by modeling the natural
logarithm of the series as a linear trend (assuming that yt � 0):
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F i g u r e  1 0 . 3

Nominal U.S. imports during the years 1948–1995 (in billions of U.S. dollars).
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Q U E S T I O N  1 0 . 4

In Example 10.4, we used the general fertility rate as the dependent
variable in a finite distributed lag model. From 1950 through the
mid-1980s, the gfr has a clear downward trend. Can a linear trend
with �1 
 0 be realistic for all future time periods? Explain.



log(yt) � �0 � �1t � et, t � 1,2, …. (10.26)

Exponentiating shows that yt itself has an exponential trend: yt � exp(�0 � �1t � et).
Because we will want to use exponentially trending time series in linear regression
models, (10.26) turns out to be the most convenient way for representing such series.

How do we interpret �1 in (10.26)? Remember that, for small changes, �log(yt) �
log(yt) � log(yt�1) is approximately the proportionate change in yt:

�log(yt) � (yt � yt�1)/yt�1. (10.27)

The right-hand side of (10.27) is also called the growth rate in y from period t � 1 to
period t. To turn the growth rate into a percent, we simply multiply by 100. If yt follows
(10.26), then, taking changes and setting �et � 0,

�log(yt) � �1, for all t. (10.28)

In other words, �1 is approximately the average per period growth rate in yt. For exam-
ple, if t denotes year and �1 � .027, then yt grows about 2.7% per year on average.

Although linear and exponential trends are the most common, time trends can be
more complicated. For example, instead of the linear trend model in (10.24), we might
have a quadratic time trend:

yt � �0 � �1t � �2t
2 � et. (10.29)

If �1 and �2 are positive, then the slope of the trend is increasing, as is easily seen by
computing the approximate slope (holding et fixed):

� �1 � 2�2t. (10.30)

[If you are familiar with calculus, you recognize the right-hand side of (10.30) as the
derivative of �0 � �1t � �2t

2 with respect to t.] If �1 � 0, but �2 
 0, the trend has a
hump shape. This may not be a very good description of certain trending series because
it requires an increasing trend to be followed, eventually, by a decreasing trend.
Nevertheless, over a given time span, it can be a flexible way of modeling time series
that have more complicated trends than either (10.24) or (10.26).

Using Trending Variables in Regression Analysis

Accounting for explained or explanatory variables that are trending is fairly straight-
forward in regression analysis. First, nothing about trending variables necessarily vio-
lates the classical linear model assumptions, TS.1 through TS.6. However, we must be
careful to allow for the fact that unobserved, trending factors that affect yt might also
be correlated with the explanatory variables. If we ignore this possibility, we may find
a spurious relationship between yt and one or more explanatory variables. The phe-
nomenon of finding a relationship between two or more trending variables simply

�yt

�t
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because each is growing over time is an example of spurious regression. Fortunately,
adding a time trend eliminates this problem.

For concreteness, consider a model where two observed factors, xt1 and xt2, affect
yt. In addition, there are unobserved factors that are systematically growing or shrink-
ing over time. A model that captures this is

yt � �0 � �1xt1 � �2xt2 � �3t � ut. (10.31)

This fits into the multiple linear regression framework with xt3 � t. Allowing for the
trend in this equation explicitly recognizes that yt may be growing (�3 � 0) or shrink-
ing (�3 
 0) over time for reasons essentially unrelated to xt1 and xt2. If (10.31) satis-
fies assumptions TS.1, TS.2, and TS.3, then omitting t from the regression and
regressing yt on xt1, xt2 will generally yield biased estimators of �1 and �2: we have
effectively omitted an important variable, t, from the regression. This is especially true
if xt1 and xt2 are themselves trending, because they can then be highly correlated with
t. The next example shows how omitting a time trend can result in spurious regression.

E X A M P L E  1 0 . 7
( H o u s i n g  I n v e s t m e n t  a n d  P r i c e s )

The data in HSEINV.RAW are annual observations on housing investment and a housing
price index in the United States for 1947 through 1988. Let invpc denote real per capita
housing investment (in thousands of dollars) and let price denote a housing price index
(equal to one in 1982). A simple regression in constant elasticity form, which can be
thought of as a supply equation for housing stock, gives

(log(inv̂pc) � �.550)�(1.241)log(price)
log(inv̂pc) � �(.043)�(0.382)log(price)

n � 42, R2 � .208, R̄2 � .189.
(10.32)

The elasticity of per capita investment with respect to price is very large and statistically sig-
nificant; it is not statistically different from one. We must be careful here. Both invpc and
price have upward trends. In particular, if we regress log(invpc) on t, we obtain a coefficient
on the trend equal to .0081 (standard error � .0018); the regression of log(price) on t yields
a trend coefficient equal to .0044 (standard error � .0004). While the standard errors on
the trend coefficients are not necessarily reliable—these regressions tend to contain sub-
stantial serial correlation—the coefficient estimates do reveal upward trends.

To account for the trending behavior of the variables, we add a time trend:

log(inv̂pc) � �.913)�(.381)log( price) �(.0098)t
log(inv̂pc) � �(.136)�(.679)log(price) � (.0035)t

n � 42, R2 � .341, R̄2 � .307.
(10.33)

The story is much different now: the estimated price elasticity is negative and not statisti-
cally different from zero. The time trend is statistically significant, and its coefficient implies
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an approximate 1% increase in invpc per year, on average. From this analysis, we cannot
conclude that real per capita housing investment is influenced at all by price. There are
other factors, captured in the time trend, that affect invpc, but we have not modeled these.
The results in (10.32) show a spurious relationship between invpc and price due to the fact
that price is also trending upward over time.

In some cases, adding a time trend can make a key explanatory variable more sig-
nificant. This can happen if the dependent and independent variables have different
kinds of trends (say, one upward and one downward), but movement in the independent
variable about its trend line causes movement in the dependent variable away from its
trend line.

E X A M P L E  1 0 . 8
( F e r t i l i t y  E q u a t i o n )

If we add a linear time trend to the fertility equation (10.18), we obtain

gf̂rt �(111.77)�(.279)pet �(35.59)ww2t �0(.997)pillt �(1.15)t
gf̂rt �00(3.36)�(.040)pet �0(6.30)ww2t �(6.626)pillt �(0.19)t

n � 72, R2 � .662, R̄2 � .642.
(10.34)

The coefficient on pe is more than triple the estimate from (10.18), and it is much more sta-
tistically significant. Interestingly, pill is not significant once an allowance is made for a lin-
ear trend. As can be seen by the estimate, gfr was falling, on average, over this period,
other factors being equal.

Since the general fertility rate exhibited both upward and downward trends during the
period from 1913 through 1984, we can see how robust the estimated effect of pe is when
we use a quadratic trend:

gf̂rt �(124.09)�(.348)pet �(35.88)ww2t �(10.12)pillt
gf̂rt �00(4.36)�(.040)pet �0(5.71)ww2t �0(6.34)pillt

�(2.53)t �(.0196)t2

�(0.39)t �(.0050)t2

n � 72, R2 � .727, R̄2 � .706.

The coefficient on pe is even larger and more statistically significant. Now, pill has the
expected negative effect and is marginally significant, and both trend terms are statistically
significant. The quadratic trend is a flexible way to account for the unusual trending behav-
ior of gfr.

You might be wondering in Example 10.8: Why stop at a quadratic trend? Nothing
prevents us from adding, say, t3 as an independent variable, and, in fact, this might be
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warranted (see Exercise 10.12). But we have to be careful not to get carried away when
including trend terms in a model. We want relatively simple trends that capture broad
movements in the dependent variable that are not explained by the independent variables
in the model. If we include enough polynomial terms in t, then we can track any series
pretty well. But this offers little help in finding which explanatory variables affect yt.

A Detrending Interpretation of Regressions with a Time
Trend

Including a time trend in a regression model creates a nice interpretation in terms of
detrending the original data series before using them in regression analysis. For con-
creteness, we focus on model (10.31), but our conclusions are much more general.

When we regress yt on xt1, xt2 and t, we obtain the fitted equation

ŷt � �̂0 � �̂1xt1 � �̂2xt2 � �̂3t. (10.36)

We can extend the results on the partialling out interpretation of OLS that we covered
in Chapter 3 to show that �̂1 and �̂2 can be obtained as follows.

(i) Regress each of yt, xt1 and xt2 on a constant and the time trend t and save the
residuals, say y�t, x�t1, x�t2, t � 1,2, …, n. For example,

y�t � yt � �̂0 � �̂1t.

Thus, we can think of y�t as being linearly detrended. In detrending yt, we have esti-
mated the model

yt � �0 � �1t � et

by OLS; the residuals from this regression, êt � y�t, have the time trend removed (at least
in the sample). A similar interpretation holds for x�t1 and x�t2.

(ii) Run the regression of

y�t on x�t1, x�t2. (10.37)

(No intercept is necessary, but including an intercept affects nothing: the intercept will
be estimated to be zero.) This regression exactly yields �̂1 and �̂2 from (10.36).

This means that the estimates of primary interest, �̂1 and �̂2, can be interpreted as
coming from a regression without a time trend, but where we first detrend the depen-
dent variable and all other independent variables. The same conclusion holds with any
number of independent variables and if the trend is quadratic or of some other polyno-
mial degree.

If t is omitted from (10.36), then no detrending occurs, and yt might seem to be
related to one or more of the xtj simply because each contains a trend; we saw this in
Example 10.7. If the trend term is statistically significant, and the results change in
important ways when a time trend is added to a regression, then the initial results with-
out a trend should be treated with suspicion.

The interpretation of �̂1 and �̂2 shows that it is a good idea to include a trend in the
regression if any independent variable is trending, even if yt is not. If yt has no notice-
able trend, but, say, xt1 is growing over time, then excluding a trend from the regression

Chapter 10 Basic Regression Analysis with Time Series Data

337



may make it look as if xt1 has no effect on yt, even though movements of xt1 about its
trend may affect yt. This will be captured if t is included in the regression.

E X A M P L E  1 0 . 9
( P u e r t o  R i c a n  E m p l o y m e n t )

When we add a linear trend to equation (10.17), the estimates are

(log(prêpopt) � �8.70)�(.169)log(mincovt) �(1.06)log(usgnpt)
log(prêpopt) � �(1.30)�(.044)log(mincovt) �(0.18)log(usgnpt)

�(.032)t
�(.005)t

n � 38, R2 � .847, R̄2 � .834.

The coefficient on log(usgnp) has changed dramatically: from �.012 and insignificant to
1.06 and very significant. The coefficient on the minimum wage has changed only slightly,
although the standard error is notably smaller, making log(mincov) more significant than
before.

The variable prepopt displays no clear upward or downward trend, but log(usgnp) has
an upward, linear trend. (A regression of log(usgnp) on t gives an estimate of about .03, so
that usgnp is growing by about 3% per year over the period.) We can think of the estimate
1.06 as follows: when usgnp increases by 1% above its long-run trend, prepop increases
by about 1.06%.

Computing R-squared when the Dependent
Variable is Trending

R-squareds in time series regressions are often very high, especially compared with typ-
ical R-squareds for cross-sectional data. Does this mean that we learn more about fac-
tors affecting y from time series data? Not necessarily. On one hand, time series data
often come in aggregate form (such as average hourly wages in the U.S. economy), and
aggregates are often easier to explain than outcomes on individuals, families, or firms,
which is often the nature of cross-sectional data. But the usual and adjusted R-squares
for time series regressions can be artificially high when the dependent variable is trend-
ing. Remember that R2 is a measure of how large the error variance is relative to the
variance of y. The formula for the adjusted R-squared shows this directly:

R̄2 � 1 � (
̂ u
2/
̂ y

2),

where 
̂u
2 is the unbiased estimator of the error variance, 
̂y

2 � SST/(n � 1), and

SST � �
n

t�1
(yt � ȳ)2. Now, estimating the error variance when yt is trending is no prob-

lem, provided a time trend is included in the regression. However, when E(yt) follows,
say, a linear time trend [see (10.24)], SST/(n � 1) is no longer an unbiased or consis-
tent estimator of Var(yt). In fact, SST/(n � 1) can substantially overestimate the vari-
ance in yt, because it does not account for the trend in yt.
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When the dependent variable satisfies linear, quadratic, or any other polynomial
trends, it is easy to compute a goodness-of-fit measure that first nets out the effect of
any time trend on yt. The simplest method is to compute the usual R-squared in a regres-
sion where the dependent variable has already been detrended. For example, if the
model is (10.31), then we first regress yt on t and obtain the residuals y�t. Then, we
regress

y�t on xt1, xt2, and t. (10.39)

The R-squared from this regression is

1 � ,
(10.40)

where SSR is identical to the sum of squared residuals from (10.36). Since �
n

t�1
y�t

2 � �
n

t�1

(yt � ȳ)2 (and usually the inequality is strict), the R-squared from (10.40) is no greater
than, and usually less than, the R-squared from (10.36). (The sum of squared residuals
is identical in both regressions.) When yt contains a strong linear time trend, (10.40) can
be much less than the usual R-squared.

The R-squared in (10.40) better reflects how well xt1 and xt2 explain yt, because it
nets out the effect of the time trend. After all, we can always explain a trending variable
with some sort of trend, but this does not mean we have uncovered any factors that
cause movements in yt. An adjusted R-squared can also be computed based on (10.40):

divide SSR by (n � 4) because this is the df in (10.36) and divide �
n

t�1
y�t

2 by (n � 2), as

there are two trend parameters estimated in detrending yt. In general, SSR is divided by

the df in the usual regression (that includes any time trends), and �
n

t�1
y�t

2 is divided by

(n � p), where p is the number of trend parameters estimated in detrending yt. See
Wooldridge (1991a) for further discussion on computing goodness-of-fit measures with
trending variables.

E X A M P L E  1 0 . 1 0
( H o u s i n g  I n v e s t m e n t )

In Example 10.7, we saw that including a linear time trend along with log( price) in the
housing investment equation had a substantial effect on the price elasticity. But the
R-squared from regression (10.33), taken literally, says that we are “explaining” 34.1% of
the variation in log(invpc). This is misleading. If we first detrend log(invpc) and regress the
detrended variable on log( price) and t, the R-squared becomes .008, and the adjusted
R-squared is actually negative. Thus, movements in log( price) about its trend have virtually
no explanatory power for movements in log(invpc) about its trend. This is consistent with
the fact that the t statistic on log(price) in equation (10.33) is very small.

SSR

�
n

t�1
y�t

2
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Before leaving this subsection, we must make a final point. In computing the
R-squared form of an F statistic for testing multiple hypotheses, we just use the usual
R-squareds without any detrending. Remember, the R-squared form of the F statistic is
just a computational device, and so the usual formula is always appropriate.

Seasonality

If a time series is observed at monthly or quarterly intervals (or even weekly or daily),
it may exhibit seasonality. For example, monthly housing starts in the Midwest are
strongly influenced by weather. While weather patterns are somewhat random, we can
be sure that the weather during January will usually be more inclement than in June,
and so housing starts are generally higher in June than in January. One way to model
this phenomenon is to allow the expected value of the series, yt, to be different in each
month. As another example, retail sales in the fourth quarter are typically higher than
in the previous three quarters because of the Christmas holiday. Again, this can be cap-
tured by allowing the average retail sales to differ over the course of a year. This is in
addition to possibly allowing for a trending mean. For example, retail sales in the most
recent first quarter were higher than retail sales in the fourth quarter from 30 years ago,
because retail sales have been steadily growing. Nevertheless, if we compare average
sales within a typical year, the seasonal holiday factor tends to make sales larger in the
fourth quarter.

Even though many monthly and quarterly data series display seasonal patterns, not
all of them do. For example, there is no noticeable seasonal pattern in monthly interest
or inflation rates. In addition, series that do display seasonal patterns are often season-
ally adjusted before they are reported for public use. A seasonally adjusted series is
one that, in principle, has had the seasonal factors removed from it. Seasonal adjustment
can be done in a variety of ways, and a careful discussion is beyond the scope of this
text. [See Harvey (1990) and Hylleberg (1986) for detailed treatments.]

Seasonal adjustment has become so common that it is not possible to get seasonally
unadjusted data in many cases. Quarterly U.S. GDP is a leading example. In the annual
Economic Report of the President, many macroeconomic data sets reported at monthly
frequencies (at least for the most recent years) and those that display seasonal patterns
are all seasonally adjusted. The major sources for macroeconomic time series, includ-
ing Citibase, also seasonally adjust many of the series. Thus, the scope for using our
own seasonal adjustment is often limited.

Sometimes, we do work with seasonally unadjusted data, and it is useful to know
that simple methods are available for dealing with seasonality in regression models.
Generally, we can include a set of seasonal dummy variables to account for seasonal-
ity in the dependent variable, the independent variables, or both.

The approach is simple. Suppose that we have monthly data, and we think that sea-
sonal patterns within a year are roughly constant across time. For example, since
Christmas always comes at the same time of year, we can expect retail sales to be, on
average, higher in months late in the year than in earlier months. Or, since weather pat-
terns are broadly similar across years, housing starts in the Midwest will be higher on
average during the summer months than the winter months. A general model for
monthly data that captures these phenomena is
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yt � �0 � 	1 febt � 	2mart � 	3aprt � … � 	11dect �
�1xt1 � … � �kxtk � ut,

(10.41)

where febt, mart, …, dect are dummy variables indicating whether time period t corre-
sponds to the appropriate month. In this
formulation, January is the base month,
and �0 is the intercept for January. If there
is no seasonality in yt, once the xtj have
been controlled for, then 	1 through 	11 are
all zero. This is easily tested via an F test.

E X A M P L E  1 0 . 1 1
( E f f e c t s  o f  A n t i d u m p i n g  F i l i n g s )

In Example 10.5, we used monthly data that have not been seasonally adjusted. There-
fore, we should add seasonal dummy variables to make sure none of the important conclu-
sions changes. It could be that the months just before the suit was filed are months
where imports are higher or lower, on average, than in other months. When we add
the 11 monthly dummy variables as in (10.41) and test their joint significance, we obtain
p-value � .59, and so the seasonal dummies are jointly insignificant. In addition, nothing
important changes in the estimates once statistical significance is taken into account. Krupp
and Pollard (1996) actually used three dummy variables for the seasons (fall, spring, and
summer, with winter as the base season), rather than a full set of monthly dummies; the
outcome is essentially the same.

If the data are quarterly, then we would include dummy variables for three of the
four quarters, with the omitted category being the base quarter. Sometimes, it is useful
to interact seasonal dummies with some of the xtj to allow the effect of xtj on yt to dif-
fer across the year.

Just as including a time trend in a regression has the interpretation of initially
detrending the data, including seasonal dummies in a regression can be interpreted as
deseasonalizing the data. For concreteness, consider equation (10.41) with k � 2. The
OLS slope coefficients �̂1 and �̂2 on x1 and x2 can be obtained as follows:

(i) Regress each of yt, xt1 and xt2 on a constant and the monthly dummies, febt,
mart, …, dect, and save the residuals, say y�t, x�t1 and x�t2, for all t � 1,2, …, n. For
example,

y�t � yt � �̂0 � �̂1 febt � �̂2mart � … � �̂11dect.

This is one method of deseasonalizing a monthly time series. A similar interpretation
holds for x�t1 and x�t2.

(ii) Run the regression, without the monthly dummies, of y�t on x�t1 and x�t2 [ just as
in (10.37)]. This gives �̂1 and �̂2.

In some cases, if yt has pronounced seasonality, a better goodness-of-fit measure is
an R-squared based on the deseasonalized yt. This nets out any seasonal effects that are
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In equation (10.41), what is the intercept for March? Explain why
seasonal dummy variables satisfy the strict exogeneity assumption.



not explained by the xtj. Specific degrees of freedom ajustments are discussed in
Wooldridge (1991a).

Time series exhibiting seasonal patterns can be trending as well, in which case, we
should estimate a regression model with a time trend and seasonal dummy variables.
The regressions can then be interpreted as regressions using both detrended and desea-
sonalized series. Goodness-of-fit statistics are discussed in Wooldridge (1991a): essen-
tially, we detrend and deasonalize yt by regressing on both a time trend and seasonal
dummies before computing R-squared.

SUMMARY

In this chapter, we have covered basic regression analysis with time series data. Under
assumptions that parallel those for cross-sectional analysis, OLS is unbiased (under
TS.1 through TS.3), OLS is BLUE (under TS.1 through TS.5), and the usual OLS stan-
dard errors, t statistics, and F statistics can be used for statistical inference (under TS.1
through TS.6). Because of the temporal correlation in most time series data, we must
explicitly make assumptions about how the errors are related to the explanatory vari-
ables in all time periods and about the temporal correlation in the errors themselves.
The classical linear model assumptions can be pretty restrictive for time series applica-
tions, but they are a natural starting point. We have applied them to both static regres-
sion and finite distributed lag models.

Logarithms and dummy variables are used regularly in time series applications and
in event studies. We also discussed index numbers and time series measured in terms of
nominal and real dollars.

Trends and seasonality can be easily handled in a multiple regression framework by
including time and seasonal dummy variables in our regression equations. We presented
problems with the usual R-squared as a goodness-of-fit measure and suggested some
simple alternatives based on detrending or deseasonalizing.

KEY TERMS
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Autocorrelation
Base Period
Base Value
Contemporaneously Exogenous
Deseasonalizing
Detrending
Event Study
Exponential Trend
Finite Distributed Lag (FDL) Model
Growth Rate
Impact Multiplier
Impact Propensity
Index Number
Lag Distribution
Linear Time Trend

Long-Run Elasticity
Long-Run Multiplier
Long-Run Propensity (LRP)
Seasonal Dummy Variables
Seasonality
Seasonally Adjusted
Serial Correlation
Short-Run Elasticity
Spurious Regression
Static Model
Stochastic Process
Strictly Exogenous
Time Series Process
Time Trend



PROBLEMS

10.1 Decide if you agree or disagree with each of the following statements and give a
brief explanation of your decision:

(i) Like cross-sectional observations, we can assume that most time series
observations are independently distributed.

(ii) The OLS estimator in a time series regression is unbiased under the first
three Gauss-Markov assumptions.

(iii) A trending variable cannot be used as the dependent variable in multi-
ple regression analysis.

(iv) Seasonality is not an issue when using annual time series observations.

10.2 Let gGDPt denote the annual percentage change in gross domestic product and let
intt denote a short-term interest rate. Suppose that gGDPt is related to interest rates by

gGDPt � �0 � 	0intt � 	1intt�1 � ut,

where ut is uncorrelated with intt, intt�1, and all other past values of interest rates.
Suppose that the Federal Reserve follows the policy rule:

intt � �0 � �1(gGDPt�1 � 3) � vt,

where �1 � 0. (When last year’s GDP growth is above 3%, the Fed increases interest
rates to prevent an “overheated” economy.) If vt is uncorrelated with all past values of
intt and ut, argue that intt must be correlated with ut�1. (Hint: Lag the first equation for
one time period and substitute for gGDPt�1 in the second equation.) Which Gauss-
Markov assumption does this violate?

10.3 Suppose yt follows a second order FDL model:

yt � �0 � 	0zt � 	1zt�1 � 	2zt�2 � ut.

Let z* denote the equilibrium value of zt and let y* be the equilibrium value of yt, such
that

y* � �0 � 	0z* � 	1z* � 	2z*.

Show that the change in y*, due to a change in z*, equals the long-run propensity times
the change in z*:

�y* � LRP��z*.

This gives an alternative way of interpreting the LRP.

10.4 When the three event indicators befile6, affile6, and afdec6 are dropped from
equation (10.22), we obtain R2 � .281 and R̄2 � .264. Are the event indicators jointly
significant at the 10% level?

10.5 Suppose you have quarterly data on new housing starts, interest rates, and real per
capita income. Specify a model for housing starts that accounts for possible trends and
seasonality in the variables.

10.6 In Example 10.4, we saw that our estimates of the individual lag coefficients in a
distributed lag model were very imprecise. One way to alleviate the multicollinearity
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problem is to assume that the 	j follow a relatively simple pattern. For concreteness,
consider a model with four lags:

yt � �0 � 	0zt � 	1zt�1 � 	2zt�2 � 	3zt�3 � 	4zt�4 � ut.

Now, let us assume that the 	j follow a quadratic in the lag, j:

	j � �0 � �1 j � �2 j2,

for parameters �0, �1, and �2. This is an example of a polynomial distributed lag (PDL)
model.

(i) Plug the formula for each 	j into the distributed lag model and write the
model in terms of the parameters �h, for h � 0,1,2.

(ii) Explain the regression you would run to estimate the �h.
(iii) The polynomial distributed lag model is a restricted version of the gen-

eral model. How many restrictions are imposed? How would you test
these? (Hint : Think F test.)

COMPUTER EXERCISES

10.7 In October 1979, the Federal Reserve changed its policy of targeting the money
supply and instead began to focus directly on short-term interest rates. Using the data
in INTDEF.RAW, define a dummy variable equal to one for years after 1979. Include
this dummy in equation (10.15) to see if there is a shift in the interest rate equation after
1979. What do you conclude?

10.8 Use the data in BARIUM.RAW for this exercise.
(i) Add a linear time trend to equation (10.22). Are any variables, other

than the trend, statistically significant?
(ii) In the equation estimated in part (i), test for joint significance of all

variables except the time trend. What do you conclude?
(iii) Add monthly dummy variables to this equation and test for seasonality.

Does including the monthly dummies change any other estimates or
their standard errors in important ways?

10.9 Add the variable log( prgnp) to the minimum wage equation in (10.38). Is this
variable significant? Interpret the coefficient. How does adding log( prgnp) affect the
estimated minimum wage effect?

10.10 Use the data in FERTIL3.RAW to verify that the standard error for the LRP in
equation (10.19) is about .030.

10.11 Use the data in EZANDERS.RAW for this exercise. The data are on monthly
unemployment claims in Anderson Township in Indiana, from January 1980 through
November 1988. In 1984, an enterprise zone (EZ) was located in Anderson (as well as
other cities in Indiana). [See Papke (1994) for details.]

(i) Regress log(uclms) on a linear time trend and 11 monthly dummy vari-
ables. What was the overall trend in unemployment claims over this
period? (Interpret the coefficient on the time trend.) Is there evidence of
seasonality in unemployment claims?
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(ii) Add ez, a dummy variable equal to one in the months Anderson had an
EZ, to the regression in part (i). Does having the enterprise zone seem
to decrease unemployment claims? By how much? [You should use for-
mula (7.10) from Chapter 7.]

(iii) What assumptions do you need to make to attribute the effect in part (ii)
to the creation of an EZ?

10.12 Use the data in FERTIL3.RAW for this exercise.
(i) Regress gfrt on t and t2 and save the residuals. This gives a detrended

gfrt, say gf�rt.
(ii) Regress gf�rt on all of the variables in equation (10.35), including t and t2.

Compare the R-squared with that from (10.35). What do you conclude?
(iii) Reestimate equation (10.35) but add t3 to the equation. Is this additional

term statistically significant?

10.13 Use the data set CONSUMP.RAW for this exercise.
(i) Estimate a simple regression model relating the growth in real per

capita consumption (of nondurables and services) to the growth in real
per capita disposable income. Use the change in the logarithms in both
cases. Report the results in the usual form. Interpret the equation and
discuss statistical significance.

(ii) Add a lag of the growth in real per capita disposable income to the
equation from part (i). What do you conclude about adjustment lags in
consumption growth?

(iii) Add the real interest rate to the equation in part (i). Does it affect con-
sumption growth?

10.14 Use the data in FERTIL3.RAW for this exercise.
(i) Add pet�3 and pet�4 to equation (10.19). Test for joint significance of

these lags.
(ii) Find the estimated long-run propensity and its standard error in the

model from part (i). Compare these with those obtained from equation
(10.19).

(iii) Estimate the polynomial distributed lag model from Problem 10.6. Find
the estimated LRP and compare this with what is obtained from the
unrestricted model.

10.15 Use the data in VOLAT.RAW for this exercise. The variable rsp500 is the
monthly return on the Standard & Poors 500 stock market index, at an annual rate. (This
includes price changes as well as dividends.) The variable i3 is the return on three-
month T-bills, and pcip is the percentage change in industrial production; these are also
at an annual rate.

(i) Consider the equation

rsp500t � �0 � �1pcipt � �2i3t � ut.

What signs do you think �1 and �2 should have?
(ii) Estimate the previous equation by OLS, reporting the results in stan-

dard form. Interpret the signs and magnitudes of the coefficients.
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(iii) Which of the variables is statistically significant?
(iv) Does your finding from part (iii) imply that the return on the S&P 500

is predictable? Explain.

10.16 Consider the model estimated in (10.15); use the data in INTDEF.RAW.
(i) Find the correlation between inf and def over this sample period and

comment.
(ii) Add a single lag of inf and def to the equation and report the results in

the usual form.
(iii) Compare the estimated LRP for the effect of inflation from that in equa-

tion (10.15). Are they vastly different?
(iv) Are the two lags in the model jointly significant at the 5% level?
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In Chapter 10, we discussed the finite sample properties of OLS for time series data
under increasingly stronger sets of assumptions. Under the full set of classical lin-
ear model assumptions for time series, TS.1 through TS.6, OLS has exactly the

same desirable properties that we derived for cross-sectional data. Likewise, statistical
inference is carried out in the same way as it was for cross-sectional analysis.

From our cross-sectional analysis in Chapter 5, we know that there are good reasons
for studying the large sample properties of OLS. For example, if the error terms are not
drawn from a normal distribution, then we must rely on the central limit theorem to jus-
tify the usual OLS test statistics and confidence intervals.

Large sample analysis is even more important in time series contexts. (This is some-
what ironic given that large time series samples can be difficult to come by; but we
often have no choice other than to rely on large sample approximations.) In Section
10.3, we explained how the strict exogeneity assumption (TS.2) might be violated in
static and distributed lag models. As we will show in Section 11.2, models with lagged
dependent variables must violate Assumption TS.2.

Unfortunately, large sample analysis for time series problems is fraught with many
more difficulties than it was for cross-sectional analysis. In Chapter 5, we obtained the
large sample properties of OLS in the context of random sampling. Things are more
complicated when we allow the observations to be correlated across time. Nevertheless,
the major limit theorems hold for certain, although not all, time series processes. The
key is whether the correlation between the variables at different time periods tends to
zero quickly enough. Time series that have substantial temporal correlation require spe-
cial attention in regression analysis. This chapter will alert you to certain issues per-
taining to such series in regression analysis.

11.1 STATIONARY AND WEAKLY DEPENDENT 
TIME SERIES

In this section, we present the key concepts that are needed to apply the usual large sam-
ple approximations in regression analysis with time series data. The details are not as
important as a general understanding of the issues.
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Stationary and Nonstationary Time Series

Historically, the notion of a stationary process has played an important role in the
analysis of time series. A stationary time series process is one whose probability distri-
butions are stable over time in the following sense: if we take any collection of random
variables in the sequence and then shift that sequence ahead h time periods, the joint
probability distribution must remain unchanged. A formal definition of stationarity 
follows.

STATIONARY STOCHASTIC PROCESS: The stochastic process {xt: t � 1,2, …} is sta-
tionary if for every collection of time indices 1 � t1 � t2 � … � tm, the joint distribu-
tion of (xt1

, xt2
, …, xtm

) is the same as the joint distribution of (xt1�h, xt2�h, …, xtm�h) for
all integers h � 1.

This definition is a little abstract, but its meaning is pretty straightforward. One
implication (by choosing m � 1 and t1 � 1) is that xt has the same distribution as x1 for
all t � 2,3, …. In other words, the sequence {xt: t � 1,2, …} is identically distributed.
Stationarity requires even more. For example, the joint distribution of (x1,x2) (the first
two terms in the sequence) must be the same as the joint distribution of (xt,xt�1) for any
t � 1. Again, this places no restrictions on how xt and xt�1 are related to one another;
indeed, they may be highly correlated. Stationarity does require that the nature of any
correlation between adjacent terms is the same across all time periods.

A stochastic process that is not stationary is said to be a nonstationary process.
Since stationarity is an aspect of the underlying stochastic process and not of the avail-
able single realization, it can be very difficult to determine whether the data we have
collected were generated by a stationary process. However, it is easy to spot certain
sequences that are not stationary. A process with a time trend of the type covered in
Section 10.5 is clearly nonstationary: at a minimum, its mean changes over time.

Sometimes, a weaker form of stationarity suffices. If {xt: t � 1,2, …} has a finite
second moment, that is, E(x t

2) � � for all t, then the following definition applies.

COVARIANCE STATIONARY PROCESS: A stochastic process {xt: t � 1,2, …} with
finite second moment [E(x t

2) � �] is covariance stationary if (i) E(xt) is constant; (ii)
Var(xt) is constant; (iii) for any t, h � 1, Cov(xt,xt�h) depends only on h and not on t.

Covariance stationarity focuses only on the first two moments of a stochastic
process: the mean and variance of the process are constant across time, and the covari-

ance between xt and xt�h depends only on
the distance between the two terms, h, and
not on the location of the initial time
period, t. It follows immediately that the
correlation between xt and xt�h also de-
pends only on h.

If a stationary process has a finite sec-
ond moment, then it must be covariance

stationary, but the converse is certainly not true. Sometimes, to emphasize that station-
arity is a stronger requirement than covariance stationarity, the former is referred to as
strict stationarity. However, since we will not be delving into the intricacies of central
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Suppose that { yt: t � 1,2,…} is generated by yt � �0 � �1t � et,
where �1 � 0, and {et: t � 1,2,…} is an i.i.d. sequence with mean
zero and variance 	e

2. (i ) Is {yt} covariance stationary? (ii ) Is yt 
 E(yt)
covariance stationary?
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limit theorems for time series processes, we will not be worried about the distinction
between strict and covariance stationarity: we will call a series stationary if it satisfies
either definition.

How is stationarity used in time series econometrics? On a technical level, station-
arity simplifies statements of the law of large numbers and the central limit theorem,
although we will not worry about formal statements. On a practical level, if we want to
understand the relationship between two or more variables using regression analysis,
we need to assume some sort of stability over time. If we allow the relationship between
two variables (say, yt and xt) to change arbitrarily in each time period, then we cannot
hope to learn much about how a change in one variable affects the other variable if we
only have access to a single time series realization.

In stating a multiple regression model for time series data, we are assuming a cer-
tain form of stationarity in that the �j do not change over time. Further, Assumptions
TS.4 and TS.5 imply that the variance of the error process is constant over time and that
the correlation between errors in two adjacent periods is equal to zero, which is clearly
constant over time.

Weakly Dependent Time Series

Stationarity has to do with the joint distributions of a process as it moves through time.
A very different concept is that of weak dependence, which places restrictions on how
strongly related the random variables xt and xt�h can be as the time distance between
them, h, gets large. The notion of weak dependence is most easily discussed for a sta-
tionary time series: loosely speaking, a stationary time series process {xt: t � 1,2, …}
is said to be weakly dependent if xt and xt�h are “almost independent” as h increases
without bound. A similar statement holds true if the sequence is nonstationary, but then
we must assume that the concept of being almost independent does not depend on the
starting point, t.

The description of weak dependence given in the previous paragraph is necessar-
ily vague. We cannot formally define weak dependence because there is no definition
that covers all cases of interest. There are many specific forms of weak dependence
that are formally defined, but these are well beyond the scope of this text. [See White
(1984), Hamilton (1994), and Wooldridge (1994b) for advanced treatments of these
concepts.]

For our purposes, an intuitive notion of the meaning of weak dependence is suffi-
cient. Covariance stationary sequences can be characterized in terms of correlations: a
covariance stationary time series is weakly dependent if the correlation between xt and
xt�h goes to zero “sufficiently quickly” as h * �. (Because of covariance stationarity,
the correlation does not depend on the starting point, t.) In other words, as the variables
get farther apart in time, the correlation between them becomes smaller and smaller.
Covariance stationary sequences where Corr(xt,xt�h) * 0 as h * � are said to be
asymptotically uncorrelated. Intuitively, this is how we will usually characterize weak
dependence. Technically, we need to assume that the correlation converges to zero fast
enough, but we will gloss over this.

Why is weak dependence important for regression analysis? Essentially, it replaces
the assumption of random sampling in implying that the law of large numbers (LLN)
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and the central limit theorem (CLT) hold. The most well-known central limit theorem
for time series data requires stationarity and some form of weak dependence: thus, sta-
tionary, weakly dependent time series are ideal for use in multiple regression analysis.
In Section 11.2, we will show how OLS can be justified quite generally by appealing to
the LLN and the CLT. Time series that are not weakly dependent—examples of which
we will see in Section 11.3—do not generally satisfy the CLT, which is why their use
in multiple regression analysis can be tricky.

The simplest example of a weakly dependent time series is an independent, identi-
cally distributed sequence: a sequence that is independent is trivially weakly dependent.
A more interesting example of a weakly dependent sequence is

xt � et � �1et
1, t � 1,2, …, (11.1)

where {et: t � 0,1,…} is an i.i.d. sequence with zero mean and variance 	e
2. The process

{xt} is called a moving average process of order one [MA(1)]: xt is a weighted aver-
age of et and et
1; in the next period, we drop et
1, and then xt�1 depends on et�1 and
et. Setting the coefficient on et to one in (11.1) is without loss of generality.

Why is an MA(1) process weakly dependent? Adjacent terms in the sequence are
correlated: because xt�1 � et�1 � �1et, Cov(xt,xt�1) � �1Var(et) � �1 	e

2. Since
Var(xt) � (1 � �1

2)	e
2, Corr(xt,xt�1) � �1/(1 � �1

2). For example, if �1 � .5, then
Corr(xt,xt�1) � .4. [The maximum positive correlation occurs when �1 � 1; in which
case, Corr(xt,xt�1) � .5.] However, once we look at variables in the sequence that are
two or more time periods apart, these variables are uncorrelated because they are
independent. For example, xt�2 � et�2 � �1et�1 is independent of xt because {et} is
independent across t. Due to the identical distribution assumption on the et, {xt} in
(11.1) is actually stationary. Thus, an MA(1) is a stationary, weakly dependent
sequence, and the law of large numbers and the central limit theorem can be applied
to {xt}.

A more popular example is the process

yt � �1yt
1 � et, t � 1,2, …. (11.2)

The starting point in the sequence is y0 (at t � 0), and {et: t � 1,2,…} is an i.i.d.
sequence with zero mean and variance 	e

2. We also assume that the et are independent
of y0 and that E(y0) � 0. This is called an autoregressive process of order one
[AR(1)].

The crucial assumption for weak dependence of an AR(1) process is the stability
condition ��1� � 1. Then we say that {yt} is a stable AR(1) process.

To see that a stable AR(1) process is asymptotically uncorrelated, it is useful to
assume that the process is covariance stationary. (In fact, it can generally be shown that
{yt} is strictly stationary, but the proof is somewhat technical.) Then, we know that
E(yt) � E(yt
1), and from (11.2) with �1 � 1, this can happen only if E(yt) � 0. Taking
the variance of (11.2) and using the fact that et and yt
1 are independent (and therefore
uncorrelated), Var(yt) � �1

2Var(yt
1) � Var(et), and so, under covariance stationarity,
we must have 	y

2 � �1
2	y

2 � 	e
2. Since �1

2 � 1 by the stability condition, we can easily
solve for 	y

2:
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	y
2 � 	e

2/(1 
 �1
2). (11.3)

Now we can find the covariance between yt and yt�h for h � 1. Using repeated sub-
stitution,

yt�h � �1yt�h
1 � et�h � �1(�1yt�h
2 � et�h
1) � et�h

� �1
2yt�h
2 � �1et�h
1 � et�h � …

� �1
hyt � �1

h
1et�1 � … � �1et�h
1 � et�h.

Since E(yt) � 0 for all t, we can multiply this last equation by yt and take expecta-
tions to obtain Cov(yt,yt�h). Using the fact that et�j is uncorrelated with yt for all
j � 1 gives

Cov(yt,yt�h) � E(ytyt�h) � �1
hE(y t

2) � �1
h
1E(ytet�1) � … � E(ytet�h)

� �1
hE(y t

2) � �1
h	y

2.

Since 	y is the standard deviation of both yt and yt�h, we can easily find the correlation
between yt and yt�h for any h � 1:

Corr(yt,yt�h) � Cov(yt,yt�h)/(	y	y) � �1
h. (11.4)

In particular, Corr(yt,yt�1) � �1, so �1 is the correlation coefficient between any two
adjacent terms in the sequence.

Equation (11.4) is important because it shows that, while yt and yt�h are correlated
for any h � 1, this correlation gets very small for large h: since ��1� � 1, �1

h
* 0 as

h * �. Even when �1 is large—say .9, which implies a very high, positive correlation
between adjacent terms—the correlation between yt and yt�h tends to zero fairly
rapidly. For example, Corr(yt,yt�5) � .591, Corr(yt,yt�10) � .349, and Corr(yt,yt�20) �
.122. If t indexes year, this means that the correlation between the outcome of two y that
are twenty years apart is about .122. When �1 is smaller, the correlation dies out much
more quickly. (You might try �1 � .5 to verify this.)

This analysis heuristically demonstrates that a stable AR(1) process is weakly
dependent. The AR(1) model is especially important in multiple regression analysis
with time series data. We will cover additional applications in Chapter 12 and the use
of it for forecasting in Chapter 18.

There are many other types of weakly dependent time series, including hybrids of
autoregressive and moving average processes. But the previous examples work well for
our purposes.

Before ending this section, we must emphasize one point that often causes confu-
sion in time series econometrics. A trending series, while certainly nonstationary, can
be weakly dependent. In fact, in the simple linear time trend model in Chapter 10 [see
equation (10.24)], the series {yt} was actually independent. A series that is stationary
about its time trend, as well as weakly dependent, is often called a trend-stationary
process. (Notice that the name is not completely descriptive because we assume weak
dependence along with stationarity.) Such processes can be used in regression analysis
just as in Chapter 10, provided appropriate time trends are included in the model.
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11.2 ASYMPTOTIC PROPERTIES OF OLS

In Chapter 10, we saw some cases where the classical linear model assumptions are not
satisfied for certain time series problems. In such cases, we must appeal to large sample
properties of OLS, just as with cross-sectional analysis. In this section, we state the
assumptions and main results that justify OLS more generally. The proofs of the theorems
in this chapter are somewhat difficult and therefore omitted. See Wooldridge (1994b).

A S S U M P T I O N  T S . 1 � ( L I N E A R I T Y  A N D  W E A K

D E P E N D E N C E )

Assumption TS.1� is the same as TS.1, except we must also assume that {(xt,yt): t � 1,2,…}
is weakly dependent. In other words, the law of large numbers and the central limit theo-
rem can be applied to sample averages.

The linear in parameters requirement again means that we can write the model as

yt � �0 � �1xt1 � … � �kxtk � ut, (11.5)

where the �j are the parameters to be estimated. The xtj can contain lagged dependent
and independent variables, provided the weak dependence assumption is met.

We have discussed the concept of weak dependence at length because it is by no
means an innocuous assumption. In the next section, we will present time series
processes that clearly violate the weak dependence assumption and also discuss the use
of such processes in multiple regression models.

A S S U M P T I O N  T S . 2 � ( Z E R O  C O N D I T I O N A L  M E A N )

For each t, E(ut�xt) � 0.

This is the most natural assumption concerning the relationship between ut and the
explanatory variables. It is much weaker than Assumption TS.2 because it puts no
restrictions on how ut is related to the explanatory variables in other time periods. We
will see examples that satisfy TS.2� shortly.

For certain purposes, it is useful to know that the following consistency result only
requires ut to have zero unconditional mean and to be uncorrelated with each xtj:

E(ut) � 0, Cov(xtj,ut) � 0, j � 1, …, k. (11.6)

We will work mostly with the zero conditional mean assumption because it leads to the
most straightforward asymptotic analysis.

A S S U M P T I O N  T S . 3 � ( N O  P E R F E C T  C O L L I N E A R I T Y )

Same as Assumption TS.3.
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T H E O R E M  1 1 . 1  ( C O N S I S T E N C Y  O F  O L S )

Under TS.1�, TS.2�, and TS.3�, the OLS estimators are consistent: plim �̂ j � � j, j � 0,1, …, k.

There are some key practical differences between Theorems 10.1 and 11.1. First, in
Theorem 11.1, we conclude that the OLS estimators are consistent, but not necessarily
unbiased. Second, in Theorem 11.1, we have weakened the sense in which the explana-
tory variables must be exogenous, but weak dependence is required in the underlying
time series. Weak dependence is also crucial in obtaining approximate distributional
results, which we cover later.

E X A M P L E  1 1 . 1
( S t a t i c  M o d e l )

Consider a static model with two explanatory variables:

yt � �0 � �1zt1 � �2zt2 � ut. (11.7)

Under weak dependence, the condition sufficient for consistency of OLS is

E(ut�zt1,zt2) � 0. (11.8)

This rules out omitted variables that are in ut and are correlated with either zt1 or zt2. Also,
no function of zt1 or zt2 can be correlated with ut, and so Assumption TS.2� rules out mis-
specified functional form, just as in the cross-sectional case. Other problems, such as mea-
surement error in the variables zt1 or zt2, can cause (11.8) to fail.

Importantly, Assumption TS.2� does not rule out correlation between, say, ut
1 and zt1.
This type of correlation could arise if zt1 is related to past yt
1, such as

zt1 � �0 � �1yt
1 � vt. (11.9)

For example, zt1 might be a policy variable, such as monthly percentage change in the
money supply, and this change depends on last month’s rate of inflation (yt
1). Such a
mechanism generally causes zt1 and ut
1 to be correlated (as can be seen by plugging in
for yt
1). This kind of feedback is allowed under Assumption TS.2�.

E X A M P L E  1 1 . 2
( F i n i t e  D i s t r i b u t e d  L a g  M o d e l )

In the finite distributed lag model,

yt � �0 � �0zt � �1zt
1 � �2zt
2 � ut, (11.10)

a very natural assumption is that the expected value of ut, given current and all past values
of z, is zero:
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E(ut�zt,zt
1,zt
2,zt
3,…) � 0. (11.11)

This means that, once zt, zt
1, and zt
2 are included, no further lags of z affect
E(yt�zt,zt
1,zt
2,zt
3,…); if this were not true, we would put further lags into the equation.
For example, yt could be the annual percentage change in investment and zt a measure of
interest rates during year t. When we set xt � (zt,zt
1,zt
2), Assumption TS.2� is then sat-
isfied: OLS will be consistent. As in the previous example, TS.2� does not rule out feedback
from y to future values of z.

The previous two examples do not necessarily require asymptotic theory because
the explanatory variables could be strictly exogenous. The next example clearly violates
the strict exogeneity assumption, and therefore we can only appeal to large sample
properties of OLS.

E X A M P L E  1 1 . 3
[ A R ( 1 )  M o d e l ]

Consider the AR(1) model,

yt � �0 � �1yt
1 � ut, (11.12)

where the error ut has a zero expected value, given all past values of y:

E(ut�yt
1,yt
2,…) � 0. (11.13)

Combined, these two equations imply that

E(yt�yt
1,yt
2,…) � E(yt�yt
1) � �0 � �1yt
1. (11.14)

This result is very important. First, it means that, once y lagged one period has been con-
trolled for, no further lags of y affect the expected value of yt. (This is where the name “first
order” originates.) Second, the relationship is assumed to be linear.

Since xt contains only yt
1, equation (11.13) implies that Assumption TS.2� holds. By
contrast, the strict exogeneity assumption needed for unbiasedness, Assumption TS.2, does
not hold. Since the set of explanatory variables for all time periods includes all of the val-
ues on y except the last (y0, y1, …, yn
1), Assumption TS.2 requires that, for all t, ut is uncor-
related with each of y0, y1, …, yn
1. This cannot be true. In fact, because ut is uncorrelated
with yt
1 under (11.13), ut and yt must be correlated. Therefore, a model with a lagged
dependent variable cannot satisfy the strict exogeneity assumption TS.2.

For the weak dependence condition to hold, we must assume that ��1� � 1, as we dis-
cussed in Section 11.1. If this condition holds, then Theorem 11.1 implies that the OLS esti-
mator from the regression of yt on yt
1 produces consistent estimators of �0 and �1.
Unfortunately, �̂1 is biased, and this bias can be large if the sample size is small or if �1 is
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near one. (For �1 near one, �̂1 can have a severe downward bias.) In moderate to large sam-
ples, �̂1 should be a good estimator of �1.

When using the standard inference procedures, we need to impose versions of the
homoskedasticity and no serial correlation assumptions. These are less restrictive than
their classical linear model counterparts from Chapter 10.

A S S U M P T I O N  T S . 4 � ( H O M O S K E D A S T I C I T Y )

For all t, Var(ut�xt) � 	2.

A S S U M P T I O N  T S . 5 � ( N O  S E R I A L  C O R R E L A T I O N )

For all t � s, E(utus�xt,xs) � 0.

In TS.4�, note how we condition only on the explanatory variables at time t (compare
to TS.4). In TS.5�, we condition only on the explanatory variables in the time periods
coinciding with ut and us. As stated, this assumption is a little difficult to interpret, but
it is the right condition for studying the large sample properties of OLS in a variety of
time series regressions. When considering TS.5�, we often ignore the conditioning on
xt and xs, and we think about whether ut and us are uncorrelated, for all t � s.

Serial correlation is often a problem in static and finite distributed lag regression
models: nothing guarantees that the unobservables ut are uncorrelated over time.
Importantly, Assumption TS.5� does hold in the AR(1) model stated in equations
(11.12) and (11.13). Since the explanatory variable at time t is yt
1, we must show that
E(utus�yt
1,ys
1) � 0 for all t � s. To see this, suppose that s � t. (The other case fol-
lows by symmetry.) Then, since us � ys 
 �0 
 �1ys
1, us is a function of y dated
before time t. But by (11.13), E(ut�us,yt
1,ys
1) � 0, and then the law of iterated expec-
tations (see Appendix B) implies that E(utus�yt
1,ys
1) � 0. This is very important: as
long as only one lag belongs in (11.12), the errors must be serially uncorrelated. We will
discuss this feature of dynamic models more generally in Section 11.4.

We now obtain an asymptotic result that is practically identical to the cross-
sectional case.

T H E O R E M  1 1 . 2  ( A S Y M P T O T I C  N O R M A L I T Y  O F  O L S )

Under TS.1� through TS.5�, the OLS estimators are asymptotically normally distributed.
Further, the usual OLS standard errors, t statistics, F statistics, and LM statistics are asymp-
totically valid.

This theorem provides additional justification for at least some of the examples esti-
mated in Chapter 10: even if the classical linear model assumptions do not hold, OLS
is still consistent, and the usual inference procedures are valid. Of course, this hinges
on TS.1� through TS.5� being true. In the next section, we discuss ways in which the
weak dependence assumption can fail. The problems of serial correlation and het-
eroskedasticity are treated in Chapter 12.
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E X A M P L E  1 1 . 4
( E f f i c i e n t  M a r k e t s  H y p o t h e s i s )

We can use asymptotic analysis to test a version of the efficient markets hypothesis (EMH).
Let yt be the weekly percentage return (from Wednesday close to Wednesday close) on the
New York Stock Exchange composite index. A strict form of the efficient markets hypothe-
sis states that information observable to the market prior to week t should not help to pre-
dict the return during week t. If we use only past information on y, the EMH is stated as

E(yt�yt
1,yt
2,…) � E(yt). (11.15)

If (11.15) is false, then we could use information on past weekly returns to predict the cur-
rent return. The EMH presumes that such investment opportunities will be noticed and will
disappear almost instantaneously.

One simple way to test (11.15) is to specify the AR(1) model in (11.12) as the alterna-
tive model. Then, the null hypothesis is easily stated as H0: �1 � 0. Under the null hypoth-
esis, Assumption TS.2� is true by (11.15), and, as we discussed earlier, serial correlation is
not an issue. The homoskedasticity assumption is Var(yt�yt
1) � Var(yt) � 	2, which we just
assume is true for now. Under the null hypothesis, stock returns are serially uncorrelated,
so we can safely assume that they are weakly dependent. Then, Theorem 11.2 says we can
use the usual OLS t statistic for �̂1 to test H0: �1 � 0 against H1: �1 � 0.

The weekly returns in NYSE.RAW are computed using data from January 1976 through
March 1989. In the rare case that Wednesday was a holiday, the close at the next trading
day was used. The average weekly return over this period was .196 in percent form, with
the largest weekly return being 8.45% and the smallest being 
15.32% (during the stock
market crash of October 1987). Estimation of the AR(1) model gives

retûrnt �(.180)�(.059)returnt
1

retûrnt �(.081)�(.038)returnt
1

n � 689, R2 � .0035, R̄2 � .0020.

(11.16)

The t statistic for the coefficient on returnt
1 is about 1.55, and so H0: �1 � 0 cannot be
rejected against the two-sided alternative, even at the 10% significance level. The estimate
does suggest a slight positive correlation in the NYSE return from one week to the next, but
it is not strong enough to warrant rejection of the efficient markets hypothesis.

In the previous example, using an AR(1) model to test the EMH might not detect
correlation between weekly returns that are more than one week apart. It is easy to esti-
mate models with more than one lag. For example, an autoregressive model of order
two, or AR(2) model, is

yt � �0 � �1yt
1 � �2yt
2 � ut

E(ut�yt
1,yt
2,…) � 0.
(11.17)
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There are stability conditions on �1 and �2 that are needed to ensure that the AR(2)
process is weakly dependent, but this is not an issue here because the null hypothesis
states that the EMH holds:

H0: �1 � �2 � 0. (11.18)

If we add the homoskedasticity assumption Var(ut�yt
1,yt
2) � 	2, we can use a
standard F statistic to test (11.18). If we estimate an AR(2) model for returnt, we obtain

retûrnt �(.186)�(.060)returnt
1 
(.038)returnt
2

retûrnt �(.081)�(.038)returnt
1 
(.038)returnt
2

n � 688, R2 � .0048, R̄2 � .0019

(where we lose one more observation because of the additional lag in the equation). The
two lags are individually insignificant at the 10% level. They are also jointly insignifi-
cant: using R2 � .0048, the F statistic is approximately F � 1.65; the p-value for this
F statistic (with 2 and 685 degrees of freedom) is about .193. Thus, we do no reject
(11.18) at even the 15% significance level.

E X A M P L E  1 1 . 5
( E x p e c t a t i o n s  A u g m e n t e d  P h i l l i p s  C u r v e )

A linear version of the expectations augmented Phillips curve can be written as

inft 
 inf e
t � �1(unemt 
 �0) � et,

where �0 is the natural rate of unemployment and inf e
t is the expected rate of inflation

formed in year t 
 1. This model assumes that the natural rate is constant, something that
macroeconomists question. The difference between actual unemployment and the natural
rate is called cyclical unemployment, while the difference between actual and expected
inflation is called unanticipated inflation. The error term, et, is called a supply shock by
macroeconomists. If there is a tradeoff between unanticipated inflation and cyclical unem-
ployment, then �1 � 0. [For a detailed discussion of the expectations augmented Phillips
curve, see Mankiw (1994, Section 11.2).]

To complete this model, we need to make an assumption about inflationary expecta-
tions. Under adaptive expectations, the expected value of current inflation depends on
recently observed inflation. A particularly simple formulation is that expected inflation this
year is last year’s inflation: inf e

t � inft
1. (See Section 18.1 for an alternative formulation of
adaptive expectations.) Under this assumption, we can write

inft 
 inft
1 � �0 � �1unemt � et

or

�inft � �0 � �1unemt � et,

where �inft � inft 
 inft
1 and �0 � 
�1�0. (�0 is expected to be positive, since �1 � 0
and �0 � 0.) Therefore, under adaptive expectations, the expectations augmented Phillips
curve relates the change in inflation to the level of unemployment and a supply shock, et.
If et is uncorrelated with unemt, as is typically assumed, then we can consistently estimate
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�0 and �1 by OLS. (We do not have to assume that, say, future unemployment rates are
unaffected by the current supply shock.) We assume that TS.1� through TS.5� hold. The esti-
mated equation is

�in̂ft �(3.03)
(.543)unemt

�in̂ft �(1.38)
(.230)unemt

n � 48, R2 � .108, R̄2 � .088.

(11.19)

The tradeoff between cyclical unemployment and unanticipated inflation is pronounced in
equation (11.19): a one-point increase in unem lowers unanticipated inflation by over one-
half of a point. The effect is statistically significant (two-sided p-value � .023). We can con-
trast this with the static Phillips curve in Example 10.1, where we found a slightly positive
relationship between inflation and unemployment.

Because we can write the natural rate as �0 � �0/(
�1), we can use (11.19) to obtain
our own estimate of the natural rate: �̂0 � �̂0/(
�̂1) � 3.03/.543 � 5.58. Thus, we esti-
mate the natural rate to be about 5.6, which is well within the range suggested by macro-
economists: historically, 5 to 6% is a common range cited for the natural rate of
unemployment. It is possible to obtain an approximate standard error for this estimate, but
the methods are beyond the scope of this text. [See, for example, Davidson and MacKinnon
(1993).]

Under Assumptions TS.1� through TS.5�, we can show that the OLS estimators are
asymptotically efficient in the class of estimators described in Theorem 5.3, but we

replace the cross-sectional observation
index i with the time series index t.
Finally, models with trending explanatory
variables can satisfy Assumptions TS.1�
through TS.5�, provided they are trend sta-
tionary. As long as time trends are in-
cluded in the equations when needed, the

usual inference procedures are asymptotically valid.

11.3 USING HIGHLY PERSISTENT TIME SERIES IN
REGRESSION ANALYSIS

The previous section shows that, provided the time series we use are weakly dependent,
usual OLS inference procedures are valid under assumptions weaker than the classical
linear model assumptions. Unfortunately, many economic time series cannot be char-
acterized by weak dependence. Using time series with strong dependence in regression
analysis poses no problem, if the CLM assumptions in Chapter 10 hold. But the usual
inference procedures are very susceptible to violation of these assumptions when the
data are not weakly dependent, because then we cannot appeal to the law of large num-
bers and the central limit theorem. In this section, we provide some examples of highly
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Suppose that expectations are formed as inf e
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1 �
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2. What regression would you run to estimate the expecta-
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persistent (or strongly dependent) time series and show how they can be transformed
for use in regression analysis.

Highly Persistent Time Series

In the simple AR(1) model (11.2), the assumption ��1� � 1 is crucial for the series to be
weakly dependent. It turns out that many economic time series are better characterized
by the AR(1) model with �1 � 1. In this case, we can write

yt � yt
1 � et, t � 1,2, …, (11.20)

where we again assume that {et: t � 1,2,…} is independent and identically distributed
with mean zero and variance 	e

2. We assume that the initial value, y0, is independent of
et for all t � 1.

The process in (11.20) is called a random walk. The name comes from the fact that
y at time t is obtained by starting at the previous value, yt
1, and adding a zero mean
random variable that is independent of yt
1. Sometimes, a random walk is defined dif-
ferently by assuming different properties of the innovations, et (such as lack of correla-
tion rather than independence), but the current definition suffices for our purposes.

First, we find the expected value of yt. This is most easily done by using repeated
substitution to get

yt � et � et
1 � … � e1 � y0.

Taking the expected value of both sides gives

E(yt) � E(et) � E(et
1) � … � E(e1) � E(y0)

� E(y0), for all t � 1.

Therefore, the expected value of a random walk does not depend on t. A popular
assumption is that y0 � 0—the process begins at zero at time zero—in which case,
E(yt) � 0 for all t.

By contrast, the variance of a random walk does change with t. To compute the vari-
ance of a random walk, for simplicity we assume that y0 is nonrandom so that
Var(y0) � 0; this does not affect any important conclusions. Then, by the i.i.d. assump-
tion for {et},

Var(yt) � Var(et) � Var(et
1) � … � Var(e1) � 	e
2t. (11.21)

In other words, the variance of a random walk increases as a linear function of time.
This shows that the process cannot be stationary.

Even more importantly, a random walk displays highly persistent behavior in the
sense that the value of y today is significant for determining the value of y in the very
distant future. To see this, write for h periods hence,

yt�h � et�h � et�h
1 � … � et�1 � yt.

Now, suppose at time t, we want to compute the expected value of yt�h given the cur-
rent value yt. Since the expected value of et�j, given yt, is zero for all j � 1, we have
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E(yt�h�yt) � yt, for all h � 1. (11.22)

This means that, no matter how far in the future we look, our best prediction of yt�h is
today’s value, yt. We can contrast this with the stable AR(1) case, where a similar argu-
ment can be used to show that

E(yt�h�yt) � �1
hyt, for all h � 1.

Under stability, ��1� � 1, and so E(yt�h�yt) approaches zero as h * �: the value of yt

becomes less and less important, and E(yt�h�yt) gets closer and closer to the uncondi-
tional expected value, E(yt) � 0.

When h � 1, equation (11.22) is reminiscent of the adaptive expectations assump-
tion we used for the inflation rate in Example 11.5: if inflation follows a random walk,
then the expected value of inft, given past values of inflation, is simply inft
1. Thus, a
random walk model for inflation justifies the use of adaptive expectations.

We can also see that the correlation between yt and yt�h is close to one for large t
when {yt} follows a random walk. If Var(y0) � 0, it can be shown that

Corr(yt,yt�h) � ��t/(t � h) .

Thus, the correlation depends on the starting point, t (so that {yt} is not covariance sta-
tionary). Further, for fixed t, the correlation tends to zero as h * 0, but it does not do
so very quickly. In fact, the larger t is, the more slowly the correlation tends to zero as
h gets large. If we choose h to be something large—say, h � 100—we can always
choose a large enough t such that the correlation between yt and yt�h is arbitrarily close
to one. (If h � 100 and we want the correlation to be greater than .95, then t � 1,000
does the trick.) Therefore, a random walk does not satisfy the requirement of an asymp-
totically uncorrelated sequence.

Figure 11.1 plots two realizations of a random walk with initial value y0 � 0 and
et ~ Normal(0,1). Generally, it is not easy to look at a time series plot and to determine
whether or not it is a random walk. Next, we will discuss an informal method for mak-
ing the distinction between weakly and highly dependent sequences; we will study for-
mal statistical tests in Chapter 18.

A series that is generally thought to be well-characterized by a random walk is the
three-month, T-bill rate. Annual data are plotted in Figure 11.2 for the years 1948
through 1996.

A random walk is a special case of what is known as a unit root process. The name
comes from the fact that �1 � 1 in the AR(1) model. A more general class of unit root
processes is generated as in (11.20), but {et} is now allowed to be a general, weakly
dependent series. [For example, {et} could itself follow an MA(1) or a stable AR(1)
process.] When {et} is not an i.i.d. sequence, the properties of the random walk we
derived earlier no longer hold. But the key feature of {yt} is preserved: the value of y
today is highly correlated with y even in the distant future.

From a policy perspective, it is often important to know whether an economic time
series is highly persistent or not. Consider the case of gross domestic product in the
United States. If GDP is asymptotically uncorrelated, then the level of GDP in the com-
ing year is at best weakly related to what GDP was, say, thirty years ago. This means a
policy that affected GDP long ago has very little lasting impact. On the other hand, if
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GDP is strongly dependent, then next year’s GDP can be highly correlated with the
GDP from many years ago. Then, we should recognize that a policy which causes a dis-
crete change in GDP can have long-lasting effects.

It is extremely important not to confuse trending and highly persistent behaviors. A
series can be trending but not highly persistent, as we saw in Chapter 10. Further, fac-
tors such as interest rates, inflation rates, and unemployment rates are thought by many
to be highly persistent, but they have no obvious upward or downward trend. However,
it is often the case that a highly persistent series also contains a clear trend. One model
that leads to this behavior is the random walk with drift:

yt � �0 � yt
1 � et, t � 1,2, …, (11.23)

where {et: t � 1,2, …} and y0 satisfy the same properties as in the random walk model.
What is new is the parameter �0, which is called the drift term. Essentially, to generate
yt, the constant �0 is added along with the random noise et to the previous value yt
1.
We can show that the expected value of yt follows a linear time trend by using repeated
substitution:

yt � �0t � et � et
1 � … � e1 � y0.

Therefore, if y0 � 0, E(yt) � �0t: the expected value of yt is growing over time if �0 � 0
and shrinking over time if �0 � 0. By reasoning as we did in the pure random walk case,
we can show that E(yt�h�yt) � �0h � yt, and so the best prediction of yt�h at time t is yt

plus the drift �0h. The variance of yt is the same as it was in the pure random walk case.
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Two realizations of the random walk yt � yt
1 � et, with y0 � 0, et � Normal(0,1), and n � 50.
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Figure 11.3 contains a realization of a random walk with drift, where n � 50, y0 �
0, �0 � 2, and the et are Normal(0,9) random variables. As can be seen from this graph,
yt tends to grow over time, but the series does not regularly return to the trend line.

A random walk with drift is another example of a unit root process, because it is the
special case �1 � 1 in an AR(1) model with an intercept:

yt � �0 � �1yt
1 � et.

When �1 � 1 and {et} is any weakly dependent process, we obtain a whole class of
highly persistent time series processes that also have linearly trending means.

Transformations on Highly Persistent Time Series

Using time series with strong persistence of the type displayed by a unit root process in
a regression equation can lead to very misleading results if the CLM assumptions are
violated. We will study the spurious regression problem in more detail in Chapter 18,
but for now we must be aware of potential problems. Fortunately, simple transforma-
tions are available that render a unit root process weakly dependent.

Weakly dependent processes are said to be integrated of order zero, [I(0)].
Practically, this means that nothing needs to be done to such series before using them
in regression analysis: averages of such sequences already satisfy the standard limit the-
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The U.S. three-month T-bill rate, for the years 1948–1996.
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orems. Unit root processes, such as a random walk (with or without drift), are said to
be integrated of order zero, or I(0). This means that the first difference of the process
is weakly dependent (and often stationary).

This is simple to see for a random walk. With {yt} generated as in (11.20) for
t � 1,2, …,

�yt � yt 
 yt
1 � et, t � 2,3, …; (11.24)

therefore, the first-differenced series {�yt: t � 2,3, …} is actually an i.i.d. sequence.
More generally, if {yt} is generated by (11.24) where {et} is any weakly dependent
process, then {�yt} is weakly dependent. Thus, when we suspect processes are inte-
grated of order one, we often first difference in order to use them in regression analy-
sis; we will see some examples later.

Many time series yt that are strictly positive are such that log(yt) is integrated of
order one. In this case, we can use the first difference in the logs, �log(yt) � log(yt) 

log(yt
1), in regression analysis. Alternatively, since

�log(yt) � (yt 
 yt
1)/yt
1, (11.25)
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A realization of the random walk with drift, yt � 2 � yt
1 � et, with y0 � 0, et �
Normal(0,9), and n � 50. The dashed line is the expected value of yt, E(yt) � 2t.
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we can use the proportionate or percentage change in yt directly; this is what we did in
Example 11.4 where, rather than stating the efficient markets hypothesis in terms of the
stock price, pt, we used the weekly percentage change, returnt � 100[( pt 
 pt
1)/pt
1].

Differencing time series before using them in regression analysis has another ben-
efit: it removes any linear time trend. This is easily seen by writing a linearly trending
variable as

yt � �0 � �1t � vt,

where vt has a zero mean. Then �yt � �1 � �vt, and so E(�yt) � �1 � E(�vt) � �1. In
other words, E(�yt) is constant. The same argument works for �log(yt) when log(yt)
follows a linear time trend. Therefore, rather than including a time trend in a regression,
we can instead difference those variables that show obvious trends.

Deciding Whether a Time Series Is I(1)

Determining whether a particular time series realization is the outcome of an I(1) ver-
sus an I(0) process can be quite difficult. Statistical tests can be used for this purpose,
but these are more advanced; we provide an introductory treatment in Chapter 18.

There are informal methods that provide useful guidance about whether a time
series process is roughly characterized by weak dependence. A very simple tool is moti-
vated by the AR(1) model: if ��1� � 1, then the process is I(0), but it is I(1) if �1 � 1.
Earlier, we showed that, when the AR(1) process is stable, �1 � Corr(yt,yt
1). There-
fore, we can estimate �1 from the sample correlation between yt and yt
1. This sample
correlation coefficient is called the first order autocorrelation of {yt}; we denote this by
�̂1. By applying the law of large numbers, �̂1 can be shown to be consistent for �1 pro-
vided ��1� � 1. (However, �̂1 is not an unbiased estimator of �1.)

We can use the value of �̂1 to help decide whether the process is I(1) or I(0).
Unfortunately, because �̂1 is an estimate, we can never know for sure whether �1 � 1.
Ideally, we could compute a confidence interval for �1 to see if it excludes the value
�1 � 1, but this turns out to be rather difficult: the sampling distributions of the estima-
tor of �̂1 are extremely different when �1 is close to one and when �1 is much less than
one. (In fact, when �1 is close to one, �̂1 can have a severe downward bias.)

In Chapter 18, we will show how to test H0: �1 � 1 against H0: �1 � 1. For now, we
can only use �̂1 as a rough guide for determining whether a series needs to be differ-
enced. No hard and fast rule exists for making this choice. Most economists think that
differencing is warranted if �̂1 � .9; some would difference when �̂1 � .8.

E X A M P L E  1 1 . 6
( F e r t i l i t y  E q u a t i o n )

In Example 10.4, we explained the general fertility rate, gfr, in terms of the value of the
personal exemption, pe. The first order autocorrelations for these series are very large:
�̂1 � .977 for gfr and �̂1 � .964 for pe. These are suggestive of unit root behavior, and
they raise questions about the use of the usual OLS t statistics in Chapter 10. We now esti-
mate the equations using the first differences (and dropping the dummy variables for sim-
plicity):
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(�gf̂r � 
.785)
(.043)�pe
�gf̂r � 
(.502)
(.028)�pe

n � 71, R2 � .032, R̄2 � .018.

(11.26)

Now, an increase in pe is estimated to lower gfr contemporaneously, although the estimate
is not statistically different from zero at the 5% level. This gives very different results than
when we estimated the model in levels, and it casts doubt on our earlier analysis.

If we add two lags of �pe, things improve:

(�gf̂r � 
.964)
(.036)�pe 
(.014)�pe
1 �(.110)�pe
2

�gf̂r � 
(.468)
(.027)�pe 
(.028)�pe
1 �(.027)�pe
2

n � 69, R2 � .233, R̄2 � .197.

(11.27)

Even though �pe and �pe
1 have negative coefficients, their coefficients are small and
jointly insignificant (p-value � .28). The second lag is very significant and indicates a posi-
tive relationship between changes in pe and subsequent changes in gfr two years hence.
This makes more sense than having a contemporaneous effect. See Exercise 11.12 for fur-
ther analysis of the equation in first differences.

When the series in question has an obvious upward or downward trend, it makes
more sense to obtain the first order autocorrelation after detrending. If the data are not
detrended, the autoregressive correlation tends to be overestimated, which biases
toward finding a unit root in a trending process.

E X A M P L E  1 1 . 7
( W a g e s  a n d  P r o d u c t i v i t y )

The variable hrwage is average hourly wage in the U.S. economy, and outphr is output per
hour. One way to estimate the elasticity of hourly wage with respect to output per hour is
to estimate the equation,

log(hrwaget) � �0 � �1log(outphrt) � �2t � ut,

where the time trend is included because log(hrwage) and log(outphrt) both display clear,
upward, linear trends. Using the data in EARNS.RAW for the years 1947 through 1987, we
obtain

(log(hrŵaget) � 
5.33)�(1.64)log(outphrt) 
(.018)t
log(hrŵaget) � 
(0.37)�(0.09)log(outphrt) 
(.002)t

n � 41, R2 � .971, R̄2 � .970.

(11.28)

(We have reported the usual goodness-of-fit measures here; it would be better to report
those based on the detrended dependent variable, as in Section 10.5.) The estimated elas-
ticity seems too large: a 1% increase in productivity increases real wages by about 1.64%.
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Because the standard error is so small, the 95% confidence interval easily excludes a unit
elasticity. U.S. workers would probably have trouble believing that their wages increase by
more than 1.5% for every 1% increase in productivity.

The regression results in (11.28) must be viewed with caution. Even after linearly de-
trending log(hrwage), the first order autocorrelation is .967, and for detrended log(outphr),
�̂1 � .945. These suggest that both series have unit roots, so we reestimate the equation
in first differences (and we no longer need a time trend):

(�log(hrŵaget) � 
.0036)�(.809)�log(outphr)
log(hrŵaget) � 
(.0042)�(.173)log(outphr)

n � 40, R2 � .364, R̄2 � .348.

(11.29)

Now, a 1% increase in productivity is estimated to increase real wages by about .81%, and
the estimate is not statistically different from one. The adjusted R-squared shows that the
growth in output explains about 35% of the growth in real wages. See Exercise 11.9 for a
simple distributed lag version of the model in first differences.

In the previous two examples, both the dependent and independent variables appear
to have unit roots. In other cases, we might have a mixture of processes with unit roots
and those that are weakly dependent (though possibly trending). An example is given
in Exercise 11.8.

11.4 DYNAMICALLY COMPLETE MODELS AND THE
ABSENCE OF SERIAL CORRELATION

In the AR(1) model (11.12), we showed that, under assumption (11.13), the errors {ut}
must be serially uncorrelated in the sense that Assumption TS.5� is satisfied: assum-
ing that no serial correlation exists is practically the same thing as assuming that only
one lag of y appears in E(yt�yt
1,yt
2, …).

Can we make a similar statement for other regression models? The answer is yes.
Consider the simple static regression model

yt � �0 � �1zt � ut, (11.30)

where yt and zt are contemporaneously dated. For consistency of OLS, we only need
E(ut�zt) � 0. Generally, the {ut} will be serially correlated. However, if we assume that

E(ut�zt,yt
1,zt
1, …) � 0, (11.31)

then (as we will show generally later) Assumption TS.5� holds. In particular, the {ut}
are serially uncorrelated.

To gain insight into the meaning of (11.31), we can write (11.30) and (11.31) equiv-
alently as
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E(yt�zt,yt
1,zt
1, …) � E(yt�zt) � �0 � �1zt, (11.32)

where the first equality is the one of current interest. It says that, once zt has been con-
trolled for, no lags of either y or z help to explain current y. This is a strong requirement;
if it is false, then we can expect the errors to be serially correlated.

Next, consider a finite distributed lag model with two lags:

yt � �0 � �1zt � �2zt
1 � �3zt
2 � ut. (11.33)

Since we are hoping to capture the lagged effects that z has on y, we would naturally
assume that (11.33) captures the distributed lag dynamics:

E(yt�zt,zt
1,zt
2,zt
3, …) � E(yt�zt,zt
1,zt
2); (11.34)

that is, at most two lags of z matter. If (11.31) holds, we can make further statements:
once we have controlled for z and its two lags, no lags of y or additional lags of z affect
current y:

E(yt�zt,yt
1,zt
1,…) � E(yt�zt,zt
1,zt
2). (11.35)

Equation (11.35) is more likely than (11.32), but it still rules out lagged y affecting cur-
rent y.

Next, consider a model with one lag of both y and z:

yt � �0 � �1zt � �2yt
1 � �3zt
1 � ut.

Since this model includes a lagged dependent variable, (11.31) is a natural assumption,
as it implies that

E(yt�zt,yt
1,zt
1,yt
2…) � E(yt�zt,yt
1,zt
1);

in other words, once zt, yt
1, and zt
1 have been controlled for, no further lags of either
y or z affect current y.

In the general model

yt � �0 � �1xt1 � … � �k xtk � ut, (11.36)

where the explanatory variables xt � (xt1, …, xtk) may or may not contain lags of y or z,
(11.31) becomes

E(ut�xt,yt
1,xt
1, …) � 0. (11.37)

Written in terms of yt,

E(yt�xt,yt
1,xt
1, …) � E(yt�xt). (11.38)

In words, whatever is in xt, enough lags have been included so that further lags of y and
the explanatory variables do not matter for explaining yt. When this condition holds, we
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have a dynamically complete model. As we saw earlier, dynamic completeness can be
a very strong assumption for static and finite distributed lag models.

Once we start putting lagged y as explanatory variables, we often think that the
model should be dynamically complete. We will touch on some exceptions to this prac-
tice in Chapter 18.

Since (11.37) is equivalent to

E(ut�xt,ut
1,xt
1,ut
2, …) � 0, (11.39)

we can show that a dynamically complete model must satisfy Assumption TS.5�. (This
derivation is not crucial and can be skipped without loss of continuity.) For concrete-
ness, take s � t. Then, by the law of iterated expectations (see Appendix B),

E(utus�xt,xs) � E[E(utus�xt,xs,us)�xt,xs]

� E[usE(ut�xt,xs,us)�xt,xs],

where the second equality follows from E(utus�xt,xs,us) � usE(ut�xt,xs,us). Now, since
s � t, (xt,xs,us) is a subset of the conditioning set in (11.39). Therefore, (11.39) implies
that E(ut�xt,xs,us) � 0, and so

E(utus�xt,xs) � E(us�0�xt,xs) � 0,

which says that Assumption TS.5� holds.
Since specifying a dynamically complete model means that there is no serial corre-

lation, does it follow that all models should be dynamically complete? As we will see
in Chapter 18, for forecasting purposes, the answer is yes. Some think that all models

should be dynamically complete and that
serial correlation in the errors of a model is
a sign of misspecification. This stance is
too rigid. Sometimes, we really are inter-
ested in a static model (such as a Phillips
curve) or a finite distributed lag model

(such as measuring the long-run percentage change in wages given a 1% increase in
productivity). In the next chapter, we will show how to detect and correct for serial cor-
relation in such models.

E X A M P L E  1 1 . 8
( F e r t i l i t y  E q u a t i o n )

In equation (11.27), we estimated a distributed lag model for �gfr on �pe, allowing for two
lags of �pe. For this model to be dynamically complete in the sense of (11.38), neither lags
of �gfr nor further lags of �pe should appear in the equation. We can easily see that this
is false by adding �gfr
1: the coefficient estimate is .300, and its t statistic is 2.84. Thus,
the model is not dynamically complete in the sense of (11.38).

What should we make of this? We will postpone an interpretation of general models
with lagged dependent variables until Chapter 18. But the fact that (11.27) is not dynami-
cally complete suggests that there may be serial correlation in the errors. We will see how
to test and correct for this in Chapter 12.
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If (11.33) holds where ut � et � �1et
1 and where {et} is an i.i.d.
sequence with mean zero and variance 	e

2, can equation (11.33) be
dynamically complete?
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11.5 THE HOMOSKEDASTICITY ASSUMPTION FOR TIME
SERIES MODELS

The homoskedasticity assumption for time series regressions, particularly TS.4�, looks
very similar to that for cross-sectional regressions. However, since xt can contain lagged
y as well as lagged explanatory variables, we briefly discuss the meaning of the homo-
skedasticity assumption for different time series regressions.

In the simple static model, say

yt � �0 � �1zt � ut, (11.37)

Assumption TS.4� requires that

Var(ut�zt) � 	2.

Therefore, even though E(yt�zt) is a linear function of zt, Var(yt�zt) must be constant.
This is pretty straightforward.

In Example 11.4, we saw that, for the AR(1) model (11.12), the homoskedasticity
assumption is

Var(ut�yt
1) � Var(yt�yt
1) � 	2;

even though E(yt�yt
1) depends on yt
1, Var(yt�yt
1) does not. Thus, the variation in the
distribution of yt cannot depend on yt
1.

Hopefully, the pattern is clear now. If we have the model

yt � �0 � �1zt � �2yt
1 � �3zt
1 � ut,

the homoskedasticity assumption is

Var(ut�zt,yt
1,zt
1) � Var(yt�zt,yt
1,zt
1) � 	2,

so that the variance of ut cannot depend on zt, yt
1, or zt
1 (or some other function of
time). Generally, whatever explanatory variables appear in the model, we must assume
that the variance of yt given these explanatory variables is constant. If the model con-
tains lagged y or lagged explanatory variables, then we are explicitly ruling out dynamic
forms of heteroskedasticity (something we study in Chapter 12). But, in a static model,
we are only concerned with Var(yt�zt). In equation (11.37), no direct restrictions are
placed on, say, Var(yt�yt
1).

SUMMARY

In this chapter, we have argued that OLS can be justified using asymptotic analysis, pro-
vided certain conditions are met. Ideally, the time series processes are stationary and
weakly dependent, although stationarity is not crucial. Weak dependence is necessary
for applying the standard large sample results, particularly the central limit theorem.

Processes with deterministic trends that are weakly dependent can be used directly
in regression analysis, provided time trends are included in the model (as in Section
10.5). A similar statement holds for processes with seasonality.
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When the time series are highly persistent (they have unit roots), we must exercise
extreme caution in using them directly in regression models (unless we are convinced
the CLM assumptions from Chapter 10 hold). An alternative to using the levels is to use
the first differences of the variables. For most highly persistent economic time series,
the first difference is weakly dependent. Using first differences changes the nature of
the model, but this method is often as informative as a model in levels. When data are
highly persistent, we usually have more faith in first-difference results. In Chapter 18,
we will cover some recent, more advanced methods for using I(1) variables in multiple
regression analysis.

When models have complete dynamics in the sense that no further lags of any vari-
able are needed in the equation, we have seen that the errors will be serially uncorre-
lated. This is useful because certain models, such as autoregressive models, are
assumed to have complete dynamics. In static and distributed lag models, the dynami-
cally complete assumption is often false, which generally means the errors will be seri-
ally correlated. We will see how to address this problem in Chapter 12.

KEY TERMS
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Asymptotically Uncorrelated
Autoregressive Process of Order One

[AR(1)]
Covariance Stationary
Dynamically Complete Model
First Difference
Highly Persistent
Integrated of Order One [I(1)]
Integrated of Order Zero [I(0)]
Moving Average Process of Order One

[MA(1)]

Nonstationary Process
Random Walk
Random Walk with Drift
Serially Uncorrelated
Stable AR(1) Process
Stationary Process
Strongly Dependent
Trend-Stationary Process
Unit Root Process
Weakly Dependent

PROBLEMS

11.1 Let {xt: t � 1,2, …} be a covariance stationary process and define �h �
Cov(xt,xt�h) for h � 0. [Therefore, �0 � Var(xt).] Show that Corr(xt,xt�h) � �h/�0.

11.2 Let {et: t � 
1,0,1, …} be a sequence of independent, identically distributed ran-
dom variables with mean zero and variance one. Define a stochastic process by

xt � et 
 (1/2)et
1 � (1/2)et
2, t � 1,2, ….

(i) Find E(xt) and Var(xt). Do either of these depend on t?
(ii) Show that Corr(xt,xt�1) � 
1/2 and Corr(xt,xt�2) � 1/3. (Hint: It is

easiest to use the formula in Problem 11.1.)
(iii) What is Corr(xt,xt�h) for h � 2?
(iv) Is {xt} an asymptotically uncorrelated process?

11.3 Suppose that a time series process {yt} is generated by yt � z � et, for all
t � 1,2, …, where {et} is an i.i.d. sequence with mean zero and variance 	e

2. The ran-
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dom variable z does not change over time; it has mean zero and variance 	z
2. Assume

that each et is uncorrelated with z.
(i) Find the expected value and variance of yt. Do your answers depend 

on t?
(ii) Find Cov(yt,yt�h) for any t and h. Is {yt} covariance stationary?
(iii) Use parts (i) and (ii) to show that Corr(yt,yt�h) � 	z

2/(	z
2 � 	e

2) for all
t and h.

(iv) Does yt satisfy the intuitive requirement for being asymptotically uncor-
related? Explain.

11.4 Let {yt: t � 1,2, …} follow a random walk, as in (11.20), with y0 � 0. Show that
Corr(yt,yt�h) � ��t/(t � h) for t � 1, h � 0.

11.5 For the U.S. economy, let gprice denote the monthly growth in the overall price
level and let gwage be the monthly growth in hourly wages. [These are both obtained
as differences of logarithms: gprice � �log( price) and gwage � �log(wage).] Using
the monthly data in WAGEPRC.RAW, we estimate the following distributed lag model:

(gprîce � 
.00093)�(.119)gwage �(.097)gwage
1 �(.040)gwage
2

gprîce � 
(.00057)�(.052)gwage �(.039)gwage
1 �(.039)gwage
2

�(.038)gwage
3 �(.081)gwage
4 �(.107)gwage
5 �(.095)gwage
6

�(.039)gwage
3 �(.039)gwage
4 �(.039)gwage
5 �(.039)gwage
6

0�(.104)gwage
7 �(.103)gwage
8 �(.159)gwage
9 �(.110)gwage
10
0�(.039)gwage
7 �(.039)gwage
8 �(.039)gwage
9 �(.039)gwage
10

�(.103)gwage
11 �(.016)gwage
12

�(.039)gwage
11 �(.052)gwage
12

n � 273, R2 � .317, R̄2 � .283.

(i) Sketch the estimated lag distribution. At what lag is the effect of gwage
on gprice largest? Which lag has the smallest coefficient?

(ii) For which lags are the t statistics less than two?
(iii) What is the estimated long-run propensity? Is it much different than

one? Explain what the LRP tells us in this example.
(iv) What regression would you run to obtain the standard error of the LRP

directly?
(v) How would you test the joint significance of six more lags of gwage?

What would be the dfs in the F distribution? (Be careful here; you lose
six more observations.)

11.6 Let hy6t denote the three-month holding yield (in percent) from buying a six-
month T-bill at time (t 
 1) and selling it at time t (three months hence) as a three-
month T-bill. Let hy3t
1 be the three-month holding yield from buying a three-month
T-bill at time (t 
 1). At time (t 
 1), hy3t
1 is known, whereas hy6t is unknown
because p3t (the price of three-month T-bills) is unknown at time (t 
 1). The expecta-
tions hypothesis (EH) says that these two different three-month investments should be
the same, on average. Mathematically, we can write this as a conditional expectation:

E(hy6t �It
1) � hy3t
1,
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where It
1 denotes all observable information up through time t 
 1. This suggests esti-
mating the model

hy6t � �0 � �1hy3t
1 � ut,

and testing H0: �1 � 1. (We can also test H0: �0 � 0, but we often allow for a term pre-
mium for buying assets with different maturities, so that �0 � 0.)

(i) Estimating the previous equation by OLS using the data in
INTQRT.RAW (spaced every three months) gives

(hŷ6t � 
.058)�(1.104)hy3t
1

hŷ6t � 
(.070)�(0.039)hy3t
1

n � 123, R2 � .866.

Do you reject H0: �1 � 1 against H0: �1 � 1 at the 1% significance
level? Does the estimate seem practically different from one?

(ii) Another implication of the EH is that no other variables dated as (t 
 1)
or earlier should help explain hy6t, once hy3t
1 has been controlled for.
Including one lag of the spread between six-month and three-month,
T-bill rates gives

(hŷ6t � 
.123)�(1.053)hy3t
1 �(.480)(r6t
1 
 r3t
1)
hŷ6t � 
(.067)�(0.039)hy3t
1 �(.109)(r6t
1 
 r3t
1)

n � 123, R2 � .885.

Now is the coefficient on hy3t
1 statistically different from one? Is the
lagged spread term significant? According to this equation, if, at time
(t 
 1), r6 is above r3, should you invest in six-month or three-month,
T-bills?

(iii) The sample correlation between hy3t and hy3t
1 is .914. Why might this
raise some concerns with the previous analysis?

(iv) How would you test for seasonality in the equation estimated in part
(ii)?

11.7 A partial adjustment model is

yt* � �0 � �1xt � et

yt 
 yt
1 � �(yt* 
 yt
1) � at,

where yt* is the desired or optimal level of y, and yt is the actual (observed) level. For
example, yt* is the desired growth in firm inventories, and xt is growth in firm sales. The
parameter �1 measures the effect of xt on yt*. The second equation describes how the
actual y adjusts depending on the relationship between the desired y in time t and the
actual y in time (t 
 1). The parameter � measures the speed of adjustment and satis-
fies 0 � � � 1.

(i) Plug the first equation for yt* into the second equation and show that we
can write

yt � �0 � �1yt
1 � �2xt � ut.
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In particular, find the �j in terms of the �j and � and find ut in terms of
et and at. Therefore, the partial adjustment model leads to a model with
a lagged dependent variable and a contemporaneous x.

(ii) If E(et�xt,yt
1,xt
1, …) � E(at�xt,yt
1,xt
1, …) � 0 and all series are
weakly dependent, how would you estimate the �j?

(iii) If �̂1 � .7 and �̂2 � .2, what are the estimates of �1 and �?

COMPUTER EXERCISES

11.8 Use the data in HSEINV.RAW for this exercise.
(i) Find the first order autocorrelation in log(invpc). Now find the autocor-

relation after linearly detrending log(invpc). Do the same for log( price).
Which of the two series may have a unit root?

(ii) Based on your findings in part (i), estimate the equation

log(invpct) � �0 � �1�log(pricet) � �2t � ut

and report the results in standard form. Interpret the coefficient �̂1 and
determine whether it is statistically significant.

(iii) Linearly detrend log(invpct) and use the detrended version as the depen-
dent variable in the regression from part (ii) (see Section 10.5). What
happens to R2?

(iv) Now use �log(invpct) as the dependent variable. How do your results
change from part (ii)? Is the time trend still significant? Why or why not?

11.9 In Example 11.7, define the growth in hourly wage and output per hour as the
change in the natural log: ghrwage � �log(hrwage) and goutphr � �log(outphr).
Consider a simple extension of the model estimated in (11.29):

ghrwaget � �0 � �1goutphrt � �2goutphrt
1 � ut.

This allows an increase in productivity growth to have both a current and lagged effect
on wage growth.

(i) Estimate the equation using the data in EARNS.RAW and report the
results in standard form. Is the lagged value of goutphr statistically sig-
nificant?

(ii) If �1 � �2 � 1, a permanent increase in productivity growth is fully
passed on in higher wage growth after one year. Test H0: �1 � �2 � 1
against the two-sided alternative. Remember, the easiest way to do this
is to write the equation so that � � �1 � �2 appears directly in the
model, as in Example 10.4 from Chapter 10.

(iii) Does goutphrt
2 need to be in the model? Explain.

11.10 (i) In Example 11.4, it may be that the expected value of the return at time
t, given past returns, is a quadratic function of returnt
1. To check this
possibility, use the data in NYSE.RAW to estimate

returnt � �0 � �1returnt
1 � �2return t
2

1 � ut;

report the results in standard form.
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(ii) State and test the null hypothesis that E(returnt�returnt
1) does not
depend on returnt
1. (Hint: There are two restrictions to test here.)
What do you conclude?

(iii) Drop returnt
2

1 from the model, but add the interaction term

returnt
1�returnt
2. Now, test the efficient markets hypothesis.
(iv) What do you conclude about predicting weekly stock returns based on

past stock returns?

11.11 Use the data in PHILLIPS.RAW for this exercise.
(i) In Example 11.5, we assumed that the natural rate of unemployment is

constant. An alternative form of the expectations augmented Phillips
curve allows the natural rate of unemployment to depend on past levels
of unemployment. In the simplest case, the natural rate at time t equals
unemt
1. If we assume adaptive expectations, we obtain a Phillips curve
where inflation and unemployment are in first differences:

�inf � �0 � �1�unem � u.

Estimate this model, report the results in the usual form, and discuss the
sign, size, and statistical significance of �̂1.

(ii) Which model fits the data better, (11.19) or the model from part (i)?
Explain.

11.12 (i) Add a linear time trend to equation (11.27). Is a time trend necessary in
the first-difference equation?

(ii) Drop the time trend and add the variables ww2 and pill to (11.27) (do
not difference these dummy variables). Are these variables jointly sig-
nificant at the 5% level?

(iii) Using the model from part (ii), estimate the LRP and obtain its standard
error. Compare this to (10.19), where gfr and pe appeared in levels
rather than in first differences.

11.13 Let invent be the real value inventories in the United States during year t, let GDPt

denote real gross domestic product, and let r3t denote the (ex post) real interest rate on
three-month T-bills. The ex post real interest rate is (approximately) r3t � i3t 
 inft,
where i3t is the rate on three-month T-bills and inft is the annual inflation rate [see
Mankiw (1994, Section 6.4)]. The change in inventories, �invent, is the inventory
investment for the year. The accelerator model of inventory investment is

�invent � �0 � �1�GDPt � ut,

where �1 � 0. [See, for example, Mankiw (1994), Chapter 17.]
(i) Use the data in INVEN.RAW to estimate the accelerator model. Report

the results in the usual form and interpret the equation. Is �̂1 statistically
greater than zero?

(ii) If the real interest rate rises, then the opportunity cost of holding inven-
tories rises, and so an increase in the real interest rate should decrease
inventories. Add the real interest rate to the accelerator model and dis-
cuss the results. Does the level of the real interest rate work better than
the first difference, �r3t?
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11.14 Use CONSUMP.RAW for this exercise. One version of the permanent income
hypothesis (PIH) of consumption is that the growth in consumption is unpredictable.
[Another version is that the change in consumption itself is unpredictable; see Mankiw
(1994, Chapter 15) for discussion of the PIH.] Let gct � log(ct) 
 log(ct
1) be the
growth in real per capita consumption (of nondurables and services). Then the PIH
implies that E(gct �It
1) � E(gct), where It
1 denotes information known at time (t 
 1);
in this case, t denotes a year.

(i) Test the PIH by estimating gct � �0 � �1gct
1 � ut. Clearly state the
null and alternative hypotheses. What do you conclude?

(ii) To the regression in part (i), add gyt
1 and i3t
1, where gyt is the growth
in real per capita disposable income and i3t is the interest rate on three-
month T-bills; note that each must be lagged in the regression. Are these
two additional variables jointly significant?

11.15 Use the data in PHILLIPS.RAW for this exercise.
(i) Estimate an AR(1) model for the unemployment rate. Use this equation

to predict the unemployment rate for 1997. Compare this with the
actual unemployment rate for 1997. (You can find this information in a
recent Economic Report of the President.)

(ii) Add a lag of inflation to the AR(1) model from part (i). Is inft
1 statis-
tically significant?

(iii) Use the equation from part (ii) to predict the unemployment rate for
1997. Is the result better or worse than in the model from part (i)?

(iv) Use the method from Section 6.4 to construct a 95% prediction interval
for the 1997 unemployment rate. Is the 1997 unemployment rate in the
interval?
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In this chapter, we discuss the critical problem of serial correlation in the error terms
of a multiple regression model. We saw in Chapter 11 that when, in an appropriate
sense, the dynamics of a model have been completely specified, the errors will not

be serially correlated. Thus, testing for serial correlation can be used to detect dynamic
misspecification. Furthermore, static and finite distributed lag models often have seri-
ally correlated errors even if there is no underlying misspecification of the model.
Therefore, it is important to know the consequences and remedies for serial correlation
for these useful classes of models.

In Section 12.1, we present the properties of OLS when the errors contain serial cor-
relation. In Section 12.2, we demonstrate how to test for serial correlation. We cover
tests that apply to models with strictly exogenous regressors and tests that are asymp-
totically valid with general regressors, including lagged dependent variables. Section
12.3 explains how to correct for serial correlation under the assumption of strictly
exogenous explanatory variables, while Section 12.4 shows how using differenced data
often eliminates serial correlation in the errors. Section 12.5 covers more recent
advances on how to adjust the usual OLS standard errors and test statistics in the pres-
ence of very general serial correlation.

In Chapter 8, we discussed testing and correcting for heteroskedasticity in cross-
sectional applications. In Section 12.6, we show how the methods used in the cross-
sectional case can be extended to the time series case. The mechanics are essentially the
same, but there are a few subtleties associated with the temporal correlation in time
series observations that must be addressed. In addition, we briefly touch on the conse-
quences of dynamic forms of heteroskedasticity.

12.1 PROPERTIES OF OLS WITH SERIALLY CORRELATED
ERRORS

Unbiasedness and Consistency

In Chapter 10, we proved unbiasedness of the OLS estimator under the first three
Gauss-Markov assumptions for time series regressions (TS.1 through TS.3). In partic-
ular, Theorem 10.1 assumed nothing about serial correlation in the errors. It follows
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that, as long as the explanatory variables are strictly exogenous, the �̂j are unbiased,
regardless of the degree of serial correlation in the errors. This is analogous to the
observation that heteroskedasticity in the errors does not cause bias in the �̂j.

In Chapter 11, we relaxed the strict exogeneity assumption to E(ut�xt) � 0 and
showed that, when the data are weakly dependent, the �̂j are still consistent (although
not necessarily unbiased). This result did not hinge on any assumption about serial cor-
relation in the errors.

Efficiency and Inference

Since the Gauss-Markov theorem (Theorem 10.4) requires both homoskedasticity and
serially uncorrelated errors, OLS is no longer BLUE in the presence of serial correla-
tion. Even more importantly, the usual OLS standard errors and test statistics are not
valid, even asymptotically. We can see this by computing the variance of the OLS esti-
mator under the first four Gauss-Markov assumptions and the AR(1) model for the error
terms. More precisely, we assume that

ut � �ut�1 � et, t � 1,2, …, n (12.1)

��� � 1, (12.2)

where the et are uncorrelated random variables with mean zero and variance �e
2; recall

from Chapter 11 that assumption (12.2) is the stability condition.
We consider the variance of the OLS slope estimator in the simple regression model

yt � �0 � �1xt � ut,

and, just to simplify the formula, we assume that the sample average of the xt is zero
(x̄ � 0). Then the OLS estimator �̂1 of �1 can be written as

�̂1 � �1 � SST x
�1 �

n

t�1
xtut, (12.3)

where SSTx � �
n

t�1
x t

2. Now, in computing the variance of �̂1 (conditional on X ), we must

account for the serial correlation in the ut:

Var(�̂1) � SST x
�2Var ��

n

t�1
xtut� � SST x

�2 ��
n

t�1
x t

2Var(ut)

� 2 �
n�1

t�1
�
n�t

j�1
xt xt�jE(utut�j)� (12.4)

� �2/SSTx � 2(�2/SSTx
2) �

n�1

t�1
�
n�t

j�1
� jxt xt�j,

where �2 � Var(ut) and we have used the fact that E(utut�j) � Cov(ut,ut�j) � � j�2 [see
equation (11.4)]. The first term in equation (12.4), �2/SSTx, is the variance of �̂1 when
� � 0, which is the familiar OLS variance under the Gauss-Markov assumptions. If we
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ignore the serial correlation and estimate the variance in the usual way, the variance
estimator will usually be biased when � � 0 because it ignores the second term in
(12.4). As we will see through later examples, � 	 0 is most common, in which case,
� j 	 0 for all j. Further, the independent variables in regression models are often posi-
tively correlated over time, so that xtxt�j is positive for most pairs t and t � j. Therefore,

in most economic applications, the term �
n�1

t�1
�
n�t

j�1
� jxtxt�j is positive, and so the usual OLS

variance formula �2/SSTx underestimates the true variance of the OLS estimator. If � is
large or xt has a high degree of positive serial correlation—a common case—the bias in
the usual OLS variance estimator can be substantial. We will tend to think the OLS
slope estimator is more precise than it actually is.

When � � 0, � j is negative when j is odd and positive when j is even, and so it is

difficult to determine the sign of �
n�1

t�1
�
n�t

j�1
� jxtxt�j. In fact, it is possible that the usual OLS

variance formula actually overstates the true variance of �̂1. In either case, the usual
variance estimator will be biased for Var(�̂1) in the presence of serial correlation.

Because the standard error of �̂1 is an
estimate of the standard deviation of �̂1,
using the usual OLS standard error in the
presence of serial correlation is invalid.
Therefore, t statistics are no longer valid
for testing single hypotheses. Since a
smaller standard error means a larger t sta-

tistic, the usual t statistics will often be too large when � 	 0. The usual F and LM sta-
tistics for testing multiple hypotheses are also invalid.

Serial Correlation in the Presence of Lagged Dependent
Variables

Beginners in econometrics are often warned of the dangers of serially correlated errors
in the presence of lagged dependent variables. Almost every textbook on econometrics
contains some form of the statement “OLS is inconsistent in the presence of lagged
dependent variables and serially correlated errors.” Unfortunately, as a general asser-
tion, this statement is false. There is a version of the statement that is correct, but it is
important to be very precise.

To illustrate, suppose that the expected value of yt, given yt�1, is linear:

E(yt�yt�1) � �0 � �1yt�1, (12.5)

where we assume stability, ��1� � 1. We know we can always write this with an error
term as

yt � �0 � �1yt�1 � ut, (12.6)

E(ut�yt�1) � 0. (12.7)

By construction, this model satisfies the key Assumption TS.3
 for consistency of OLS,
and therefore the OLS estimators �̂0 and �̂1 are consistent. It is important to see that,
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without further assumptions, the errors {ut} can be serially correlated. Condition (12.7)
ensures that ut is uncorrelated with yt�1, but ut and yt�2 could be correlated. Then, since
ut�1 � yt�1 � �0 � �1yt�2, the covariance between ut and ut�1 is ��1Cov(ut,yt�2),
which is not necessarily zero. Thus, the errors exhibit serial correlation and the model
contains a lagged dependent variable, but OLS consistently estimates �0 and �1 because
these are the parameters in the conditional expectation (12.5). The serial correlation in
the errors will cause the usual OLS statistics to be invalid for testing purposes, but it
will not affect consistency.

So when is OLS inconsistent if the errors are serially correlated and the regressors
contain a lagged dependent variable? This happens when we write the model in error
form, exactly as in (12.6), but then we assume that {ut} follows a stable AR(1) model
as in (12.1) and (12.2), where

E(et�ut�1,ut�2, …) � E(et�yt�1,yt�2, …) � 0. (12.8)

Since et is uncorrelated with yt�1 by assumption, Cov(yt�1,ut) � �Cov(yt�1,ut�1),
which is not zero unless � � 0. This causes the OLS estimators of �0 and �1 from the
regression of yt on yt�1 to be inconsistent.

We now see that OLS estimation of (12.6), when the errors ut also follow an AR(1)
model, leads to inconsistent estimators. However, the correctness of this statement
makes it no less wrongheaded. We have to ask: What would be the point in estimating
the parameters in (12.6) when the errors follow an AR(1) model? It is difficult to think
of cases where this would be interesting. At least in (12.5) the parameters tell us the
expected value of yt given yt�1. When we combine (12.6) and (12.1), we see that yt

really follows a second order autoregressive model, or AR(2) model. To see this, write
ut�1 � yt�1 � �0 � �1yt�2 and plug this into ut � �ut�1 � et. Then, (12.6) can be
rewritten as

yt � �0 � �1yt�1 � �(yt�1 � �0 � �1yt�2) � et

� �0(1 � �) � (�1 � �)yt�1 � ��1yt�2 � et

� �0 � �1yt�1 � �2yt�2 � et,

where �0 � �0(1 � �), �1 � �1 � �, and �2 � ���1. Given (12.8), it follows that

E(yt�yt�1,yt�2,…) � E(yt�yt�1,yt�2) � �0 � �1yt�1 � �2yt�2. (12.9)

This means that the expected value of yt, given all past y, depends on two lags of y. It
is equation (12.9) that we would be interested in using for any practical purpose, includ-
ing forecasting, as we will see in Chapter 18. We are especially interested in the param-
eters �j. Under the appropriate stability conditions for an AR(2) model—we will cover
these in Section 12.3—OLS estimation of (12.9) produces consistent and asymptoti-
cally normal estimators of the �j.

The bottom line is that you need a good reason for having both a lagged dependent
variable in a model and a particular model of serial correlation in the errors. Often se-
rial correlation in the errors of a dynamic model simply indicates that the dynamic
regression function has not been completely specified: in the previous example, we
should add yt�2 to the equation.
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In Chapter 18, we will see examples of models with lagged dependent variables
where the errors are serially correlated and are also correlated with yt�1. But even in
these cases, the errors do not follow an autoregressive process.

12.2 TESTING FOR SERIAL CORRELATION

In this section, we discuss several methods of testing for serial correlation in the error
terms in the multiple linear regression model

yt � �0 � �1xt1 � … � �k xtk � ut.

We first consider the case when the regressors are strictly exogenous. Recall that this
requires the error, ut, to be uncorrelated with the regressors in all time periods (see Section
10.3), and so, among other things, it rules out models with lagged dependent variables.

A t test for AR(1) Serial Correlation with Strictly
Exogenous Regressors

While there are numerous ways in which the error terms in a multiple regression model
can be serially correlated, the most popular model—and the simplest to work with—is
the AR(1) model in equations (12.1) and (12.2). In the previous section, we explained
the implications of performing OLS when the errors are serially correlated in general,
and we derived the variance of the OLS slope estimator in a simple regression model
with AR(1) errors. We now show how to test for the presence of AR(1) serial correla-
tion. The null hypothesis is that there is no serial correlation. Therefore, just as with
tests for heteroskedasticity, we assume the best and require the data to provide reason-
ably strong evidence that the ideal assumption of no serial correlation is violated.

We first derive a large sample test, under the assumption that the explanatory vari-
ables are strictly exogenous: the expected value of ut, given the entire history of inde-
pendent variables, is zero. In addition, in (12.1), we must assume that

E(et�ut�1,ut�2, …) � 0 (12.10)

and
Var(et�ut�1) � Var(et) � �e

2. (12.11)

These are standard assumptions in the AR(1) model (which follow when {et} is an i.i.d.
sequence), and they allow us to apply the large sample results from Chapter 11 for
dynamic regression.

As with testing for heteroskedasticity, the null hypothesis is that the appropriate
Gauss-Markov assumption is true. In the AR(1) model, the null hypothesis that the
errors are serially uncorrelated is

H0: � � 0. (12.12)

How can we test this hypothesis? If the ut were observed, then, under (12.10) and
(12.11), we could immediately apply the asymptotic normality results from Theorem
11.2 to the dynamic regression model
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ut � �ut�1 � et, t � 2, …, n. (12.13)

(Under the null hypothesis � � 0, {ut} is clearly weakly dependent.) In other words, we
could estimate � from the regression of ut on ut�1, for all t � 2, …, n, without an inter-
cept, and use the usual t statistic for �̂. This does not work because the errors ut are not
observed. Nevertheless, just as with testing for heteroskedasticity, we can replace ut

with the corresponding OLS residual, ût. Since ût depends on the OLS estimators �̂0,
�̂1, …, �̂k, it is not obvious that using ût for ut in the regression has no effect on the dis-
tribution of the t statistic. Fortunately, it turns out that, because of the strict exogeneity
assumption, the large sample distribution of the t statistic is not affected by using the
OLS residuals in place of the errors. A proof is well-beyond the scope of this text, but
it follows from the work of Wooldridge (1991b).

We can summarize the asymptotic test for AR(1) serial correlation very simply:

TESTING FOR AR(1) SERIAL CORRELATION WITH STRICTLY EXOGENOUS
REGRESSORS:

(i) Run the OLS regression of yt on xt1, …, xtk and obtain the OLS residuals, ût, for
all t � 1,2, …, n.

(ii) Run the regression of

ût on ût�1, for all t � 2, …, n, (12.14)

obtaining the coefficient �̂ on ût�1 and its t statistic, t�̂. (This regression may or may not
contain an intercept; the t statistic for �̂ will be slightly affected, but it is asymptotically
valid either way.)

(iii) Use t�̂ to test H0: � � 0 against H1: � � 0 in the usual way. (Actually, since
� 	 0 is often expected a priori, the alternative can be H0: � 	 0.) Typically, we con-
clude that serial correlation is a problem to be dealt with only if H0 is rejected at the 5%
level. As always, it is best to report the p-value for the test.

In deciding whether serial correlation needs to be addressed, we should remember
the difference between practical and statistical significance. With a large sample size, it
is possible to find serial correlation even though �̂ is practically small; when �̂ is close
to zero, the usual OLS inference procedures will not be far off [see equation (12.4)].
Such outcomes are somewhat rare in time series applications because time series data
sets are usually small.

E X A M P L E  1 2 . 1
[ T e s t i n g  f o r  A R ( 1 )  S e r i a l  C o r r e l a t i o n  i n  t h e  P h i l l i p s  C u r v e ]

In Chapter 10, we estimated a static Phillips curve that explained the inflation-
unemployment tradeoff in the United States (see Example 10.1). In Chapter 11, we studied
a particular expectations augmented Phillips curve, where we assumed adaptive expecta-
tions (see Example 11.5). We now test the error term in each equation for serial correlation.
Since the expectations augmented curve uses 
inft � inft � inft�1 as the dependent vari-
able, we have one fewer observation.
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For the static Phillips curve, the regression in (12.14) yields �̂ � .573, t � 4.93, and
p-value � .000 (with 48 observations). This is very strong evidence of positive, first order
serial correlation. One consequence of this is that the standard errors and t statistics from
Chapter 10 are not valid. By contrast, the test for AR(1) serial correlation in the expecta-
tions augmented curve gives �̂ � �.036, t � �.297, and p-value � .775 (with 47 obser-
vations): there is no evidence of AR(1) serial correlation in the expectations augmented
Phillips curve.

Although the test from (12.14) is derived from the AR(1) model, the test can detect
other kinds of serial correlation. Remember, �̂ is a consistent estimator of the correla-
tion between ut and ut�1. Any serial correlation that causes adjacent errors to be corre-
lated can be picked up by this test. On the other hand, it does not detect serial
correlation where adjacent errors are uncorrelated, Corr(ut,ut�1) � 0. (For example, ut

and ut�2 could be correlated.)
In using the usual t statistic from (12.14), we must assume that the errors in (12.13)

satisfy the appropriate homoskedasticity assumption, (12.11). In fact, it is easy to make
the test robust to heteroskedasticity in et:
we simply use the usual, heteroskedasticity-
robust t statistic from Chapter 8. For the
static Phillips curve in Example 12.1, the
heteroskedasticity-robust t statistic is 4.03,
which is smaller than the nonrobust t sta-

tistic but still very significant. In Section 12.6, we further discuss heteroskedasticity in
time series regressions, including its dynamic forms.

The Durbin-Watson Test Under Classical Assumptions

Another test for AR(1) serial correlation is the Durbin-Watson test. The Durbin-
Watson (DW) statistic is also based on the OLS residuals:

DW � . (12.15)

Simple algebra shows that DW and �̂ from (12.14) are closely linked:

DW � 2(1 � �̂). (12.16)

One reason this relationship is not exact is that �̂ has �
n

t�2
û2

t�1 in its denominator, while

the DW statistic has the sum of squares of all OLS residuals in its denominator. Even
with moderate sample sizes, the approximation in (12.16) is often pretty close.
Therefore, tests based on DW and the t test based on �̂ are conceptually the same.

�
n

t�2
(ût � ût�1)

2

�
n

t�1
ût

2
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Durbin and Watson (1950) derive the distribution of DW (conditional on X ), some-
thing that requires the full set of classical linear model assumptions, including normal-
ity of the error terms. Unfortunately, this distribution depends on the values of the
independent variables. (It also depends on the sample size, the number of regressors,
and whether the regression contains an intercept.) While some econometrics packages
tabulate critical values and p-values for DW, many do not. In any case, they depend on
the full set of CLM assumptions.

Several econometrics texts report upper and lower bounds for the critical values that
depend on the desired significance level, the alternative hypothesis, the number of
observations, and the number of regressors. (We assume that an intercept is included in
the model.) Usually, the DW test is computed for the alternative

H1: � 	 0. (12.17)

From the approximation in (12.16), �̂ � 0 implies that DW � 2, and �̂ 	 0 implies that
DW � 2. Thus, to reject the null hypothesis (12.12) in favor of (12.17), we are looking
for a value of DW that is significantly less than two. Unfortunately, because of the prob-
lems in obtaining the null distribution of DW, we must compare DW with two sets of
critical values. These are usually labelled as dU (for upper) and dL (for lower). If
DW � dL, then we reject H0 in favor of (12.17); if DW 	 dU, we fail to reject H0. If
dL � DW � dU, the test is inconclusive.

As an example, if we choose a 5% significance level with n � 45 and k � 4, dU �
1.720 and dL � 1.336 [see Savin and White (1977)]. If DW � 1.336, we reject the null
of no serial correlation at the 5% level; if DW 	 1.72, we fail to reject H0; if 1.336 �
DW � 1.72, the test is inconclusive.

In Example 12.1, for the static Phillips curve, DW is computed to be DW � .80. We
can obtain the lower 1% critical value from Savin and White (1977) for k � 1 and n �
50: dL � 1.32. Therefore, we reject the null of no serial correlation against the alterna-
tive of positive serial correlation at the 1% level. (Using the previous t test, we can con-
clude that the p-value equals zero to three decimal places.) For the expectations
augmented Phillips curve, DW � 1.77, which is well within the fail-to-reject region at
even the 5% level (dU � 1.59).

The fact that an exact sampling distribution for DW can be tabulated is the only
advantage that DW has over the t test from (12.14). Given that the tabulated critical val-
ues are exactly valid only under the full set of CLM assumptions and that they can lead
to a wide inconclusive region, the practical disadvantages of the DW are substantial.
The t statistic from (12.14) is simple to compute and asymptotically valid without nor-
mally distributed errors. The t statistic is also valid in the presence of heteroskedastic-
ity that depends on the xtj; and it is easy to make it robust to any form of het-
eroskedasticity.

Testing for AR(1) Serial Correlation without Strictly
Exogenous Regressors

When the explanatory variables are not strictly exogenous, so that one or more xtj is cor-
related with ut�1, neither the t test from regression (12.14) nor the Durbin-Watson
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statistic are valid, even in large samples. The leading case of nonstrictly exogenous
regressors occurs when the model contains a lagged dependent variable: yt�1 and ut�1

are obviously correlated. Durbin (1970) suggested two alternatives to the DW statistic
when the model contains a lagged dependent variable and the other regressors are non-
random (or, more generally, strictly exogenous). The first is called Durbin’s h statistic.
This statistic has a practical drawback in that it cannot always be computed, and so we
do not cover it here.

Durbin’s alternative statistic is simple to compute and is valid when there are any
number of non-strictly exogenous explanatory variables. The test also works if the
explanatory variables happen to be strictly exogenous.

TESTING FOR SERIAL CORRELATION WITH GENERAL REGRESSORS:

(i) Run the OLS regression of yt on xt1, …, xtk and obtain the OLS residuals, ût, for
all t � 1,2, …, n.

(ii) Run the regression of

ut on xt1, xt2, …, xtk, ût�1, for all t � 2, …, n. (12.18)

to obtain the coefficient �̂ on ût�1 and its t statistic, t�̂.
(iii) Use t�̂ to test H0: � � 0 against H1: � � 0 in the usual way (or use a one-sided

alternative).

In equation (12.18), we regress the OLS residuals on all independent variables, includ-
ing an intercept, and the lagged residual. The t statistic on the lagged residual is a valid
test of (12.12) in the AR(1) model (12.13) (when we add Var(ut�xt,ut�1) � �2 under H0).
Any number of lagged dependent variables may appear among the xtj, and other non-
strictly exogenous explanatory variables are allowed as well.

The inclusion of xt1, …, xtk explicitly allows for each xtj to be correlated with ut�1,
and this ensures that t�̂ has an approximate t distribution in large samples. The t statis-
tic from (12.14) ignores possible correlation between xtj and ut�1, so it is not valid with-
out strictly exogenous regressors. Incidentally, because ût � yt � �̂0 � �̂1xt1 � … �
�̂k xtk, it can be shown that the t statistic on ût�1 is the same if yt is used in place of ût

as the dependent variable in (12.18).
The t statistic from (12.18) is easily made robust to heteroskedasticity of unknown

form (in particular, when Var(ut�xt,ut�1) is not constant): just use the heteroskedasticity-
robust t statistic on ût�1.

E X A M P L E  1 2 . 2
[ T e s t i n g  f o r  A R ( 1 )  S e r i a l  C o r r e l a t i o n  i n  t h e

M i n i m u m  W a g e  E q u a t i o n ]

In Chapter 10 (see Example 10.9), we estimated the effect of the minimum wage on the
Puerto Rican employment rate. We now check whether the errors appear to contain serial
correlation, using the test that does not assume strict exogeneity of the minimum wage or
GNP variables. [We add the log of Puerto Rican real GNP to equation (10.38), as in Problem
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10.9]. We are assuming that the underlying stochastic processes are weakly dependent, but
we allow them to contain a linear time trend (by including t in the regression).

Letting ût denote the OLS residuals, we run the regression of

ut on log(mincovt), log( prgnpt), log(usgnpt), t, and ût�1,

using the 37 available observations. The estimated coefficient on ût�1 is �̂ � .481 with t �

2.89 (two-sided p-value � .007). Therefore, there is strong evidence of AR(1) serial corre-
lation in the errors, which means the t statistics for the �̂j that we obtained before are not
valid for inference. Remember, though, the �̂j are still consistent if ut is contemporaneously
uncorrelated with each explanatory variable. Incidentally, if we use regression (12.14)
instead, we obtain �̂ � .417 and t � 2.63, so the outcome of the test is similar in this case.

Testing for Higher Order Serial Correlation

The test from (12.18) is easily extended to higher orders of serial correlation. For
example, suppose that we wish to test

H0: �1 � 0, �2 � 0 (12.19)

in the AR(2) model,

ut � �1ut�1 � �2ut�2 � et.

This alternative model of serial correlation allows us to test for second order serial cor-
relation. As always, we estimate the model by OLS and obtain the OLS residuals, ût.
Then, we can run the regression of

ût on xt1, xt2, …, xtk, ût�1, and ût�2, for all t � 3, …, n,

to obtain the F test for joint significance of ût�1 and ût�2. If these two lags are jointly
significant at a small enough level, say 5%, then we reject (12.19) and conclude that the
errors are serially correlated.

More generally, we can test for serial correlation in the autoregressive model of
order q:

ut � �1ut�1 � �2ut�2 � … � �qut�q � et. (12.20)

The null hypothesis is

H0: �1 � 0, �2 � 0, …, �q � 0. (12.21)

TESTING FOR AR(q) SERIAL CORRELATION:

(i) Run the OLS regression of yt on xt1, …, xtk and obtain the OLS residuals, ût, for
all t � 1,2, …, n.

(ii) Run the regression of
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ût on xt1, xt2, …, xtk, ût�1, ût�2, …, ût�q, for all t � (q � 1), …, n. (12.22)

(iii) Compute the F test for joint significance of ût�1, ût�2, …, ût�q in (12.22). [The
F statistic with yt as the dependent variable in (12.22) can also be used, as it gives an
identical answer.]

If the xtj are assumed to be strictly exogenous, so that each xtj is uncorrelated with ut�1,
ut�2, …, ut�q, then the xtj can be omitted from (12.22). Including the xtj in the regres-
sion makes the test valid with or without the strict exogeneity assumption. The test
requires the homoskedasticity assumption

Var(ut�xt,ut�1, …, ut�q) � �2. (12.23)

A heteroskedasticity-robust version can be computed as described in Chapter 8.
An alternative to computing the F test is to use the Lagrange multiplier (LM ) form

of the statistic. (We covered the LM statistic for testing exclusion restrictions in Chapter
5 for cross-sectional analysis.) The LM statistic for testing (12.21) is simply

LM � (n � q)R2
û, (12.24)

where R2
û is just the usual R-squared from regression (12.22). Under the null hypothe-

sis, LM ~ª �q
2. This is usually called the Breusch-Godfrey test for AR(q) serial correla-

tion. The LM statistic also requires (12.23), but it can be made robust to het-
eroskedasticity. [For details, see Wooldridge (1991b).

E X A M P L E  1 2 . 3
[ T e s t i n g  f o r  A R ( 3 )  S e r i a l  C o r r e l a t i o n ]

In the event study of the barium chloride industry (see Example 10.5), we used monthly
data, so we may wish to test for higher orders of serial correlation. For illustration purposes,
we test for AR(3) serial correlation in the errors underlying equation (10.22). Using regres-
sion (12.22), the F statistic for joint significance of ût�1, ût�2, and ût�3 is F � 5.12. Originally,
we had n � 131, and we lose three observations in the auxiliary regression (12.22). Because
we estimate 10 parameters in (12.22) for this example, the df in the F statistic are 3 and
118. The p-value of the F statistic is .0023, so there is strong evidence of AR(3) serial cor-
relation.

With quarterly or monthly data that have not been seasonally adjusted, we some-
times wish to test for seasonal forms of serial correlation. For example, with quarterly
data, we might postulate the autoregressive model

ut � �4ut�4 � et. (12.25)

From the AR(1) serial correlation tests, it is pretty clear how to proceed. When the
regressors are strictly exogenous, we can use a t test on ût�4 in the regression of
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ût on ût�4, for all t � 5, …, n.

A modification of the Durbin-Watson statistic is also available [see Wallis (1972)].
When the xtj are not strictly exogenous, we can use the regression in (12.18), with ût�4

replacing ût�1.
In Example 12.3, the data are monthly and are not seasonally adjusted. Therefore,

it makes sense to test for correlation between ut and ut�12. A regression of ût on ût�12

yields �̂12 � �.187 and p-value � .028, so
there is evidence of negative seasonal auto-
correlation. (Including the regressors
changes things only modestly: �̂12 �
�.170 and p-value � .052.) This is some-
what unusual and does not have an obvious
explanation.

12.3 CORRECTING FOR SERIAL CORRELATION WITH
STRICTLY EXOGENOUS REGRESSORS

If we detect serial correlation after applying one of the tests in Section 12.2, we have to
do something about it. If our goal is to estimate a model with complete dynamics, we
need to respecify the model. In applications where our goal is not to estimate a fully
dynamic model, we need to find a way to carry out statistical inference: as we saw in
Section 12.1, the usual OLS test statistics are no longer valid. In this section, we begin
with the important case of AR(1) serial correlation. The traditional approach to this
problem assumes fixed regressors. What are actually needed are strictly exogenous
regressors. Therefore, at a minimum, we should not use these corrections when the
explanatory variables include lagged dependent variables.

Obtaining the Best Linear Unbiased Estimator in the
AR(1) Model

We assume the Gauss-Markov Assumptions TS.1 through TS.4, but we relax Assump-
tion TS.5. In particular, we assume that the errors follow the AR(1) model

ut � �ut�1 � et, for all t � 1,2, …. (12.26)

Remember that Assumption TS.2 implies that ut has a zero mean conditional on X. In
the following analysis, we let the conditioning on X be implied in order to simplify the
notation. Thus, we write the variance of ut as

Var(ut) � �e
2/(1 � �2). (12.27)

For simplicity, consider the case with a single explanatory variable:

yt � �0 � �1xt � ut, for all t � 1,2, …, n.

Since the problem in this equation is serial correlation in the ut, it makes sense to trans-
form the equation to eliminate the serial correlation. For t � 2, we write
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yt�1 � �0 � �1xt�1 � ut�1

yt � �0 � �1xt � ut.

Now, if we multiply this first equation by � and subtract it from the second equation,
we get

yt � �yt�1 � (1 � �)�0 � �1(xt � �xt�1) � et, t � 2,

where we have used the fact that et � ut � �ut�1. We can write this as

ỹt � (1 � �)�0 � �1x̃t � et, t � 2, (12.28)

where

ỹt � yt � �yt�1, x̃t � xt � �xt�1 (12.29)

are called the quasi-differenced data. (If � � 1, these are differenced data, but remem-
ber we are assuming ��� � 1.) The error terms in (12.28) are serially uncorrelated; in
fact, this equation satisfies all of the Gauss-Markov assumptions. This means that, if we
knew �, we could estimate �0 and �1 by regressing ỹt on x̃t, provided we divide the esti-
mated intercept by (1 � �).

The OLS estimators from (12.28) are not quite BLUE because they do not use the
first time period. This is easily fixed by writing the equation for t � 1 as

y1 � �0 � �1x1 � u1. (12.30)

Since each et is uncorrelated with u1, we can add (12.30) to (12.28) and still have seri-
ally uncorrelated errors. However, using (12.27), Var(u1) � �e

2/(1 � �2) 	 �e
2 � Var(et).

[Equation (12.27) clearly does not hold when ��� � 1, which is why we assume the sta-
bility condition.] Thus, we must multiply (12.30) by (1 � �2)1/2 to get errors with the
same variance:

(1 � �2)1 /2y1 � (1 � �2)1 /2�0 � �1(1 � �2)1 /2x1 � (1 � �2)1 /2u1

or

ỹ1 � (1 � �2)1/2�0 � �1x̃1 � ũ1, (12.31)

where ũ1 � (1 � �2)1/2u1, ỹ1 � (1 � �2)1/2y1, and so on. The error in (12.31) has vari-
ance Var(ũ1) � (1 � �2)Var(u1) � �e

2, so we can use (12.31) along with (12.28) in an
OLS regression. This gives the BLUE estimators of �0 and �1 under Assumptions TS.1
through TS.4 and the AR(1) model for ut.This is another example of a generalized least
squares (or GLS) estimator. We saw other GLS estimators in the context of het-
eroskedasticity in Chapter 8.

Adding more regressors changes very little. For t � 2, we use the equation

ỹt � (1 � �)�0 � �1x̃t1 � … � �k x̃tk � et, (12.32)
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where x̃t j � xtj � �xt�1, j. For t � 1, we have ỹ1 � (1 � �2)1/2y1, x̃1j � (1 � �2)1/2x1 j,
and the intercept is (1 � �2)1/2�0. For given �, it is fairly easy to transform the data and
to carry out OLS. Unless � � 0, the GLS estimator, that is, OLS on the transformed
data, will generally be different from the original OLS estimator. The GLS estimator
turns out to be BLUE, and, since the errors in the transformed equation are serially
uncorrelated and homoskedastic, t and F statistics from the transformed equation are
valid (at least asymptotically, and exactly if the errors et are normally distributed).

Feasible GLS Estimation with AR(1) Errors

The problem with the GLS estimator is that � is rarely known in practice. However, we
already know how to get a consistent estimator of �: we simply regress the OLS resid-
uals on their lagged counterparts, exactly as in equation (12.14). Next, we use this esti-
mate, �̂, in place of � to obtain the quasi-differenced variables. We then use OLS on the
equation

ỹt � �0 x̃t 0 � �1x̃t1 � … � �kx̃tk � errort, (12.33)

where x̃t0 � (1 � �̂) for t � 2, and x̃10 � (1 � �̂2)1/2. This results in the feasible GLS
(FGLS) estimator of the �j. The error term in (12.33) contains et and also the terms
involving the estimation error in �̂. Fortunately, the estimation error in �̂ does not affect
the asymptotic distribution of the FGLS estimators.

FEASIBLE GLS ESTIMATION OF THE AR(1) MODEL:

(i) Run the OLS regression of yt on xt1, …, xtk and obtain the OLS residuals, ût, t �
1,2, …, n.

(ii) Run the regression in equation (12.14) and obtain �̂.
(iii) Apply OLS to equation (12.33) to estimate �0, �1, …, �k. The usual standard

errors, t statistics, and F statistics are asymptotically valid.

The cost of using �̂ in place of � is that the feasible GLS estimator has no tractable finite
sample properties. In particular, it is not unbiased, although it is consistent when the
data are weakly dependent. Further, even if et in (12.32) is normally distributed, the t
and F statistics are only approximately t and F distributed because of the estimation
error in �̂. This is fine for most purposes, although we must be careful with small sam-
ple sizes.

Since the FGLS estimator is not unbiased, we certainly cannot say it is BLUE.
Nevertheless, it is asymptotically more efficient than the OLS estimator when the
AR(1) model for serial correlation holds (and the explanatory variables are strictly
exogenous). Again, this statement assumes that the time series are weakly dependent.

There are several names for FGLS estimation of the AR(1) model that come from
different methods of estimating � and different treatment of the first observation.
Cochrane-Orcutt (CO) estimation omits the first observation and uses �̂ from
(12.14), whereas Prais-Winsten (PW) estimation uses the first observation in the pre-
viously suggested way. Asymptotically, it makes no difference whether or not the first
observation is used, but many time series samples are small, so the differences can be
notable in applications.
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In practice, both the Cochrane-Orcutt and Prais-Winsten methods are used in an
iterative scheme. Once the FGLS estimator is found using �̂ from (12.14), we can com-
pute a new set of residuals, obtain a new estimator of � from (12.14), transform the data
using the new estimate of �, and estimate (12.33) by OLS. We can repeat the whole
process many times, until the estimate of � changes by very little from the previous iter-
ation. Many regression packages implement an iterative procedure automatically, so
there is no additional work for us. It is difficult to say whether more than one iteration
helps. It seems to be helpful in some cases, but, theoretically, the large sample proper-
ties of the iterated estimator are the same as the estimator that uses only the first itera-
tion. For details on these and other methods, see Davidson and MacKinnon (1993,
Chapter 10).

E X A M P L E  1 2 . 4
( C o c h r a n e - O r c u t t  E s t i m a t i o n  i n  t h e  E v e n t  S t u d y )

We estimate the equation in Example 10.5 using iterated Cochrane-Orcutt estimation. For
comparison, we also present the OLS results in Table 12.1.

The coefficients that are statistically significant in the Cochrane-Orcutt estimation do
not differ by much from the OLS estimates [in particular, the coefficients on log(chempi ),
log(rtwex), and afdec6]. It is not surprising for statistically insignificant coefficients to
change, perhaps markedly, across different estimation methods.

Notice how the standard errors in the second column are uniformly higher than
the standard errors in column (1). This is common. The Cochrane-Orcutt standard errors
account for serial correlation; the OLS standard errors do not. As we saw in Section 12.1,
the OLS standard errors usually understate the actual sampling variation in the OLS esti-
mates and should not be relied upon when significant serial correlation is present.
Therefore, the effect on Chinese imports after the International Trade Commissions deci-
sion is now less statistically significant than we thought (tafdec6 � �1.68).

The Cochrane-Orcutt (CO) method reports one fewer observation than OLS; this reflects
the fact that the first transformed observation is not used in the CO method. This slightly
affects the degrees of freedom that are used in hypothesis tests.

Finally, an R-squared is reported for the CO estimation, which is well-below the
R-squared for the OLS estimation in this case. However, these R-squareds should not be
compared. For OLS, the R-squared, as usual, is based on the regression with the untrans-
formed dependent and independent variables. For CO, the R-squared comes from the final
regression of the transformed dependent variable on the transformed independent vari-
ables. It is not clear what this R2 is actually measuring, nevertheless, it is traditionally
reported.

Comparing OLS and FGLS

In some applications of the Cochrane-Orcutt or Prais-Winsten methods, the FGLS esti-
mates differ in practically important ways from the OLS estimates. (This was not the
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case in Example 12.4.) Typically, this has been interpreted as a verification of feasible
GLS’s superiority over OLS. Unfortunately, things are not so simple. To see why, con-
sider the regression model

yt � �0 � �1xt � ut,

where the time series processes are stationary. Now, assuming that the law of large
numbers holds, consistency of OLS for �1 holds if

Cov(xt,ut) � 0. (12.34)

Earlier, we asserted that FGLS was consistent under the strict exogeneity assumption,
which is more restrictive than (12.34). In fact, it can be shown that the weakest assump-
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Table 12.1

Dependent Variable: log(chnimp)

Coefficient OLS Cochrane-Orcutt

log(chempi) 3.12 2.95
(0.48) (0.65)

log(gas) .196 1.05
(.907) (0.99)

log(rtwex) .983 1.14
(.400) (0.51)

befile6 .060 �.016
(.261) (.321)

affile6 �.032 �.033
(.264) (.323)

afdec6 �.565 �.577
(.286) (.343)

intercept �17.70 �37.31
(20.05) (23.22)

�̂ ——— .293
(.084)

Observations .131 .130
R-Squared .305 .193
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tion that must hold for FGLS to be consistent, in addition to (12.34), is that the sum of
xt�1 and xt�1 is uncorrelated with ut:

Cov({xt�1 � xt�1},ut) � 0. (12.35)

Practically speaking, consistency of FGLS requires ut to be uncorrelated with xt�1, xt,
and xt�1.

This means that OLS and FGLS might give significantly different estimates because
(12.35) fails. In this case, OLS—which is still consistent under (12.34)—is preferred to
FGLS (which is inconsistent). If x has a lagged effect on y, or xt�1 reacts to changes in
ut, FGLS can produce misleading results.

Since OLS and FGLS are different estimation procedures, we never expect them to
give the same estimates. If they provide similar estimates of the �j, then FGLS is pre-
ferred if there is evidence of serial correlation, because the estimator is more efficient
and the FGLS test statistics are at least asymptotically valid. A more difficult problem
arises when there are practical differences in the OLS and FGLS estimates: it is hard to
determine whether such differences are statistically significant. The general method
proposed by Hausman (1978) can be used, but this is beyond the scope of this text.

Consistency and asymptotic normality of OLS and FGLS rely heavily on the time
series processes yt and the xtj being weakly dependent. Strange things can happen if we
apply either OLS or FGLS when some processes have unit roots. We discuss this fur-
ther in Chapter 18.

E X A M P L E  1 2 . 5
( S t a t i c  P h i l l i p s  C u r v e )

Table 12.2 presents OLS and iterated Cochrane-Orcutt estimates of the static Phillips curve
from Example 10.1.

Table 12.2

Dependent Variable: inf

Coefficient OLS Cochrane-Orcutt

unem .468 �.665
(.289) (.320)

intercept 1.424 7.580
(1.719) (2.379)

�̂ ——— .774
(.091)

Observations .49 .48
R-Squared .053 .086
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The coefficient of interest is on unem, and it differs markedly between CO and OLS. Since
the CO estimate is consistent with the inflation-unemployment tradeoff, our tendency is to
focus on the CO estimates. In fact, these estimates are fairly close to what is obtained by
first differencing both inf and unem (see Problem 11.11), which makes sense because the
quasi-differencing used in CO with �̂ � .774 is similar to first differencing. It may just be
that inf and unem are not related in levels, but they have a negative relationship in first dif-
ferences.

Correcting for Higher Order Serial Correlation

It is also possible to correct for higher orders of serial correlation. A general treatment
is given in Harvey (1990). Here, we illustrate the approach for AR(2) serial correlation:

ut � �1ut�1 � �2ut�2 � et,

where {et} satisfies the assumptions stated for the AR(1) model. The stability condition
is more complicated now. They can be shown to be [see Harvey (1990)]

�2 	 �1, �2 � �1 � 1, and �1 � �2 � 1.

For example, the model is stable if �1 � .8 and �2 � �.3; the model is unstable if �1 �
.7 and �2 � .4.

Assuming the stability conditions hold, we can obtain the transformation that elim-
inates the serial correlation. In the simple regression model, this is easy when t 	 2:

yt � �1yt�1 � �2yt�2 � �0(1 � �1 � �2) � �1(xt � �1xt�1 � �2xt�2) � et

or

ỹt � �0(1 � �1 � �2) � �1x̃t � et, t � 3,4, …, n. (12.36)

If we know �1 and �2, we can easily estimate this equation by OLS after obtaining the
transformed variables. Since we rarely know �1 and �2, we have to estimate them. As
usual, we can use the OLS residuals, ût: obtain �̂1 and �̂2 from the regression of

ût on ût�1, ût�2, t � 3, …, n.

[This is the same regression used to test for AR(2) serial correlation with strictly exoge-
nous regressors.] Then, we use �̂1 and �̂2 in place of �1 and �2 to obtain the transformed
variables. This gives one version of the feasible GLS estimator. If we have multiple
explanatory variables, then each one is transformed by x̃tj � xtj � �̂1xt�1,j � �̂2xt�2,j,
when t 	 2.

The treatment of the first two observations is a little tricky. It can be shown that the
dependent variable and each independent variable (including the intercept) should be
transformed by

z̃1 � {(1 � �2)[(1 � �2)
2 � �1

2]/(1 � �2)}
1/2z1

z̃2 � (1 � �2
2)1/2z2 � {�1(1 � �1

2)1/2/(1 � �2)}z1,
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where z1 and z2 denote either the dependent or an independent variable at t � 1 and t �
2, respectively. We will not derive these transformations. Briefly, they eliminate the se-
rial correlation between the first two observations and make their error variances equal
to �e

2.
Fortunately, econometrics packages geared toward time series analysis easily esti-

mate models with general AR(q) errors; we rarely need to directly compute the trans-
formed variables ourselves.

12.4 DIFFERENCING AND SERIAL CORRELATION

In Chapter 11, we presented differencing as a transformation for making an integrated
process weakly dependent. There is another way to see the merits of differencing when
dealing with highly persistent data. Suppose that we start with the simple regression
model:

yt � �0 � �1xt � ut, t � 1,2, …, (12.37)

where ut follows the AR(1) process (12.26). As we mentioned in Section 11.3, and as
we will discuss more fully in Chapter 18, the usual OLS inference procedures can be
very misleading when the variables yt and xt are integrated of order one, or I(1). In the
extreme case where the errors {ut} in (12.37) follow a random walk, the equation makes
no sense because, among other things, the variance of ut grows with t. It is more logi-
cal to difference the equation:


yt � �1
xt � 
ut, t � 2, …,n. (12.38)

If ut follows a random walk, then et � 
ut has zero mean, a constant variance, and is
serially uncorrelated. Thus, assuming that et and 
xt are uncorrelated, we can estimate
(12.38) by OLS, where we lose the first observation.

Even if ut does not follow a random walk, but � is positive and large, first differ-
encing is often a good idea: it will eliminate most of the serial correlation. Of course,
(12.38) is different from (12.37), but at least we can have more faith in the OLS stan-
dard errors and t statistics in (12.38). Allowing for multiple explanatory variables does
not change anything.

E X A M P L E  1 2 . 6
( D i f f e r e n c i n g  t h e  I n t e r e s t  R a t e  E q u a t i o n )

In Example 10.2, we estimated an equation relating the three-month, T-bill rate to inflation
and the federal deficit [see equation (10.15)]. If we regress the residuals from this equation
on a single lag, we obtain �̂ � .530 (.123), which is statistically greater than zero. If we dif-
ference i3, inf, and def and then check the residuals for AR(1) serial correlation, we obtain
�̂ � .068 (.145), and so there is no evidence of serial correlation. The differencing has appar-
ently eliminated any serial correlation. [In addition, there is evidence that i3 contains a unit
root, and inf may as well, so differencing might be needed to produce I(0) variables anyway.]
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As we explained in Chapter 11, the
decision of whether or not to difference is
a tough one. But this discussion points out
another benefit of differencing, which is
that it removes serial correlation. We will
come back to this issue in Chapter 18.

12.5 SERIAL CORRELATION-ROBUST INFERENCE
AFTER OLS 

In recent years, it has become more popular to estimate models by OLS but to correct
the standard errors for fairly arbitrary forms of serial correlation (and heteroskedastic-
ity). Even though we know OLS will be inefficient, there are some good reasons for tak-
ing this approach. First, the explanatory variables may not be strictly exogenous. In this
case, FGLS is not even consistent, let alone efficient. Second, in most applications of
FGLS, the errors are assumed to follow an AR(1) model. It may be better to compute
standard errors for the OLS estimates that are robust to more general forms of serial
correlation.

To get the idea, consider equation (12.4), which is the variance of the OLS slope
estimator in a simple regression model with AR(1) errors. We can estimate this variance
very simply by plugging in our standard estimators of � and �2. The only problem with
this is that it assumes the AR(1) model holds and also homoskedasticity. It is possible
to relax both of these assumptions.

A general treatment of standard errors that are both heteroskedasticity and serial
correlation-robust is given in Davidson and MacKinnon (1993). Right now, we provide
a simple method to compute the robust standard error of any OLS coefficient.

Our treatment here follows Wooldridge (1989). Consider the standard multiple lin-
ear regression model

yt � �0 � �1xt1 � … � �kxtk � ut, t�1,2, …, n, (12.39)

which we have estimated by OLS. For concreteness, we are interested in obtaining a
serial correlation-robust standard error for �̂1. This turns out to be fairly easy. Write xt1

as a linear function of the remaining independent variables and an error term,

xt1 � �0 � �2xt2 � … � �kxtk � rt, (12.40)

where the error rt has zero mean and is uncorrelated with xt2, xt3, …, xtk.
Then, it can be shown that the asymptotic variance of the OLS estimator �̂1 is

Avar(�̂1) � ��
n

t�1
E(rt

2)�
�2

Var ��
n

t�1
rtut�.

Under the no serial correlation Assumption TS.5
, {at � rtut} is serially uncorrelated,
and so either the usual OLS standard errors (under homoskedasticity) or the
heteroskedasticity-robust standard errors will be valid. But if TS.5
 fails, our expression
for Avar(�̂1) must account for the correlation between at and as, when t � s. In prac-

Chapter 12 Serial Correlation and Heteroskedasticity in Time Series Regressions

395

Q U E S T I O N  1 2 . 4

Suppose after estimating a model by OLS that you estimate � from
regression (12.14) and you obtain �̂ � .92. What would you do
about this?
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tice, it is common to assume that, once the terms are farther apart than a few periods,
the correlation is essentially zero. Remember that under weak dependence, the correla-
tion must be approaching zero, so this is a reasonable approach.

Following the general framework of Newey and West (1987), Wooldridge (1989)
shows that Avar(�̂1) can be estimated as follows. Let “se(�̂1)” denote the usual (but
incorrect) OLS standard error and let �̂ be the usual standard error of the regression (or
root mean squared error) from estimating (12.39) by OLS. Let r̂t denote the residuals
from the auxiliary regression of

xt1 on xt2, xt3, …, xtk (12.41)

(including a constant, as usual). For a chosen integer g 	 0, define

v̂  � �
n

t�1
â t

2 � 2 �
g

h�1
[1 � h/(g � 1)] � �

n

t�h�1
âtât�h�, (12.42)

where

ât � r̂t ût, t � 1,2, …, n.

This looks somewhat complicated, but in practice it is easy to obtain. The integer g in
(12.42) controls how much serial correlation we are allowing in computing the standard
error. Once we have v̂, the serial correlation-robust standard error of �̂1 is simply

se(�̂1) � [“se(�̂1)”/�̂]2��v̂ . (12.43)

In other words, we take the usual OLS standard error of �̂1, divide it by �̂, square the
result, and then multiply by the square root of v̂ . This can be used to construct confi-
dence intervals and t statistics for �̂1.

It is useful to see what v̂ looks like in some simple cases. When g � 1,

v̂ � �
n

t�1
â t

2 � �
n

t�2 
âtât�1, (12.44)

and when g � 2,

v̂ � �
n

t�1
â t

2 � (4/3) ��
n

t�2 
âtât�1� � (2/3) ��

n

t�3 
âtât�2�. (12.45)

The larger that g is, the more terms are included to correct for serial correlation. The
purpose of the factor [1 � h/(g � 1)] in (12.42) is to ensure that v̂ is in fact nonnega-
tive [Newey and West (1987) verify this]. We clearly need v̂ � 0, since v̂ is estimating
a variance and the square root of v̂ appears in (12.43).

The standard error in (12.43) also turns out to be robust to arbitrary heteroskedas-
ticity. In fact, if we drop the second term in (12.42), then (12.43) becomes the usual
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heteroskedasticity-robust standard error that we discussed in Chapter 8 (without the
degrees of freedom adjustment).

The theory underlying the standard error in (12.43) is technical and somewhat sub-
tle. Remember, we started off by claiming we do not know the form of serial correla-
tion. If this is the case, how can we select the integer g? Theory states that (12.43) works
for fairly arbitrary forms of serial correlation, provided g grows with sample size n. The
idea is that, with larger sample sizes, we can be more flexible about the amount of cor-
relation in (12.42). There has been much recent work on the relationship between g and
n, but we will not go into that here. For annual data, choosing a small g, such as g � 1
or g � 2, is likely to account for most of the serial correlation. For quarterly or monthly
data, g should probably be larger (such as g � 4 or 8 for quarterly, g � 12 or 24 for
monthly), assuming that we have enough data. Newey and West (1987) recommend tak-
ing g to be the integer part of 4(n/100)2 /9; others have suggested the integer part of n1/4.
The Newey-West suggestion is implemented by the econometrics program Eviews®.
For, say, n � 50 (which is reasonable for annual, postwar data from World War II),
g � 3. (The integer part of n1/4 gives g � 2.)

We summarize how to obtain a serial correlation-robust standard error for �̂1. Of
course, since we can list any independent variable first, the following procedure works
for computing a standard error for any slope coefficient.

SERIAL CORRELATION-ROBUST STANDARD ERROR FOR �̂1:

(i) Estimate (12.39) by OLS, which yields “se(�̂1)”, �̂, and the OLS residuals
{ût: t � 1, …, n}.

(ii) Compute the residuals {r̂t: t � 1, …, n} from the auxiliary regression (12.41).
Then form ât � r̂tût (for each t).

(iii) For your choice of g, compute v̂ as in (12.42).
(iv) Compute se(�̂1) from (12.43).

Empirically, the serial correlation-robust standard errors are typically larger than the
usual OLS standard errors when there is serial correlation. This is because, in most
cases, the errors are positively serially correlated. However, it is possible to have sub-
stantial serial correlation in {ut} but to also have similarities in the usual and SC-robust
standard errors of some coefficients: it is the sample autocorrelations of ât � r̂tût that
determine the robust standard error for �̂1.

The use of SC-robust standard errors has lagged behind the use of standard errors
robust only to heteroskedasticity for several reasons. First, large cross sections, where
the heteroskedasticity-robust standard errors will have good properties, are more com-
mon than large time series. The SC-robust standard errors can be poorly behaved when
there is substantial serial correlation and the sample size is small. (Where small can
even be as large as, say, 100.) Second, since we must choose the integer g in equation
(12.42), computation of the SC-robust standard errors is not automatic. As mentioned
earlier, some econometrics packages have automated the selection, but you still have to
abide by the choice.

Another important reason that SC-robust standard errors are not yet routinely com-
puted is that, in the presence of severe serial correlation, OLS can be very inefficient,
especially in small sample sizes. After performing OLS and correcting the standard
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errors for serial correlation, the coefficients are often insignificant, or at least less sig-
nificant than they were with the usual OLS standard errors.

The SC-robust standard errors after OLS estimation are most useful when we have
doubts about some of the explanatory variables being strictly exogenous, so that meth-
ods such as Cochrane-Orcutt are not even consistent. It is also valid to use the SC-robust
standard errors in models with lagged dependent variables assuming, of course, that
there is good reason for allowing serial correlation in such models.

E X A M P L E  1 2 . 7
( T h e  P u e r t o  R i c a n  M i n i m u m  W a g e )

We obtain an SC-robust standard error for the minimum wage effect in the Puerto Rican
employment equation. In Example 12.2, we found pretty strong evidence of AR(1) serial
correlation. As in that example, we use as additional controls log(usgnp), log(prgnp), and
a linear time trend.

The OLS estimate of the elasticity of the employment rate with respect to the minimum
wage is �̂1 � �.2123, and the usual OLS standard error is “se(�̂1)” � .0402. The standard
error of the regression is �̂ � .0328. Further, using the previous procedure with g � 2 [see
(12.45)], we obtain v̂ � .000805. This gives the SC/heteroskedasticity-robust standard error
as se(�̂1) � [(.0402/.0328)2]��.000805 � .0426. Interestingly, the robust standard error is
only slightly greater than the usual OLS standard error. The robust t statistic is about �4.98,
and so the estimated elasticity is still very statistically significant.

For comparison, the iterated CO estimate of �1 is �.1111, with a standard error of
.0446. Thus, the FGLS estimate is much closer to zero than the OLS estimate, and we might
suspect violation of the strict exogeneity assumption. Or, the difference in the OLS and FGLS
estimates might be explainable by sampling error. It is very difficult to tell.

Before leaving this section, we note that it is possible to construct serial correlation-
robust, F-type statistics for testing multiple hypotheses, but these are too advanced to
cover here. [See Wooldridge (1991b, 1995) and Davidson and MacKinnon (1993) for
treatments.]

12.6 HETEROSKEDASTICITY IN TIME SERIES
REGRESSIONS

We discussed testing and correcting for heteroskedasticity for cross-sectional applica-
tions in Chapter 8. Heteroskedasticity can also occur in time series regression models,
and the presence of heteroskedasticity, while not causing bias or inconsistency in the �̂j,
does invalidate the usual standard errors, t statistics, and F statistics. This is just as in
the cross-sectional case.

In time series regression applications, heteroskedasticity often receives little, if any,
attention: the problem of serially correlated errors is usually more pressing. Never-
theless, it is useful to briefly cover some of the issues that arise in applying tests and
corrections for heteroskedasticity in time series regressions.
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Since the usual OLS statistics are asymptotically valid under Assumptions TS.1

through TS.5
, we are interested in what happens when the homoskedasticity assump-
tion, TS.4
, does not hold. Assumption TS.2
 rules out misspecifications such as omit-
ted variables and certain kinds of measurement error, while TS.5
 rules out serial
correlation in the errors. It is important to remember that serially correlated errors cause
problems which tests and adjustments for heteroskedasticity are not able to address.

Heteroskedasticity-Robust Statistics

In studying heteroskedasticity for cross-sectional regressions, we noted how it has no
bearing on the unbiasedness or consistency of the OLS estimators. Exactly the same
conclusions hold in the time series case, as we can see by reviewing the assumptions
needed for unbiasedness (Theorem 10.1) and consistency (Theorem 11.1).

In Section 8.2, we discussed how the usual OLS standard errors, t statistics, and F
statistics can be adjusted to allow for the presence of heteroskedasticity of unknown
form. These same adjustments work for time series regressions under Assumptions
TS.1
, TS.2
, TS.3
, and TS.5
. Thus, provided the only assumption violated is the
homoskedasticity assumption, valid inference is easily obtained in most econometric
packages.

Testing for Heteroskedasticity

Sometimes, we wish to test for heteroskedasticity in time series regressions, especially
if we are concerned about the performance of heteroskedasticity-robust statistics in rel-
atively small sample sizes. The tests we covered in Chapter 8 can be applied directly,
but with a few caveats. First, the errors ut should not be serially correlated; any serial
correlation will generally invalidate a test for heteroskedasticity. Thus, it makes sense
to test for serial correlation first, using a heteroskedasticity-robust test if heteroskedas-
ticity is suspected. Then, after something has been done to correct for serial correlation,
we can test for heteroskedasticity.

Second, consider the equation used to motivate the Breusch-Pagan test for het-
eroskedasticity:

ut
2 � �0 � �1xt1 � … � �kxtk � vt, (12.46)

where the null hypothesis is H0: �1 � �2 � … � �k � 0. For the F statistic—with ût
2

replacing ut
2 as the dependent variable—to be valid, we must assume that the errors {vt}

are themselves homoskedastic (as in the cross-sectional case) and serially uncorrelated.
These are implicitly assumed in computing all standard tests for heteroskedasticity,
including the version of the White test we covered in Section 8.3. Assuming that the
{vt} are serially uncorrelated rules out certain forms of dynamic heteroskedasticity,
something we will treat in the next subsection.

If heteroskedasticity is found in the ut (and the ut are not serially correlated), then
the heteroskedasticity-robust test statistics can be used. An alternative is to use
weighted least squares, as in Section 8.4. The mechanics of weighted least squares for
the time series case are identical to those for the cross-sectional case. 
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E X A M P L E  1 2 . 8
( H e t e r o s k e d a s t i c i t y  a n d  t h e  E f f i c i e n t  M a r k e t s  H y p o t h e s i s )

In Example 11.4, we estimated the simple model

returnt � �0 � �1returnt�1 � ut. (12.47)

The EMH states that �1 � 0. When we tested this hypothesis using the data in NYSE.RAW,
we obtained t�1

� 1.55 with n � 689. With
such a large sample, this is not much evi-
dence against the EMH. While the EMH
states that the expected return given past
observable information should be constant,
it says nothing about the conditional vari-

ance. In fact, the Breusch-Pagan test for heteroskedasticity entails regressing the squared
OLS residuals ût

2 on returnt�1:

û t
2 �(4.66)�(1.104)returnt�1 � residualt

û t
2 �(0.43)�(0.201)returnt�1 � residualt

n � 689, R2 � .042.

(12.48)

The t statistic on returnt�1 is about �5.5, indicating strong evidence of heteroskedasticity.
Because the coefficient on returnt�1 is negative, we have the interesting finding that volatil-
ity in stock returns is lower when the previous return was high, and vice versa. Therefore,
we have found what is common in many financial studies: the expected value of stock
returns does not depend on past returns, but the variance of returns does.

Autoregressive Conditional Heteroskedasticity

In recent years, economists have become interested in dynamic forms of heteroskedas-
ticity. Of course, if xt contains a lagged dependent variable, then heteroskedasticity as
in (12.46) is dynamic. But dynamic forms of heteroskedasticity can appear even in
models with no dynamics in the regression equation.

To see this, consider a simple static regression model:

yt � �0 � �1zt � ut,

and assume that the Gauss-Markov assumptions hold. This means that the OLS esti-
mators are BLUE. The homoskedasticity assumption says that Var(ut�Z) is constant,
where Z denotes all n outcomes of zt. Even if the variance of ut given Z is constant, there
are other ways that heteroskedasticity can arise. Engle (1982) suggested looking at the
conditional variance of ut given past errors (where the conditioning on Z is left
implicit). Engle suggested what is known as the autoregressive conditional het-
eroskedasticity (ARCH) model. The first order ARCH model is
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How would you compute the White test for heteroskedasticity in
equation (12.47)?
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E(ut
2�ut�1,ut�2,…) � E(ut

2�ut�1) � �0 � �1ut
2
�1, (12.49)

where we leave the conditioning on Z implicit. This equation represents the conditional
variance of ut given past ut, only if E(ut�ut�1,ut�2,…) � 0, which means that the errors
are serially uncorrelated. Since conditional variances must be positive, this model only
makes sense if �0 	 0 and �1 � 0; if �1 � 0, there are no dynamics in the variance
equation.

It is instructive to write (12.49) as

ut
2 � �0 � �1ut

2
�1 � vt, (12.50)

where the expected value of vt (given ut�1, ut�2, …) is zero by definition. (The vt are
not independent of past ut because of the constraint vt � ��0 � �1ut

2
�1.) Equation

(12.50) looks like an autoregressive model in ut
2 (hence the name ARCH). The stability

condition for this equation is �1 � 1, just as in the usual AR(1) model. When �1 	 0,
the squared errors contain (positive) serial correlation even though the ut themselves
do not.

What implications does (12.50) have for OLS? Since we began by assuming the
Gauss-Markov assumptions hold, OLS is BLUE. Further, even if ut is not normally dis-
tributed, we know that the usual OLS test statistics are asymptotically valid under
Assumptions TS.1
 through TS.5
, which are satisfied by static and distributed lag mod-
els with ARCH errors.

If OLS still has desirable properties under ARCH, why should we care about ARCH
forms of heteroskedasticity in static and distributed lag models? We should be con-
cerned for two reasons. First, it is possible to get consistent (but not unbiased) estima-
tors of the �j that are asymptotically more efficient than the OLS estimators. A weighted
least squares procedure, based on estimating (12.50), will do the trick. A maximum
likelihood procedure also works under the assumption that the errors ut have a condi-
tional normal distribution. Second, economists in various fields have become interested
in dynamics in the conditional variance. Engle’s orginal application was to the variance
of United Kingdom inflation, where he found that a larger magnitude of the error in the
previous time period (larger ut

2
�1) was associated with a larger error variance in the cur-

rent period. Since variance is often used to measure volatility, and volatility is a key ele-
ment in asset pricing theories, ARCH models have become important in empirical
finance.

ARCH models also apply when there are dynamics in the conditional mean. Suppose
we have the dependent variable, yt, a contemporaneous exogenous variable, zt, and

E(yt�zt,yt�1,zt�1,yt�2, …) � �0 � �1zt � �2yt�1 � �3zt�1,

so that at most one lag of y and z appears in the dynamic regression. The typical
approach is to assume that Var(yt�zt,yt�1,zt�1,yt�2, …) is constant, as we discussed in
Chapter 11. But this variance could follow an ARCH model:

Var(yt�zt,yt�1,zt�1,yt�2, …) � Var(ut�zt,yt�1,zt�1,yt�2, …)

� �0 � �1ut
2
�1,
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where ut � yt � E(yt�zt,yt�1,zt�1,yt�2, …). As we know from Chapter 11, the presence
of ARCH does not affect consistency of OLS, and the usual heteroskedasticity-robust
standard errors and test statistics are valid. (Remember, these are valid for any form of
heteroskedasticity, and ARCH is just one particular form of heteroskedasticity.)

If you are interested in the ARCH model and its extensions, see Bollerslev, Chou,
and Kroner (1992) and Bollerslev, Engle, and Nelson (1994) for recent surveys.

E X A M P L E  1 2 . 9
( A R C H  i n  S t o c k  R e t u r n s )

In Example 12.8, we saw that there was heteroskedasticity in weekly stock returns. This het-
eroskedasticity is actually better characterized by the ARCH model in (12.50). If we com-
pute the OLS residuals from (12.47), square these, and regress them on the lagged squared
residual, we obtain

ût
2 �(2.95)�(.337)ût

2
�1 � residualt

ût
2 �(0.44)�(.036)ût

2
�1 � residualt

n � 688, R2 � .114.

(12.51)

The t statistic on û2
t�1 is over nine, indicating strong ARCH. As we discussed earlier, a larger

error at time t � 1 implies a larger variance in stock returns today.
It is important to see that, while the squared OLS residuals are autocorrelated, the OLS

residuals themselves are not (as is consistent with the EMH). Regressing ût on ût�1 gives
�̂ � .0014 with t�̂ � .038.

Heteroskedasticity and Serial Correlation in Regression
Models

Nothing rules out the possibility of both heteroskedasticity and serial correlation being
present in a regression model. If we are unsure, we can always use OLS and compute
fully robust standard errors, as described in Section 12.5.

Much of the time serial correlation is viewed as the most important problem, because
it usually has a larger impact on standard errors and the efficiency of estimators than
does heteroskedasticity. As we concluded in Section 12.2, obtaining tests for serial cor-
relation that are robust to arbitrary heteroskedasticity is fairly straightforward. If we
detect serial correlation using such a test, we can employ the Cochrane-Orcutt transfor-
mation [see equation (12.32)] and, in the transformed equation, use heteroskedasticity-
robust standard errors and test statistics. Or, we can even test for heteroskedasticity in
(12.32) using the Breusch-Pagan or White tests.

Alternatively, we can model heteroskedasticity and serial correlation, and correct
for both through a combined weighted least squares AR(1) procedure. Specifically, con-
sider the model
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yt � �0 � �1xt1 � … � �k xtk � ut

ut � ��htvt (12.52)

vt � �vt�1 � et, ��� � 1,

where the explanatory variables X are independent of et for all t, and ht is a function of
the xtj. The process {et} has zero mean, constant variance �e

2, and is serially uncorre-
lated. Therefore, {vt} satisfies a stable AR(1) process. Suppressing the conditioning on
the explanatory variables, we have

Var(ut) � �2
vht,

where �2
v � �e

2/(1 � �2). But vt � ut /��ht is homoskedastic and follows a stable AR(1)
model. Therefore, the transformed equation

yt/��ht � �0(1/��ht) � �1(xt1/��ht) � … � �k(xtk/��ht) � vt (12.53)

has AR(1) errors. Now, if we have a particular kind of heteroskedasticity in mind—that
is, we know ht—we can estimate (12.52) using standard CO or PW methods.

In most cases, we have to estimate ht first. The following method combines the
weighted least squares method from Section 8.4 with the AR(1) serial correlation cor-
rection from Section 12.3.

FEASIBLE GLS WITH HETEROSKEDASTICITY AND AR(1) SERIAL CORRELATION:

(i) Estimate (12.52) by OLS and save the residuals, ût.
(ii) Regress log(û t

2) on xt1, …, xtk (or on ŷt, ŷt
2) and obtain the fitted values, say ĝt.

(iii) Obtain the estimates of ht: ĥt � exp(ĝt).
(iv) Estimate the transformed equation

ĥt
�1/2yt � ĥt

�1/2�0 � �1 ĥt
�1/2xt1 � … � �k ĥt

�1/2xtk � errort (12.54)

by standard Cochrane-Orcutt or Prais-Winsten methods.

These feasible GLS estimators are asymptotically efficient. More importantly, all
standard errors and test statistics from the CO or PW methods are asymptotically valid.

SUMMARY

We have covered the important problem of serial correlation in the errors of multiple
regression models. Positive correlation between adjacent errors is common, especially
in static and finite distributed lag models. This causes the usual OLS standard errors and
statistics to be misleading (although the �̂j can still be unbiased, or at least consistent).
Typically, the OLS standard errors underestimate the true uncertainty in the parameter
estimates.

The most popular model of serial correlation is the AR(1) model. Using this as the
starting point, it is easy to test for the presence of AR(1) serial correlation using the
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OLS residuals. An asymptotically valid t statistic is obtained by regressing the OLS
residuals on the lagged residuals, assuming the regressors are strictly exogenous and a
homoskedasticity assumption holds. Making the test robust to heteroskedasticity is sim-
ple. The Durbin-Watson statistic is available under the classical linear model assump-
tions, but it can lead to an inconclusive outcome, and it has little to offer over the t test.

For models with a lagged dependent variable, or other nonstrictly exogenous regres-
sors, the standard t test on ût�1 is still valid, provided all independent variables are
included as regressors along with ût�1. We can use an F or an LM statistic to test for
higher order serial correlation.

In models with strictly exogenous regressors, we can use a feasible GLS proce-
dure—Cochrane-Orcutt or Prais-Winsten—to correct for AR(1) serial correlation. This
gives estimates that are different from the OLS estimates: the FGLS estimates are
obtained from OLS on quasi-differenced variables. All of the usual test statistics from
the transformed equation are asymptotically valid. Almost all regression packages have
built-in features for estimating models with AR(1) errors.

Another way to deal with serial correlation, especially when the strict exogeneity
assumption might fail, is to use OLS but to compute serial correlation-robust standard
errors (that are also robust to heteroskedasticity). Many regression packages follow a
method suggested by Newey and West (1987); it is also possible to use standard regres-
sion packages to obtain one standard error at a time.

Finally, we discussed some special features of heteroskedasticity in time series
models. As in the cross-sectional case, the most important kind of heteroskedasticity is
that which depends on the explanatory variables; this is what determines whether the
usual OLS statistics are valid. The Breusch-Pagan and White tests covered in Chapter
8 can be applied directly, with the caveat that the errors should not be serially corre-
lated. In recent years, economists—especially those who study the financial markets—
have become interested in dynamic forms of heteroskedasticity. The ARCH model is
the leading example.

KEY TERMS
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Autoregressive Conditional
Heteroskedasticity (ARCH)

Breusch-Godfrey Test
Cochrane-Orcutt (CO) Estimation 
Durbin-Watson (DW) Statistic 

Feasible GLS (FGLS)
Prais-Winsten (PW) Estimation 
Quasi-Differenced Data
Serial Correlation-Robust Standard Error
Weighted Least Squares

PROBLEMS

12.1 When the errors in a regression model have AR(1) serial correlation, why do the
OLS standard errors tend to underestimate the sampling variation in the �̂j? Is it always
true that the OLS standard errors are too small?

12.2 Explain what is wrong with the following statement: “The Cochrane-Orcutt and
Prais-Winsten methods are both used to obtain valid standard errors for the OLS esti-
mates.”
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12.3 In Example 10.6, we estimated a variant on Fair’s model for predicting presiden-
tial election outcomes in the United States.

(i) What argument can be made for the error term in this equation being
serially uncorrelated. (Hint: How often do presidential elections take
place?)

(ii) When the OLS residuals from (10.23) are regressed on the lagged resid-
uals, we obtain �̂ � �.068 and se(�̂) � .240. What do you conclude
about serial correlation in the ut?

(iii) Does the small sample size in this application worry you in testing for
serial correlation?

12.4 True or False: “If the errors in a regression model contain ARCH, they must be
serially correlated.”

12.5 (i) In the enterprise zone event study in Problem 10.11, a regression of the OLS
residuals on the lagged residuals produces �̂ � .841 and se(�̂) � .053. What
implications does this have for OLS?

(ii) If you want to use OLS but also want to obtain a valid standard error for
the EZ coefficient, what would you do?

12.6 In Example 12.8, we found evidence of heteroskedasticity in ut in equation
(12.47). Thus, we compute the heteroskedasticity-robust standard errors (in [�]) along
with the usual standard errors:

retûrnt �(.180)�(.059)returnt�1

retûrnt �(.081)�(.038)returnt�1

retûrnt �[.085]�[.069]returnt�1

n � 689, R2 � .0035, R̄2 � .0020.

What does using the heteroskedasticity-robust t statistic do to the significance of
returnt�1?

COMPUTER EXERCISES

12.7 In Example 11.6, we estimated a finite DL model in first differences:


gfrt � �0 � �0
pet � �1
pet�1 � �2
pet�2 � ut.

Use the data in FERTIL3.RAW to test whether there is AR(1) serial correlation in the
errors.

12.8 (i) Using the data in WAGEPRC.RAW, estimate the distributed lag model from
Problem 11.5. Use regression (12.14) to test for AR(1) serial correlation.

(ii) Reestimate the model using iterated Cochrane-Orcutt estimation. What
is your new estimate of the long-run propensity?

(iii) Using iterated CO, find the standard error for the LRP. (This requires
you to estimate a modified equation.) Determine whether the estimated
LRP is statistically different from one at the 5% level.
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12.9 (i) In part (i) of Problem 11.13, you were asked to estimate the accelerator model
for inventory investment. Test this equation for AR(1) serial correlation.

(ii) If you find evidence of serial correlation, reestimate the equation by
Cochrane-Orcutt and compare the results.

12.10 (i) Use NYSE.RAW to estimate equation (12.48). Let ĥt be the fitted values
from this equation (the estimates of the conditional variance). How many ĥt

are negative?
(ii) Add returnt

2
�1 to (12.48) and again compute the fitted values, ĥt. Are

any ĥt negative?
(iii) Use the ĥt from part (ii) to estimate (12.47) by weighted least squares

(as in Section 8.4). Compare your estimate of �1 with that in equation
(11.16). Test H0: �1 � 0 and compare the outcome when OLS is used.

(iv) Now, estimate (12.47) by WLS, using the estimated ARCH model in
(12.51) to obtain the ĥt. Does this change your findings from part (iii)?

12.11 Consider the version of Fair’s model in Example 10.6. Now, rather than predict-
ing the proportion of the two-party vote received by the Democrat, estimate a linear
probability model for whether or not the Democrat wins.

(i) Use the binary variable demwins in place of demvote in (10.23) and
report the results in standard form. Which factors affect the probability
of winning? Use the data only through 1992.

(ii) How many fitted values are less than zero? How many are greater than
one?

(iii) Use the following prediction rule: if demŵins 	 .5, you predict the
Democrat wins; otherwise, the Republican wins. Using this rule, deter-
mine how many of the 20 elections are correctly predicted by the
model.

(iv) Plug in the values of the explanatory variables for 1996. What is the
predicted probability that Clinton would win the election? Clinton did
win; did you get the correct prediction?

(v) Use a heteroskedasticity-robust t test for AR(1) serial correlation in the
errors. What do you find?

(vi) Obtain the heteroskedasticity-robust standard errors for the estimates in
part (i). Are there notable changes in any t statistics?

12.12 (i) In Problem 10.13, you estimated a simple relationship between consumption
growth and growth in disposable income. Test the equation for AR(1) serial
correlation (using CONSUMP.RAW).

(ii) In Problem 11.14, you tested the permanent income hypothesis by
regressing the growth in consumption on one lag. After running this
regression, test for heteroskedasticity by regressing the squared residu-
als on gct�1 and gc2

t�1. What do you conclude?
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Up until now, we have covered multiple regression analysis using pure cross-
sectional or pure time series data. While these two cases arise often in applica-
tions, data sets that have both cross-sectional and time series dimensions are

being used more and more often in empirical research. Multiple regression methods can
still be used on such data sets. In fact, data with cross-sectional and time series aspects
can often shed light on important policy questions. We will see several examples in this
chapter.

We will analyze two kinds of data sets in this chapter. An independently pooled
cross section is obtained by sampling randomly from a large population at different
points in time (usually, but not necessarily, different years). For instance, in each year,
we can draw a random sample on hourly wages, education, experience, and so on, from
the population of working people in the United States. Or, in every other year, we draw
a random sample on the selling price, square footage, number of bathrooms, and so on,
of houses sold in a particular metropolitan area. From a statistical standpoint, these data
sets have an important feature: they consist of independently sampled observations.
This was also a key aspect in our analysis of cross-sectional data: among other things,
it rules out correlation in the error terms for different observations.

An independently pooled cross section differs from a single random sample in that
sampling from the population at different points in time likely leads to observations
that are not identically distributed. For example, distributions of wages and education
have changed over time in most countries. As we will see, this is easy to deal with in
practice by allowing the intercept in a multiple regression model, and in some cases
the slopes, to change over time. We cover such models in Section 13.1. In Section 13.2,
we discuss how pooling cross sections over time can be used to evaluate policy
changes.

A panel data set, while having both a cross-sectional and a time series dimension,
differs in some important respects from an independently pooled cross section. To col-
lect panel data—sometimes called longitudinal data—we follow (or attempt to fol-
low) the same individuals, families, firms, cities, states, or whatever, across time. For
example, a panel data set on individual wages, hours, education, and other factors is
collected by randomly selecting people from a population at a given point in time.
Then, these same people are reinterviewed at several subsequent points in time. This
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gives us data on wages, hours, education, and so on, for the same group of people in
different years.

Panel data sets are fairly easy to collect for school districts, cities, counties, states,
and countries, and policy analysis is greatly enhanced by using panel data sets; we will
see some examples in the following discussion. For the econometric analysis of panel
data, we cannot assume that the observations are independently distributed across time.
For example, unobserved factors (such as ability) that affect someone’s wage in 1990
will also affect that person’s wage in 1991; unobserved factors that affect a city’s crime
rate in 1985 will also affect that city’s crime rate in 1990. For this reason, special mod-
els and methods have been developed to analyze panel data. In Sections 13.3, 13.4, and
13.5, we describe the straightforward method of differencing to remove time-constant,
unobserved attributes of the units being studied. Because panel data methods are some-
what more advanced, we will rely mostly on intuition in describing the statistical prop-
erties of the estimation procedures, leaving details to the chapter appendix. We follow
the same strategy in Chapter 14, which covers more complicated panel data methods.

13.1 POOLING INDEPENDENT CROSS SECTIONS 
ACROSS TIME

Many surveys of individuals, families, and firms are repeated at regular intervals, often
each year. An example is the Current Population Survey (or CPS), which randomly
samples households each year. (See, for example, CPS78_85.RAW, which contains data
from the 1978 and 1985 CPS.) If a random sample is drawn at each time period, pool-
ing the resulting random samples gives us an independently pooled cross section.

One reason for using independently pooled cross sections is to increase the sample
size. By pooling random samples drawn from the same population, but at different
points in time, we can get more precise estimators and test statistics with more power.
Pooling is helpful in this regard only insofar as the relationship between the dependent
variable and at least some of the independent variables remains constant over time.

As mentioned in the introduction, using pooled cross sections raises only minor sta-
tistical complications. Typically, to reflect the fact that the population may have differ-
ent distributions in different time periods, we allow the intercept to differ across
periods, usually years. This is easily accomplished by including dummy variables for
all but one year, where the earliest year in the sample is usually chosen as the base year.
It is also possible that the error variance changes over time, something we discuss later.

Sometimes, the pattern of coefficients on the year dummy variables is itself of inter-
est. For example, a demographer may be interested in the following question: After con-
trolling for education, has the pattern of fertility among women over age 35 changed
between 1972 and 1984? The following example illustrates how this question is simply
answered by using multiple regression analysis with year dummy variables.

E X A M P L E  1 3 . 1
( W o m e n ’ s  F e r t i l i t y  O v e r  T i m e )

The data set in FERTIL1.RAW, which is similar to that used by Sander (1994), comes from
the National Opinion Research Center’s General Social Survey for the even years from 1972
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to 1984, inclusively. We use these data to estimate a model explaining the total number of
kids born to a woman (kids).

One question of interest is: After controlling for other observable factors, what has hap-
pened to fertility rates over time? The factors we control for are years of education, age,
race, region of the country where living at age 16, and living environment at age 16. The
estimates are given in Table 13.1.

The base year is 1972. The coefficients on the year dummy variables show a sharp drop
in fertility in the early 1980s. For example, the coefficient on y82 implies that, holding edu-
cation, age, and other factors fixed, a woman had on average .52 less children, or about one-
half a child, in 1982 than in 1972. This is a very large drop: holding educ, age, and the other
factors fixed, 100 women in 1982 are predicted to have about 52 fewer children than 100
comparable women in 1972. Since we are controlling for education, this drop is separate
from the decline in fertility that is due to the increase in average education levels. (The aver-
age years of education are 12.2 for 1972 and 13.3 for 1984.) The coefficients on y82 and
y84 represent drops in fertility for reasons that are not captured in the explanatory variables.

Given that the 1982 and 1984 year dummies are individually quite significant, it is not
surprising that as a group the year dummies are jointly very significant: the R-squared for
the regression without the year dummies is .1019, and this leads to F6,1111 � 5.87 and
p-value � 0.

Women with more education have fewer children, and the estimate is very statistically
significant. Other things being equal, 100 women with a college education will have about
51 fewer children on average than 100 women with only a high school education: .128(4)
� .512. Age has a diminishing effect on fertility. (The turning point in the quadratic is at
about age � 46, by which time most women have finished having children.)

The model estimated in Table 13.1 assumes that the effect of each explanatory variable,
particularly education, has remained constant. This may or may not be true; you will be
asked to explore this issue in Problem 13.7.

Finally, there may be heteroskedasticity in the error term underlying the estimated equa-
tion. This can be dealt with using the methods in Chapter 8. There is one interesting dif-
ference here: now, the error variance may change over time even if it does not change with
the values of educ, age, black, and so on. The heteroskedasticity-robust standard errors and
test statistics are nevertheless valid. The Breusch-Pagan test would be obtained by regress-
ing the squared OLS residuals on all of the independent variables in Table 13.1, including
the year dummies. (For the special case of the White statistic, the fitted values kîds and the
squared fitted values are used as the independent variables, as always.) A weighted least
squares procedure should account for variances that possibly change over time. In the pro-
cedure discussed in Section 8.4, year dummies would be included in equation (8.32).

We can also interact a year dummy
variable with key explanatory variables to
see if the effect of that variable has
changed over a certain time period. The
next example examines how the return to
education and the gender gap have
changed from 1978 to 1985.
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In reading Table 13.1, someone claims that, if everything else is
equal in the table, a black woman is expected to have one more
child than a nonblack woman. Do you agree with this claim?
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Table 13.1

Determinants of Women’s Fertility

Dependent Variable: kids

Independent Variables Coefficients Standard Errors

educ �.128 .018

age .532 .138

age2 �.0058 .0016

black 1.076 .174

east .217 .133

northcen .363 .121

west .198 .167

farm �.053 .147

othrural �.163 .175

town .084 .124

smcity .212 .160

y74 .268 .173

y76 �.097 .179

y78 �.069 .182

y80 �.071 .183

y82 �.522 .172

y84 �.545 .175

constant �7.742 3.052

n � 1,129
R2 � .1295
R̄2 � .1162
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E X A M P L E  1 3 . 2
( C h a n g e s  i n  t h e  R e t u r n  t o  E d u c a t i o n  a n d  t h e  

G e n d e r  W a g e  G a p )

A log(wage) equation (where wage is hourly wage) pooled across the years 1978 (the base
year) and 1985 is

log(wage) � �0 � �0y85 � �1educ � �1y85�educ � �2exper
� �3exper2 � �4union � �5 female � �5y85�female � u,

(13.1)

where most explanatory variables should by now be familiar. The variable union is a dummy
variable equal to one if the person belongs to a union, and zero otherwise. The variable y85
is a dummy variable equal to one if the observation comes from 1985 and zero if it comes
from 1978. There are 550 people in the sample in 1978 and a different set of 534 people
in 1985.

The intercept for 1978 is �0, and the intercept for 1985 is �0 � �0. The return to edu-
cation in 1978 is �1, and the return to education in 1985 is �1 � �1. Therefore, �1 measures
how the return to another year of education has changed over the seven-year period.
Finally, in 1978, the log(wage) differential between women and men is �5; the differential
in 1985 is �5 � �5. Thus, we can test the null hypothesis that nothing has happened to the
gender differential over this seven-year period by testing H0: �5 � 0. The alternative that
the gender differential has been reduced is H1: �5 � 0. For simplicity, we have assumed that
experience and union membership have the same effect on wages in both time periods.

Before we present the estimates, there is one other issue we need to address; namely,
hourly wage here is in nominal (or current) dollars. Since nominal wages grow simply due
to inflation, we are really interested in the effect of each explanatory variable on real wages.
Suppose that we settle on measuring wages in 1978 dollars. This requires deflating 1985
wages to 1978 dollars. (Using the consumer price index for the 1997 Economic Report of
the President, the deflation factor is 107.6/65.2 � 1.65.) While we can easily divide each
1985 wage by 1.65, it turns out that this is not necessary, provided a 1985 year dummy is
included in the regression and log(wage) (as opposed to wage) is used as the dependent
variable. Using real or nominal wage in a logarithmic functional form only affects the coef-
ficient on the year dummy, y85. To see this, let P85 denote the deflation factor for 1985
wages (1.65, if we use the CPI). Then, the log of the real wage for each person i in the 1985
sample is

log(wagei/P85) � log(wagei) � log(P85).

Now, while wagei differs across people, P85 does not. Therefore, log(P85) will be absorbed
into the intercept for 1985. (This conclusion would change if, for example, we used a dif-
ferent price index for people in various parts of the country.) The bottom line is that, for
studying how the return to education or the gender gap has changed, we do not need to
turn nominal wages into real wages in equation (13.1). Problem 13.8 asks you to verify this
for the current example.

If we forget to allow different intercepts in 1978 and 1985, the use of nominal wages
can produce seriously misleading results. If we use wage rather than log(wage) as the
dependent variable, it is important to use the real wage and to include a year dummy.
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The previous discussion generally holds when using dollar values for either the depen-
dent or independent variables. Provided the dollar amounts appear in logarithmic form and
dummy variables are used for all time periods (except, of course, the base period), the use
of aggregate price deflators will only affect the intercepts; none of the slope estimates will
change.

Now, we use the data in CPS78_85.RAW to estimate the equation:

log(ŵage) �(.459)�(.118)y85 �(.0747)educ �(.0185)y85�educ
log(ŵage) �(.093)�(.123)y85 �(.0067)educ �(.0094)y85�educ

�(.0296)exper �(.00040)exper2 �(.202)union
�(.0036)exper �(.00008)exper2 �(.030)union (13.2)

�(.317)female �(.085)y85�female
�(.037)female �(.051)y85�female

n � 1,084, R2 � .426, R̄2 � .422.

The return to education in 1978 is estimated to be about 7.5%; the return to education in
1985 is about 1.85 percentage points higher, or about 9.35%. Because the t statistic on
the interaction term is .0185/.0094 � 1.97, the difference in the return to education is sta-
tistically significant at the 5% level against a two-sided alternative.

What about the gender gap? In 1978, other things being equal, a woman earned about
31.7% less than a man (27.2% is the more accurate estimate). In 1985, the gap in
log(wage) is �.317 � .085 � �.232. Therefore, the gender gap appears to have fallen
from 1978 to 1985 by about 8.5 percentage points. The t statistic on the interaction term
is about 1.67, which means it is significant at the 5% level against the positive one-sided
alternative.

What happens if we interact all independent variables with y85 in equation (13.2)?
This is identical to estimating two separate equations, one for 1978 and one for 1985.
Sometimes this is desirable. For example, in Chapter 7, we discussed a study by
Krueger (1993), where he estimated the return to using a computer on the job. Krueger
estimates two separate equations, one using the 1984 CPS and the other using the 1989
CPS. By comparing how the return to education changes across time and whether or not
computer usage is controlled for, he estimates that one-third to one-half of the observed
increase in the return to education over the five-year period can be attributed to in-
creased computer usage. [See Tables VIII and IX in Krueger (1993).]

The Chow Test for Structural Change Across Time

In Chapter 7, we discussed how the Chow test—which is simply an F test—can be used
to determine whether a multiple regression function differs across two groups. We can
apply that test to two different time periods as well. One form of the test obtains the
sum of squared residuals from the pooled estimation as the restricted SSR. The unre-
stricted SSR is the sum of the SSRs for the two separately estimated time periods. The
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mechanics of computing the statistic are exactly as they were in Section 7.4. A
heteroskedasticity-robust version is also available (see Section 8.2).

Example 13.2 suggests another way to compute the Chow test for two time periods
by interacting each variable with a year dummy for one of the two years and testing for
joint significance of the year dummy and all of the interaction terms. Since the inter-
cept in a regression model often changes over time (due to, say, inflation in the hous-
ing price example), this full-blown Chow test can detect such changes. It is usually
more interesting to allow for an intercept difference and then to test whether certain
slope coefficients change over time (as we did in Example 13.2).

A Chow test can be computed for more than two time periods, but the calculations
can be tedious. Usually, after an allowance for intercept difference, certain slope coef-
ficients are tested for constancy by interacting the variable of interest with year dum-
mies. (See Problems 13.7 and 13.8 for examples.)

13.2 POLICY ANALYSIS WITH POOLED CROSS SECTIONS

Pooled cross sections can be very useful for evaluating the impact of a certain event or
policy. The following example of an event study shows how two cross-sectional data
sets, collected before and after the occurrence of an event, can be used to determine the
effect on economic outcomes.

E X A M P L E  1 3 . 3
( E f f e c t  o f  a  G a r b a g e  I n c i n e r a t o r ’ s  L o c a t i o n  

o n  H o u s i n g  P r i c e s )

Kiel and McClain (1995) studied the effect that a new garbage incinerator had on housing
values in North Andover, Massachusetts. They used many years of data and a fairly compli-
cated econometric analysis. We will use two years of data and some simplified models, but
our analysis is similar.

The rumors that a new incinerator would be built in North Andover began after 1978,
and construction began in 1981. The incinerator was expected to be in operation soon after
the start of construction; the incinerator actually began operating in 1985. We will use data
on prices of houses that sold in 1978 and another sample on those that sold in 1981. The
hypothesis is that the price of houses located near the incinerator would fall below the price
of more distant houses.

For illustration, we define a house to be near the incinerator if it is within three miles.
[In the problems, you are instead asked to use the actual distance from the house to the
incinerator, as in Kiel and McClain (1995).] We will start by looking at the dollar effect on
housing prices. This requires us to measure price in constant dollars. We measure all hous-
ing prices in 1978 dollars, using the Boston housing price index. Let rprice denote the house
price in real terms.

A naive analyst would use only the 1981 data and estimate a very simple model:

rprice � �0 � �1nearinc � u, (13.3)
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where nearinc is a binary variable equal to one if the house is near the incinerator, and zero
otherwise. Estimating this equation using the data in KIELMC.RAW gives

rprîce �(101,307.5)�(30,688.27)nearinc
rprîce �00(3,093.0)�0(5,827.71)nearinc

n � 142, R2 � .165.

(13.4)

Since this is a simple regression on a single dummy variable, the intercept is the average
selling price for homes not near the incinerator, and the coefficient on nearinc is the dif-
ference in the average selling price between homes near the incinerator and those that are
not. The estimate shows that the average selling price for the former group was
$30,688.27 less than for the latter group. The t statistic is greater than five in absolute
value, so we can strongly reject the hypothesis that the average value for homes near to
and far from the incinerator are not the same.

Unfortunately, equation (13.4) does not imply that the siting of the incinerator is caus-
ing the lower housing values. In fact, if we run the same regression for 1978 (before the
incinerator was even rumored), we obtain

rprîce �(82,517.23)�(18,824.37)nearinc
rprîce �0(2,653.79)�0(5,827.71)nearinc

n � 179, R2 � .082.

(13.5)

Therefore, even before there was any talk of an incinerator, the average value of a home
near the site was $18,824.37 less than the average value of a home not near the site
($82,517.23); the difference is statistically significant, as well. This is consistent with the
view that the incinerator was built in an area with lower housing values.

How, then, can we tell whether building a new incinerator depresses housing values?
The key is to look at how the coefficient on nearinc changed between 1978 and 1981. The
difference in average housing value was much larger in 1981 than in 1978 ($30,688.27 ver-
sus $18,824.37), even as a percentage of the average value of homes not near the incin-
erator site. The difference in the two coefficients on nearinc was

�̂1 � �30,688.27 � (�18,824.37) � �11,863.9.

This is our estimate of the effect of the incinerator on values of homes near the incinerator
site. In empirical economics, �̂1 has become known as the difference-in-differences esti-
mator because it can be expressed as

�̂1 � (�rprice81,nr � �rprice81,fr) � (�rprice78,nr � �rprice78,fr), (13.6)

where “nr” stands for “near the incinerator site” and “fr” stands for “farther away from
the site.” In other words, �̂1 is the difference over time in the average difference of hous-
ing prices in the two locations.

To test whether �̂1 is statistically different from zero, we need to find its standard error
by using a regression analysis. In fact, �̂1 can be obtained by estimating

rprice � �0 � �0y81 � �1nearinc � �1y81�nearinc � u, (13.7)
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using the data pooled over both years. The intercept, �0, is the average price of a home not
near the incinerator in 1978. The parameter, �0 captures changes in all housing values in
North Andover from 1978 to 1981. [A comparison of equations (13.4) and (13.5) showed
that housing values in North Andover, relative to the Boston housing price index, increased
sharply over this period.] The coefficient on nearinc, �1, measures the location effect that
is not due to the presence of the incinerator: as we saw in equation (13.5), even in 1978,
homes near the incinerator site sold for less than homes farther away from the site.

The parameter of interest is on the interaction term y81�nearinc: �1 measures the
decline in housing values due to the new incinerator, provided we assume that houses both
near and far from the site did not appreciate at different rates for other reasons.

The estimates of equation (13.7) are given in column (1) of Table 13.2.

Table 13.2

Dependent Variable: rprice

Independent Variable (1) (2) (3)

constant 82,517.23 89,116.54 13,807.67
(2,726.91) (2,406.05) (11,166.59)

y81 18,790.29 21,321.04 13,928.48
(4,050.07) (3,443.63) (2,798.75)

nearinc �18,824.37 9,397.94 3,780.34
(4,875.32) (4,812.22) (4,453.42)

y81�nearinc �11,863.90 �21,920.27 �14,177.93
(7,456.65) (6,359.75) (4,987.27)

Other Controls No age, age2 Full Set

Observations .321 .321 .321
R-Squared .174 .414 .660

The only number we could not obtain from equations (13.4) and (13.5) is the standard error
of �̂1. The t statistic on �̂1 is about �1.59, which is marginally significant against a one-
sided alternative (p-value � .057).

Kiel and McClain (1995) included various housing characteristics in their analysis of the
incinerator siting. There are two good reasons for doing this. First, the kinds of houses sell-
ing in 1981 might have been systematically different than those selling in 1978; if so, it is
important to control for characteristics that might have been different. But just as impor-
tant, even if the average housing characteristics are the same for both years, including them
can greatly reduce the error variance, which can then shrink the standard error of �̂1. (See
Section 6.3 for discussion.) In column (2), we control for the age of the houses, using a qua-
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dratic. This substantially increases the R-squared (by reducing the residual variance). The
coefficient on y81�nearinc is now much larger in magnitude, and its standard error is lower.

In addition to the age variables in column (2), column (3) controls for distance to the
interstate in feet (intst), land area in feet (land ), house area in feet (area), number of rooms
(rooms), and number of baths (baths). This produces an estimate on y81�nearinc closer to
that without any controls, but it yields a much smaller standard error: the t statistic for �̂1

is about �2.84. Therefore, we find a much more significant effect in column (3) than in col-
umn (1). The column (3) estimates are preferred because they control for the most factors
and have the smallest standard errors (except in the constant, which is not important here).
The fact that nearinc has a much smaller coefficient and is insignificant in column (3) indi-
cates that the characteristics included in column (3) largely capture the housing character-
istics that are most important for determining housing prices.

For the purpose of introducing the method, we used the level of real housing prices in
Table 13.2. It makes more sense to use log(price) [or log(rprice)] in the analysis in order to
get an approximate percentage effect. The basic model becomes

log(price) � �0 � �0y81 � �1nearinc � �1y81�nearinc � u. (13.8)

Now, 100��1 is the approximate percentage reduction in housing value due to the inciner-
ator. [Just as in Example 13.2, using log(price) versus log(rprice) only affects the coefficient
on y81.] Using the same 321 pooled observations gives

log(pr̂ice) �(11.29)�(.457)y81 �(.340)nearinc �(.063)y81�nearinc
log(pr̂ice) �0(0.31)�(.045)y81 �(.055)nearinc �(.083)y81�nearinc

n � 321, R2 � .409.

(13.9)

The coefficient on the interaction term implies that, because of the new incinerator, houses
near the incinerator lost about 6.3% in value. However, this estimate is not statistically dif-
ferent from zero. But when we use a full set of controls, as in column (3) of Table 13.2 (but
with intst, land, and area appearing in logarithmic form), the coefficient on y81�nearinc
becomes �.132 with a t statistic of about �2.53. Again, controlling for other factors turns
out to be important. Using the logarithmic form, we estimate that houses near the incin-
erator were devalued by about 13.2%.

The methodology applied to the previous example has numerous applications, espe-
cially when the data arise from a natural experiment (or a quasi-experiment). A nat-
ural experiment occurs when some exogenous event—often a change in government
policy—changes the environment in which individuals, families, firms, or cities oper-
ate. A natural experiment always has a control group, which is not affected by the pol-
icy change, and a treatment group, which is thought to be affected by the policy change.
Unlike with a true experiment, where treatment and control groups are randomly and
explicitly chosen, the control and treatment groups in natural experiments arise from
the particular policy change. In order to control for systematic differences between the
control and treatment groups, we need two years of data, one before the policy change

Chapter 13 Pooling Cross Sections Across Time. Simple Panel Data Methods

417

d  7/14/99 7:25 PM  Page 417



and one after the change. Thus, our sample is usefully broken down into four groups:
the control group before the change, the control group after the change, the treatment
group before the change, and the treatment group after the change.

Call A the control group and B the treatment group, letting dB equal unity for those
in the treatment group B, and zero otherwise. Then, letting d2 denote a dummy variable
for the second (postpolicy change) time period, the equation of interest is

y � �0 � �0d2 � �1dB � �1d2�dB � other factors, (13.10)

where y is the outcome variable of interest. As in Example 13.3, �1 measures the effect
of the policy. Without other factors in the regression, �̂1 will be the difference-in-
differences estimator:

�̂1 � (ȳ2,B � ȳ2,A) � (ȳ1,B � ȳ1,A), (13.11)

where the bar denotes average, the first subscript denotes the year, and the second sub-
script denotes the group. When explanatory variables are added to equation (13.10) (to
control for the fact that the populations sampled may differ systematically over the two
periods), the OLS estimate of �1 no longer has the simple form of (13.11), but its inter-
pretation is similar.

E X A M P L E  1 3 . 4
( E f f e c t  o f  W o r k e r  C o m p e n s a t i o n  L a w s  o n  D u r a t i o n )

Meyer, Viscusi, and Durbin (1995) (hereafter, MVD) studied the length of time (in weeks)
that an injured worker receives workers’ compensation. On July 15, 1980, Kentucky raised
the cap on weekly earnings that were covered by workers’ compensation. An increase in
the cap has no effect on the benefit for low-income workers, but it makes it less costly for
a high-income worker to stay on workers’ compensation. Therefore, the control group is
low-income workers, and the treatment group is high-income workers; high-income work-
ers are defined as those who are subject to the prepolicy change cap. Using random sam-
ples both before and after the policy change, MVD were able to test whether more
generous workers’ compensation causes people to stay out of work longer (everything else
fixed). They started with a difference-in-differences analysis, using log(durat) as the depen-
dent variable. Let afchnge be the dummy variable for observations after the policy change
and highearn the dummy variable for high earners. The estimated equation, with standard
errors in parentheses, is

log(d̂urat) �(1.126)�(.0077)afchnge �(.256)highearn
log(d̂urat) �(0.031)�(.0447)afchnge �(.047)highearn

�(.191)afchnge�highearn
�(.069)afchnge�highearn

n � 5,626, R2 � .021.

Therefore, �̂1 � .191 (t � 2.77), which implies that the average length of time on workers’
compensation increased by about 19% due to the higher earnings cap. The coefficient on
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afchnge is small and statistically insignificant: as is expected, the increase in the earnings
cap has no effect on duration for low-income workers.

This is a good example of how we can get a fairly precise estimate of the effect of a
policy change, even though we cannot explain much of the variation in the dependent vari-
able. The dummy variables in (13.12) explain only 2.1% of the variation in log(durat). This
makes sense: there are clearly many factors, including severity of the injury, that affect how
long someone is on workers’ compensation. Fortunately, we have a very large sample size,
and this allows us to get a significant t statistic.

MVD also added a variety of controls for gender, marital status, age, industry, and type
of injury. This allows for the fact that the kinds of people and types of injuries differ sys-
tematically in the two years. Controlling for these factors turns out to have little effect on
the estimate of �1. (See Problem 13.10.)

Sometimes, the two groups consist of people living in two neighboring states in the
United States. For example, to assess the impact of changing cigarette taxes on cigarette

consumption, we can obtain random sam-
ples from two states for two years. In State
A, the control group, there was no change
in the cigarette tax. In State B, the tax
increased (or decreased) between the two
years. The outcome variable would be a

measure of cigarette consumption, and equation (13.10) can be estimated to determine
the effect of the tax on cigarette consumption.

For an interesting survey on natural experiment methodology and several additional
examples, see Meyer (1995).

13.3 TWO-PERIOD PANEL DATA ANALYSIS

We now turn to the analysis of the simplest kind of panel data: for a cross section of
individuals, schools, firms, cities, or whatever, we have two years of data; call these
t � 1 and t � 2. These years need not be adjacent, but t � 1 corresponds to the earlier
year. For example, the file CRIME2.RAW contains data on (among other things) crime
and unemployment rates for 46 cities for 1982 and 1987. Therefore, t � 1 corresponds
to 1982, and t � 2 corresponds to 1987.

What happens if we use the 1987 cross section and run a simple regression of
crmrte on unem? We obtain

crm̂rte �(128.38)�(4.16)unem
crm̂rte �0(20.76)�(3.42)unem

n � 46, R2 � .033.

If we interpret the estimated equation causally, it implies that an increase in the unem-
ployment rate lowers the crime rate. This is certainly not what we expect. The coeffi-
cient on unem is not statistically significant at standard significance levels: at best, we
have found no link between crime and unemployment rates.
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What do you make of the coefficient and t statistic on highearn in
equation (13.12)?
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As we have emphasized throughout this text, this simple regression equation likely
suffers from omitted variable problems. One possibile solution is to try to control for
more factors, such as age distribution, gender distribution, education levels, law
enforcement efforts, and so on, in a multiple regression analysis. But many factors
might be hard to control for. In Chapter 9, we showed how including the crmrte from a
previous year—in this case, 1982—can help to control for the fact that different cities
have historically different crime rates. This is one way to use two years of data for esti-
mating a causal effect.

An alternative way to use panel data is to view the unobserved factors affecting the
dependent variable as consisting of two types: those that are constant and those that
vary over time. Letting i denote the cross-sectional unit and t the time period, we can
write a model with a single observed explanatory variable as

yit � �0 � �0d2t � �1xit � ai � uit, t � 1,2. (13.13)

In the notation yit, i denotes the person, firm, city, and so on, and t denotes the time
period. The variable d2t is a dummy variable that equals zero when t � 1 and one when
t � 2; it does not change across i, which is why it has no i subscript. Therefore, the
intercept for t � 1 is �0, and the intercept for t � 2 is �0 � �0. Just as in using inde-
pendently pooled cross sections, allowing the intercept to change over time is important
in most applications. In the crime example, secular trends in the United States will
cause crime rates in all U.S. cities to change, perhaps markedly, over a five-year period.

The variable ai captures all unobserved, time-constant factors that affect yit. (The
fact that ai has no t subscript tells us that it does not change over time.) Generically, ai

is called an unobserved effect. It is also common in applied work to find ai referred to
as a fixed effect, which helps us to remember that ai is fixed over time. The model in
(13.13) is called an unobserved effects model or a fixed effects model. In applications,
you might see ai referred to as unobserved heterogeneity as well (or individual het-
erogeneity, firm heterogeneity, city heterogeneity, and so on).

The error uit is often called the idiosyncratic error or time-varying error, because
it represents unobserved factors that change over time and affect yit. These are very
much like the errors in a straight time series regression equation.

A simple unobserved effects model for city crime rates for 1982 and 1987 is

crmrteit � �0 � �0d87t � �1unemit � ai � uit, (13.14)

where d87 is a dummy variable for 1987. Since i denotes different cities, we call ai an
unobserved city effect or a city fixed effect: it represents all factors affecting city crime
rates that do not change over time. Geographical features, such as the city’s location in
the United States, are included in ai. Many other factors may not be exactly constant,
but they might be roughly constant over a five-year period. These might include certain
demographic features of the population (age, race, and education). Different cities may
have their own methods for reporting crimes, and the people living in the cities might
have different attitudes toward crime; these are typically slow to change. For historical
reasons, cities can have very different crime rates, which are at least partially captured
by the unobserved effect ai.
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How should we estimate the parameter of interest, �1, given two years of panel data?
One possibility is to just pool the two years and use OLS, essentially as in Section 13.1.
This method has two drawbacks. The most important of these is that, in order for pooled
OLS to produce a consistent estimator of �1, we would have to assume that the unob-
served effect, ai, is uncorrelated with xit. We can easily see this by writing (13.13) as

yit � �0 � �0d2t � �1xit � vit, t � 1,2, (13.15)

where vit � ai � uit is often called the composite error. From what we know about OLS,
we must assume that vit is uncorrelated with xit, where t � 1 or 2, for OLS to consistently
estimate �1 (and the other parameters). This is true whether we use a single cross 

section or pool the two cross sections.
Therefore, even if we assume that the idio-
syncratic error uit is uncorrelated with xit,
pooled OLS is biased and inconsistent if ai

and xit are correlated. The resulting bias in
pooled OLS is sometimes called hetero-
geneity bias, but it is really just bias caused
from omitting a time-constant variable.

To illustrate what happens, we use the data in CRIME2.RAW to estimate (13.14) by
pooled OLS. Since there are 46 cities and two years for each city, there are 92 total
observations:

crm̂rte �(93.42)�(7.94)d87 �(0.427)unem
crm̂rte �(12.74)�(7.98)d87 �(1.188)unem

n � 92, R2 � .012.

(13.16)

(When reporting the estimated equation, we usually drop the i and t subscripts.) The
coefficient on unem, though positive in (13.16), has a very small t statistic. Thus, using
pooled OLS on the two years has not substantially changed anything from using a sin-
gle cross section. This is not surprising since using pooled OLS does not solve the omit-
ted variables problem. (The standard errors in this equation are incorrect because of the
serial correlation noted earlier, but we ignore this since pooled OLS is not the focus
here.)

In most applications, the main reason for collecting panel data is to allow for the
unobserved effect, ai, to be correlated with the explanatory variables. For example, in
the crime equation, we want to allow the unmeasured city factors in ai that affect the
crime rate to also be correlated with the unemployment rate. It turns out that this is sim-
ple to allow: because ai is constant over time, we can difference the data across the two
years. More precisely, for a cross-sectional observation i, write the two years as

yi2 � (�0 � �0) � �1xi2 � ai � ui2 (t � 2)

yi1 � �0 � �1xi1 � ai � ui1 (t � 1).

If we subtract the second equation from the first, we obtain

(yi2 � yi1) � �0 � �1(xi2 � xi1) � (ui2 � ui1),
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Suppose that ai, ui1, and ui2 have zero means and are pairwise
uncorrelated. Show that Cov(vi1,vi2) � Var(ai), so that the composite
errors are positively serially correlated across time, unless ai � 0.
What does this imply about the usual OLS standard errors from
pooled OLS estimation?
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or


yi � �0 � �1
xi � 
ui, (13.17)

where “
” denotes the change from t � 1 to t � 2. The unobserved effect, ai, does not
appear in (13.17): it has been “differenced away.” Also, the intercept in (13.17) is actu-
ally the change in the intercept from t � 1 to t � 2.

Equation (13.17), which we call the first-differenced equation, is very simple. It
is just a single cross-sectional equation, but each variable is differenced over time. We
can analyze (13.17) using the methods we developed in Part 1, provided the key
assumptions are satisfied. The most important of these is that 
ui is uncorrelated with

xi. This assumption holds if the idiosyncratic error at each time t, uit, is uncorrelated
with the explanatory variable in both time periods. This is another version of the strict
exogeneity assumption that we encountered in Chapter 10 for time series models. In
particular, this assumption rules out the case where xit is the lagged dependent variable,
yi,t�1. Unlike in Chapter 10, we allow xit to be correlated with unobservables that are
constant over time. When we obtain the OLS estimator of �1 from (13.17) we call the
resulting estimator the first-differenced estimator.

In the crime example, assuming that 
ui and 
unemi are uncorrelated may be rea-
sonable, but it can also fail. For example, suppose that law enforcement effort (which
is in the idiosyncratic error) increases more in cities where the unemployment rate
decreases. This can cause negative correlation between 
ui and 
unemi, which would
then lead to bias in the OLS estimator. Naturally, this problem can be overcome to some
extent by including more factors in the equation, something we will cover later. As
usual, it is always possible that we have not accounted for enough time-varying factors.

Another crucial condition is that 
xi must have some variation across i. This quali-
fication fails if the explanatory variable does not change over time for any cross-
sectional observation, or if it changes by the same amount for every observation. This
is not an issue in the crime rate example because the unemployment rate changes across
time for almost all cities. But, if i denotes an individual and xit is a dummy variable for
gender, 
xi � 0 for all i; we clearly cannot estimate (13.17) by OLS in this case. This
actually makes perfectly good sense: since we allow ai to be correlated with xit, we can-
not hope to separate the effect of ai on yit from the effect of any variable that does not
change over time.

The only other assumption we need to apply to the usual OLS statistics is that
(13.17) satisfies the homoskedasticity assumption. This is reasonable in many cases,
and, if it does not hold, we know how to test and correct for heteroskedasticity using
the methods in Chapter 8. It is sometimes fair to assume that (13.17) fulfills all of the
classical linear model assumptions. The OLS estimators are unbiased and all statistical
inference is exact in such cases.

When we estimate (13.17) for the crime rate example, we get


crm̂rte �(15.40)�(2.22)
unem

crm̂rte �0(4.70)�(0.88)
unem

n � 46, R2 � .127,

(13.18)
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which now gives a positive, statistically significant relationship between the crime and
unemployment rates. Thus, differencing to eliminate time-constant effects makes a big
difference in this example. The intercept in (13.18) also reveals something interesting.
Even if 
unem � 0, we predict an increase in the crime rate (crimes per 1,000 people)
of 15.40. This reflects a secular increase in crime rates throughout the United States
from 1982 to 1987.

Even if we do not begin with the unobserved effects model (13.13), using differ-
ences across time makes intuitive sense. Rather than estimating a standard cross-
sectional relationship—which may suffer from omitted variables, thereby making ce-
teris paribus conclusions difficult—equation (13.17) explicitly considers how changes
in the explanatory variable over time affect the change in y over the same time period.
Nevertheless, it is still very useful to have (13.13) in mind: it explicitly shows that we
can estimate the effect of xit on yit, holding ai fixed.

While differencing two years of panel data is a powerful way to control for unob-
served effects, it is not without cost. First, panel data sets are harder to collect than a
single cross section, especially for individuals. We must use a survey and keep track of
the individual for a follow-up survey. It is often difficult to locate some people for a
second survey. For units such as firms, some firms will go bankrupt or merge with other
firms. Panel data are much easier to obtain for schools, cities, counties, states, and
countries.

Even if we have collected a panel data set, the differencing used to eliminate ai can
greatly reduce the variation in the explanatory variables. While xit frequently has sub-
stantial variation in the cross section for each t, 
xi may not have much variation.
We know from Chapter 3 that little variation in 
xi can lead to large OLS standard
errors. We can combat this by using a large cross section, but this is not always possi-
ble. Also, using longer differences over time is sometimes better than using year-
to-year changes.

As an example, consider the problem of estimating the return to education, now
using panel data on individuals for two years. The model for person i is

log(wageit) � �0 � �0d2t � �1educit � ai � uit, t � 1,2,

where ai contains unobserved ability—which is probably correlated with educit. Again,
we allow different intercepts across time to account for aggregate productivity gains
(and inflation, if wageit is in nominal terms). Since, by definition, innate ability does
not change over time, panel data methods seem ideally suited to estimate the return to
education. The equation in first differences is


log(wagei) � �0 � �1
educi � 
ui, (13.19)

and we can estimate this by OLS. The problem is that we are interested in working
adults, and for most employed individuals, education does not change over time. If only
a small fraction of our sample has 
educi different from zero, it will be difficult to get
a precise estimator of �1 from (13.19), unless we have a rather large sample size. In the-
ory, using a first differenced equation to estimate the return to education is a good idea,
but it does not work very well with most currently available panel data sets.
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Adding several explanatory variables causes no difficulties. We begin with the
unobserved effects model

yit � �0 � �0d2t � �1xit1 � �2xit2 � … � �kxitk � ai � uit, (13.20)

for t � 1 and 2. This equation looks more complicated than it is because each explana-
tory variable has three subscripts. The first denotes the cross-sectional observation
number, the second denotes the time period, and the third is just a variable label.

E X A M P L E  1 3 . 5
( S l e e p i n g  V e r s u s  W o r k i n g )

We use the two years of panel data in SLP75_81.RAW, from Biddle and Hamermesh (1990),
to estimate the tradeoff between sleeping and working. In Problem 3.3, we used just the
1975 cross section. The panel data set for 1975 and 1981 has 239 people, which is much
smaller than the 1975 cross section that includes over 700 people. An unobserved effects
model for total minutes of sleeping per week is

slpnapit � �0 � �0d81t � �1totwrkit � �2educit � �3marrit

� �4yngkidit � �5gdhlthit � ai � uit, t � 1,2.

The unobserved effect, ai, would be called an unobserved individual effect or an individual
fixed effect. It is potentially important to allow ai to be correlated with totwrkit: the same
factors (some biological) that cause people to sleep more or less (captured in ai) are likely
correlated with the amount of time spent working. Some people just have more energy,
and this causes them to sleep less and work more. The variable educ is years of education,
marr is a marriage dummy variable, yngkid is a dummy variable indicating the presence of
a small child, and gdhlth is a “good health” dummy variable. Notice that we do not include
gender or race (as we did in the cross-sectional analysis), since these do not change over
time; they are part of ai. Our primary interest is in �1.

Differencing across the two years gives the estimable equation


slpnapi � �0 � �1
totwrki � �2
educi � �3
marri

� �4
yngkidi � �5
gdhlthi � 
ui.

Assuming that the change in the idiosyncratic error, 
ui, is uncorrelated with the changes
in all explanatory variables, we can get consistent estimators using OLS. This gives

(
slp̂nap � �92.63)�(.227)
totwrk �(00.024)
educ

slp̂nap � �(45.87)�(.036)
totwrk �(48.759)
educ

�(104.21)
marr �(94.67)
yngkid �(87.58)
gdhlth
�0(92.86)
marr �(87.65)
yngkid �(76.60)
gdhlth

n � 239, R2 � .150.

The coefficient on 
totwrk indicates a tradeoff between sleeping and working: holding
other factors fixed, one more hour of work is associated with .227(60) � 13.62 less min-
utes of sleeping. The t statistic (�6.31) is very significant. No other estimates, except the
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intercept, are statistically different from zero. The F test for joint significance of all variables
except 
totwrk gives p-value � .49, which means they are jointly insignificant at any rea-
sonable significance level and could be dropped from the equation.

The standard error on 
educ is especially large relative to the estimate. This is the phe-
nomenon described earlier for the wage equation. In the sample of 239 people, 183
(76.6%) have no change in education over the six-year period; 90% of the people have a
change in education of at most one year. As reflected by the extremely large standard error
of �̂2, there is not nearly enough variation in education to estimate �2 with any precision.
Anyway, �̂2 is practically very small.

Panel data can also be used to estimate finite distributed lag models. Even if we
specify the equation for only two years, we need to collect more years of data to obtain
the lagged explanatory variables. The following is a simple example.

E X A M P L E  1 3 . 6
( D i s t r i b u t e d  L a g  o f  C r i m e  R a t e  o n  C l e a r - u p  R a t e )

Eide (1994) uses panel data from police districts in Norway to estimate a distributed lag
model for crime rates. The single explanatory variable is the “clear-up percentage” (clrprc)—
the percentage of crimes that led to a conviction. The crime rate data are from the years
1972 and 1978. Following Eide, we lag clrprc for one and two years: it is likely that past
clear-up rates have a deterrent effect on current crime. This leads to the following unob-
served effects model for the two years:

log(crimeit) � �0 � �0d78t � �1clrprci,t�1 � �2clrprci,t�2 � ai � uit.

When we difference the equation and estimate it using the data in CRIME3.RAW, we get


log(cr̂ime) �(.086)�(.0040)
clrprc�1 �(.0132)
clrprc�2


log(cr̂ime) �(.064)�(.0047)
clrprc�1 �(.0052)
clrprc�2

n � 53, R2 � .193, R̄2 � .161.

(13.22)

The second lag is negative and statistically significant, which implies that a higher clear-up
percentage two years ago would deter crime this year. In particular, a 10 percentage point
increase in clrprc two years ago would lead to an estimated 13.2% drop in the crime rate
this year. This suggests that using more resources for solving crimes and obtaining convic-
tions can reduce crime in the future.

Organizing Panel Data

In using panel data in an econometric study, it is important to know how the data should
be stored. We must be careful to arrange the data so that the different time periods for
the same cross-sectional unit (person, firm, city, and so on) are easily linked. For con-
creteness, suppose that the data set is on cities for two different years. For most pur-
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poses, the best way to enter the data is to have two records for each city, one for each
year: the first record for each city corresponds to the early year, and the second record
is for the later year. These two records should be adjacent. Therefore, a data set for 100
cities and two years will contain 200 records. The first two records are for the first city
in the sample, the next two records are for the second city, and so on. (See Table 1.5 in
Chapter 1 for an example.) This makes it easy to construct the differences to store these
in the second record for each city, and to do a pooled cross-sectional analysis, which
can be compared with the differencing estimation.

Most of the two-period panel data sets accompanying this text are stored in this way
(for example, CRIME2.RAW, CRIME3.RAW, GPA3.RAW, LOWBRTH.RAW, and
RENTAL.RAW). We use a direct extension of this scheme for panel data sets with more
than two time periods.

A second way of organizing two periods of panel data is to have only one record per
cross-sectional unit. This requires two entries for each variable, one for each time
period. The panel data in SLP75_81.RAW are organized in this way. Each individual
has data on the variables slpnap75, slpnap81, totwrk75, totwrk81, and so on. Creating
the differences from 1975 to 1981 is easy. Other panel data sets with this structure are
TRAFFIC1.RAW and VOTE2.RAW. A drawback to putting the data in one record is
that it does not allow a pooled OLS analysis using the two time periods on the original
data. Also, this organizational method does not work for panel data sets with more than
two time periods, a case we will consider in Section 13.5.

13.4 POLICY ANALYSIS WITH TWO-PERIOD 
PANEL DATA

Panel data sets are very useful for policy analysis and, in particular, progam evaluation.
In the simplest program evaluation setup, a sample of individuals, firms, or cities, and
so on, is obtained in the first time period. Some of these units then take part in a par-
ticular program in a later time period; the ones that do not are the control group. This
is similar to the natural experiment literature discussed earlier, with one important dif-
ference: the same cross-sectional units appear in each time period.

As an example, suppose we wish to evaluate the effect of a Michigan job training
program on worker productivity of manufacturing firms (see also Problem 9.8). Let
scrapit denote the scrap rate of firm i during year t (the number of items, per 100, that
must be scrapped due to defects). Let grantit be a binary indicator equal to one if firm i
in year t received a job training grant. For the years 1987 and 1988, the model is

scrapit � �0 � �0y88t � �1grantit � ai � uit, t � 1,2, (13.23)

where y88t is a dummy variable for 1988 and ai is the unobserved firm effect or the firm
fixed effect. The unobserved effect contains things such as average employee ability,
capital, and managerial skill; these are roughly constant over a two-year period. We are
concerned about ai being systematically related to whether a firm receives a grant. For
example, administrators of the program might give priority to firms whose workers
have lower skills. Or, the opposite problem could occur: in order to make the job train-
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ing program appear effective, administrators may give the grants to employers with
more productive workers. Actually, in this particular program, grants were awarded on
a first-come, first-serve basis. But whether a firm applied early for a grant could be cor-
related with worker productivity. In any case, an analysis using a single cross section or
just a pooling of the cross sections will produce biased and inconsistent estimators.

Differencing to remove ai gives


scrapi � �0 � �1
granti � 
ui. (13.24)

Therefore, we simply regress the change in the scrap rate on the change in the grant
indicator. Because no firms received grants in 1987, granti1 � 0 for all i, and so

granti � granti2 � granti1 � granti2, which simply indicates whether the firm received
a grant in 1988. However, it is generally important to difference all variables (dummy
variables included) because this is necessary for removing ai in the unobserved effects
model (13.23).

Estimating the first-differenced equation using the data in JTRAIN.RAW gives

(
scr̂ap � �.564)�(.739)
grant

scr̂ap � �(.405)�(.683)
grant

n � 54, R2 � .022.

Therefore, we estimate that having a job training grant lowered the scrap rate on aver-
age by �.739. But the estimate is not statistically different from zero.

We get stronger results by using log(scrap) and estimating the percentage effect:

(
log(scr̂ap) � �.057)�(.317)
grant

log(scr̂ap) � �(.097)�(.164)
grant

n � 54, R2 � .067.

Having a job training grant is estimated to lower the scrap rate by about 27.2%
[because exp(�.317) � 1 � �.272]. The t statistic is about �1.93, which is margin-
ally significant. By contrast, using pooled OLS of log(scrap) on y88 and grant gives
�̂1 � .057 (standard error � .431). Thus, we find no significant relationship between
the scrap rate and the job training grant. Since this differs so much from the first-
difference estimates, it suggests that firms that have lower ability workers are more
likely to receive a grant.

It is useful to study the program evaluation model more generally. Let yit denote an
outcome variable and let progit be a program participation dummy variable. The sim-
plest unobserved effects model is

yit � �0 � �0d2t � �1progit � ai � uit. (13.25)

If program participation only occurred in the second period, then the OLS estimator of
�1 in the differenced equation has a very simple representation:

�̂1 � �
ytreat � �
ycontrol. (13.26)
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That is, we compute the average change in y over the two time periods for the treatment
and control groups. Then, �̂1 is the difference of these. This is the panel data version of
the difference-in-differences estimator in equation (13.11) for two pooled cross sec-
tions. With panel data, we have a potentially important advantage: we can difference y
across time for the same cross-sectional units. This allows us to control for person, firm,
or city specific effects, as the model in (13.25) makes clear.

If program participation takes place in both periods, �̂1 cannot be written as in
(13.26), but we interpret it in the same way: it is the change in the average value of y
due to program participation.

Controlling for time-varying factors does not change anything of significance.
We simply difference those variables and include them along with 
prog. This
allows us to control for time-varying variables that might be correlated with program
designation.

The same differencing method works for analyzing the effects of any policy that
varies across city or state. The following is a simple example.

E X A M P L E  1 3 . 7
( E f f e c t  o f  D r u n k  D r i v i n g  L a w s  o n  T r a f f i c  F a t a l i t i e s )

Many states in the United States have adopted different policies in an attempt to curb
drunk driving. Two types of laws that we will study here are open container laws—which
make it illegal for passengers to have open containers of alcoholic beverages—and admin-
istrative per se laws—which allow courts to suspend licenses after a driver is arrested for
drunk driving but before the driver is convicted. One possible analysis is to use a single cross
section of states to regress driving fatalities (or those related to drunk driving) on dummy
variable indicators for whether each law is present. This is unlikely to work well because
states decide, through legislative processes, whether they need such laws. Therefore, the
presence of laws is likely to be related to the average drunk driving fatalities in recent years.
A more convincing analysis uses panel data over a time period where some states adopted
new laws (and some states may have repealed existing laws). The file TRAFFIC1.RAW con-
tains data for 1985 and 1990 for all 50 states and the District of Columbia. The dependent
variable is the number of traffic deaths per 100 million miles driven (dthrte). In 1985, 19
states had open container laws, while 22 states had such laws in 1990. In 1985, 21 states
had per se laws; the number had grown to 29 by 1990.

Using OLS after first differencing gives

(
dtĥrte � �.497)�(.420)
open �(.151)
admn

dtĥrte � �(.052)�(.206)
open �(.117)
admn

n � 51, R2 � .119.

(13.27)

The estimates suggest that adopting an open container law lowered the traffic fatality rate
by .42, a nontrivial effect given that the average death rate in 1985 was 2.7 with a stan-
dard deviation of about .6. The estimate is statistically significant at the 5% level against a
two-sided alternative. The administrative per se law has a smaller effect, and its t statistic is
only �1.29; but the estimate is the sign we expect. The intercept in this equation shows
that traffic fatalities fell substantially for all states over the five-year period, whether or not
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there were any law changes. The states that adopted an open container law over this
period saw a further drop, on average, in fatality rates.

Other laws might also affect traffic fatal-
ities, such as seat belt laws, motorcycle hel-
met laws, and maximum speed limits. In
addition, we might want to control for age
and gender distributions, as well as mea-

sures of how influential an organization such as Mothers Against Drunk Driving is in each
state.

13.5 DIFFERENCING WITH MORE THAN TWO 
TIME PERIODS

We can also use differencing with more than two time periods. For illustration, suppose
we have N individuals and T � 3 time periods for each individual. A general fixed
effects model is

yit � �1 � �2d2t � �3d3t � �1xit1 � … � �kxitk � ai � uit, (13.28)

for t � 1, 2, and 3. (The total number of observations is therefore 3N.) Notice that we
now include two time period dummies in addition to the intercept. It is a good idea to
allow a separate intercept for each time period, especially when we have a small num-
ber of them. The base period, as always, is t � 1. The intercept for the second time
period is �1 � �2, and so on. We are primarily interested in �1, �2, …, �k. If the unob-
served effect ai is correlated with any of the explanatory variables, then using pooled
OLS on the three years of data results in biased and inconsistent estimates.

The key assumption is that the idiosyncratic errors are uncorrelated with the
explanatory variable in each time period:

Cov(xitj,uis) � 0, for all t, s, and j. (13.29)

That is, the explanatory variables are strictly exogenous after we take out the unob-
served effect, ai. (The strict exogeneity assumption stated in terms of a zero conditional
expectation is given in the chapter appendix.) Assumption (13.29) rules out cases where
future explanatory variables react to current changes in the idiosyncratic errors, as must
be the case if xitj is a lagged dependent variable. If we have omitted an important time-
varying variable, then (13.29) is generally violated. Measurement error in one or more
explanatory variables can cause (13.29) to be false, just as in Chapter 9. In Chapters 15
and 16, we will discuss what can be done in such cases.

If ai is correlated with xitj, then xitj will be correlated with the composite error,
vit � ai � uit, under (13.29). We can eliminate ai by differencing adjacent periods. In
the T � 3 case, we subtract time period one from time period two and time period two
from time period three. This gives


yit � �2
d2t � �3
d3t � �1
xit1 � … � �k
xitk � 
uit, (13.30)
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what this means.
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for t � 2 and 3. We do not have a differenced equation for t � 1 because there is noth-
ing to subtract from the t � 1 equation. Now, (13.30) represents two time periods for
each individual in the sample. If this equation satisfies the classical linear model
assumptions, then pooled OLS gives unbiased estimators, and the usual t and F statis-
tics are valid for hypothesis. We can also appeal to asymptotic results. The important
requirement for OLS to be consistent is that 
uit is uncorrelated with 
xitj for all j and
t � 2 and 3. This is the natural extension from the two time period case.

Notice how (13.30) contains the differences in the year dummies, d2t and d3t. For
t � 2, 
d2t � 1 and 
d3t � 0; for t � 3, 
d2t � �1 and 
d3t � 1. Therefore, (13.30)
does not contain an intercept. This is inconvenient for certain purposes, including the
computation of R-squared. Unless the time intercepts in the original model (13.28) are
of direct interest—they rarely are—it is better to estimate the first-differenced equation
with an intercept and a single time period dummy, usually for the third period. In other
words, the equation becomes


yit � �0 � �3d3t � �1
xit1 � … � �k
xitk � 
uit, for t � 2 and 3.

The estimates of the �j are identical in either formulation.
With more than three time periods, things are similar. If we have the same T time

periods for each of N cross-sectional units, we say that the data set is a balanced panel:
we have the same time periods for all individuals, firms, cities, and so on. When T is
small relative to N, we should include a dummy variable for each time period to account
for secular changes that are not being modeled. Therefore, after first differencing, the
equation looks like


yit � �0 � �3d3t � �4d4t � … � �T dTt � �1
xit1 � …
� �k
xitk � 
uit, t � 2,3, …, T,

(13.31)

where we have T � 1 time periods on each unit i for the first-differenced equation. The
total number of observations is N(T � 1).

It is simple to estimate (13.31) by pooled OLS, provided the observations have been
properly organized and the differencing carefully done. To facilitate first differencing,
the data file should consist of NT records. The first T records are for the first cross-
sectional observation, arranged chronologically; the second T records are for the sec-
ond cross-sectional observations, arranged chronologically; and so on. Then, we com-
pute the differences, with the change from t � 1 to t stored in the time t record.
Therefore, the differences for t � 1 should be missing values for all N cross-sectional
observations. Without doing this, you run the risk of using bogus observations in the
regression analysis. An invalid observation is created when the last observation for, say,
person i � 1 is substracted from the first observation for person i. If you do the regres-
sion on the differenced data, and NT or NT � 1 observations are reported, then you for-
got to set the t � 1 observations as missing.

When using more than two time periods, we must assume that 
uit is uncorrelated
over time for the usual standard errors and test statistics to be valid. This assumption is
sometimes reasonable, but it does not follow if we assume that the original idiosyncratic
errors, uit, are uncorrelated over time (an assumption we will use in Chapter 14). In fact,
if we assume the uit are serially uncorrelated with constant variance, then the correla-
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tion between 
uit and 
ui,t�1 can be shown to be �.5. If uit follows a stable AR(1)
model, then 
uit will be serially correlated. Only when uit follows a random walk will

uit be serially uncorrelated.

It is easy to test for serial correlation in the first-differenced equation. Let rit � 
uit

denote the first difference of the original error. If rit follows the AR(1) model rit �
�ri,t�1 � eit, then we can easily test H0: � � 0. First, we estimate (13.31) by pooled
OLS and obtain the residuals, r̂it. Then, we run the regression again with r̂i,t�1 as an
additional explanatory variable. The coefficient on r̂i,t�1 is an estimate of �, and so we
can use the usual t statistic on r̂i,t�1 to test H0: � � 0. Because we are using the lagged
OLS residual, we lose another time period. For example, if we originally had T � 3, the
differenced equation has T � 2. The test for serial correlation is just a cross-sectional
regression on first differences, using the third time period, with the lagged OLS resid-
ual included. This is similar to the test we covered in Section 12.2 for pure time series
models. We give an example later.

We can correct for the presence of AR(1) serial correlation by quasi-differencing
equation (13.31). [We can also use the Prais-Winsten transformation for the first time
period in (13.31).] Unfortunately, standard packages that perform AR(1) corrections for
time series regressions will not work. Standard Cochrane-Orcutt or Prais-Winsten
methods will treat the observations as if they followed an AR(1) process across i and t;
this makes no sense, as we are assuming the observations are independent across i.
Corrections to the OLS standard errors that allow arbitrary forms of serial correlation
(and heteroskedasticity) can be computed when N is large (and N should be notably
larger than T ). A detailed treatment of these topics is beyond the scope of this text [see

Wooldridge (1999, Chapter 10)], but they
are easy to compute in certain regression
packages.

If there is no serial correlation in the
errors, the usual methods for dealing with
heteroskedasticity are valid. We can use

the Breusch-Pagan and White tests for heteroskedasticity from Chapter 8, and we can
also compute robust standard errors.

Differencing more than two years of panel data is very useful for policy analysis, as
shown by the following example.

E X A M P L E  1 3 . 8
( E f f e c t  o f  E n t e r p r i s e  Z o n e s  o n  U n e m p l o y m e n t  C l a i m s )

Papke (1994) studied the effect of the Indiana enterprise zone (EZ) program on unemploy-
ment claims. She analyzed 22 cities in Indiana over the period from 1980 to 1988. Six enter-
prise zones were designated in 1984, and four more were assigned in 1985. Twelve of the
cities in the sample did not receive an enterprise zone over this period; they served as the
control group.

A simple policy evaluation model is

log(uclmsit) � 
t � �1ezit � ai � uit,
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Does serial correlation in 
uit cause the first-differenced estimator to
be biased and inconsistent? Why is serial correlation a concern?

d  7/14/99 7:25 PM  Page 431



where uclmsit is the number of unemployment claims filed during year t in city i. The para-
meter 
t just denotes a different intercept for each time period. Generally, unemployment
claims were falling statewide over this period, and this should be reflected in the different
year intercepts. The binary variable ezit is equal to one if city i at time t was an enterprise
zone; we are interested in �1. The unobserved effect ai represents fixed factors that affect
the economic climate in city i. Because enterprise zone designation was not determined
randomly—enterprise zones are usually economically depressed areas—it is likely that ezit

and ai are positively correlated (high ai means higher unemployment claims, which lead to
a higher chance of being given an EZ). Thus, we should difference the equation to elimi-
nate ai:


log(uclmsit) � �0 � �1d82t � … � �7d88t � �1
ezit � 
uit. (13.32)

The dependent variable in this equation, the change in log(uclmsit), is the approximate
annual growth rate in unemployment claims from year t � 1 to t. We can estimate this
equation for the years 1981 to 1988 using the data in EZUNEM.RAW; the total sample
size is 22�8 � 176. The estimate of �1 is �̂1 � �.182 (standard error � .078). Therefore,
it appears that the presence of an EZ causes about a 16.6% [exp(�.182) � 1 � �.166]
fall in unemployment claims. This is an economically large and statistically significant
effect.

There is no evidence of heteroskedasticity in the equation: the Breusch-Pagan F test
yields F � .85, p-value � .557. However, when we add the lagged OLS residuals to the
differenced equation (and lose the year 1981), we get �̂ � �.197 (t � �2.44), so there
is evidence of minimal negative serial correlation in the first-differenced errors. Unlike
with positive serial correlation, the usual OLS standard errors may not greatly understate
the correct standard errors when the errors are negatively correlated (see Section 12.1).
Thus, the significance of the enterprise zone dummy variable will probably not be
affected.

E X A M P L E  1 3 . 9
( C o u n t y  C r i m e  R a t e s  i n  N o r t h  C a r o l i n a )

Cornwell and Trumbull (1994) used data on 90 counties in North Carolina, for the years
1981 through 1987, to estimate an unobserved effects model of crime; the data are con-
tained in CRIME4.RAW. Here, we estimate a simpler version of their model, and we differ-
ence the equation over time to eliminate ai, the unobserved effect. (Cornwell and Trumbull
use a different transformation, which we will cover in Chapter 14.) Various factors includ-
ing geographical location, attitudes toward crime, historical records, and reporting conven-
tions might be contained in ai. The crime rate is number of crimes per person, prbarr is the
estimated probability of arrest, prbconv is the estimated probability of conviction (given an
arrest), prbpris is the probability of serving time in prison (given a conviction), avgsen is the
average sentence length served, and polpc is the number of police officers per capita. As is
standard in criminometric studies, we use the logs of all variables in order to estimate elas-
ticities. We also include a full set of year dummies to control for state trends in crime rates.
We can use the years 1982 through 1987 to estimate the differenced equation. The quan-
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tities in parentheses are the usual OLS standard errors; the quantities in brackets are stan-
dard errors robust to both serial correlation and heteroskedasticity:


log(cr̂mrte) �(.008)�(.100)d83 �(.048)d84 �(.005)d85

log(cr̂mrte) �(.017)�(.024)d83 �(.024)d84 �(.023)d85

log(cr̂mrte) �[.014]�[.022]d83 �[.020]d84 �[.025]d85

�(.028)d86 �(.041)d87 �(.327)
log( prbarr)
�(.024)d86 �(.024)d87 �(.030)
log(prbarr)
�[.021]d86 �[.024]d87 �[.056]
log(prbarr)

�(.238)
log( prbconv) �(.165)
log( prbpris) (13.33)
�(.018)
log(prbconv) �(.026)
log(prbpris)
�[.039]
log(prbconv) �[.045]
log(prbpris)

�(.022)
log(avgsen) �(.398)
log( polpc)
�(.022)
log(avgsen) �(.027)
log(polpc)
�[.025]
log(avgsen) �[.101]
log(polpc)

n � 540, R2 � .433, R̄2 � .422.

The three probability variables—of arrest, conviction, and serving prison time—all have the
expected sign, and all are statistically significant. For example, a 1% increase in the proba-
bility of arrest is predicted to lower the crime rate by about .33%. The average sentence
variable shows a modest deterrent effect, but it is not statistically significant.

The coefficient on the police per capita variable is somewhat surprising and is a feature
of most studies that seek to explain crime rates. Interpreted causally, it says that a 1%
increase in police per capita increases crime rates by about .4%. (The usual t statistic is very
large, almost 15.) It is hard to believe that having more police officers causes more crime.
What is going on here? There are at least two possibilities. First, the crime rate variable is
calculated from reported crimes. It might be that, when there are additional police, more
crimes are reported. The police variable might be endogenous in the equation for other rea-
sons: counties may enlarge the police force when they expect crime rates to increase. In this
case, (13.33) cannot be interpreted in a causal fashion. In Chapters 15 and 16, we will cover
models and estimation methods that can account for this additional form of endogeneity.

The special case of the White test for heteroskedasticity in Section 8.3 gives F � 75.48
and p-value � .0000, so there is strong evidence of heteroskedasticity. (Technically, this test
is not valid if there is also serial correlation, but it is strongly suggestive.) Testing for AR(1)
serial correlation yields �̂ � �.233, t � �4.77, so negative serial correlation exists. The stan-
dard errors in brackets adjust for serial correlation and heteroskedasticity. [We will not give
the details of this; the calculations are similar to those described in Section 12.5 and are
carried out by many econometric packages. See Wooldridge (1999, Chapter 10) for more
discussion.] No variables lose statistical significance, but the t statistics on the significant
deterrent variables get notably smaller. For example, the t statistic on the probability of con-
viction variable goes from �13.22 using the usual OLS standard error to �6.10 using the
fully robust standard error. Equivalently, the confidence intervals constructed using the
robust standard errors will, appropriately, be much wider than those based on the usual OLS
standard errors.

Chapter 13 Pooling Cross Sections Across Time. Simple Panel Data Methods

433

d  7/14/99 7:25 PM  Page 433



SUMMARY

We have studied methods for analyzing independently pooled cross-sectional and panel
data sets. Independent cross sections arise when different random samples are obtained
in different time periods (usually years). OLS using pooled data is the leading method
of estimation, and the usual inference procedures are available, including corrections
for heteroskedasticity. (Serial correlation is not an issue because the samples are inde-
pendent across time.) Because of the time series dimension, we often allow different
time intercepts. We might also interact time dummies with certain key variables to see
how they have changed over time. This is especially important in the policy evaluation
literature for natural experiments.

Panel data sets are being used more and more in applied work, especially for policy
analysis. These are data sets where the same cross-sectional units are followed over
time. Panel data sets are most useful when controlling for time-constant unobserved
features—of people, firms, cities, and so on—which we think might be correlated with
the explanatory variables in our model. One way to remove the unobserved effect is to
difference the data in adjacent time periods. Then, a standard OLS analysis on the dif-
ferences can be used. Using two periods of data results in a cross-sectional regression
of the differenced data. The usual inference procedures are asymptotically valid under
homoskedasticity; exact inference is available under normality.

For more than two time periods, we can use pooled OLS on the differenced data; we
lose the first time period because of the differencing. In addition to homoskedasticity, we
must assume that the differenced errors are serially uncorrelated in order to apply the
usual t and F statistics. (The chapter appendix contains a careful listing of the assump-
tions.) Naturally, any variable that is constant over time drops out of the analysis.

KEY TERMS
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Balanced Panel
Composite Error
Difference-in-Differences Estimator
First Differenced Equation
First-Differenced Estimator
Fixed Effect
Fixed Effects Model
Heterogeneity Bias
Idiosyncratic Error
Independently Pooled Cross Section

Longitudinal Data
Natural Experiment
Panel Data 
Quasi-Experiment
Strict Exogeneity
Unobserved Effect
Unobserved Effects Model
Unobserved Heterogeneity
Year Dummy Variables

PROBLEMS

13.1 In Example 13.1, assume that the average of all factors other than educ have
remained constant over time and that the average level of education is 12.2 for the 1972
sample and 13.3 in the 1984 sample. Using the estimates in Table 13.1, find the esti-
mated change in average fertility between 1972 and 1984. (Be sure to account for the
intercept change and the change in average education.)
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13.2 Using the data in KIELMC.RAW, the following equations were estimated using
the years 1978 and 1981:

log( pr̂ice) �(11.49)�(.547)nearinc �(.394)y81�nearinc
log( pr̂ice) �0(0.26)�(.058)nearinc �(.080)y81�nearinc

n � 321, R2 � .220

and 

log( pr̂ice) �(11.18)�(.563)y81 �(.403)y81�nearinc
log( pr̂ice) �0(0.27)�(.044)y81 �(.067)y81�nearinc

n � 321, R2 � .337.

Compare the estimates on the interaction term y81�nearinc with those from equation
(13.9). Why are the estimates so different?

13.3 Why can we not use first differences when we have independent cross sections in
two years (as opposed to panel data)?

13.4 If we think that �1 is positive in (13.14) and that 
ui and 
unemi are negatively
correlated, what is the bias in the OLS estimator of �1 in the first-differenced equation?
(Hint: Review Table 3.2.)

13.5 Suppose that we want to estimate the effect of several variables on annual saving
and that we have a panel data set on individuals collected on January 31, 1990 and
January 31, 1992. If we include a year dummy for 1992 and use first differencing, can
we also include age in the original model? Explain.

13.6 In 1985, neither Florida nor Georgia had laws banning open alcohol containers in
vehicle passenger compartments. By 1990, Florida had passed such a law, but Georgia
had not.

(i) Suppose you can collect random samples of the driving-age population
in both states, for 1985 and 1990. Let arrest be a binary variable equal
to unity if a person was arrested for drunk driving during the year.
Without controlling for any other factors, write down a linear probabil-
ity model that allows you to test whether the open container law
reduced the probability of being arrested for drunk driving. Which coef-
ficient in your model measures the effect of the law?

(ii) Why might you want to control for other factors in the model? What
might some of these factors be?

COMPUTER EXERCISES

13.7 Use the data in FERTIL1.RAW for this exercise.
(i) In the equation estimated in Example 13.1, test whether living environ-

ment at age 16 has an effect on fertility. (The base group is large city.)
Report the value of the F statistic and the p-value.

(ii) Test whether region of the country at age 16 (south is the base group)
has an effect on fertility.
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(iii) Let u be the error term in the population equation. Suppose you think
that the variance of u changes over time (but not with educ, age, and so
on). A model that captures this is

u2 � �0 � �1y74 � �2y76 � … � �6y84 � v.

Using this model, test for heteroskedasticity in u. [Hint: Your F test
should have 6 and 1122 degrees of freedom.]

(iv) Add the interaction terms y74�educ, y76�educ, …, y84�educ to the
model estimated in Table 13.1. Explain what these terms represent. Are
they jointly significant?

13.8 Use the data in CPS78_85.RAW for this exercise.
(i) How do you interpret the coefficient on y85 in equation (13.2)? Does it

have an interesting interpretation? (Be careful here; you must account
for the interaction terms y85�educ and y85�female.)

(ii) Holding other factors fixed, what is the estimated percent increase in
nominal wage for a male with twelve years of education? Propose a
regression to obtain a confidence interval for this estimate. [Hint: To get
the confidence interval, replace y85�educ with y85�(educ � 12); refer to
Example 6.3.]

(iii) Reestimate equation (13.2) but let all wages be measured in 1978 dol-
lars. In particular, define the real wage as rwage � wage for 1978 and
as rwage � wage/1.65 for 1985. Now use log(rwage) in place of
log(wage) in estimating (13.2). Which coefficients differ from those in
equation (13.2)?

(iv) Explain why the R-squared from your regression in part (iii) is not the
same as in equation (13.2). (Hint: The residuals, and therefore the sum
of squared residuals, from the two regressions are identical.)

(v) Describe how union participation has changed from 1978 to 1985.
(vi) Starting with equation (13.2), test whether the union wage differential

has changed over time. (This should be a simple t test.)
(vii) Do your findings in parts (v) and (vi) conflict? Explain.

13.9 Use the data in KIELMC.RAW for this exercise.
(i) The variable dist is the distance from each home to the incinerator site,

in feet. Consider the model

log( price) � �0 � �0y81 � �1log(dist) � �1y81�log(dist) � u.

If building the incinerator reduces the value of homes closer to the site,
what is the sign of �1? What does it mean if �1 � 0?

(ii) Estimate the model from part (i) and report the results in the usual form.
Interpret the coefficient on y81�log(dist). What do you conclude?

(iii) Add age, age2, rooms, baths, log(intst), log(land ), and log(area) to the
equation. Now what do you conclude about the effect of the incinerator
on housing values?

13.10 Use the data in INJURY.RAW for this exercise.
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(i) Using the data for Kentucky, reestimate equation (13.12) adding as ex-
planatory variables male, married, and a full set of industry and injury
type dummy variables. How does the estimate on afchnge�highearn
change when these other factors are controlled for? Is the estimate still
statistically significant?

(ii) What do you make of the small R-squared from part (i)? Does this mean
the equation is useless?

(iii) Estimate equation (13.12) using the data for Michigan. Compare the
estimates on the interaction term for Michigan and Kentucky. Is the
Michigan estimate statistically significant? What do you make of this?

13.11 Use the data in RENTAL.RAW for this exercise. The data for the years 1980 and
1990 include rental prices and other variables for college towns. The idea is to see
whether a stronger presence of students affects rental rates. The unobserved effects
model is

log(rentit) � �0 � �0y90t � �1log(popit) � �2log(avgincit) � �3pctstuit � ai � uit,

where pop is city population, avginc is average income, and pctstu is student popula-
tion as a percentage of city population (during the school year).

(i) Estimate the equation by pooled OLS and report the results in standard
form. What do you make of the estimate on the 1990 dummy variable?
What do you get for �̂pctstu?

(ii) Are the standard errors you report in part (i) valid? Explain.
(iii) Now difference the equation and estimate by OLS. Compare your esti-

mate of �pctstu with that from part (ii). Does the relative size of the stu-
dent population appear to affect rental prices?

(iv) Obtain the heteroskedasticity-robust standard errors for the first-
differenced equation in part (iii). Does this change your conclusions?

13.12 Use CRIME3.RAW for this exercise.
(i) In the model of Example 13.6, test the hypothesis H0: �1 � �2. (Hint:

Define 
1 � �1 � �2 and write �1 in terms of 
1 and �2. Substitute this
into the equation and then rearrange. Do a t test on 
1.)

(ii) If �1 � �2, show that the differenced equation can be written as


log(crimei) � �0 � �1
avgclri � 
ui,

where �1 � 2�1 and avgclri � (clrprci,�1 � clrprci,�2)/2 is the average
clear-up percentage over the previous two years.

(iii) Estimate the equation from part (ii). Compare the adjusted R-squared
with that in (13.22). Which model would you finally use?

13.13 Use GPA3.RAW for this exercise. The data set is for 366 student athletes from a
large university for fall and spring semesters. (A similar analysis is in Maloney and
McCormick (1993), but here we use a true panel data set). Because you have two terms
of data for each student, an unobserved effects model is appropriate. The primary ques-
tion of interest is this: Do athletes perform more poorly in school during the semester
their sport is in season?
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(i) Use pooled OLS to estimate a model with term GPA (trmgpa) as the
dependent variable. The explanatory variables are spring, sat, hsperc,
female, black, white, frstsem, tothrs, crsgpa, and season. Interpret the
coefficient on season. Is it statistically significant?

(ii) Most of the athletes who play their sport only in the fall are football
players. Suppose the ability levels of football players differ systemati-
cally from those of other athletes. If ability is not adequately captured
by SAT score and high school percentile, explain why the pooled OLS
estimators will be biased.

(iii) Now use the data differenced across the two terms. Which variables
drop out? Now test for an in-season effect.

(iv) Can you think of one or more potentially important, time-varying vari-
ables that have been omitted from the analysis?

13.14 VOTE2.RAW includes panel data on House of Representative elections in 1988
and 1990. Only winners from 1988 who are also running in 1990 appear in the sample;
these are the incumbents. An unobserved effects model explaining the share of the
incumbent’s vote in terms of expenditures by both candidates is

voteit � �0 � �0d90t � �1log(inexpit) � �2log(chexpit) � �3incshrit � ai � uit,

where incshrit is the incumbent’s share of total campaign spending (in percent form).
The unobserved effect ai contains characteristics of the incumbent—such as “qual-
ity”—as well as things about the district that are constant. The incumbent’s gender and
party are constant over time, so these are subsumed in ai. We are interested in the effect
of campaign expenditures on election outcomes.

(i) Difference the given equation across the two years and estimate the dif-
ferenced equation by OLS. Which variables are individually significant
at the 5% level against a two-sided alternative?

(ii) In the equation from part (i), test for joint significance of 
log(inexp)
and 
log(chexp). Report the p-value.

(iii) Reestimate the equation from part (i) using 
incshr as the only inde-
pendent variable. Interpret the coefficient on 
incshr. For example, if
the incumenbent’s share of spending increases by 10 percentage points,
how is this predicted to affect the incumbent’s share of the vote?

(iv) Redo part (iii), but now use only the pairs that have repeat challengers.
[This allows us to control for characteristics of the challengers as well,
which would be in ai. Levitt (1995) conducts a much more extensive
analysis.]

13.15 Use CRIME4.RAW for this exercise.
(i) Add the logs of each wage variable in the data set and estimate the

model by first differencing. How does including these variables affect
the coefficients on the criminal justice variables in Example 13.9?

(ii) Do the wage variables in (ii) all have the expected sign? Are they jointly
significant? Explain.

13.16 For this exercise, we use JTRAIN.RAW to determine the effect of the job train-
ing grant on hours of job training per employee. The basic model for the three years is
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hrsempit � �0 � �1d88t � �2d89t � �1grantit
� �2granti,t�1 � �3log(employit) � ai � uit.

(i) Estimate the equation using first differencing. How many firms are used
in the estimation? How many total observations would be used if each
firm had data on all variables (in particular, hrsemp) for all three time
periods?

(ii) Interpret the coefficient on grant and comment on its significance.
(iii) Is it surprising that grant�1 is insignificant? Explain.
(iv) Do larger firms train their employees more or less, on average? How big

are the differences in training?

A P P E N D I X  1 3 A

Assumptions for Pooled OLS Using First Differences

In this appendix, we provide careful statements of the assumptions for the first-
differencing estimator. Verification of these claims is somewhat involved, but it can be
found in Wooldridge (1999, Chapter 10).

A S S U M P T I O N  F D . 1

For each i, the model is

yit � �1xit1 � … � �kxitk � ai � uit, t � 1, …, T,

where the �j are the parameters to estimate and ai is the unobserved effect.

A S S U M P T I O N  F D . 2

We have a random sample from the cross section.

For the next assumption, it is useful to let Xi denote the explanatory variables for
all time periods for cross-sectional observation i; thus, Xi contains xitj, t � 1, …, T,
j � 1, …, k.

A S S U M P T I O N  F D . 3

For each t, the expected value of the idiosyncratic error given the explanatory variables in
all time periods and the unobserved effect is zero: E(uit�X i,ai) � 0.

When Assumption FD.3 holds, we sometimes say that the xitj are strictly exogenous
conditional on the unobserved effect. The idea is that, once we control for ai, there is
no correlation between the xisj and the remaining error, uit, for all s and t. An important
implication of FD.3 is that E(
uit�Xi) � 0, t � 2, ..., T.
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A S S U M P T I O N  F D . 4

Each explanatory variable changes over time (for at least some i ), and no perfect linear rela-
tionships exist among the explanatory variables.

Under these first four assumptions, the first-difference estimators are unbiased. The
key assumption is FD.3, which is strict exogeneity of the explanatory variables. Under
these same assumptions, we can also show that the FD estimator is consistent with a
fixed T and as N * � (and perhaps more generally).

A S S U M P T I O N  F D . 5

The variance of the differenced errors, conditional on all explanatory variables, is constant:
Var(
uit�X i) � �2, t � 2, …, T.

A S S U M P T I O N  F D . 6

For all t � s, the differences in the idiosyncratic errors are uncorrelated (conditional on all
explanatory variables): Cov(
uit,
uis�X i) � 0, t � s.

Assumption FD.5 ensures that the differenced errors, 
uit, are homoskedastic.
Assumption FD.6 states that the differenced errors are serially uncorrelated, which
means that the uit follow a random walk across time (see Chapter 11). Under
Assumptions FD.1 through FD.6, the FD estimator of the �j is the best linear unbiased
estimator (conditional on the explanatory variables).

A S S U M P T I O N  F D . 7

Conditional on X i, the 
uit are independent and identically distributed normal random vari-
ables.

When we add Assumption FD.7, the FD estimators are normally distributed and the t
and F statistics from pooled OLS on the differences have exact t and F distributions.
Without FD.7, we can rely on the usual asymptotic approximations.
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In this chapter, we cover two methods for estimating unobserved effects panel data
models that are at least as common as first differencing. Although these methods are
somewhat harder to describe and implement, several econometrics packages sup-

port them.
In Section 14.1, we discuss the fixed effects estimator, which, like first differencing,

uses a transformation to remove the unobserved effect ai prior to estimation. Any time-
constant explanatory variables are removed along with ai.

The random effects estimator is attractive when we think the unobserved effect is
uncorrelated with all the explanatory variables. If we have good controls in our equa-
tion, we might believe that any leftover neglected heterogeneity only induces serial cor-
relation in the composite error term, but it does not cause correlation between the
composite errors and the explanatory variables. Estimation of random effects models by
generalized least squares is fairly easy and is routinely done by many econometrics
packages.

In Section 14.3, we show how panel data methods can be applied to other data struc-
tures, including matched pairs and cluster samples.

14.1 FIXED EFFECTS ESTIMATION

First differencing is just one of the many ways to eliminate the fixed effect, ai. An alter-
native method, which works better under certain assumptions, is called the fixed effects
transformation. To see what this method involves, consider a model with a single
explanatory variable: for each i,

yit � �1xit � ai � uit, t � 1,2, …, T. (14.1)

Now, for each i, average this equation over time. We get

ȳi � �1x̄i � ai � ūi, (14.2)

where ȳi � T�1 �
T

t�1
yit, and so on. Because ai is fixed over time, it appears in both (14.1)

and (14.2). If we substract (14.2) from (14.1) for each t, we wind up with
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yit � ȳi � �1(xit � x̄i) � uit � ūi, t � 1,2, …, T,

or

y�it � �1x�it � u�it, t � 1,2, …, T, (14.3)

where y�it � yit � ȳi is the time-demeaned data on y, and similarly for x�it and u�it. The
fixed effects transformation is also called the within transformation. The important
thing about equation (14.3) is that the unobserved effect, ai, has disappeared. This sug-
gests that we estimate (14.3) by pooled OLS. A pooled OLS estimator that is based on
the time-demeaned variables is called the fixed effects estimator or the within esti-
mator. The latter name comes from the fact that OLS on (14.3) uses the time variation
in y and x within each cross-sectional observation.

The between estimator is obtained as the OLS estimator on the cross-sectional
equation (14.2) (where we include an intercept, �0): we use the time-averages for both
y and x and then run a cross-sectional regression. We will not study the between esti-
mator in detail because it is biased when ai is correlated with xi (see Problem 14.2). If
we think ai is uncorrelated with xit, it is better to use the random effects estimator,
which we cover in Section 14.2. The between estimator ignores important information
on how the variables change over time.

Adding more explanatory variables to the equation causes few changes. The origi-
nal model is

yit � �1xit1 � �2xit2 � … � �kxitk � ai � uit, t � 1,2, …, T. (14.4)

We simply use the time-demeaning on each explanatory variable—including things like
time period dummies—and then do a pooled OLS regression using all time-demeaned
variables. The general time-demeaned equation for each i is

y�it � �1x�it1 � �2x�it2 � … � �k x�itk � u�it, t � 1,2, …, T, (14.5)

which we estimate by pooled OLS.
Under a strict exogeneity assumption on the explanatory variables, the fixed effects

estimator is unbiased: roughly, the idiosyncratic error uit should be uncorrelated with
each explanatory variable across all time periods. (See the chapter appendix for precise
statements of the assumptions.) The fixed effects estimator allows for arbitrary correla-
tion between ai and the explanatory variables in any time period, just as with first dif-
ferencing. Because of this, any explanatory variable that is constant over time for all i
gets swept away by the fixed effects transformation: x�it � 0 for all i and t, if xit is con-

stant across t. Therefore, we cannot
include variables such as gender or
whether a city is located near a river.

The other assumptions needed for a
straight OLS analysis to be valid are that
the errors uit are homoskedastic and seri-
ally uncorrelated (across t); see the appen-
dix to this chapter.
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Q U E S T I O N  1 4 . 1

Suppose that in a family savings equation, for the years 1990, 1991,
and 1992, we let kidsit denote the number of children in family i for
year t. If the number of kids is constant over this three-year period
for most families in the sample, what problems might this cause for
estimating the effect that the number of kids has on savings?



There is one subtle point in determining the degrees of freedom for the fixed effects
estimator. When we estimate the time-demeaned equation (14.5) by pooled OLS, we have
NT total observations and k independent variables. [Notice that there is no intercept in
(14.5); it is eliminated by the fixed effects transformation.] Therefore, we should appar-
ently have NT � k degrees of freedom. This calculation is incorrect. For each cross-
sectional observation i, we lose one df because of the time-demeaning. In other words, for
each i, the demeaned errors u�it add up to zero when summed across t, so we lose one
degree of freedom. (There is no such constraint on the original idiosyncratic errors uit.)
Therefore, the appropriate degrees of freedom is df � NT � N � k � N(T � 1) � k.
Fortunately, modern regression packages that have a fixed effects estimation feature prop-
erly compute the df. But if we have to do the time-demeaning and the estimation by
pooled OLS ourselves, we need to correct the standard errors and test statistics.

E X A M P L E  1 4 . 1
( E f f e c t  o f  J o b  T r a i n i n g  o n  F i r m  S c r a p  R a t e s )

We use the data for the three years, 1987, 1988, and 1989 on the 54 firms that reported
scrap rates in each year. No firms received grants prior to 1988; in 1988, 19 firms received
grants; in 1989, 10 different firms received grants. Therefore, we must also allow for the
possibility that the additional job training in 1988 made workers more productive in 1989.
This is easily done by including a lagged value of the grant indicator. We also include year
dummies for 1988 and 1989. The results are given in Table 14.1:
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Table 14.1

Fixed Effects Estimation of the Scrap Rate Equation

Dependent Variable: log(scrap)

Independent Variables

d88 �.080
(.109)

d89 �.247
(.133)

grant �.252
(.151)

grant�1 �.422
(.210)

Observations .162
Degrees of Freedom .104
R-Squared .201



We have reported the results in a way that emphasizes the need to interpret the esti-
mates in light of the unobserved effects model, (14.4). We are explicitly controlling for the
unobserved, time-constant effects in ai. The time-demeaning allows us to estimate the �j,
but (14.5) is not the best equation for interpreting the estimates.

Interestingly, the estimated lagged effect of the training grant is substantially larger
than the contemporaneous effect: job training has an effect at least one year later. Because
the dependent variable is in logarithmic form, obtaining a grant in 1988 is predicted to
lower the firm scrap rate in 1989 by about 34.4% [exp(�.422) � 1 � �.344]; the coeffi-
cient on grant�1 is significant at the 5% level against a two-sided alternative. The coeffi-
cient on grant is significant at the 10% level, and the size of the coefficient is hardly trivial.
Notice the df is obtained as N(T � 1) � k � 54(3 � 1) � 4 � 104.

The coefficient on d89 indicates that the scrap rate was substantially lower in 1989
than in the base year, 1987, even in the absence of job training grants. Thus, it is impor-
tant to allow for these aggregate effects. If we omitted the year dummies, the secular

increase in worker productivity would be
attributed to the job training grants. Table
14.1 shows that, even after controlling for
aggregate trends in productivity, the job
training grants had a large estimated effect.

Finally, it is crucial to allow for the lagged
effect in the model. If we omit grant�1, then

we are assuming that the effect of job training does not last into the next year. The esti-
mate on grant when we drop grant�1 is �.082 (t � �.65); this is much smaller and statis-
tically insignificant.

When estimating an unobserved effects model by fixed effects, it is not clear how
we should compute a goodness-of-fit measure. The R-squared given in Table 14.1 is
based on the within transformation: it is the R-squared obtained from estimating (14.5).
Thus, it is interpreted as the amount of time variation in the yit that is explained by the
time variation in the explanatory variables. Other ways of computing R-squared are
possible, one of which we discuss later.

Although time-constant variables cannot be included by themselves in a fixed
effects model, they can be interacted with variables that change over time and, in par-
ticular, with year dummy variables. For example, in a wage equation where education
is constant over time for each individual in our sample, we can interact education with
each year dummy to see how the return to education has changed over time. But we
cannot use fixed effects to estimate the return to education in the base period—which
means we cannot estimate the return to education in any period—we can only see how
the return to education in each year differs from that in the base period.

When we include a full set of year dummies—that is, year dummies for all years
but the first—we cannot estimate the effect of any variable whose change across time
is constant. An example is years of experience in a panel data set where each person
works in every year, so that experience always increases by one in each year, for every
person in the sample. The presence of ai accounts for differences across people in their
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Q U E S T I O N  1 4 . 2

Under the Michigan program, if a firm received a grant in one year,
it was not eligible for a grant the following year. What does this
imply about the correlation between grant and grant�1?



years of experience in the initial time period. But then the effect of a one-year increase
in experience cannot be distinguished from the aggregate time effects (because experi-
ence increases by the same amount for everyone). This would also be true if, in place
of separate year dummies, we used a linear time trend: for each person, experience can-
not be distinguished from a linear trend.

E X A M P L E  1 4 . 2
( H a s  t h e  R e t u r n  t o  E d u c a t i o n  C h a n g e d  O v e r  T i m e ? )

The data in WAGEPAN.RAW are from Vella and Verbeek (1998). Each of the 545 men in
the sample worked in every year from 1980 through 1987. Some variables in the data set
change over time: experience, marital status, and union status are the three important
ones. Other variables do not change: race and education are the key examples. If we use
fixed effects (or first differencing), we cannot include race, education, or experience in the
equation. However, we can include interactions of educ with year dummies for 1981
through 1987 to test whether the return to education was constant over this time period.
We use log(wage) as the dependent variable, a quadratic in experience, dummy variables
for marital and union status, a full set of year dummies, and the interaction terms
d81�educ, d82�educ, …, d87�educ.

The estimates on these interaction terms are all positive, and they generally get larger
for more recent years. The largest coefficient of .030 is on d87�educ, with t � 2.48. In other
words, the return to education is estimated to be about 3 percentage points larger in 1987
than in the base year, 1980. (We do not have an estimate of the return to education in the
base year for the reasons given earlier.) The other significant interaction term is d86�educ
(coefficient � .027, t � 2.23). The estimates on the earlier years are smaller and insignifi-
cant at the 5% level against a two-sided alternative. If we do a joint F test for significance
of all seven interaction terms, we get p-value � .28: this gives an example where a set
of variables is jointly insignificant even though some variables are individually significant.
[The df for the F test are 7 and 3,799; the second of these comes from N(T � 1) � k �

545(8 � 1) � 16 � 3,799.] Generally, the results are consistent with an increase in the
return to education over this period.

The Dummy Variable Regression

A traditional view of the fixed effects model is to assume that the unobserved effect, ai,
is a parameter to be estimated for each i. Thus, in equation (14.4), ai is the intercept for
person i (or firm i, city i, and so on) that is to be estimated along with the �j. (Clearly
we cannot do this with a single cross section: there would be N � k parameters to esti-
mate with only N observations. We need at least two time periods.) The way we esti-
mate an intercept for each i is to put in a dummy variable for each cross-sectional
observation, along with the explanatory variables (and probably dummy variables for
each time period). This method is usually called the dummy variable regression. Even
when N is not very large (say, N � 54 as in Example 14.1), this results in many explana-
tory variables—in most cases, too many to explicitly carry out the regression. Thus, the
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dummy variable method is not very practical for panel data sets with many cross-
sectional observations.

Nevertheless, the dummy variable regression has some interesting features. Most
importantly, it gives us exactly the same estimates of the �j that we would obtain from
the regression on time-demeaned data, and the standard errors and other major statis-
tics are identical. Therefore, the fixed effects estimator can be obtained by the dummy
variable regression. One benefit of the dummy variable regression is that it properly
computes the degrees of freedom directly. This is a minor advantage now that many
econometrics packages have programmed fixed effects options.

The R-squared from the dummy variable regression is usually rather high. This is
because we are including a dummy variable for each cross-sectional unit, which
explains much of the variation in the data. For example, if we estimate the unobserved
effects model in Example 13.8 by fixed effects using the dummy variable regression
(which is possible with N � 22), then R2 � .933. We should not get too excited about
this large R-squared: it is not surprising that we can explain much of the variation in
unemployment claims using both year and city dummies. Just as in Example 13.8, the
estimate on the EZ dummy variable is more important than R2.

The R-squared from the dummy variable regression can be used to compute F tests
in the usual way, assuming of course that the classical linear model assumptions hold
(see the chapter appendix). In particular, we can test the joint significance of all of the
cross-sectional dummies (N � 1, since one unit is chosen as the base group). The unre-
stricted R-squared is obtained from the regression with all of the cross-sectional dum-
mies; the restricted R-squared omits these. In the vast majority of applications, the
dummy variables will be jointly significant.

Occasionally, the estimated intercepts, say âi, are of interest. This is the case if we
want to study the distribution of the âi across i, or if we want to pick a particular firm
or city to see whether its âi is above or below the average value in the sample. These
estimates are directly available from the dummy variable regression, but they are rarely
reported by packages that have fixed effects routines (for the practical reason that there
are so many âi). After fixed effects estimation with N of any size, the âi are pretty easy
to compute:

âi � ȳi � �̂1 x̄i1 � … � �̂k x̄ik, i � 1, …, N, (14.6)

where the overbar refers to the time averages and the �̂j are the fixed effects estimates.
For example, if we have estimated a model of crime while controlling for various time-
varying factors, we can obtain âi for a city to see whether the unobserved fixed effects
that contribute to crime are above or below average.

In most studies, the �̂j are of interest, and so the time-demeaned equations are used
to obtain these estimates. Further, it is usually best to view the ai as omitted variables
that we control for through the within transformation. The sense in which the ai can be
estimated is generally weak. In fact, even though âi is unbiased (under assumptions FE.1
through FE.4 in the chapter appendix), it is not consistent with a fixed T as N * �. The
reason is that, as we add each additional cross-sectional observation, we add a new ai.
No information accumulates on each ai when T is fixed. With larger T, we can get bet-
ter estimates of the ai, but most panel data sets are of the large N and small T variety.
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Fixed Effects or First Differencing?

So far, we have seen two methods for estimating unobserved effects models. One
involves differencing the data, and the other involves time-demeaning. How do we
know which one to use?

We can eliminate one case immediately: when T � 2, the FE and FD estimates and
all test statistics are identical, and so it does not matter which we use. First differenc-
ing has the advantage of being straightforward in virtually any econometrics package,
and it is easy to compute heteroskedasticity-robust statistics in the FD regression.

When T � 3, the FE and FD estimators are not the same. Since both are unbiased
under Assumptions FE.1 through FE.4, we cannot use unbiasedness as a criterion.
Further, both are consistent (with T fixed as N * �) under FE.1 through FE.4. For large
N and small T, the choice between FE and FD hinges on the relative efficiency of the
estimators, and this is determined by the serial correlation in the idiosyncratic errors,
uit. (We will assume homoskedasticity of the uit, since efficiency comparisons require
homoskedastic errors.)

When the uit are serially uncorrelated, fixed effects is more efficient than first dif-
ferencing (and the standard errors reported from fixed effects are valid). Since the fixed
effects model is almost always stated with serially uncorrelated idiosyncratic errors, the
FE estimator is used more often. But we should remember that this assumption can be
false. In many applications, we can expect the unobserved factors that change over time
to be serially correlated. If uit follows a random walk—which means that there is very
substantial, positive serial correlation—then the difference 	uit is serially uncorrelated,
and first differencing is better. In many cases, the uit exhibit some positive serial corre-
lation, but perhaps not as much as a random walk. Then, we cannot easily compare the
efficiency of the FE and FD estimators.

It is difficult to test whether the uit are serially uncorrelated after FE estimation: we
can estimate the time-demeaned errors, u�it, but not the uit. However, in Section 13.3, we
showed how to test whether the differenced errors, 	uit, are serially uncorrelated. If this
seems to be the case, FD can be used. If there is substantial negative serial correlation
in the 	uit, FE is probably better. It is often a good idea to try both: if the results are not
sensitive, so much the better.

When T is large, and especially when N is not very large (for example, N � 20 and
T � 30), we must exercise caution in using the fixed effects estimator. While exact dis-
tributional results hold for any N and T under the classical fixed effects assumptions,
they are extremely sensitive to violations of the assumptions when N is small and T is
large. In particular, if we are using unit root processes—see Chapter 11—the spurious
regression problem can arise. As we saw in Chapter 11, differencing an integrated
process results in a weakly dependent process, and we must appeal to the central limit
approximations. In this case, using differences is favorable.

On the other hand, fixed effects turns out to be less sensitive to violation of the strict
exogeneity assumption, especially with large T. Some authors even recommend esti-
mating fixed effects models with lagged dependent variables (which clearly violates
Assumption FE.3 in the chapter appendix). When the processes are weakly dependent
over time and T is large, the bias in the fixed effects estimator can be small [see, for
example, Wooldridge (1999, Chapter 11)].
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It is difficult to choose between FE and FD when they give substantively different
results. It makes sense to report both sets of results and to try to determine why they
differ.

Fixed Effects with Unbalanced Panels

Some panel data sets, especially on individuals or firms, have missing years for at least
some cross-sectional units in the sample. In this case, we call the data set an unbal-
anced panel. The mechanics of fixed effects estimation with an unbalanced panel are
not much more difficult than with a balanced panel. If Ti is the number of time periods
for cross-sectional unit i, we simply use these Ti observations in doing the time-
demeaning. The total number of observations is then T1 � T2 � … � TN. As in the bal-
anced case, one degree of freedom is lost for every cross-sectional observation due to
the time-demeaning. Any regression package that does fixed effects makes the appro-
priate adjustment for this loss. The dummy variable regression also goes through in
exactly the same way as with a balanced panel, and the df is appropriately obtained.

It is easy to see that units for which we have only a single time period play no role
in a fixed effects analysis. The time-demeaning for such observations yields all zeros,
which are not used in the estimation. (If Ti is at most two for all i, we can use first dif-
ferencing: if Ti � 1 for any i, we do not have two periods to difference.)

The more difficult issue with an unbalanced panel is determining why the panel is
unbalanced. With cities and states, for example, data on key variables are sometimes
missing for certain years. Provided the reason we have missing data for some i is not
correlated with the idiosyncratic errors, uit, the unbalanced panel causes no problems.
When we have data on individuals, families, or firms, things are trickier. Imagine, for
example, that we obtain a random sample of manufacturing firms in 1990, and we are
interested in testing how unionization affects firm profitability. Ideally, we can use a
panel data analysis to control for unobserved worker and management characteristics
that affect profitability and might also be correlated with the fraction of the firm’s work
force that is unionized. If we collect data again in subsequent years, some firms may be
lost because they have gone out of business or have merged with other companies. If
so, we probably have a nonrandom sample in subsequent time periods. The question is:
If we apply fixed effects to the unbalanced panel, when will the estimators be unbiased
(or at least consistent)?

If the reason a firm leaves the sample (called attrition) is correlated with the idio-
syncratic error—those unobserved factors that change over time and affect profits—
then the resulting sample section problem (see Chapter 9) can cause biased estimators.
This is a serious consideration in this example. Nevertheless, one useful thing about a
fixed effects analysis is that it does allow attrition to be correlated with ai, the unob-
served effect. The idea is that, with the initial sampling, some units are more likely to
drop out of the survey, and this is captured by ai.

E X A M P L E  1 4 . 3
( E f f e c t  o f  J o b  T r a i n i n g  o n  F i r m  S c r a p  R a t e s )

We add two variables to the analysis in Table 14.1: log(salesit) and log(employit), where sales
is annual firm sales and employ is number of employees. Three of the 54 firms drop out of
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the analysis entirely because they do not have sales or employment data. Five additional
observations are lost due to missing data on one or both of these variables for some years,
leaving us with n � 148. Using fixed effects on the unbalanced panel does not change the
basic story, although the estimated grant effect gets larger: �̂grant � �.297, tgrant � �1.89;
�̂grant�1

� �.536, tgrant�1
� �2.389.

Solving attrition problems in panel data is complicated and beyond the scope of this
text. [See, for example, Wooldridge (1999, Chapter 17).]

14.2 RANDOM EFFECTS MODELS

We begin with the same unobserved effects model as before,

yit � �0 � �1xit1 � … � �k xitk � ai � uit, (14.7)

where we explicitly include an intercept so that we can make the assumption that the
unobserved effect, ai, has zero mean (without loss of generality). We would usually
allow for time dummies among the explanatory variables as well. In using fixed effects
or first differencing, the goal is to eliminate ai because it is thought to be correlated with
one or more of the xitj. But suppose we think ai is uncorrelated with each explanatory
variable in all time periods? Then, using a transformation to eliminate ai results in inef-
ficient estimators.

Equation (14.7) becomes a random effects model when we assume that the unob-
served effect ai is uncorrelated with each explanatory variable:

Cov(xitj,ai) � 0, t � 1,2, …, T ; j � 1,2, …, k. (14.8)

In fact, the ideal random effects assumptions include all of the fixed effects assumptions
plus the additional requirement that ai is independent of all explanatory variables in all
time periods. (See the chapter appendix for the actual assumptions used.) If we think
the unobserved effect ai is correlated with any explanatory variables, we should use first
differencing for fixed effects.

Under (14.8) and along with the random effects assumptions, how should we esti-
mate the �j? It is important to see that, if we believe that ai is uncorrelated with the
explanatory variables, the �j can be consistently estimated by using a single cross sec-
tion: there is no need for panel data at all. But using a single cross section disregards
much useful information in the other time periods. We can use this information in a
pooled OLS procedure: just run OLS of yit on the explanatory variables and probably
the time dummies. This, too, produces consistent estimators of the �j under the random
effects assumption. But it ignores a key feature of the model. If we define the compos-
ite error term as vit � ai � uit, then (14.7) can be written as

yit � �0 � �1xit1 � … � �k xitk � vit. (14.9)
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Because ai is in the composite error in each time period, the vit are serially correlated
across time. In fact, under the random effects assumptions,

Corr(vit,vis) � 
a
2/(
a

2 � 
u
2), t � s,

where 
a
2 � Var(ai) and 
u

2 � Var(uit). This (necessarily) positive serial correlation in
the error term can be substantial: because the usual pooled OLS standard errors ignore
this correlation, they will be incorrect, as will the usual test statistics. In Chapter 12, we
showed how generalized least squares can be used to estimate models with autoregres-
sive serial correlation. We can also use GLS to solve the serial correlation problem here.
In order for the procedure to have good properties, it must have large N and relatively
small T. We assume that we have a balanced panel, although the method can be
extended to unbalanced panels.

Deriving the GLS transformation that eliminates serial correlation in the errors
requires sophisticated matrix algebra [see, for example, Wooldridge (1999) Chapter
10]. But the transformation itself is simple. Define

� � 1 � [
u
2/(
u

2 � T
a
2)]1/2, (14.10)

which is between zero and one. Then, the transformed equation turns out to be

yit � �ȳi � �0(1 � �) � �1(xit1 � � x̄i1) � …
� �k(xitk � �x̄ik) � (vit � �v̄i),

(14.11)

where the overbar again denotes the time averages. This is a very interesting equation,
as it involves a quasi-demeaned data on each variable. The fixed effects estimator sub-
tracts the time averages from the corresponding variable. The random effects transfor-
mation subtracts a fraction of that time average, where the fraction depends on 
u

2, 
a
2,

and the number of time periods, T. The GLS estimator is simply the pooled OLS esti-
mator of equation (14.11). It is hardly obvious that the errors in (14.11) are serially
uncorrelated, but they are.

The transformation in (14.11) allows for explanatory variables that are constant
over time, and this is one advantage of random effects (RE) over either fixed effects or
first differencing. This is possible because RE assumes that the unobserved effect is
uncorrelated with all explanatory variables, whether they are fixed over time or not.
Thus, in a wage equation, we can include a variable such as education even if it does
not change over time. But we are assuming that education is uncorrelated with ai, which
contains ability and family background. In many applications, the whole reason for
using panel data is to allow the unobserved effect to be correlated with the explanatory
variables.

The parameter � is never known in practice, but it can always be estimated. There
are different ways to do this, which may be based on pooled OLS or fixed effects, for
example. Generally, �̂ takes the form �̂ � 1 � {1/[1 � T(
̂a

2/
̂u
2)]}1/2, where 
̂a

2 is a
consistent estimator of 
a

2 and 
̂u
2 is a consistent estimator of 
u

2. These estimators can
be based on the pooled OLS or fixed effects residuals. One possibility is that


̂a
2 � [NT(T � 1)/2 � k]�1 �

N

i�1
�
T�1

t�1
�
T

s�t�1
v̂itv̂is, where the v̂it are the residuals from esti-
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mating (14.9) by pooled OLS. Given this, we can estimate 
u
2 by using 
̂u

2 � 
̂v
2 � 
̂a

2,
where 
̂v

2 is the square of the usual standard error of the regression from pooled OLS.
[See Wooldridge (1999, Chapter 10) for additional discussion of these estimators.]

Many econometrics packages support estimation of random effects models and
automatically compute some version of �̂. The feasible GLS estimator that uses �̂ in
place of � is called the random effects estimator. Under the random effects assump-
tions in the chapter appendix, the estimator is consistent (not unbiased) and asymptoti-
cally normally distributed as N gets large with fixed T. The properties of the RE
estimator with small N and large T are largely unknown, although it has certainly been
used in such situations.

Equation (14.11) allows us to relate the RE estimator to both pooled OLS and fixed
effects. Pooled OLS is obtained when � � 0, and FE is obtained when � � 1. In prac-
tice, the estimate �̂ is never zero or one. But if �̂ is close to zero, the RE estimates will
be close to the pooled OLS estimates. This is the case when the unobserved effect, ai,
is relatively unimportant (since it has small variance relative to 
u

2). It is more common
for 
a

2 to be large relative to 
u
2, in which case �̂ will be closer to unity. As T gets large,

�̂ tends to one, and this makes the RE and FE estimates very similar.

E X A M P L E  1 4 . 4
( A  W a g e  E q u a t i o n  U s i n g  P a n e l  D a t a )

We again use the data in WAGEPAN.RAW to estimate a wage equation for men. We use
three methods: pooled OLS, random effects, and fixed effects. In the first two methods, we
can include educ and race dummies (black and hispan), but these drop out of the fixed
effects analysis. The time-varying variables are exper, exper2, union, and married. As we dis-
cussed in Section 14.1, exper is dropped in the FE analysis (but exper2 remains). Each regres-
sion also contains a full set of year dummies. The estimation results are in Table 14.2.

The coefficients on educ, black, and hispan are similar for the pooled OLS and random
effects estimations. The pooled OLS standard errors are the usual OLS standard errors, and
these underestimate the true standard errors because they ignore the positive serial corre-
lation; we report them here for comparison only. The experience profile is somewhat dif-
ferent, and both the marriage and union premiums fall notably in the random effects
estimation. When we eliminate the unobserved effect entirely by using fixed effects, the
marriage premium falls to about 4.7%, although it is still statistically significant. The drop

in the marriage premium is consistent with
the idea that men who are more able—as
captured by a higher unobserved effect, ai—
are more likely to be married. Therefore, in
the pooled OLS estimation, a large part of
the marriage premium reflects the fact that
men who are married would earn more even
if they were not married. The remaining

4.7% has at least two possible explanations: (1) marriage really makes men more produc-
tive or (2) employers pay married men a premium because marriage is a signal of stability.
We cannot distinguish between these two hypotheses.
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Q U E S T I O N  1 4 . 3

The union premium estimated by fixed effects is about 10 percent-
age points lower than the OLS estimate. What does this strongly
suggest about the correlation between union and the unobserved
effect?



The estimate of � for the random effects estimation is �̂ � .643, which explains why,
on the time-varying variables, the RE estimates lie closer to the FE estimates than to the
pooled OLS estimates.

Random Effects or Fixed Effects?

In reading empirical work, you may find that authors decide between fixed and random
effects based on whether the ai (or whatever notation the authors use) are best viewed
as parameters to be estimated or as outcomes of a random variable. When we cannot
consider the observations to be random draws from a large population—for example, if
we have data on states or provinces—it often makes sense to think of the ai as parame-
ters to estimate, in which case we use fixed effects methods. Remember that using fixed
effects is the same as allowing a different intercept for each observation, and we can
estimate these intercepts by including dummy variables or by (14.6).
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Table 14.2

Three Different Estimators of a Wage Equation

Dependent Variable: log(wage)

Independent Pooled Random Fixed
Variables OLS Effects Effects

educ .091 .092 —
(.005) (.011)

black �.139 �.139 —
(.024) (.048)

hispan .016 .022 —
(.021) (.043)

exper .067 .106 —
(.014) (.015)

exper2 �.0024 �.0047 �.0052
(.0008) (.0007) (.0007)

married .108 .064 .047
(.016) (.017) (.018)

union .182 .106 .080
(.017) (.018) (.019)



Even if we decide to treat the ai as random variables, we must decide whether the
ai are uncorrelated with the explanatory variables. People sometimes mistakenly
believe that assuming ai is random automatically means that random effects is the
appropriate estimation strategy. If we can assume the ai are uncorrelated with all xit,
then the random effects method is appropriate. But if the ai are correlated with some
explanatory variables, the fixed effects method (or first differencing) is needed; if RE is
used, then the estimators are generally inconsistent.

Comparing the FE and RE estimates can be a test for whether there is correlation
between the ai and the xitj, assuming that the idiosyncratic errors and explanatory vari-
ables are uncorrelated across all time periods. Hausman (1978) first suggested this test.
Some econometrics packages routinely compute the test under the ideal random effects
assumptions listed in the chapter appendix. Details on this statistic can be found in
Wooldridge (1999, Chapter 10).

14.3 APPLYING PANEL DATA METHODS TO OTHER
DATA STRUCTURES

Differencing, fixed effects, and random effects methods can be applied to data struc-
tures that do not involve time. For example, in demography, it is common to use
siblings (sometimes twins) to control for unobserved family and background character-
istics. Differencing across siblings or, more generally, using the within transformation
within a family, removes family effects that may be correlated with the explanatory
variables.

As an example, Geronimus and Korenman (1992) use pairs of sisters to study the
effects of teen childbearing on future economic outcomes. When the outcome is income
relative to needs—something that depends on the number of children—the model is

log(incneedsfs) � �0 � 
0sister2s � �1teenbrthfs

� �2agefs � other factors � af � ufs,
(14.12)

where f indexes family and s indexes a sister within the family. The intercept for the first
sister is �0, and the intercept for the second sister is �0 � 
0. The variable of interest is
teenbrthfs, which is a binary variable equal to one if sister s in family f had a child while
a teenager. The variable agefs is the current age of sister s in family f; Geronimus and
Korenman also use some other controls. The unobserved variable af, which changes
only across family, is an unobserved family effect or a family fixed effect. The main con-
cern in the analysis is that teenbrth is correlated with the family effect. If so, an OLS
analysis that pools across families and sisters gives a biased estimator of the effect of
teenage motherhood on economic outcomes. Solving this problem is simple: within
each family, difference (14.12) across sisters to get

	log(incneeds) � 
0 � �1	teenbrth � �2	age � … � 	u; (14.13)

this removes the family effect, af, and the resulting equation can be estimated by OLS.
Notice that there is no time element here: the differencing is across sisters within a
family.
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Using 129 sister pairs from the 1982 National Longitudinal Survey of Young
Women, Geronimus and Korenman first estimate �1 by pooled OLS to obtain �.33 or
�.26, where the second estimate comes from controlling for family background vari-
ables (such as parents’ education); both estimates are very statistically significant [see

Table 3 in Geronimus and Korenman
(1992)]. Therefore, teenage motherhood
has a rather large impact on future family
income. However, when the differenced
equation is estimated, the coefficient on
teenbrth is �.08, which is small and statis-
tically insignificant. This suggests that it is

largely a woman’s family background that affects her future income, rather than teenage
childbearing.

Geronimus and Korenman look at several other outcomes and two other data sets;
in some cases, the within family estimates are economically large and statistically sig-
nificant. They also show how the effects disappear entirely when the sisters’ education
levels are controlled for.

Ashenfelter and Krueger (1994) used the differencing methodology to estimate the
return to education. They obtained a sample of 149 identical twins and collected infor-
mation on earnings, education, and other variables. The reason for using identical twins
is that they should have the same underlying ability. This can be differenced away by
using twin differences, rather than OLS on the pooled data. Because identical twins are
the same in age, gender, and race, these factors all drop out of the differenced equation.
Therefore, Ashenfelter and Krueger regressed the difference in log(earnings) on the dif-
ference in education and estimated the return to education to be about 9.2% (t � 3.83).
Interestingly, this is actually larger than the pooled OLS estimate of 8.4% (which con-
trols for gender, age, and race). Ashenfelter and Krueger also estimated the equation by
random effects and obtained 8.7% as the return to education. (See Table 5 in their
paper.) The random effects analysis is mechanically the same as the panel data case
with two time periods.

The samples used by Geronimus and Korenman (1992) and Ashenfelter and
Krueger (1994) are examples of matched pair samples. Generally, fixed and random
effects methods can be applied to a cluster sample. These are cross-sectional data sets,
but each observation belongs to a well-defined cluster. In the previous examples, each
family is a cluster. As another example, suppose we have participation data on various
pension plans, where firms offer more than one plan. We can then view each firm as a
cluster, and it is pretty clear that unobserved firm effects would be an important factor
in determining participation rates in pension plans within the firm.

Educational data on students sampled from many schools form a cluster sample,
where each school is a cluster. Since the outcomes within a cluster are likely to be cor-
related, allowing for an unobserved cluster effect is typically important. Fixed effects
estimation is preferred when we think the unobserved cluster effect—an example of
which is af in (14.12)—is correlated with one or more of the explanatory variables.
Then, we can only include explanatory variables that vary, at least somewhat, within
clusters. The cluster sizes are rarely the same, so fixed effects methods for unbalanced
panels are usually required.
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Q U E S T I O N  1 4 . 4

When using the differencing method, does it make sense to include
dummy variables for the mother and father’s race in (14.12)?
Explain.



Random effects methods can also be used with unbalanced clusters, provided the
cluster effect is uncorrelated with all the explanatory variables. We can also use pooled
OLS in this case, but the usual standard errors are incorrect unless there is no correla-
tion within clusters. Some regression packages have simple commands to correct stan-
dard errors and the usual test statistics for general within cluster correlation (as well as
heteroskedasticity). These are the same corrections that work for pooled OLS on panel
data sets, which we reported in Example 13.9. As an example, Papke (1999) estimates
linear probability models for the continuation of defined benefit pension plans based on
whether firms adopted defined contribution plans. Because there is likely to be a firm
effect that induces correlation across different plans within the same firm, Papke cor-
rects the usual OLS standard errors for cluster sampling, as well as for heteroskedas-
ticity in the linear probability model.

SUMMARY

We have studied two common methods for estimating panel data models with unob-
served effects. Compared with first differencing, the fixed effects estimator is efficient
when the idiosyncratic errors are serially uncorrelated (as well as homoskedastic), and
we make no assumptions about correlation between the unobserved effect ai and the
explanatory variables. As with first differencing, any time-constant explanatory vari-
ables drop out of the analysis. Fixed effects methods apply immediately to unbalanced
panels, but we must assume that the reasons some time periods are missing are not sys-
tematically related to the idiosyncratic errors.

The random effects estimator is appropriate when the unobserved effect is thought
to be uncorrelated with all the explanatory variables. Then, ai can be left in the error
term, and the resulting serial correlation over time can be handled by generalized least
squares estimation. Conveniently, feasible GLS can be obtained by a pooled regression
on quasi-demeaned data. The value of the estimated transformation parameter, �̂, indi-
cates whether the estimates are likely to be closer to the pooled OLS or the fixed effects
estimates. If the full set of random effects assumptions hold, the random effects esti-
mator is asymptotically—as N gets large with T fixed—more efficient than pooled
OLS, first differencing, or fixed effects (which are all unbiased, consistent, and asymp-
totically normal).

Finally, the panel data methods studied in Chapters 13 and 14 can be used when
working with matched pairs or cluster samples. Differencing or the within transforma-
tion eliminates the cluster effect. If the cluster effect is uncorrelated with the explana-
tory variables, pooled OLS can be used, but the standard errors and test statistics should
be adjusted for cluster correlation. Random effects estimation is also a possibility.

KEY TERMS
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Cluster Effect
Cluster Sample
Composite Error Term
Dummy Variable Regression
Fixed Effects Estimator

Fixed Effects Transformation
Matched Pair Samples
Quasi-Demeaned Data
Random Effects Estimator
Random Effects Model



PROBLEMS

14.1 Suppose that the idiosyncratic errors in (14.4), {uit: t � 1,2, …, T}, are serially
uncorrelated with constant variance, 
u

2. Show that the correlation between adjacent
differences, 	uit and 	ui,t�1, is �.5. Therefore, under the ideal FE assumptions, first
differencing induces negative serial correlation of a known value.

14.2 With a single explanatory variable, the equation used to obtain the between esti-
mator is

ȳi � �0 � �1x̄i � ai � ūi,

where the overbar represents the average over time. We can assume that E(ai) � 0
because we have included an intercept in the equation. Suppose that ūi is uncorrelated
with x̄i, but Cov(xit,ai) � 
xa for all t (and i because of random sampling in the cross
section).

(i) Letting �̃1 be the between estimator, that is, the OLS estimator using the
time averages, show that

plim �̃1 � �1 � 
xa/Var(x̄i),

where the probability limit is defined as N * �. [Hint: See equations
(5.5) and (5.6).]

(ii) Assume further that the xit, for all t � 1,2, …, T, are uncorrelated with
constant variance 
x

2. Show that plim �̃1 � �1 � T (
xa/
x
2).

(iii) If the explanatory variables are not very highly correlated across time,
what does part (ii) suggest about whether the inconsistency in the
between estimator is smaller when there are more time periods?

14.3 In a random effects model, define the composite error vit � ai � uit, where ai is
uncorrelated with uit and the uit have constant variance 
u

2 and are serially uncorrelated.
Define eit � vit � �v̄i, where � is given in (14.10). Show that the eit have mean zero,
constant variance, and are serially uncorrelated.

14.4 In order to determine the effects of collegiate athletic performance on applicants,
you collect data on applications for a sample of Division I colleges for 1985, 1990, and
1995.

(i) What measures of athletic success would you include in an equation?
What are some of the timing issues?

(ii) What other factors might you control for in the equation?
(iii) Write an equation that allows you to estimate the effects of athletic suc-

cess on the percentage change in applications. How would you estimate
this equation? Why would you choose this method?

14.5 Suppose that, for one semester, you can collect the following data on a random
sample of college juniors and seniors for each class taken: a standardized final exam
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score, percentage of lectures attended, a dummy variable indicating whether the class
is within the student’s major, cumulative grade point average prior to the start of the
semester, and SAT score.

(i) Why would you classify this data set as a cluster sample? Roughly how
many observations would you expect for the typical student?

(ii) Write a model, similar to equation (14.12), that explains final exam per-
formance in terms of attendance and the other characteristics. Use s to
subscript student and c to subscript class. Which variables do not
change within a student?

(iii) If you pool all of the data together and use OLS, what are you assum-
ing about unobserved student characteristics that affect performance
and attendance rate? What roles do SAT score and prior GPA play in
this regard?

(iv) If you think SAT score and prior GPA do not adequately capture student
ability, how would you estimate the effect of attendance on final exam
performance?

COMPUTER EXERCISES

14.6 Use the data in RENTAL.RAW for this exercise. The data on rental prices and
other variables for college towns are for the years 1980 and 1990. The idea is to see
whether a stronger presence of students affects rental rates. The unobserved effects
model is

log(rentit) � �0 � 
0y90t � �1log(popit) � �2log(avgincit)
� �3pctstuit � ai � uit,

where pop is city population, avginc is average income, and pctstu is student popula-
tion as a percentage of city population (during the school year).

(i) Estimate the equation by pooled OLS and report the results in standard
form. What do you make of the estimate on the 1990 dummy variable?
What do you get for �̂pctstu?

(ii) Are the standard errors you report in part (i) valid? Explain.
(iii) Now, difference the equation and estimate by OLS. Compare your esti-

mate of �pctstu with that from part (i). Does the relative size of the stu-
dent population appear to affect rental prices?

(iv) Estimate the model by fixed effects to verify that you get identical esti-
mates and standard errors to those in part (iii).

14.7 Use CRIME4.RAW for this exercise.
(i) Reestimate the unobserved effects model for crime in Example 13.9 but

use fixed effects rather than differencing. Are there any notable sign or
magnitude changes in the coefficients? What about statistical signifi-
cance?

(ii) Add the logs of each wage variable in the data set and estimate the
model by fixed effects. How does including these variables affect the
coefficients on the criminal justice variables in part (i)?
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(iii) Do the wage variables in part (ii) all have the expected sign? Explain.
Are they jointly significant?

14.8 For this exercise, we use JTRAIN.RAW to determine the effect of the job train-
ing grant on hours of job training per employee. The basic model for the three years
is

hrsempit � �0 � 
1d88t � 
2d89t � �1grantit
� �2granti,t�1 � �3log(employit) � ai � uit.

(i) Estimate the equation using fixed effects. How many firms are used in
the FE estimation? How many total observations would be used if each
firm had data on all variables (in particular, hrsemp) for all three years?

(ii) Interpret the coefficient on grant and comment on its significance.
(iii) Is it surprising that grant�1 is insignificant? Explain.
(iv) Do larger firms provide their employees with more or less training, on

average? How big are the differences? (For example, if a firm has 10%
more employees, what is the change in average hours of training?)

14.9 In Example 13.8, we used the unemployment claims data from Papke (1994) to
estimate the effect of enterprise zones on unemployment claims. Papke also uses a
model that allows each city to have its own time trend:

log(uclmsit) � ai � cit � �1ezit � uit,

where ai and ci are both unobserved effects. This allows for more heterogeneity across
cities.

(i) Show that, when the previous equation is first differenced, we obtain

	log(uclmsit) � ci � �1	ezit � 	uit, t � 2, …, T.

Notice that the differenced equation contains a fixed effect, ci.
(ii) Estimate the differenced equation by fixed effects. What is the estimate

of �1? Is it very different from the estimate obtained in Example 13.8?
Is the effect of enterprise zones still statistically significant?

(iii) Add a full set of year dummies to the estimation in part (ii). What hap-
pens to the estimate of �1?

14.10 (i) In the wage equation in Example 14.4, explain why dummy variables
for occupation might be important omitted variables for estimating the
union wage premium.

(ii) Using the data in WAGEPAN.RAW, include eight of the occupation
dummy variables in the equation and estimate the equation using fixed
effects. Does the coefficient on union change by much? What about its
statistical significance?

14.11 Add the interaction term unionit�t to the equation estimated in Table 14.2 to see
if wage growth depends on union status. Estimate the equation by random and fixed
effects and compare the results.
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A P P E N D I X  1 4 A

Assumptions for Fixed and Random Effects

In this appendix, we provide statements of the assumptions for fixed and random effects
estimation. We also provide a discussion of the properties of the estimators under dif-
ferent sets of assumptions. Verification of these claims is somewhat involved, but it can
be found in Wooldridge (1999, Chapter 10).

A S S U M P T I O N  F E . 1

For each i, the model is

yit � �1xit1 � … � �kxitk � ai � uit, t � 1, …, T,

where the �j are the parameters to estimate.

A S S U M P T I O N  F E . 2

We have a random sample in the cross-sectional dimension.

A S S U M P T I O N  F E . 3

For each t, the expected value of the idiosyncratic error given the explanatory variables in
all time periods and the unobserved effect is zero: E(uit �Xi,ai) � 0.

A S S U M P T I O N  F E . 4

Each explanatory variable changes over time (for at least some i ), and there are no perfect
linear relationships among the explanatory variables.

Under these first four assumptions—which are identical to the assumptions for the
first-differencing estimator—the fixed effects estimator is unbiased. Again, the key is
the strict exogeneity assumption, FE.3. Under these same assumptions, the FE estima-
tor is consistent with a fixed T as N * �.

A S S U M P T I O N  F E . 5

Var(uit �Xi,ai) � Var(uit) � 
u
2, for all t � 1, …, T.

A S S U M P T I O N  F E . 6

For all t � s, the idiosyncratic errors are uncorrelated (conditional on all explanatory vari-
ables and ai): Cov(uit,uis�Xi,ai) � 0.

Under Assumptions FE.1 through FE.6, the fixed effects estimator of the �j is the
best linear unbiased estimator. Since the FD estimator is linear and unbiased, it is nec-
essarily worse than the FE estimator. The assumption that makes FE better than FD is
FE.6, which implies that the idiosyncratic errors are serially uncorrelated.
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A S S U M P T I O N  F E . 7

Conditional on Xi and ai, the uit are independent and identically distributed as
Normal(0,
u

2).

Assumption FE.7 implies FE.3, FE.5, and FE.6, but it is stronger because it assumes a
normal distribution for the idiosyncratic errors. If we add FE.7, the FE estimator is nor-
mally distributed, and t and F statistics have exact t and F distributions. Without FE.7,
we can rely on asymptotic approximations. But, without making special assumptions,
these approximations require large N and small T.

The ideal random effects assumptions include FE.1, FE.2, FE.3, FE.5, and FE.6. We
can now allow for time-constant variables. (FE.7 could be added, but it gains us little in
practice.) However, we need to add assumptions about how ai is related to the explana-
tory variables. Thus, the third assumption is strengthened as follows.

A S S U M P T I O N  R E . 3

In addition to FE.3, the expected value of ai given all explanatory variables is zero:
E(ai �Xi) � 0.

This is the assumption that rules out correlation between the unobserved effect and the
explanatory variables. Because the RE transformation does not completely remove the
time average, we can allow explanatory variables that are constant across time for all i.

A S S U M P T I O N  R E . 4

There are no perfect linear relationships among the explanatory variables.

We also need to impose homoskedasticity on ai as follows:

A S S U M P T I O N  R E . 5

In addition to FE.5, the variance of ai given all explanatory variables is constant:
Var(ai �Xi) � 
a

2.

Under the six random effects assumptions (FE.1, FE.2, RE.3, RE.4, RE.5, and
FE.6), the random effects estimator is consistent as N gets large for fixed T. (Actually,
only the first four assumptions are needed for consistency.) The RE estimator is not
unbiased unless we know �, which keeps up from having to estimate it. The RE esti-
mator is also approximately normally distributed with large N, and the usual standard
errors, t statistics, and F statistics obtained from the quasi-demeaned regression are
valid with large N. [For more information, see Wooldridge (1999, Chapter 10).]
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In this chapter, we further study the problem of endogenous explanatory variables
in multiple regression models. In Chapter 3, we derived the bias in the OLS esti-
mators when an important variable is omitted; in Chapter 5, we showed that OLS is

generally inconsistent under omitted variables. Chapter 9 demonstrated that omitted
variables bias can be eliminated (or at least mitigated) when a suitable proxy variable
is given for an unobserved explanatory variable. Unfortunately, suitable proxy variables
are not always available.

In the previous two chapters, we explained how fixed effects estimation or first dif-
ferencing can be used with panel data to estimate the effects of time-varying indepen-
dent variables in the presence of time-constant omitted variables. While such methods
are very useful, we do not always have access to panel data. Even if we can obtain panel
data, it does us little good if we are interested in the effect of a variable that does not
change over time: first differencing or fixed effects estimation eliminates time-constant
variables. In addition, the panel data methods which we have studied so far do not solve
the problem of time-varying omitted variables that are correlated with the explanatory
variables.

In this chapter, we take a different approach to the endogeneity problem. You will
see how the method of instrumental variables (IV) can be used to solve the problem of
endogeneity of one or more explanatory variables. The method of two stage least
squares (2SLS or TSLS) is second in popularity only to ordinary least squares for esti-
mating linear equations in applied econometrics.

We begin by showing how IV methods can be used to obtain consistent estima-
tors in the presence of omitted variables. IV can also be used to solve the errors-in-
variables problem, at least under certain assumptions. The next chapter will demon-
strate how to estimate simultaneous equations models using IV methods.

Our treatment of instrumental variables estimation closely follows our development
of ordinary least squares in Part 1, where we assumed that we had a random sample
from an underlying population. This is a desirable starting point because, in addition to
simplifying the notation, it emphasizes that the important assumptions for IV estima-
tion are stated in terms of the underlying population (just as with OLS). As we showed
in Part 2, OLS can be applied to time series data, and the same is true of instrumental
variables methods. Section 15.7 discusses some special issues that arise when IV meth-
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ods are applied to time series data. In Section 15.8, we cover applications to pooled
cross sections and panel data.

15.1 MOTIVATION: OMITTED VARIABLES IN A SIMPLE
REGRESSION MODEL

When faced with the prospect of omitted variables bias (or unobserved heterogeneity),
we have so far discussed three options: (1) we can ignore the problem and suffer the
consequences of biased and inconsistent estimators; (2) we can try to find and use a
suitable proxy variable for the unobserved variable; (3) we can assume that the omitted
variable does not change over time and use the fixed effects or first-differencing meth-
ods from Chapters 13 and 14. The first response can be satisfactory if the estimates are
coupled with the direction of the biases for the key parameters. For example, if we can
say that the estimator of a positive parameter, say the effect of job training on subse-
quent wages, is biased toward zero and we have found a statistically significant positive
estimate, we have still learned something: job training has a positive effect on wages,
and it is likely that we have underestimated the effect. Unfortunately, the opposite case,
where our estimates may be too large in magnitude, often occurs, which makes it very
difficult for us to draw any useful conclusions.

The proxy variable solution discussed in Section 9.2 can also produce satisfying
results, but it is not always possible to find a good proxy. This approach attempts to
solve the omitted variable problem by replacing the unobservable with a proxy variable.

Another approach leaves the unobserved variable in the error term, but rather than
estimating the model by OLS, it uses an estimation method that recognizes the presence
of the omitted variable. This is what the method of instrumental variables does.

For illustration, consider the problem of unobserved ability in a wage equation for
working adults. A simple model is

log(wage) � �0 � �1educ � �2abil � e,

where e is the error term. In Chapter 9, we showed how, under certain assumptions, a
proxy variable such as IQ can be substituted for ability, and then a consistent estimator
is available from the regression of

log(wage) on educ, IQ.

Suppose, however, that a proxy variable is not available (or does not have the proper-
ties needed to produce a consistent estimator of �1). Then, we put abil into the error
term, and we are left with the simple regression model

log(wage) � �0 � �1educ � u, (15.1)

where u contains abil. Of course, if equation (15.1) is estimated by OLS, a biased and
inconsistent estimator of �1 results if educ and abil are correlated.

It turns out that we can still use equation (15.1) as the basis for estimation, provided
we can find an instrumental variable for educ. To describe this approach, the simple
regression model is written as
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y � �0 � �1x � u, (15.2)

where we think that x and u are correlated:

Cov(x,u) � 0. (15.3)

The method of instrumental variables works whether or not x and u are correlated, but,
for reasons we will see later, OLS should be used if x is uncorrelated with u.

In order to obtain consistent estimators of �0 and �1 when x and u are correlated,
we need some additional information. The information comes by way of a new variable
that satisfies certain properties. Suppose that we have an observable variable z that sat-
isfies these two assumptions: (1) z is uncorrelated with u, that is,

Cov(z,u) � 0; (15.4)

(2) z is correlated with x, that is,

Cov(z,x) � 0. (15.5)

Then we call z an instrumental variable for x.
Sometimes, requirement (15.4) is summarized by saying that “z is exogenous in

equation (15.2).” In the context of omitted variables, this means that z should have no
partial effect on y and z should not be correlated with other factors that affect y.
Equation (15.5) means that z must be related, either positively or negatively, to the
endogenous explanatory variable x.

There is a very important difference between the two requirements for an instru-
mental variable. Because (15.4) is a covariance between z and the unobservable error u,
it can never be checked or even tested: we must maintain this assumption by appealing
to economic behavior or a gut feeling. By contrast, the condition that z is correlated
with x (in the population) can be tested, given a random sample from the population.
The easiest way to do this is to estimate a simple regression between x and z. In the pop-
ulation, we have

x � �0 � �1z � v. (15.6)

Then, because �1 � Cov(z,x)/Var(z), assumption (15.5) holds if and only if �1 � 0.
Thus, we should be able to reject the null hypothesis

H0: �1 � 0 (15.7)

against the two-sided alternative H0: �1 � 0, at a sufficiently small significance level
(say, 5% or 1%). If this is the case, then we can be fairly confident that (15.5) holds.

For the log(wage) equation in (15.1), an instrumental variable z for educ must be (1)
uncorrelated with ability (and any other unobservable factors affecting wage) and (2)
correlated with education. Something such as the last digit of an individual’s social
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security number almost certainly satisfies the first requirement: it is uncorrelated with
ability because it is determined randomly. However, this variable is not correlated with
education, so it makes a poor instrumental variable for educ.

What we have called a proxy variable for the omitted variable makes a poor IV for
the opposite reason. For example, in the log(wage) example with omitted ability, a
proxy variable for abil must be as highly correlated as possible with abil. An instru-
mental variable must be uncorrelated with abil. Therefore, while IQ is a good candi-
date as a proxy variable for abil, it is not a good instrumental variable for educ.

The requirements are less clear-cut for other possible instrumental variable candi-
dates. In wage equations, labor economists have used family background variables as
IVs for education. For example, mother’s education (motheduc) is positively correlated
with child’s education, as can be seen by collecting a sample of data on working peo-
ple and running a simple regression of educ on motheduc. Therefore, motheduc satis-
fies equation (15.5). The problem is that mother’s education might also be correlated
with child’s ability (through mother’s ability and perhaps quality of nurturing at an
early age).

Another IV choice for educ in (15.1) is number of siblings while growing up (sibs).
Typically, more siblings is associated with lower average levels of education. Thus, if
number of siblings is uncorrelated with ability, it can act as an instrumental variable for
educ.

As a second example, consider the problem of estimating the causal effect of skip-
ping classes on final exam score. In a simple regression framework, we have

score � �0 � �1skipped � u, (15.8)

where score is the final exam score, and skipped is the total number of lectures missed
during the semester. We certainly might be worried that skipped is correlated with other
factors in u: better students might miss fewer classes. Thus, a simple regression of score
on skipped may not give us a good estimate of the causal effect of missing classes.

What might be a good IV for skipped? We need something that has no direct effect
on score and is not correlated with student ability. At the same time, the IV must be cor-
related with skipped. One option is to use distance between living quarters and campus.
Some students at a large university will commute to campus, which may increase the
likelihood of missing lectures (due to bad weather, oversleeping, and so on). Thus,
skipped may be positively correlated with distance; this can be checked by regressing
skipped on distance and doing a t test, as described earlier.

Is distance uncorrelated with u? In the simple regression model (15.8), some factors
in u may be correlated with distance. For example, students from low-income families
may live off campus; if income affects student performance, this could cause distance
to be correlated with u. Section 15.2 shows how to use IV in the context of multiple
regression, so that other factors affecting score can be included directly in the model.
Then, distance might be a good IV for skipped. An IV approach may not be necessary
at all if a good proxy exists for student ability, such as cumulative GPA prior to the
semester.

We now demonstrate that the availability of an instrumental variable can be used to
consistently estimate the parameters in equation (15.2). In particular, we show that
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assumptions (15.4) and (15.5) [equivalently, (15.4) and (15.7)] serve to identify the
parameter �1. Identification of a parameter in this context means that we can write �1

in terms of population moments that can be estimated using a sample of data. To write
�1 in terms of population covariances, we use equation (15.2): the covariance between
z and y is

Cov(z,y) � �1Cov(z,x) � Cov(z,u).

Now, under assumption (15.4), Cov(z,u) � 0, and under assumption (15.5), Cov(z,x) �
0. Thus, we can solve for �1 as

�1 � . (15.9)

[Notice how this simple algebra fails if z and x are uncorrelated, that is, if Cov(z,x) �
0.] Equation (15.9) shows that �1 is the population covariance between z and y, divided
by the population covariance between z and x, which shows that �1 is identified. Given
a random sample, we estimate the population quantities by the sample analogs. After
canceling the sample sizes in the numerator and denominator, we get the instrumental
variables (IV) estimator of �1:

�̂1 � . (15.10)

Given a sample of data on x, y, and z, it is simple to obtain the IV estimator in (15.10).
The IV estimator of �0 is simply �̂0 � ȳ � �̂1x̄, which looks just like the OLS intercept
estimator except that the slope estimator, �̂1, is now the IV estimator.

It is no accident that when z � x, we obtain the OLS estimator of �1. In other words,
when x is exogenous, it can be used as its own IV, and the IV estimator is identical to
the OLS estimator.

A simple application of the law of large numbers shows that the IV estimator is con-
sistent for �1: plim(�̂1) � �1, provided assumptions (15.4) and (15.5) are satisfied. If
either assumption fails, the IV estimators are not consistent (more on this later). One
feature of the IV estimator is that, when x and u are in fact correlated—so that instru-
mental variables estimation is actually needed—it is essentially never unbiased. This
means that, in small samples, the IV estimator can have a substantial bias, which is one
reason why large samples are preferred.

Statistical Inference with the IV Estimator

Given the similar structure of the IV and OLS estimators, it is not surprising that the IV
estimator has an approximate normal distribution in large sample sizes. To perform
inference on �1, we need a standard error that can be used to compute t statistics and
confidence intervals. The usual approach is to impose a homoskedasticity assumption,
just as in the case of OLS. Now, the homoskedasticity assumption is stated conditional

�
n

i�1 
(zi � z̄) (yi � ȳ)

�
n

i�1
(zi � z̄) (xi � x̄)

Cov(z,y)

Cov(z,x)
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on the instrumental variable, z, not the endogenous explanatory variable, x. Along with
the previous assumptions on u, x, and z, we add

E(u2�z) � �2 � Var(u). (15.11)

It can be shown that, under (15.4), (15.5), and (15.11), the asymptotic variance of �̂1 is

, (15.12)

where �2
x is the population variance of x, �2 is the population variance of u, and 	2

x,z is
the square of the population correlation between x and z. This tells us how highly cor-
related x and z are in the population. As with the OLS estimator, the asymptotic vari-
ance of the IV estimator decreases to zero at the rate of 1/n, where n is the sample size.

Equation (15.12) is interesting for a couple of reasons. First, it provides a way to
obtain a standard error for the IV estimator. All quantities in (15.12) can be consistently
estimated given a random sample. To estimate �2

x, we simply compute the sample vari-
ance of xi; to estimate 	2

x,z, we can run the regression of xi on zi to obtain the R-squared,
say R2

x,z. Finally, to estimate �2, we can use the IV residuals,

û i � yi � �̂0 � �̂1xi, i � 1,2, …, n,

where �̂0 and �̂1 are the IV estimates. A consistent estimator of �2 looks just like the
estimator of �2 from a simple OLS regression:

�̂2 � �
n

i�1
ûi

2,

where it is standard to use the degrees of freedom correction (even though this has lit-
tle effect as the sample size grows).

The (asymptotic) standard error of �̂1 is the square root of the estimated asymptotic
variance, the latter of which is given by

, (15.13)

where SSTx is the total sum of squares of the xi. [Recall that the sample variance of xi

is SSTx/n, and so the sample sizes cancel to give us (15.13).] The resulting standard
error can be used to construct either t statistics for hypotheses involving �1 or confi-
dence intervals for �1. �̂0 also has a standard error that we do not present hee. Any mod-
ern econometrics package computes the standard error after any IV estimation.

Before we give an example, it is useful to compare the asymptotic variances of the
IV and the OLS estimators (when x and u are uncorrelated). Under the Gauss-Markov
assumptions, the variance of the OLS estimator is �2/SSTx, while the comparable for-
mula for the IV estimator is �2/(SSTx
R

2
x,z); they differ only in that R2

x,z appears in the
denominator of the IV variance. Since an R-squared is always less than one, the 2SLS
variance is always larger than the OLS variance (when OLS is valid). If R2

x,z is small,
then the IV variance can be much larger than the OLS variance. Remember, R2

x,z mea-

�̂2

SSTx
R
2
x,z

1

n � 2

�2

n�x
2	2

x,z
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sures the strength of the linear relationship between x and z in the sample. If x and z are
only slightly correlated, R2

x,z can be small, and this can translate into a very large sam-
pling variance for the IV estimator. The more highly correlated z is with x, the closer
R2

x,z is to one, and the smaller is the variance of the IV estimator. In the case that z � x,
R2

x,z � 1, and we get the OLS variance, as expected.
The previous discussion highlights an important cost of performing IV estimation

when x and u are uncorrelated: the asymptotic variance of the IV estimator is always
larger, and sometimes much larger, than the asymptotic variance of the OLS estimator.

E X A M P L E  1 5 . 1
( E s t i m a t i n g  t h e  R e t u r n  t o  E d u c a t i o n  f o r  M a r r i e d  W o m e n )

We use the data on married working women in MROZ.RAW to estimate the return to edu-
cation in the simple regression model

log(wage) � �0 � �1educ � u. (15.14)

For comparison, we first obtain the OLS estimates:

(log(ŵage) � �.185)�(.109)educ
log(wâge) � �(.185)�(.014)educ

n � 428, R2 � .118.

(15.15)

The estimate for �1 implies an almost 11% return for another year of education.
Next, we use father’s education (fatheduc) as an instrumental variable for educ. We

have to maintain that fatheduc is uncorrelated with u. The second requirement is that educ
and fatheduc are correlated. We can check this very easily using a simple regression of educ
on fatheduc (using only the working women in the sample):

ed̂uc �(10.24)�(.269)fatheduc
ed̂uc �0(0.28)�(.029)fatheduc

n � 428, R2 � .173.

(15.16)

The t statistic on fatheduc is 9.28, which indicates that educ and fatheduc have a statisti-
cally significant positive correlation. (In fact, fatheduc explains about 17% of the variation
in educ in the sample.) Using fatheduc as an IV for educ gives

(log(ŵage) � .441)�(.059)educ
log(wâge) � (.446)�(.035)educ

n � 428, R2 � .093.

(15.17)

The IV estimate of the return to education is 5.9%, which is about one-half of the OLS esti-
mate. This suggests that the OLS estimate is too high and is consistent with omitted ability
bias. But we should remember that these are estimates from just one sample: we can never
know whether .109 is above the true return to education, or whether .059 is closer to the
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true return to education. Further, the standard error of the IV estimate is two and one-half
times as large as the OLS standard error (this is expected, for the reasons we gave earlier).
The 95% confidence interval for �1 using OLS is much tighter than that using the IV; in fact,
the IV confidence interval actually contains the OLS estimate. Therefore, while the differ-
ences between (15.15) and (15.17) are practically large, we cannot say whether the differ-
ence is statistically significant. We will show how to test this in Section 15.5.

In the previous example, the estimated return to education using IV was less than
that using OLS, which corresponds to our expectations. But this need not have been the
case, as the following example demonstrates.

E X A M P L E  1 5 . 2
( E s t i m a t i n g  t h e  R e t u r n  t o  E d u c a t i o n  f o r  M e n )

We now use WAGE2.RAW to estimate the return to education for men. We use the vari-
able sibs (number of siblings) as an instrument for educ. These are negatively correlated, as
we can verify from a simple regression:

edûc �(14.14)�(.228)sibs
educ �0(0.11)�(.030)sibs

n � 935, R2 � .057.

This equation implies that every sibling is associated with, on average, about .23 less of a
year of education. If we assume that sibs is uncorrelated with the error term in (15.14), then
the IV estimator is consistent. Estimating equation (15.14) using sibs as an IV for educ gives

log(ŵage) �(5.13)�(.122)educ
log(ŵage) �(0.36)�(.026)educ

n � 935.

(The R-squared is computed to be negative, so we do not report it. A discussion of
R-squared in the context of IV estimation follows.) For comparison, the OLS estimate of �1

is .059 with a standard error of .006. Unlike in the previous example, the IV estimate is now
much higher than the OLS estimate. While we do not know whether the difference is sta-
tistically significant, this does not mesh with the omitted ability bias from OLS. It could be
that sibs is also correlated with ability: more siblings means, on average, less parental atten-
tion, which could result in lower ability. Another interpretation is that the OLS estimator
is biased toward zero because of measurement error in educ. This is not entirely convinc-
ing because, as we discussed in Section 9.3, educ is unlikely to satisfy the classical errors-
in-variables model.

In the previous examples, the endogenous explanatory variable (educ) and the
instrumental variables ( fatheduc, sibs) had quantitative meaning. But both types can
be binary variables. Angrist and Krueger (1991), in their simplest analysis, came up
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with a clever binary instrumental variable for educ, using census data on men in the
United States. Let frstqrt be equal to one if the man was born in the first quarter of the
year, and zero otherwise. It seems that the error term in (15.14)—and, in particular,
ability—should be unrelated to quarter of birth. But frstqrt also needs to be correlated
with educ. It turns out that years of education do differ systematically in the popula-
tion based on quarter of birth. Angrist and Krueger argued pursuasively that this is due
to compulsory school attendance laws in effect in all states. Briefly, students born
early in the year typically begin school at an older age. Therefore, they reach the com-
pulsory schooling age (16 in most states) with somewhat less education than students
who begin school at a younger age. For students who finish high school, Angrist and
Krueger verified that there is no relationship between years of education and quarter
of birth.

Because years of education varies only slightly across quarter of birth—which
means R2

x,z in (15.13) is very small—Angrist and Krueger needed a very large sample
size to get a reasonably precise IV estimate. Using 247,199 men born between 1920 and
1929, the OLS estimate of the return to education was .0801 (standard error .0004), and
the IV estimate was .0715 (.0219); these are reported in Table III of Angrist and
Krueger’s paper. Note how large the t statistic is for the OLS estimate (about 200),
whereas the t statistic for the IV estimate is only 3.26. Thus, the IV estimate is statisti-
cally different from zero, but its confidence interval is much wider than that based on
the OLS estimate.

An interesting finding by Angrist and Krueger is that the IV estimate does not dif-
fer much from the OLS estimate. In fact, using men born in the next decade, the IV esti-
mate is somewhat higher than the OLS estimate. One could interpret this as showing
that there is no omitted ability bias when wage equations are estimated by OLS.
However, the Angrist and Krueger paper has been criticized on econometric grounds.
As discussed by Bound, Jaeger, and Baker (1995), it is not obvious that season of birth
is unrelated to unobserved factors that affect wage. As we will explain in the next sub-
section, even a small amount of correlation between z and u can cause serious problems
for the IV estimator.

For policy analysis, the endogenous explanatory variable is often a binary variable.
For example, Angrist (1990) studied the effect that being a veteran in the Vietnam war
had on lifetime earnings. A simple model is

log(earns) � �0 � �1veteran � u, (15.18)

where veteran is a binary variable. The problem with estimating this equation by OLS
is that there may be a self-selection problem, as we mentioned in Chapter 7: perhaps
people who get the most out of the military choose to join, or the decision to join is cor-
related with other characteristics that affect earnings. These will cause veteran and u to
be correlated.

Angrist pointed out that the Vietnam draft lottery provided a natural experiment
(see also Chapter 13) that created an instrumental variable for veteran. Young men
were given lottery numbers that determined whether they would be called to serve in
Vietnam. Since the numbers given were (eventually) randomly assigned, it seems
plausible that draft lottery number is uncorrelated with the error term u. But those
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with a low enough number had to serve in
Vietnam, so that the probability of being
a veteran is correlated with lottery num-
ber. If both of these are true, draft lot-
tery number is a good IV candidate for
veteran.

It is also possible to have a binary endogenous explanatory variable and a binary
instrumental variable. See Problem 15.1 for an example.

Properties of IV with a Poor Instrumental Variable

We have already seen that, while IV is consistent when z and u are uncorrelated and z
and x have any positive or negative correlation, IV estimates can have large standard
errors, especially if z and x are only weakly correlated. Weak correlation between z and
x can have even more serious consequences: the IV estimator can have a large asymp-
totic bias even if z and u are only moderately correlated.

We can see this by studying the probability limit of the IV estimator when z and u
are possibly correlated. This can be derived in terms of population correlations and
standard deviations as

plim �̂1 � �1 � 
 , (15.19)

where �u and �x are the standard deviations of u and x in the population, respectively.
The interesting part of this equation involves the correlation terms. It shows that, even
if Corr(z,u) is small, the inconsistency in the IV estimator can be very large if Corr(z,x)
is also small. Thus, even if we focus only on consistency, it is not necessarily better to
use IV than OLS if the correlation between z and u is smaller than that between x and
u. Using the fact that Corr(x,u) � Cov(x,u)/(�x�u) along with equation (5.3), we can
write the plim of the OLS estimator—call it �̃1—as

plim �̃1 � �1 � Corr(x,u)
 . (15.20)

Comparing these formulas shows that IV is preferred to OLS on asymptotic bias
grounds when Corr(z,u)/Corr(z,x) � Corr(x,u).

In the Angrist and Krueger (1991) example mentioned earlier, where x is years of
schooling and z is a binary variable indicating quarter of birth, the correlation between
z and x is very small. Bound, Jaeger, and Baker (1995) discussed reasons why quarter
of birth and u might be somewhat correlated. From equation (15.19), we see that this
can lead to a substantial bias in the IV estimator.

When z and x are not correlated at all, things are especially bad, whether or not z is
uncorrelated with u. The following example illustrates why we should always check to
see if the endogenous explanatory variable is correlated with the IV candidate.

�u

�x

�u

�x

Corr(z,u)

Corr(z,x)

Q U E S T I O N  1 5 . 1

If some men who were assigned low draft lottery numbers obtained
additional schooling to reduce the probability of being drafted, is
lottery number a good instrument for veteran in (15.18)?
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E X A M P L E  1 5 . 3
( E s t i m a t i n g  t h e  E f f e c t  o f  S m o k i n g  o n  B i r t h  W e i g h t )

In Chapter 6, we estimated the effect of cigarette smoking on child birth weight. Without
other explanatory variables, the model is

log(bwght) � �0 � �1packs � u, (15.21)

where packs is the number of packs smoked by the mother per day. We might worry that
packs is correlated with other health factors or the availability of good prenatal care, so that
packs and u might be correlated. A possible instrumental variable for packs is the average
price of cigarettes in the state of residence, cigprice. We will assume that cigprice and u are
uncorrelated (even though state support for health care could be correlated with cigarette
taxes).

If cigarettes are a typical consumption good, basic economic theory suggests that packs
and cigprice are negatively correlated, so that cigprice can be used as an IV for packs. To
check this, we regress packs on cigprice, using the data in BWGHT.RAW:

paĉks �(.067)�(.0003)cigprice
paĉks �(.103)�(.0008)cigprice

n � 1,388, R2 � .0000, R̄2 � �.0006.

This indicates no relationship between smoking during pregnancy and cigarette prices,
which is perhaps not too surprising given the addictive nature of cigarette smoking.

Because packs and cigprice are not correlated, we should not use cigprice as an IV for
packs in (15.21). But what happens if we do? The IV results would be

log(bŵght) �(4.45)�(2.99)packs
log(bŵght) �(0.91)�(8.70)packs

n � 1,388

(the reported R-squared is negative). The coefficient on packs is huge and of an unexpected
sign. The standard error is also very large, so packs is not significant. But the estimates are
meaningless because cigprice fails the one requirement of an IV that we can always test:
assumption (15.5).

Computing R-Squared After IV Estimation

Most regression packages compute an R-squared after IV estimation, using the standard
formula: R2 � 1 � SSR/SST, where SSR is the sum of squared IV residuals, and SST
is the total sum of squares of y. Unlike in the case of OLS, the R-squared from IV esti-
mation can be negative because SSR for IV can actually be larger than SST. Although
it does not really hurt to report the R-squared for IV estimation, it is not very useful,
either. When x and u are correlated, we cannot decompose the variance of y into
�2

1Var(x) � Var(u), and so the R-squared has no natural interpretation. In addition, as
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we will discuss in Section 15.3, these R-squareds cannot be used in the usual way to
compute F tests of joint restrictions.

If our goal was to produce the largest R-squared, we would always use OLS. IV
methods are intended to provide better estimates of the ceteris paribus effect of x on y
when x and u are correlated; goodness-of-fit is not a factor. A high R-squared resulting
from OLS is of little comfort if we cannot consistently estimate �1.

15.2 IV ESTIMATION OF THE MULTIPLE REGRESSION
MODEL

The IV estimator for the simple regression model is easily extended to the multiple
regression case. We begin with the case where only one of the explanatory variables is
correlated with the error. In fact, consider a standard linear model with two explanatory
variables:

y1 � �0 � �1y2 � �2z1 � u1. (15.22)

We call this a structural equation to emphasize that we are interested in the �j, which
simply means that the equation is supposed to measure a causal relationship. We use a
new notation here to distinguish endogenous from exogenous variables. The depen-
dent variable y1 is clearly endogenous, as it is correlated with u1. The variables y2 and
z1 are the explanatory variables, and u1 is the error. As usual, we assume that the
expected value of u1 is zero: E(u1) � 0. We use z1 to indicate that this variable is exoge-
nous in (15.22) (z1 is uncorrelated with u1). We use y2 to indicate that this variable is
suspected of being correlated with u1. We do not specify why y2 and u1 are correlated,
but for now it is best to think of u1 as containing an omitted variable correlated with y2.
The notation in equation (15.22) originates in simultaneous equations models (which
we cover in Chapter 16), but we use it more generally to easily distinguish exogenous
from endogenous variables in a multiple regression model.

An example of (15.22) is

log(wage) � �0 � �1educ � �2exper � u1, (15.23)

where y1 � log(wage), y2 � educ, and z1 � exper. In other words, we assume that exper
is exogenous in (15.23), but we allow that educ—for the usual reasons—is correlated
with u1.

We know that if (15.22) is estimated by OLS, all of the estimators will be biased
and inconsistent. Thus, we follow the strategy suggested in the previous section and
seek an instrumental variable for y2. Since z1 is assumed to be uncorrelated with u1, can
we use z1 as an instrument for y2, assuming y2 and z1 are correlated? The answer is no.
Since z1 itself appears as an explanatory variable in (15.22), it cannot serve as an instru-
mental variable for y2. We need another exogenous variable—call it z2—that does not
appear in (15.22). Therefore, key assumptions are that z1 and z2 are uncorrelated with
u1; we also assume that u1 has zero expected value, which is without loss of generality
when the equation contains an intercept:
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E(u1) � 0, Cov(z1,u1) � 0, and Cov(z2,u1) � 0. (15.24)

Given the zero mean assumption, the latter two assumptions are equivalent to E(z1u1) �
E(z2u1) � 0, and so the method of moments approach suggests obtaining estimators �̂0,
�̂1, and �̂2 by solving the sample counterparts of (15.24):

�
n

i�1
(yi1 � �̂0 � �̂1yi2 � �̂2zi1) � 0

�
n

i�1
zi1(yi1 � �̂0 � �̂1yi2 � �̂2zi1) � 0 (15.25)

�
n

i�1
zi2(yi1 � �̂0 � �̂1yi2 � �̂2zi1) � 0.

This is a set of three linear equations in the three unknowns �̂0, �̂1, and �̂2, and it is eas-
ily solved given the data on y1, y2, z1, and z2. The estimators are called instrumental
variables estimators. If we think y2 is exogenous and we choose z2 � y2, equations
(15.25) are exactly the first order conditions for the OLS estimators; see equations
(3.13).

We still need the instrumental variable z2 to be correlated with y2, but the sense in
which these two variables must be correlated is complicated by the presence of z1 in
equation (15.22). We now need to state the assumption in terms of partial correlation.
The easiest way to state the condition is to write the endogenous explanatory variable
as a linear function of the exogenous variables and an error term:

y2 � �0 � �1z1 � �2z2 � v2, (15.26)

where, by definition,

E(v2) � 0, Cov(z1,v2) � 0, and Cov(z2,v2) � 0,

and the �j are unknown parameters. The key identification condition [along with
(15.24)] is that

�2 � 0. (15.27)

In other words, after partialling out z1, y2

and z2 are still correlated. This correlation
can be positive or negative, but it cannot be
zero. Testing (15.27) is easy: we estimate
(15.26) by OLS and use a t test (possibly
making it robust to heteroskedasticity). We
should always test this assumption. Un-
fortunately, we cannot test that z1 and z2

are uncorrelated with u1; this must be taken
on faith.

Q U E S T I O N  1 5 . 2

Suppose we wish to estimate the effect of marijuana usage on col-
lege grade point average. For the population of college seniors at a
university, let daysused denote the number of days in the past
month on which a student smoked marijuana and consider the
structural equation

colGPA � �0 � �1daysused � �2SAT � u.

(i) Let percHS denote the percent of a student’s high school
graduating class that reported regular use of marijuana. If this is an
IV candidate for daysused, write the reduced form for daysused. Do
you think (15.27) is likely to be true?

(ii) Do you think percHS is truly exogenous in the structural
equation? What problems might there be?
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Equation (15.26) is an example of a reduced form equation, which means that we
have written an endogenous variable in terms of exogenous variables. This name comes
from simultaneous equations models—which we study in the next chapter—but it is a
useful concept whenever we have an endogenous explanatory variable. The name helps
distinguish it from the structural equation (15.22).

Adding more exogenous explanatory variables to the model is straightforward.
Write the structural model as

y1 � �0 � �1y2 � �2z1 � … � �k zk�1 � u1, (15.28)

where y2 is thought to be correlated with u1. Let zk be a variable not in (15.28) that is
also exogenous. Therefore, we assume that

E(u1) � 0, Cov(zj,u1) � 0, j � 1, …, k. (15.29)

The reduced form for y2 is

y2 � �0 � �1z1 � … �k�1zk�1 � �kzk � v2, (15.30)

and we need some partial correlation between zk and y2:

�k � 0. (15.31)

Under (15.29) and (15.31), zk is a valid IV for y2. (We do not care about the remaining
�j; some or all of them could be zero.) It makes sense to think that z1, …, zk�1 serve as
their own IVs; therefore, the list of exogenous variables is often called the list of
instrumental variables. A minor additional assumption is that there are no perfect linear
relationships among the exogenous variables; this is analogous to the assumption of no
perfect collinearity in the context of OLS.

For standard statistical inference, we need to assume homoskedasticity of u1. We
give a careful statement of these assumptions in a more general setting in Section 15.3.

E X A M P L E  1 5 . 4
( U s i n g  C o l l e g e  P r o x i m i t y  a s  a n  I V  f o r  E d u c a t i o n )

Card (1995) used wage and education data for a sample of men in 1976 to estimate the
return to education. He used a dummy variable for whether someone grew up near a four-
year college (nearc4) as an instrumental variable for education. In a log(wage) equation, he
included other standard controls: experience, a black dummy variable, dummy variables for
living in an SMSA and living in the south, and a full set of regional dummy variables and an
SMSA dummy for where the man was living in 1966. In order for nearc4 to be a valid instru-
ment, it must be uncorrelated with the error term in the wage equation—we assume this—
and it must be partially correlated with educ. To check the latter requirement, we regress
educ on nearc4 and all of the exogenous variables appearing in the equation. (That is, we
estimate the reduced form for educ.) Using the data in CARD.RAW, we obtain, in con-
densed form,
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ed̂uc �(16.64)�(.320)nearc4 �(.413)exper � …
ed̂uc �0(0.24)�(.088)nearc4 �(.034)exper � …

n � 3,010, R2 � .477.

(15.32)

We are interested in the coefficient and t statistic on nearc4. The coefficient implies that in
1976, other things being fixed (experience, race, region, and so on), people who lived near
a college in 1966 had, on average, about one-third of a year more education than those
who did not grow up near a college. The t statistic on nearc4 is 3.64, which gives a p-value
that is zero in the first three decimals. Therefore, if nearc4 is uncorrelated with unobserved
factors in the error term, we can use nearc4 as an IV for educ.

The OLS and IV estimates are given in Table 15.1. Interestingly, the IV estimate of the
return to education is almost twice as large as the OLS estimate, but the standard error of
the IV estimate is over 18 times larger than the OLS standard error. The 95% confidence
interval for the IV estimate is from .024 and .239, which is a very wide range. Larger con-

Table 15.1

Dependent Variable: log(wage)

Explanatory Variables OLS IV

educ .075 .132
(.003) (.055)

exper .085 .108
(.007) (.024)

exper2 �.0023 �.0023
(.0003) (.0003)

black �.199 �.147
(.018) (.054)

smsa .136 .112
(.020) (.032)

south �.148 �.145
(.026) (.027)

Observations 3,010 3,010
R-squared .300 .238

Other controls: smsa66, reg662, …, reg669
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fidence intervals is a price we must pay to get a consistent estimator of the return to edu-
cation when we think educ is endogenous.

As discussed earlier, we should not make anything of the smaller R-squared in the IV
estimation: by definition, the OLS R-squared will always be larger because OLS minimizes
the sum of squared residuals.

15.3 TWO STAGE LEAST SQUARES

In the previous section, we assumed that we had a single endogenous explanatory vari-
able (y2), along with one instrumental variable for y2. It often happens that we have
more than one exogenous variable that is excluded from the structural model and might
be correlated with y2, which means they are valid IVs for y2. In this section, we discuss
how to use multiple instrumental variables.

A Single Endogenous Explanatory Variable

Consider again the structural model (15.22), which has one endogenous and one exoge-
nous explanatory variable. Suppose now that we have two exogenous variables
excluded from (15.22): z2 and z3. Our assumptions that z2 and z3 do not appear in
(15.22) and are uncorrelated with the error u1 are known as exclusion restrictions.

If z2 and z3 are both correlated with y2, we could just use each as an IV, as in the
previous section. But then we would have two IV estimators, and neither of these
would, in general, be efficient. Since each of z1, z2, and z3 is uncorrelated with u1, any
linear combination is also uncorrelated with u1, and therefore any linear combination of
the exogenous variables is a valid IV. To find the best IV, we choose the linear combi-
nation that is most highly correlated with y2. This turns out to be given by the reduced
form equation for y2. Write

y2 � �0 � �1z1 � �2z2 � �3z3 � v2, (15.33)

where

E(v2) � 0, Cov(z1,v2) � 0, Cov(z2,v2) � 0, and Cov(z3,v2) � 0.

Then the best IV for y2 (under the assumptions given in the chapter appendix) is the lin-
ear combination of the zj in (15.33), which we call y2*:

y2* � �0 � �1z1 � �2z2 � �3z3. (15.34)

For this IV not to be perfectly correlated with z1 we need at least one of �2 or �3 to be
different from zero:

�2 � 0 or �3 � 0. (15.35)

This is the key identification assumption, once we assume the zj are all exogenous. (The
value of �1 is irrelevant.) The structural equation (15.22) is not identified if �2 � 0 and
�3 � 0. We can test H0: �2 � 0 and �3 � 0 against (15.35) using an F statistic.
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A useful way to think of (15.33) is that it breaks y2 into two pieces. The first is y2*;
this is the part of y2 that is uncorrelated with the error term, u1. The second piece is v2,
and this part is possibly correlated with u1—which is why y2 is possibly endogenous.

Given data on the zj, we can compute y2* for each observation, provided we know
the population parameters �j. This is never true in practice. Nevertheless, as we saw in
the previous section, we can always estimate the reduced form by OLS. Thus, using the
sample, we regress y2 on z1, z2, and z3 and obtain the fitted values:

ŷ2 � �̂0 � �̂1z1 � �̂2z2 � �̂3z3 (15.36)

(that is, we have ŷi2 for each i). At this point, we should verify that z2 and z3 are jointly
significant in (15.33) at a reasonably small significance level (no larger than 5%). If z2

and z3 are not jointly significant in (15.33), then we are wasting our time with IV esti-
mation.

Once we have ŷ2, we can use it as the IV for y2. The three equations for estimating
�0, �1, and �2 are the first two equations of (15.25), with the third replaced by

�
n

i�1
ŷi2(yi1 � �̂0 � �̂1yi2 � �̂2zi1) � 0. (15.37)

Solving the three equations in three unknowns gives us the IV estimators.
With multiple instruments, the IV estimator is also called the two stage least

squares (2SLS) estimator. The reason is simple. Using the algebra of OLS, it can be
shown that when we use ŷ2 as the IV for y2, the IV estimates �̂0, �̂1, and �̂2 are identi-
cal to the OLS estimates from the regression of

y1 on ŷ2 and z1. (15.38)

In other words, we can obtain the 2SLS estimator in two stages. The first stage is to run
the regression in (15.36), where we obtain the fitted values ŷ2. The second stage is the
OLS regression (15.38). Because we use ŷ2 in place of y2, the 2SLS estimates can dif-
fer substantially from the OLS estimates.

Some economists like to interpret the regression in (15.38) as follows. The fitted
value, ŷ2, is the estimated version of y2*, and y2* is uncorrelated with u1. Therefore, 2SLS
first “purges” y2 of its correlation with u1 before doing the OLS regression (15.38). This
is found to be true by plugging y2 � y2* � v2 into (15.22):

y1 � �0 � �1y2* � �2z1 � u1 � �1v2. (15.39)

Now, the composite error u1 � �1v2 has zero mean and is uncorrelated with y2* and z1,
which is why the OLS regression in (15.38) works.

Most econometrics packages have special commands for 2SLS, so there is no need
to perform the two stages explicitly. In fact, in most cases, you should avoid doing the
second stage manually, as the standard errors and test statistics obtained in this way are
not valid. [The reason is that the error term in (15.39) includes v2, but the standard
errors involve the variance of u1 only.] Any regression software that supports 2SLS asks
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for the dependent variable, the list of explanatory variables (both exogenous and
endogenous), and the entire list of instrumental variables (that is, all exogenous vari-
ables). The output is typically quite similar to that for OLS.

In model (15.28) with a single IV for y2, the IV estimator from Section 15.2 is iden-
tical to the 2SLS estimator. Therefore, when we have one IV for each endogenous
explanatory variable, we can call the estimation method IV or 2SLS.

Adding more exogenous variables changes very little. For example, suppose the
wage equation is

log(wage) � �0 � �1educ � �2exper � �3exper2 � u1, (15.40)

where u1 is uncorrelated with both exper and exper2. Suppose that we also think mother
and father’s educations are uncorrelated with u1. Then we can use both of these as IVs
for educ. The reduced form equation for educ is

educ � �0 � �1exper � �2exper2 � �3motheduc � �4 fatheduc � v2, (15.41)

and identification requires that �3 � 0 or �4 � 0 (or both, of course).

E X A M P L E  1 5 . 5
( R e t u r n  t o  E d u c a t i o n  f o r  W o r k i n g  W o m e n )

We estimate equation (15.40) using the data in MROZ.RAW. First, we test H0: �3 � 0,
�4 � 0 in (15.41) using an F test. The result is F � 55.40, and p-value � .0000. As expected,
educ is (partially) correlated with parents’ education.

When we estimate (15.40) by 2SLS, we obtain, in equation form,

loĝ(wage) �(.048)�(.061)educ �(.044)exper �(.0009)exper2

loĝ(wage) �(.400)�(.031)educ �(.013)exper �(.0004)exper2

n � 428, R2 � .136.

The estimated return to education is about 6.1%, compared with an OLS estimate of about
10.8%. Because of its relatively large standard error, the 2SLS estimate is barely significant
at the 5% level against a two-sided alternative.

The assumptions needed for 2SLS to have the desired large sample properties are
given in the chapter appendix, but it is useful to briefly summarize them here. If we
write the structural equation as in (15.28),

y1 � �0 � �1y2 � �2z1 � … � �k zk�1 � u1, (15.42)

then we assume each zj to be uncorrelated with u1. In addition, we need at least one
exogenous variable not in (15.42) that is partially correlated with y2. This ensures con-
sistency. For the usual 2SLS standard errors and t statistics to be asymptotically valid,
we also need a homoskedasticity assumption: the variance of the structural error, u1,
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cannot depend on any of the exogenous variables. For time series applications, we need
more assumptions, as we will see in Section 15.7.

Multicollinearity and 2SLS

In Chapter 3, we introduced the problem of multicollinearity and showed how correla-
tion among regressors can lead to large standard errors for the OLS estimates.
Multicollinearity can be even more serious with 2SLS. To see why, the (asymptotic)
variance of the 2SLS estimator of �1 can be approximated as

, (15.43)

where �2 � Var(u1), SST2 is the total variation in ŷ2, and R2
2 is the R-squared from a

regression of ŷ2 on all other exogenous variables appearing in the structural equation.
There are two reasons why the variance of the 2SLS is larger than that for OLS. First,
ŷ2, by construction, has less variation than y2. (Remember: total sum of squares �
explained sum of squares � residual sum of squares; the variation in y2 is the total sum
of squares, while the variation in ŷ2 is the explained sum of squares.) Second, the cor-
relation between ŷ2 and the exogenous variables in (15.42) is often much higher than
the correlation between y2 and these variables. This essentially defines the multi-
collinearity problem in 2SLS.

As an illustration, consider Example 15.4. When educ is regressed on the exogenous
variables in Table 15.1, R2 � .475; this is a moderate degree of multicollinearity, but the
important thing is that the OLS standard error on �̂educ is quite small. When we obtain
the first stage fitted values, ed̂uc, and regress these on the exogenous variables in Table
15.1, R2 � .995, which indicates a very high degree of multicollinearity between ed̂uc
and the remaining exogenous variables in the table. (This high R-squared is not too sur-
prising because ed̂uc is a function of all the exogenous variables in Table 15.1, plus
nearc4.) Equation (15.43) shows that an R2

2 close to one can result in a very large stan-
dard error for the 2SLS estimator. But as with OLS, a large sample size can help offset
a large R2

2.

Multiple Endogenous Explanatory Variables

Two stage least squares can also be used in models with more than one endogenous
explanatory variable. For example, consider the model

y1 � �0 � �1y2 � �2y3 � �3z1 � �4z2 � �5z3 � u1, (15.44)

where E(u1) � 0, and u1 is uncorrelated with z1, z2, and z3. The variables y2 and y3 are
endogenous explanatory variables: each may be correlated with u1.

To estimate (15.44) by 2SLS, we need at least two exogenous variables that do not
appear in (15.44) but that are correlated with y2 and y3. Suppose we have two excluded
exogenous variables, say z4 and z5. Then, from our analysis of a single endogenous
explanatory variable, we need either z4 or z5 to appear in the reduced forms of y2 and
y3. (As before, we can use F statistics to test this.) While this is necessary for identifi-

�2

SST2(1 � R2
2)
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cation, unfortunately, it is not sufficient. Suppose that z4 appears in each reduced form,
but z5 appears in neither. Then, we do not really have two exogenous variables partially
correlated with y2 and y3. Two stage least squares will not produce consistent estima-
tors of the �j.

Generally, when we have more than one endogenous explanatory variable in a
regression model, identification can fail in several complicated ways. But we can eas-
ily state a necessary condition for identification, which is called the order condition.

ORDER CONDITION FOR IDENTIFICATION OF AN EQUATION: We need at least as
many excluded exogenous variables as there are included endogenous explanatory vari-

ables in the structural equation. The order
condition is simple to check, as it only
involves counting endogenous and exoge-
nous variables. The sufficient condition for
identification is called the rank condition.
We have seen special cases of the rank
condition before—for example, in the dis-
cussion surrounding equation (15.35). A
general statement of the rank condition
requires matrix algebra and is beyond the
scope of this text. [See Wooldridge (1999,
Chapter 5).]

Testing Multiple Hypotheses After 2SLS Estimation

We must be careful when testing multiple hypotheses in a model estimated by 2SLS. It
is tempting to use either the sum of squared residuals or the R-squared form of the F
statistic, as we learned with OLS in Chapter 4. The fact that the R-squared in 2SLS can
be negative suggests that the usual way of computing F statistics might not be appro-
priate; this is the case. In fact, if we use the 2SLS residuals to compute the SSRs for
both the restricted and unrestricted models, there is no guarantee that SSRr � SSRur; if
the reverse is true, the F statistic would be negative.

It is possible to combine the sum of squared residuals from the second stage regres-
sion [such as (15.38)] with SSRur to obtain a statistic with an approximate F distribu-
tion in large samples. Because many econometrics packages have simple-to-use test
commands that can be used to test multiple hypotheses after 2SLS estimation, we omit
the details. Davidson and MacKinnon (1993) and Wooldridge (1999, Chapter 5) con-
tain discussions of how to compute F-type statistics for 2SLS.

15.4 IV SOLUTIONS TO ERRORS-IN-VARIABLES
PROBLEMS

In the previous sections, we presented the use of instrumental variables as a way to
solve the omitted variables problem, but they can also be used to deal with the mea-
surement error problem. As an illustration, consider the model

Q U E S T I O N  1 5 . 3

The following model explains violent crime rates, at the city level, in
terms of a binary variable for whether gun control laws exist and
other controls:

violent � �0 � �1guncontrol � �2unem � �3popul
� �4 percblck � �5age18_21 � ….

Some researchers have estimated similar equations using variables
such as the number of National Rifle Association members in the city
and the number of subscribers to gun magazines as instrumental
variables for guncontrol [see, for example, Kleck and Patterson
(1993)]. Are these convincing instruments?
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y � �0 � �1x1* � �2x2 � u, (15.45)

where y and x2 are observed but x1* is not. Let x1 be an observed measurement of x1*: x1

� x1* � e1, where e1 is the measurement error. In Chapter 9, we showed that correlation
between x1 and e1 causes OLS, where x1 is used in place of x1*, to be biased and incon-
sistent. We can see this by writing

y � �0 � �1x1 � �2x2 � (u � �1e1). (15.46)

If the classical errors-in-variables (CEV) assumptions hold, the bias in the OLS esti-
mator of �1 is towards zero. Without further assumptions, we can do nothing about this.

In some cases, we can use an IV procedure to solve the measurement error problem.
In (15.45), we assume that u is uncorrelated with x1*, x1, and x2; in the CEV case, we
assume that e1 is uncorrelated with x1* and x2. These imply that x2 is exogenous in
(15.46), but that x1 is correlated with e1. What we need is an IV for x1. Such an IV must
be correlated with x1, uncorrelated with u—so that it must be excluded from (15.45)—
and uncorrelated with the measurement error, e1.

One possibility is to obtain a second measurement on x1*, say z1. Since it is x1* that
affects y, it is only natural to assume that z1 is uncorrelated with u. If we write z1 �
x1* � a1, where a1 is the measurement error in z1, then we must assume that a1 and e1

are uncorrelated. In other words, x1 and z1 both mismeasure x1*, but their measurement
errors are uncorrelated. Certainly, x1 and z1 are correlated through their dependence on
x1*, so we can use z1 as an IV for x1.

Where might we get two measurements on a variable? Sometimes, when a group of
workers is asked for their annual salary, their employers can provide a second measure.
For married couples, each spouse can independently report the level of savings or fam-
ily income. In the Ashenfelter and Krueger (1994) study cited in Section 14.3, each twin
was asked about his or her sibling’s years of education; this gives a second measure that
can be used as an IV for self-reported education in a wage equation. (Ashenfelter and
Krueger combined differencing and IV to account for the omitted ability problem as
well; more on this in Section 15.8.) Generally, though, having two measures of an
explanatory variable is rare.

An alternative is to use other exogenous variables as IVs for a potentially mismea-
sured variable. For example, our use of motheduc and fatheduc as IVs for educ in
Example 15.5 can serve this purpose. If we think that educ � educ* � e1, then the
IV estimates in Example 15.5 do not suffer from measurement error if motheduc and
fatheduc are uncorrelated with the measurement error, e1. This is probably more rea-
sonable than assuming motheduc and fatheduc are uncorrelated with ability, which is
contained in u in (15.45).

IV methods can also be adopted when using things like test scores to control for
unobserved characteristics. In Section 9.2, we showed that, under certain assumptions,
proxy variables can be used to solve the omitted variables problem. In Example 9.3, we
used IQ as a proxy variable for unobserved ability. This simply entails adding IQ to the
model and performing an OLS regression. But there is an alternative that works when
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IQ does not fully satisfy the proxy variable assumptions. To illustrate, write a wage
equation as

log(wage) � �0 � �1educ � �2exper � �3exper2 � abil � u, (15.47)

where we again have the omitted ability problem. But we have two test scores that are
indicators of ability. We assume that the scores can be written as

test1 � 
1abil � e1

and 

test2 � �1abil � e2,

where 
1 � 0, �1 � 0. Since it is ability that affects wage, we can assume that test1 and
test2 are uncorrelated with u. If we write abil in terms of the first test score and plug the
result into (15.47), we get

log(wage) � �0 � �1educ � �2exper � �3exper2

� �1test1 � (u � �1e1),
(15.48)

where �1 � 1/
1. Now, if we assume that e1 is uncorrelated with all the explanatory
variables in (15.47), including abil, then e1 and test1 must be correlated. [Notice that
educ is not endogenous in (15.48); however, test1 is.] This means that estimating
(15.48) by OLS will produce inconsistent estimators of the �j (and �1). Under the
assumptions we have made, test1 does not satisfy the proxy variable assumptions.

If we assume that e2 is also uncorrelated with all the explanatory variables in (15.47)
and that e1 and e2 are uncorrelated, then e1 is uncorrelated with the second test score,
test2. Therefore, test2 can be used as an IV for test1.

E X A M P L E  1 5 . 6
( U s i n g  T w o  T e s t  S c o r e s  a s  I n d i c a t o r s  o f  A b i l i t y )

We use the data in WAGE2.RAW to implement the preceding procedure, where IQ plays the
role of the first test score, and KWW (knowledge of the world of work) is the second test
score. The explanatory variables are the same as in Example 9.3: educ, exper, tenure, mar-
ried, south, urban, and black. Rather than adding IQ and doing OLS, as in column (2) of Table
9.2, we add IQ and use KWW as its instrument. The coefficient on educ is .025 (se � .017).
This is a low estimate, and it is not statistically different from zero. This is a puzzling finding,
and it suggests that one of our assumptions fails; perhaps e1 and e2 are correlated.

15.5 TESTING FOR ENDOGENEITY AND TESTING
OVERIDENTIFYING RESTRICTIONS

In this section, we describe two important tests in the context of instrumental variables
estimation.
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Testing for Endogeneity

The 2SLS estimator is less efficient than OLS when the explanatory variables are
exogenous; as we have seen, the 2SLS estimates can have very large standard errors.
Therefore, it is useful to have a test for endogeneity of an explanatory variable that
shows whether 2SLS is even necessary. Obtaining such a test is rather simple.

To illustrate, suppose we have a single suspected endogenous variable,

y1 � �0 � �1y2 � �2z1 � �3z2 � u1, (15.49)

where z1 and z2 are exogenous. We have two additional exogenous variables, z3 and z4,
which do not appear in (15.49). If y2 is uncorrelated with u1, we should estimate (15.49)
by OLS. How can we test this? Hausman (1978) suggested directly comparing the OLS
and 2SLS estimates and determining whether the differences are statistically signifi-
cant. After all, both OLS and 2SLS are consistent if all variables are exogenous. If 2SLS
and OLS differ significantly, we conclude that y2 must be endogenous (maintaining that
the zj are exogenous).

It is a good idea to compute OLS and 2SLS to see if the estimates are practically
different. To determine whether the differences are statistically significant, it is easier
to use a regression test. This is based on estimating the reduced form for y2, which in
this case is

y2 � �0 � �1z1 � �2z2 � �3z3 � �4z4 � v2. (15.50)

Now, since each zj is uncorrelated with u1, y2 is uncorrelated with u1 if and only if v2 is
uncorrelated with u1; this is what we wish to test. Write u1 � �1v2 � e1, where e1 is
uncorrelated with v2 and has zero mean. Then, u1 and v2 are uncorrelated if and only if
�1 � 0. The easiest way to test this is to include v2 as an additional regressor in (15.49)
and to do a t test. There is only one problem with implementing this: v2 is not observed,
because it is the error term in (15.50). Because we can estimate the reduced form for y2

by OLS, we can obtain the reduced form residuals, v̂2. Therefore, we estimate

y1 � �0 � �1y2 � �2z1 � �3z2 � �1v̂2� error (15.51)

by OLS and test H0: �1 � 0 using a t statistic. If we reject H0 at a small significance
level, we conclude that y2 is endogenous because v2 and u1 are correlated.

E X A M P L E  1 5 . 7
( R e t u r n  t o  E d u c a t i o n  f o r  W o r k i n g  W o m e n )

We can test for endogeneity of educ in (15.40) by obtaining the residuals v̂2 from estimat-
ing the reduced form (15.41)—using only working women—and including these in (15.40).
When we do this, the coefficient on v̂2 is �̂1 � .058, and t � 1.67. This is moderate evi-
dence of positive correlation between u1 and v2. It is probably a good idea to report both
estimates because the 2SLS estimate of the return to education (6.1%) is well-below the
OLS estimate (10.8%).
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TESTING FOR ENDOGENEITY OF A SINGLE EXPLANATORY VARIABLE:

(i) Estimate the reduced form for y2 by regressing it on all exogenous variables
(including those in the structural equation and the additional IVs). Obtain the residu-
als, v̂2.

(ii) Add v̂2 to the structural equation (which includes y2) and test for significance of
v̂2 using an OLS regression. If the coefficient on v̂2 is statistically different from zero,
we conclude that y2 is indeed endogenous. We might want to use a heteroskedasticity-
robust t test.

An interesting feature of the regression from part (ii) is that the estimates on all of
the variables (except v̂2) are identical to the 2SLS estimates. For example, estimating
(15.51) by OLS gives �̂j that are identical to the 2SLS estimates from equation (15.49).
This is a simple way to see if you have done the proper regression in testing for endo-
geneity. It also gives another interpretation of 2SLS: including v̂2 in the OLS regression
(15.51) clears up the endogeneity of y2.

We can also test for endogeneity of multiple explanatory variables. For each sus-
pected endogenous variable, we obtain the reduced form residuals, as in part (i). Then,
we test for joint significance of these residuals in the structural equation, using an F
test. Joint significance indicates that at least one suspected explanatory variable is
endogenous. The number of exclusion restrictions tested is the number of suspected
endogenous explanatory variables.

Testing Overidentification Restrictions

When we introduced the simple instrumental variables estimator in Section 15.1, we
emphasized that an IV must satisfy two requirements: it must be uncorrelated with the
error and correlated with the endogenous explanatory variable. We have seen in fairly
complicated models how to decide whether the second requirement can be tested using
a t or an F test in the reduced form regression. We claimed that the first requirement
cannot be tested because it involves a correlation between the IV and an unobserved
error. However, if we have more than one instrumental variable, we can effectively test
whether some of them are uncorrelated with the structural error.

As an example, again consider equation (15.49) with two additional instrumental
variables, z3 and z4. We know we can estimate (15.49) using only z3 as an IV for y2.
Given the IV estimates, we can compute the residuals, û1 � y1 � �̂0 � �̂1y2 � �̂2z1 �
�̂3z2. Because z4 is not used at all in the estimation, we can check whether z4 and û1 are
correlated in the sample. If they are, z4 is not a valid IV for y2. Of course, this tells us
nothing about whether z3 and u1 are correlated; in fact, for this to be a useful test, we
must assume that z3 and u1 are uncorrelated. Nevertheless, if z3 and z4 are chosen using
the same logic—such as mother’s education and father’s education—finding that z4 is
correlated with u1 casts doubt on using z3 as an IV.

Because the roles of z3 and z4 can be reversed, we can also test whether z3 is corre-
lated with u1, provided z4 and u1 are assumed to be uncorrelated. Which test should we
use? It turns out that our test choice does not matter. We must assume that at least one
IV is exogenous. Then, we can test the overidentifying restrictions that are used in
2SLS. For our purposes, the number of overidentifying restrictions is simply the num-
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ber of extra instrumental variables. Suppose we have only one endogenous explanatory
variable. If we have only a single IV for y2, we have no overidentifying restrictions, and
there is nothing that can be tested. If we have two IVs for y2, as in the previous exam-
ple, we have one overidentifying restriction. If we have three IVs, we have two over-
identifying restrictions, and so on.

Testing overidentifying restrictions is rather simple. We must obtain the 2SLS resid-
uals and then run an auxiliary regression.

TESTING OVERIDENTIFYING RESTRICTIONS:

(i) Estimate the structural equation by 2SLS and obtain the 2SLS residuals, û1.
(ii) Regress û1 on all exogenous variables. Obtain the R-squared, say R1

2.
(iii) Under the null hypothesis that all IVs are uncorrelated with u1, nR1

2 ~ª �q
2, where

q is the number of instrumental variables from outside the model minus the total num-
ber of endogenous explanatory variables. If nR1

2 exceeds (say) the 5% critical value in
the �q

2 distribution, we reject H0 and conclude that at least some of the IVs are not
exogenous.

E X A M P L E  1 5 . 8
( R e t u r n  t o  E d u c a t i o n  f o r  W o r k i n g  W o m e n )

When we use motheduc and fatheduc as IVs for educ in (15.40), we have a single over-
identifying restriction. Regressing the 2SLS residuals û1 on exper, exper2, motheduc, and
fatheduc produces R1

2 � .0009. Therefore, nR1
2 � 428(.0009) � .3852, which is a very small

value in a �1
2 distribution (p-value � .535). Therefore, the parents’ education variables pass

the overidentification test. When we add husband’s education to the IV list, we get two
overidentifying restrictions, and nR1

2 � 1.11 (p-value � .574). Therefore, it seems reason-
able to add huseduc to the IV list, as this reduces the standard error of the 2SLS esti-
mate: the 2SLS estimate on educ using all three instruments is .080 (se � .022), so this
makes educ much more significant than when huseduc is not used as an IV (�̂educ � .061,
se � .031).

In the previous example, we alluded to a general fact about 2SLS: under the stan-
dard 2SLS assumptions, adding instruments to the list improves the asymptotic effi-
ciency of the 2SLS. But this requires that any new instruments are in fact
exogenous—otherwise, 2SLS will not even be consistent—and it is only an asymptotic
result. With the typical sample sizes available, adding too many instruments—that is,
increasing the number of overidentifying restrictions—can cause severe biases in 2SLS.
A detailed discussion would take us too far afield. A nice illustration is given by Bound,
Jaeger, and Baker (1995) who argue that the 2SLS estimates of the return to education
obtained by Angrist and Krueger (1991), using many instrumental variables, are likely
to be seriously biased (even with hundreds of thousands of observations!).

The overidentification test can be used whenever we have more instruments than we
need. If we have just enough instruments, the model is said to be just identified, and the

d  7/14/99 7:43 PM  Page 485



Part 3 Advanced Topics

486

R-squared in part (ii) will be identically zero. As we mentioned earlier, we cannot test
exogeneity of the instruments in the just identified case.

The test can be made robust to heteroskedasticity of arbitrary form; for details, see
Wooldridge (1999, Chapter 5).

15.6 2SLS WITH HETEROSKEDASTICITY

Heteroskedasticity in the context of 2SLS raises essentially the same issues as with
OLS. Most importantly, it is possible to obtain standard errors and test statistics that are
(asymptotically) robust to heteroskedasticity of arbitrary and unknown form. Some
software packages do this routinely.

We can also test for heteroskedasticity, using an analog of the Breusch-Pagan test
that we covered in Chapter 8. Let û denote the 2SLS residuals and let z1, z2, …, zm

denote all the exogenous variables (incuding those used as IVs for the endogenous
explanatory variables). Then, under reasonable assumptions [spelled out, for example,
in Wooldridge (1999, Chapter 5)], an asymptotically valid statistic is the usual F statis-
tic for joint significance in a regression of û2 on z1, z2, …, zm. The null hypothesis of
homoskedasticity is rejected if the zj are jointly significant.

If we apply this to Example 15.8, using motheduc, fatheduc, and huseduc as instru-
ments for educ, we obtain F5,422 � 2.53, and p-value � .029. This is evidence of het-
eroskedasticity at the 5% level. We might want to compute heteroskedasticity-robust
standard errors to account for this.

If we know how the error variance depends on the exogenous variables, we can use
a weighted 2SLS procedure, essentially the same as in Section 8.4. After estimating a
model for Var(u�z1,z2, …, zm), we divide the dependent variable, the explanatory vari-
ables, and all the instrumental variables for observation i by ��ĥi, where ĥi denotes the
estimated variance. (The constant, which is both an explanatory variable and an IV, is
divided by ��ĥi; see Section 8.4.) Then, we apply 2SLS on the transformed equation
using the transformed instruments.

15.7 APPLYING 2SLS TO TIME SERIES EQUATIONS

When we apply 2SLS to time series data, many of the considerations that arose for OLS
in Chapters 10, 11, and 12 are relevant. Write the structural equation for each time
period as

yt � �0 � �1xt1 � … � �kxtk � ut, (15.52)

where one or more of the explanatory variables xtj might be correlated with ut. Denote
the set of exogenous variables by zt1, …, ztm:

E(ut) � 0, Cov(ztj,ut) � 0, j � 1, …, m.

Any exogenous explanatory variable is also a ztj. For identification, it is necessary that
m � k (we have as many exogenous variables as explanatory variables).
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The mechanics of 2SLS are identical for time series or cross-sectional data, but for
time series data the statistical properties of 2SLS depend on the trending and correla-
tion properties of the underlying sequences. In particular, we must be careful to include
trends if we have trending dependent or explanatory variables. Since a time trend is
exogenous, it can always serve as its own instrumental variable. The same is true of sea-

sonal dummy variables, if monthly or
quarterly data are used.

Series that have strong persistence
(have unit roots) must be used with care,
just as with OLS. Often, differencing the
equation is warranted before estimation,
and this applies to the instruments as well.

Under analogs of the assumptions in
Chapter 11 for the asymptotic properties of
OLS, 2SLS using time series data is con-
sistent and asymptotically normally dis-
tributed. In fact, if we replace the
explanatory variables with the instrumen-

tal variables in stating the assumptions, we only need to add the identification assump-
tions for 2SLS. For example, the homoskedasticity assumption is stated as

E(ut
2�zt1, …, ztm) � �2, (15.53)

and the no serial correlation assumption is stated as

E(utus�zt,zs) � 0, for all t � s, (15.54)

where zt denotes all exogenous variables at time t. A full statement of the assumptions
is given in the chapter appendix. We will provide examples of 2SLS for time series
problems in Chapter 16; see also Problem 15.15.

As in the case of OLS, the no serial correlation assumption can often be violated
with time series data. Fortunately, it is very easy to test for AR(1) serial correlation. If
we write ut � 	ut�1 � et and plug this into equation (15.52), we get

yt � �0 � �1xt1 � … � �kxtk � 	ut�1 � et, t � 2. (15.55)

To test H0: 	1 � 0, we must replace ut�1 with the 2SLS residuals, û t�1. Further, if xtj is
endogenous in (15.52), then it is endogenous in (15.55), so we still need to use an IV.
Because et is uncorrelated with all past values of ut, û t�1 can be used as its own instru-
ment.

TESTING FOR AR(1) SERIAL CORRELATION AFTER 2SLS:

(i) Estimate (15.52) by 2SLS and obtain the 2SLS residuals, û t.

(ii) Estimate

Q U E S T I O N  1 5 . 4

A model to test the effect of growth in government spending on
growth in output is

gGDPt � �0 � �1gGOVt � �2INVRATt � �3gLABt � ut,

where g indicates growth, GDP is real gross domestic product, GOV
is real government spending, INVRAT is the ratio of gross domestic
investment to GDP, and LAB is size of the labor force. [See equation
(6) in Ram (1986).] Under what assumptions would a dummy vari-
able indicating whether the president in year t � 1 is a Republican
be a suitable IV for gGOVt?
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yt � �0 � �1xt1 � … � �kxtk � 	û t�1 � errort, t � 2, …, n

by 2SLS, using the same instruments from part (i), in addition to û t�1. Use the t statis-
tic on 	̂ to test H0: 	 � 0.

As with the OLS version of this test from Chapter 12, the t statistic only has asymp-
totic justification, but it tends to work well in practice. A heteroskedasticity-robust ver-
sion can be used to guard against heteroskedasticity. Further, lagged residuals can be
added to the equation to test for higher forms of serial correlation using a joint F test.

What happens if we detect serial correlation? Some econometrics packages will
compute standard errors that are robust to fairly general forms of serial correlation and
heteroskedasticity. This is a nice, simple way to go if your econometrics package does
this. The computations are very similar to those in Section 12.5 for OLS. See
Wooldridge (1995) for formulas and other computational methods.

An alternative is to use the AR(1) model and correct for serial correlation. The pro-
cedure is similar to that for OLS and places additional restrictions on the instrumental
variables. The quasi-differenced equation is the same as in equation (12.32):

ỹt � �0(1 � 	) � �1x̃ t1 � … � �kx̃ tk � et, t � 2, (15.56)

where x̃ tj � xtj � 	xt�1,j. (We can use the t � 1 observation just as in Section 12.3, but
we omit that for simplicity here.) The question is: What can we use as instrumental vari-
ables? It seems natural to use the quasi-differenced instruments, z̃ tj � ztj � 	zt�1,j. This
only works, however, if in (15.52), the original error ut is uncorrelated with the instru-
ments at times t, t � 1, and t � 1. That is, the instrumental variables must be strictly
exogenous in (15.52). This rules out lagged dependent variables as IVs, for example. It
also eliminates cases where future movements in the IVs react to current and past
changes in the error, ut.

2SLS WITH AR(1) ERRORS:

(i) Estimate (15.52) by 2SLS and obtain the 2SLS residuals, ût, t � 1,2, …, n.
(ii) Obtain 	̂ from the regression of û t on û t�1, t � 2, …, n and construct the quasi-

differenced variables ỹt � yt � 	̂yt�1, x̃ tj � xtj � 	̂xt�1,j, and z̃ tj � ztj � 	̂zt�1,j for t �
2. (Remember, in most cases some of the IVs will also be explanatory variables.)

(iii) Estimate (15.56) (where 	 is replaced with 	̂) by 2SLS, using the z̃ tj as the
instruments. Assuming that (15.56) satisfies the 2SLS assumptions in the chapter
appendix, the usual 2SLS test statistics are asymptotically valid.

15.8 APPLYING 2SLS TO POOLED CROSS SECTIONS
AND PANEL DATA

Applying instrumental variables methods to independently pooled cross sections raises
no new difficulties. As with models estimated by OLS, we should often include time
period dummy variables to allow for aggregate time effects. These dummy variables are
exogenous—because the passage of time is exogenous—and so they act as their own
instruments.
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E X A M P L E  1 5 . 9
( E f f e c t  o f  E d u c a t i o n  o n  F e r t i l i t y )

In Example 13.1, we used the pooled cross section in FERTIL1.RAW to estimate the effect
of education on women’s fertility, controlling for various other factors. As in Sander (1992),
we allow for the possibility that educ is endogenous in the equation. As instrumental vari-
ables for educ, we use mother and father’s education levels (meduc, feduc). The 2SLS esti-
mate of �educ is �.153 (se � .039), compared with the OLS estimate �.128 (se � .018).
The 2SLS estimate shows a somewhat larger effect of education on fertility, but the 2SLS
standard is over twice as large as the OLS standard error. (In fact, the 95% confidence inter-
val based on 2SLS easily contains the OLS estimate.) The OLS and 2SLS estimates of �educ

are not statistically different, as can be seen by testing for endogeneity of educ as in Section
15.5: when the reduced form residual, v̂2, is included with the other regressors in Table 13.1
(including educ), its t statistic is .702, which is not significant at any reasonable level.
Therefore, in this case, we conclude that the difference between 2SLS and OLS is due to
sampling error.

Instrumental variables estimation can be combined with panel data methods, par-
ticularly first differencing, to consistently estimate parameters in the presence of unob-
served effects and endogeneity in one or more time-varying explanatory variables. The
following simple example illustrates this combination of methods.

E X A M P L E  1 5 . 1 0
( J o b  T r a i n i n g  a n d  W o r k e r  P r o d u c t i v i t y )

Suppose we want to estimate the effect of another hour of job training on worker pro-
ductivity. For the two years 1987 and 1988, consider the simple panel data model

log(scrapit) � �0 � �0d88t � �1hrsempit � ai � uit, t � 1,2,

where scrapit is firm i’s scrap rate in year t, and hrsempit is hours of job training per
employee. As usual, we allow different year intercepts and a constant, unobserved firm
effect, ai.

For the reasons discussed in Section 13.2, we might be concerned that hrsempit is cor-
related with ai, the latter of which contains unmeasured worker ability. As before, we dif-
ference to remove ai:

�log(scrapi) � �0 � �1�hrsempi � �ui. (15.57)

Normally, we would estimate this equation by OLS. But what if �ui is correlated with
�hrsempi? For example, a firm might hire more skilled workers, while at the same time
reducing the level of job training. In this case, we need an instrumental variable for
�hrsempi. Generally, such an IV would be hard to find, but we can exploit the fact that
some firms received job training grants in 1988. If we assume that grant designation is
uncorrelated with �ui—something that is reasonable, because the grants were given at the
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beginning of 1988—then �granti is valid as an IV, provided �hrsemp and �grant are cor-
related. Using the data in JTRAIN.RAW differenced between 1987 and 1988, the first stage
regression is

�hrŝemp �(0.51)�(27.88)�grant
�hrŝemp �(1.56)�0(3.13)�grant

n � 45, R2 � .392.

This confirms that the change in hours of job training per employee is strongly positively
related to receiving a job training grant in 1988. In fact, receiving a job training grant
increased per-employee training by almost 28 hours, and grant designation accounted for
almost 40% of the variation in �hrsemp. Two stage least squares estimation of (15.57)
gives

(�log(ŝcrap) � �.033)�(.014)�hrsemp
�log(scrap) � �(.127)�(.008)�hrsemp

n � 45, R2 � .016.

This means that 10 more hours of job training per worker are estimated to reduce the scrap
rate by about 14%. For the firms in the sample, the average amount of job training in 1988
was about 17 hours per worker, with a minimum of zero and a maximum of 88.

For comparison, OLS estimation of (15.57) gives �̂1 � �.0076 (se � .0045), so the 2SLS
estimate of �1 is almost twice as large in magnitude and is slightly more statistically signif-
icant.

When T � 3, the differenced equation may contain serial correlation. The same test
and correction for AR(1) serial correlation from Section 15.7 can be used, where all
regressions are pooled across i as well as t.

Unobserved effects models containing lagged dependent variables also require IV
methods for consistent estimation. The reason is that, after differencing, �yi,t�1 is cor-
related with �uit because yi,t�1 and ui,t�1 are correlated. We can use two or more lags
of y as IVs for �yi,t�1. [See Wooldridge (1999, Chapter 11) for details.]

Instrumental variables after differencing can be used on matched pairs samples as
well. Ashenfelter and Krueger (1994) differenced the wage equation across twins to
eliminate unobserved ability:

log(wage2) � log(wage1) � �0 � �1(educ2,2 � educ1,1) � (u2 � u1),

where educ1,1 is years of schooling for the first twin as reported by the first twin, and
educ2,2 is years of schooling for the second twin as reported by the second twin. To
account for possible measurement error in the self-reported schooling measures,
Ashenfelter and Krueger used (educ2,1 � educ1,2) as an IV for (educ2,2 � educ1,1),
where educ2,1 is years of schooling for the second twin as reported by the first twin, and
educ1,2 is years of schooling for the first twin as reported by the second twin. The IV
estimate of �1 is .167 (t � 3.88), compared with the OLS estimate on the first differ-
ences of .092 (t � 3.83) [see Ashenfelter and Krueger (1994, Table 3)].
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SUMMARY

In Chapter 15, we have introduced the method of instrumental variables as a way to
consistently estimate the parameters in a linear model when one or more explanatory
variables are endogenous. An instrumental variable must have two properties: (1) it
must be exogenous, that is, uncorrelated with the error term of the structural equation;
(2) it must be partially correlated with the endogenous explanatory variable. Finding a
variable with these two properties is often challenging.

The method of two stage least squares, which allows for more instrumental vari-
ables than we have explanatory variables, is used routinely in the empirical social sci-
ences. When used properly, it can allow us to estimate ceteris paribus effects in the
presence of endogenous explanatory variables. This is true in cross-sectional, time
series, and panel data applications. But when instruments are poor—which means they
are correlated with the error term, only weakly correlated with the endogenous explana-
tory variable, or both—then 2SLS can be worse than OLS.

When we have valid instrumental variables, we can test whether an explanatory
variable is endogenous, using the test in Section 15.5. In addition, while we can
never test whether all IVs are exogenous, we can test that at least some of them are—
assuming that we have more instruments than we need for consistent estimation (that
is, the model is overidentified). Heteroskedasticity and serial correlation can be tested
for and dealt with using methods similar to the case of models with exogenous explana-
tory variables.

In this chapter, we used omitted variables and measurement error to illustrate the
method of instrumental variables. IV methods are also indispensable for simultaneous
equations models, which we will cover in Chapter 16.

KEY TERMS

Endogenous Explanatory Variables
Errors-in-Variables
Exclusion Restrictions
Exogenous Explanatory Variables
Exogenous Variables
Identification
Instrumental Variables 
Instrumental Variables (IV) Estimator

Natural Experiment
Omitted Variables
Order Condition
Overidentifying Restrictions
Rank Condition
Reduced Form Equation
Structural Equation
Two Stage Least Squares (2SLS) Estimator

PROBLEMS

15.1 Consider a simple model to estimate the effect of personal computer (PC) owner-
ship on college grade point average for graduating seniors at a large public university:

GPA � �0 � �1PC � u,

where PC is a binary variable indicating PC ownership.
(i) Why might PC ownership be correlated with u?
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(ii) Explain why PC is likely to be related to parents’ annual income. Does
this mean parental income is a good IV for PC? Why or why not?

(iii) Suppose that, four years ago, the university gave grants to buy comput-
ers to roughly one-half of the incoming students, and the students who
received grants were randomly chosen. Carefully explain how you
would use this information to construct an instrumental variable for PC.

15.2 Suppose that you wish to estimate the effect of class attendance on student per-
formance, as in Example 6.3. A basic model is

stndfnl � �0 � �1atndrte � �2priGPA � �3ACT � u,

where the variables are defined as in Chapter 6.
(i) Let dist be the distance from the students’ living quarters to the lecture

hall. Do you think dist is uncorrelated with u?
(ii) Assuming that dist and u are uncorrelated, what other assumption must

dist satisfy in order to be a valid IV for atndrte?
(iii) Suppose, as in equation (6.18), we add the interaction term

priGPA
atndrte:

stndfnl � �0 � �1atndrte � �2priGPA � �3ACT � �4priGPA
atndrte � u.

If atndrte is correlated with u, then, in general, so is priGPA
atndrte.
What might be a good IV for priGPA
atndrte? [Hint: If
E(u�priGPA,ACT,dist) � 0, as happens when priGPA, ACT, and dist are
all exogenous, then any function of priGPA and dist is uncorrelated
with u.]

15.3 Consider the simple regression model

y � �0 � �1x � u

and let z be a binary instrumental variable for x. Use (15.10) to show that the IV esti-
mator �̂1 can be written as

�̂1 � ( ȳ1 � ȳ0)/(x̄1 � x̄0),

where ȳ0 and x̄0 are the sample averages of yi and xi over the part of the sample with
zi � 0, and where ȳ1 and x̄1 are the sample averages of yi and xi over the part of the sam-
ple with zi � 1. This estimator, known as a grouping estimator, was first suggested by
Wald (1940).

15.4 Suppose that, for a given state in the United States, you wish to use annual time
series data to estimate the effect of the state-level minimum wage on the employment
of those 18 to 25 years old (EMP). A simple model is

gEMPt � �0 � �1gMINt � �2gPOPt � �3gGSPt � �4gGDPt � ut,

where MINt is the minimum wage, in real dollars, POPt is the population from 18 to 25
years old, GSPt is gross state product, and GDPt is U.S. gross domestic product. The g
prefix indicates the growth rate from year t � 1 to year t, which would typically be
approximated by the difference in the logs.
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(i) If we are worried that the state chooses its minimum wage partly based
on unobserved (to us) factors that affect youth employment, what is the
problem with OLS estimation?

(ii) Let USMINt be the U.S. minimum wage, which is also measured in real
terms. Do you think gUSMINt is uncorrelated with ut?

(iii) By law, any state’s minimum wage must be at least as large as the U.S.
minimum. Explain why this makes gUSMINt a potential IV candidate
for gMINt.

15.5 Refer to equations (15.19) and (15.20). Assume that �u � �x, so that the popula-
tion variation in the error term is the same as it is in x. Suppose that the instrumental
variable, z, is slightly correlated with u: Corr(z,u) � .1. Suppose also that z and x have
a somewhat stronger correlation: Corr(z,x) � .2.

(i) What is the asymptotic bias in the IV estimator?
(ii) How much correlation would have to exist between x and u before OLS

has more asymptotic bias than 2SLS?

15.6 (i) In the model with one endogenous explanatory variable, one exogenous
explanatory variable, and one extra exogenous variable, take the
reduced form for y2, (15.26), and plug it into the structural equation
(15.22). This gives the reduced form for y1:

y1 � �0 � �1z1 � �2z2 � v1.

Find the �j in terms of the �j and the �j.
(ii) Find the reduced form error, v1, in terms of u1, v2, and the parameters.
(iii) How would you consistently estimate the �j?

15.7 The following is a simple model to measure the effect of a school choice program
on standardized test performance [see Rouse (1998) for motivation]:

score � �0 � �1choice � �2 faminc � u1,

where score is the score on a statewide test, choice is a binary variable indicating
whether a student attended a choice school in the last year, and faminc is family income.
The IV for choice is grant, the dollar amount granted to students to use for tuition at
choice schools. The grant amount differed by family income level, which is why we
control for faminc in the equation.

(i) Even with faminc in the equation, why might choice be correlated with
u1?

(ii) If within each income class, the grant amounts were assigned randomly,
is grant uncorrelated with u1?

(iii) Write the reduced form equation for choice. What is needed for grant
to be partially correlated with choice?

(iv) Write the reduced form equation for score. Explain why this is useful.
(Hint: How do you interpret the coefficient on grant?)

15.8 Suppose you want to test whether girls who attend a girls’ high school do better in
math than girls who attend coed schools. You have a random sample of senior high
school girls from a state in the United States, and score is the score on a standardized
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math test. Let girlhs be a dummy variable indicating whether a student attends a girls’
high school.

(i) What other factors would you control for in the equation? (You should
be able to reasonably collect data on these factors.)

(ii) Write an equation relating score to girlhs and the other factors you
listed in part (i).

(iii) Suppose that parental support and motivation are unmeasured factors in
the error term in part (ii). Are these likely to be correlated with girlhs?
Explain.

(iv) Discuss the assumptions needed for the number of girls’ high schools
within a twenty-mile radius of a girl’s home to be a valid IV for girlhs.

15.9 Suppose that, in equation (15.8), you do not have a good instrumental variable
candidate for skipped. But you have two other pieces of information on students: com-
bined SAT score and cumulative GPA prior to the semester. What would you do instead
of IV estimation?

15.10 In a recent article, Evans and Schwab (1995) studied the effects of attending a
Catholic high school on the probability of attending college. For concreteness, let col-
lege be a binary variable equal to unity if a student attends college, and zero otherwise.
Let CathHS be a binary variable equal to one if the student attends a Catholic high
school. A linear probability model is

college � �0 � �1CathHS � other factors � u,

where the other factors include gender, race, family income, and parental education.
(i) Why might CathHS be correlated with u?
(ii) Evans and Schwab have data on a standardized test score taken when

each student was a sophomore. What can be done with these variables
to improve the ceteris paribus estimate of attending a Catholic high
school?

(iii) Let CathRel be a binary variable equal to one if the student is Catholic.
Discuss the two requirements needed for this to be a valid IV for
CathHS in the preceding equation. Which of these can be tested?

(iv) Not surprisingly, being Catholic has a significant effect on attending a
Catholic high school. Do you think CathRel is a convincing instrument
for CathHS?

15.11 Consider a simple time series model where the explanatory variable has classical
measurement error:

yt � �0 � �1x t* � ut

xt � xt* � et,
(15.58)

where ut has zero mean and is uncorrelated with xt* and et. We observe yt and xt only.
Assume that et has zero mean and is uncorrelated with xt* and that xt* also has a zero
mean (this last assumption is only to simplify the algebra).
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(i) Write xt* � xt � et and plug this into (15.58). Show that the error term
in the new equation, say vt, is negatively correlated with xt if �1 � 0.
What does this imply about the OLS estimator of �1 from the regres-
sion of yt on xt?

(ii) In addition to the previous assumptions, assume that ut and et are uncor-
related with all past values of xt* and et; in particular, with xt*�1 and
et�1. Show that E(xt�1vt) � 0, where vt is the error term in the model
from part (i).

(iii) Are xt and xt�1 likely to be correlated? Explain.
(iv) What do parts (ii) and (iii) suggest as a useful strategy for consistently

estimating �0 and �1?

COMPUTER EXERCISES

15.12 Use the data in WAGE2.RAW for this exercise.
(i) In Example 15.2, using sibs as an instrument for educ, the IV estimate

of the return to education is .122. To convince yourself that using sibs
as an IV for educ is not the same as just plugging sibs in for educ and
running an OLS regression, run the regression of log(wage) on sibs and
explain your findings.

(ii) The variable brthord is birth order (brthord is one for a first-born child,
two for a second-born child, and so on). Explain why educ and brthord
might be negatively correlated. Regress educ on brthord to determine
whether there is a statistically significant negative correlation.

(iii) Use brthord as an IV for educ in equation (15.1). Report and interpret
the results.

(iv) Now, suppose that we include number of siblings as an explanatory
variable in the wage equation; this controls for family background, to
some extent:

log(wage) � �0 � �1educ � �2sibs � u.

Suppose that we want to use brthord as an IV for educ, assuming that
sibs is exogenous. The reduced form for educ is

educ � �0 � �1sibs � �2brthord � v.

State and test the identification assumption.
(v) Estimate the equation from part (iv) using brthord as an IV for educ

(and sibs as its own IV). Comment on the standard errors for �̂educ and
�̂sibs.

(vi) Using the fitted values from part (iv), ed̂uc, compute the correlation
between ed̂uc and sibs. Use this result to explain your findings from
part (v).

15.13 The data in FERTIL2.RAW includes, for women in Botswana during 1988, infor-
mation on number of children, years of education, age, and religious and economic sta-
tus variables.
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(i) Estimate this model by OLS

children � �0 � �1educ � �2age � �3age2 � u

and interpret the estimates. In particular, holding age fixed, what is the
estimated effect of another year of education on fertility? If 100 women
receive another year of education, how many fewer children are they
expected to have?

(ii) Frsthalf is a dummy variable equal to one if the woman was born dur-
ing the first six months of the year. Assuming that frsthalf is uncorre-
lated with the error term from part (i), show that frsthalf is a reasonable
IV candidate for educ. (Hint: You need to do a regression.)

(iii) Estimate the model from part (i) by using frsthalf as an IV for educ.
Compare the estimated effect of education with the OLS estimate from
part (i).

(iv) Add the binary variables electric, tv, and bicycle to the model and
assume these are exogenous. Estimate the equation by OLS and 2SLS
and compare the estimated coefficients on educ. Interpret the coeffi-
cient on tv and explain why television ownership has a negative effect
on fertility.

15.14 Use the data in CARD.RAW for this exercise.
(i) The equation we estimated in Example 15.4 can be written as

log(wage) � �0 � �1educ � �2exper � … � u,

where the other explanatory variables are listed in Table 15.1. In order
for IV to be consistent, the IV for educ, nearc4, must be uncorrelated
with u. Could nearc4 be correlated with things in the error term, such
as unobserved ability? Explain.

(ii) For a subsample of the men in the data set, an IQ score is available.
Regress IQ on nearc4 to check whether average IQ scores vary by
whether the man grew up near a four-year college. What do you con-
clude?

(iii) Now regress IQ on nearc4, smsa66, and the 1966 regional dummy vari-
ables reg662, …, reg669. Are IQ and nearc4 related after the geographic
dummy variables have been partialled out? Reconcile this with your
findings from part (ii).

(iv) From parts (ii) and (iii), what do you conclude about the importance of
controlling for smsa66 and the 1966 regional dummies in the log(wage)
equation?

15.15 Use the data in INTDEF.RAW for this exercise. A simple equation relating the
three-month, T-Bill rate to the inflation rate (constructed from the consumer price
index) is

i3t � �0 � �1inft � ut.

(i) Estimate this equation by OLS, omitting the first time period for later
comparisons. Report the results in the usual form.
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(ii) Some economists feel that the consumer price index mismeasures the
true rate of inflation, so that the OLS from part (i) suffers from mea-
surement error bias. Reestimate the equation from part (i), using inft�1

as an IV for inft. How does the IV estimate of �1 compare with the OLS
estimate?

(iii) Now first difference the equation:

�i3t � �0 � �1�inft � �ut.

Estimate this by OLS and compare the estimate of �1 with the previous
estimates.

(iv) Can you use �inft�1 as an IV for �inft in the differenced equation in part
(iii)? Explain. (Hint: Are �inft and �inft�1 sufficiently correlated?)

15.16 Use the data in CARD.RAW for this exercise.
(i) In Table 15.1, the difference between the IV and OLS estimates of the

return to education are economically important. Obtain the reduced
form residuals, v̂2, from (15.32). (See Table 15.1 for the other variables
to include in the regression.) Use these to test whether educ is exoge-
nous; that is, determine if the difference between OLS and IV is statis-
tically significant.

(ii) Estimate the equation by 2SLS, adding nearc2 as an instrument. Does
the coefficient on educ change much?

(iii) Test the single overidentifying restriction from part (ii).

15.17 Use the data in MURDER.RAW for this exercise. The variable mrdrte is the mur-
der rate, that is, the number of murders per 100,000 people. The variable exec is the
total number of prisoners executed for the current and prior two years; unem is the state
unemployment rate.

(i) How many states executed at least one prisoner in 1991, 1992, or 1993?
Which state had the most executions?

(ii) Using the two years 1990 and 1993, do a pooled regression of mrdrte
on d93, exec, and unem. What do you make of the coefficient on exec?

(iii) Using the changes from 1990 to 1993 only (for a total of 51 observa-
tions), estimate the equation

�mrdrte � �0 � �1�exec � �2�unem � �u

by OLS and report the results in the usual form. Now, does capital pun-
ishment appear to have a deterrent effect?

(iv) The change in executions may be at least partly related to changes in the
expected murder rate, so that �exec is correlated with �u in part (iii). It
might be reasonable to assume that �exec�1 is uncorrelated with �u.
(After all, �exec�1 depends on executions that occured three or more
years ago.) Regress �exec on �exec�1 to see if they are sufficiently cor-
related; interpret the coefficient on �exec�1.

(v) Reestimate the equation from part (iii), using �exec�1 as an IV for
�exec. Assume that �unem is exogenous. How do your conclusions
change from part (iii)?
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15.18 Use the data in PHILLIPS.RAW for this exercise.
(i) In Example 11.5, we estimated an expectations augmented Phillips

curve of the form

�inft � �0 � �1unemt � et,

where �inft � inft � inft�1. In estimating this equation by OLS, we
assumed that the supply shock, et, was uncorrelated with unemt. If this
is false, what can be said about the OLS estimator of �1?

(ii) Suppose that et is unpredictable given all past information:
E(et�inft�1,unemt�1,…) � 0. Explain why this makes unemt�1 a good
IV candidate for unemt.

(iii) Regress unemt on unemt�1. Are unemt and unemt�1 significantly corre-
lated?

(iv) Estimate the expectations augmented Phillips curve by IV. Report the
results in the usual form and compare them with the OLS estimates
from Example 11.5.

A P P E N D I X  1 5 A

Assumptions for Two Stage Least Squares

This appendix covers the assumptions under which 2SLS has desirable large sample
properties. We first state the assumptions for cross-sectional applications under random
sampling. Then, we discuss what needs to be added for them to apply to time series and
panel data.

A S S U M P T I O N  2 S L S . 1  ( L I N E A R  I N  P A R A M E T E R S )

The model in the population can be written as

y � �0 � �1x1 � �2x2 � … � �kxk � u,

where �0, �1, …, �k are the unknown parameters (constants) of interest, and u is an unob-
servable random error or random disturbance term. The instrumental variables are
denoted zj.

A S S U M P T I O N  2 S L S . 2  ( R A N D O M  S A M P L I N G )

We have a random sample on y, the xj, and the zj.

A S S U M P T I O N  2 S L S . 3  ( E X O G E N O U S

I N S T R U M E N T A L  V A R I A B L E S )

The error term u has zero mean, and each IV is uncorrelated with u.

Remember that any xj that is uncorrelated with u also acts as an IV.
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A S S U M P T I O N  2 S L S . 4  ( R A N K  C O N D I T I O N )

(i) There are no perfect linear relationships among the instrumental variables. (ii) The rank
condition for identification holds.

With a single endogenous explanatory variable, as in equation (15.42), the rank con-
dition is easily described. Let z1, …, zm denote the exogenous variables, where zk, …, zm

do not appear in the structural model (15.42). The reduced form of y2 is

y2 � �0 � �1z1 � �2z2 � … � �k�1zk�1 � �kzk � … � �mzm � v2.

Then, we need at least one of �k, …, �m to be nonzero. This requires at least one exoge-
nous variable that does not appear in (15.42) (the order condition). Stating the rank con-
dition with two or more endogenous explanatory variables requires matrix algebra. [See
Wooldridge (1999, Chapter 5).]

T H E O R E M  1 5 A . 1

Under Assumptions 2SLS.1 through 2SLS.4, the 2SLS estimator is consistent.

A S S U M P T I O N  2 S L S . 5  ( H O M O S K E D A S T I C I T Y )

Let z denote the collection of all instrumental variables. Then E(u2�z) � �2.

T H E O R E M  1 5 A . 2

Under Assumptions 2SLS.1 through 2SLS.5, the 2SLS estimators are asymptotically normally
distributed. Consistent estimators of the asymptotic variance are given as in equation

(15.43), where �2 is replaced with �̂2 � (n � k � 1)2 �
n

i�1
ûi

2, and the ûi are the 2SLS

residuals.

The 2SLS estimator is also the best IV estimator under the five assumptions given.
We state the result here. A proof can be found in Wooldridge (1999).

T H E O R E M  1 5 A . 3

Under Assumptions 2SLS.1 through 2SLS.5, the 2SLS estimator is asymptotically efficient in
the class of IV estimators that uses linear combinations of the exogenous variables as instru-
ments.

If the homoskedasticity assumption does not hold, the 2SLS estimators are still
asymptotically normal, but the standard errors (and t and F statistics) need to be
adjusted; many econometrics packages do this routinely. Moreover, the 2SLS estimator
is no longer the asymptotically efficient IV estimator, in general. We will not study
more efficient estimators here [see Wooldridge (1999, Chapter 8)].

For time series applications, we must add some assumptions. First, as with OLS, we
must assume that all series (including the IVs) are weakly dependent: this ensures that
the law of large numbers and the central limit theorem hold. For the usual standard
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errors and test statistics to be valid, as well as for asymptotic efficiency, we must add a
no serial correlation assumption.

A S S U M P T I O N  2 S L S . 6  ( N O  S E R I A L

C O R R E L A T I O N )

Equation (15.54) holds.

A similar no serial correlation assumption is needed in panel data applications.
Tests and corrections for serial correlation were discussed in Section 15.7.
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In the previous chapter, we showed how the method of instrumental variables can
solve two kinds of endogeneity problems: omitted variables and measurement error.
Conceptually, these problems are straightforward. In the omitted variables case,

there is a variable (or more than one) that we would like to hold fixed when estimating
the ceteris paribus effect of one or more of the observed explanatory variables. In the
measurement error case, we would like to estimate the effect of certain explanatory
variables on y, but we have mismeasured one or more variables. In both cases, we could
estimate the parameters of interest by OLS if we could collect better data.

Another important form of endogeneity of explanatory variables is simultaneity.
This arises when one or more of the explanatory variables is jointly determined with the
dependent variable, typically through an equilibrium mechanism (as we will see later).
In this chapter, we study methods for estimating simple simultaneous equations models
(SEMs). While a complete treatment of SEMs is beyond the scope of this text, we are
able to cover models that are widely used.

The leading method for estimating simultaneous equations models is the method of
instrumental variables. Therefore, the solution to the simultaneity problem is essentially
the same as the IV solutions to the omitted variables and measurement error problems.
However, crafting and interpreting SEMs is challenging. Therefore, we begin by dis-
cussing the nature and scope of simultaneous equations models in Section 16.1. In
Section 16.2, we confirm that OLS applied to an equation in a simultaneous system is
generally biased and inconsistent.

Section 16.3 provides a general description of identification and estimation in a
two-equation system, while Section 16.4 briefly covers models with more than two
equations. Simultaneous equations models are used to model aggregate time series, and
in Section 16.5 we include a discussion of some special issues that arise in such mod-
els. Section 16.6 touches on simultaneous equations models with panel data.

16.1 THE NATURE OF SIMULTANEOUS
EQUATIONS MODELS

The most important point to remember in using simultaneous equations models is that
each equation in the system should have a ceteris paribus, causal interpretation.
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Because we only observe the outcomes in equilibrium, we are required to use counter-
factual reasoning in constructing the equations of a simultaneous equations model. We
must think in terms of potential as well as actual outcomes.

The classic example of an SEM is a supply and demand equation for some commod-
ity or input to production (such as labor). For concreteness, let hs denote the annual labor
hours supplied by workers in agriculture, measured at the county level, and let w denote
the average hourly wage offered to such workers. A simple labor supply function is

hs � �1w � �1z1 � u1, (16.1)

where z1 is some observed variable affecting labor supply—say, the average manufac-
turing wage in the county. The error term, u1, contains other factors that affect labor
supply. [Many of these factors are observed and could be included in equation (16.1);
to illustrate the basic concepts, we include only one such factor, z1.] Equation (16.1) is
an example of a structural equation. This name comes from the fact that the labor sup-
ply function is derivable from economic theory and has a causal interpretation. The
coefficient �1 measures how labor supply changes when the wage changes; if hs and w
are in logarithmic form, �1 is the labor supply elasticity. Typically, we expect �1 to be
positive (although economic theory does not rule out �1 � 0). Labor supply elasticities
are important for determining how workers will change the number of hours they desire
to work when tax rates on wage income change. If z1 is manufacturing wage, we expect
�1 � 0: other factors equal, if the manufacturing wage increases, more workers will go
into manufacturing than into agriculture.

When we graph labor supply, we sketch hours as a function of wage, with z1 and u1

held fixed. A change in z1 shifts the labor supply function, as does a shift in u1. The dif-
ference is that z1 is observed while u1 is not. Sometimes, z1 is called an observed sup-
ply shifter, and u1 is called an unobserved supply shifter.

How does equation (16.1) differ from those we have studied previously? The dif-
ference is subtle. While equation (16.1) is supposed to hold for all possible values of
wage, we cannot generally view wage as varying exogenously for a cross section of
counties. If we could run an experiment where we vary the level of agricultural and
manufacturing wages across a sample of counties and survey workers to obtain the
labor supply hs, then we could estimate (16.1) by OLS. Unfortunately, this is not a man-
ageable experiment. Instead, we must collect data on average wages in these two sec-
tors along with how many person hours were spent in agricultural production. In
deciding how to analyze these data, we must understand that they are best described by
the interaction of labor supply and demand. Under the assumption that labor markets
clear, we actually observe equilibrium values of wages and hours worked.

To describe how equilibrium wages and hours are determined, we need to bring in
the demand for labor, which we suppose is given by

hd � �2w � �2z2 � u2, (16.2)

where hd is hours demanded. As with the supply function, we graph hours demanded as
a function of wage, w, keeping z2 and u2 fixed. The variable z2 —say, agricultural land
area—is an observable demand shifter, while u2 is an unobservable demand shifter.
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Just as with the labor supply equation, the labor demand equation is a structural
equation: it can be obtained from the profit maximization considerations of farmers. If
hd and w are in logarithmic form, �2 is the labor demand elasticity. Economic theory
tells us that �2 � 0. Because labor and land are complements in production, we expect
�2 � 0.

Notice how equations (16.1) and (16.2) describe entirely different relationships.
Labor supply is a behavioral equation for workers, and labor demand is a behavioral
relationship for farmers. Each equation has a ceteris paribus interpretation and stands
on its own. They become linked in an econometric analysis only because observed
wage and hours are determined by the intersection of supply and demand. In other
words, for each county i, observed hours hi and observed wage wi are determined by
the equilibrium condition

his � hid. (16.3)

Because we observe only equilibrium hours for each county i, we denote observed
hours by hi.

When we combine the equilibrium condition in (16.3) with the labor supply and
demand equations, we get

hi � �1wi � �1zi1 � ui1 (16.4)

and

hi � �2wi � �2zi2 � ui2, (16.5)

where we explicitly include the i subscript to emphasize that hi and wi are the equilib-
rium observed values for each county. These two equations constitute a simultaneous
equations model (SEM), which has several important features. First, given zi1, zi2, ui1,
and ui2, these two equations determine hi and wi. (Actually, we must assume that �1 �
�2, which means that the slopes of the supply and demand functions differ; see Problem
16.1.) For this reason, hi and wi are the endogenous variables in this SEM. What about
zi1 and zi2? Because they are determined outside of the model, we view them as exoge-
nous variables. From a statistical standpoint, the key assumption concerning zi1 and zi2

is that they are both uncorrelated with the supply and demand errors, ui1 and ui2, respec-
tively. These are examples of structural errors because they appear in the structural
equations.

A second important point is that, without including z1 and z2 in the model, there is
no way to tell which equation is the supply function and which is the demand function.
When z1 represents manufacturing wage, economic reasoning tells us that it is a factor
in agricultural labor supply because it is a measure of the opportunity cost of working
in agriculture; when z2 stands for agricultural land area, production theory implies that
it appears in the labor demand function. Therefore, we know that (16.4) represents labor
supply and (16.5) represents labor demand. If z1 and z2 are the same—for example,
average education level of adults in the county, which can affect both supply and
demand—then the equations look identical, and there is no hope of estimating either
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one. In a nutshell, this illustrates the identification problem in simultaneous equations
models, which we will discuss more generally in Section 16.3.

The most convincing examples of SEMs have the same flavor as supply and
demand examples. Each equation should have a behavioral, ceteris paribus interpreta-
tion on its own. Because we only observe equilibrium outcomes, specifying an SEM
requires us to ask such counterfactual questions as: How much labor would workers
provide if the wage were different from its equilibrium value? Example 16.1 demon-
strates this feature.

E X A M P L E  1 6 . 1
( M u r d e r  R a t e s  a n d  S i z e  o f  t h e  P o l i c e  F o r c e )

Cities often want to determine how much additional law enforcement will decrease their
murder rates. A simple cross-sectional model to address this question is

murdpc � �1polpc � �10 � �11incpc � u1, (16.6)

where murdpc is murders per capita, polpc is number of police officers per capita, and incpc
is income per capita. (Henceforth, we do not include an i subscript.) We take income per
capita as exogenous in this equation. In practice, we would include other factors, such as
age and gender distributions, education levels, perhaps geographic variables, and variables
that measure severity of punishment. To fix ideas, we consider equation (16.6).

The question we hope to answer is: If a city exogenously increases its police force,
will that increase, on average, lower the murder rate? If we could exogenously choose
police force sizes for a random sample of cities, we could estimate (16.6) by OLS.
Certainly we cannot run such an experiment. But can we think of police force size as
being exogenously determined, anyway? Probably not. A city’s spending on law enforce-
ment is at least partly determined by its expected murder rate. To reflect this, we postu-
late a second relationship:

polpc � �2murdpc � �20 � other factors. (16.7)

We expect that �2 � 0: other factors being equal, cities with higher (expected) murder rates
will have more police officers per capita. Once we specify the other factors in (16.7), we
have a two-equation simultaneous equations model. We are really only interested in equa-
tion (16.6), but, as we will see in Section 16.3, we need to know precisely how the second
equation is specified in order to estimate the first.

Finally, notice that (16.7) describes behavior by city officials, while (16.6) describes the
actions of potential murderers. This gives each equation a clear ceteris paribus interpreta-
tion, which makes equations (16.6) and (16.7) an appropriate simultaneous equations
model.

We next give an example of an inappropriate use of SEMs.
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E X A M P L E  1 6 . 2
( H o u s i n g  E x p e n d i t u r e s  a n d  S a v i n g )

Suppose that, for a random household in the population, we assume that annual housing
expenditures and saving are jointly determined by

housing � �1saving � �10 � �11inc � �12educ � �13age � u1 (16.8)

and

saving � �2housing � �20 � �21inc � �22educ � �23age � u2, (16.9)

where inc is annual income and educ and age are measured in years. Initially, it may seem
that these equations are a sensible way to view how housing and saving expenditures are
determined. But we have to ask: What value would one of these equations be without the
other? Neither has a precise ceteris paribus interpretation because housing and saving are
chosen by the same household. It makes no sense to ask the following question: If saving
were exogeneously changed, how would that affect housing? Any model based on eco-
nomic principles, particularly utility maximization, would have households optimally choos-
ing housing and saving as functions of inc and the relative prices of housing and saving.
The variables educ and age would affect preferences for consumption, saving, and risk.
Therefore, housing and saving would each be functions of income, education, age, and
other variables that affect the utility maximization problem (such as different rates of return
on housing and other saving).

Even if we decided that the SEM in (16.8) and (16.9) made sense, there is no way to
estimate the parameters. (We discuss this problem more generally in Section 16.3.) The two
equations are indistinguishable, unless we assume that income, education, or age appears
in one equation but not the other, which would make no sense.

Though this makes a poor SEM example, we might be interested in testing whether,
other factors being fixed, there is a tradeoff between housing expenditures and saving. But
then we would just estimate, say, (16.8) by OLS, unless there is an omitted variable or mea-
surement error problem.

Example 16.2 has the characteristics of too many SEM applications. The key fea-
ture is that both equations represent the behavior of the same economic agent, and

so neither equation can stand on its own.
By contrast, supply and demand examples
and Example 16.1 have natural ceteris pari-
bus interpretations. Basic economic rea-
soning, supported in some cases by simple
models, can help us use SEMs intelligently
(and know when not to use an SEM).
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Pindyck and Rubinfeld (1992, Section 11.6) describe a model of
advertising where monopolistic firms choose profit maximizing lev-
els of price and advertising expenditures. Does this mean we should
use an SEM to model these variables at the firm level?



16.2 SIMULTANEITY BIAS IN OLS

It is useful to see, in a simple model, that an explanatory variable that is determined
simultaneously with the dependent variable is generally correlated with the error term,
which leads to bias and inconsistency in OLS. We consider the two-equation structural
model

y1 � �1y2 � �1z1 � u1 (16.10)

y2 � �2y1 � �2z2 � u2 (16.11)

and focus on estimating the first equation. The variables z1 and z2 are exogenous, so that
each is uncorrelated with u1 and u2. For simplicity, we suppress the intercept in each
equation.

To show that y2 is generally correlated with u1, we solve the two equations for y2 in
terms of the exogenous variables and the error term. If we plug the right-hand side of
(16.10) in for y1 in (16.11), we get

y2 � �2(�1y2 � �1z1 � u1) � �2z2 � u2

or

(1 	 �2�1)y2 � �2�1z1 � �2z2 � �2u1 � u2. (16.12)

Now, we must make an assumption about the parameters in order to solve for y2:

�2�1 � 1. (16.13)

Whether this assumption is restrictive depends on the application. In Example 16.1, we
think that �1 � 0 and �2 
 0, which implies �1�2 � 0; therefore, (16.13) is very rea-
sonable for Example 16.1.

Provided condition (16.13) holds, we can divide (16.12) by (1 	 �2�1) and write
y2 as

y2 � �21z1 � �22z2 � v2, (16.14)

where �21 � �2�1/(1 	 �2�1), �22 � �2/(1 	 �2�1), and v2 � (�2u1 � u2)/(1 	 �2�1).
Equation (16.14), which expresses y2 in terms of the exogenous variables and the error
terms, is the reduced form for y2, a concept we introduced in Chapter 15 in the context
of instrumental variables estimation. The parameters �21 and �22 are called reduced
form parameters; notice how they are nonlinear functions of the structural parame-
ters, which appear in the structural equations, (16.10) and (16.11).

The reduced form error, v2, is a linear function of the structural error terms, u1 and
u2. Because u1 and u2 are each uncorrelated with z1 and z2, v2 is also uncorrelated with
z1 and z2. Therefore, we can consistently estimate �21 and �22 by OLS, something that
is used for two stage least squares estimation (which we return to in the next section).
In addition, the reduced form parameters are sometimes of direct interest, although we
are focusing here on estimating equation (16.10).
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A reduced form also exists for y1 under assumption (16.13); the algebra is similar
to that used to obtain (16.14). It has the same properties as the reduced form equation
for y2.

We can use equation (16.14) to show that, except under special assumptions, OLS
estimation of equation (16.10) will produce biased and inconsistent estimators of �1

and �1 in equation (16.10). Because z1 and u1 are uncorrelated by assumption, the issue
is whether y2 and u1 are uncorrelated. From the reduced form in (16.14), we see that y2

and u1 are correlated if and only if v2 and u1 are correlated (because z1 and z2 are
assumed exogenous). But v2 is a linear function of u1 and u2, so it is generally corre-
lated with u1. In fact, if we assume that u1 and u2 are uncorrelated, then v2 and u1 must
be correlated whenever �2 � 0. Even if �2 equals zero—which means that y1 does not
appear in equation (16.11)—v2 and u1 will be correlated if u1 and u2 are correlated.

When �2 � 0 and u1 and u2 are uncorrelated, y2 and u1 are also uncorrelated. These
are fairly strong requirements: if �2 � 0, y2 is not simultaneously determined with y1.
If we add zero correlation between u1 and u2, this rules out omitted variables or mea-
surement error in u1 that are correlated with y2. We should not be surprised that OLS
estimation of equation (16.10) works in this case.

When y2 is correlated with u1 because of simultaneity, we say that OLS suffers from
simultaneity bias. Obtaining the direction of the bias in the coefficients is generally
complicated, as we saw with omitted variables bias in Chapters 3 and 5. But in simple
models, we can determine the direction of the bias. For example, suppose that we sim-
plify equation (16.10) by dropping z1 from the equation, and we assume that u1 and u2

are uncorrelated. Then, the covariance between y2 and u1 is

Cov(y2,u1) � Cov(y2,v2) � [�2/(1 	 �2�1)]E(u1
2)

� [�2/(1 	 �2�1)]�1
2,

where �1
2 � Var(u1) � 0. Therefore, the asymptotic bias (or inconsistency) in the OLS

estimator of �1 has the same sign as �2/(1 	 �2�1). If �2 � 0 and �2�1 � 1, the asymp-
totic bias is positive. [Unfortunately, just as in our calculation of omitted variables bias
from Section 3.3, the conclusions do not carry over to more general models. But they
do serve as a useful guide.] For example, in Example 16.1, we think �2 � 0 and �2�1

� 0, which means that the OLS estimator of �1 would have a positive bias. If �1 � 0,
OLS would, on average, estimate a positive impact of more police on the murder rate;
generally, the estimator of �1 is attenuated toward zero. If we apply OLS to equation
(16.6), we are likely to underestimate the effectiveness of a larger police force.

16.3 IDENTIFYING AND ESTIMATING A
STRUCTURAL EQUATION

As we saw in the previous section, OLS is biased and inconsistent when applied to a
structural equation in a simultaneous equations system. In Chapter 15, we learned that
the method of two stage least squares can be used to solve the problem of endogenous
explanatory variables. We now show how 2SLS can be applied to SEMs.

The mechanics of 2SLS are similar to those in Chapter 15. The difference is that,
because we specify a structural equation for each endogenous variable, we can imme-
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diately see whether sufficient IVs are available to estimate either equation. We begin by
discussing the identification problem.

Identification in a Two-Equation System

We mentioned the notion of identification in Chapter 15. When we estimate a model by
OLS, the key identification condition is that each explanatory variable is uncorrelated
with the error term. As we demonstrated in Section 16.2, this major condition no longer
holds, in general, for SEMs. However, if we have some instrumental variables, we can
still identify (or consistently estimate) the parameters in an SEM equation, just as with
omitted variables or measurement error.

Before we consider a general two-equation SEM, it is useful to gain intuition by
considering a simple supply and demand example. Write the system in equilibrium
form (that is, with qs � qd � q imposed) as

q � �1p � �1z1 � u1 (16.15)

or

q � �2 p � u2. (16.16)

For concreteness, let q be per capita milk consumption at the county level, let p be the
average price per gallon of milk in the county, and let z1 be the price of cattle feed,
which we assume is exogenous to the supply and demand equations for milk. This
means that (16.15) must be the supply function, as the price of cattle feed would shift
supply (�1 � 0) but not demand. The demand function contains no observed demand
shifters.

Given a random sample on (q,p,z1), which of these equations can be estimated?
That is, which is an identified equation? It turns out that the demand equation, (16.16),
is identified, but the supply equation is not. This is easy to see by using our rules for IV
estimation from Chapter 15: we can use z1 as an IV for price in equation (16.16).
However, because z1 appears in equation (16.15), we have no IV for price in the supply
equation.

Intuitively, the fact that the demand equation is identified follows because we have
an observed variable, z1, that shifts the supply equation while not affecting the demand
equation. Given variation in z1 and no errors, we can trace out the demand curve, as
shown in Figure 16.1. The presence of the unobserved demand shifter u2 causes us to
estimate the demand equation with error, but the estimators will be consistent, provided
z1 is uncorrelated with u2.

The supply equation cannot be traced out because there are no exogenous
observed factors shifting the demand curve. It does not help that there are unobserved
factors shifting the demand function; we need something observed. If, as in the labor
demand function (16.2), we have an observed exogenous demand shifter—such as
income in the milk demand function—then the supply function would also be identi-
fied.
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To summarize: In the system of (16.15) and (16.16), it is the presence of an
exogenous variable in the supply equation that allows us to estimate the demand
equation.

Extending the identification discussion to a general two-equation model is not dif-
ficult. Write the two equations as

y1 � �10 � �1y2 � z1�1 � u1 (16.17)

and

y2 � �20 � �2y1 � z2�2 � u2, (16.18)

where y1 and y2 are the endogenous variables, and u1 and u2 are the error terms. The
intercept in the first equation is �10, and the intercept in the second equation is �20. The
variable z1 denotes a set of k1 exogenous variables appearing in the first equation: z1 �
(z11,z12, …, z1k1

). Similarly, z2 is the set of k2 exogenous variables in the second equa-
tion: z2 � (z21,z22, …, z2k2

). In many cases, z1 and z2 will overlap. As a shorthand form,
we use the notation
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Shifting supply equations trace out the demand equation. Each supply equation is drawn for a
different value of the exogenous variable, z1.

price

quantity

demand
equation

supply
equations



z1�1 � �11z11 � �12z12 � … � �1k1
z1k1

or

z2�2 � �21z21 � �22z22 � … � �2k2
z2k2

;

that is, z1�1 stands for all exogenous variables in the first equation, with each multiplied
by a coefficient, and similarly for z2�2. (Some authors use the notation z
1�1 and z
2�2

instead. If you have an interest in the matrix algebra approach to econometrics, see
Appendix E.)

The fact that z1 and z2 generally contain different exogenous variables means that
we have imposed exclusion restrictions on the model. In other words, we assume that
certain exogenous variables do not appear in the first equation and others are absent
from the second equation. As we saw with the previous supply and demand examples,
this allows us to distinguish between the two structural equations.

When can we solve equations (16.17) and (16.18) for y1 and y2 (as linear functions
of all exogenous variables and the structural errors, u1 and u2)? The condition is the
same as that in (16.13), namely, �2�1 � 1. The proof is virtually identical to the simple
model in Section 16.2. Under this assumption, reduced forms exist for y1 and y2.

The key question is: Under what assumptions can we estimate the parameters in,
say, (16.17)? This is the identification issue. The rank condition for identification of
equation (16.17) is easy to state.

RANK CONDITION FOR IDENTIFICATION OF A STRUCTURAL EQUATION
The first equation in a two-equation simultaneous equations model is identified if and
only if the second equation contains at least one exogenous variable (with a nonzero
coefficient) that is excluded from the first equation.

This is the necessary and sufficient condition for equation (16.17) to be identified. The
order condition, which we discussed in Chapter 15, is necessary for the rank condi-
tion. The order condition for identifying the first equation states that at least one exoge-
nous variable is excluded from this equation. The order condition is trivial to check
once both equations have been specified. The rank condition requires more: at least one
of the exogenous variables excluded from the first equation must have a nonzero pop-
ulation coefficient in the second equation. This ensures that at least one of the exoge-
nous variables omitted from the first equation actually appears in the reduced form of
y2, so that we can use these variables as instruments for y2. We can test this using a t or
an F test, as in Chapter 15; some examples follow.

Identification of the second equation is, naturally, just the mirror image of the state-
ment for the first equation. Also, if we write the equations as in the labor supply and
demand example in Section 16.1—so that y1 appears on the left-hand side in both equa-
tions, with y2 on the right-hand side—the identification condition is identical.

E X A M P L E  1 6 . 3
( L a b o r  S u p p l y  o f  M a r r i e d ,  W o r k i n g  W o m e n )

To illustrate the identification issue, consider labor supply for married women already in the
work force. In place of the demand function, we write the wage offer as a function of hours

Part 3 Advanced Topics

510



and the usual productivity variables. With the equilibrium condition imposed, the two struc-
tural equations are

hours � �1log(wage) � �10 � �11educ � �12age � �13kidslt6

� �14nwifeinc � u1

(16.19)

and

log(wage) � �2hours � �20 � �21educ � �22exper �

�23exper2 � u2.
(16.20)

The variable age is the woman’s age, in years, kidslt6 is the number of children less than six
years old, nwifeinc is the woman’s nonwage income (which includes husband’s earnings),
and educ and exper are years of education and prior experience, respectively. All variables
except hours and log(wage) are assumed to be exogenous. (This is a tenuous assumption,
as educ might be correlated with omitted ability in either equation. But for illustration pur-
poses, we ignore the omitted ability problem.) The functional form in this system—where
hours appears in level form but wage is in logarithmic form—is popular in labor econom-
ics. We can write this system as in equations (16.17) and (16.18) by defining y1 � hours
and y2 � log(wage).

The first equation is the supply function. It satisfies the order condition because two
exogenous variables, exper and exper2, are omitted from the labor supply equation. These
exclusion restrictions are crucial assumptions: we are assuming that, once wage, education,
age, number of small children, and other income are controlled for, past experience has no
effect on current labor supply. One could certainly question this assumption, but we use it
for illustration.

Given equations (16.19) and (16.20), the rank condition for identifying the first equation
is that at least one of exper and exper2 has a nonzero coefficient in equation (16.20). If �22 �

0 and �23 � 0, there are no exogenous variables appearing in the second equation that do
not also appear in the first (educ appears in both). We can state the rank condition for iden-
tification of (16.19) equivalently in terms of the reduced form for log(wage), which is

log(wage) � �20 � �21educ � �22age � �23kidslt6

� �24nwifeinc � �25exper � �26exper2 � v2.
(16.21)

For identification, we need �25 � 0 or �26 � 0, something we can test using a standard F
statistic, as we discussed in Chapter 15.

The wage offer equation, (16.20), is identified if at least one of age, kidslt6, or nwifeinc
has a nonzero coefficient in (16.19). This is identical to assuming that the reduced form for
hours—which has the same form as the right-hand side of (16.21)—depends on at least
one of age, kidslt6, or nwifeinc. In specifying the wage offer equation, we are assuming
that age, kidslt6, and nwifeinc have no effect on the offered wage, once hours, education,
and experience are accounted for. These would be poor assumptions if these variables
somehow have direct effects on productivity, or if women are discriminated against based
on their age or number of small children.
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In Example 16.3, we take the population of interest to be married women who are in
the work force (so that equilibrium hours are positive). This excludes the group of mar-
ried women who choose not to work outside the home. Including such women in the
model raises some difficult problems. For instance, if a woman does not work, we can-
not observe her wage offer. We touch on these issues in Chapter 17; but for now, we must
think of equations (16.19) and (16.20) as holding only for women who have hours � 0.

E X A M P L E  1 6 . 4
( I n f l a t i o n  a n d  O p e n n e s s )

Romer (1993) proposes theoretical models of inflation which imply that more “open” coun-
tries should have lower inflation rates. His empirical analysis explains average annual infla-
tion rates (since 1973) in terms of the average share of imports in gross domestic (or
national) product since 1973—which is his measure of openness. In addition to estimating
the key equation by OLS, he uses instrumental variables. While Romer does not specify both
equations in a simultaneous system, he has in mind a two-equation system:

inf � �10 � �1open � �11log( pcinc) � u1 (16.22)

open � �20 � �2inf � �21log( pcinc) � �22log(land ) � u2, (16.23)

where pcinc is 1980 per capita income, in U.S. dollars (assumed to be exogenous), and land
is the land area of the country, in square miles (also assumed to be exogenous). Equation
(16.22) is the one of interest, with the hypothesis that �1 � 0. (More open economies have
lower inflation rates.) The second equation reflects the fact that the degree of openness might
depend on the average inflation rate, as well as other factors. The variable log(pcinc) appears

in both equations, but log(land ) is assumed to
appear only in the second equation. The idea
is that, ceteris paribus, a smaller country is
likely to be more open (so �22 � 0).

Using the identification rule that was
stated earlier, equation (16.22) is identified,

provided �22 � 0. Equation (16.23) is not identified because it contains both exogenous
variables. But we are interested in (16.22).

Estimation by 2SLS

Once we have determined that an equation is identified, we can estimate it by two stage
least squares. The instrumental variables consist of the exogenous variables appearing
in either equation.

E X A M P L E  1 6 . 5
( L a b o r  S u p p l y  o f  M a r r i e d ,  W o r k i n g  W o m e n )

We use the data on working, married women in MROZ.RAW to estimate the labor supply
equation (16.19) by 2SLS. The full set of instruments includes educ, age, kidslt6, nwifeinc,
exper, and exper2. The estimated labor supply curve is
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hoûrs �(2,225.66)�(1,639.56)log(wage) 	(183.75)educ
hoûrs �2,(574.56)�1,(470.58)log(wage) 	1(59.10)educ

	(7.81)age 	(198.15)kidslt6, 	10.17)nwifeinc n � 428,
	(9.38)age 	(182.93) (6.61)

(16.24)

which shows that the labor supply curve slopes upward. The estimated coefficient on
log(wage) has the following interpretation: holding other factors fixed, �hoûrs �
16.4(%�wage). We can calculate labor supply elasticities by multiplying both sides of this
last equation by 100/hours:

100�(�hoûrs/hours) � (1,640/hours)(%�wage)
or

%�hoûrs � (1,640/hours)(%�wage),

which implies that the labor supply elasticity (with respect to wage) is simply 1,640/hours.
[The elasticity is not constant in this model because hours, not log(hours), is the dependent
variable in (16.24).] At the average hours worked, 1,303, the estimated elasticity is
1,640/1,303 � 1.26, which implies a greater than 1% increase in hours worked given a
1% increase in wage. This is a large estimated elasticity. At higher hours, the elasticity will
be smaller; at lower hours, such as hours � 800, the elasticity is over two.

For comparison, when (16.19) is estimated by OLS, the coefficient on log(wage) is
	2.05 (se � 54.88), which implies no labor supply effect on hours worked. To confirm that
log(wage) is in fact endogenous in (16.19), we can carry out the test from Section 15.5.
When we add the reduced form residuals v̂2 to the equation and estimate by OLS, the t sta-
tistic on v̂2 is 	6.61, which is very significant, and so log(wage) appears to be endogenous.

The wage offer equation (16.20) can also be estimated by 2SLS. The result is

(log(wâge) � 	.656)�(.00013)hours �(.110)educ
log(wâge) � 	(.338)�(.00025)hours �(.016)educ

�(.035)exper 	(.00071)exper2, n � 428.
�(.019)exper 	(.00045)exper2, n � 428.

(16.25)

This differs from previous wage equations in that hours is included as an explanatory vari-
able and 2SLS is used to account for endogeneity of hours (and we assume educ and
exper are exogenous). The coefficient on hours is statistically insignificant, which means
that there is no evidence that the wage offer increases with hours worked. The other
coefficients are similar to what we get by dropping hours and estimating the equation by
OLS.

Estimating the effect of openness on inflation by instrumental variables is also
straightforward.
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E X A M P L E  1 6 . 6
( I n f l a t i o n  a n d  O p e n n e s s )

Before we estimate (16.22) using the data in OPENNESS.RAW, we check to see whether
open has sufficient partial correlation with the proposed IV, log(land ). The reduced form
regression is

op̂en �(117.08)�0(.546)log( pcinc) 	(7.57)log(land )
op̂en �1(15.85)�(1.493)log( pcinc) 	(0.81)log(land)

n � 114, R2 � .449.

The t statistic on log(land ) is over nine in absolute value, which verifies Romer’s assertion
that smaller countries are more open. The fact that log(pcinc) is so insignificant in this
regression is irrelevant.

Estimating (16.22) using log(land ) as an IV for open gives

in̂f �(26.90)	(.337)open �0(.376)log(pcinc), n � 114.
in̂f �(15.40)	(.144)open �(2.015)log(pcinc), n � 114.

(16.26)

The coefficient on open is statistically signifi-
cant at about the 1% level against a one-
sided alternative (�1 � 0). The effect is
economically important as well: for every
percentage point increase in the import

share of GDP, annual inflation is about one-third of a percentage point lower. For compar-
ison, the OLS estimate is 	.215 (se � .095).

16.4 SYSTEMS WITH MORE THAN TWO EQUATIONS

Simultaneous equations models can consist of more than two equations. Studying gen-
eral identification of these models is difficult and requires matrix algebra. Once an
equation in a general system has been shown to be identified, it can be estimated by
2SLS.

Identification in Systems with Three or More Equations

We will use a three-equation system to illustrate the issues that arise in the identifica-
tion of complicated SEMs. With intercepts suppressed, write the model as

y1 � �12y2 � �13y3 � �11z1 � u1 (16.27)

y2 � �21y1 � �21z1 � �22z2 � �23z3 � u2 (16.28)

y3 � �32y2 � �31z1 � �32z2 � �33z3 � �34z4 � u3, (16.29)

where the yg are the endogenous variables, and the zj are exogenous. The first subscript
on the parameters indicates the equation number, while the second indicates the vari-
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able number; we use � for parameters on endogenous variables and � for parameters
on exogenous variables.

Which of these equations can be estimated? Showing that an equation in an SEM
with more than two equations is identified is generally difficult, but it is easy to see
when certain equations are not identified. In system (16.27) through (16.29), we can
easily see that (16.29) falls into this category. Because every exogenous variable
appears in this equation, we have no IVs for y2. Therefore, we cannot consistently esti-
mate the parameters of this equation. For the reasons we discussed in Section 16.2, OLS
estimation will not usually be consistent.

What about equation (16.27)? Things look promising because z2, z3, and z4 are all
excluded from the equation—this is another example of exclusion restrictions. While
there are two endogenous variables in this equation, we have three potential IVs for y2

and y3. Therefore, equation (16.27) passes the order condition. For completeness, we
state the order condition for general SEMs.

ORDER CONDITION FOR IDENTIFICATION
An equation in any SEM satisfies the order condition for identification if the number of
excluded exogenous variables from the equation is at least as large as the number of
right-hand side endogenous variables.

The second equation, (16.28), also passes the order condition because there is one
excluded exogenous variable, z4, and one right-hand side endogenous variable, y1.

As we discussed in Chapter 15 and in the previous section, the order condition is
only necessary, not sufficient, for identification. For example, if �34 � 0, z4 appears
nowhere in the system, which means it is not correlated with y1, y2, or y3. If �34 � 0,
then the second equation is not identified, because z4 is useless as an IV for y1. This
again illustrates that identification of an equation depends on the values of the parame-
ters (which we can never know for sure) in the other equations.

There are many subtle ways that identification can fail in complicated SEMs. To
obtain sufficient conditions, we need to extend the rank condition for identification in
two-equation systems. This is possible, but it requires matrix algebra [see, for example,
Wooldridge (1999, Chapter 9)]. In many applications, one assumes that, unless there is
obviously failure of identification, an equation that satisfies the order condition is iden-
tified.

The nomenclature on overidentified and just identified equations from Chapter 15
originated with SEMs. In terms of the order condition, (16.27) is an overidentified
equation because we need only two IVs (for y2 and y3) but we have three available (z2,
z3, and z4); there is one overidentifying restriction in this equation. In general, the num-
ber of overidentifying restrictions equals the total number of exogenous variables in the
system, minus the total number of explanatory variables in the equation. These can be
tested using the overidentification test from Section 15.5. Equation (16.28) is a just
identified equation, and the third equation is an unidentified equation.

Estimation

Regardless of the number of equations in an SEM, each identified equation can be esti-
mated by 2SLS. The instruments for a particular equation consist of the exogenous vari-
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ables appearing anywhere in the system. Tests for endogeneity, heteroskedasticity, ser-
ial correlation, and overidentifying restrictions can be obtained, just as in Chapter 15.

It turns out that, when any system with two or more equations is correctly specified
and certain additional assumptions hold, system estimation methods are generally more
efficient than estimating each equation by 2SLS. The most common system estimation
method in the context of SEMs is three stage least squares. These methods, with or
without endogenous explanatory variables, are beyond the scope of this text. [See, for
example, Wooldridge (1999, Chapters 7 and 8).]

16.5 SIMULTANEOUS EQUATIONS MODELS 
WITH TIME SERIES

Among the earliest applications of SEMs was estimation of large systems of simulta-
neous equations which were used to describe a country’s economy. A simple Keynesian
model of aggregate demand (that ignores exports and imports) is

Ct � �0 � �1(Yt 	 Tt) � �2rt � ut1 (16.30)

It � �0 � �1rt � ut2 (16.31)

Yt � Ct � It � Gt, (16.32)

where Ct is consumption, Yt is income, Tt is tax receipts, rt is the interest rate, It is
investment, and Gt is government spending. [See, for example, Mankiw (1994, Chapter
9).] For concreteness, assume t represents year.

The first equation is an aggregate consumption function, where consumption
depends on disposable income, the interest rate, and the unobserved structural error ut1.
The second equation is a very simple investment function. Equation (16.32) is an iden-
tity that is a result of national income accounting: it holds by definition, without error.
Thus, there is no sense in which we estimate (16.32); but we need this equation to round
out the model.

Because there are three equations in the system, there must also be three endoge-
nous variables. Given the first two equations, it is clear that we intend for Ct and It to
be endogenous. In addition, because of the accounting identity, Yt is endogenous. We
would assume, at least in this model, that Tt, rt, and Gt are exogenous, so that they are
uncorrelated with ut1 and ut2. (We will discuss problems with this kind of assumption
later.)

If rt is exogenous, then OLS estimation of equation (16.31) is natural. The con-
sumption function, however, depends on disposable income, which is endogenous
because Yt is. We have two instruments available under the maintained exogeneity
assumptions: Tt and Gt. Therefore, if we follow our prescription for estimating cross-
sectional equations, we would estimate (16.30) by 2SLS using instruments (Tt,Gt,rt).

Models such as (16.30) through (16.32) are seldom estimated now, for several good
reasons. First, it is very difficult to justify, at an aggregate level, the assumption that
taxes, interest rates, and government spending are exogenous. Taxes clearly depend
directly on income; for example, with a single marginal income tax rate �t in year t,
Tt � �tYt. We can easily allow this by replacing (Yt 	 Tt) with (1 	 �t)Yt in (16.30), and
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we can still estimate the equation by 2SLS if we assume that government spending is
exogenous. We could also add the tax rate to the instrument list, if it is exogenous. But
are government spending and tax rates really exogenous? They certainly could be in
principle, if the government sets spending and tax rates independently of what is hap-
pening in the economy. But it is a difficult case to make in reality: government spend-
ing generally depends on the level of income, and at high levels of income, the same
tax receipts are collected for lower marginal tax rates. In addition, assuming that inter-
est rates are exogenous is extremely questionable. We could specify a more realistic
model that includes money demand and supply, and then interest rates could be jointly
determined with Ct, It, and Yt. But then finding enough exogenous variables to identify
the equations becomes quite difficult (and the following problems with these models
still pertain).

Some have argued that certain components of government spending, such as
defense spending—see, for example, Hall (1988) and Ramey (1991)—are exogenous in
a variety of simultaneous equations applications. But this is not universally agreed
upon, and in any case, defense spending is not always appropriately correlated with the
endogenous explanatory variables [see Shea (1993) for discussion and Problem 16.14
for an example].

A second problem with a model such as (16.30) through (16.32) is that it is com-
pletely static. Especially with monthly or quarterly data, but even with annual data, we
often expect adjustment lags. (One argument in favor of static Keynesian-type models
is that they are intended to describe the long run without worrying about short-run
dynamics.) Allowing dynamics is not very difficult. For example, we could add lagged
income to equation (16.31):

It � �0 � �1rt � �2Yt	1 � ut2. (16.33)

In other words, we add a lagged endogenous variable (but not It	1) to the investment
equation. Can we treat Yt	1 as exogenous in this equation? Under certain assumptions
on ut2, the answer is yes. But we typically call a lagged endogenous variable in an SEM
a predetermined variable. Lags of exogenous variables are also predetermined. If we
assume that ut2 is uncorrelated with current exogenous variables (which is standard) and
all past endogenous and exogenous variables, then Yt	1 is uncorrelated with ut2. Given
exogeneity of rt, we can estimate (16.33) by OLS.

If we add lagged consumption to (16.30), we can treat Ct	1 as exogenous in this
equation under the same assumptions on ut1 that we made for ut2 in the previous para-
graph. Current disposable income is still endogenous in

Ct � �0 � �1(Yt 	 Tt) � �2rt � �3Ct	1 � ut1, (16.34)

so we could estimate this equation by 2SLS using instruments (Tt,Gt,rt,Ct	1); if invest-
ment is determined by (16.33), Yt	1 should be added to the instrument list. [To see why,
use (16.32), (16.33), and (16.34) to find the reduced form for Yt in terms of the exoge-
nous and predetermined variables: Tt, rt, Gt, Ct	1, and Yt	1. Because Yt	1 shows up in
this reduced form, it should be used as an IV.]
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The presence of dynamics in aggregate SEMs is, at least for the purposes of fore-
casting, a clear improvement over static SEMs. But there are still some important prob-
lems with estimating SEMs using aggregate time series data, some of which we
discussed in Chapters 11 and 15. Recall that the validity of the usual OLS or 2SLS
inference procedures in time series applications hinges on the notion of weak depen-
dence. Unfortunately, series such as aggregrate consumption, income, investment, and
even interest rates seem to violate the weak dependence requirements. (In the termi-
nology of Chapter 11, they have unit roots.) These series also tend to have exponential
trends, although this can be partly overcome by using the logarithmic transformation
and assuming different functional forms. Generally, even the large sample, let alone the
small sample, properties of OLS and 2SLS are complicated and dependent on various
assumptions when they are applied to equations with I(1) variables. We will briefly
touch on these issues in Chapter 18. An advanced, general treatment is given by
Hamilton (1994).

Does the previous discussion mean that SEMs are not usefully applied to time series
data? Not at all. The problems with trends and high persistence can be avoided by spec-
ifying systems in first differences or growth rates. But one should recognize that this is
a different SEM than one specified in levels. [For example, if we specify consumption
growth as a function of disposable income growth and interest rate changes, this is dif-
ferent from (16.30).] Also, as we discussed earlier, incorporating dynamics is not espe-
cially difficult. Finally, the problem of finding truly exogenous variables to include in
SEMs is often easier with disaggregated data. For example, for manufacturing indus-
tries, Shea (1993) describes how output (or, more precisely, growth in output) in other
industries can be used as an instrument in estimating supply functions. Ramey (1991)
also contains a convincing analysis of estimating industry cost functions by instrumen-
tal variables using time series data.

The next example shows how aggregate data can be used to test an important eco-
nomic theory, the permanent income theory of consumption, usually called the perma-
nent income hypothesis (PIH). The approach used in this example is not, strictly
speaking, based on a simultaneous equations model, but we can think of consumption
and income growth (as well as interest rates) as being jointly determined.

E X A M P L E  1 6 . 7
( T e s t i n g  t h e  P e r m a n e n t  I n c o m e  H y p o t h e s i s )

Campbell and Mankiw (1990) used instrumental variables methods to test various versions
of the permanent income hypothesis. We will use the annual data from 1959 through 1995
in CONSUMP.RAW to mimic one of their analyses. Campbell and Mankiw used quarterly
data running through 1985.

One equation estimated by Campbell and Mankiw (using our notation) is

gct � �0 � �1gyt � �2r3t � ut, (16.35)

where gct � �log(ct) is annual growth in real per capita consumption (excluding durables),
gyt is growth in real disposable income, and r3t is the (ex post) real interest rate as mea-
sured by the return on three-month, T-bill rates: r3t � i3t 	 inft, where the inflation rate is
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based on the consumer price index. The growth rates of consumption and disposable
income are not trending, and they are weakly dependent; we will assume this is the case
for r3t as well, so that we can apply standard asymptotic theory.

The key feature of equation (16.35) is that the PIH implies that the error term ut has a
zero mean conditional on all information observed at time t 	 1 or earlier: E(ut�It	1) � 0.
However, ut is not necessarily uncorrelated with gyt or r3t; a traditional way to think about
this is that these variables are jointly determined, but we are not writing down a full three-
equation system.

Because ut is uncorrelated with all variables dated t 	 1 or earlier, valid instruments for
estimating (16.35) are lagged values of gc, gy, and r3 (and lags of other observable vari-
ables, but we will not use those here). What are the hypotheses of interest? The pure form
of the PIH has �1 � �2 � 0. Campbell and Mankiw argue that �1 is positive if some frac-
tion of the population consumes current income, rather than permanent income. The PIH
with a nonconstant real interest rate implies that �2 � 0.

When we estimate (16.35) by 2SLS, using instruments gc	1, gy	1, and r3	1, we
obtain

ĝct �(.0081)�(.586)gyt 	(.00027)r3t

ĝct �(.0032)�(.135)gyt 	(.00076)r3t

n � 35, R2 � .678.

(16.36)

Therefore, the pure form of the PIH is strongly rejected because the coefficient on gy is eco-
nomically large (a 1% increase in disposable income increases consumption by over .5%)
and statistically significant (t � 4.34). By contrast, the real interest rate coefficient is very
small and statistically insignificant. These findings are qualitatively the same as Campbell
and Mankiw’s.

The PIH also implies that the errors {ut} are serially uncorrelated. After 2SLS estimation,
we obtain the residuals, ût, and include ût	1 as an additional explanatory variable in (16.36);
it acts as its own instrument (see Section 15.7). The coefficient on ût	1 is �̂ � .187 (se �
.133), so there is some evidence of positive serial correlation, although not at the 5% sig-
nificance level. Campbell and Mankiw (1990) discuss why, with the available quarterly data,
positive serial correlation might be found in the errors even if the PIH holds; some of those
concerns carry over to annual data.

Using growth rates of trending or I(1)
variables in SEMs is fairly common in
time series applications. For example,
Shea (1993) estimates industry supply
curves specified in terms of growth rates.

If a structural model contains a time
trend—which may capture exogenous,
trending factors that are not directly mod-
eled—then the trend acts as its own IV.
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Q U E S T I O N  1 6 . 4

Suppose that for a particular city you have monthly data on per
capita consumption of fish, per capita income, the price of fish, and
the prices of chicken and beef; income and chicken and beef prices
are exogenous. Assume that there is no seasonality in the demand
function for fish, but there is in the supply of fish. How can you use
this information to estimate a constant elasticity demand-for-fish
equation? Specify an equation and discuss identification. (Hint: You
should have eleven instrumental variables for the price of fish.)



16.6 SIMULTANEOUS EQUATIONS MODELS WITH
PANEL DATA

Simultaneous equations models also arise in panel data contexts. For example, we can
imagine estimating labor supply and wage offer equations, as in Example 16.3, for a
group of people working over a given period of time. In addition to allowing for simul-
taneous determination of variables within each time period, we can allow for unob-
served effects in each equation. In a labor supply function, it would be useful to allow
an unobserved taste for leisure that does not change over time.

The basic approach to estimating SEMs with panel data involves two steps: (1)
eliminate the unobserved effects from the equations of interest using the fixed effects
transformation or first differencing; (2) find instrumental variables for the endogenous
variables in the transformed equation. This can be very challenging, because for a con-
vincing analysis we need to find instruments that change over time. To see why, write
an SEM for panel data as

yit1 � �1yit2 � zit1�1 � ai1 � uit1 (16.37)

yit2 � �2yit1 � zit2�2 � ai2 � uit2, (16.38)

where i denotes cross section, t denotes time period, and zit1�1 or zit2�2 denotes linear
functions of a set of exogenous explanatory variables in each equation. The most gen-
eral analysis allows the unobserved effects, ai1 and ai2, to be correlated with all
explanatory variables, even the elements in z. However, we assume that the idiosyn-
cratic structural errors, uit1 and uit2, are uncorrelated with the z in both equations and
across all time periods; this is the sense in which the z are exogenous. Except under spe-
cial circumstances, yit2 is correlated with uit1, and yit1 is correlated with uit2.

Suppose we are interested in equation (16.37). We cannot estimate it by OLS, as the
composite error ai1 � uit1 is potentially correlated with all explanatory variables.
Suppose we difference over time to remove the unobserved effect, ai1:

�yit1 � �1�yit2 � �zit1�1 � �uit1. (16.39)

(As usual with differencing or time-demeaning, we can only estimate the effects of vari-
ables that change over time for at least some cross-sectional units.) Now, the error term
in this equation is uncorrelated with �zit1 by assumption. But �yit 2 and �uit1 are possi-
bly correlated. Therefore, we need an IV for �yit 2.

As with the case of pure cross-sectional or pure time series data, possible IVs come
from the other equation: elements in zit2 that are not also in zit1. In practice, we need
time-varying elements in zit2 that are not also in zit1. This is because we need an instru-
ment for �yit2, and a change in a variable from one period to the next is unlikely to be
highly correlated with the level of exogenous variables. In fact, if we difference (16.38),
we see that the natural IVs for �yit2 are those elements in �zit2 that are not also in �zit1.

As an example of the problems that can arise, consider a panel data version of
the labor supply function in Example 16.3. After differencing, suppose we have the
equation

�hoursit � �0 � �1�log(wageit) � �(other factorsit),
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and we wish to use �experit as an instrument for �log(wageit). The problem is that,
since we are looking at people who work in every time period, �experit � 1 for all i and
t. (Each person gets another year of experience after a year passes.) We cannot use an
IV that is the same value for all i and t, and so we must look elsewhere.

Often, participation in an experimental program can be used to obtain IVs in panel
data contexts. In Example 15.10, we used receipt of job training grants as an IV for the
change in hours of training in determining the effects of job training on worker pro-
ductivity. In fact, we could view that in an SEM context: job training and worker pro-
ductivity are jointly determined, but receiving a job training grant is exogenous in
equation (15.57).

We can sometimes come up with clever, convincing instrumental variables in panel
data applications, as the following example illustrates.

E X A M P L E  1 6 . 8
( E f f e c t  o f  P r i s o n  P o p u l a t i o n  o n  V i o l e n t  C r i m e  R a t e s )

In order to estimate the causal effect of prison population increases on crime rates at the
state level, Levitt (1996) used instances of prison overcrowding litigation as instruments for
the growth in prison population. The equation Levitt estimated is in first differences; we can
write an underlying fixed effects model as

log(crimeit) � �t � �1log(prisonit) � zit1�1 � ai1 � uit1, (16.40)

where �t denotes different time intercepts, and crime and prison are measured per 100,000
people. (The prison population variable is measured on the last day of the previous year.)
The vector zit1 contains other controls listed in the paper by Levitt, including measures of
police per capita, income per capita, unemployment rate, race, and metropolitan and age
distribution proportions.

Differencing (16.40) gives the equation estimated by Levitt:

�log(crimeit) � �t � �1�log( prisonit) � �zit1�1 � �uit1. (16.41)

Simultaneity between crime rates and prison population, or more precisely in the growth
rates, makes OLS estimation of (16.41) generally inconsistent. Using the violent crime rate
and a subset of the data from Levitt (in PRISON.RAW, for the years 1980 through 1993, for
51�14 � 714 total observations), we obtain the pooled OLS estimate of �1 which is 	.179
(se � .048). We also estimate (16.41) by pooled 2SLS, where the instruments for
�log(prison) are two binary variables, one each for whether a final decision was reached
on overcrowding litigation in the current year or in the previous two years. The pooled 2SLS
estimate of �1 is 	1.020 (se � .366). Therefore, the 2SLS estimated effect is much larger;
not surprisingly, it is much less precise, too. Levitt (1996) found similar results when using
a longer time period (but with early observations missing for some states) and more instru-
ments.
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An alternative approach to estimating SEMs with panel data is to use the fixed
effects transformation and then to apply an IV technique such as pooled 2SLS. A sim-
ple procedure is to estimate the time-demeaned equation by pooled 2SLS, which would
look like

y�it1 � �1y�it2 � z�it1�1 � u�it1, t � 1,2, …, T, (16.42)

where z�it1 and z�it2 are IVs. This is equivalent to using 2SLS in the dummy variable for-
mulation, where the unit-specific dummy variables act as their own instruments. Ayres
and Levitt (1998) applied 2SLS to a time-demeaned equation to estimate the effect of
Lojack electronic theft prevention devices on car theft rates in cities. If (16.42) is esti-
mated directly, then the df needs to be corrected to N(T 	 1) 	 k1, where k1 is the total
number of elements in �1 and �1. Including unit-specific dummy variables and apply-
ing pooled 2SLS to the original data produces the correct df.

SUMMARY

Simultaneous equations models are appropriate when each equation in the system has
a ceteris paribus interpretation. Good examples are when separate equations describe
different sides of a market or the behavioral relationships of different economic agents.
Supply and demand examples are leading cases, but there are many other applications
of SEMs in economics and the social sciences.

An important feature of SEMs is that, by fully specifying the system, it is clear
which variables are assumed to be exogenous and which ones appear in each equation.
Given a full system, we are able to determine which equations can be identified (that is,
can be estimated). In the important case of a two-equation system, identification of
(say) the first equation is easy to state: there must be at least one exogenous variable
excluded from the first equation that appears with a nonzero coefficient in the second
equation.

As we know from previous chapters, OLS estimation of an equation that contains
an endogenous explanatory variable generally produces biased and inconsistent esti-
mators. Instead, 2SLS can be used to estimate any identified equation in a system. More
advanced system methods are available, but they are beyond the scope of our treatment.

The distinction between omitted variables and simultaneity in applications is not
always sharp. Both problems, not to mention measurement error, can appear in the same
equation. A good example is the labor supply of married women. Years of education
(educ) appears in both the labor supply and the wage offer functions [see equations
(16.20) and (16.21)]. If omitted ability is in the error term of the labor supply function,
then wage and education are both endogenous. The important thing is that an equation
estimated by 2SLS can stand on its own.

SEMs can be applied to time series data as well. As with OLS estimation, we must
be aware of trending, integrated processes in applying 2SLS. Problems such as serial
correlation can be handled as in Section 15.7. We also gave an example of how to esti-
mate an SEM using panel data, where the equation is first differenced to remove the
unobserved effect. Then, we can estimate the differenced equation by pooled 2SLS, just
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as in Chapter 15. Alternatively, in some cases we can use time-demeaning of all vari-
ables, including the IVs, and then apply pooled 2SLS; this is identical to putting in
dummies for each cross-sectional observation and using 2SLS, where the dummies act
as their own instruments. SEM applications with panel data are very powerful, as they
allow us to control for unobserved heterogeneity while dealing with simultaneity. They
are becoming more and more common and are not especially difficult to estimate.

KEY TERMS
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Endogenous Variables
Exclusion Restrictions
Exogenous Variables
Identified Equation
Just Identified Equation
Lagged Endogenous Variable
Order Condition
Overidentified Equation
Predetermined Variable
Rank Condition

Reduced Form
Reduced Form Error
Reduced Form Parameters
Simultaneity
Simultaneity Bias
Simultaneous Equations Model (SEM)
Structural Equation
Structural Errors
Structural Parameters
Unidentified Equation

PROBLEMS

16.1 Write a two-equation system in “supply and demand form,” that is, with the same
variable y1 (typically, “quantity”) appearing on the left-hand side:

y1 � �1y2 � �1z1 � u1

y1 � �2y2 � �2z2 � u2.

(i) If �1 � 0 or �2 � 0, explain why a reduced form exists for y1.
(Remember, a reduced form expresses y1 as a linear function of the
exogenous variables and the structural errors.) If �1 � 0 and �2 � 0,
find the reduced form for y2.

(ii) If �1 � 0, �2 � 0, and �1 � �2, find the reduced form for y1. Does y2

have a reduced form in this case?
(iii) Is the condition �1 � �2 likely to be met in supply and demand exam-

ples? Explain.

16.2 Let corn denote per capita consumption of corn in bushels, at the county level, let
price be the price per bushel of corn, let income denote per capita county income, and
let rainfall be inches of rainfall during the last corn-growing season. The following
simultaneous equations model imposes the equilibrium condition that supply equals
demand:

corn � �1 price � �1income � u1

corn � �2 price � �2rainfall � u2.

Which is the supply equation and which is the demand equation? Explain.



16.3 In Problem 3.3 of Chapter 3, we estimated an equation to test for a tradeoff
between minutes per week spent sleeping (sleep) and minutes per week spent working
(totwrk) for a random sample of individuals. We also included education and age in the
equation. Because sleep and totwrk are jointly chosen by each individual, is the esti-
mated tradeoff between sleeping and working subject to a “simultaneity bias” criticism?
Explain.

16.4 Suppose that annual earnings and alcohol consumption are determined by the SEM

log(earnings) � �0 � �1alcohol � �2educ � u1

alcohol � �0 � �1log(earnings) � �2educ � �3log(price) � u2,

where price is a local price index for alcohol, which includes state and local taxes.
Assume that educ and price are exogenous. If �1, �2, �1, �2, and �3 are all different from
zero, which equation is identified? How would you estimate that equation?

16.5 A simple model to determine the effectiveness of condom usage on reducing sex-
ually transmitted diseases among sexually active high school students is

infrate � �0 � �1conuse � �2percmale � �3avginc � �4city � u1,

where infrate is the percent of sexually active students who have contracted venereal
disease, conuse is the percentage of boys who claim to regularly use condoms, avginc
is average family income, and city is a dummy variable indicating whether a school is
in a city; the model is at the school level.

(i) Interpreting the preceding equation in a causal, ceteris paribus fashion,
what should be the sign of �1?

(ii) Why might infrate and conuse be jointly determined?
(iii) If condom usage increases with the rate of venereal disease, so that

�1 � 0 in the equation

conuse � �0 � �1infrate � other factors,

what is the likely bias in estimating �1 by OLS?
(iv) Let condis be a binary variable equal to unity if a school has a program

to distribute condoms. Explain how this can be used to estimate �1 (and
the other betas) by IV. What do we have to assume about condis in each
equation?

16.6 Consider a linear probability model for whether employers offer a pension plan
based on the percentage of workers belonging to a union, as well as other factors:

pension � �0 � �1percunion � �2avgage � �3avgeduc
� �4percmale � �5percmarr � u1.

(i) Why might percunion be jointly determined with pension?
(ii) Suppose that you can survey workers at firms and collect information

on workers’ families. Can you think of information that can be used to
construct an IV for percunion?

(iii) How would you test whether your variable is at least a reasonable IV
candidate for percunion?
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16.7 For a large university, you are asked to estimate the demand for tickets to women’s
basketball games. You can collect time series data over 10 seasons, for a total of about
150 observations. One possible model is

lATTENDt � �0 � �1lPRICEt � �2WINPERCt � �3RIVALt

� �4WEEKENDt � �5t � ut,

where PRICEt is the price of admission, probably measured in real terms—say, deflat-
ing by a regional consumer price index—WINPERCt is the team’s current winning per-
centage, RIVALt is a dummy variable indicating a game against a rival, and WEEKENDt

is a dummy variable indicating whether the game is on a weekend. The l denotes nat-
ural logarithm, so that the demand function has a constant price elasticity.

(i) Why is it a good idea to have a time trend in the equation?
(ii) The supply of tickets is fixed by the stadium capacity; assume this has

not changed over the 10 years. This means that quantity supplied does
not vary with price. Does this mean that price is necessarily exogenous
in the demand equation? (Hint : The answer is no.)

(iii) Suppose that the nominal price of admission changes slowly—say, at
the beginning of each season. The athletic office chooses price based
partly on last season’s average attendance, as well as last season’s team
success. Under what assumptions is last season’s winning percentage
(SEASPERCt	1) a valid instrumental variable for lPRICEt?

(iv) Does it seem reasonable to include the (log of the) real price of men’s
basketball games in the equation? Explain. What sign does economic
theory predict for its coefficient? Can you think of another variable
related to men’s basketball that might belong in the women’s attendance
equation?

(v) If you are worried that some of the series, particularly lATTEND and
lPRICE, have unit roots, how might you change the estimated equation?

(vi) If some games are sold out, what problems does this cause for estimat-
ing the demand function? (Hint : If a game is sold out, do you neces-
sarily observe the true demand?)

16.8 How big is the effect of per-student school expenditures on local housing values?
Let HPRICE be the median housing price in a school district and let EXPEND be per-
student expenditures. Using panel data for the years 1992, 1994, and 1996, we postu-
late the model

lHPRICEit � �t � �1lEXPENDit � �2lPOLICEit � �3lMEDINCit �
�4PROPTAXit � ai1 � uit1,

where POLICEit is per capita police expenditures, MEDINCit is median income, and
PROPTAXit is the property tax rate; l denotes natural logarithm. Expenditures and hous-
ing price are simultaneously determined because the value of homes directly affects the
revenues available for funding schools.

Suppose that, in 1994, the way schools were funded was drastically changed: rather
than being raised by local property taxes, school funding was largely determined at the
state level. Let lSTATEALLit denote the log of the state allocation for district i in year t,
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which is exogenous in the preceding equation, once we control for expenditures and a
district fixed effect. How would you estimate the �j?

COMPUTER EXERCISES

16.9 Use SMOKE.RAW for this exercise.
(i) A model to estimate the effects of smoking on annual income (perhaps

through lost work days due to illness, or productivity effects) is

log(income) � �0 � �1cigs � �2educ � �3age � �4age2 � u1,

where cigs is number of cigarettes smoked per day, on average. How do
you interpret �1?

(ii) To reflect the fact that cigarette consumption might be jointly deter-
mined with income, a demand for cigarettes equation is

cigs � �0 � �1log(income) � �2educ � �3age � �4age2

� �5log(cigpric) � �6restaurn � u2,

where cigpric is the price of a pack of cigarettes (in cents), and restaurn
is a binary variable equal to unity if the person lives in a state with
restaurant smoking restrictions. Assuming these are exogenous to the
individual, what signs would you expect for �5 and �6?

(iii) Under what assumption is the income equation from part (i) identified?
(iv) Estimate the income equation by OLS and discuss the estimate of �1.
(v) Estimate the reduced form for cigs. (Recall that this entails regressing

cigs on all exogenous variables.) Are log(cigpric) and restaurn signifi-
cant in the reduced form?

(vi) Now estimate the income equation by 2SLS. Discuss how the estimate
of �1 compares with the OLS estimate.

(vii) Do you think that cigarette prices and restaurant smoking restrictions
are exogenous in the income equation?

16.10 Use MROZ.RAW for this exercise.
(i) Reestimate the labor supply function in Example 16.5, using log(hours)

as the dependent variable. Compare the estimated elasticity (which is
now constant) to the estimate obtained from equation (16.24) at the
average hours worked.

(ii) In the labor supply equation from part (i), allow educ to be endogenous
because of omitted ability. Use motheduc and fatheduc as IVs for educ.
Remember, you now have two endogenous variables in the equation.

(iii) Test the overidentifying restrictions in the 2SLS estimation from part
(ii). Do the IVs pass the test?

16.11 Use the data in OPENNESS.RAW for this exercise.
(i) Because log(pcinc) is insignificant in both (16.22) and the reduced

form for open, drop it from the analysis. Estimate (16.22) by OLS and
IV without log(pcinv). Do any important conclusions change?
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(ii) Still leaving log(pcinc) out of the analysis, is land or log(land ) a better
instrument for open? (Hint: Regress open on each of these separately
and jointly.)

(iii) Now return to (16.22). Add the dummy variable oil to the equation and
treat it as exogenous. Estimate the equation by IV. Does being an oil
producer have a ceteris paribus effect on inflation?

16.12 Use the data in CONSUMP.RAW for this exercise.
(i) In Example 16.7, use the method from Section 15.5 to test the single

overidentifying restriction in estimating (16.35). What do you con-
clude?

(ii) Campbell and Mankiw (1990) use second lags of all variables as IVs
because of potential data measurement problems and informational
lags. Reestimate (16.35), using only gct	2, gyt	2, and r3t	2 as IVs. How
do the estimates compare with those in (16.36)?

(iii) Regress gyt on the IVs from part (ii) and test whether gyt is sufficiently
correlated with them. Why is this important?

16.13 Use the Economic Report of the President (1998 or later) to update the data in
CONSUMP.RAW, at least through 1996. Reestimate equation (16.35). Do any impor-
tant conclusions change?

16.14 Use the data in CEMENT.RAW for this exercise.
(i) A static (inverse) supply function for the monthly growth in cement

price (gprc) as a function of growth in quantity (gcem) is

gprct � �1gcemt � �0 � �1grprcpet � �2 febt � … � �12dect � ut
s,

where grprcpet (growth in the price of petroleum) is assumed to be
exogenous and feb, …, dec are monthly dummy variables. What signs
do you expect for �1 and �1? Estimate the equation by OLS. Does the
supply function slope upward?

(ii) The variable grdefs is the monthly growth in real defense spending in
the United States. What do you need to assume about grdefs for it to be
a good IV for gcem? Test whether gcem is partially correlated with
grdefs. (Do not worry about possible serial correlation in the reduced
form.) Can you use grdefs as an IV in estimating the supply function?

(iii) Shea (1993) argues that the growth in output of residential (grres) and
nonresidential (grnon) construction are valid instruments for gcem. The
idea is that these are demand shifters that should be roughly uncorre-
lated with the supply error ut

s. Test whether gcem is partially correlated
with grres and grnon; again, do not worry about serial correlation in the
reduced form.

(iv) Estimate the supply function, using grres and grnon as IVs for gcem.
What do you conclude about the static supply function for cement?
[The dynamic supply function is, apparently, upward sloping; see Shea
(1993).]

16.15 Refer to Example 13.9 and the data in CRIME4.RAW.
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(i) Suppose that, after differencing to remove the unobserved effect, you
think �log(polpc) is simultaneously determined with �log(crmrte); in
particular, increases in crime are associated with increases in police
officers. How does this help to explain the positive coefficient on
�log(polpc) in equation (13.33)?

(ii) The variable taxpc is the taxes collected per person in the county. Does
it seem reasonable to exclude this from the crime equation?

(iii) Estimate the reduced form for �log(polpc) using pooled OLS, includ-
ing the potential IV, �log(taxpc). Does it look like �log(taxpc) is a
good IV candidate? Explain.

(iv) Suppose that, in several of the years, the state of North Carolina
awarded grants to some counties to increase the size of their county
police force. How could you use this information to estimate the effect
of additional police officers on the crime rate?
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In Chapter 7, we studied the linear probability model, which is simply an application
of the multiple regression model to a binary dependent variable. A binary dependent
variable is an example of a limited dependent variable (LDV). An LDV is broadly

defined as a dependent variable whose range of values is substantively restricted. A
binary variable takes on only two values, zero and one. We have seen several other
examples of limited dependent variables: participation percentage in a pension plan
must be between zero and 100, the number of times an individual is arrested in a given
year is a nonnegative integer, and college grade point average is between zero and 4.0
at most colleges.

Most economic variables we would like to explain are limited in some way, often
because they must be positive. For example, hourly wage, housing price, and nominal
interest rates must be greater than zero. But not all such variables need special treat-
ment. If a strictly positive variable takes on many different values, a special economet-
ric model is rarely necessary.

When y is discrete and takes on a small number of values, it makes no sense to treat
it as an approximately continuous variable. Discreteness of y does not in itself mean that
linear models are inappropriate. However, as we saw in Chapter 7 for binary response,
the linear probability model has certain drawbacks. In Section 17.1, we discuss logit
and probit models, which overcome the shortcomings of the LPM; the disadvantage is
that they are more difficult to interpret.

Other kinds of limited dependent variables arise in econometric analysis, especially
when the behavior of individuals, families, or firms is being modeled. Optimizing
behavior often leads to corner solutions for some nontrivial fraction of the population;
that is, it is optimal to choose a zero quantity or dollar value. For example, during any
given year, a significant number of families will make zero charitable contributions.
Therefore, annual family charitable contributions has a population distribution that is
spread out over a large range of positive values, but with a pileup at the value zero.
While it could be that a linear model is appropriate for capturing the expected value of
charitable contributions, a linear model will likely lead to negative predictions for some
families. Taking the natural log is not possible because many observations are zero. The
Tobit model, which we cover in Section 17.2, is explicitly designed to model corner
solution dependent variables.
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Another important kind of LDV is a count variable, which takes on nonnegative
integer values. Section 17.3 illustrates how Poisson regression models are well-suited
for modeling count variables.

In some cases, we observe limited dependent variables due to data censoring, a
topic we introduce in Section 17.4. The general problem of sample selection, where
we observe a nonrandom sample from the underlying population, is treated in Section
17.5.

Limited dependent variable models can be used for time series and panel data, but
they are most often applied to cross-sectional data. Sample selection problems are usu-
ally confined to cross-sectional or panel data. We focus on cross-sectional applications
in this chapter. Wooldridge (1999) presents these problems in the context of panel data
models and provides many more details for cross-sectional and panel data applications.

17.1 LOGIT AND PROBIT MODELS FOR 
BINARY RESPONSE

The linear probability model is simple to estimate and use, but it has some drawbacks
that we discussed in Section 7.5. The two most important disadvantages are that the fit-
ted probabilities can be less than zero or greater than one and the partial effect of any
explanatory variable (appearing in level form) is constant. These limitations of the LPM
can be overcome by using more sophisticated binary response models.

In a binary response model, interest lies primarily in the response probability

P(y � 1�x) � P(y � 1�x1,x2, …, xk), (17.1)

where we use x to denote the full set of explanatory variables. For example, when y is
an employment indicator, x might contain various individual characteristics such as
education, age, marital status, and other factors that affect employment status, includ-
ing a binary indicator variable for participation in a recent job training program.

Specifying Logit and Probit Models

In the LPM, we assume that the response probability is linear in a set of parameters, �j;
see equation (7.27). To avoid the LPM limitations, consider a class of binary response
models of the form

P(y � 1�x) � G(�0 � �1x1 � … � �kxk) � G(�0 � x�), (17.2)

where G is a function taking on values strictly between zero and one: 0 � G(z) � 1, for
all real numbers z. This ensures that the estimated response probabilities are strictly
between zero and one. As in earlier chapters, we write x� � �1x1 � … � �kxk.

Various nonlinear functions have been suggested for the function G in order to make
sure that the probabilities are between zero and one. The two we will cover here are
used in the vast majority of applications (along with the LPM). In the logit model, G is
the logistic function:
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G(z) � exp(z)/[1 � exp(z)] � �(z), (17.3)

which is between zero and one for all real numbers z. This is the cumulative distribu-
tion function for a standard logistic random variable. In the probit model, G is the stan-
dard normal cumulative distribution function (cdf), which is expressed as an integral:

G(z) � �(z) �
��

�
z

	(v)dv, (17.4)

where 	(z) is the standard normal density

	(z) � (2
)�1/2exp(�z2/2). (17.5)

This choice of G again ensures that (17.2) is strictly between zero and one for all val-
ues of the parameters and the xj.

The G functions in (17.3) and (17.4) are both increasing functions. Each increases
most quickly at z � 0, G(z) * 0 as z * ��, and G(z) * 1 as z * �. The logistic func-
tion is plotted in Figure 17.1. The standard normal cdf has a shape very similar to that
of the logistic cdf.
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Logit and probit models can be derived from an underlying latent variable model
that satisfies the classical linear model assumptions. Let y* be an unobserved, or latent,
variable, determined by

y* � �0 � x� � e, y � 1[y* � 0], (17.6)

where we introduce the notation 1[�] to define a binary outcome. The function 1[�] is
called the indicator function, which takes on the value one if the event in brackets is
true, and zero otherwise. Therefore, y is one if y* � 0, and y is zero if y* 
 0. We
assume that e is independent of x and that e either has the standard logistic distribution
or the standard normal distribution. In either case, e is symmetrically distributed about
zero, which means that 1 � G(�z) � G(z) for all real numbers z. Economists tend to
favor the normality assumption for e, which is why the probit model is more popular
than logit in econometrics. In addition, several specification problems, which we touch
on later, are most easily analyzed using probit because of properties of the normal dis-
tribution.

From (17.6) and the assumptions given, we can derive the response probability for y:

P(y � 1�x) � P(y* � 0�x) � P[e � �(�0 � x�)�x]

� 1 � G[�(�0 � x�)] � G(�0 � x�),

which is exactly the same as (17.2).
In most applications of binary response models, the primary goal is to explain the

effects of the xj on the response probability P(y � 1�x). The latent variable formulation
tends to give the impression that we are primarily interested in the effects of each xj on
y*. As we will see, for logit and probit, the direction of the effect of xj on E(y*�x) � �0

� x� and on E(y�x) � P(y � 1�x) � G(�0 � x�) is always the same. But the latent
variable y* rarely has a well-defined unit of measurement. (For example, y* might be
the difference in utility levels from two different actions.) Thus, the magnitudes of each
�j are not, by themselves, especially useful (in contrast to the linear probability model).
For most purposes, we want to estimate the effect of xj on the probability of success
P(y � 1�x), but this is complicated by the nonlinear nature of G(�).

To find the partial effect of roughly continuous variables on the response probabil-
ity, we must rely on calculus. If xj is a roughly continuous variable, its partial effect on
p(x) � P(y � 1�x) is obtained from the partial derivative:

� g(�0 � x�)�j, where g(z) � (z). (17.7)

Because G is the cdf of a continuous random variable, g is a probability density func-
tion. In the logit and probit cases, G(�) is a strictly increasing cdf, and so g(z) � 0 for
all z. Therefore, the partial effect of xj on p(x) depends on x through the positive quan-
tity g(�0 � x�), which means that the partial effect always has the same sign as �j.

Equation (17.7) shows that the relative effects of any two continuous explanatory
variables do not depend on x: the ratio of the partial effects for xj and xh is �j/�h. In the
typical case that g is a symmetric density about zero, with a unique mode at zero, the

dG

dz

�p(x)

�xj
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largest effect occurs when �0 � x� � 0. For example, in the probit case with g(z) �
	(z), g(0) � 	(0) � 1/��2
 � .40. In the logit case, g(z) � exp(z)/[1 � exp(z)]2, and
so g(0) � .25.

If, say, x1 is a binary explanatory variable, then the partial effect from changing x1

from zero to one, holding all other variables fixed, is simply

G(�0 � �1 � �2x2 � … � �kxk) � G(�0 � �2x2 � … � �kxk). (17.8)

Again, this depends on all the values of the other xj. For example, if y is an employment
indicator and x1 is a dummy variable indicating participation in a job training program,
then (17.8) is the change in the probability of employment due to the job training pro-
gram; this depends on other characteristics that affect employability, such as education
and experience. Note that knowing the sign of �1 is sufficient for determining whether
the program had a positive or negative effect. But to find the magnitude of the effect,
we have to estimate the quantity in (17.8).

We can also use the difference in (17.8) for other kinds of discrete variables (such
as number of children). If xk denotes this variable, then the effect on the probability of
xk going from ck to ck � 1 is simply

G[�0 � �1x1 � �2x2 � … � �k(ck � 1)]

� G(�0 � �1x1 � �2x2 � … � �kck).
(17.9)

It is straightforward to include standard functional forms among the explanatory
variables. For example, in the model

P(y � 1�z) � G(�0 � �1z1 � �2z1
2 � �3log(z2) � �4z3),

the partial effect of z1 on P(y � 1�z) is �P(y � 1�z)/�z1 � g(�0 � x�)(�1 � 2�2z1), and
the partial effect of z2 on the response probability is �P(y � 1�z)/�z2 � g(�0 �
x�)(�3/z2), where x� � �1z1 � �2z1

2 � �3log(z2) � �4z3. Models with interactions
among explanatory variables, including those between discrete and continuous vari-
ables, are handled similarly. When measuring effects of discrete variables, we should
use (17.9).

Maximum Likelihood Estimation of Logit and 
Probit Models

How should we estimate nonlinear binary response models? To estimate the LPM, we
can use ordinary least squares (see Section 7.5) or, in some cases, weighted least
squares (see Section 8.5). Because of the nonlinear nature of E(y�x), OLS and WLS are
not applicable. We could use nonlinear versions of these methods, but it is no more dif-
ficult to use maximum likelihood estimation (MLE) (see Appendix B for a brief dis-
cussion). Up until now, we have had little need for MLE, although we did note that,
under the classical linear model assumptions, the OLS estimator is the maximum like-
lihood estimator (conditional on the explanatory variables). For estimating limited
dependent variable models, maximum likelihood methods are indispensable.
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Assume that we have a random sample of size n. To obtain the maximum likelihood
estimator, conditional on the explanatory variables, we need the density of yi given xi.
We can write this as

f(y�xi;�) � [G(xi�)]y[1 � G(xi�)]1�y, y � 0,1, (17.10)

where, for simplicity, we absorb the intercept into the vector xi. We can easily see that
when y � 1, we get G(xi�) and when y � 0, we get 1 � G(xi�). The log-likelihood
function for observation i is a function of the parameters and the data (xi,yi) and is
obtained by taking the log of (17.10):

�i(�) � yilog[G(xi�)] � (1 � yi)log[1 � G(xi�)]. (17.11)

Because G(�) is strictly between zero and one for logit and probit, �i(�) is well-defined
for all values of �.

The log-likelihood for a sample size of n is obtained by summing (17.11) across

all observations: �(�) � �
n

i�1
�i(�). The MLE of �, denoted by �̂, maximizes this log-

likelihood. If G(�) is the standard logit cdf, then �̂ is the logit estimator; if G(�) is the
standard normal cdf, then �̂ is the probit estimator.

Because of the nonlinear nature of the maximization problem, we cannot write for-
mulas for the logit or probit maximum likelihood estimates. In addition to raising com-
putational issues, this makes the statistical theory for logit and probit much more
difficult than OLS or even 2SLS. Nevertheless, the general theory of (conditional) MLE
for random samples implies that, under very general conditions, the MLE is consistent,
asymptotically normal, and asymptotically efficient. [See Wooldridge (1999, Chapter
13) for a general discussion.] We will just use the results here; applying logit and pro-
bit models is fairly easy, provided we understand what the statistics mean.

Each �̂j comes with an (asymptotic) standard error, the formula for which is com-
plicated and presented in the chapter appendix. Once we have the standard errors—and
these are reported along with the coefficient estimates by any package that supports
logit and probit—we can construct (asymptotic) t tests and confidence intervals, just as
with OLS, 2SLS, and the other estimators we have encountered. In particular, to test H0:
�j � 0, we form the t statistic �̂j/se(�̂j) and carry out the test in the usual way, once we
have decided on a one- or two-sided alternative.

Testing Multiple Hypotheses

We can also test multiple restrictions in logit and probit models. In most cases, these
are tests of multiple exclusion restrictions, as in Section 4.5. We will focus on exclusion
restrictions here.

There are three ways to test exclusion restrictions for logit and probit models. The
Lagrange multiplier or score test only requires estimating the model under the null
hypothesis, just as in the linear case in Section 5.2; we will not cover the score test here,
since it is rarely needed to test exclusion restrictions [see Wooldridge (1999, Chapter
15) for other uses of the score test in binary response models].
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The Wald test requires estimation of only the unrestricted model. In the linear model
case, the Wald statistic, after a simple transformation, is essentially the F statistic; there
is no need to cover the Wald statistic separately. The formula for the Wald statistic is
given in Wooldridge (1999, Chapter 15). This statistic is computed by econometrics
packages that allow exclusion restrictions to be tested after the unrestricted model has
been estimated. It has an asymptotic chi-square distribution, with df equal to the num-
ber of restrictions being tested.

If both the restricted and unrestricted models are easy to estimate—as is usually
the case with exclusion restrictions—then the likelihood ratio (LR) test becomes very
attractive. The LR test is based on the same concept as the F test in a linear model. The
F test measures the increase in the sum of squared residuals when variables are
dropped from the model. The LR test is based on the difference in the log-likelihood
functions for the unrestricted and restricted models. The idea is this. Because the MLE
maximizes the log-likelihood function, dropping variables generally leads to a
smaller—or at least no larger—log-likelihood. (This is similar to the fact that the
R-squared never increases when variables are dropped from a regression.) The ques-
tion is whether the fall in the log-likelihood is large enough to conclude that the
dropped variables are important. We can make this decision once we have a test sta-
tistic and a set of critical values.

The likelihood ratio statistic is twice the difference in the log-likelihoods:

LR � 2(�ur � �r), (17.12)

where �ur is the log-likelihood value for the unrestricted model, and �r is the log-
likelihood value for the restricted model.
Because �ur � �r, LR is nonnegative and
usually strictly positive. In computing the
LR statistic, it is important to know that
�ur and �r can each be negative. This does
not change the way that LR is computed;
we must preserve the negative signs.

The multiplication by two in (17.12) is
needed so that LR has an approximate chi-
square distribution under H0. If we are test-
ing q exclusion restrictions, LR ~ª �q

2. This
means that, to test H0 at the 5% level, we
use as our critical value the 95th percentile
in the �q

2 distribution. Computing p-values
is easy with most software packages.

Interpreting the Logit and Probit Estimates

Given modern computers, from a practical perspective, the most difficult aspect of logit
or probit models is presenting and interpreting the results. The coefficient estimates,
their standard errors, and the value of the log-likelihood function are reported by all
software packages that do logit and probit, and these should be reported in any appli-
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P(takeover � 1�x) � �(�0 � �1avgprof � �2mktval
� �3debtearn � �4ceoten � �5ceosal � �6ceoage),

where takeover is a binary response variable, avgprof is the firm’s
average profit margin over several prior years, mktval is market value
of the firm, debtearn is the debt-to-earnings ratio, and ceoten,
ceosal, and ceoage are the tenure, annual salary, and age of the
chief executive officer, respectively. State the null hypothesis that,
other factors being equal, variables related to the CEO have no
effect on the probability of takeover. How many df are in the chi-
square distribution for the LR or Wald test?
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cation. The coefficients give the signs of the partial effects of each xj on the response
probability, and the statistical significance of xj is determined by whether we can reject
H0: �j � 0 at a sufficiently small significance level.

One goodness-of-fit measure that is usually reported is the so-called percent cor-
rectly predicted, which is computed as follows. For each i, we compute the estimated
probability that yi takes on the value one, G(�̂0 � xi�̂). If G(�̂0 � xi�̂) � .5, the pre-
diction of yi is unity, and if G(�̂0 � xi�̂) 
 .5, yi is predicted to be zero. The percent-
age of times the predicted yi matches the actual yi (which we know to be zero or one)
is the percent correctly predicted. This measure is somewhat useful, but it is possible to
get rather high percentages correctly predicted without the model being of much use.
For example, suppose that in a sample size of 200, 180 observations have yi � 0, and
150 of these are predicted to be zero using the previous rule. Even if none of our pre-
dictions are correct when yi � 1, we still predict 75% of the outcomes correctly.
Because of examples like this, it makes sense to report the percent correctly predicted
for each of the two outcomes.

There are also various pseudo R-squared measures for binary response. McFadden
(1974) suggests the measure 1 � �ur /�o, where �ur is the log-likelihood function for
the estimated model, and �o is the log-likelihood function in the model with only an
intercept. This is analogous to the R-squared for OLS regression, which can be written
as 1 � SSRur/SSRo, where SSRur is the sum of squared residuals, and SSRo is the same
as the total sum of squares. Several other measures have been suggested [see, for exam-
ple, Maddala (1983, Chapter 2)], but goodness-of-fit is not usually as important as sta-
tistical and economical significance of the explanatory variables.

Often, we want to estimate the effects of the xj on the response probabilities,
P(y � 1�x). If xj is (roughly) continuous, then

�P̂(y � 1�x) � [g(�̂0 � x�̂)�̂j]�xj, (17.13)

for “small” changes in xj. Since g(�̂0 � x�̂) depends on x, we must compute it
at interesting values of x. Often the sample averages of the xj are plugged in to get
g(�̂0 � x̄�̂). This factor can then be used to adjust each of the �̂j (or at least those on
continuous variables) to obtain the effect of a one-unit increase in xj. If x contains non-
linear functions of some explanatory variables, such as natural logs or quadratics, we
have the option of plugging the average into the nonlinear function or averaging the
nonlinear function. To get the effect for the average unit in the population, it makes
sense to use the first option. If a software package automatically scales the coefficients
by g(�̂0 � x̄�̂), it necessarily averages the nonlinear functions, as it cannot tell when an
explanatory variable is a nonlinear function of some underlying variable. The difference
is rarely large.

Sometimes, minimum and maximum values, or lower and upper quartiles, of key
variables are used in obtaining g(�̂0 � x�̂), so that we can see how the partial effects
change as some elements of x get large or small.

Equation (17.13) also suggests how to roughly compare magnitudes of the probit
and logit slope estimates. As mentioned earlier, for probit, g(0) � .4, and for logit,
g(0) � .25. Thus, to make the logit and probit slope estimates comparable, we can
either multiply the probit estimates by .4/.25 � 1.6, or we can multiply the logit esti-
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mates by .625. In the linear probability model, g(0) is effectively 1, and so logit slope
estimates should be divided by 4 to make them roughly comparable to the LPM esti-
mates; the probit slope estimates should be divided by 2.5 to make them comparable to
the LPM slope estimates. A more accurate comparison is to multiply the probit slope
coefficients by 	(�̂0 � x̄�̂) and the logit slope coefficients by exp(�̂0 � x̄�̂)/[1 �
exp(�̂0 � x̄�̂)]2, where the estimates are either probit or logit, respectively.

If, say, xk is a binary variable, it may make sense to plug in zero or one for xk, rather
than x̄k (which is the fraction of ones in the sample). Putting in the averages for the
binary variables means that the effect does not really correspond to a particular indi-
vidual. But often the results are similar, and the choice is really based on taste.

If xk is a discrete variable, then we can estimate the change in the predicted proba-
bility as it goes from ck to ck � 1 by

G[�̂0 � �̂1x̄1 � … � �̂k�1x̄k�1 � �̂k(ck � 1)]

� G(�̂0 � �̂1x̄1 � … � �̂k�1x̄k�1 � �̂kck).
(17.14)

In particular, when xk is a binary variable, we set ck � 0. Of course, we have to decide
what to plug in for the other explanatory variables; typically, we use averages for
roughly continuous variables.

E X A M P L E  1 7 . 1
( M a r r i e d  W o m e n ’ s  L a b o r  F o r c e  P a r t i c i p a t i o n )

We now use the MROZ.RAW data to estimate the labor force participation model from
Example 8.8—see also Section 7.5—by logit and probit. We also report the linear proba-
bility model estimates from Example 8.8, using the heteroskedasticity-robust standard
errors. The results, with standard errors in parentheses, are given in Table 17.1.

The estimates from the three models tell a consistent story. The signs of the coefficients
are the same across models, and the same variables are statistically significant in each model.
The pseudo R-squared for the LPM is just the usual R-squared reported for OLS; for logit and
probit the pseudo R-squared is the measure based on the log-likelihoods described earlier.

As we have already emphasized, the magnitudes of the coefficients are not directly
comparable across the models. Using the rough rule-of-thumb discussed earlier, we can
divide the logit estimates by 4 and the probit estimates by 2.5 to make them comparable
to the LPM estimates. For example, for the coefficients on kidslt6, the scaled logit estimate
is about �.361, and the scaled probit estimate is about �.347. These are larger in magni-
tude than the LPM estimate (for reasons we will give later). Similarly, the scaled coefficient
on educ is .055 for logit and .052 for probit; these are also somewhat greater than the LPM
estimate of .038, but they do not differ much from each other.

If we evaluate the standard normal probability density function, 	(�̂0 � �̂1x1 � … �
�̂kxk), at the average values of the independent variables in the sample (including the aver-
age of exper2), the result is approximately .391; this is close enough to .4 to make the
rough rule-of-thumb for scaling the probit coefficients useful in obtaining the effects on the
response probability. In other words, to estimate the change in the response probability
given a one-unit increase in any independent variable, we multiply the corresponding pro-
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bit coefficient by .4. Presumably, if we evaluate the standard logistic function at the mean
values and the logit estimates, we would get close to .25.

The biggest difference between the LPM model and the logit and probit models is that
the LPM assumes constant marginal effects for educ, kidslt6, and so on, while the logit and
probit models imply diminishing magnitudes of the partial effects. In the LPM, one more
small child is estimated to reduce the probability of labor force participation by about .262,
regardless of how many young children the woman already has (and regardless of the
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Table 17.1

LPM, Logit, and Probit Estimates of Labor Force Participation

Dependent Variable: inlf

Independent LPM Logit Probit
Variables (OLS) (MLE) (MLE)

nwifeinc �.0034 �.021 �.012
(.0015) (.008) (.005)

educ .038 .221 .131
(.007) (.043) (.025)

exper .039 .206 .123
(.006) (.032) (.019)

exper2 �.00060 �.0032 �.0019
(.00018) (.0010) (.0006)

age �.016 �.088 �.053
(.002) (.015) (.008)

kidslt6 �.262 �1.443 �.868
(.032) (0.204) (.119)

kidsge6 .013 .060 .036
(.013) (.075) (.043)

constant .586 .425 .270
(.151) (.860) (.509)

Percent Correctly Predicted 73.4 73.6 73.4
Log-Likelihood Value — �401.77 �401.30
Pseudo R-Squared .264 .220 .221
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levels of the other explanatory variables).
We can contrast this with the estimated
marginal effect from probit. For concrete-
ness, take a woman with nwifeinc � 20.13,
educ � 12.3, exper � 10.6, and age �

42.5—which are roughly the sample aver-
ages—and kidsge6 � 1. What is the estimated decrease in the probability of working in
going from zero to one small child? We evaluate the standard normal cdf, �(�̂0 � �̂1x1 �

… � �̂kxk), with kidslt6 � 1 and kidslt6 � 0, and the other independent variables set at the
preceding values. We get roughly .373 � .707 � �.334, which means that the labor force
participation probability is about .334 lower when a woman has one young child. This is not
much different than the scaled probit coefficient of �.347. If the woman goes from one to
two young children, the probability falls even more, but the marginal effect is not as large:
.117 � .373 � �.256. Interestingly, the estimate from the linear probability model, which is
supposed to estimate the effect near the average, is in fact between these two estimates.

The same issues concerning endogenous explanatory variables in linear models also
arise in logit and probit models. We do not have the space to cover them, but it is pos-
sible to test and correct for endogenous explanatory variables using methods related to
two stage least squares. Evans and Schwab (1995) estimated a probit model for whether
a student attends college, where the key explanatory variable is a dummy variable for
whether the student attends a Catholic school. Evans and Schwab estimated a model by
maximum likelihood that allows this variable to be considered endogenous. [See
Wooldridge (1999, Chapter 15) for an explanation of these methods.]

Two other issues have received attention in the context of probit models. The first
is nonnormality of e in the latent variable model (17.6). Naturally, if e does not have a
standard normal distribution, the response probability will not have the probit form.
Some authors tend to emphasize the inconsistency in estimating the �j, but this is the
wrong focus unless we are only interested in the direction of the effects. Because the
response probability is unknown, we could not estimate the magnitude of partial effects
even if we had consistent estimates of the �j.

A second specification problem, also defined in terms of the latent variable model,
is heteroskedasticity in e. If Var(e�x) depends on x, the response probability no longer
has the form G(�0 � x�); instead, it depends on the form of the variance and requires
more general estimation. Such models are not often used in practice, since logit and
probit with flexible functional forms in the independent variables tend to work well.

Binary response models apply with little modification to independently pooled
cross sections or to other data sets where the observations are independent but not nec-
essarily identically distributed. Often year or other time period dummy variables are
included to account for aggregate time effects. Just as with linear models, logit and pro-
bit can be used to evaluate the impact of certain policies in the context of a natural
experiment.

The linear probability model can be applied with panel data; typically, it would be
estimated by fixed effects (see Chapter 14). Logit and probit models with unobserved
effects have recently become popular. These models are complicated by the nonlinear
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Using the probit estimates and the calculus approximation, what is
the approximate change in the response probability when exper
increases from 10 to 11?
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nature of the response probabilities, and they are difficult to estimate and interpret. [See
Wooldridge (1999, Chapter 15).]

17.2 THE TOBIT MODEL

Another important kind of limited dependent variable is one that is roughly continuous
over strictly positive values but is zero for a nontrivial fraction of the population. An
example is the amount an individual spends on alcohol in a given month. In the popu-
lation of people over age 21 in the United States, this variable takes on a wide range of
values. For some significant fraction, the amount spent on alcohol is zero. The follow-
ing treatment omits verification of some details concerning the Tobit model. [These are
given in Wooldridge (1999, Chapter 16).]

Let y be a variable that is essentially continuous over strictly positive values but that
takes on zero with positive probability. Nothing prevents us from using a linear model
for y. In fact, a linear model might be a good approximation to E(y�x1,x2, …, xk), espe-
cially for xj near the mean values. But we would possibly obtain negative fitted values,
which leads to negative predictions for y; this is analogous to the problems with the
LPM for binary outcomes. Further, it is often useful to have an estimate of the entire
distribution of y given the explanatory variables.

The Tobit model is most easily defined as a latent variable model:

y* � �0 � x� � u, u�x ~ Normal(0,�2) (17.15)

y � max(0,y*). (17.16)

The latent variable y* satisfies the classical linear model assumptions; in particular, it
has a normal, homoskedastic distribution with a linear conditional mean. Equation
(17.16) implies that the observed variable, y, equals y* when y* � 0, but y � 0 when
y* � 0. Because y* is normally distributed, y has a continuous distribution over strictly
positive values. In particular, the density of y given x is the same as the density of y*
given x for positive values. Further,

P(y � 0�x) � P(y* � 0�x) � P(u � �x�)

� P(u/� � �x�/�) � �(�x�/�) � 1 � �(x�/�),

because u/� has a standard normal distribution and is independent of x; we have
absorbed the intercept into x for notational simplicity. Therefore, if (xi,yi) is a random
draw from the population, the density of yi given xi is

(2
�2)�1/2exp[�(y � xi�)2/(2�2)] � (1/�)	[(y � xi�)/�], y � 0 (17.17)

P(yi � 0�xi) � 1 � �(xi�/�), (17.18)

where 	 is the standard normal density function.
From (17.17) and (17.18), we can obtain the log-likelihood function for each obser-

vation i:
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�i(�,�) � 1(yi � 0)log[1 � �(xi�/�)]

� 1(yi � 0)log{(1/�)	[(yi � xi�)/�]};
(17.19)

notice how this depends on �, the standard deviation of u, as well as on the �j. The log-
likelihood for a random sample of size n is obtained by summing (17.19) across all i.

The maximum likelihood estimates of �
and � are obtained by maximizing the log-
likelihood; this requires numerical meth-
ods, although in most cases this is easily
done using a packaged routine.

As in the case of logit and probit, each
Tobit estimate comes with a standard error,
and these can be used to construct t statis-

tics for each �̂j; the matrix formula used to find the standard errors is complicated and
will not be presented here. [See, for example, Wooldridge (1999, Chapter 16).]

Testing multiple exclusion restrictions is easily done using the Wald test or the like-
lihood ratio test. The Wald test has a similar form to the logit or probit case; the LR test
is always given by (17.12), where, of course, we use the Tobit log-likelihood functions
for the restricted and unrestricted models.

Interpreting the Tobit Estimates

Using modern computers, the maximum likelihood estimates for Tobit models are usu-
ally not much more difficult to obtain than the OLS estimates of a linear model. Further,
the outputs from Tobit and OLS are often similar. This makes it tempting to interpret
the �̂j from Tobit as if these were estimates from a linear regression. Unfortunately,
things are not so easy.

From equation (17.15), we see that the �j measure the partial effects of the xj on
E(y*�x), where y* is the latent variable. Sometimes, y* has an interesting economic
meaning, but more often it does not. The variable we want to explain is y, as this is the
observed outcome (such as hours worked or amount of charitable contributions). For
example, as a policy matter, we are interested in the sensitivity of hours worked to
changes in marginal tax rates.

We can estimate P(y � 0�x) from (17.18), which, of course, allows us to estimate
P(y � 0�x). What happens if we want to estimate the expected value of y as a function
of x? In Tobit models, two expectations are of particular interest: E(y�y � 0,x), which
is sometimes called the “conditional expectation” because it is conditional on y � 0,
and E(y�x), which is, unfortunately, called the “unconditional expectation.” (Both
expectations are conditional on the explanatory variables.) The expectation E(y�y �
0,x) tells us, for given values of x, the expected value of y for the subpopulation where
y is positive. Given E(y�y � 0,x), we can easily find E(y�x):

E(y�x) � P(y � 0�x)�E(y�y � 0,x) � �(x�/�)�E(y�y � 0,x). (17.20)

To obtain E(y�y � 0,x), we use a result for normally distributed random variables:
if z ~ Normal(0,1), then E(z�z � c) � 	(c)/[1 � �(c)] for any constant c. But E(y�y �
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Q U E S T I O N  1 7 . 3

Let y be the number of extramarital affairs for a married woman
from the U.S. population; we would like to explain this variable in
terms of other characteristics of the woman—in particular, whether
she works outside of the home—her husband, and her family. Is this
a good candidate for a Tobit model?
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0,x) � x� � E(u�u � �x�) � x� � �E[(u/�)�(u/�) � �x�/�] � x� � �	(x�/�)/
�(x�/�), because 	(�c) � 	(c), 1 � �(�c) � �(c), and u/� has a standard normal
distribution independent of x.

We can summarize this as

E(y�y � 0,x) � x� � ��(x�/�), (17.21)

where �(c) � 	(c)/�(c) is called the inverse Mills ratio; it is the ratio between the
standard normal pdf and standard normal cdf, each evaluated at c.

Equation (17.21) is important. It shows that the expected value of y conditional on
y � 0 is equal to x�, plus a strictly positive term, which is � times the inverse Mills
ratio evaluated at x�/�. This equation also shows why using OLS only for observations
where yi � 0 will not always consistently estimate �; essentially, the inverse Mills ratio
is an omitted variable, and it is generally correlated with the elements of x.

Combining (17.20) and (17.21) gives

E(y�x) � �(x�/�)[x� � ��(x�/�)] � �(x�/�)x� � �	(x�/�), (17.22)

where the second equality follows because �(x�/�)�(x�/�) � 	(x�/�). This equation
shows that when y follows a Tobit model, E(y�x) is a nonlinear function of x and �,
which makes partial effects difficult to obtain. This is one of the costs of using a Tobit
model.

If xj is a continuous variable, we can find the partial effects using calculus. First,

�E(y�y � 0,x)/�xj � �j � �j� (x�/�),

assuming that xj is not functionally related to other regressors. By differentiating
�(c) � 	(c)/�(c) and using d�/dc � 	(c) and d	/dc � �c	(c), it can be shown that
d�/dc � ��(c)[c � �(c)]. Therefore,

�E(y�y � 0,x)/�xj � �j{1 � �(x�/�)[x�/� � �(x�/�)]}. (17.23)

This shows that the partial effect of xj on E(y�y � 0,x) is not determined just by �j. The
adjustment factor is given by the term in brackets, {�}, and depends on a linear function
of x, x�/� � (�0 � �1x1 � … � �kxk)/�. It can be shown that the adjustment factor is
strictly between zero and one. In practice, we can estimate (17.23) by plugging in the
MLEs of the �j and �. As with logit and probit models, we must plug in values for the
xj, usually the mean values or other interesting values.

All of the usual economic quantities such as elasticities can be computed. For exam-
ple, the elasticity of y with respect to x1, conditional on y � 0, is

� . (17.24)

This can be computed when x1 appears in various functional forms, including level, log-
arithmic, and quadratic forms.

x1

E(y�y � 0,x)
E(y�y � 0,x)

�x1

d�

dc
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If x1 is a binary variable, the effect of interest is obtained as the difference between
E(y�y � 0,x), with x1 � 1 and x1 � 0. Partial effects involving other discrete variables
(such as number of children) can be handled similarly.

We can use (17.22) to find the partial derivative of E(y�x) with respect to continu-
ous xj. This derivative accounts for the fact that people starting at y � 0 might choose
y � 0 when xj changes:

� �E(y�y � 0, x) � P(y � 0�x)� . (17.25)

Because P(y � 0�x) � �(x�/�),

� (�j/�)	(x�/�), (17.26)

and so we can estimate each term in (17.25), once we plug in the MLEs of the �j and
� and particular values of the xj.

Remarkably, when we plug (17.23) and (17.26) into (17.25) and use the fact that
�(c)�(c) � 	(c) for any c, we obtain

� �j�(x�/�). (17.27)

Equation (17.27) allows us to roughly compare OLS and Tobit estimates. The OLS
coefficients are direct estimates of �E(y�x)/�xj. To make the Tobit estimates compara-
ble, we multiply them by the adjustment factor at the mean values of the xj, �(x̄�̂/�̂).
Because this is just a value of the standard normal cdf, it is always between zero and
one. Since �(x�/�) � P(y � 0�x), equation (17.27) shows that the adjustment factor
approaches one as P(y � 0�x) approaches one. (In the extreme case where yi � 0 for all
i, Tobit and OLS produce identical estimates.)

E X A M P L E  1 7 . 2
( M a r r i e d  W o m e n ’ s  A n n u a l  L a b o r  S u p p l y )

The file MROZ.RAW includes data on hours worked for 753 married women, 428 of whom
worked for a wage outside the home during the year; 325 of the women worked zero
hours. For the women who worked positive hours, the range is fairly broad, extending
from 12 to 4,950. Thus, annual hours worked is a good candidate for a Tobit model. We
also estimate a linear model (using all 753 observations) by OLS. The results are given in
Table 17.2.

This table has several noteworthy features. First, the Tobit coefficient estimates have
the same sign as the corresponding OLS estimates, and the statistical significance of the
estimates is similar. (Possible exceptions are the coefficients on nwifeinc and kidsge6, but
the t statistics have similar magnitudes.) Second, while it is tempting to compare the mag-
nitudes of the OLS and Tobit estimates, this is not very informative. We must be careful

�E(y�x)

�xj

�P(y � 0�x)

�xj

E(y�y � 0,x)

�xj

�P(y � 0�x)

�xj

�E(y�x)

�xj
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not to think that, because the Tobit coefficient on kidslt6 is roughly twice that of the OLS
coefficient, the Tobit model implies a much greater response of hours worked to young
children.

We can multiply the Tobit estimates by the adjustment factors in (17.23) and (17.27),
evaluated at the estimates and the mean values, to obtain the partial effects on the condi-
tional expectations. The factor in (17.23) is about .451. For example, conditional on hours
being positive, a year of education (starting from the mean values of all variables) is esti-
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Table 17.2

OLS and Tobit Estimation of Annual Hours Worked

Dependent Variable: hours

Independent Linear Tobit
Variables (OLS) (MLE)

nwifeinc �3.45 �8.81
(2.54) (4.46)

educ 28.76 80.65
(12.95) (21.58)

exper 65.67 131.56
(9.96) (17.28)

exper2 �.700 �1.86
(.325) (0.54)

age �30.51 �54.41
(4.36) (7.42)

kidslt6 �442.09 �894.02
(58.85) (111.88)

kidsge6 �32.78 �16.22
(23.18) (38.64)

constant 1,330.48 965.31
(270.78) (446.44)

Log-Likelihood Value — �3,819.09
R-Squared .266 .274
�̂ 750.18 1,122.02
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mated to increase expected hours by about .451(80.65) � 36.4 hours. This is somewhat
larger than the OLS estimate. Using the approximation for one more young child gives a
drop of about (.451)(894.02) � 403.2 in expected hours . Of course, this does not make
sense for a woman who works less than 403.2 hours. It would be better to estimate the
expected values at two different values of kidslt6 and to form the difference, rather than to
use the calculus approximation.

The factor in (17.27), again evaluated at the mean values of the xj, is about .645.
Therefore, the magnitudes of the effects of each xj on expected hours—that is, when we
account for people who initially do not work, as well as those who originally do work—are
larger than when we condition on hours � 0.

We have reported an R-squared for both the linear regression and the Tobit models. The
R-squared for OLS is the usual one. For Tobit, the R-squared is the square of the correlation
coefficient between yi and ŷi, where ŷi � �(xi�̂/�̂)xi�̂ � �̂	(xi�̂/�̂) is the estimate of
E(y�x � xi). This is motivated by the fact that the usual R-squared for OLS is equal to the
squared correlation between the yi and the fitted values [see equation (3.29)]. In nonlinear
models such as the Tobit model, the squared correlation coefficient is not identical to an
R-squared based on a sum of squared residuals as in (3.28). This is because the fitted val-
ues, as defined earlier, and the residuals, yi � ŷi, are not uncorrelated in the sample. An
R-squared defined as the squared correlation coefficient between yi and ŷi has the advan-
tage of always being between zero and one; an R-squared based on a sum of squared resid-
uals need not have this feature.

We can see that, based on the R-squared measures, the Tobit conditional mean func-
tion fits the hours data somewhat, but not substantially, better. However, we should
remember that the Tobit estimates are not chosen to maximize an R-squared—they maxi-
mize the log-likelihood function—whereas the OLS estimates are the values that do pro-
duce the highest R-squared.

Specification Issues in Tobit Models

The Tobit model, and in particular the formulas for the expectations in (17.21) and
(17.22), rely crucially on normality and homoskedasticity in the underlying latent vari-
able model. When E(y�x) � �0 � �1x1 � … � �kxk, we know from Chapter 5 that con-
ditional normality of y does not play a role in unbiasedness, consistency, or large
sample inference. Heteroskedasticity does not affect unbiasedness or consistency of
OLS, although we must compute robust standard errors and test statistics to perform
approximate inference. In a Tobit model, if any of the assumptions in (17.15) fail, then
it is hard to know what the Tobit MLE is estimating. Nevertheless, for moderate depar-
tures from the assumptions, the Tobit model is likely to provide good estimates of the
partial effects on the conditional means. It is possible to allow for more general assump-
tions in (17.15), but such models are much more complicated to estimate and interpret.

One potentially important limitation of the Tobit model, at least in certain applica-
tions, is that the expected value conditional on y � 0 is closely linked to the probabil-
ity that y � 0. This is clear from equations (17.23) and (17.26). In particular, the effect
of xj on P(y � 0�x) is proportional to �j, as is the effect on E(y�y � 0,x), where both
functions multiplying �j are positive and depend on x only through x�/�. This rules out
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some interesting possibilities. For example, consider the relationship between the value
of a life insurance policy and a person’s age. Young people may be less likely to have
life insurance at all, so the probability that y � 0 increases with age (at least up to a
point). Conditional on having life insurance, the value of policies might decrease with
age, since life insurance becomes less important as people near the end of their lives.
This possibility is not allowed for in the Tobit model.

One way to informally evaluate whether the Tobit model is appropriate is to esti-
mate a probit model where the binary outcome, say w, equals one if y � 0, and w � 0
if y � 0. Then, from (17.18), w follows a probit model, where the coefficient on xj is
�j � �j/�. This means we can estimate the ratio of �j to � by probit, for each j. If the
Tobit model holds, the probit estimate, �̂j, should be “close” to �̂j/�̂ , where �̂j and �̂
are the Tobit estimates. These will never be identical because of sampling error. But we
can look for certain problematic signs. For example, if �̂j is significant and negative, but
�̂j is positive, the Tobit model might not be appropriate. Or, if �̂j and �̂j are the same
sign, but ��̂j/�̂ � is much larger or smaller than ��̂j�, this could also indicate problems. We
should not worry too much about sign changes or magnitude differences on explanatory
variables that are insignificant in both models.

In the annual hours worked example, �̂ � 1,122.02. When we divide the Tobit co-
efficient on nwifeinc by �̂, we obtain �8.81/1,122.02 � �.0079; the probit coeffi-
cient on nwifeinc is about �.012, which is different, but not dramatically so. On
kidslt6, the coefficient estimate over �̂ is about �.797, compared with the probit esti-
mate of �.868. Again, this is not a huge difference, but it indicates that having small
children has a larger effect on the initial labor force participation decision than on how
many hours a woman chooses to work once she is in the labor force. (Tobit effectively
averages these two effects together.) We do not know whether the effects are statisti-
cally different, but they are of the same order of magnitude.

What happens if we conclude that the Tobit model is inappropriate? There are mod-
els, usually called hurdle or two-part models, that can be used when Tobit seems unsuit-
able. These all have the property that P(y � 0�x) and E(y�x,y � 0) depend on different
parameters, and so xj can have very dissimilar effects on these two functions. [See
Wooldridge (1999, Chapter 16) for a description of these models.]

17.3 THE POISSON REGRESSION MODEL

Another kind of nonnegative dependent variable is a count variable, which can take on
nonnegative integer values: {0,1,2,…}. We are especially interested in cases where y
takes on relatively few values, including zero. Examples include the number of children
ever born to a woman, the number of times someone is arrested in a year, or the num-
ber of patents applied for by a firm in a year. For the same reasons discussed for binary
and Tobit responses, a linear model for E(y�x1, …, xk) might not provide the best fit over
all values of the explanatory variables. (Nevertheless, it is always informative to start
with a linear model, as we did in Example 3.5.)

As with a Tobit outcome, we cannot take the logarithm of a count variable because
it takes on the value zero. A profitable approach is to model the expected value as an
exponential function:
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E(y�x1,x2, …, xk) � exp(�0 � �1x1 � … � �k xk). (17.28)

Because exp(�) is always positive, (17.28) ensures that predicted values for y will also
be positive.

While (17.28) is more complicated than a linear model, we basically already know
how to interpret the coefficients. Taking the log of equation (17.28) shows that

log[E(y�x1,x2, …, xk)] � �0 � �1x1 � … � �kxk, (17.29)

so that the log of the expected value is linear. Therefore, using the approximation prop-
erties of the log function that we have used often in previous chapters,

%�E(y�x) � (100�j)�xj.

In other words, 100�j is roughly the percentage change in E(y�x), given a one-unit
increase in xj. Sometimes, a more accurate estimate is needed, and we can easily find
one by looking at discrete changes in the expected value. Keep all explanatory variables
except xk fixed and let xk

0 be the initial value and xk
1 the subsequent value. Then, the pro-

portionate change in the expected value is

[exp(�0 � xk�1�k�1 � �kxk
1)/exp(�0 � xk�1�k�1 � �kxk

0)] � 1 � exp(�k�xk) � 1,

where xk�1�k�1 is shorthand for �1x1 � … � �k�1xk�1, and �xk � xk
1 � xk

0. When
�xk � 1—for example, if xk is a dummy variable that we change from zero to one—
then the change is exp(�k) � 1. Given �̂k, we obtain exp(�̂k) � 1 and multiply this by
100 to turn the proportionate change into a percentage change.

By reasoning similar to the linear model, if �j multiplies log(xj), then �j is an elas-
ticity. The bottom line is that, for practical purposes, we can interpret the coefficients
in equation (17.28) as if we have a linear model, with log(y) as the dependent variable.
There are some subtle differences that we need not study here.

Because (17.28) is nonlinear in its parameters—remember, exp(�) is a nonlinear
function—we cannot use linear regression methods. We could use nonlinear least
squares, which, just as with OLS, minimizes the sum of squared residuals. It turns out,
however, that all standard count data distributions exhibit heteroskedasticity, and
nonlinear least squares does not exploit this [see Wooldridge (1999, Chapter 12)].
Instead, we will rely on maximum likelihood and the important related method of
quasi-maximum likelihood estimation.

In Chapter 4, we introduced normality as the standard distributional assumption for
linear regression. The normality assumption is reasonable for (roughly) continuous
dependent variables that can take on a large range of values. A count variable cannot
have a normal distribution (since the normal distribution is for continuous variables that
can take on all values), and if it takes on very few values, the distribution can be very
different from normal. Instead, the nominal distribution for count data is the Poisson
distribution.

Because we are interested in the effect of explanatory variables on y, we must look
at the Poisson distribution conditional on x. The Poisson distribution is entirely deter-
mined by its mean, so we only need to specify E(y�x). We assume this has the same
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form as (17.28), which we write in shorthand as exp(x�). Then, the probability that y
equals the value h, conditional on x, is

P(y � h�x) � exp[�exp(x�)][exp(x�)]h/h!, h � 0,1, …,

where h! denotes factorial (see Appendix B). This distribution, which is the basis for the
Poisson regression model, allows us to find conditional probabilities for any values of
the explanatory variables. For example, P(y � 0�x) � exp[�exp(x�)]. Once we have esti-
mates of the �j, we can plug them into the probabilities for various values of x.

Given a random sample {(xi,yi): i � 1,2, …, n}, we can construct the log-likelihood
function:

�(�) � �
n

i�1
�i(�) � �

n

i�1
{yixi� � exp(xi�)}, (17.30)

where we drop the term �log(yi!) because it does not depend on �. This log-likelihood
function is simple to maximize, although the Poisson MLEs are not obtained in closed
form.

The standard errors of the Poisson estimates �̂j are easy to obtain after the log-
likelihood function has been maximized; the formula is in the chapter appendix. These
are reported along with the �̂j by any software package.

While Poisson MLE analysis is a natural first step for count data, it is often much
too restrictive. All of the probabilities and higher moments of the Poisson distribution
are determined entirely by the mean. In particular, the variance is equal to the mean:

Var(y�x) � E(y�x). (17.31)

This is restrictive and has been shown to be violated in many applications. Fortunately,
the Poisson distribution has a very nice robustness property: whether or not the Poisson
distribution holds, we still get consistent, asymptotically normal estimators of the �j.
(This is analogous to the OLS estimator, which is consistent and asymptotically normal
whether or not the normality assumption holds; yet OLS is the MLE under normality.)
[See Wooldridge (1999, Chapter 19) for details.]

When we use Poisson MLE, but we do not assume that the Poisson distribution is
entirely correct, we call the analysis quasi-maximum likelihood estimation (QMLE).
The Poisson QMLE is very handy because it is programmed in many econometrics
packages. However, unless the Poisson variance assumption (17.31) holds, the standard
errors need to be adjusted.

A simple adjustment to the standard errors is available when we assume that the
variance is proportional to the mean:

Var(y�x) � �2E(y�x), (17.32)

where �2 � 0 is an unknown parameter. When �2 � 1, we obtain the Poisson variance
assumption. When �2 � 1, the variance is greater than the mean for all x; this is called
overdispersion because the variance is larger than in the Poisson case, and it is
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observed in many applications of count regressions. The case �2 � 1, called underdis-
persion, is much less common but is allowed in (17.32).

Under (17.32), it is easy to adjust the usual Poisson MLE standard errors. Let
�̂j denote the Poisson QMLE and define the residuals as û i � yi � ŷ i, where ŷ i �
exp(�̂0 � �̂1xi1 � … � �̂kxik) is the fitted value. As usual, the residual for observation
i is the difference between yi and its fitted value. A consistent estimator of �2 is 

(n � k � 1)�1 �
n

i�1
ûi

2/ŷ i, where the division by ŷ i is the proper heteroskedasticity adjust-

ment, and n � k � 1 is the df given n observations and k � 1 estimates �̂0, �̂1, …, �̂k.
Letting �̂ be the positive square root of �̂ 2, we multiply the usual Poisson standard
errors by �̂. If �̂ is notably greater than one, the corrected standard errors can be much
bigger than the nominal, generally incorrect, Poisson MLE standard errors.

Even (17.32) is not entirely general. Just as in the linear model, we can obtain stan-
dard errors for the Poisson QMLE that do not restrict the variance at all. [See
Wooldridge (1999) for further explanation.]

Under the Poisson distributional assumption, we can use the likelihood ratio statis-
tic  to test exclusion restrictions, which, as
always, has the form in (17.12). If we have
q exclusion restrictions, the statistic is dis-
tributed approximately as �q

2 under the
null. Under the less restrictive assumption
(17.32), a simple adjustment is available
(and then we call the statistic the quasi-

likelihood ratio statistic): we divide (17.12) by �̂ 2, where �̂ 2 is obtained from the
unrestricted model.

E X A M P L E  1 7 . 3
( P o i s s o n  R e g r e s s i o n  f o r  N u m b e r  o f  A r r e s t s )

We now apply the Poisson regression model to the arrest data used, among other places,
in Example 9.1. The dependent variable, narr86, is the number of times a man is arrested
during 1986. This variable is zero for 1,970 out of the 2,725 men in the sample, and only
eight values of narr86 are greater than five. Thus, a Poisson regression model is more appro-
priate than a linear regression model. Table 17.3 also presents the results of OLS estimation
of a linear regression model.

The standard errors for OLS are the usual ones; we could certainly have made these
robust to heteroskedasticity. The standard errors for Poisson regression are the usual maxi-
mum likelihood standard errors. Because �̂ � 1.232, the standard errors for Poisson regres-
sion should be inflated by this factor (so each corrected standard error is about 23%
higher). For example, a more reliable standard error for tottime is 1.23(.015) � .0185,
which gives a t statistic of about 1.3. The adjustment to the standard errors reduces the sig-
nificance of all variables, but several of them are still very statistically significant.

The OLS and Poisson coefficients are not directly comparable, and they have very dif-
ferent meanings. For example, the coefficient on pcnv implies that, if �pcnv � .10, the
expected number of arrests falls by .013 (pcnv is the proportion of prior arrests that led to
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Suppose that we obtain �̂2 � 2. How will the adjusted standard
errors compare with the usual Poisson MLE standard errors? How
will the quasi-LR statistic compare with the usual LR statistic?
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Table 17.3

Determinants of Number of Arrests for Young Men

Dependent Variable: narr86

Independent Linear Exponential
Variables (OLS) (Poisson QMLE)

pcnv �.132 �.402
(.040) (.085)

avgsen �.011 �.024
(.012) (.020)

tottime .012 .024
(.009) (.015)

ptime86 �.041 �.099
(.009) (.021)

qemp86 �.051 �.038
(.014) (.029)

inc86 �.0015 �.0081
(.0003) (.0010)

black .327 .661
(.045) (.074)

hispan .194 .500
(.040) (.074)

born60 �.022 �.051
(.033) (.064)

constant .577 �.600
(.038) (.067)

Log-Likelihood Value — �2,248.76
R-Squared .073 .077
�̂ .829 1.232
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conviction). The Poisson coefficient implies that �pcnv � .10 reduces expected arrests by
about 4% [.402(.10) � .0402, and we multiply this by 100 to get the percentage effect].
As a policy matter, this suggests we can reduce overall arrests by about 4% if we can
increase the probability of conviction by .1.

The Poisson coefficient on black implies that, other being factors equal, the expected
number of arrests for a black man is about 66% higher than for a white man. The coeffi-
cient is highly statistically significant, as is the coefficient on hispan.

As with the Tobit application in Table 17.2, we report an R-squared for Poisson regres-
sion. This squared correlation coefficient between yi and ŷi � exp(�̂0 � �̂1xi1 � … � �̂kxik).
The motivation for this goodness-of-fit measure is the same as for the Tobit model. We see
that the exponential regression model, estimated by Poisson QMLE, fits slightly better.
Remember that the OLS estimates are chosen to maximize the R-squared, but the Poisson
estimates are not. (They are selected to maximize the log-likelihood function.)

Other count data regression models have been proposed and used in applications, which
generalize the Poisson distribution in a variety of ways. If we are interested in the
effects of the xj on the mean response, there is little reason to go beyond Poisson regres-
sion: it is simple, often gives good results, and has the robustness property discussed
earlier. In fact, we could apply Poisson regression to a y that is a Tobit-like outcome,
provided (17.28) holds. This might give good estimates of the mean effects. Extensions
of Poisson regression are more useful when we are interested in estimating probabili-
ties, such as P(y � 1�x). [See, for example, Cameron and Trivedi (1998).]

17.4 CENSORED AND TRUNCATED 
REGRESSION MODELS

A model with a similar statistical structure to that of the Tobit model is called the cen-
sored regression model. While the terms “Tobit” and “censored regression” have often
been used interchangeably in econometrics, in practice there is a very important differ-
ence. The Tobit model is applied to outcome variables that are roughly continuous over
positive values but have a positive probability of equaling zero. We saw an example of
this in the case of married women’s labor supply in Example 17.2 and discussed other
examples such as amount of charitable contributions. Unlike the Tobit model, the cen-
sored regression model arises due to data censoring. In particular, the underlying
dependent variable is roughly continuous—and, we will assume, normally distributed,
conditional on the explanatory variables—but it is censored below or above a certain
value due to the way we collect the data or to institutional constraints. In a sense, the
problem solved by censored regression is a missing data problem, but we have useful
information on the nature of the missing data.

A truncated regression model arises when we exclude, on the basis of y, a subset
of the population in our sampling scheme. In other words, we do not have a random
sample from the underlying population, but we know the rule that was used to include
units in the sample. This rule is determined by whether y is above or below a certain
threshold. We more fully explain the difference between censored and truncated regres-
sion models later.
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Censored Regression Models

While censored regression models can be defined without distributional assumptions,
in this subsection, we study the censored normal regression model. The variable we
would like to explain, y, follows the classical linear model. For emphasis, we put an i
subscript on a random draw from the population:

yi � �0 � xi� � ui, ui�xi,ci ~ Normal(0,�2) (17.33)

wi � min(yi,ci). (17.34)

Rather than observing yi, we only observe it if it is less than a censoring value, ci. Notice
that (17.33) includes the assumption that ui is independent of ci (at least once we con-

dition on the xi). (For concreteness, we
explicitly consider censoring from above,
or right censoring; the problem of censor-
ing from below, or left censoring, is han-
dled similarly.)

One example of right data censoring is
top coding. When a variable is top coded,
we know its value only up to a certain
threshold. For responses greater than the
threshold, we only know that the variable
is at least as large as the threshold. For
example, in some surveys, family wealth

is top coded. Suppose that respondents are asked their wealth, but people are allowed
to respond with “more than $500,000.” Then, we observe actual wealth for those
respondents whose wealth is less than $500,000 but not for those whose wealth is
greater than $500,000. In this case, the censoring threshold, ci, is the same for all i. In
many situations, the censoring threshold changes with individual or family character-
istics.

If we observed a random sample for (x,y), we would simply estimate � by OLS, and
statistical inference would be standard. (We again absorb the intercept into x for sim-
plicity.) The censoring causes problems. Using arguments similar to the Tobit model,
an OLS regression using only the uncensored observations—that is, those with
yi � ci—produces inconsistent estimators of the �j. An OLS regression of wi on xi,
using all observations, does not consistently estimate the �j, unless there is no censor-
ing. This is similar to the Tobit case, but the problem is much different. In the Tobit
model, we are modeling economic behavior, which often yields zero outcomes; the
Tobit model is supposed to reflect this. With censored regression, we have a data col-
lection problem because, for some reason, the data are censored.

Under the assumptions in (17.33) and (17.34), we can estimate � (and �2) by max-
imum likelihood, given a random sample on (xi,wi). For this, we need the density of wi,
given (xi,ci). For uncensored observations, wi � yi, and the density of wi is the same as
that for yi: Normal(xi�,�2). For censored observations, we need the probability that wi

equals the censoring value, ci, given xi:

P(wi � ci�xi) � P(yi � ci�xi) � P(ui � ci � xi�) � 1 � �[(ci � xi�)/�].
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Q U E S T I O N  1 7 . 5

Let mvpi be the marginal value product for worker i; this is the price
of a firm’s good multiplied by the marginal product of the worker.
Assume mvpi is a linear function of exogenous variables, such as
education, experience, and so on, as well as being an unobservable
error. Under perfect competition and without institutional con-
straints, each worker is paid his or her marginal value product. Let
minwagei denote the minimum wage for worker i, which varies by
state. We observe wagei, which is the larger of mvpi and minwagei.
Write the appropriate model for the observed wage.
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We can combine these two parts to obtain the density of wi, given xi and ci:

f(w�xi,ci) � 1 � �[(ci � xi�)/�], w � ci, (17.35)

� (1/�)	 [(w � xi�)/�], w � ci. (17.36)

The log-likelihood for observation i is obtained by taking the natural log of the density
for each i. We can maximize the sum of these across i, with respect to the �j and �, to
obtain the MLEs.

It is good to know that we can interpret the �j just as in a linear regression model
under random sampling. This is much different than the Tobit applications, where the
expectations of interest are nonlinear functions of the �j.

An important application of censored regression models is duration analysis. A
duration is a variable that measures the time before a certain event occurs. For exam-
ple, we might wish to explain the number of days before a felon released from prison
is arrested. For some felons, this may never happen, or it may happen after such a long
time that we must censor the duration in order to analyze the data.

In duration applications of censored normal regression, as well as in top coding, we
often use the natural log as the dependent variable, which means we also take the log
of the censoring threshold in (17.34). As we have seen throughout this text, using the
log transformation for the dependent variable causes the parameters to be interpreted as
percentage changes. Further, as with many positive variables, the log of a duration typ-
ically has a distribution closer to normal than the duration itself.

E X A M P L E  1 7 . 4
( D u r a t i o n  o f  R e c i d i v i s m )

The file RECID.RAW contains data on the time in months until an inmate in a North Carolina
prison is arrested after being released from prison; call this durat. Some inmates partici-
pated in a work program while in prison. We also control for a variety of demographic vari-
ables, as well as for measures of prison and criminal history.

Out of 1,445 inmates, 893 had not been arrested during the period they were followed;
therefore, these observations are censored. The censoring times differed among inmates,
ranging from 70 to 81 months.

Table 17.4 gives the results of censored normal regression for log(durat). Each of the
coefficients, when multiplied by 100, gives the estimated percentage change in expected
duration given a ceteris paribus increase of one unit in the corresponding explanatory vari-
able.

Several of the coefficients in Table 17.4 are interesting. The variables priors (number of
prior convictions) and tserved (total months spent in prison) have negative effects on the
time until the next arrest occurs. This suggests that these variables measure proclivity for
criminal activity rather than representing a deterrent effect. For example, an inmate with
one more prior conviction has a duration until next arrest that is almost 14% less. A year
of time served reduces duration by about 100�12(.019) � 22.8%. A somewhat surprising
finding is that a man serving time for a felony has an estimated expected duration that is
almost 56% (exp(.444) � 1 � .56) longer than a man serving time for a nonfelony.

Chapter 17 Limited Dependent Variable Models and Sample Selection Corrections

553

d  7/14/99 8:28 PM  Page 553



Part 3 Advanced Topics

554

Table 17.4

Censored Regression Estimation of Criminal Recidivism

Dependent Variable: log(durat)

Independent Variables

workprg �.063
(.120)

priors �.137
(.021)

tserved �.019
(.003)

felon .444
(.145)

alcohol �.635
(.144)

drugs �.298
(.133)

black �.543
(.117)

married .341
(.140)

educ .023
(.025)

age .0039
(.0006)

constant 4.099
(0.348)

Log-Likelihood Value �1,597.06
�̂ 1.810
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Those with a history of drug or alcohol abuse have substantially shorter expected dura-
tions until the next arrest. (The variables alcohol and drugs are binary variables.) Older men,
and men who were married at the time of incarceration, are expected to have significantly
longer durations until next arrest. Black men have substantially shorter durations, on the
order of 42% [exp(�.543) � 1 � �.42].

The key policy variable, workprg, does not have the desired effect. The point estimate
is that, other things being equal, men who participated in the work program have esti-
mated recidivism durations that are about 6.3% shorter than men who did not participate.
The coefficient has a small t statistic, so we would probably conclude that the work pro-
gram has no effect. This could be due to a self-selection problem, or it could be a product
of the way men were assigned to the program. Of course, it may simply be that the pro-
gram was ineffective.

In this example, it is crucial to account for the censoring, especially because almost
62% of the durations are censored. If we apply straight OLS to the entire sample and
treat the censored durations as if they were uncensored, the coefficient estimates are
markedly different. In fact, they are all shrunk toward zero. For example, the coefficient
on priors becomes �.059 (se � .009), and that on alcohol becomes �.262 (se � .060).
While the directions of the effects are the same, the importance of these variables is
greatly diminished. The censored regression estimates are much more reliable.

There are other ways of measuring the effects of each of the explanatory variables
in Table 17.4 on the duration, rather than focusing only on the expected duration. A
treatment of modern duration analysis is beyond the scope of this text. [For an intro-
duction, see Wooldridge (1999, Chapter 20).]

If any of the assumptions of the censored normal regression model are violated—in
particular, if there is heteroskedasticity or nonnormality—the MLEs are generally
inconsistent. This shows that the censoring is potentially very costly, as OLS using an
uncensored sample requires neither normality nor homoskedasticity for consistency.
There are methods that do not require us to assume a distribution, but they are more
advanced. [See Wooldridge (1999, Chapter 16).]

Truncated Regression Models

A truncated regression model is similar to a censored regression model, but it differs in
one major respect: in a truncated regression model, we do not observe any information
about a certain segment of the population. This typically happens when a survey targets
a particular subset of the population and, perhaps due to cost considerations, entirely
ignores the other part of the population.

For example, Hausman and Wise (1977) used data from a negative income tax
experiment to study various determinants of earnings. To be included in the study, a
family had to have income less than 1.5 times the 1967 poverty line, where the poverty
line depended on family size.

The truncated normal regression model begins with an underlying population
model that satisfies the classical linear model assumptions:
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y � �0 � x� � u, u�x ~ Normal(0,�2). (17.37)

Recall that this is a strong set of assumptions, because u must not only be independent
of x, but also normally distributed. We focus on this model because relaxing the
assumptions is difficult.

Under (17.37) we know that, given a random sample from the population, OLS is
the most efficient estimation procedure. The problem arises because we do not observe
a random sample from the population: Assumption MLR.2 is violated. In particular, a
random draw (xi,yi) is observed only if yi 
 ci, where ci is the truncation threshold that
can depend on exogenous variables—in particular, the xi. (In the Hausman and Wise
example, ci depends on family size.) This means that, if {(xi,yi): i � 1, …, n} is our
observed sample, then yi is necessarily less than or equal to ci. This differs from the cen-
sored regression model, where yi can be larger than ci; we simply do not observe yi if
yi � ci. In a censored regression model, we observe xi for any randomly drawn obser-
vation from the population; in the truncated model, we only observe xi if yi 
 ci.

To estimate the �j (along with �), we need the distribution of yi, given that yi 
 ci

and xi. This is written as

g(y�xi,ci) � , y 
 ci, (17.38)

where f (y�xi�,�2) denotes the normal density with mean �0 � xi� and variance �2, and
F(ci�xi�,�2) is the normal cdf with the same mean and variance, evaluated at ci. This
expression for the density, conditional on yi 
 ci, makes intuitive sense: it is the popu-
lation density for y, given x, divided by the probability that yi is less than or equal to ci

(given xi), P(yi 
 ci�xi). In effect, we renormalize the density by dividing by the area
under f(�|xi�,�2) that is to the left of ci.

If we take the log of (17.38), sum across all i, and maximize the result with respect
to the �j and �2, we obtain the maximum likelihood estimators. This leads to consis-
tent, approximately normal estimators. The inference, including standard errors and
log-likelihood statistics, is standard.

We could analyze the data from Example 17.4 as a truncated sample if we drop all
data on an observation whenever it is censored. This would give us 552 observations
from a truncated normal distribution, where the truncation point differs across i.
However, we would never analyze duration data (or top coded data) in this way, as it
eliminates useful information. The fact that we know a lower bound for 893 durations,
along with the explanatory variables, is useful information; censored regression uses
this information, while truncated regression does not.

A better example is given in Hausman and Wise (1977), where they emphasize that
OLS applied to a sample truncated from above generally produces estimators biased
toward zero. Intuitively, this makes sense. Suppose that the relationship of interest is
between income and education levels. If we only observe people whose income is below
a certain threshold, we are lopping off the upper end. This tends to flatten the estimated
line relative to the true regression line in the whole population. See Figure 17.2 for the
case of a single explanatory variable and the same truncation point for each observation.

f(y�xi�, �2)

F(ci�xi�, �2)
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As with censored regression, if the underlying homoskedastic normal assumption in
(17.37) is violated, the truncated normal MLE is biased and inconsistent. Methods that
do not require these assumptions are available; see Wooldridge (1999, Chapter 17) for
discussion and references.

17.5 SAMPLE SELECTION CORRECTIONS

Truncated regression is a special case of a general problem known as nonrandom sam-
ple selection. But survey design is not the only cause of nonrandom sample selection.
Often, respondents fail to provide answers to certain questions, which leads to missing
data for the dependent or independent variables. Because we cannot use these observa-
tions in our estimation, we should wonder whether dropping them leads to bias in our
estimators.

Another general example is usually called incidental truncation. Here, we do not
observe y because of the outcome of another variable. The leading example is estimat-
ing the so-called wage offer function from labor economics. Interest lies in how various
factors, such as education, affect the wage an individual could earn in the labor force.
For people who are in the work force, we observe the wage offer as the current wage.
But, for those currently out of the work force, we do not observe the wage offer.
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A true, or population regression line, and the incorrect regression line for the truncated
population with incomes below $50,000.

income
(in thousands

of dollars)

20

150

50

15

educ
(in years)

10

true regression
line

regression line
for truncated
population
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Because working may be systematically correlated with unobservables that affect the
wage offer, using only working people—as we have in all wage examples so far—might
produce biased estimators of the parameters in the wage offer equation.

Nonrandom sample selection can also arise when we have panel data. In the sim-
plest case, we have two years of data, but, due to attrition, some people leave the sam-
ple. This is particularly a problem in policy analysis, where attrition may be related to
the effectiveness of a program.

When is OLS on the Selected Sample Consistent?

In Section 9.4, we provided a brief discussion of the kinds of sample selection that can
be ignored. The key distinction is between exogenous and endogenous sample selection.
In the truncated Tobit case, we clearly have endogenous sample selection, and OLS is
biased and inconsistent. On the other hand, if our sample is determined solely by an
exogenous explanatory variable, we have exogenous sample selection. Cases between
these extremes are less clear, and we now provide careful definitions and assumptions
for them. The population model is

y � �0 � �1x1 � … � �kxk � u, E(u�x1,x2, …, xk) � 0. (17.39)

It is useful to write the population model for a random draw as

yi � xi� � ui, (17.40)

where we use xi� as shorthand for �0 � �1xi1 � �2xi2 � … � �kxik. Now, let n be the
size of a random sample from the population. If we could observe yi and each xij for all
i, we would simply use OLS. Assume that, for some reason, either yi or some of the
independent variables are not observed for certain i. For at least some observations, we
observe the full set of variables. Define a selection indicator si for each i by si � 1 if
we observe all of (yi,xi), and si � 0 otherwise. Thus, si � 1 indicates that we will use
the observation in our analysis; si � 0 means the observation will not be used. We are
interested in the statistical properties of the OLS estimators using the selected sample,
that is, using observations for which si � 1. Therefore, we use fewer than n observa-
tions, say n1.

It turns out to be easy to obtain conditions under which OLS is consistent (and even
unbiased). Effectively, rather than estimating (17.40), we can only estimate the equa-
tion

siyi � sixi� � siui. (17.41)

When si � 1, we simply have (17.40); when si � 0, we simply have 0 � 0 � 0, which
clearly tells us nothing about �. Regressing siyi on sixi for i � 1,2, …, n is the same as
regressing yi on xi using the observations for which si � 1. Thus, we can learn about
the consistency of the �̂j by studying (17.41) on a random sample.

From our analysis in Chapter 5, the OLS estimators from (17.41) are consistent if
the error term has zero mean and is uncorrelated with each explanatory variable. In the
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population, the zero mean assumption is E(su) � 0, and the zero correlation assump-
tions can be stated as

E[(sxj)(su)] � E(sxju) � 0, (17.42)

where s, xj, and u are random variables representing the population; we have used the
fact that s2 � s because s is a binary variable. Condition (17.42) is different from what
we need if we observe all variables for a random sample: E(xju) � 0. Therefore, in the
population, we need u to be uncorrelated with sxj.

The key condition for unbiasedness is E(su�sx1, …, sxk) � 0. As usual, this is a
stronger assumption than that needed for consistency.

If s is a function only of the explanatory variables, then sxj is just a function of x1,
x2, …, xk; by the conditional mean assumption in (17.39), sxj is also uncorrelated with
u. In fact, E(su�sx1, …, sxk) � sE(u�sx1, …, sxk) � 0, because E(u�x1, …, xk) � 0. This is
the case of exogenous sample selection, where si � 1 is determined entirely by
xi1, …, xik. As an example, if we are estimating a wage equation where the explanatory
variables are education, experience, tenure, gender, marital status, and so on—which
are assumed to be exogenous—we can select the sample on the basis of any or all of
the explanatory variables.

If sample selection is entirely random in the sense that si is independent of (xi,ui),
then E(sxju) � E(s)E(xju) � 0, because E(xju) � 0 under (17.39). Therefore, if we begin
with a random sample and randomly drop observations, OLS is still consistent. In fact,
OLS is again unbiased in this case, provided there is not perfect multicollinearity in the
selected sample.

If s depends on the explanatory variables and additional random terms that are inde-
pendent of x and u, OLS is also consistent and unbiased. For example, suppose that IQ
score is an explanatory variable in a wage equation, but IQ is missing for some people.
Suppose we think that selection can be described by s � 1 if IQ � v, and s � 0 if
IQ � v, where v is an unobserved random variable that is independent of IQ, u, and the
other explanatory variables. This means that we are more likely to observe an IQ that is
high, but there is always some chance of not observing any IQ. Conditional on the
explanatory variables, s is independent of u, which means that E(u�x1, …, xk,s) �
E(u�x1, …, xk), and the last expectation is zero by assumption on the population model.
If we add the homoskedasticity assumption E(u2�x,s) � E(u2) � �2, then the usual OLS
standard errors and test statistics are valid.

So far, we have shown several situations where OLS on the selected sample is unbi-
ased, or at least consistent. When is OLS on the selected sample inconsistent? We
already saw one example: regression using a truncated sample. When the truncation is
from above, si � 1 if yi 
 ci, where ci is the truncation threshold. Equivalently, si � 1
if ui 
 ci � xi�. Because si depends directly on ui, si and ui will not be uncorrelated,
even conditional on xi. This is why OLS on the selected sample does not consistently
estimate the �j. There are less obvious ways that s and u can be correlated; we consider
this in the next subsection.

The results on consistency of OLS extend to instrumental variables estimation. If
the IVs are denoted zh in the population, the key condition for consistency of 2SLS is
E(szhu) � 0, which holds if E(u�z,s) � 0. Therefore, if selection is determined entirely
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by the exogenous variables z, or if s depends on other factors that are independent of u
and z, then 2SLS on the selected sample is generally consistent. We do need to assume
that the explanatory and instrumental variables are appropriately correlated in the
selected part of the population. Wooldridge (1999, Chapter 17) contains precise state-
ments of these assumptions.

It can also be shown that, when selection is entirely a function of the exogenous
variables, maximum likelihood estimation of a nonlinear model—such as a logit or pro-
bit model—produces consistent, asymptotically normal estimators, and the usual stan-
dard errors and test statistics are valid. [Again, see Wooldridge (1999, Chapter 17).]

Incidental Truncation

As we mentioned earlier, a common form of sample selection is called incidental trun-
cation. We again start with the population model in (17.39). However, we assume that
we will always observe the explanatory variables xj. The problem is, we only observe y
for a subset of the population. The rule determining whether we observe y does not
depend directly on the outcome of y. A leading example is when y � log(wageo), where
wageo is the wage offer, or the hourly wage that an individual could receive in the labor
market. If the person is actually working at the time of the survey, then we observe the
wage offer because we assume it is the observed wage. But for people out of the work
force, we cannot observe wageo. Therefore, the truncation of wage offer is incidental
because it depends on another variable, namely, labor force participation. Importantly,
we would generally observe all other information about an individual, such as educa-
tion, prior experience, gender, marital status, and so on.

The usual approach to incidental truncation is to add an explicit selection equation
to the population model of interest:

y � x� � u, E(u�x) � 0 (17.43)

s � 1[z� � v � 0], (17.44)

where s � 1 if we observe y, and zero otherwise. We assume that elements of x and
z are always observed, and we write x� � �0 � �1x1 � … � �kxk and z� � �0 �
�1z1 � … � �mzm.

The equation of primary interest is (17.43), and we could estimate � by OLS given
a random sample. The selection equation, (17.44), depends on observed variables, zh,
and an unobserved error, v. A standard assumption, which we will make, is that z is
exogenous in (17.43):

E(u�x,z) � 0.

In fact, for the following proposed methods to work well, we will require that x be a
strict subset of z: any xj is also an element of z, and we have some elements of z that are
not also in x. We will see later why this is crucial.

The error term v in the sample selection equation is assumed to be independent of
z (and therefore x). We also assume that v has a standard normal distribution. We can
easily see that correlation between u and v generally causes a sample selection problem.
To see why, assume that (u,v) is independent of z. Then, taking the expectation of
(17.43), conditional on z and v, and using the fact that x is a subset of z gives
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E(y�z,v) � x� � E(u�z,v) � x� � E(u�v),

where E(u�z,v) � E(u�v) because (u,v) is independent of z. Now, if u and v are jointly
normal (with zero mean), then E(u�v) � �v for some parameter �. Therefore,

E(y�z,v) � x� � �v.

We do not observe v, but we can use this equation to compute E(y�z,s) and then spe-
cialize this to s � 1. We now have:

E(y�z,s) � x� � �E(v�z,s).

Because s and v are related by (17.44), and v has a standard normal distribution, we can
show that E(v�z,s) is simply the inverse Mills ratio, �(z�), when s � 1. This leads to the
important equation

E(y�z,s � 1) � x� � ��(z�). (17.45)

Equation (17.45) shows that the expected value of y, given z and observability of y, is
equal to x�, plus an additional term that depends on the inverse Mills ratio evaluated at
z�. Remember, we hope to estimate �. This equation shows that we can do so using
only the selected sample, provided we include the term �(z�) as an additional regres-
sor.

If � � 0, �(z�) does not appear, and OLS of y on x using the selected sample con-
sistently estimates �. Otherwise, we have effectively omitted a variable, �(z�), which
is generally correlated with x. When does � � 0? The answer is when u and v are uncor-
related.

Because � is unknown, we cannot evaluate �(zi�) for each i. However, from the
assumptions we have made, s given z follows a probit model:

P(s � 1�z) � �(z�). (17.46)

Therefore, we can estimate � by probit of si on zi, using the entire sample. In a second
step, we can estimate �. We summarize the procedure, which has recently been dubbed
the Heckit method in the econometrics literature after the work of Heckman (1976).

SAMPLE SELECTION CORRECTION

(i) Using all n observations, estimate a probit model of si on zi and obtain the esti-
mates �̂h. Compute the inverse Mills ratio, �̂i � �(zi�̂) for each i. (Actually, we only
need these for the i with si � 1.)

(ii) Using the selected sample, that is, the observations for which si � 1 (say, n1 of
them), run the regression of

yi on xi, �̂i. (17.47)

The �̂j are consistent and approximately normally distributed.
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A simple test of selection bias is available from regression (17.47). Namely, we can
use the usual t statistic on �̂i as a test of H0: � � 0. Under H0, there is no sample selec-
tion problem.

When � � 0, the usual OLS standard errors reported from (17.47) are not exactly
correct. This is because they do not account for estimation of �, which uses the same
observations in regression (17.47), and more. Some econometrics packages compute
corrected standard errors. [Unfortunately, it is not as simple as a heteroskedasticity
adjustment. See Wooldridge (1999, Chapter 6) for further discussion.] In many cases,
the adjustments do not lead to important differences, but it is hard to know that before-
hand (unless �̂ is small and insignificant).

We recently mentioned that x should be a strict subset of z. This has two implica-
tions. First, any element that appears as an explanatory variable in (17.43) should also
be an explanatory variable in the selection equation. While in rare cases it makes sense
to exclude elements from the selection equation, including all elements of x in z is not
very costly; excluding them can lead to inconsistency if they are incorrectly excluded.

A second major implication is that we have at least one element of z that is not also
in x. This means that we need a variable that affects selection but does not have a par-
tial effect on y. This is not absolutely necessary to apply the procedure—in fact, we can
mechanically carry out the two steps when z � x—but the results are usually less than
convincing unless we have an exclusion restriction in (17.43). The reason for this is that
while the inverse Mills ratio is a nonlinear function of z, it is often well-approximated
by a linear function. If z � x, �̂i can be highly correlated with the elements of xi. As we
know, such multicollinearity can lead to very high standard errors for the �̂j. Intuitively,
if we do not have a variable that affects selection but not y, it is extremely difficult, if
not impossible, to distinguish sample selection from a misspecified functional form in
(17.43).

E X A M P L E  1 7 . 5
( W a g e  O f f e r  E q u a t i o n  f o r  M a r r i e d  W o m e n )

We apply the sample selection correction to the data on married women in MROZ.RAW.
Recall that of the 753 women in the sample, 428 worked for a wage during the year. The
wage offer equation is standard, with log(wage) as the dependent variable and educ, exper,
and exper2 as the explanatory variables. In order to test and correct for sample selection
bias—due to unobservability of the wage offer for nonworking women—we need to esti-
mate a probit model for labor force participation. In addition to the education and experi-
ence variables, we include the factors in Table 17.1: other income, age, number of young
children, and number of older children. The fact that these four variables are excluded from
the wage offer equation is an assumption: we assume that, given the productivity factors,
nwifeinc, age, kidslt6, and kidsge6 have no effect on the wage offer. It is clear from the
probit results in Table 17.1 that at least age and kidslt6 have a strong effect on labor force
participation.

Table 17.5 contains the results from OLS and Heckit. [The standard errors for the Heckit
results are just the usual OLS standard errors from regression (17.47).] There is no evidence
of a sample selection problem in estimating the wage offer equation. The coefficient on �̂
has a very small t statistic (.239), and so we fail to reject H0: � � 0. Just as importantly, there
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are no practically large differences in the estimated slope coefficients in Table 17.5. The esti-
mated returns to education differ by only one-tenth of a percentage point.

An alternative to the preceding two-step estimation method is full maximum likeli-
hood estimation. This is more complicated as it requires obtaining the joint distribution
of y and s. It often makes sense to test for sample selection using the previous proce-
dure; if there is no evidence of sample selection, there is no reason to continue. If we
detect sample selection bias, we can either use the two-step estimates or estimate the
regression and selection equations jointly by MLE. [See Wooldridge (1999, Chapter
17).]

In Example 17.5, we know more than just whether a woman worked during the
year: we know how many hours each woman worked. It turns out that we can use this
information in an alternative sample selection procedure. In place of the inverse Mills
ratio �̂i, we use the Tobit residuals, say v̂i, which are computed as v̂i � yi � xi�̂ when-
ever yi � 0. It can be shown that the regression in (17.47) with v̂i in place of �̂i also pro-
duces consistent estimates of the �j, and the standard t statistic on v̂i is a valid test for

Chapter 17 Limited Dependent Variable Models and Sample Selection Corrections

563

Table 17.5

Wage Offer Equation for Married Women

Dependent Variable: log(wage)

Independent Variables OLS Heckit

educ .108 .109
(.014) (.016)

exper .042 .044
(.012) (.016)

exper2 �.00081 �.00086
(.00039) (.00044)

constant �.522 �.578
(.199) (.307)

�̂ — .032
(.134)

Sample Size 428 428
R-Squared .157 .157
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sample selection bias. This approach has the advantage of using more information, but
it is less widely applicable. [See Wooldridge (1999, Chapter 17).]

There are many more topics concerning sample selection. One worth mentioning is
models with endogenous explanatory variables in addition to possible sample selection
bias. Write a model with a single endogenous explanatory variable as

y1 � �1y2 � z1�1 � u1, (17.48)

where y1 is only observed when s � 1, and y2 may only be observed along with y1. An
example is when y1 is the percentage of votes received by an incumbent, and y2 is the
percent of total expenditures accounted for by the incumbent. For incumbents who do
not run, we cannot observe y1 or y2. If we have exogenous factors that affect the deci-
sion to run and that are correlated with campaign expenditures, we can consistently
estimate �1 and the elements of �1 by instrumental variables. To be convincing, we
need two exogenous variables that do not appear in (17.48). Effectively, one should
affect the selection decision, and one should be correlated with y2 [the usual require-
ment for estimating (17.48) by 2SLS]. Briefly, the method is to estimate the selection
equation by probit, where all exogenous variables appear in the probit equation. Then,
we add the inverse Mills ratio to (17.48) and estimate the equation by 2SLS. The inverse
Mills ratio acts as its own instrument, as it depends only on exogenous variables. We
use all exogenous variables as the other instruments. As before, we can use the t statis-
tic on �̂i as a test for selection bias. [See Wooldridge (1999, Chapter 17) for further
information.]

SUMMARY

In this chapter, we have covered several advanced methods that are often used in appli-
cations, especially in microeconomics. Logit and probit models are used for binary
response variables. These models have some advantages over the linear probability
model: fitted probabilities are between zero and one, and the partial effects diminish.
The primary cost to logit and probit is that they are harder to interpret.

The Tobit model is applicable to nonnegative outcomes that pile up at zero but also
take on a broad range of positive values. Many individual choice variables, such as
labor supply, amount of life insurance, and amount of pension fund invested in stocks,
have this feature. As with logit and probit, the expected values of y given x—either con-
ditional on y � 0 or unconditionally—depend on x and � in nonlinear ways. We gave
the expressions for these expectations as well as formulas for the partial effects of each
xj on the expectations. These can be estimated after the Tobit model has been estimated
by maximum likelihood.

When the dependent variable is a count variable—that is, it takes on nonnegative,
integer values—a Poisson regression model is appropriate. The expected value of y
given the xj has an exponential form. This gives the parameter interpretations as semi-
elasticities or elasticities, depending on whether xj is in level or logarithmic form. In
short, we can interpret the parameters as if they are in a linear model with log(y) as the
dependent variable. The parameters can be estimated by MLE. However, because the
Poisson distribution imposes equality of the variance and mean, it is often necessary to
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compute standard errors and test statistics that allow for over- or underdispersion. These
are simple adjustments to the usual MLE standard errors and statistics.

Censored and truncated regression models handle specific kinds of missing data
problems. In censored regression, the dependent variable is censored above or below a
threshold. We can use information on the censored outcomes because we always
observe the explanatory variables, as in duration applications or top coding of observa-
tions. A truncated regression model arises when a part of the population is excluded
entirely: we observe no information on units that are not covered by the sampling
scheme. This is a special case of a sample selection problem.

Section 17.5 gives a systematic treatment of nonrandom sample selection. We
showed that exogenous sample selection does not affect consistency of OLS when it is
applied to the subsample, but endogenous sample selection does. We showed how to
test and correct for sample selection bias for the general problem of incidental trunca-
tion, where observations are missing on y due to the outcome of another variable (such
as labor force participation). Heckman’s method is relatively easy to implement in these
situations.

KEY TERMS
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Binary Response Models
Censored Regression Model
Corner Solutions
Count Variable
Data Censoring
Duration Analysis
Exogenous Sample Selection
Heckit Method
Incidental Truncation
Inverse Mills Ratio
Latent Variable Model
Likelihood Ratio Statistic
Limited Dependent Variable (LDV)
Logit Model
Log-Likelihood Function

Maximum Likelihood Estimation (MLE) 
Nonrandom Sample Selection
Overdispersion
Percent Correctly Predicted
Poisson Distribution
Poisson Regression Model
Probit Model
Pseudo R-Squared
Quasi-Likelihood Ratio Statistic
Quasi-Maximum Likelihood Estimation 

(QMLE)
Selected Sample
Tobit Model
Top Coding
Truncated Regression Model

PROBLEMS

17.1 (i) For a binary response y, let ȳ be the proportion of ones in the sample (which
is equal to the sample average of the yi). Let q̂0 be the percent correctly pre-
dicted for the outcome y � 0 and let q̂1 be the percent correctly predicted for
the outcome y � 1. If p̂ is the overall percent correctly predicted, show that p̂
is a weighted average of q̂0 and q̂1:

p̂ � (1 � ȳ) q̂0 � ȳq̂1.

(ii) In a sample of 300, suppose that ȳ � .70, so that there are 210 outcomes
with yi � 1 and 90 with yi � 0. Suppose that the percent correctly pre-
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dicted when y � 0 is 80, and the percent correctly predicted when y � 1
is 40. Find the overall percent correctly predicted.

17.2 Let grad be a dummy variable for whether a student-athlete at a large university
graduates in five years. Let hsGPA and SAT be high school grade point average and SAT
score. Let study be the number of hours spent per week in organized study hall. Suppose
that, using data on 420 student-athletes, the following logit model is obtained:

P(grad � 1 �̂hsGPA,SAT,study) � �(�1.17 � .24 hsGPA� .00058 SAT � .073
study),

where �(z) � exp(z)/[1 � exp(z)] is the logit function. Holding hsGPA fixed at 3.0 and
SAT fixed at 1,200, compute the estimated difference in the graduation probability for
someone who spent 10 hours per week in study hall and someone who spent five hours
per week.

17.3 (Requires calculus) (i) Suppose in the Tobit model that x1 � log(z1), and this is the
only place z1 appears in x. Show that

� (�1/z1){1 � �(x�/�)[x�/� � �(x�/�)]}, (17.49)

where �1 is the coefficient on log(z1).
(ii) If x1 � z1, and x2 � z1

2, show that

� (�1 � 2�2z1){1 � �(x�/�)[x�/� � �(x�/�)]},

where �1 is the coefficient on z1, and �2 is the coefficient on z1
2.

17.4 Let mvpi be the marginal value product for worker i, which is the price of a firm’s
good multiplied by the marginal product of the worker. Assume that

log(mvpi) � �0 � �1xi1 � … � �kxik � ui

wagei � max(mvpi,minwagei),

where the explanatory variables include education, experience, and so on, and minwagei

is the minimum wage relevant for person i. Write log(wagei) in terms of log(mvpi) and
log(minwagei).

17.5 (Requires calculus) Let patents be the number of patents applied for by a firm
during a given year. Assume that the conditional expectation of patents given sales and
RD is

E(patents�sales,RD) � exp[�0 � �1log(sales) � �2RD � �3RD2],

where sales is annual firm sales, and RD is total spending on research and development
over the past 10 years.

(i) How would you estimate the �j? Justify your answer by discussing the
nature of patents.

�E(y�y � 0,x)

�z1

�E(y�y � 0,x)

�z1
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(ii) How do you interpret �1?
(iii) Find the partial effect of RD on E(patents�sales,RD).

17.6 Consider a family saving function for the population of all families in the United
States:

sav � �0 � �1inc � �2hhsize � �3educ � �4age � u,

where hhsize is household size, educ is years of education of the household head, and
age is age of the household head. Assume that E(u�inc,hhsize,educ,age) � 0.

(i) Suppose that the sample includes only families whose head is over 25
years old. If we use OLS on such a sample, do we get unbiased estima-
tors of the �j? Explain.

(ii) Now suppose our sample includes only married couples without chil-
dren. Can we estimate all of the parameters in the saving equation?
Which ones can we estimate?

(iii) Suppose we exclude from our sample families that save more than
$25,000 per year. Does OLS produce consistent estimators of the �j?

17.7 Suppose you are hired by a university to study the factors that determine whether
students admitted to the university actually come to the university. You are given a large
random sample of students who were admitted the previous year. You have information
on whether each student chose to attend, high school performance, family income, finan-
cial aid offered, race, and geographic variables. Someone says to you, “Any analysis of
that data will lead to biased results because it is not a random sample of all college appli-
cants, but only those who apply to this university.” What do you think of this criticism?

COMPUTER EXERCISES

17.8 Use the data in PNTSPRD.RAW for this exercise.
(i) The variable favwin is a binary variable if the team favored by the Las

Vegas point spread wins. A linear probability model to estimate the
probability that the favored team wins is

P( favwin � 1�spread ) � �0 � �1spread.

Explain why, if the spread incorporates all relevant information, we
expect �0 � .5.

(ii) Estimate the model from part (i) by OLS. Test H0: �0 � .5 against a
two-sided alternative. Use both the usual and heteroskedasticity-robust
standard errors.

(iii) Is spread statistically significant? What is the estimated probability that
the favored team wins when spread � 10?

(iv) Now, estimate a probit model for P( favwin � 1�spread ). Interpret and
test the null hypothesis that the intercept is zero. [Hint: Remember that
�(0) � .5.]

(v) Use the probit model to estimate the probability that the favored team
wins when spread � 10. Compare this with the LPM estimate from part
(iii).
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(vi) Add the variables favhome, fav25, and und25 to the probit model and
test joint significance of these variables using the likelihood ratio test.
(How many df are in the chi-square distribution?) Interpret this result,
focusing on the question of whether the spread incorporates all observ-
able information prior to a game.

17.9 Use the data in LOANAPP.RAW for this exercise; see also Problem 7.16.
(i) Estimate a probit model of approve on white. Find the estimated prob-

ability of loan approval for both whites and nonwhites. How do these
compare with the linear probability estimates?

(ii) Now, add the variables hrat, obrat, loanprc, unem, male, married, dep,
sch, cosign, chist, pubrec, mortlat1, mortlat2, and vr to the probit
model. Is there statistically significant evidence of discrimination
against nonwhites?

(iii) Estimate the model from part (ii) by logit. Compare the coefficient on
white to the probit estimate.

(iv) How would you compare the size of the discrimination effect between
probit and logit?

17.10 Use the data in FRINGE.RAW for this exercise.
(i) For what percentage of the workers in the sample is pension equal to

zero? What is the range of pension for workers with nonzero pension
benefits? Why is a Tobit model appropriate for modeling pension?

(ii) Estimate a Tobit model explaining pension in terms of exper, age,
tenure, educ, depends, married, white, and male. Do whites and males
have statistically significant higher expected pension benefits?

(iii) Use the results from part (ii) to estimate the difference in expected pen-
sion benefits for a white male and a nonwhite female, both of whom are
35 years old, single with no dependents, have 16 years of education, and
10 years of experience.

(iv) Add union to the Tobit model and comment on its significance.
(v) Apply the Tobit model from part (iv) but with peratio, the pension-

earnings ratio, as the dependent variable. (Notice that this is a fraction
between zero and one, but, while it often takes on the value zero, it never
gets close to being unity. Thus, a Tobit model is fine as an approxima-
tion.) Does gender or race have an effect on the pension-earnings ratio?

17.11 In Example 9.1, we added the quadratic terms pcnv2, ptime862, and inc862 to a
linear model for narr86.

(i) Use the data in CRIME1.RAW to add these same terms to the Poisson
regression in Example 17.3.

(ii) Compute the estimate of �2 given by �̂ 2 � (n � k � 1)�1 �
n

i�1
ûi

2/ŷ i. Is

there evidence of overdispersion? How should the Poisson MLE stan-
dard errors be adjusted?

(iii) Use the results from parts (i) and (ii) and Table 17.3 to compute the
quasi-likelihood ratio statistic for joint significance of the three qua-
dratic terms. What do you conclude?
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17.12 Refer to Table 13.1 in Chapter 13. There, we used the data in FERTIL1.RAW to
estimate a linear model for kids, the number of children ever born to a woman.

(i) Estimate a Poisson regression model for kids, using the same variables
in Table 13.1. Interpret the coefficient on y82.

(ii) What is the estimated percentage difference in fertility between a black
woman and a nonblack woman, holding other factors fixed?

(iii) Obtain �̂ . Is there evidence of over- or underdispersion?
(iv) Compute the fitted values from the Poisson regression and the

R-squared as the squared correlation between kidsi and kîdsi. Compare
this with the R-squared for the linear regression model.

17.13 Use the data in RECID.RAW to estimate the model from Example 17.4 by OLS,
using only the 552 uncensored durations. Comment generally on how these estimates
compare with those in Table 17.4.

17.14 Use the MROZ.RAW data for this exercise.
(i) Using the 428 women who were in the work force, estimate the return

to education by OLS including exper, exper2, nwifeinc, age, kidslt6, and
kidsge6 as explanatory variables. Report your estimate on educ and its
standard error.

(ii) Now estimate the return to education by Heckit, where all exogenous
variables show up in the second-stage regression. In other words, the
regression is log(wage) on educ, exper, exper2, nwifeinc, age, kidslt6,
kidsge6, and �̂. Compare the estimated return to education and its stan-
dard error to that from part (i).

(iii) Using only the 428 observations for working women, regress �̂ on educ,
exper, exper2, nwifeinc, age, kidslt6, and kidsge6. How big is the
R-squared? How does this help explain your findings from part (ii)?
(Hint: Think multicollinearity.)

A P P E N D I X  1 7 A

Asymptotic Standard Errors in Limited Dependent 
Variable Models

Derivations of the asymptotic standard errors for the models and methods introduced in
this chapter are well beyond the scope of this text. Not only do the derivations require
matrix algebra, but they also require advanced asymptotic theory of nonlinear estima-
tion. The background needed for a careful analysis of these methods and several deriva-
tions are given in Wooldridge (1999).

It is instructive to see the formulas for obtaining the asymptotic standard errors for
at least some of the methods. Given the binary response model P(y � 1�x) � G(x�),
where G(�) is the logit or probit function, and � is the k � 1 vector of parameters, the
asymptotic variance matrix of �̂ is estimated as
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Avâr(�̂) � ��
n

i�1
	
�1

, (17.50)

which is a k � k matrix. (See Appendix D for a summary of matrix algebra.) Without
the terms involving g(�) and G(�), this formula looks a lot like the estimated variance
matrix for the OLS estimator, minus the term �̂ 2. The expression in (17.50) accounts
for the nonlinear nature of the response probability—that is, the nonlinear nature of
G(�)—as well as the particular form of heteroskedasticity in a binary response mode:
Var(y�x) � G(x�)[1 � G(x�)].

The square roots of the diagonal elements of (17.50) are the asymptotic standard
errors of the �̂j, and they are routinely reported by econometrics software that supports
logit and probit analysis. Once we have these, (asymptotic) t statistics and confidence
intervals are obtained in the usual ways.

The matrix in (17.50) is also the basis for Wald tests of multiple restrictions on �
[see Wooldridge (1999, Chapter 15)].

The asymptotic variance matrix for Tobit is more complicated but has a similar
structure. Note that we can obtain a standard error for �̂ as well. The asymptotic vari-
ance for Poisson regression, allowing for �2 � 1 in (17.32), has a form much like
(17.50):

Avâr(�̂) � �̂ 2 ��
n

i�1
exp(xi�̂)xi�xi	

�1
.

The square roots of the diagonal elements of this matrix are the asymptotic standard
errors. If the Poisson assumption holds, we can drop �̂ 2 from the formula (because
�2 � 1).

Asymptotic standard errors for censored regression, truncated regression, and the
Heckit sample selection correction are more complicated, although they share features
with the previous formulas. See Wooldridge (1999) for details.

[g(xi�̂)]2xi�xi

G(xi�̂)[1 � G(xi�̂)]
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In this chapter, we cover some more advanced topics in time series econometrics. In
Chapters 10, 11, and 12, we emphasized in several places that using time series data
in regression analysis requires some care due to the trending, persistent nature of

many economic time series. In addition to studying topics such as infinite distributed
lag models and forecasting, we also discuss some recent advances in analyzing time
series processes with unit roots.

In Section 18.1, we describe infinite distributed lag models, which allow a change
in an explanatory variable to affect all future values of the dependent variable.
Conceptually, these models are straightforward extensions of the finite distributed lag
models in Chapter 10; but estimating these models poses some interesting challenges.

In Section 18.2, we show how to formally test for unit roots in a time series process.
Recall from Chapter 11 that we excluded unit root processes to apply the usual asymp-
totic theory. Because the presence of a unit root implies that a shock today has a long-
lasting impact, determining whether a process has a unit root is of interest in its own
right.

We cover the notion of spurious regression between two time series processes, each
of which has a unit root, in Section 18.3. The main result is that even if two unit root
series are independent, it is quite likely that the regression of one on the other will yield
a statistically significant t statistic. This emphasizes the potentially serious conse-
quences of using standard inference when the dependent and independent variables are
integrated processes.

The issue of cointegration applies when two series are I(1), but a linear combina-
tion of them is I(0); in this case, the regression of one on the other is not spurious, but
instead tells us something about the long-run relationship between them. Cointegration
between two series also implies a particular kind of model, called an error correction
model, for the short-term dynamics. We cover these models in Section 18.4.

In Section 18.5, we provide an overview of forecasting and bring together all of the
tools in this and previous chapters to show how regression methods can be used to fore-
cast future outcomes of a time series. The forecasting literature is vast, so we focus only
on the most common regression-based methods. We also touch on the related topic of
Granger causality.
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18.1 INFINITE DISTRIBUTED LAG MODELS

Let {(yt,zt): t � …,�2,�1,0,1,2,…} be a bivariate time series process (which is only
partially observed). An infinite distributed lag (IDL) model relating yt to current and
all past values of z is

yt � � � �0zt � �1zt�1 � �2zt�2 � … � ut, (18.1)

where the sum on lagged z extends back to the indefinite past. This model is only an
approximation to reality, as no economic process started infinitely far into the past.
Compared with a finite distributed lag model, an IDL model does not require that we
truncate the lag at a particular value.

In order for model (18.1) to make sense, the lag coefficients, �j, must tend to zero
as j * �. This is not to say that �2 is smaller in magnitude than �1; it only means that
the impact of zt�j on yt must eventually become small as j gets large. In most applica-
tions, this makes economic sense as well: the distant past of z should be less important
for explaining y than the recent past of z.

Even if we decide that (18.1) is a useful model, we clearly cannot estimate it with-
out some restrictions. For one, we only observe a finite history of data. Equation (18.1)
involves an infinite number of parameters, �0, �1, �2, …, which cannot be estimated with-
out restrictions. Later, we place restrictions on the �j that allow us to estimate (18.1).

As with finite distributed lag models, the impact propensity in (18.1) is simply �0

(see Chapter 10). Generally, the �h have the same interpretation as in an FDL. Suppose
that zs � 0 for all s � 0 and that z0 � 1 and zs � 0 for all s � 1; in other words, at time
t � 0, z increases temporarily by one unit and then reverts to its initial level of zero. For
any h 	 0, we have yh � � � �h � uh for all h 	 0, and so

E(yh) � � � �h, (18.2)

where we use the standard assumption that uh has zero mean. It follows that �h is the
change in E(yh), given a one-unit, temporary change in z at time zero. We just said that
�h must be tending to zero as h gets large for the IDL to make sense. This means that a
temporary change in z has no long-run effect on expected y: E(yh) � � � �h * � as
h * �.

We assumed that the process z starts at zs � 0 and that the one-unit increase
occurred at t � 0. These were only for the purpose of illustration. More generally, if z
temporarily increases by one unit (from any initial level) at time t, then �h measures the
change in the expected value of y after h periods. The lag distribution, which is �h plot-
ted as a function of h, shows the expected path that future y follow given the one-unit,
temporary increase in z.

The long run propensity in model (18.1) is the sum of all of the lag coefficients:

LRP � �0 � �1 � �2 � �3 � …, (18.3)

where we assume that the infinite sum is well-defined. Because the �j must converge
to zero, the LRP can often be well-approximated by a finite sum of the form �0 �
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�1 � … � �p for sufficiently large p. To interpret the LRP, suppose that the process zt

is steady at zs � 0 for s � 0. At t � 0, the process permanently increases by one unit.
For example, if zt is the percentage change in the money supply and yt is the inflation
rate, then we are interested in the effects of a permanent increase of one percentage
point in money supply growth. Then, by substituting zs � 0 for s � 0 and zt � 1 for
t 	 0, we have

yh � � � �0 � �1 � … � �h � uh,

where h 	 0 is any horizon. Because ut has a zero mean for all t, we have

E(yh) � � � �0 � �1 � … � �h. (18.4)

[It is useful to compare (18.4) and (18.2).] As the horizon increases, that is, as h * �,
the right-hand side of (18.4) is, by definition, the long run propensity. Thus, the LRP

measures the long-run change in the ex-
pected value of y given a one-unit, perma-
nent increase in z.

The previous derivation of the LRP, and
the interpretation of �j, used the fact that
the errors have a zero mean; as usual, this is
not much of an assumption, provided an

intercept is included in the model. A closer examination of our reasoning shows that we
assumed that the change in z during any time period had no effect on the expected value
of ut. This is the infinite distributed lag version of the strict exogeneity assumption that
we introduced in Chapter 10 (in particular, Assumption TS.2). Formally,

E(ut�…,zt�2,zt�1,zt,zt�1,…) � 0, (18.5)

so that the expected value of ut does not depend on the z in any time period. While
(18.5) is natural for some applications, it rules out other important possibilities. In
effect, (18.5) does not allow feedback from yt to future z because zt�h must be uncor-
related with ut for h � 0. In the inflation/money supply growth example, where yt is
inflation and zt is money supply growth, (18.5) rules out future changes in money sup-
ply growth that are tied to changes in today’s inflation rate. Given that money supply
policy often attempts to keep interest rates and inflation at certain levels, this might be
unrealistic.

One approach to estimating the �j, which we cover in the next subsection, requires
a strict exogeneity assumption in order to produce consistent estimators of the �j. A
weaker assumption is

E(ut�zt,zt�1,…) � 0. (18.6)

Under (18.6), the error is uncorrelated with current and past z, but it may be correlated
with future z; this allows zt to be a variable that follows policy rules that depend on
past y. Sometimes, (18.6) is sufficient to estimate the �j; we explain this in the next
subsection.
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One thing to remember is that neither (18.5) nor (18.6) says anything about the ser-
ial correlation properties of {ut}. (This is just as in finite distributed lag models.) If any-
thing, we might expect the {ut} to be serially correlated because (18.1) is not generally
dynamically complete in the sense discussed in Section 11.4. We will study the serial
correlation problem later.

How do we interpret the lag coefficients and the LRP if (18.6) holds but (18.5) does
not? The answer is: the same way as before. We can still do the previous thought (or
counterfactual) experiment, even though the data we observe are generated by some
feedback between yt and future z. For example, we can certainly ask about the long-run
effect of a permanent increase in money supply growth on inflation, even though the
data on money supply growth cannot be characterized as strictly exogenous.

The Geometric (or Koyck) Distributed Lag

Because there are generally an infinite number of �j, we cannot consistently estimate
them without some restrictions. The simplest version of (18.1), which still makes the
model depend on an infinite number of lags, is the geometric (or Koyck) distributed
lag. In this model, the �j depend on only two parameters:

�j � 
� j, ��� � 1, j � 0,1,2, …. (18.7)

The parameters 
 and � may be positive or negative, but � must be less than one in
absolute value. This ensures that �j * 0 as j * 0. In fact, this convergence happens at
a very fast rate. (For example, with � � .5 and j � 10, � j � 1/1024 � .001.)

The impact propensity in the GDL is simply �0 � 
, and so the sign of the IP is
determined by the sign of 
. If 
 � 0, say, and � � 0, then all lag coefficients are pos-
itive. If � � 0, the lag coefficients alternate in sign (� j is negative for odd j). The long
run propensity is more difficult to obtain, but we can use a standard result on the sum
of a geometric series: for ��� � 1, 1 � � � �2 � … � � j � … � 1/(1 � �), and so

LRP � 
/(1 � �).

The LRP has the same sign as 
.
If we plug (18.7) into (18.1), we still have a model that depends on the z back to the

indefinite past. Nevertheless, a simple subtraction yields an estimable model. Write the
IDL at times t and t � 1 as:

yt � � � 
zt � 
�zt�1 � 
�2zt�2 � … � ut (18.8)

and

yt�1 � � � 
zt�1 � 
�zt�2 � 
�2zt�3 � … � ut�1. (18.9)

If we multiply the second equation by � and subtract it from the first, all but a few of
the terms cancel:

yt � �yt�1 � (1 � �)� � 
zt � ut � �ut�1,
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which we can write as

yt � �0 � 
zt � �yt�1 � ut � �ut�1, (18.10)

where �0 � (1 � �)�. This equation looks like a standard model with a lagged depen-
dent variable, where zt appears contemporaneously. Because 
 is the coefficient on zt

and � is the coefficient on yt�1, it appears that we can estimate these parameters. [If, for
some reason, we are interested in �, we can always obtain �̂ � �̂0/(1 � �̂ ) after esti-
mating � and �0.]

The simplicity of (18.10) is somewhat misleading. The error term in this equation,
ut � �ut�1, is generally correlated with yt�1. From (18.9), it is pretty clear that ut�1 and
yt�1 are correlated. Therefore, if we write (18.10) as

yt � �0 � 
zt � �yt�1 � vt, (18.11)

where vt � ut � �ut�1, then we generally have correlation between vt and yt�1. Without
further assumptions, OLS estimation of (18.11) produces inconsistent estimates of 

and �.

One case where vt must be correlated with yt�1 occurs when ut is independent of zt

and all past values of z and y. Then, (18.8) is dynamically complete, and ut is uncorre-
lated with yt�1. From (18.9), the covariance between vt and yt�1 is ��Var(ut�1) �
��
u

2, which is zero only if � � 0. We can easily see that vt is serially correlated:
because {ut} is serially uncorrelated, E(vtvt�1) � E(utut�1) � �E(ut

2
�1) � �E(utut�2) �

�2E(ut�1ut�2) � ��
u
2. For j � 1, E(vtvt�j) � 0. Thus, {vt} is a moving average process

of order one (see Section 11.1). This gives an example of a model—which is derived
from the original model of interest—that has a lagged dependent variable and a partic-
ular kind of serial correlation.

If we make the strict exogeneity assumption (18.5), then zt is uncorrelated with ut

and ut�1, and therefore with vt. Thus, if we can find a suitable instrumental variable for
yt�1, then we can estimate (18.11) by IV. What is a good IV candidate for yt�1? By
assumption, ut and ut�1 are both uncorrelated with zt�1, and so vt is uncorrelated with
zt�1. If 
 � 0, zt�1 and yt�1 are correlated, even after partialling out zt. Therefore, we
can use instruments (zt,zt�1) to estimate (18.11). Generally, the standard errors need to
be adjusted for serial correlation in the {vt}, as we discussed in Section 15.7.

An alternative to IV estimation exploits the fact that {ut} may contain a specific
kind of serial correlation. In particular, in addition to (18.6), suppose that {ut} follows
the AR(1) model

ut � �ut�1 � et (18.12)

E(et�zt,yt�1,zt�1,…) � 0. (18.13)

It is important to notice that the � appearing in (18.12) is the same parameter multiply-
ing yt�1 in (18.11). If (18.12) and (18.13) hold, we can write

yt � �0 � 
zt � �yt�1 � et, (18.14)
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which is a dynamically complete model under (18.13). From Chapter 11, we can obtain
consistent, asymptotically normal estimators of the parameters by OLS. This is very
convenient, as there is no need to deal with serial correlation in the errors. If et satisfies
the homoskedasticity assumption Var(et�zt,yt�1) � 
e

2, the usual inference applies. Once
we have estimated 
 and �, we can easily estimate the LRP: LR̂P � 
̂/(1 � �̂).

The simplicity of this procedure relies on the potentially strong assumption that {ut}
follows an AR(1) process with the same � appearing in (18.7). This is usually no worse
than assuming the {ut} are serially uncorrelated. Nevertheless, because consistency of
the estimators relies heavily on this assumption, it is a good idea to test it. A simple test
begins by specifying {ut} as an AR(1) process with a different parameter, say ut �
�ut�1 � et. McClain and Wooldridge (1995) devise a simple Lagrange multiplier test
of H0: � � � that can be computed after OLS estimation of (18.14).

The geometric distributed lag model extends to multiple explanatory variables—so
that we have an infinite DL in each explanatory variable—but then we must be able to
write the coefficient on zt�j,h as 
h�

j. In other words, while 
h is different for each
explanatory variable, � is the same. Thus, we can write

yt � �0 � 
1zt1 � … � 
kztk � �yt�1 � vt. (18.15)

The same issues that arose in the case with one z arise in the case with many z. Under
the natural extension of (18.12) and (18.13)—just replace zt with zt � (zt1, …, ztk)—
OLS is consistent and asymptotically normal. Or, an IV method can be used.

Rational Distributed Lag Models

The geometric DL implies a fairly restrictive lag distribution. When 
 � 0 and � � 0,
the �j are positive and monotonically declining to zero. It is possible to have more gen-
eral infinite distributed lag models. The GDL is a special case of what is generally
called a rational distributed lag (RDL) model. A general treatment is beyond our
scope—Harvey (1990) is a good reference—but we can cover one simple, useful exten-
sion.

Such an RDL model is most easily described by adding a lag of z to equation
(18.11):

yt � �0 � 
0zt � �yt�1 � 
1zt�1 � vt, (18.16)

where vt � ut � �ut�1, as before. By repeated substitution, it can be shown that (18.16)
is equivalent to the infinite distributed lag model

yt � � � 
0(zt � �zt�1 � �2zt�2 � …)
� 
1(zt�1 � �zt�2 � �2zt�3 � …) � ut

� � � 
0zt � (�
0 � 
1)zt�1 � �(�
0 � 
1)zt�2

� �2(�
0 � 
1)zt�3 � … � ut,

where we again need the assumption ��� � 1. From this last equation, we can read off
the lag distribution. In particular, the impact propensity is 
0, while the coefficient on
zt�h is �h�1(�
0 � 
1) for h 	 1. Therefore, this model allows the impact propensity to
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differ in sign from the other lag coefficients, even if � � 0. However, if � � 0, the �h

have the same sign as (�
0 � 
1) for all h 	 1. The lag distribution is plotted in Figure
18.1 for � � .5, 
0 � �1, and 
1 � 1.

The easiest way to compute the long run propensity is to set y and z at their long-
run values for all t, say y* and z*, and then find the change in y* with respect to z* (see
also Problem 10.3). We have y* � �0 � 
0z* � �y* � 
1z*, and solving gives y* �
�0/(1 � �) � (
0 � 
1)/(1 � �)z*. Now, we use the fact that LRP � �y*/�z*:

LRP � (
0 � 
1)/(1 � �).

Because ��� � 1, the LRP has the same sign as 
0 � 
1, and the LRP is zero if and only
if 
0 � 
1 � 0, as in Figure 18.1.

E X A M P L E  1 8 . 1
( H o u s i n g  I n v e s t m e n t  a n d  R e s i d e n t i a l  P r i c e  I n f l a t i o n )

We estimate both the basic geometric and the rational distributed lag models by applying
OLS to (18.14) and (18.16), respectively. The dependent variable is log(invpc) after a linear
time trend has been removed [that is, we linearly detrend log(invpc)]. For zt, we use the
growth in the price index. This allows us to estimate how residential price inflation affects
movements in housing investment around its trend. The results of the estimation, using the
data in HSEINV.RAW, are given in Table 18.1.
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F i g u r e  1 8 . 1

Lag distribution for the rational distributed lag (18.16) with � � .5, 
0 � �1, and 
1 � 1.

coefficient .5

5 10
lag

�1

0
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The geometric distributed lag model is clearly rejected by the data, as gprice�1 is very sig-
nificant. The adjusted R-squareds also show that the RDL model fits much better.

The two models give very different estimates of the long run propensity. If we incor-
rectly use the GDL, the estimated LRP is almost five: a permanent one percentage point
increase in residential price inflation increases long-term housing investment by 4.7%
(above its trend value). Economically, this seems implausible. The LRP estimated from the
rational distributed lag model is below one. In fact, we cannot reject the null hypothesis H0:

0 � 
1 � 0 at any reasonable significance level (p-value � .83), so there is no evidence
that the LRP is different from zero. This is a good example of how misspecifying the dynam-
ics of a model by omitting relevant lags can lead to erroneous conclusions.

18.2 TESTING FOR UNIT ROOTS

We now turn to the important problem of testing for unit roots. In Chapter 11, we gave
some vague, necessarily informal guidelines to decide whether a series is I(1) or not. In
many cases, it is useful to have a formal test for a unit root. As we will see, such tests
must be applied with caution.
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Table 18.1

Distributed Lag Models for Housing Investment

Dependent Variable: log(invpc), detrended

Independent Geometric Rational
Variables DL DL

gprice 3.108 3.256
(0.933) (0.970)

y�1 .340 .547
(.132) (.152)

gprice�1 — �2.936
(0.973)

constant �.001 �.578
(.018) (.307)

Long Run Propensity 4.688 .706

Sample Size 41 40
Adjusted R-Squared .375 .504
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The simplest approach to testing for a unit root begins with an AR(1) model:

yt � � � �yt�1 � et, t � 1,2, …, (18.17)

where y0 is the observed initial value. Throughout this section, we let {et} denote a
process that has zero mean, given past observed y:

E(et�yt�1,yt�2,…, y0) � 0. (18.18)

[Under (18.18), {et} is said to be a martingale difference sequence with respect to
{yt�1,yt�2,…}. If {et} is assumed to be i.i.d. with zero mean and is independent of y0,
then it also satisfies (18.18).]

If {yt} follows (18.17), it has a unit root if and only if � � 1. If � � 0 and � � 1,
{yt} follows a random walk without drift [with the innovations et satisfying (18.18)]. If
� � 0 and � � 1, {yt} is a random walk with drift, which means that E(yt) is a linear
function of t. A unit root process with drift behaves very differently from one without
drift. Nevertheless, it is common to leave � unspecified under the null hypothesis, and
this is the approach we take. Therefore, the null hypothesis is that {yt} has a unit root:

H0: � � 1. (18.19)

In almost all cases, we are interested in the one-sided alternative

H1: � � 1. (18.20)

(In practice, this means 0 � � � 1, as � � 0 for a series that we suspect has a unit root
would be very rare.) The alternative H1: � � 1 is not usually considered, since it
implies that yt is explosive. In fact, if � � 0, yt has an exponential trend in its mean
when � � 1.

When ��� � 1, {yt} is a stable AR(1) process, which means it is weakly dependent
or asymptotically uncorrelated. Recall from Chapter 11 that Corr(yt,yt�h) � �h

* 0
when ��� � 1. Therefore, testing (18.19) in model (18.17), with the alternative given by
(18.20), is really a test of whether {yt} is I(1) against the alternative that {yt} is I(0).
[The reason we do not take the null to be I(0) in this setup is that {yt} is I(0) for any
value of � strictly between �1 and 1, something that classical hypothesis testing does
not handle easily. There are tests where the null hypothesis is I(0) against the alterna-
tive of I(1), but these take a different approach. See, for example, Kwiatkowski,
Phillips, Schmidt, and Shin (1992).]

A convenient equation for carrying out the unit root test is to subtract yt�1 from both
sides of (18.17) and to define � � � � 1:

�yt � � � �yt�1 � et. (18.21)

Under (18.18), this is a dynamically complete model, and so it seems straightforward
to test H0: � � 0 against H1: � � 0. The problem is that, under H0, yt�1 is I(1), and so
the usual central limit theorem that underlies the asymptotic standard normal distribu-
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tion for the t statistic does not apply: the t statistic does not have an approximate stan-
dard normal distribution even in large sample sizes. The asymptotic distribution of the
t statistic under H0 has come to be known as the Dickey-Fuller distribution after
Dickey and Fuller (1979).

While we cannot use the usual critical values, we can use the usual t statistic for �̂
in (18.21), at least once the appropriate critical values have been tabulated. The result-
ing test is known as the Dickey-Fuller (DF) test for a unit root. The theory used to
obtain the asymptotic critical values is rather complicated and is covered in advanced
texts on time series econometrics. [See, for example, Banerjee, Dolado, Galbraith, and
Hendry (1993), or BDGH for short.] By contrast, using these results is very easy. The
critical values for the t statistic have been tabulated by several authors, beginning with
the original work by Dickey and Fuller (1979). Table 18.2 contains the large sample
critical values for various significance levels, taken from BDGH (1993, Table 4.2).
(Critical values adjusted for small sample sizes are available in BDGH.)
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Table 18.2

Asymptotic Critical Values for Unit Root t Test: No Time Trend

Significance Level 1% 2.5% 5% 10%

Critical Value �3.43 �3.12 �2.86 �2.57

We reject the null hypothesis H0: � � 0 against H1: � � 0 if t�̂ � c, where c is one of
the negative values in Table 18.2. For example, to carry out the test at the 5% signifi-
cance level, we reject if t�̂ � �2.86. This requires a t statistic with a much larger mag-
nitude than if we used the standard normal critical value, which would be �1.65. If we
use the standard normal critical value to test for a unit root, we would reject H0 much
more often than 5% of the time when H0 is true.

E X A M P L E  1 8 . 2
( U n i t  R o o t  T e s t  f o r  T h r e e - M o n t h  T - B i l l  R a t e s )

We use the quarterly data in INTQRT.RAW to test for a unit root in three-month T-bill rates.
When we estimate (18.20), we obtain

�r̂3t �(.625)�(.091)r3t�1

�r̂3t �(.261)�(.037)r3t�1

n � 123, R2 � .048,

(18.22)

where we keep with our convention of reporting standard errors in parentheses below the
estimates. We must remember that these standard errors cannot be used to construct usual
confidence intervals or to carry out traditional t tests because these do not behave in the
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usual ways when there is a unit root. The coefficient on r3t�1 shows that the estimate of �
is �̂ � 1 � �̂ � .909. While this is less than unity, we do not know whether it is statistically
less than one. The t statistic on r3t�1 is �.091/.037 � �2.46. From Table 18.2, the 10%
critical value is �2.57; therefore, we fail to reject H0: � � 1 against H1: � � 1 at the 10%
level.

As with other hypotheses tests, when we fail to reject H0, we do not say that we
accept H0. Why? Suppose we test H0: � � .9 in the previous example using a standard
t test—which is asymptotically valid, because yt is I(0) under H0. Then, we obtain t �
.001/.037, which is very small and provides no evidence against � � .9. Yet, it makes
no sense to accept � � 1 and � � .9.

When we fail to reject a unit root, as in the previous example, we should only con-
clude that the data do not provide strong evidence against H0. In this example, the test
does provides some evidence against H0 because the t statistic is close to the 10% crit-
ical value. (Ideally, we would compute a p-value, but this requires special software
because of the nonnormal distribution.) In addition, while �̂ � .91 implies a fair amount
of persistence in {r3t}, the correlation between observations which are 10 periods apart
for an AR(1) model with � � .9 is about .35, rather than almost one if � � 1.

What happens if we now want to use r3t as an explanatory variable in a regression
analysis? The outcome of the unit root test implies we should be extremely cautious: if
r3t does have a unit root, the usual asymptotic approximations need not hold (as we dis-
cussed in Chapter 11). One solution is to use the first difference of r3t in any analysis.
As we will see in Section 18.4, that is not the only possibility.

We also need to test for unit roots in models with more complicated dynamics. If
{yt} follows (18.17) with � � 1, then �yt is serially uncorrelated. We can easily allow
{�yt} to follow an AR model model by augmenting equation (18.21) with additional
lags. For example,

�yt � � � �yt�1 � 
1�yt�1 � et, (18.23)

where �
1� � 1. This ensures that, under H0: � � 0, {�yt} follows a stable AR(1) model.
Under the alternative H1: � � 0, it can be shown that {yt} follows a stable AR(2) model.

More generally, we can add p lags of �yt to the equation to account for the dynam-
ics in the process. The way we test the null hypothesis of a unit root is very similar: we
run the regression of

�yt on yt�1, �yt�1, …, �yt�p (18.24)

and carry out the t test on �̂, the coefficient on yt�1, just as before. This extended ver-
sion of the Dickey-Fuller test is usually called the augmented Dickey-Fuller test
because the regression has been augmented with the lagged changes, �yt�h. The criti-
cal values and rejection rule are the same as before. The inclusion of the lagged changes
in (18.24) is intended to clean up any serial correlation in �yt. The more lags we include
in (18.24), the more initial observations we lose. If we include too many lags, the small
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sample power of the test generally suffers. But if we include too few lags, the size of
the test will be incorrect, even asymptotically, because the validity of the critical values
in Table 18.2 relies on the dynamics being completely modeled. Often the lag length is
dictated by the frequency of the data (as well as the sample size). For annual data, one
or two lags usually suffice. For monthly data, we might include twelve lags. But there
are no hard rules to follow in any case.

Interestingly, the t statistics on the lagged changes have approximate t distributions.
The F statistics for joint significance of any group of terms �yt�h are also asymptoti-
cally valid. (These maintain the homoskedasticity assumption discussed in Section
11.5.) Therefore, we can use standard tests to determine whether we have enough
lagged changes in (18.24).

E X A M P L E  1 8 . 3
( U n i t  R o o t  T e s t  f o r  A n n u a l  U . S .  I n f l a t i o n )

We use annual data on U.S. inflation, based on the CPI, to test for a unit root in inflation
(see PHILLIPS.RAW). The series spans the years from 1948 through 1996. Allowing for one
lag of �inft in the augmented Dickey-Fuller regression gives

�in̂ft �(1.36)0�(.310)inft�1 �(.138)�inft�1

�in̂ft �0(.261)�(.103)inft�1 �(.126)�inft�1

n � 47, R2 � .172.

The t statistic for the unit root test is �.310/.103 � �3.01. Because the 5% critical value
is �2.86, we reject the unit root hypothesis at the 5% level. The estimate of � is about .690.
Together, this is reasonably strong evidence against a unit root in inflation. The lag �inft�1

has a t statistic of about 1.10, so we do not need to include it, but we could not know this
ahead of time. If we drop �inft�1, the evidence against a unit root is slightly stronger: �̂ �

�.335 (�̂ � .665), and t�̂ � �3.13.

For series that have clear time trends, we need to modify the test for unit roots. A
trend-stationary process—which has a linear trend in its mean but is I(0) about its
trend—can be mistaken for a unit root process if we do not control for a time trend in
the Dickey-Fuller regression. In other words, if we carry out the usual DF or augmented
DF test on a trending but I(0) series, we will probably have little power for rejecting a
unit root.

To allow for series with time trends, we change the basic equation to

�yt � � � �t � �yt�1 � et, (18.25)

where again the null hypothesis is H0: � � 0, and the alternative is H1: � � 0. Under
the alternative, {yt} is a trend-stationary process. If yt has a unit root, then �yt � � �
�t � et, and so the change in yt has a mean linear in t unless � � 0. [It can be shown
that E(yt) is actually a quadratic in t.] It is unusual for the first difference of an eco-
nomic series to have a linear trend, and so a more appropriate null hypothesis is prob-
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ably H0: � � 0, � � 0. While it is possible to test this joint hypothesis using an F test—
but with modified critical values—it is common to only test H0: � � 0 using a t test. We
follow that approach here. [See BDGH (1993, Section 4.4) for more details on the joint
test.]

When we include a time trend in the regression, the critical values of the test
change. Intuitively, this is because detrending a unit root process tends to make it look
more like an I(0) process. Therefore, we require a larger magnitude for the t statistic in
order to reject H0. The Dickey-Fuller critical values for the t test that includes a time
trend are given in Table 18.3; they are taken from BDGH (1993, Table 4.2).

Table 18.3

Asymptotic Critical Values for Unit Root t Test: Linear Time Trend

Significance Level 1% 2.5% 5% 10%

Critical Value �3.96 �3.66 �3.41 �3.12

For example, to reject a unit root at the 5% level, we need the t statistic on �̂ to be less
than �3.41, as compared with �2.86 without a time trend.

We can augment equation (18.25) with lags of �yt to account for serial correlation,
just as in the case without a trend. This does not change how we carry out the test.

E X A M P L E  1 8 . 4
( U n i t  R o o t  i n  t h e  L o g  o f  U . S .  R e a l  G r o s s  D o m e s t i c  P r o d u c t )

We can apply the unit root test with a time trend to the U.S. GDP data in INVEN.RAW.
These annual data cover the years from 1959 through 1995. We test whether log(GDPt)
has a unit root. This series has a pronounced trend that looks roughly linear. We include a
single lag of �log(GDPt), which is simply the growth in GDP (in decimal form), to account
for dynamics:

gGD̂Pt �(1.65)�(.0059)t �(.210)log(GDPt�1) �(.264)gDGPt�1

gGD̂Pt �0(.67)�(.0027)t �(.087)log(GDPt�1) �(.165)gDGPt�1

n � 35, R2 � .268.
(18.26)

From this equation, we get �̂ � 1 � .21 � .79, which is clearly less than one. But we can-
not reject a unit root in the log of GDP: the t statistic on log(GDPt�1) is �.210/.087 �

�2.41, which is well-above the 10% critical value of �3.12. The t statistic on gGDPt�1 is
1.60, which is almost significant at the 10% level against a two-sided alternative.

What should we conclude about a unit root? Again, we cannot reject a unit root, but
the point estimate of � is not especially close to one. When we have a small sample size—
and n � 35 is considered to be pretty small—it is very difficult to reject the null hypothesis
of a unit root if the process has something close to a unit root. Using more data over longer
time periods, many researchers have concluded that there is little evidence against the unit
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root hypothesis for log(GDP). This has led most of them to assume that the growth in GDP
is I(0), which means that log(GDP) is I(1). Unfortunately, given currently available sample
sizes, we cannot have much confidence in this conclusion.

If we omit the time trend, there is much less evidence against H0, as �̂ � �.023 and
t�̂ � �1.92. Here, the estimate of � is much closer to one, but this can be misleading due
to the omitted time trend.

It is tempting to compare the t statistic on the time trend in (18.26), with the criti-
cal value from a standard normal or t distribution, to see whether the time trend is sig-
nificant. Unfortunately, the t statistic on the trend does not have an asymptotic standard
normal distribution (unless ��� � 1). The asymptotic distribution of this t statistic is
known, but it is rarely used. Typically, we rely on intuition (or plots of the time series)
to decide whether to include a trend in the DF test.

There are many other variants on unit root tests. In one version that is only applic-
able to series that are clearly not trending, the intercept is omitted from the regression;
that is, � is set to zero in (18.21). This variant of the Dickey-Fuller test is rarely used
because of biases induced if � � 0. Also, we can allow for more complicated time
trends, such as quadratic. Again, this is seldom used.

Another class of tests attempts to account for serial correlation in �yt in a different
manner than by including lags in (18.21) or (18.25). The approach is related to the ser-
ial correlation-robust standard errors for the OLS estimators that we discussed in
Section 12.5. The idea is to be as agnostic as possible about serial correlation in �yt. In
practice, the (augmented) Dickey-Fuller test has held up pretty well. [See BDGH (1993,
Section 4.3) for a discussion on other tests.]

18.3 SPURIOUS REGRESSION

In a cross-sectional environment, we use the phrase “spurious correlation” to describe
a situation where two variables are related through their correlation with a third vari-
able. In particular, if we regress y on x, we find a significant relationship. But when we
control for another variable, say z, the partial effect of x on y becomes zero. Naturally,
this can also happen in time series contexts with I(0) variables.

As we discussed in Section 10.5, it is possible to find a spurious relationship
between time series that have increasing or decreasing trends. Provided the series are
weakly dependent about their time trends, the problem is effectively solved by includ-
ing a time trend in the regression model.

When we are dealing with processes that are integrated of order one, there is an
additional complication. Even if the two series have means that are not trending, a sim-
ple regression involving two independent I(1) series will often result in a significant t
statistic.

To be more precise, let {xt} and {yt} be random walks generated by

xt � xt�1 � at (18.27)
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and

yt � yt�1 � et, t � 1,2, …, (18.28)

where {at} and {et} are independent, identically distributed innovations, with mean zero
and variances 
a

2 and 
e
2, respectively. For concreteness, take the initial values to be

x0 � y0 � 0. Assume further that {at} and {et} are independent processes. This implies
that {xt} and {yt} are also independent. But what if we run the simple regression

ŷ t � �̂0 � �̂1xt (18.29)

and obtain the usual t statistic for �̂1 and the usual R-squared? Because yt and xt are
independent, we would hope that plim �̂1 � 0. Even more importantly, if we test H0:
�1 � 0 against H1: �1 � 0 at the 5% level, we hope that the t statistic for �̂1 is insignif-
icant 95% of the time. Through a simulation, Granger and Newbold (1974) showed that
this is not the case: even though yt and xt are independent, the regression of yt on xt

yields a statistically significant t statistic a large percentage of the time, much larger
than the nominal significance level. Granger and Newbold called this the spurious
regression problem: there is no sense in which y and x are related, but an OLS regres-
sion using the usual t statistics will often indicate a relationship.

Recent simulation results are given by Davidson and MacKinnon (1993, Table
19.1), where at and et are generated as
independent, identically distributed normal
random variables, and 10,000 different
samples are generated. For a sample size
of n � 50 at the 5% significance level, the
standard t statistic for H0: �1 � 0 against
the two-sided alternative rejects H0 about
66.2% of the time under H0, rather than 5%

of the time. As the sample size increases, things get worse: with n � 250, the null is
rejected 84.7% of the time!

Here is one way to see what is happening when we regress the level of y on the level
of x. Write the model underlying (18.27) as

yt � �0 � �1xt � ut. (18.30)

For the t statistic of �̂1 to have an approximate standard normal distribution in large
samples, at a minimum, {ut} should be a mean zero, serially uncorrelated process. But
under H0: �1 � 0, yt � �0 � ut, and because {yt} is a random walk starting at y0 � 0,

equation (18.30) holds under H0 only if �0 � 0 and, more importantly, if ut � yt ��
t

j�1
ej.

In other words, {ut} is a random walk under H0. This clearly violates even the asymp-
totic version of the Gauss-Markov assumptions from Chapter 11.

Including a time trend does not really change the conclusion. If yt or xt is a random
walk with drift and a time trend is not included, the spurious regression problem is even
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Q U E S T I O N  1 8 . 2

Under the preceding setup, where {xt} and { yt} are generated by
(18.27) and (18.28) and {et} and {at} are i.i.d. sequences, what is the
plim of the slope coefficient, say 
̂1, from the regression of �yt on
�xt? Describe the behavior of the t statistic of 
̂1.
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worse. The same qualitative conclusions hold if {at} and {et} are general I(0) processes,
rather than i.i.d. sequences.

In addition to the usual t statistic not having a limiting standard normal distribu-
tion—in fact, it increases to infinity as n * �—the behavior of R-squared is nonstan-
dard. In cross-sectional contexts or in regressions with I(0) time series variables, the
R-squared converges in probability to the population R-squared: 1 � 
u

2/
y
2. This is not

the case in spurious regressions with I(1) processes. Rather than the R-squared having
a well-defined plim, it actually converges to a random variable. Formalizing this notion
is well-beyond the scope of this course. [A discussion of the asymptotic properties of
the t statistic and the R-squared can be found in BDGH (Section 3.1).] The implication
is that the R-squared is large with high probability, even though {yt} and {xt} are inde-
pendent time series processes.

The same considerations arise with multiple independent variables, each of which
may be I(1) or some of which may be I(0). If {yt} is I(1) and at least some of the
explanatory variables are I(1), the regression results may be spurious.

The possibility of spurious regression with I(1) variables is quite important and has
led economists to reexamine many aggregate time series regressions whose t statistics
were very significant and whose R-squareds were extremely high. In the next section,
we show that regressing an I(1) dependent variable on an I(1) independent variable can
be informative, but only if these variables are related in a precise sense.

18.4 COINTEGRATION AND ERROR 
CORRECTION MODELS

The discussion of spurious regression in the previous section certainly makes one wary
of using the levels of I(1) variables in regression analysis. In earlier chapters, we sug-
gested that I(1) variables should be differenced before they are used in linear regression
models, whether they are estimated by OLS or instrumental variables. This is certainly
a safe course to follow, and it is the approach used in many time series regressions after
Granger and Newbold’s original paper on the spurious regression. Unfortunately,
always differencing I(1) variables limits the scope of the questions that we can answer.

Cointegration

The notion of cointegration, which was given a formal treatment in Engle and Granger
(1987), makes regressions involving I(1) variables potentially meaningful. A full treat-
ment of cointegration is mathematically involved, but we can describe the basic issues
and methods that are used in many applications.

If {yt: t � 0,1,…} and {xt: t � 0,1,…} are two I(1) processes, then, in general, yt �
�xt is an I(1) process for any number �. Nevertheless, it is possible that for some � �

0, yt � �xt is an I(0) process, which means
it has constant mean, constant variance,
autocorrelations that depend only on the
time distance between any two variables in
the series, and it is asymptotically uncorre-
lated. If such a � exists, we say that y and
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Q U E S T I O N  1 8 . 3

Let {(yt,xt): t � 1,2,…} be a bivariate time series where each series is
I(1) without drift. Explain why, if yt and xt are cointegrated, yt and
xt�1 are also cointegrated.
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x are cointegrated, and we call � the cointegration parameter. [Alternatively, we could
look at xt � 
yt for 
 � 0: if yt � �xt is I(0), then xt � (1/�)yt is I(0). Therefore, the
linear combination of yt and xt is not unique, but if we fix the coefficient on yt at unity,
then � is unique. See Problem 18.3. For concreteness, we consider linear combinations
of the form yt � �xt.]

For the sake of illustration, take � � 1, suppose that y0 � x0 � 0, and write yt �
yt�1 � rt, xt � xt�1 � vt, where {rt} and {vt} are two I(0) processes with zero means.
Then, yt and xt have a tendency to wander around and not return to the initial value of
zero with any regularity. By contrast, if yt � xt is I(0), it has zero mean and does return
to zero with some regularity.

As a specific example, let r6t be the annualized interest rate for six-month, T-bills
(at the end of quarter t) and let r3t be the annualized interest rate for three-month,
T-bills. (These are typically called bond equivalent yields, and they are reported in the
financial pages.) In Example 18.2, using the data in INTQRT.RAW, we found little evi-
dence against the hypothesis that r3t has a unit root; the same is true of r6t. Define the
spread between six- and three-month, T-bill rates as sprt � r6t � r3t. Then, using equa-
tion (18.21), the Dickey-Fuller t statistic for sprt is �7.71 (with �̂ � �.67 or �̂ � .33).
Therefore, we strongly reject a unit root for sprt in favor of I(0). The upshot of this is
that while r6t and r3t each appear to be unit root processes, the difference between them
is an I(0) process. In other words, r6 and r3 are cointegrated.

Cointegration in this example, as in many examples, has an economic interpretation.
If r6 and r3 were not cointegrated, the difference between interest rates could become
very large, with no tendency for them to come back together. Based on a simple arbi-
trage argument, this seems unlikely. Suppose that the spread sprt continues to grow for
several time periods, making six-month T-bills a much more desirable investment.
Then, investors would shift away from three-month and toward six-month T-bills, dri-
ving up the price of six-month T-bills, while lowering the price of three-month T-bills.
Since interest rates are inversely related to price, this would lower r6 and increase r3,
until the spread is reduced. Therefore, large deviations between r6 and r3 are not
expected to continue: the spread has a tendency to return to its mean value. (The spread
actually has a slightly positive mean because long-term investors are more rewarded rel-
ative to short-term investors.)

There is another way to characterize the fact that sprt will not deviate for long peri-
ods from its average value: r6 and r3 have a long-run relationship. To describe what we
mean by this, let � � E(sprt) denote the expected value of the spread. Then, we can
write

r6t � r3t � � � et,

where {et} is a zero mean, I(0) process. The equilibrium or long-run relationship occurs
when et � 0, or r6* � r3* � �. At any time period, there can be deviations from equi-
librium, but they will be temporary: there are economic forces that drive r6 and r3 back
toward the equilibrium relationship.

In the interest rate example, we used economic reasoning to tell us the value of � if
yt and xt are cointegrated. If we have a hypothesized value of �, then testing whether
two series are cointegrated is easy: we simply define a new variable, st � yt � �xt, and
apply either the usual DF or augmented DF test to {st}. If we reject a unit root in {st}
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in favor of the I(0) alternative, then we find that yt and xt are cointegrated. In other
words, the null hypothesis is that yt and xt are not cointegrated.

Testing for cointegration is more difficult when the (potential) cointegration param-
eter � is unknown. Rather than test for a unit root in {st}, we must first estimate �. If yt

and xt are cointegrated, it turns out that the OLS estimator �̂ from the regression

yt ��̂ � �̂xt (18.31)

is consistent for �. The problem is that the null hypothesis states that the two series are
not cointegrated, which means that, under H0, we are running a spurious regression.
Fortunately, it is possible to tabulate critical values even when � is estimated, where we
apply the Dickey-Fuller or augmented Dickey-Fuller test to the residuals, say û t � yt �
�̂ � �̂xt, from (18.31). The only difference is that the critical values account for esti-
mation of �. The asymptotic critical values are given in Table 18.4. These are taken
from Davidson and MacKinnon (1993, Table 20.2).

Table 18.4

Asymptotic Critical Values for Cointegration Test: No Time Trend

Significance Level 1% 2.5% 5% 10%

Critical Value �3.90 �3.59 �3.34 �3.04

In the basic test, we run the regression of �û t on û t�1 and compare the t statistic on û t�1

to the desired critical value in Table 18.4. If the t statistic is below the critical value, we
have evidence that yt � �xt is I(0) for some �; that is, yt and xt are cointegrated. We can
add lags of �û t to account for serial correlation. If we compare the critical values in
Table 18.4 with those in Table 18.2, we must get a t statistic much larger in magnitude
to find cointegration than if we used the usual DF critical values. This is because OLS,
which minimizes the sum of squared residuals, tends to produce residuals that look like
an I(0) sequence even if yt and xt are not cointegrated.

If yt and xt are not cointegrated, a regression of yt on xt is spurious and tells us noth-
ing meaningful: there is no long-run relationship between y and x. We can still run a
regression involving the first differences, �yt and �xt, including lags. But we should
interpret these regressions for what they are: they explain the difference in y in terms of
the difference in x and have nothing necessarily to do with a relationship in levels.

If yt and xt are cointegrated, we can use this to specify more general dynamic mod-
els, as we will see in the next subsection.

The previous discussion assumes that neither yt nor xt has a drift. This is reasonable
for interest rates but not for other time series. If yt and xt contain drift terms, E(yt) and
E(xt) are linear (usually increasing) functions of time. The strict definition of cointe-
gration requires yt � �xt to be I(0) without a trend. To see what this entails, write yt �
�t � gt and xt � �t � ht, where {gt} and {ht} are I(1) processes, � is the drift in yt
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[� � E(�yt)], and � is the drift in xt [� � E(�xt)]. Now, if yt and xt are cointegrated,
there must exist � such that gt � �ht is I(0). But then

yt � �xt � (� � ��)t � (gt � �ht),

which is generally a trend-stationary process. The strict form of cointegration requires
that there not be a trend, which means � � ��. For I(1) processes with drift, it is pos-
sible that the stochastic parts—that is, gt and ht—are cointegrated, but that the parame-
ter � which causes gt � �ht to be I(0) does not eliminate the linear time trend.

We can test for cointegration between gt and ht, without taking a stand on the trend
part, by running the regression

ŷt � �̂ � �̂t � �̂xt (18.32)

and applying the usual DF or augmented DF test to the residuals û t. The asymptotic crit-
ical values are given in Table 18.5 [from Davidson and MacKinnon (1993, Table 20.2)].

Table 18.5

Asymptotic Critical Values for Cointegration Test: Linear Time Trend

Significance Level 1% 2.5% 5% 10%

Critical Value �4.32 �4.03 �3.78 �3.50

A finding of cointegration in this case leaves open the possibility that yt � �xt has a lin-
ear trend. But at least it is not I(1).

E X A M P L E  1 8 . 5
( C o i n t e g r a t i o n  B e t w e e n  F e r t i l i t y  a n d  P e r s o n a l  E x e m p t i o n )

In Chapters 10 and 11, we studied various models to estimate the relationship between the
general fertility rate (gfr) and the real value of the personal tax exemption (pe) in the United
States. The static regression results in levels and first differences are notably different. The
regression in levels, with a time trend included, gives an OLS coefficient on pe equal to .187
(se � .035) and R2 � .500. In first differences (without a trend), the coefficient on �pe is
�.043 (se � .028), and R2 � .032. While there are other reasons for these differences—
such as misspecified distributed lag dynamics—the discrepancy between the levels and
changes regressions suggests that we should test for cointegration. Of course, this pre-
sumes that gfr and pe are I(1) processes. This appears to be the case: the augmented DF
tests, with a single lagged change and a linear time trend, each yield t statistics of about
�1.47, and the estimated rhos are close to one.

When we obtain the residuals from the regression of gfr on t and pe and apply the aug-
mented DF test with one lag, we obtain a t statistic on ût�1 of �2.43, which is nowhere near
the 10% critical value, �3.50. Therefore, we must conclude that there is little evidence of
cointegration between gfr and pe, even allowing for separate trends. It is very likely that the
earlier regression results we obtained in levels suffer from the spurious regression problem.
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The good news is that, when we used first differences and allowed for two lags—
see equation (11.27)—we found an overall positive and significant long-run effect of �pe
on �gfr.

If we think two series are cointegrated, we often want to test hypotheses about the
cointegrating parameter. For example, a theory may state that the cointegrating para-
meter is one. Ideally, we could use a t statistic to test this hypothesis.

We explicitly cover the case without time trends, although the extension to the lin-
ear trend case is immediate. When yt and xt are I(1) and cointegrated, we can write

yt � � � �xt � ut, (18.33)

where ut is a zero mean, I(0) process. Generally, {ut} contains serial correlation, but we
know from Chapter 11 that this does not affect consistency of OLS. As mentioned ear-
lier, OLS applied to (18.33) consistently estimates � (and �). Unfortunately, because xt

is I(1), the usual inference procedures do not necessarily apply: OLS is not asymptoti-
cally normally distributed, and the t statistic for �̂ does not necessarily have an approx-
imate t distribution. We do know from Chapter 10 that, if {xt} is strictly
exogenous—see Assumption TS.2—and the errors are homoskedastic, serially uncor-
related, and normally distributed the OLS estimator is also normally distributed (con-
ditional on the explanatory variables), and the t statistic has an exact t distribution.
Unfortunately, these assumptions are too strong to apply to most situations. The notion
of cointegration implies nothing about the relationship between {xt} and {ut} and,
except for requiring that ut is I(0), does not restrict the serial dependence in ut.

Fortunately, the feature of (18.33) that makes inference the most difficult—the lack
of strict exogeneity of {xt}—can be fixed. Because xt is I(1), the proper notion of strict
exogeneity is that ut is uncorrelated with �xs, for all t and s. We can always arrange this
for a new set of errors, at least approximately, by writing ut as a function of the �xs for
all s close to t. For example,

ut � � � �0�xt � �1�xt�1 � �2�xt�2

� 
1�xt�1 � 
2�xt�2 � et,
(18.34)

where, by construction, et is uncorrelated with each �xs appearing in the equation. The
hope is that et is uncorrelated with further lags and leads of �xs. We know that, as �s � t�
gets large, the correlation between et and �xs approaches zero, because these are I(0)
processes. Now, if we plug (18.34) into (18.33), we obtain

yt � �0 � �xt � �0�xt � �1�xt�1 � �2�xt�2

� 
1�xt�1 � 
2�xt�2 � et.
(18.35)

This equation looks a bit strange because future �xs appear with both current and
lagged �xt. The key is that the coefficient on xt is still �, and, by construction, xt is now
strictly exogenous in this equation. The strict exogeneity assumption is the important
condition needed to obtain an approximately normal t statistic for �̂.
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The OLS estimator of � from (18.35) is called the leads and lags estimator of �
because of the way it employs �x. [See, for example, Stock and Watson (1991).] The
only issue we must worry about in (18.35) is the possibility of serial correlation in {et}.
This can be dealt with by computing a serial correlation-robust standard error for �̂ (as
described in Section 12.5) or by using a standard AR(1) correction (such as Cochrane-
Orcutt).

E X A M P L E  1 8 . 6
( C o i n t e g r a t i n g  P a r a m e t e r  f o r  I n t e r e s t  R a t e s )

Earlier, we tested for cointegration between r6 and r3—six- and three-month, T-bill rates—
by assuming that the cointegrating parameter was equal to one. This led us to find cointe-
gration and, naturally, to conclude that the cointegrating parameter is equal to unity.
Nevertheless, let us estimate the cointegrating parameter directly and test H0: � � 1. We
apply the leads and lags estimator with two leads and two lags of �r3, as well as the con-
temporaneous change. The estimate of � is �̂ � 1.038, and the usual OLS standard error is
.0081. Therefore, the t statistic for H0: � � 1 is (1.038 � 1)/.0081 � 4.69, which is a strong
statistical rejection of H0. (Of course, whether 1.038 is economically different from one is a
relevant consideration.) There is little evidence of serial correlation in the residuals, and so
we can use this t statistic as having an approximate normal distribution. [For comparison,
the OLS estimate of � without the �r3 terms—and using four more observations—is 1.026
(se � .0077). But the t statistic from (18.33) is not necessarily valid.]

There are many other estimators of cointegrating parameters, and this continues to
be a very active area of research. The notion of cointegration applies to more than two
processes, but the interpretation, testing, and estimation are much more complicated.
One issue is that, even after we normalize a coefficient to be one, there can be many
cointegrating relationships. BDGH provide some discussion and several references.

Error Correction Models

In addition to learning about a potential long-run relationship between two series, the
concept of cointegration enriches the kinds of dynamic models at our disposal. If yt and
xt are I(1) processes and are not cointegrated, we might estimate a dynamic model in
first differences. As an example, consider the equation

�yt � �0 � �1�yt�1 � 
0�xt � 
1�xt�1 � ut, (18.36)

where ut has zero mean given �xt, �yt�1, �xt�1, and further lags. This is essentially
equation (18.16), but in first differences rather than in levels. If we view this as a ration-
al distributed lag model, we can find the impact propensity, long run propensity, and lag
distribution for �y as a distributed lag in �x.

If yt and xt are cointegrated with parameter �, then we have additional I(0) variables
which we can include in (18.36). Let st � yt � �xt, so that st is I(0), and assume for the
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sake of simplicity that st has zero mean. Now, we can include lags of st in the equation.
In the simplest case, we include one lag of st:

�yt � �0 � �1�yt�1 � 
0�xt � 
1�xt�1 � �st�1 � ut

� �0 � �1�yt�1 � 
0�xt � 
1�xt�1 � �(yt�1 � �xt�1) � ut,
(18.37)

where E(ut�It�1) � 0, and It�1 contains information on �xt and all past values of x and
y. The term �(yt�1 � �xt�1) is called the error correction term, and (18.37) is an exam-
ple of an error correction model. (In some error correction models, the contempora-
neous change in x, �xt, is omitted. Whether it is included or not depends partly on the
purpose of the equation. In forecasting, �xt is rarely included, for reasons we will see
in Section 18.5.)

An error correction model allows us to study the short-run dynamics in the relation-
ship between y and x. For simplicity, consider the model without lags of �yt and �xt:

�yt � �0 � 
0�xt � �(yt�1 � �xt�1) � ut, (18.38)

where � � 0. If yt�1 � �xt�1, then y in the previous period has overshot the equilib-
rium; because � � 0, the error correction term works to push y back towards the equi-
librium. Similarly, if yt�1 � �xt�1, the error correction term induces a positive change
in y back towards the equilibrium.

How do we estimate the parameters of an error correction model? If we know �,
this is easy. For example, in (18.38), we simply regress �yt on �xt and st�1, where
st�1 � (yt�1 � �xt�1).

E X A M P L E  1 8 . 7
( E r r o r  C o r r e c t i o n  M o d e l  f o r  H o l d i n g  Y i e l d s )

In Problem 11.6, we regressed hy6t, the three-month holding yield (in percent) from buy-
ing a six-month T-bill at time t � 1 and selling it at time t as a three-month T-bill, on hy3t�1,
the three-month holding yield from buying a three-month T-bill at time t � 1. The expec-
tations hypothesis implies that the slope coefficient should not be statistically different from
one. It turns out that there is evidence of a unit root in {hy3t}, which calls into question the
standard regression analysis. We will assume that both holding yields are I(1) processes. The
expectations hypothesis implies, at a minimum, that hy6t and hy3t�1 are cointegrated with
� equal to one, which appears to be the case (see Exercise 18.14). Under this assumption,
an error correction model is

�hy6t � �0 � 
0�hy3t�1 � �(hy6t�1 � hy3t�2) � ut,

where ut has zero mean, given all hy3 and hy6 dated at time t � 1 and earlier. The lags on
the variables in the error correction model are dictated by the expectations hypothesis.

Using the data in INTQRT.RAW gives

�hŷ6t �(.090)�(1.218)�hy3t�1 �(.840)(hy6t�1 � hy3t�2)
�hŷ6t �(.043)�1(.264)�hy3t�1 �(.244)(hy6t�1 � hy3t�2)

n � 122, R2 � .790.

(18.39)
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The error correction coefficient is negative
and very significant. For example, if the hold-
ing yield on six-month bills is above that for
three-month bills by one point, hy6 falls by
.84 points on average in the next quarter.

Interestingly, �̂ � �.84 is not statistically different from �1, as is easily seen by computing
the 95% confidence interval.

In many other examples, the cointegrating parameter must be estimated. Then, we
replace st�1 with ŝt�1 � yt�1 � �̂xt�1, where �̂ can be various estimators of �. We have
covered the standard OLS estimator as well as the leads and lags estimator. This raises
the issue about how sampling variation in �̂ affects inference on the other parameters
in the error correction model. Fortunately, as shown by Engle and Granger (1987), we
can ignore the preliminary estimation of � (asymptotically). This is very convenient.
The procedure of replacing � with �̂ is called the Engle-Granger two-step procedure.

18.5 FORECASTING

Forecasting economic time series is very important in some branches of economics,
and it is an area that continues to be actively studied. In this section, we focus on 
regression-based forecasting methods. Diebold (1998) provides a comprehensive intro-
duction to forecasting, including recent developments.

We assume in this section that the primary focus is on forecasting future values of
a time series process and not necessarily on estimating causal or structural economic
models.

It is useful to first cover some fundamentals of forecasting that do not depend on a
specific model. Suppose that at time t we want to forecast the outcome of y at time t �
1, or yt�1. The time period could correspond to a year, a quarter, a month, a week, or
even a day. Let It denote information that we can observe at time t. This information
set includes yt, earlier values of y, and often other variables dated at time t or earlier.
We can combine this information in innumerable ways to forecast yt�1. Is there one best
way?

The answer is yes, provided we specify the loss associated with forecast error. Let
ft denote the forecast of yt�1 made at time t. We call ft a one-step-ahead forecast. The
forecast error is et�1 � yt�1 � ft, which we observe once the outcome on yt�1 is
observed. The most common measure of loss is the same one that leads to ordinary
least squares estimation of a multiple linear regression model: the squared error, et

2
�1.

The squared forecast error treats positive and negative prediction errors symmetri-
cally, and larger forecast errors receive relatively more weight. For example, errors of
�2 and �2 yield the same loss, and the loss is four times as great as forecast errors
of �1 or �1. The squared forecast error is an example of a loss function. Another
popular loss function is the absolute value of the prediction error, �et�1�. For reasons
to be seen shortly, we focus now on squared error loss.
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Given the squared error loss function, we can determine how to best use the infor-
mation at time t to forecast yt�1. But we must recognize that at time t, we do not know
et�1: it is a random variable, because yt�1 is a random variable. Therefore, any useful
criterion for choosing ft must be based on what we know at time t. It is natural to choose
the forecast to minimize the expected squared forecast error, given It:

E(e t
2
�1�It) � E[(yt�1 � ft)

2�It]. (18.40)

A basic fact from probability (see Property CE.6 in Appendix B) is that the conditional
expectation, E(yt�1�It), minimizes (18.40). In other words, if we wish to minimize the
expected squared forecast error given information at time t, our forecast should be
the expected value of yt�1 given variables we know at time t.

For many popular time series processes, the conditional expectation is easy to
obtain. Suppose that {yt: t � 0,1,…} is a martingale difference sequence (MDS) and
take It to be {yt,yt�1, …, y0}, the observed past of y. By definition, E(yt�1�It) � 0 for all
t; the best prediction of yt�1 at time t is always zero! Recall from Section 18.2 that an
i.i.d. sequence with zero mean is a martingale difference sequence.

A martingale difference sequence is one in which the past is not useful for predict-
ing the future. Stock returns are widely thought to be well-approximated as an MDS or,
perhaps, with a positive mean. The key is that E(yt�1�yt,yt�1,…) � E(yt�1): the condi-
tional mean is equal to the unconditional mean, in which case, past y do not help to pre-
dict future y.

A process {yt} is a martingale if E(yt�1�yt,yt�1, …, y0) � yt for all t 	 0. [If {yt} is
a martingale, then {�yt} is a martingale difference sequence, which is where the latter
name comes from.] The predicted value of y for the next period is always the value of
y for this period.

A more complicated example is

E(yt�1�It) � �yt � �(1 � �)yt�1 � … � �(1 � �)ty0, (18.41)

where 0 � � � 1 is a parameter that we must choose. This method of forecasting is
called exponential smoothing because the weights on the lagged y decline to zero
exponentially.

The reason for writing the expectation as in (18.41) is that it leads to a very simple
recurrence relation. Set f0 � y0. Then, for t 	 1, the forecasts can be obtained as

ft � �yt � (1 � �)ft�1.

In other words, the forecast of yt�1 is a weighted average of yt and the forecast of yt

made at time t � 1. Exponential smoothing is suitable only for very specific time series
and requires choosing �. Regression methods, which we turn to next, are more flexible.

The previous discussion has focused on forecasting y only one period ahead. The
general issues that arise in forecasting yt�h at time t, where h is any positive integer, are
similar. In particular, if we use expected squared forecast error as our measure of loss,
the best predictor is E(yt�h�It). When dealing with a multiple-step-ahead-forecast, we
use the notation ft,h to indicate the forecast of yt�h made at time t.
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Types of Regression Models Used for Forecasting

There are many different regression models that we can use to forecast future values of
a time series. The first regression model for time series data from Chapter 10 was the
static model. To see how we can forecast with this model, assume that we have a single
explanatory variable:

yt � �0 � �1zt � ut. (18.42)

Suppose, for the moment, that the parameters �0 and �1 are known. Write this equation
at time t � 1 as yt�1 � �0 � �1zt�1 � ut�1. Now, if zt�1 is known at time t, so that it is
an element of It and E(ut�1�It) � 0, then

E(yt�1�It) � �0 � �1zt�1,

where It contains zt�1, yt, zt, …, y1, z1. The right-hand side of this equation is the fore-
cast of yt�1 at time t. This kind of forecast is usually called a conditional forecast
because it is conditional on knowing the value of z at time t � 1.

Unfortunately, at any time, we rarely know the value of the explanatory variables in
future time periods. Exceptions include time trends and seasonal dummy variables,
which we cover explicitly below, but otherwise knowledge of zt�1 at time t is rare.
Sometimes, we wish to generate conditional forecasts for several values of zt�1.

Another problem with (18.42) as a model for forecasting is that E(ut�1�It) � 0
means that {ut} cannot contain serial correlation, something we have seen to be false in
most static regression models. [Problem 18.8 asks you to derive the forecast in a sim-
ple distributed lag model with AR(1) errors.]

If zt�1 is not known at time t, we cannot include it in It. Then, we have

E(yt�1�It) � �0 � �1E(zt�1�It).

This means that in order to forecast yt�1, we must first forecast zt�1, based on the same
information set. This is usually called an unconditional forecast because we do not
assume knowledge of zt�1 at time t. Unfortunately, this is somewhat of a misnomer, as
our forecast is still conditional on the information in It. But the name is entrenched in
forecasting literature.

For forecasting, unless we are wedded to the static model in (18.42) for other rea-
sons, it makes more sense to specify a model that depends only on lagged values of y
and z. This saves us the extra step of having to forecast a right-hand side variable before
forecasting y. The kind of model we have in mind is

yt � �0 � �1yt�1 � 
1zt�1 � ut

E(ut�It�1) � 0,
(18.43)

where It�1 contains y and z dated at time t � 1 and earlier. Now, the forecast of yt�1 at
time t is �0 � �1yt � 
1zt; if we know the parameters, we can just plug in the values of
yt and zt.

If we only want to use past y to predict future y, then we can drop zt�1 from (18.43).
Naturally, we can add more lags of y or z and lags of other variables. Especially for fore-
casting one step ahead, such models can be very useful.
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One-Step-Ahead Forecasting

Obtaining a forecast one period after the sample ends is relatively straightforward using
models such as (18.43). As usual, let n be the sample size. The forecast of yn�1 is

f̂n � �̂0 � �̂1yn � 
̂1zn, (18.44)

where we assume that the parameters have been estimated by OLS. We use a hat on fn
to emphasize that we have estimated the parameters in the regression model. (If we
knew the parameters, there would be no estimation error in the forecast.) The forecast
error—which we will not know until time n � 1—is

ên�1 � yn�1 � f̂n. (18.45)

If we add more lags of y or z to the forecasting equation, we simply lose more obser-
vations at the beginning of the sample.

The forecast f̂n of yn�1 is usually called a point forecast. We can also obtain a fore-
cast interval. A forecast interval is essentially the same as a prediction interval, which
we studied in Section 6.4. There we showed how, under the classical linear model
assumptions, to obtain an exact 95% prediction interval. A forecast interval is obtained
in exactly the same way. If the model does not satisfy the classical linear model assump-
tions—for example, if it contains lagged dependent variables, as in (18.44)—the fore-
cast interval is still approximately valid, provided ut given It�1 is normally distributed
with zero mean and constant variance. (This ensures that the OLS estimators are approx-
imately normally distributed with the usual OLS variances and that un�1 is independent
of the OLS estimators with mean zero and variance 
2.) Let se( f̂n) be the standard error
of the forecast and let 
̂ be the standard error of the regression. [From Section 6.4, we
can obtain f̂n and se( f̂n) as the intercept and its standard error from the regression of yt

on (yt�1 � yn) and (zt�1 � zn), t � 1,2, …, n; that is, we subtract the time n value of y
from each lagged y, and similarly for z, before doing the regression.] Then,

se(ên�1) � {[se( f̂n)]
2 � 
̂ 2}1/ 2, (18.46)

and the (approximate) 95% forecast interval is

f̂n � 1.96�se(ên�1). (18.47)

Because se( f̂n) is roughly proportional to 1/��n, se( f̂n) is usually small relative to the
uncertainty in the error un�1, as measured by 
̂ . [Some econometrics packages com-
pute forecast intervals routinely, but others require some simple manipulations to obtain
(18.47).]

E X A M P L E  1 8 . 8
( F o r e c a s t i n g  t h e  U . S .  U n e m p l o y m e n t  R a t e )

We use the data in PHILLIPS.RAW, which is for the years 1948 through 1996, to forecast
the U.S. civilian unemployment rate for 1997. We use two models. The first is a simple
AR(1) model for unem:
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unêmt �(1.572)�(.732)unemt�1

unêmt �1(.577)�(.097)unemt�1

n � 48, R̄2 � .544, 
̂ � 1.049.

(18.48)

In a second model, we add inflation with a lag of one year:

unêmt �(1.304)�(.647)unemt�1 �(.184)inft�1

unêmt �1(.490)�(.084)unemt�1 �(.041)inft�1

n � 48, R̄2 � .677, 
̂ � .883.

(18.49)

The lagged inflation rate is very significant in (18.49) (t � 4.5), and the adjusted R-squared
from the second equation is much higher than that from the first. Nevertheless, this does
not necessarily mean that the second equation will produce a better forecast for 1997. All
we can say so far is that, using the data up through 1996, a lag of inflation helps to explain
variation in the unemployment rate.

To obtain the forecasts for 1997, we need to know unem and inf in 1996. These are 5.4
and 3.0, respectively. Therefore, the forecast of unem1997 from equation (18.48) is 1.572 �
.732(5.4), or about 5.52. The forecast from equation (18.49) is 1.304 � .647(5.4) �

.184(3.0), or about 5.35. The actual civilian unemployment rate for 1997 was 4.9, and so
both equations over-predict the actual rate. The second equation does provide a somewhat
better forecast.

We can easily obtain a 95% forecast interval. When we regress unemt on (unemt�1 �

5.4) and (inft�1 � 3.0), we obtain 5.35 as the intercept—which we already computed as the
forecast—and se(f̂n) � .137. Therefore, because 
̂ � .883, we have se(ên�1) � [(.137)2 �

(.883)2]1/2 � .894. The 95% forecast interval from (18.47) is 5.35 � 1.96(.894), or about
[3.6,7.1]. This is a wide interval, and the realized 1997 value, 4.9, is well within the interval.
As expected, the standard error of un�1, which is .883, is a very large fraction of se(ên�1).

A professional forecaster must usually produce a forecast for every time period. For
example, at time n, she or he produces a forecast of yn�1. Then, when yn�1 and zn�1

become available, he or she must forecast yn�2. Even if the forecaster has settled on
model (18.43), there are two choices for forecasting yn�2. The first is to use �̂0 �
�̂1yn�1 � 
̂1zn�1, where the parameters are estimated using the first n observations. The
second possibility is to reestimate the parameters using all n � 1 observations and then
to use the same formula to forecast yn�2. To forecast in subsequent time periods, we can
generally use the parameter estimates obtained from the initial n observations, or we
can update the regression parameters each time we obtain a new data point. While the
latter approach requires more computation, the extra burden is relatively minor, and it
can (although it need not) work better because the regression coefficients adjust at least
somewhat to the new data points.

As a specific example, suppose we wish to forecast the unemployment rate for
1998, using the model with a single lag of unem and inf. The first possibility is to just
plug the 1997 values of unemployment and inflation into the right-hand side of (18.49).
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With unem � 4.9 and inf � 2.3 in 1997, we have a forecast for unem1998 of about 4.9.
(It is just a coincidence that this is the same as the 1997 unemployment rate.) The sec-
ond possibility is to reestimate the equation by adding the 1997 observation and then
using this new equation (see Exercise 18.15).

The model in equation (18.43) is one equation in what is known as a vector autore-
gressive (VAR) model. We know what an autoregressive model is from Chapter 11: we
model a single series, {yt}, in terms of its own past. In vector autoregressive models, we
model several series—which, if you are familiar with linear algebra, is where the word
“vector” comes from—in terms of their own past. If we have two series, yt and zt, a vec-
tor autoregression consists of equations that look like

yt � �0 � �1yt�1 � 
1zt�1 � �2yt�2 � 
2zt�2 � … (18.50)

and

zt � �0 � �1yt�1 � �1zt�1 � �2yt�2 � �2zt�2 � …,

where each equation contains an error that has zero expected value given past informa-
tion on y and z. In equation (18.43)—and in the example estimated in (18.49)—we
assumed that one lag of each variable captured all of the dynamics. (An F test for joint
significance of unemt�2 and inft�2 confirms that only one lag of each is needed.)

As Example 18.8 illustrates, VAR equations can be useful for forecasting. In many
cases, we are interested in forecasting only one variable, y, in which case we only need
to estimate and analyze the equation for y. Nothing prevents us from adding other lagged
variables, say wt�1, wt�2, …, to equation (18.50). Such equations are efficiently esti-
mated by OLS, provided we have included enough lags of all variables and the equation
satisfies the homoskedasticity assumption for time series regressions.

Equations such as (18.50) allow us to test whether, after controlling for past y, past
z help to forecast yt. Generally, we say that z Granger causes y if

E(yt�It�1) � E(yt�Jt�1), (18.51)

where It�1 contains past information on y and z, and Jt�1 contains only information on
past y. When (18.51) holds, past z is useful, in addition to past y, for predicting yt. The
term “causes” in “Granger causes” should be interpreted with caution. The only sense
in which z “causes” y is given in (18.51). In particular, it has nothing to say about con-
temporaneous causality between y and z, so it does not allow us to determine whether
zt is an exogenous or endogenous variable in an equation relating yt to zt. (This is also
why the notion of Granger causality does not apply in pure cross-sectional contexts.)

Once we assume a linear model and decide how many lags of y should be included
in E(yt�yt�1,yt�2,…), we can easily test the null hypothesis that z does not Granger cause
y. To be more specific, suppose that E(yt�yt�1,yt�2,…) depends on only three lags:

yt � �0 � �1yt�1 � �2yt�2 � �3yt�3 � ut

E(ut�yt�1,yt�2,…) � 0.
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Now, under the null hypothesis that z does not Granger cause y, any lags of z that we
add to the equation should have zero population coefficients. If we add zt�1, then we
can simply do a t test on zt�1. If we add two lags of z, then we can do an F test for joint
significance of zt�1 and zt�2 in the equation

yt � �0 � �1yt�1 � �2yt�2 � �3yt�3 � 
1zt�1 � 
2zt�2 � ut.

(If there is heteroskedasticity, we can use a robust form of the test. There cannot be ser-
ial correlation under H0 because the model is dynamically complete.)

As a practical matter, how do we decide on which lags of y and z to include? First,
we start by estimating an autoregressive model for y and performing t and F tests to
determine how many lags of y should appear. With annual data, the number of lags is
typically small, say one or two. With quarterly or monthly data, there are usually many
more lags. Once an autoregressive model for y has been chosen, we can test for lags of
z. The choice of lags of z is less important because, when z does not Granger cause y,
no set of lagged z’s should be significant. With annual data, one or two lags are typi-
cally used; with quarterly data, usually four or eight; and with monthly data, perhaps
six, 12, or maybe even 24, given enough data.

We have already done one example of testing for Granger causality in equation
(18.49). The autoregressive model that best fits unemployment is an AR(1). In equation
(18.49), we added a single lag of inflation, and it was very significant. Therefore, infla-
tion Granger causes unemployment.

There is an extended definition of Granger causality that is often useful. Let {wt}
be a third series (or, it could represent several additional series). Then, z Granger causes
y conditional on w if (18.51) holds, but now It�1 contains past information on y, z, and
w, while Jt�1 contains past information on y and w. It is certainly possible that z Granger
causes y, but z does not Granger cause y conditional on w. A test of the null that z does
not Granger cause y conditional on w is obtained by testing for significance of lagged
z in a model for y that also depends on lagged y and lagged w. For example, to test
whether growth in the money supply Granger causes growth in real GDP, conditional
on the change in interest rates, we would regress gGDPt on lags of gGDP, �int, and gM
and do significance tests on the lags of gM. [See, for example, Stock and Watson
(1989).]

Comparing One-Step-Ahead Forecasts

In almost any forecasting problem, there are several competing methods for forecast-
ing. Even when we restrict attention to regression models, there are many possibilities.
Which variables should be included, and with how many lags? Should we use logs, lev-
els of variables, or first differences?

In order to decide on a forecasting method, we need a way to choose which one is
most suitable. Broadly, we can distinguish between in-sample criteria and out-
of-sample criteria. In a regression context, in-sample criteria include R-squared and
especially adjusted R-squared. There are many other model selection statistics, but we
will not cover those here [see, for example, Ramanathan (1995, Chapter 4)].

For forecasting, it is better to use out-of-sample criteria, as forecasting is essentially
an out-of-sample problem. A model might provide a good fit to y in the sample used to
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estimate the parameters. But this need not translate to good forecasting performance.
An out-of-sample comparison involves using the first part of a sample to estimate the
parameters of the model and saving the latter part of the sample to gauge its forecast-
ing capabilities. This mimics what we would have to do in practice if we did not yet
know the future values of the variables.

Suppose that we have n � m observations, where we use the first n observations to
estimate the parameters in our model and save the last m observations for forecasting.
Let f̂n�h be the one-step-ahead forecast of yn�h�1 for h � 0,1, …, m � 1. The m forecast
errors are ên�h�1 � yn�h�1 � f̂n�h. How should we measure how well our model fore-
casts y when it is out of sample? Two measures are most common. The first is the root
mean squared error (RMSE):

RMSE � �m�1 �
m�1

h�0
ên

2
�h�1 �1/2

. (18.52)

This is essentially the sample standard deviation of the forecast errors (without any
degrees of freedom adjustment). If we compute RMSE for two or more forecasting
methods, then we prefer the method with the smallest out-of-sample RMSE.

A second common measure is the mean absolute error (MAE), which is the aver-
age of the absolute forecast errors:

MAE � m�1 �
m�1

h�0
�ên�h�1�. (18.53)

Again, we prefer a smaller MAE. Other possible criteria include minimizing the largest
of the absolute values of the forecast errors.

E X A M P L E  1 8 . 9
( O u t - o f - S a m p l e  C o m p a r i s o n s o f  U n e m p l o y m e n t  F o r e c a s t s )

In Example 18.8, we found that equation (18.49) fit better in our sample than (18.48) did,
and, at least for forecasting 1997, the model with lagged inflation worked better. Now,
we estimate both models using data through 1989, saving 1990 through 1996 for out-
of-sample comparisons. This leaves seven out-of-sample observations (n � 41 and m � 7,
to be precise). For the AR(1) model, RMSE � .632, and MAE � .515. For the model that
adds lagged inflation, RMSE � .550, and MAE � .362. Thus, by either measure, the model
that includes inft�1 produces better out-of-sample forecasts for the 1990s. In this case, the
in-sample and out-of-sample criteria both choose the same model.

Rather than using only the first n observations to estimate the parameters of the
model, we can reestimate the models each time we add a new observation and use the
new model to forecast the next time period.
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Multiple-Step-Ahead Forecasts

Forecasting more than one period ahead is generally more difficult than forecasting one
period ahead. We can formalize this as follows. Suppose we consider forecasting yt�1

at time t and at an earlier time period s (so that s � t). Then Var[yt�1 � E(yt�1�It)] �
Var[yt�1 � E(yt�1�Is)], where the inequality is usually strict. We will not prove this
result generally, but, intuitively, it makes sense: the forecast error variance in predicting
yt�1 is larger when we make that forecast based on less information.

If {yt} follows an AR(1) model (which includes a random walk, possibly with drift),
we can easily show that the error variance increases with the forecast horizon. The
model is

yt � � � �yt�1 � ut

E(ut�It�1) � 0, It�1 � {yt�1,yt�2,…},

and {ut} has constant variance 
2 conditional on It�1. At time t � h � 1, our fore-
cast of yt�h is � � �yt�h�1, and the forecast error is simply ut�h. Therefore, the one-
step-ahead forecast variance is simply 
2. To find multiple-step-ahead forecasts, we
have, by repeated substitution,

yt�h � (1 � � � … � �h�1)� � �hyt

� �h�1ut�1 � �h�2ut�2 � … � ut�h.

At time t, the expected value of ut�j, for all j 	 1, is zero. So

E(yt�h�It) � (1 � � � … � �h�1)� � �hyt, (18.54)

and the forecast error is et,h � �h�1ut�1 � �h�2ut�2 � … � ut�h. This is a sum of
uncorrelated random variables, and so the variance of the sum is the sum of the vari-
ances: Var(et,h) � 
2[�2(h�1) � �2(h�2) � … � �2 � 1]. Because �2 � 0, each term mul-
tiplying 
2 is positive, and so the forecast error variance increases with h. When �2 � 1,
the forecast variance converges to 
2/(1 � �2), which is just the unconditional variance
of yt. In the case of a random walk (� � 1), ft,h � �h � yt, and Var(et,h) � 
2h: the fore-
cast variance grows without bound as the horizon h increases. This demonstrates that it
is very difficult to forecast a random walk, with or without drift, far out into the future.
For example, forecasts of interest rates farther into the future become less precise.

Equation (18.54) shows that using the AR(1) model for multi-step forecasting is
easy, once we have estimated � by OLS. The forecast of yn�h at time n is

f̂n,h � (1 � �̂ � … � �̂ h�1)�̂ � �̂ hyn. (18.55)

Obtaining forecast intervals is harder, unless h � 1, because obtaining the standard error
of f̂n,h is difficult. Nevertheless, the standard error of f̂n,h is usually small, compared with
the standard deviation of the error term, and the latter can be estimated as

̂ [�̂ 2(h�1) � �̂ 2(h�2) � … � �̂ 2 � 1]1/2, where 
̂ is the standard error of the regression
from the AR(1) estimation. We can use this to obtain an approximate confidence inter-
val. For example, when h � 2, an approximate 95% confidence interval (for large n) is
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f̂n,2 � 1.96
̂ (1 � �̂ 2)1/2. (18.56)

Because we are underestimating the standard deviation of yn�h, this interval is too nar-
row, but perhaps not by much, especially if n is large.

A less traditional, but useful, approach is to estimate a different model for each fore-
cast horizon. For example, suppose we wish to forecast y two periods ahead. If It

depends only on y up through time t, we might assume that E(yt�2�It) � �0 � 
1yt

[which, as we saw earlier, holds if {yt} follows an AR(1) model]. We can estimate �0

and 
1 by regressing yt on an intercept and on yt�2. Even though the errors in this equa-
tion contain serial correlation—errors in adjacent periods are correlated—we can obtain
consistent and approximately normal estimators of �0 and 
1. The forecast of yn�2

at time n is simply f̂n,2 � �̂0 � 
̂1yn. Further, and very importantly, the standard error
of the regression is just what we need for computing a confidence interval for the fore-
cast. Unfortunately, to get the standard error of f̂n,2, using the trick for a one-step-ahead
forecast requires us to obtain a serial correlation-robust standard error of the kind
described in Section 12.5. This standard error goes to zero as n gets large while the vari-
ance of the error is constant. Therefore, we can get an approximate interval by using
(18.56) and by putting the SER from the regression of yt on yt�2 in place of 
̂ (1 �
�̂ 2)1/2. But we should remember that this still ignores the estimation error in �̂0 and 
̂1.

We can also compute multi-step-ahead forecasts with more complicated autore-
gressive models. For example, suppose {yt} follows an AR(2) model and that at time n,
we wish to forecast yn�2. Now, yn�2 � � � �1yn�1 � �2yn � un�2, and so

E(yn�2�In) � � � �1E(yn�1�In) � �2yn.

We can write this as

fn,2 � � � �1 fn,1 � �2yn,

so that the two-step-ahead forecast at time n can be obtained, once we get the one-
step-ahead forecast. If the parameters of the AR(2) model have been estimated by OLS,
then we operationalize this as

f̂n,2 � �̂ � �̂1 f̂n,1 � �̂2yn. (18.57)

Now, f̂n,1 � �̂ � �̂1yn � �̂2yn�1, which we can compute at time n. Then, we plug
this into (18.57), along with yn, to obtain f̂n,2. For any h � 2, obtaining any h-
step-ahead forecast for an AR(2) model is easy to find in a recursive manner: f̂n,h �
�̂ � �̂1 f̂n,h�1 � �̂2 f̂n,h�2.

Similar reasoning can be used to obtain multi-step-ahead forecasts for VAR models.
To illustrate, suppose we have

yt � �0 � �1yt�1 � 
1zt�1 � ut (18.58)

and

zt � �0 � �1yt�1 � �1zt�1 � vt.
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Now, if we wish to forecast yn�1 at time n, we simply use f̂n,1 � �̂0 � �̂1yn � 
̂1zn.
Likewise, the forecast of zn�1 at time n is (say) ĝn,1 � �̂0 � �̂1yn � �̂1zn. Now, suppose
we wish to obtain a two-step-ahead forecast of y at time n. From (18.58), we have

E(yn�2�In) � �0 � �1E(yn�1�In) � 
1E(zn�1�In)

[because E(un�2�In) � 0], and so we can write the forecast as

f̂n,2 � �̂0 � �̂1 f̂n,1 � 
̂1ĝn,1. (18.59)

This equation shows that the two-step-ahead forecast for y depends on the one-
step-ahead forecasts for y and z. Generally, we can build up multi-step-ahead forecasts
of y by using the recursive formula

f̂n,h � �̂0 � �̂1 f̂n,h�1 � 
̂1ĝn,h�1, h 	 2.

E X A M P L E  1 8 . 1 0
( T w o - Y e a r - A h e a d  F o r e c a s t  f o r  t h e  U n e m p l o y m e n t  R a t e )

To use equation (18.49) to forecast unemployment two years out—say, the 1998 rate using
the data through 1996—we need a model for inflation. The best model for inf in terms of
lagged unem and inf appears to be a simple AR(1) model (unem�1 is not significant when
added to the regression):

in̂ft �(1.277)�(.665)inft�1

in̂ft �0(.558)�(.107)inft�1

n � 48, R2 � .457, R̄2 � .445.

If we plug the 1996 value of inf into this equation, we get the forecast of inf for 1997:
in̂f1997 � 3.27. Now, we can plug this, along with unêm1997 � 5.35 (which we obtained
earlier) into (18.59) to forecast unem1998:

unêm1998 � 1.304 � .647(5.35) � .184(3.27) � 5.37.

Remember, this forecast uses information only through 1996. The one-step-ahead forecast
of unem1998, obtained by plugging the 1997 values of unem and inf into (18.48), was
about 4.90. You can find the actual civilian unemployment rate for 1998 in a recent
Economic Report of the President. You will see that the one-step-ahead forecast turns out
to be much closer than the two-step-ahead forecast.

Just as with one-step-ahead forecasting, an out-of-sample root mean squared error
or a mean absolute error can be used to choose among multi-step-ahead forecasting
methods.

Forecasting Trending, Seasonal, and 
Integrated Processes

We now turn to forecasting series that either exhibit trends, have seasonality, or have
unit roots. Recall from Chapters 10 and 11 that one approach to handling trending
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dependent or independent variables in regression models is to include time trends, the
most popular being a linear trend. Trends can be included in forecasting equations as
well, although they must be used with caution.

In the simplest case, suppose that {yt} has a linear trend but is unpredictable around
that trend. Then, we can write

yt � � � �t � ut, E(ut�It�1) � 0, t � 1,2, …, (18.60)

where, as usual, It�1 contains information observed through time t � 1 (which includes
at least past y). How do we forecast yn�h at time n for any h 	 1? This is simple because
E(yn�h�In) � � � �(n � h). The forecast error variance is simply 
2 � Var(ut) (assum-
ing a constant variance over time). If we estimate � and � by OLS using the first n
observations, then our forecast for yn�h at time n is f̂n,h � �̂ � �̂(n � h). In other words,
we simply plug the time period corresponding to y into the estimated trend function. For
example, if we use the n � 131 observations in BARIUM.RAW to forecast monthly
Chinese imports of barium chloride to the United States, we obtain �̂ � 249.56 and
�̂ � 5.15. The sample period ends in December 1988, so the forecast of Chinese
imports six months later is 249.56 � 5.15(137) � 955.11, measured as short tons. For
comparison, the December 1988 value is 1,087.81, so it is greater than the forecasted
value six months later. The series and its estimated trend line are shown in Figure 18.2.
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Chinese barium chloride imports into the United States (in short tons) and its estimated linear
trend line, 249.56 � 5.15t.
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As we discussed in Chapter 10, most economic time series are better characterized
as having, at least approximately, a constant growth rate, which suggests that log(yt)
follows a linear time trend. Suppose we use n observations to obtain the equation

lôg(yt) � �̂ � �̂t, t � 1,2, …, n. (18.61)

Then, to forecast log(y) at any future time period n � h, we just plug n � h into the
trend equation, as before. But this does not
allow us to forecast y, which is usually
what we want. It is tempting to simply
exponentiate �̂ � �̂(n � h) to obtain the
forecast for yn�h, but this is not quite
right, for the same reasons we gave in
Section 6.4. We must properly account for
the error implicit in (18.61). The simplest
way to do this is to use the n observations
to regress yt on exp(loĝyt) without an inter-

cept. Let 
̂ be the slope coefficient on exp(loĝyt). Then, the forecast of y in period
n � h is simply

f̂n,h � 
̂exp[�̂ � �̂(n � h)]. (18.62)

As an example, if we use the first 687 weeks of data on the New York stock
exchange index in NYSE.RAW, we obtain �̂ � 3.782 and �̂ � .0019 [by regressing
log( pricet) on a linear time trend]; this shows that the index grows about .2% per week,
on average. When we regress price on the exponentiated fitted values, we obtain 
̂ �
1.018. Now, we forecast price four weeks out, which is the last week in the sample,
using (18.62): 1.018�exp[3.782 � .0019(691)] � 166.12. The actual value turned out to
be 164.25, so we have somewhat over-predicted. But this result is much better than if
we estimate a linear time trend for the first 687 weeks: the forecasted value for week
691 is 152.23, which is a substantial under-prediction.

While trend models can be useful for prediction, they must be used with caution,
especially for forecasting far into the future integrated series that have drift. The poten-
tial problem can be seen by considering a random walk with drift. At time t � h, we can
write yt�h as

yt�h � �h � yt � ut�1 � … � ut�h,

where � is the drift term (usually � � 0), and each ut�j has zero mean given It and con-
stant variance 
2. As we saw earlier, the forecast of yt�h at time t is E(yt�h�It) �
�h � yt, and the forecast error variance is 
2h. What happens if we use a linear trend
model? Let y0 be the initial value of the process at time zero, which we take as nonran-
dom. Then, we can also write

yt�h � y0 � �(t � h) � u1 � u2 � … � ut�h

� y0 � �(t � h) � vt�h.
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Suppose you model { yt: t � 1,2, …, 46} as a linear time trend, where
data are annual starting in 1950 and ending in 1995. Define the
variable yeart as ranging from 50 when t � 1 to 95 when t � 46. If
you estimate the equation ŷt � 
̂ � �̂yeart, how do 
̂ and �̂ com-
pare with �̂ and �̂ in ŷt � �̂ � �̂t? How will forecasts from the two
equations compare?

d  7/14/99 8:36 PM  Page 605



This looks like a linear trend model with the intercept � � y0. But the error, vt�h, while
having mean zero, has variance 
2(t � h). Therefore, if we use the linear trend
y0 � �(t � h) to forecast yt�h at time t, the forecast error variance is 
2(t � h), as com-
pared with 
2h when we use �h � yt. The ratio of the forecast variances is (t � h)/h,
which can be big for large t. The bottom line is that we should not use a linear trend to
forecast a random walk with drift. (Problem 18.17 asks you to compare forecasts from
a cubic trend line and those from the simple random walk model for the general fertil-
ity rate in the United States.)

Deterministic trends can also produce poor forecasts if the trend parameters are esti-
mated using old data and the process has a subsequent shift in the trend line.
Sometimes, exogenous shocks—such as the oil crises of the 1970s—can change the tra-
jectory of trending variables. If an old trend line is used to forecast far into the future,
the forecasts can be way off. This problem can be mitigated by using the most recent
data available to obtain the trend line parameters.

Nothing prevents us from combining trends with other models for forecasting. For
example, we can add a linear trend to an AR(1) model, which can work well for fore-
casting series with linear trends but which are also stable AR processes around the trend.

It is also straightforward to forecast processes with deterministic seasonality
(monthly or quarterly series). For example, the file BARIUM.RAW contains the
monthly production of gasoline in the United States from 1978 through 1988. This
series has no obvious trend, but it does have a strong seasonal pattern. (Gasoline pro-
duction is higher in the summer months and in December.) In the simplest model, we
would regress gas (measured in gallons) on eleven month dummies, say for February
through December. Then, the forecast for any future month is simply the intercept plus
the coefficient on the appropriate month dummy. (For January, the forecast is just the
intercept in the regression.) We can also add lags of variables and time trends to allow
for general series with seasonality.

Forecasting processes with unit roots also deserves special attention. Earlier, we
obtained the expected value of a random walk conditional on information through time
n. To forecast a random walk, with possible drift �, h periods into the future at time n,
we use f̂n,h � �̂h � yn, where �̂ is the sample average of the �yt up through t � n. (If
there is no drift, we set �̂ � 0.) This approach imposes the unit root. An alternative
would be to estimate an AR(1) model for {yt} and to use the forecast formula (18.55).
This approach does not impose a unit root, but if one is present, �̂ converges in proba-
bility to one as n gets large. Nevertheless, �̂ can be substantially different than one,
especially if the sample size is not very large. The matter of which approach produces
better out-of-sample forecasts is an empirical issue. If in the AR(1) model, � is less than
one, even slightly, the AR(1) model will tend to produce better long-run forecasts.

Generally, there are two approaches to producing forecasts for I(1) processes. The
first is to impose a unit root. For a one-step-ahead forecast, we obtain a model to fore-
cast the change in y, �yt�1, given information up through time t. Then, because yt�1 �
�yt�1 � yt, E(yt�1�It) � E(�yt�1�It) � yt. Therefore, our forecast of yn�1 at time n is just

f̂n � ĝn � yn,

where ĝn is the forecast of �yn�1 at time n. Typically, an AR model (which is necessar-
ily stable) is used for �yt, or a vector autoregression.
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This can be extended to multi-step-ahead forecasts by writing yn�h as

yn�h � (yn�h � yn�h�1) � (yn�h�1 � yn�h�2) � … � (yn�1 � yn) � yn,

or

yn�h � �yn�h � �yn�h�1 � … � �yn�1 � yn.

Therefore, the forecast of yn�h at time n is

f̂n,h � ĝn,h � ĝn,h�1 � … � ĝn,1 � yn, (18.63)

where ĝn,j is the forecast of �yn�j at time n. For example, we might model �yt as a sta-
ble AR(1), obtain the multi-step-ahead forecasts from (18.55) (but with �̂ and �̂
obtained from �yt on �yt�1, and yn replaced with �yn), and then plug these into (18.63).

The second approach to forecasting I(1) variables is to use a general AR or VAR
model for {yt}. This does not impose the unit root. For example, if we use an AR(2)
model,

yt � � � �1yt�1 � �2yt�2 � ut, (18.64)

then �1 � �2 � 1. If we plug in �1 � 1 � �2 and rearrange, we obtain �yt � � �
�2�yt�1 � ut, which is a stable AR(1) model in the difference that takes us back to the
first approach described earlier. Nothing prevents us from estimating (18.64) directly by
OLS. One nice thing about this regression is that we can use the usual t statistic on �̂2

to determine if yt�2 is significant. (This assumes that the homoskedasticity assumption
holds; if not, we can use the heteroskedasticity-robust form.) We will not show this
formally, but, intuitively, it follows by rewriting the equation as yt � � � 
yt�1 �
�2�yt�1 � ut, where 
 � �1 � �2. Even if 
 � 1, �2 is minus the coefficient on a sta-
tionary, weakly dependent process {�yt�1}. Because the regression results will be iden-
tical to (18.64), we can use it directly.

As an example, let us estimate an AR(2) model for the general fertility rate in FER-
TIL3.RAW, using the observations up through 1979. (In Exercise 18.17 you are asked
to use this model for forecasting, which is why we save some observations at the end
of the sample.)

gf̂rt �(3.22)�(1.272)gfrt�1 �(.311)gfrt�2

gf̂rt �(2.92)�1(.120)gfrt�1 �(.121)gfrt�2

n � 65, R2 � .949, R̄2 � .947.

(18.65)

The t statistic on the second lag is about �2.57, which is statistically different from zero
at about the 1% level. (The first lag also has a very significant t statistic, which has an
approximate t distribution by the same reasoning used for �̂2.) The R-squared, adjusted
or not, is not especially informative as a goodness-of-fit measure because gfr apparently
contains a unit root, and it makes little sense to ask how much of the variance in gfr we
are explaining.

The coefficients on the two lags in (18.65) add up to .961, which is close to and not
statistically different from one (as can be verified by applying the augmented Dickey-
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Fuller test to the equation �gfrt � � � �gfrt�1 � ��gfrt�1 � ut). Even though we have
not imposed the unit root restriction, we can still use (18.65) for forecasting, as we dis-
cussed earlier.

Before ending this section, we point out one potential improvement in forecasting
in the context of vector autoregressive models with I(1) variables. Suppose {yt} and {zt}
are each I(1) processes. One approach for obtaining forecasts of y is to estimate a bivari-
ate autoregression in the variables �yt and �zt and then to use (18.63) to generate one-
or multi-step-ahead forecasts; this is essentially the first approach we described earlier.
However, if yt and zt are cointegrated, we have more stationary, stable variables in the
information set that can be used in forecasting �y: namely, lags of yt � �zt, where � is
the cointegrating parameter. A simple error correction model is

�yt � �0 � �1�yt�1 � 
1�zt�1 � �1(yt�1 � �zt�1) � et,

E(et�It�1) � 0.
(18.66)

To forecast yn�1, we use observations up through n to estimate the cointegrating para-
meter, �, and then estimate the parameters of the error correction model by OLS, as
described in Section 18.4. Forecasting �yn�1 is easy: we just plug �yn, �zn, and yn �
�̂zn into the equation. Having obtained the forecast of �yn�1, we add it to yn.

By rearranging the error correction model, we can write

yt � �0 � �1yt�1 � �2yt�2 � �1zt�1 � �2zt�2 � ut, (18.67)

where �1 � 1 � �1 � �, �2 � ��1, and so on, which is the first equation in a VAR model
for yt and zt. Notice that this depends on five parameters, just as many as in the error cor-
rection model. The point is that, for the purposes of forecasting, the VAR model in the
levels and the error correction model are essentially the same. This is not the case in
more general error correction models. For example, suppose that �1 � 
1 � 0 in (18.66),
but we have a second error correction term, �2(yt�2 � �zt�2). Then, the error correction
model involves only four parameters, whereas (18.67)—which has the same order of
lags for y and z—contains five parameters. Thus, error correction models can economize
on parameters, that is, they are generally more parsimonious than VARs in levels.

If yt and zt are I(1) but not cointegrated, the appropriate model is (18.66) without
the error correction term. This can be used to forecast �yn�1, and we can add this to yn

to forecast yn�1.

SUMMARY

The time series topics covered in this chapter are used routinely in empirical macro-
economics, empirical finance, and a variety of other applied fields. We began by show-
ing how infinite distributed lag models can be interpreted and estimated. These can
provide flexible lag distributions with fewer parameters than a similar finite distributed
lag model. The geometric distributed lag and, more generally, rational distributed lag
models, are the most popular. They can be estimated using standard econometric pro-
cedures on simple dynamic equations.
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Testing for a unit root has become very common in time series econometrics. If a
series has a unit root, then, in many cases, the usual large sample normal approxima-
tions are no longer valid. In addition, a unit root process has the property that an inno-
vation has a long-lasting effect, which is of interest in its own right. While there are
many tests for unit roots, the Dickey-Fuller t test—and its extension, the augmented
Dickey-Fuller test—is probably the most popular and easiest to implement. We can
allow for a linear trend when testing for unit roots by adding a trend to the Dickey-
Fuller regression.

When an I(1) series, yt, is regressed on another I(1) series, xt, there is serious con-
cern about spurious regression, even if the series do not contain obvious trends. This
has been studied thoroughly in the case of a random walk: even if the two random walks
are independent, the usual t test for significance of the slope coefficient, based on the
usual critical values, will reject much more than the nominal size of the test. In addi-
tion, the R2 tends to a random variable, rather than to zero (as would be the case if we
regress the difference in yt on the difference in xt).

In one important case, a regression involving I(1) variables is not spurious, and that
is when the series are cointegrated. This means that a linear function of the two I(1)
variables is I(0). If yt and xt are I(1) but yt � xt is I(0), yt and xt cannot drift arbitrarily
far apart. There are simple tests of the null of no cointegration against the alternative of
cointegration, one of which is based on applying a Dickey-Fuller unit root test to the
residuals from a static regression. There are also simple estimators of the cointegrating
parameter that yield t statistics with approximate standard normal distributions (and
asymptotically valid confidence intervals). We covered the leads and lags estimator in
Section 18.4.

Cointegration between yt and xt implies that error correction terms may appear in a
model relating �yt to �xt; the error correction terms are lags in yt � �xt, where � is the
cointegrating parameter. A simple two-step estimation procedure is available for esti-
mating error correction models. First, � is estimated using a static regression (or the
leads and lags regression). Then, OLS is used to estimate a simple dynamic model in
first differences which includes the error correction terms.

Section 18.5 contained an introduction to forecasting, with emphasis on regression-
based forecasting methods. Static models or, more generally, models that contain
explanatory variables dated contemporaneously with the dependent variable, are lim-
ited because then the explanatory variables need to be forecasted. If we plug in hypoth-
esized values of unknown future explanatory variables, we obtain a conditional
forecast. Unconditional forecasts are similar to simply modeling yt as a function of past
information we have observed at the time the forecast is needed. Dynamic regression
models, including autoregressions and vector autoregressions, are used routinely. In
addition to obtaining one-step-ahead point forecasts, we also discussed the construction
of forecast intervals, which are very similar to prediction intervals.

Various criteria are used for choosing among forecasting methods. The most com-
mon performance measures are the root mean squared error and the mean absolute
error. Both estimate the size of the average forecast error. It is most informative to com-
pute these measures using out-of-sample forecasts.

Multi-step-ahead forecasts present new challenges and are subject to large forecast
error variances. Nevertheless, for models such as autoregressions and vector autore-
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gressions, multi-step-ahead forecasts can be computed, and approximate forecast inter-
vals can be obtained.

Forecasting trending and I(1) series requires special care. Processes with determin-
istic trends can be forecasted by including time trends in regression models, possibly
with lags of variables. A potential drawback is that deterministic trends can provide
poor forecasts for long-horizon forecasts: once it is estimated, a linear trend continues
to increase or decrease. The typical approach to forecasting an I(1) process is to fore-
cast the difference in the process and to add the level of the variable to that forecasted
difference. Alternatively, vector autoregressive models can be used in the levels of the
series. If the series are cointegrated, error correction models can be used instead.

KEY TERMS
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Augmented Dickey-Fuller Test
Cointegration
Conditional Forecast
Dickey-Fuller Distribution
Dickey-Fuller (DF) Test
Engle-Granger Two-Step Procedure
Error Correction Model
Exponential Smoothing
Forecast Error
Forecast Interval
Geometric (or Koyck) Distributed Lag
Granger Causality
In-Sample Criteria
Infinite Distributed Lag (IDL) Model
Information Set

Leads and Lags Estimator
Loss Function
Martingale
Martingale Difference Sequence
Mean Absolute Error (MAE)
Multiple-Step-Ahead Forecast
One-Step-Ahead Forecast
Out-of-Sample Criteria
Point Forecast
Rational Distributed Lag (RDL) Model
Root Mean Squared Error (RMSE)
Spurious Regression Problem
Unconditional Forecast
Unit Roots
Vector Autoregressive (VAR) Model

PROBLEMS

18.1 Consider equation (18.15) with k � 2. Using the IV approach to estimating the 
h

and �, what would you use as instruments for yt�1?

18.2 An interesting economic model that leads to an econometric model with a lagged
dependent variable relates yt to the expected value of xt, say x t*, where the expectation
is based on all observed information at time t � 1:

yt � �0 � �1x t* � ut. (18.68)

A natural assumption on {ut} is that E(ut�It�1) � 0, where It�1 denotes all information
on y and x observed at time t � 1; this means that E(yt�It�1) � �0 � �1x t*. To complete
this model, we need an assumption about how the expectation x t* is formed. We saw a
simple example of adaptive expectations in Section 11.2, where x t* � xt�1. A more com-
plicated adaptive expectations scheme is
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x t* � x t*�1 � �(xt�1 � x t*�1), (18.69)

where 0 � � � 1. This equation implies that the change in expectations reacts to
whether last period’s realized value was above or below its expectation. The assump-
tion 0 � � � 1 implies that the change in expectations is a fraction of last period’s error.

(i) Show that the two equations imply that

yt � ��0 � (1 � �)yt�1 � ��1xt�1 � ut � (1 � �)ut�1.

[Hint: Lag equation (18.68) one period, multiply it by (1 � �), and sub-
tract this from (18.68). Then, use (18.69).]

(ii) Under E(ut�It�1) � 0, {ut} is serially uncorrelated. What does this imply
about the errors, vt � ut � (1 � �)ut�1?

(iii) If we write the equation from part (i) as

yt � �0 � �1yt�1 � �2xt�1 � vt,

how would you consistently estimate the �j?
(iv) Given consistent estimators of the �j, how would you consistently esti-

mate � and �1?

18.3 Suppose that {yt} and {zt} are I(1) series, but yt � �zt is I(0) for some � � 0.
Show that for any � � �, yt � �zt must be I(1).

18.4 Consider the error correction model in equation (18.37). Show that if you add
another lag of the error correction term, yt�2 � �xt�2, the equation suffers from perfect
collinearity. [Hint: Show that yt�2 � �xt�2 is a perfect linear function of yt�1 � �xt�1,
�xt�1, and �yt�1.]

18.5 Suppose the process {(xt,yt): t � 0,1,2,…} satisfies the equations

yt � �xt � ut

and

�xt � 
�xt�1 � vt,

where E(ut�It�1) � E(vt�It�1) � 0, It�1 contains information on x and y dated at time
t � 1 and earlier, � � 0, and �
� � 1 [so that xt, and therefore yt, is I(1)]. Show that
these two equations imply an error correction model of the form

�yt � 
1�xt�1 � �(yt�1 � �xt�1) � et,

where 
1 � �
, � � �1, and et � ut � �vt. (Hint: First subtract yt�1 from both sides
of the first equation. Then, add and subtract �xt�1 from the right-hand side and
rearrange. Finally, use the second equation to get the error correction model that con-
tains �xt�1.)

18.6 Using the monthly data in VOLAT.RAW, the following model was estimated:

pcîp �(1.54)�(.344)pcip�1 �(.074)pcip�2 �(.073)pcip�3 �(.031)pcsp�1

pcîp �0(.56)�(.042)pcip�1 �(.045)pcip�2 �(.042)pcip�3 �(.013)pcsp�1

n � 554, R2 � .174, R̄2 � .168,
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where pcip is the percentage change in monthly industrial production, at an annualized
rate, and pcsp is the percentage change in the Standard & Poors 500 Index, also at an
annualized rate.

(i) If the past three months of pcip are zero, and pcsp�1 � 0, what is the
predicted growth in industrial production for this month? Is it statisti-
cally different from zero?

(ii) If the past three months of pcip are zero, but pcsp�1 � 10, what is the
predicted growth in industrial production?

(iii) What do you conclude about the effects of the stock market on real eco-
nomic activity?

18.7 Let gMt be the annual growth in the money supply and let unemt be the unem-
ployment rate. Assuming that unemt follows a stable AR(1) process, explain in detail
how you would test whether gM Granger causes unem.

18.8 Suppose that yt follows the model

yt � � � �1zt�1 � ut

ut � �ut�1 � et

E(et�It�1) � 0,

where It�1 contains y and z dated at t � 1 and earlier.
(i) Show that E(yt�1�It) � (1 � �)� � �yt � �1zt � ��1zt�1. (Hint: Write

ut�1 � yt�1 � � � �1zt�2 and plug this into the second equation; then,
plug the result into the first equation and take the conditional expecta-
tion.)

(ii) Suppose that you use n observations to estimate �, �1, and �. Write the
equation for forecasting yn�1.

(iii) Explain why the model with one lag of z and AR(1) serial correlation is
a special case of the model

yt � �0 � �yt�1 � 
1zt�1 � 
2zt�2 � et.

(iv) What does part (iii) suggest about using models with AR(1) serial cor-
relation for forecasting?

18.9 Let {yt} be an I(1) sequence. Suppose that ĝn is the one-step-ahead forecast of
�yn�1 and let f̂n � ĝn � yn be the one-step-ahead forecast of yn�1. Explain why the fore-
cast errors for forecasting �yn�1 and yn�1 are identical.

COMPUTER EXERCISES

18.10 Use the data in WAGEPRC.RAW for this exercise. Problem 11.5 gives estimates
of a finite distributed lag model of gprice on gwage, where 12 lags of gwage are used.

(i) Estimate a simple geometric DL model of gprice on gwage. In particu-
lar, estimate equation (18.11) by OLS. What are the estimated impact
propensity and LRP? Sketch the estimated lag distribution.

(ii) Compare the estimated IP and LRP to those obtained in Problem 11.5.
How do the estimated lag distributions compare?
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(iii) Now, estimate the rational distributed lag model from (18.16). Sketch
the lag distribution and compare the estimated IP and LRP to those
obtained in part (ii).

18.11 Use the data in HSEINV.RAW for this exercise.
(i) Test for a unit root in log(invpc), including a linear time trend and two

lags of �log(incpct). Use a 5% significance level.
(ii) Use the approach from part (i) to test for a unit root in log(price).
(iii) Given the outcomes in parts (i) and (ii), does it make sense to test for

cointegration between log(invpc) and log(price)?

18.12 Use the data in VOLAT.RAW for this exercise.
(i) Estimate an AR(3) model for pcip. Now, add a fourth lag and verify that

it is very insignificant.
(ii) To the AR(3) model from part (i), add three lags of pcsp to test whether

pcsp Granger causes pcip. Carefully, state your conclusion.
(iii) To the model in part (ii), add three lags of the change in i3, the three-

month T-bill rate. Does pcsp Granger cause pcip conditional on past
�i3?

18.13 In testing for cointegration between gfr and pe in Example 18.5, add t2 to equa-
tion (18.32) to obtain the OLS residuals. Include one lag in the augmented DF test. The
5% critical value for the test is �4.15.

18.14 Use INTQRT.RAW for this exercise.
(i) Estimate the equation

hy6t � � � �hy3t�1 � �0�hy3t � �1�hy3t�1 � �1�hy3t�2 � et

and report the results in equation form. Test H0: � � 1 against a two-
sided alternative. Assume that the lead and lag are sufficient so that
{hy3t�1} is strictly exogenous in this equation and do not worry about
serial correlation.

(ii) To the error correction model in (18.39), add �hy3t�2 and (hy6t�2 �
hy3t�3). Are these terms jointly significant? What do you conclude
about the appropriate error correction model?

18.15 Use the data in PHILLIPS.RAW, adding the 1997 values for unem and inf: 4.9 and
2.3, respectively.

(i) Estimate the models in (18.48) and (18.49) using the data up through
1997. Do the parameter estimates change much compared with (18.48)
and (18.49)?

(ii) Use the new equations to forecast unem1998; round to two places after
the decimal. Use the Economic Report of the President (1999 or later)
to obtain unem1998. Which equation produces a better forecast?

(iii) As we discussed in the text, the forecast for unem1998 using (18.49) is
4.90. Compare this with the forecast obtained using the data through
1997. Does using the extra year of data to obtain the parameter esti-
mates produce a better forecast?
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(iv) Use the model estimated in (18.48) to obtain a two-step-ahead forecast
of unem. That is, forecast unem1998 using equation (18.55) with �̂ �
1.572, �̂ � .732, and h � 2. Is this better or worse than the one-
step-ahead forecast obtained by plugging unem1997 � 4.9 into (18.48)?

18.16 Use the data in BARIUM.RAW for this exercise.
(i) Estimate the linear trend model chnimpt � � � �t � ut, using the first

119 observations (this excludes the last twelve months of observations
for 1988). What is the standard error of the regression?

(ii) Now, estimate an AR(1) model for chnimp, again using all data but the
last twelve months. Compare the standard error of the regression with
that from part (i). Which model provides a better in-sample fit?

(iii) Use the models from parts (i) and (ii) to compute the one-step-ahead
forecast errors for the twelve months in 1988. (You should obtain
twelve forecast errors for each method.) Compute and compare the
RMSEs and the MAEs for the two methods. Which forecasting method
works better out-of-sample for one-step-ahead forecasts?

(iv) Add monthly dummy variables to the regression from part (i). Are these
jointly significant? (Do not worry about the slight serial correlation in
the errors from this regression when doing the joint test.)

18.17 Use the data in FERTIL3.RAW for this exercise.
(i) Graph gfr against time. Does it contain a clear upward or downward

trend over the entire sample period?
(ii) Using the data up through 1979, estimate a cubic time trend model for

gfr (that is, regress gfr on t, t2, and t3, along with an intercept).
Comment on the R-squared of the regression.

(iii) Using the model in part (ii), compute the mean absolute error of the
one-step-ahead forecast errors for the years 1980 through 1984.

(iv) Using the data through 1979, regress �gfrt on a constant only. Is the con-
stant statistically different from zero? Does it make sense to assume that
any drift term is zero, if we assume that gfrt follows a random walk?

(v) Now, forecast gfr for 1980 through 1984, using a random walk model:
the forecast of gfrn�1 is simply gfrn. Find the MAE. How does it com-
pare with the MAE from part (iii)? Which method of forecasting do you
prefer?

(vi) Now, estimate an AR(2) model for gfr, again using the data only
through 1979. Is the second lag significant?

(vii) Obtain the MAE for 1980 through 1984, using the AR(2) model. Does
this more general model work better out-of-sample than the random
walk model?

18.18 Use CONSUMP.RAW for this exercise.
(i) Let yt be real per capita disposable income. Use the data up through

1989 to estimate the model

yt � � � �t � �yt�1 � ut

and report the results in the usual form.
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(ii) Use the estimated equation from part (i) to forecast y in 1990. What is
the forecast error?

(iii) Compute the mean absolute error of the one-step-ahead forecasts for the
1990s, using the parameters estimated in part (i).

(iv) Now, compute the MAE over the same period, but drop yt�1 from the
equation. Is it better to include yt�1 in the model or not?

18.19 Use the data in INTQRT.RAW for this exercise.
(i) Using the data from all but the last four years (16 quarters), estimate an

AR(1) model for �r6t. (We use the difference because it appears that r6t

has a unit root.) Find the RMSE of the one-step-ahead forecasts for
�r6, using the last 16 quarters.

(ii) Now, add the error correction term sprt�1 � r6t�1 � r3t�1 to the equa-
tion from part (i). (This assumes that the cointegrating parameter is
one.) Compute the RMSE for the last 16 quarters. Does the error cor-
rection term help with out-of-sample forecasting in this case?

(iii) Now, estimate the cointegrating parameter, rather than setting it to one.
Use the last 16 quarters again to produce the out-of-sample RMSE.
How does this compare with the forecasts from parts (i) and (ii)?

(iv) Would your conclusions change if you wanted to predict r6 rather than
�r6? Explain.
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In this chapter, we discuss the ingredients of a successful empirical analysis, with
emphasis on completing a term project. In addition to reminding you of the impor-
tant issues that have arisen throughout the text, we emphasize recurring themes that

are important for applied research. We also provide suggestions for topics as a way of
stimulating your imagination. Several sources of economic research and data are given
as references.

19.1 POSING A QUESTION

The importance of posing a very specific question cannot be overstated. Without being
explicit about the goal of your analysis, you cannot know where to even begin. The
widespread availability of rich data sets makes it tempting to launch into data collection
based on half-baked ideas, but this is often counterproductive. It is likely that, without
carefully formulating your hypotheses and the kind of model you will need to estimate,
you will forget to collect information on important variables, obtain a sample from the
wrong population, or collect data for the wrong time period.

This does not mean that you should pose your question in a vacuum. Especially for
a one-term project, you cannot be too ambitious. Therefore, when choosing a topic, you
should be reasonably sure that data sources exist that will allow you to answer your
question in the allotted time.

You need to decide what areas of economics or other social sciences interest you
when selecting a topic. For example, if you have taken a course in labor economics, you
have probably seen theories that can be tested empirically or relationships that have
some policy relevance. Labor economists are constantly coming up with new variables
that can explain wage differentials. Examples include quality of high school [Card and
Krueger (1992) and Betts (1995)], amount of math and science taken in high school
[Levine and Zimmerman (1995)], and physical appearance [Hamermesh and Biddle
(1994), Averett and Korenman (1996), and Biddle and Hamermesh (1998)].
Researchers in state and local public finance study how local economic activity depends
on economic policy variables, such as property taxes, sales taxes, level and quality of
services (such as schools, fire, and police), and so on. [See, for example, White (1986),
Papke (1987), Bartik (1991), and Netzer (1992).]
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Economists that study education issues are interested in how spending affects per-
formance [Hanushek (1986)], whether attending certain kinds of schools improves per-
formance [for example, Evans and Schwab (1995)], and in determining factors that
affect where private schools choose to locate [Downes and Greenstein (1996)].

Macroeconomists are interested in relationships between various aggregate time
series, such as the link between growth in gross domestic product and growth in fixed
investment or machinery [see De Long and Summers (1991)] or the effect of taxes on
interest rates [for example, Peek (1982)].

There are certainly reasons for estimating models that are mostly descriptive. For
example, property tax assessors use models (called hedonic price models—see
Example 4.8) to estimate housing values for homes that have not been sold recently.
This involves a regression model relating the price of a house to its characteristics (size,
number of bedrooms, number of bathrooms, and so on). As a topic for a term paper, this
is not very exciting: we are unlikely to learn much that is surprising, and such an analy-
sis has no obvious policy implications. Adding the crime rate in the neighborhood as an
explanatory variable would allow us to determine how important a factor crime is on
housing prices, something that would be useful in estimating the costs of crime.

Several relationships have been estimated using macroeconomic data that are
mostly descriptive. For example, an aggregate saving function can be used to estimate
the aggregate marginal propensity to save, as well as the response of saving to asset
returns (such as interest rates). Such an analysis could be made more interesting by
using time series data on a country that has a history of political upheavals and deter-
mining whether savings rates decline during times of political uncertainty.

Once you decide on an area of research, there are a variety of ways to locate spe-
cific papers on the topic. The Journal of Economic Literature (JEL) has a detailed clas-
sification system so that each paper is given a set of identifying codes that places it
within certain subfields of economics. The JEL also contains a list of articles published
in a wide variety of journals, organized by topic, and it even contains short abstracts of
some articles.

Especially convenient for finding published papers on various topics are Internet
services, such as EconLit, which is subscribed to by many universities. EconLit allows
users to do a comprehensive search of almost all economics journals by author, subject,
words in the title, and so on. The Social Science Citation Index is useful for finding
papers on a broad range of topics in the social sciences, including popular papers that
have been cited often in other published works.

In thinking about a topic, there are some things to keep in mind. First, for a ques-
tion to be interesting, it does not need to have broad-based policy implications; rather,
it can be of local interest. For example, you might be interested in knowing whether liv-
ing in a fraternity at your university causes students to have lower or higher grade point
averages. This may or may not be of interest to people outside of your university, but it
is probably of concern to at least some people within the university. On the other hand,
you might study a problem that starts out being of local interest but turns out to have
widespread interest, such as determining which factors affect, and which university
policies can stem, alcohol abuse on college campuses.

Second, it is very difficult, especially for a quarter or semester project, to do truly
original research using the standard macroeconomic aggregates on the U.S. economy.
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For example, the question of whether money growth, government spending growth, and
so on, affect economic growth has been and continues to be studied by professional
macroeconomists. The question of whether stock or other asset returns can be system-
atically predicted using known information has, for obvious reasons, been studied
pretty carefully. This does not mean that you should avoid estimating macroeconomic
or empirical finance models, as even just using more recent data can add constructively
to a debate. In addition, you can sometimes find a new variable that has an important
effect on economic aggregates or financial returns; such a discovery can be exciting.

The point is that exercises such as using a few additional years to estimate a stan-
dard Phillips curve or an aggregate consumption function for the U.S. economy, or
some other large economy, are unlikely to yield additional insights, although they can
be instructive for the student. Instead, you might use data on a smaller country to esti-
mate a static or dynamic Phillips curve, or to test the efficient markets hypothesis, and
so on.

At the nonmacroeconomic level, there are also plenty of questions that have been
studied extensively. For example, labor economists have published many papers on esti-
mating the return to education. This question is still studied because it is very impor-
tant, and new data sets, as well as new econometric approaches, continue to be
developed. For example, as we saw in Chapter 9, certain data sets have better proxy
variables for unobserved ability than other data sets. (Compare WAGE1.RAW and
WAGE2.RAW.) In other cases, we can obtain panel data or data from a natural experi-
ment—see Chapter 13—which allow us to approach an old question from a different
perspective.

As another example, criminologists are interested in studying the effects of various
laws on crimes. The question of whether capital punishment has a deterrent effect has
long been debated. Similarly, economists have been interested in whether taxes on cig-
arettes and alcohol reduce consumption (as always, in a ceteris paribus sense). As more
years of data at the state level become available, a richer panel data set can be created,
and this can help us better answer major policy questions. Plus, there are fairly recent
crime-fighting innovations—such as the advent of community policing—whose effec-
tiveness can be evaluated empiricially.

While you are formulating your question, it is helpful to discuss your ideas with
your classmates, instructor, and friends. You should be able to convince people that the
answer to your question is of some interest. (Of course, whether you can persuasively
answer your question is another issue, but you need to begin with an interesting ques-
tion.) If someone asks you about your paper and you respond with “I’m doing my paper
on crime” or “I’m doing my paper on interest rates,” chances are you have only decided
on a general area without formulating a true question. You should be able to say some-
thing like “I’m studying the effects of community policing on city crime rates in the
United States” or “I’m looking at how inflation volatility affects short-term interest
rates in Brazil.”

19.2 LITERATURE REVIEW

All papers, even if they are relatively short, should contain a review of relevant litera-
ture. It is rare that one attempts an empirical project where there is not some published
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precedent. If you search through journals or use on-line search services such as
EconLit to come up with a topic, you are already well on your way to a literature review.
If you select a topic on your own—such as studying the effects of drug usage on col-
lege performance at your university—then you will probably have to work a little
harder. But on-line search services make that work a lot easier, as you can search by
keywords, by words in the title, by author, and so on. You can then read abstracts of
papers to see how relevant they are to your own work.

When doing your literature search, you should think of related topics that might not
show up in a search using a handful of key words. For example, if you are studying the
effects of drug usage on wages or grade point average, you should probably look at the
literature on how alcohol usage affects such factors. Knowing how to do a thorough liter-
ature search is an acquired skill, but you can get a long way by thinking before searching.

Researchers differ on how a literature review should be incorporated into a paper.
Some like to have a separate section called “literature review,” while others like to
include the literature review as part of the introduction. This is largely a matter of taste,
although an extensive literature review probably deserves its own section. If the term
paper is the focus of the course—say, in a senior seminar or an advanced econometrics
course—your literature review probably will be lengthy. Term papers at the end of a
first course are typically shorter, and the literature reviews are briefer.

19.3 DATA COLLECTION

Deciding on the Appropriate Data Set

Collecting data for a term paper can be educational, exciting, and sometimes even frus-
trating. You must first decide on the kind of data needed to answer your posed question.
As we discussed in the introduction and have covered throughout this text, data sets
come in a variety of forms. The most common kinds are cross-sectional, time series,
pooled cross sections, and panel data sets.

Many questions can be addressed using any of the data structures we have
described. For example, to study whether more law enforcement lowers crime, we
could use a cross section of cities, a time series for a given city, or a panel data set of
cities—which consists of data on the same cities over two or more years.

Deciding on which kind of data to collect often depends on the nature of the analy-
sis. To answer questions at the individual or family level, we often only have access to
a single cross section; typically, these are obtained via surveys. Then, we must ask
whether we can obtain a rich enough data set to do a convincing ceteris paribus analy-
sis. For example, suppose we want to know whether families who save through indi-
vidual retirement accounts (IRAs)—which have certain tax advantages—have less
non-IRA savings. In other words, does IRA saving simply crowd out other forms of
saving? There are data sets, such as the Survey of Consumer Finances, which contain
information on various kinds of saving for a different sample of families each year.
There are several issues that arise in using such a data set. Perhaps the most important
is whether there are enough controls—including income, demographics, and proxies for
saving tastes—to do a reasonable ceteris paribus analysis. If these are the only kinds of
data available, we must do what we can with them.
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The same issues arise with cross-sectional data on firms, cities, states, and so on. In
most cases, it is not obvious that we will be able to do a ceteris paribus analysis with a
single cross section. For example, any study of the the effects of law enforcement on
crime must recognize the endogeneity of law enforcement expenditures. When using
standard regression methods, it may be very hard to complete a convincing ceteris
paribus analysis, no matter how many controls we have. (See Section 19.4 for more dis-
cussion.)

If you have read the advanced chapters on panel data methods, you know that hav-
ing the same cross-sectional units at two or more different points in time can allow us
to control for time-constant unobserved effects that would normally confound regres-
sion on a single cross section. Panel data sets are relatively hard to obtain for individu-
als or families—although some important ones exist, such as the Panel Study of Income
Dynamics—but they can be used in very convincing ways. Panel data sets on firms also
exist. For example, CompuStat and the Center for Research on Securities Prices
(CRSP) manage very large panel data sets of financial information on firms. Easier to
obtain are panel data sets on larger units, such as schools, cities, counties, and states, as
these tend not to disappear over time, and government agencies are responsible for col-
lecting information on the same variables each year. For example, the Federal Bureau
of Investigation collects and reports detailed information on crime rates at the city level.
Sources of data are listed in the chapter appendix.

Data come in a variety of forms. Some data sets, especially historical ones, are
available only in printed form. For small data sets, entering the data yourself from the
printed source is manageable and convenient. Sometimes, articles are published with
small data sets—especially time series applications. These can be used in an empirical
study, perhaps by supplementing the data with more recent years.

Many data sets are available on computer diskettes or magnetic tapes. The former
are especially easy to work with. Currently, very large data sets can be put on small
diskettes. Various government agencies sell data diskettes, as do private firms. Authors
of papers are often willing to provide their data sets in diskette form.

More and more data sets are available on the worldwide web. The web is a vast
resource of on-line data bases. Numerous web sites containing economic and related
data sets have recently been created. Several other web sites contain links to data sets
that are of interest to economists; some of these are listed in the chapter appendix.
Generally, searching the Internet for data sources is fairly easy and will become even
more convenient in the future.

Entering and Storing Your Data

Once you have decided on a data type and have located a data source, you must put the
data into usable form. If the data came on diskette, they are already in some form, hope-
fully one in widespread use. The most flexible way to obtain data in diskette form is as
a standard text (ASCII) file. All statistics and econometrics software packages allow
raw data to be stored this way. Typically, it is straightforward to read a text file directly
into an econometrics package, provided the file is properly structured. The data files we
have used throughout the text provide several examples of how cross-sectional, time
series, pooled cross sections, and panel data sets are usually stored. As a general rule,
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the data should have a tabular form, with each observation representing a different row;
the columns in the data set represent different variables. Occasionally, you might
encounter a data set stored with each column representing an observation and each row
a different variable. This is not ideal, but most software packages allow data to be read
in this form, and then reshaped. Naturally, it is crucial to know how the data are orga-
nized before reading them into your econometrics package.

For time series data sets, there is only one sensible way to enter and store the data:
namely, chronologically, with the earliest time period listed as the first observation and
the most recent time period as the last observation. It is often useful to include variables
indicating year and, if relevant, quarter or month. This facilitates estimation of a vari-
ety of models later on, including allowing for seasonality and breaks at different time
periods. For cross sections pooled over time, it is usually best to have the cross section
for the earliest year fill the first block of observations, followed by the cross section for
the second year, and so on. (See FERTIL1.RAW as an example.) This arrangement is
not crucial, but it is very important to have a variable stating the year attached to each
observation.

For panel data, as we discussed in Section 13.5, it is best if all the years for each
cross-sectional observation are adjacent and in chronological order. With this ordering
we can use all of the panel data methods from Chapters 13 and 14. With panel data, it
is important to include a unique identifier for each cross-sectional unit, along with a
year variable.

If you obtain your data in printed form, you have several options for entering it into
a computer. First, you can create a text file using a standard text editor. (This is how
several of the raw data sets included with the text were initially created.) Typically, it is
required that each row starts a new observation, that each row contains the same order-
ing of the variables—in particular, each row should have the same number of entries—
and that the values are separated by at least one space. Sometimes, a different separator,
such as a comma, is better, but this depends on the software you are using. If you have
missing observations on some variables, you must decide on how to denote that; sim-
ply leaving a blank does not generally work. Many regression packages accept a period
as the missing value symbol. Some people prefer to use a number—presumably an
impossible value for the variable of interest—to denote missing values. If you are not
careful, this can be dangerous; we discuss this further later.

If you have nonnumerical data—for example, you want to include the names in a
sample of colleges or the names of cities—then you should check the econometrics
package you will use to see the best way to enter such variables (often called strings).
Typically, strings are put between double or single quotations. Or, the text file can fol-
low a rigid formatting, which usually requires a small program to read in the text file.
But you need to check your econometrics package for details.

Another generally available option is to use a spreadsheet to enter your data, such
as Excel. This has a couple of advantages over a text file. First, because each observa-
tion on each variable is a cell, it is less likely that numbers will be run together (as
would happen if you forget to enter a space in a text file). Secondly, spreadsheets allow
manipulation of data, such as sorting, computing averages, and so on. This second ben-
efit is less important if you use a software package that allows for sophisticated data
management; many software packages, including Eviews and Stata, fall into this cate-
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gory. If you use a spreadsheet for initial data entry, then you must often export the data
in a form that can be read by your econometrics package. This is usually straightfor-
ward, as spreadsheets export to text files using a variety of formats.

A third alternative is to enter the data directly into your econometrics package.
While this obviates the need for a text editor or a spreadsheet, it is more awkward
because you cannot freely move across different observations to make corrections or
additions.

Data downloaded from the Internet may come in a variety of forms. Often data
come as text files, but different conventions are used for separating variables; for panel
data sets, the conventions on how to order the data may differ. Some Internet data sets
come as spreadsheet files, in which case you must use an appropriate spreadsheet to
read them.

Inspecting, Cleaning, and Summarizing Your Data

It is extremely important to become familiar with any data set you will use in an empir-
ical analysis. If you enter the data yourself, you will be forced to know everything about
it. But if you obtain data from an outside source, you should still spend some time
understanding its structure and conventions. Even data sets that are widely used and
heavily documented can contain glitches. If you are using a data set obtained from the
author of a paper, you must be aware that methods of data set construction can be for-
gotten.

Earlier, we reviewed the standard ways that various data sets are stored. You also
need to know how missing values are coded. Preferably, missing values are indicated
with a nonnumeric character, such as a period. If a number is used as a missing value
code, such as “999” or “�1”, you must be very careful when using these observations
in computing any statistics. Your econometrics package will probably not know that a
certain number really represents a missing value: it is likely that such observations will
be used as if they are valid, and this can produce rather misleading results. The best
approach is to set any numerical codes for missing values to some other character (such
as a period) that cannot be mistaken for real data.

You must also know the nature of the variables in the data set. Which are binary
variables? Which are ordinal variables (such as a credit rating)? What are the units of
measurement of the variables? For example, are monetary values expressed in dollars,
thousands of dollars, millions of dollars, or so on? Are variables representing a rate—
such as school dropout rates, inflation rates, unionization rates, or interest rates—
measured as a percent or a proportion?

Especially for time series data, it is crucial to know if monetary values are in nom-
inal (current) or real (constant) dollars. If the values are in real terms, what is the base
year or period?

If you receive a data set from an author, some variables may already be transformed
in certain ways. For example, sometimes only the log of a variable (such as wage or
salary) is reported in the data set.

Detecting mistakes in a data set is necessary for preserving the integrity of any data
analysis. It is always useful to find minimums, maximums, means, and standard devia-
tions of all, or at least the most significant, variables in the analysis. For example, if you
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find that the minimum value of education in your sample is �99, you know that at least
one entry on education needs to be set to a missing value. If, upon further inspection,
you find that several observations have �99 as the level of education, you can be con-
fident that you have stumbled onto the missing value code for education. As another
example, if you find that an average murder conviction rate across a sample of cities is
.632, you know that conviction rate is measured as a proportion, not a percent. Then, if
the maximum value is above one, this is likely a typographical error. (It is not uncom-
mon to find data sets where most of the entries on a rate variable were entered as a per-
cent, but where some were entered as a proportion, and vice versa. Such data coding
errors can be difficult to detect, but it is important to try.)

We must also be careful in using time series data. If we are using monthly or quar-
terly data, we must know which variables, if any, have been seasonally adjusted.
Transforming data also requires great care. Suppose we have a monthly data set and
we want to create the change in a variable from one month to the next. To do this, we
must be sure that the data are ordered chronologically, from earliest period to latest.
If for some reason this is not the case, the differencing will result in garbage. To be
sure the data are properly ordered, it is useful to have a time period indicator. With
annual data, it is sufficient to know the year, but then we should know whether the
year is entered as four digits or two digits (for example, 1998 versus 98). With
monthly or quarterly data, it is also useful to have a variable or variables indicating
month or quarter. With monthly data, we may have a set of dummy variables (11 or
12) or one variable indicating the month (1 through 12 or a string variable, such as
jan, feb, and so on).

With or without yearly, monthly, or quarterly indicators, we can easily construct
time trends in all econometrics software packages. Creating seasonal dummy variables
is easy if the month or quarter is indicated; at a minimum, we need to know the month
or quarter of the first observation.

Manipulating panel data can be even more challenging. In Chapter 13, we discussed
pooled OLS on the differenced data as one general approach to controlling for unob-
served effects. In constructing the differenced data, we must be careful not to create
phantom observations. Suppose we have a balanced panel on cities from 1992 through
1997. Even if the data are ordered chronologically within each cross-sectional unit—
something that should be done before proceeding—a mindless differencing will create
an observation for 1992 for all cities except the first in the sample. This observation will
be the 1992 value for city i, minus the 1997 value for city i � 1; this is clearly nonsense.
Thus, we must make sure that 1992 is missing for all differenced variables.

With an unbalanced panel, things become much trickier because no single com-
mand works for all cross-sectional units. It is usually easier to use fixed effects estima-
tion on unbalanced panels.

19.4 ECONOMETRIC ANALYSIS

This text has focused on econometric analysis, and we are not about to provide a review
of econometric methods in this section. Nevertheless, we can give some general guide-
lines about the sorts of issues that need to be considered in an empirical analysis.
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As we discussed earlier, after deciding on a topic, we must collect an appropriate
data set. Assuming that this has also been done, we must next decide on the appropri-
ate econometric methods.

If your course has focused on ordinary least squares estimation of a multiple linear
regression model, using either cross-sectional or time series data, the econometric
approach has pretty much been decided for you. This is not necessarily a weakness, as
OLS is still the most widely used econometric method. Of course, you still have to
decide whether any of the variants of OLS—such as weighted least squares or correct-
ing for serial correlation in a time series regression—are required.

In order to justify OLS, you must also make a convincing case that the key OLS
assumptions are satisfied for your model. As we have discussed at some length, the first
issue is whether the error term is uncorrelated with the explanatory variables. Ideally,
you have been able to control for enough other factors to assume that those that are left
in the error are unrelated to the regressors. Especially when dealing with individual,
family, or firm-level cross-sectional data, the self-selection problem—which we dis-
cussed in Chapters 7 and 15—is often relevant. For instance, in the IRA example from
Section 19.3, it may be that families with unobserved taste for saving are also the ones
that open IRAs. You should also be able to argue that the other potential sources of
endogeneity—namely, measurement error and simultaneity—are not a serious problem.

When specifying your model you must also make functional form decisions. Should
some variables appear in logarithmic form? (In econometric applications, the answer is
often yes.) Should some variables be included in levels and squares, to possibly capture
a diminishing effect? How should qualitative factors appear? Is it enough to just include
binary variables for different attributes or groups? Or, do these need to be interacted
with quantitative variables? (See Chapter 7 for details.)

For cross-sectional analysis, a secondary, but nevertheless important issue, is
whether there is heteroskedasticity. In Chapter 8, we explained how this can be dealt
with. The simplest way is to compute heteroskedasticity-robust statistics.

As we emphasized in Chapters 10, 11, and 12, time series applications require addi-
tional care. Should the equation be estimated in levels? If levels are used, are time
trends needed? Is differencing the data more appropriate? If the data are monthly or
quarterly, does seasonality have to be accounted for? If you are allowing for dynamics—
for example, distributed lag dynamics—how many lags should be included? You must
start with some lags based on intuition or common sense, but eventually it is an empir-
ical matter.

If your model has some potential misspecification, such as omitted variables, and
you use OLS, you should attempt some sort of misspecification analysis of the kinds
we discussed in Chapters 3 and 5. Can you determine, based on reasonable assump-
tions, the direction of any bias in the estimators?

If you have studied the method of instrumental variables, you know that it can be
used to solve various forms of endogeneity, including omitted variables (Chapter 15),
errors-in-variables (Chapter 15), and simultaneity (Chapter 16). Naturally, you need to
think hard about whether the instrumental variables you are considering are likely to be
valid.

Good papers in the empirical social sciences contain sensitivity analysis. Broadly,
this means you estimate your original model and modify it in ways that seem reason-
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able. Hopefully, the important conclusions do not change. For example, if you use as an
explanatory variable a measure of alcohol consumption (say, in a grade point average
equation), do you get qualitatively similar results if you replace the quantitative mea-
sure with a dummy variable indicating alcohol usage? If the binary usage variable is
significant but the alcohol quantity variable is not, it could be that usage reflects some
unobserved attribute that affects GPA and is also correlated with alcohol usage. But this
needs to be considered on a case-by-case basis.

If some observations are much different from the bulk of the sample—say, you
have a few firms in a sample that are much larger than the other firms—do your
results change much when those observations are excluded from the estimation? If so,
you may have to alter functional forms to allow for these observations or argue that
they follow a completely different model. The issue of outliers was discussed in
Chapter 9.

Using panel data raises some additional econometric issues. Suppose you have col-
lected two periods. There are at least four ways to use two periods of panel data with-
out resorting to instrumental variables. You can pool the two years in a standard OLS
analysis, as discussed in Chapter 13. While this might increase the sample size relative
to a single cross section, it does not control for time-constant unobservables. In addi-
tion, the errors in such an equation are almost always serially correlated because of an
unobserved effect. Random effects estimation corrects the serial correlation problem
and produces asymptotically efficient estimators, provided the unobserved effect has
zero mean given values of the explanatory variables in all time periods.

Another possibility is to include a lagged dependent variable in the equation for the
second year. In Chapter 9, we presented this as a way to at least mitigate the omitted
variables problem, as we are in any event holding fixed the initial outcome of the depen-
dent variable. This often leads to similar results as differencing the data, as we covered
in Chapter 13.

With more years of panel data, we have the same options, plus an additional choice.
We can use the fixed effects transformation to eliminate the unobserved effect. (With
two years of data, this is the same as differencing.) In Chapter 15, we showed how
instrumental variables techniques can be combined with panel data transformations to
relax exogeneity assumptions even more. As a general rule, it is a good idea to apply
several reasonable econometric methods and compare the results. This often allows us
to determine which of our assumptions are likely to be false.

Even if you are very careful in devising your topic, postulating your model, col-
lecting your data, and carrying out the econometrics, it is quite possible that you will
obtain puzzling results—at least some of the time. When that happens, the natural incli-
nation is to try different models, different estimation techniques, or perhaps different
subsets of data until the results correspond more closely to what was expected. Virtually
all applied researchers search over various models before finding the “best” model.
Unfortunately, this practice of data mining violates the assumptions we have made in
our econometric analysis. The results on unbiasedness of OLS and other estimators, as
well as the t and F distributions we derived for hypothesis testing, assume that we
observe a sample following the population model and we estimate that model once.
Estimating models that are variants of our original model violates that assumption
because we are using the same set of data in a specification search. In effect, we use the
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outcome of tests by using the data to respecify our model. The estimates and tests from
different model specifications are not independent of one another.

Some specification searches have been programmed into standard software pack-
ages. A popular one is known as stepwise regression, where different combinations of
explanatory variables are used in multiple regression analysis in an attempt to come up
with the best model. There are various ways that stepwise regression can be used, and
we have no intention of reviewing them here. The general idea is to either start with a
large model and keep variables whose p-values are below a certain significance level or
to start with a simple model and add variables that have significant p-values.
Sometimes, groups of variables are tested with an F test. Unfortunately, the final model
often depends on the order in which variables were dropped or added. [For more on
stepwise regression, see Draper and Smith (1981).] In addition, this is a severe form of
data mining, and it is difficult to interpret t and F statistics in the final model. One might
argue that stepwise regression simply automates what researchers do anyway in search-
ing over various models. However, in most applications, one or two explanatory vari-
ables are of primary interest, and then the goal is to see how robust the coefficients on
those variables are to either adding or dropping other variables, or to changing func-
tional form.

In principle, it is possible to incorporate the effects of data mining into our statisti-
cal inference; in practice, this is very difficult and is rarely done, especially in sophis-
ticated empirical work. [See Leamer (1983) for an engaging discussion of this
problem.] But we can try to minimize data mining by not searching over numerous
models or estimation methods until a significant result is found and then reporting only
that result. If a variable is statistically significant in only a small fraction of the models
estimated, it is quite likely that the variable has no effect in the population.

19.5 WRITING AN EMPIRICAL PAPER

Writing a paper that uses econometric analysis is very challenging, but it can also be
rewarding. A successful paper combines a careful, convincing data analysis with good
explanations and exposition. Therefore, you must have a good grasp of your topic, good
understanding of econometric methods, and solid writing skills. Do not be discouraged
if you find writing an empirical paper difficult; most professional researchers have
spent many years learning how to craft an empirical analysis and to write the results in
a convincing form.

While writing styles vary, many papers follow the same general outline. The fol-
lowing paragraphs include ideas for section headings and explanations about what each
section should contain. These are only suggestions and hardly need to be strictly fol-
lowed. In the final paper, each section would be given a number, usually starting with
one for the introduction.

Introduction

The introduction states the basic objectives of the study and explains why it is impor-
tant. It generally entails a review of the literature, indicating what has been done and
how previous work can be improved upon. (As discussed in Section 19.2, an extensive
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literature review can be put in a separate section.) Presenting simple statistics or graphs
that reveal a seemingly paradoxical relationship is a useful way to introduce the paper’s
topic. For example, suppose that you are writing a paper about factors affecting fertil-
ity in a developing country, with the focus on education levels of women. An appealing
way to introduce the topic would be to produce a table or a graph showing that fertility
has been falling (say) over time and a brief explanation of how you hope to examine the
factors contributing to the decline. At this point, you may already know that, ceteris
paribus, more highly educated women have fewer children and that average education
levels have risen over time.

Most researchers like to summarize the findings of their paper in the introduction.
This can be a useful device for grabbing the reader’s attention. For example, you might
state that your best estimate of the effect of missing 10 hours of lecture during a thirty-
hour term is about one-half of a grade point. But the summary should not be too
involved because neither the methods nor the data used to obtain the estimates have yet
been introduced.

Conceptual (or Theoretical) Framework

This is the section where you describe the general approach to answering the question
you have posed. It can be formal economic theory, but in many cases, it is an intuitive
discussion about what conceptual problems arise in answering your question.

As an example, suppose you are studying the effects of economic opportunities and
severity of punishment on criminal behavior. One approach to explaining participation
in crime is to specify a utility maximization problem where the individual chooses the
amount of time spent in legal and illegal activities, given wage rates in both kinds of
activities, as well as variable measuring probability and severity of punishment for
criminal activity. The usefulness of such an exercise is that it suggests which variables
should be included in the empirical analysis; it gives guidance (but rarely specifics) as
to how the variables should appear in the econometric model.

Often there is no need to write down an economic theory. For econometric policy
analysis, common sense usually suffices for specifying a model. For example, suppose
you are interested in estimating the effects of participation in Aid for Families with
Dependent Children (AFDC) on the effects of child performance in school. AFDC pro-
vides supplemental income, but participation also makes it easier to receive Medicaid
and other benefits. The hard part of such an analysis is deciding on the set of variables
that should be controlled for. In this example, we could control for family income
(including AFDC and any other welfare income), mother’s education, whether the fam-
ily lives in an urban area, and other variables. Then, the inclusion of an AFDC partici-
pation indicator (hopefully) measures the nonincome benefits of AFDC participation. A
discussion of which factors should be controlled for and the mechanisms through which
AFDC participation might improve school performance substitute for formal economic
theory.

Econometric Models and Estimation Methods

It is very useful to have a section that contains a few equations of the sort you estimate
and present in the results section of the paper. This allows you to fix ideas about what
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the key explanatory variable is and what other factors you will control for. Writing
equations containing error terms allows you to discuss whether a method such as OLS
will be appropriate.

The distinction between a model and an estimation method should be made in this
section. A model represents a population relationship (broadly defined to allow for time
series equations). For example, we should write

colGPA � �0 � �1alcohol � �2hsGPA � �3SAT � �4 female � u (19.1)

to describe the relationship between college GPA and alcohol consumption, with some
other controls in the equation. Presumably, this equation represents a population, such
as all undergraduates at a university. There are no “hats” (ˆ) on the �j or on colGPA
because this is a model, not an estimated equation. We do not put in numbers for the �j

because we do not know (and never will know) these numbers. Later, we will estimate
them. In this section, do not anticipate the presentation of your empirical results. In
other words, do not start with a general model and then say that you omitted certain
variables because they turned out to be insignificant. Such discussions should be left for
the results section.

A time series model to relate city-level car thefts to the unemployment rate (and
other controls) could look like

theftst � �0 � �1unemt � �2unemt�1 � �3carst �
�4convratet � �5convratet�1 � ut,

(19.2)

where the t subscript is useful for emphasizing any dynamics in the equation (in this
case, allowing for unemployment and the automobile theft conviction rate to have
lagged effects).

After specifying a model or models, it is appropriate to discuss estimation methods.
In most cases, this will be OLS, but, for example, in a time series equation, you might
use feasible GLS to do a serial correlation correction (as in Chapter 12). However, the
method for estimating a model is quite distinct from the model itself. It is not mean-
ingful, for instance, to talk about “an OLS model.” Ordinary least squares is a method
of estimation, and so are weighted least squares, Cochrane-Orcutt, and so on. There are
usually many ways to estimate any model. You should explain why the method you are
choosing is warranted.

Any assumptions that are used in obtaining an estimable econometric model from
an underlying economic model should be clearly discussed. For example, in the quality
of high school example mentioned in Section 19.1, the issue of how to measure school
quality is central to the analysis. Should it be based on average SAT scores, percentage
of graduates attending college, student-teacher ratios, average education level of teach-
ers, some combination of these, or possibly other measures?

We always have to make assumptions about functional form whether or not a theo-
retical model has been presented. As you know, constant elasticity and constant semi-
elasticity models are attractive because the coefficients are easy to interpret (as
percentages). There are no hard rules on how to choose functional form, but the guide-
lines discussed in Section 6.2 seem to work well in practice. You do not need an exten-
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sive discussion of functional form, but it is useful to mention whether you will be esti-
mating elasticities or a semi-elasticity. For example, if you are estimating the effect of
some variable on wage or salary, the dependent variable will almost surely be in loga-
rithmic form, and you might as well include this in any equations from the beginning.
You do not have to present every, or even most, of the functional form variations that
you will report later in the results section.

Often the data used in empirical economics are at the city or county level. For exam-
ple, suppose that for the population of small to mid-size cities, you wish to test the
hypothesis that having a minor league baseball team causes a city to have a lower
divorce rate. In this case, you must account for the fact that larger cities will have more
divorces. One way to account for the size of the city is to scale divorces by the city or
adult population. Thus, a reasonable model is

log(div/pop) � �0 � �1mlb � �2 perCath � �3log(inc/pop)
� other factors,

(19.3)

where mlb is a dummy variable equal to one if the city has a minor league baseball
team, perCath is the percentage of the population which is Catholic (so it is a number
such as 34.6 to mean 34.6%). Note that div/pop is a divorce rate, which is generally eas-
ier to interpret than the absolute number of divorces.

Another way to control for population is to estimate the model

log(div) � �0 � �1mlb � �2 perCath � �3log(inc) � �4log(pop)
� other factors.

(19.4)

The parameter of interest, �1, when multiplied by 100, gives the percentage difference
between divorce rates, holding population, percent Catholic, income, and whatever else
is in “other factors” constant. In equation (19.3), �1 measures the percentage effect of
minor league baseball on div/pop, which can change either because the number of
divorces or the population changes. Using the fact that log(div/pop) � log(div) �
log(pop) and log(inc/pop) � log(inc) � log(pop), we can rewrite (19.3) as

log(div) � �0 � �1mlb � �2perccath � �3log(inc) � (1 � �3)log(pop)
� other factors,

which shows that (19.3) is a special case of (19.4) with �4 � (1 � �3) and �j � �j,
j � 0,1,2, and 3. Alternatively, (19.4) is equivalent to adding log(pop) as an additional
explanatory variable to (19.3). This makes it easy to test for a separate population effect
on the divorce rate.

If you are using a more advanced estimation method, such as two stage least
squares, you need to provide some reasons for why you are doing so. If you use 2SLS,
you must provide a careful discussion on why your IV choices for the endogenous
explanatory variable (or variables) are valid. As we mentioned in Chapter 15, there are
two requirements for a variable to be considered a good IV. First, it must be omitted
from and exogenous to the equation of interest (structural equation). This is something
we must assume. Second, it must have some partial correlation with the endogenous
explanatory variable. This we can test. For example, in equation (19.1), you might use
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a binary variable for whether a student lives in a dormitory (dorm) as an IV for alcohol
consumption. This requires that living situation has no direct impact on colGPA—so
that it is omitted from (19.1)—and that it is uncorrelated with unobserved factors in u
that have an effect on colGPA. We would also have to verify that dorm is partially cor-
related with alcohol by regressing alcohol on dorm, hsGPA, SAT, and female. (See
Chapter 15 for details.)

You might account for the omitted variable problem (or omitted heterogeneity) by
using panel data. Again, this is easily described by writing an equation or two. In fact,
it is useful to show how to difference the equations over time to remove time-constant
unobservables; this gives an equation that can be estimated by OLS. Or, if you are using
fixed effects estimation instead, you simply state so.

As a simple example, suppose you are testing whether higher county tax rates
reduce economic activity, as measured by per capita manufacturing output. Suppose
that for the years 1982, 1987, and 1992, the model is

log(manufit) � �0 � �1d87t � �2d92t � �1taxit � … � ai � uit,

where d87t and d92t are year dummy variables, and taxit is the tax rate for county i at
time t (in percent form). We would have other variables that change over time in the
equation, including measures for costs of doing business (such as average wages), mea-
sures of worker productivity (as measured by average education), and so on. The term
ai is the fixed effect, containing all factors that do not vary over time, and uit is the idio-
syncratic error term. To remove ai, we can either difference across the years or use time-
demeaning (the fixed effects transformation).

The Data

You should always have a section that carefully describes the data used in the empiri-
cal estimation. This is particularly important if your data are nonstandard or have not
been widely used by other researchers. Enough information should be presented so that
a reader could, in principle, obtain the data and redo your analysis. In particular, all
applicable public data sources should be included in the references, and short data sets
can be listed in an appendix. If you used your own survey to collect the data, a copy of
the questionaire should be presented in an appendix.

Along with a discussion of the data sources, be sure to discuss the units of each of
the variables (for example, is income measured in hundreds or thousands of dollars?).
Including a table of variable definitions is very useful to the reader. The names in the
table should correspond to the names used in describing the econometric results in the
following section.

It is also very informative to present a table of summary statistics, such as mini-
mum and maximum values, means, and standard deviations for each variable. Having
such a table makes it easier to interpret the coefficient estimates in the next section,
and it emphasizes the units of measurement of the variables. For binary variables, the
only necessary summary statistic is the fraction of ones in the sample (which is the
same as the sample mean). For trending variables, things like means are less interest-
ing. It is often useful to compute the average growth rate in a variable over the years
in your sample.
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You should always clearly state how many observations you have. For time series
data sets, identify the years that you are using in the analysis, including a description of
any special periods in history (such as World War II). If you use a pooled cross section
or a panel data set, be sure to report how many cross-sectional units (people, cities, and
so on) you have for each year.

Results

The results section should include your estimates of any models formulated in the mod-
els section. You might start with a very simple analysis. For example, suppose that per-
cent of students attending college from the graduating class (percoll) is used as a measure
of the quality of the high school a person attended. Then, an equation to estimate is

log(wage) � �0 � �1 percoll � u.

Of course, this does not control for several other factors that may determine wages and
that may be correlated with percoll. But a simple analysis can draw the reader into the
more sophisticated analysis and reveal the importance of controlling for other factors.

If only a few equations are estimated, you can present the results in equation form
with standard errors in parentheses below estimated coefficients. If your model has sev-
eral explanatory variables and you are presenting several variations on the general
model, it is better to report the results in tabular rather than equation form. Most of you
should have at least one table, which should always include at least the R-squared and
the number of observations for each equation. Other statistics, such as the adjusted
R-squared, can also be listed.

The most important thing is to discuss the interpretation and strength of your empir-
ical results. Do the coefficients have the expected signs? Are they statistically signifi-
cant? If a coefficient is statistically significant but has a counterintuitive sign, why
might this be true? It might be revealing a problem with the data or the econometric
method (for example, OLS may be inappropriate due to omitted variables problems).

Be sure to describe the magnitudes of the coefficients on the major explanatory vari-
ables. Often there are one or two policy variables that are central to the study. Their
signs, magnitudes, and statistical significance should be treated in detail. Remember to
distinguish between economic and statistical significance. If a t statistic is small, is it
because the coefficient is practically small or because its standard error is large?

In addition to discussing estimates from the most general model, you can provide
interesting special cases, especially those needed to test certain multiple hypotheses.
For example, in a study to determine wage differentials across industries, you might
present the equation without the industry dummies; this allows the reader to easily test
whether the industry differentials are statistically significant (using the R-squared form
of the F test). Do not worry too much about dropping various variables to find the
“best” combination of explanatory variables. As we mentioned earlier, this is a difficult
and not even very well-defined task. Only if eliminating a set of variables substantially
alters the magnitudes and/or significance of the coefficients of interest is this important.
Dropping a group of variables to simplify the model—such as quadratics or interac-
tions—can be justified via an F test.

If you have used at least two different methods—such as OLS and 2SLS, or levels
and differencing for a time series, or pooled OLS versus differencing with a panel data

Chapter 19 Carrying out an Empirical Project

631

d  7/14/99 8:42 PM  Page 631



set—then you should comment on any critical differences. In particular, if OLS gives
counterintuitive results, did using 2SLS or panel data methods improve the estimates?

Conclusions

This can be a short section that summarizes what you have learned. For example, you
might want to present the magnitude of a coefficient that was of particular interest. The
conclusion should also discuss caveats to the conclusions drawn, and it might even sug-
gest directions for further research. It is useful to imagine readers turning first to the
conclusion in order to decide whether to read the rest of the paper.

Style Hints

You should give your paper a title that reflects its topic. Papers should be typed and
double-spaced. All equations should begin on a new line, and they should be centered
and numbered consecutively, that is, (1), (2), (3), and so on. Large graphs and tables
may be included after the main body. In the text, refer to papers by author and date, for
example, White (1980). The reference section at the end of the paper should be done in
standard format. Several examples are given in the references at the back of the text.

When you introduce an equation in the “Econometric Models” section, you should
describe the important variables: the dependent variable and the key independent vari-
able or variables. To focus on a single independent variable, you can write an equation,
such as

GPA � �0 � �1alcohol � x� � u

or

log(wage) � �0 � �1educ � x� � u,

where the notation x� is shorthand for several other explanatory variables. At this point,
you need only describe them generally; they can be described specifically in the data
section in a table. For example, in a study of the factors affecting chief executive offi-
cer salaries, you might include the following table in the data section:
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Table 1: Variable Descriptions

salary: annual salary (including bonuses) in 1990 (in thousands)

sales: firm sales in 1990 (in millions)

roe: average return on equity from 1988–1990 (in percent)

pcsal: percentage change in salary from 1988–1990

pcroe: percentage change in roe from 1988–1990

continued
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A table of summary statistics using the data set 401K.RAW, which we used for studying
the factors that affect participation in 401(k) pension plans, might be set up as follows:

Chapter 19 Carrying out an Empirical Project

633

indust: � 1 if an industrial company, 0 otherwise

finance: � 1 if a financial company, 0 otherwise

consprod: � 1 if a consumer products company, 0 otherwise

util: � 1 if a utility company, 0 otherwise

ceoten: number of years as CEO of the company

Table 2: Summary Statistics

Standard
Variable Mean Deviation Minimum Maximum

prate .869 .167 .023 1

mrate .746 .844 .011 5

employ 4,621.01 16,299.64 53 443,040

age 13.14 9.63 4 76

sole .415 .493 0 1

Number of Observations � 3,784

In the results section, you can either write the estimates in equation form, as we
often have done, or in a table. Especially when several models have been estimated with
different sets of explanatory variables, tables are very useful. If you write out the esti-
mates as an equation, for example,

log(sal̂ary) �(2.45)�(.236)log(sales) �(.008)roe �(.061)ceoten
log(sal̂ary) �(0.93)�(.115)log(sales) �(.003)roe �(.028)ceoten

n � 204, R2 � .351,

be sure to state near the first equation that standard errors are in parentheses. It is
acceptable to report the t statistics for testing H0: �j � 0, or their absolute values, but it
is most important to state what you are doing.

Table 1: (concluded )
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If you report your results in tabular form, make sure the dependent and independent
variables are clearly indicated. Again, state whether standard errors or t statistics are
below the coefficients (with the former preferred). Some authors like to use asterisks to
indicate statistical significance at different significance levels (for example, one star
means significant at 5%, two stars mean significant at 10% but not 5% and so on). This
is not necessary if you carefully discuss the significance of the explanatory variables in
the text.

A sample table of results follows:
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Table 3: OLS Results

Dependent Variable: Participation Rate

Independent Variables

mrate .156 .239 .218
(.012) (.042) (.342)

mrate2 — �.087 �.096
(.043) (.073)

log(emp) �.112 �.112 �.098
(.014) (.014) (.111)

log(emp)2 .0057 .0057 .0052
(.0009) (.0009) (.0007)

age .0060 .0059 .0050
(.0010) (.0010) (.0021)

age2 �.00007 �.00007 �.00006
(.00002) (.00002) (.00002)

sole �.0001 .0008 .0006
(.0058) (.0058) (.0061)

constant 1.213 .198 .085
(0.051) (.052) (.041)

industry dummies? no no yes

Observations: 3,784 3,784 3,784
R-Squared: .143 .152 .152

Note: The quantities in parentheses below the estimates are the standard errors.
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Your results will be easier to read and interpret if you choose the units of both your
dependent and independent variables so that coefficients are not too large or too small.
You should never report numbers such as 1.051e-007 or 3.524e+006 for your coeffi-
cients or standard errors, and you should not use scientific notation. If coefficients are
either extremely small or large, rescale the dependent or independent variables, as we
discussed in Chapter 6. You should limit the number of digits reported after the decimal
point. For example, if your regression package estimates a coefficient to be .54821059,
you should report this as .548, or even .55, in the paper.

As a general rule, the commands that your particular econometrics package uses to
produce results should not appear in the paper; only the results are important. If some
special command was used to carry out a certain estimation method, this can be given
in an appendix. An appendix is also a good place to include extra results that support
your analysis but are not central to it.

SUMMARY

In this chapter, we have discussed the ingredients of a successful empirical study and
have provided hints that can improve the quality of an analysis. Ultimately, the success
of any study depends crucially on the care and effort put into it.

KEY TERMS
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Data Mining
Internet
On-Line Data Bases
On-Line Search Services

Sensitivity Analysis
Spreadsheet
Text Editor
Text (ASCII) File

SAMPLE EMPIRICAL PROJECTS

Throughout the text, we have seen examples of econometric analysis that either came
from or were motivated by published works. Hopefully, these have given you a good
idea about the scope of empirical analysis. We include the following list as additional
examples of questions that others have found or are likely to find interesting. These are
intended to stimulate your imagination; no attempt is made to fill in all of the details of
specific models, data requirements, or alternative estimation methods. It should be pos-
sible to complete these projects in one term.

1. Do your own campus survey to answer a question of interest at your university.
For example: What is the effect of working, on college GPA? You can ask stu-
dents about high school GPA, college GPA, ACT or SAT scores, hours worked
per week, participation in athletics, major, gender, race, and so on. Then, use
these variables to create a model that explains GPA. How much of an effect, if
any, does another hour worked per week have on GPA? One issue of concern is
that hours worked might be endogenous: it might be correlated with unob-
served factors that affect college GPA, or lower GPAs might cause students to
work more.
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A better approach would be to collect cumulative GPA prior to the semes-
ter and then to obtain GPA for the most recent semester, along with amount
worked during that semester, and the other variables. Now, cumulative GPA
could be used as a control (explanatory variable) in the equation.

2. There are many variants on the preceding topic. You can study the effects of
drug or alcohol usage, or of living in a fraternity, on grade point average. You
would want to control for many family background variables, as well as previ-
ous performance variables.

3. Do gun control laws at the city level reduce violent crimes? Such questions can
be difficult to answer with a single cross section because city and state laws are
often endogenous. [See Kleck and Patterson (1993) for an example. They used
cross-sectional data and instrumental variables methods, but their IVs are ques-
tionable.] Panel data can be very useful for inferring causality in these contexts.
At a minimum, you could control for a previous year’s violent crime rate.

4. Low and McPheters (1983) used city cross-sectional data on wage rates and
estimates of risk of death for police officers, along with other controls. The idea
is to determine whether police officers are compensated for working in cities
with a higher risk of on-the-job injury or death.

5. Do parental consent laws increase the teenage birth rate? You can use state-
level data for this: either a time series for a given state or, even better, a panel
data set of states. Do the same laws reduce abortion rates among teenagers? The
Statistical Abstract of the United States contains all kinds of state-level data.
Levine, Trainor, and Zimmerman (1996) studied the effects of abortion funding
restrictions on similar outcomes. Other factors, such as access to abortions,
may affect teen birth and abortion rates.

6. Do changes in traffic laws affect traffic fatalities? McCarthy (1994) contains an
analysis of monthly time series data for the state of California. A set of dummy
variables can be used to indicate the months in which certain laws were in
effect. The file TRAFFIC2.RAW contains the data used by McCarthy. An alter-
native is to obtain a panel data set on states in the United States, where you can
exploit variation in laws across states, as well as across time. (See the file
TRAFFIC1.RAW.)

Mullahy and Sindelar (1994) used individual-level data matched with state
laws and taxes on alcohol to estimate the effects of laws and taxes on the prob-
ability of driving drunk.

7. Are blacks discriminated against in the lending market? Hunter and Walker
(1996) looked at this question; in fact, we used their data in Exercises 7.16 and
17.9.

8. Is there a marriage premium for professional athletes? Korenman and Neumark
(1991) found a significant wage premium for married men after using a variety
of econometric methods. Professional athletes—such as National Basketball
Association players, major league baseball players, and professional golfers—
provide an interesting group in which to study the marriage premium because
we can observe several productivity measures. With players in individual
sports, such as golf or tennis, earnings directly reflect productivity. In team
sports, salary may not entirely reflect productivity—for example, years in the
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league might matter. So we can include a marriage indicator in an equation with
something like scoring as the dependent variable, as well as in a regression
where log(salary) is the dependent variable and several productivity controls
are among the independent variables.

9. Answer the question: Are cigarette smokers less productive? A variant on this
is: Do workers who smoke take more sick days (everything else being equal)?
Mullahy and Portney (1990) use individual-level data to evaluate this ques-
tion. You could use data at, say, the metropolitan level. Something like aver-
age productivity in manufacturing can be related to percent of manufacturing
workers who smoke. Other variables, such as average worker education, cap-
ital per worker, and size of the city (you can think of more) should be con-
trolled for.

10. Do minimum wages alleviate poverty? You can use state or county data to
answer this question. The idea is that the minimum wage varies across state
because some states have higher minimums than the federal minimum. Further,
there are changes over time in the nominal minimum within a state, some due
to changes at the federal level and some because of changes at the state level.
Neumark and Wascher (1995) used a panel data set on states to estimate the
effects of the minimum wage on the employment rates of young workers, as
well as on school enrollment rates.

11. What factors affect student performance at public schools? It is fairly easy to
get school-level or at least district-level data in most states. Does spending per
student matter? Do student-teacher ratios have any effects? It is difficult to esti-
mate ceteris paribus effects because spending is related to other factors, such as
family incomes or poverty rates. The data set MEAP93.RAW, for Michigan
high schools, contains a measure of the poverty rates. Another possibility is to
use panel data, or to at least control for a previous year’s performance measure
(such as average test score or percentage of students passing an exam).

You can look at less obvious factors that affect student performance. For
example, after controlling for income, does family structure matter? Perhaps
families with two parents, but only one working for a wage, have a positive
effect on performance. (There could be at least two channels: parents spend
more time with the children, and they might also volunteer at school.) What
about the effect of single-parent households, controlling for income and other
factors? You can merge census data for one or two years with school district
data.

Do public schools with more private schools nearby better educate their stu-
dents because of competition? There is a tricky simultaneity issue here because
private schools are probably located in areas where the public schools are
already poor. Hoxby (1994) used an instrumental variables approach, where
population proportions of various religions were IVs for the number of private
schools.

Rouse (1998) studied a different question: Did students who were able to
attend a private school due to the Milwaukee voucher program perform better
than those who did not? She used panel data and was able to control for an
unobserved student effect.
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12. Can excess returns on a stock, or a stock index, be predicted by the lagged
price/dividend ratio? Or, by lagged interest rates or weekly monetary policy? It
would be interesting to pick a foreign stock index, or one of the less well-
known U.S. indexes. Cochrane (1997) contains a nice survey of recent theories
and empirical results for explaining excess stock returns.

13. Is there racial discrimination in the market for baseball cards? This involves
relating the prices of baseball cards to factors that should affect their prices,
such as career statistics, whether the player is in the Hall of Fame, and so on.
Holding other factors fixed, do cards of black or Hispanic players sell at a dis-
count?

14. You can test whether the market for gambling on sports is efficient. For exam-
ple, does the spread on football or basketball games contain all usable infor-
mation for picking against the spread? The data set PNTSPRD.RAW contains
information on men’s college basketball games. The outcome variable is binary.
Was the spread covered or not? Then, you can try to find information that was
known prior to each game’s being played in order to predict whether the spread
is covered. (Good luck!)

15. What effect, if any, does success in college athletics have on other aspects of
the university (applications, quality of students, quality of nonathletic depart-
ments)? McCormick and Tinsley (1987) looked at the effects of athletic success
at major colleges on changes in SAT scores of entering freshman. Timing is
important here: presumably, it is recent past success that affects current appli-
cations and student quality. One must control for many other factors—such as
tuition and measures of school quality—to make the analysis convincing
because, without controlling for other factors, there is a negative correlation
between academics and athletic performance.

A variant is to match up natural rivals in football or men’s basketball and
to look at differences across school as a function of which school won the
football game or one or more basketball games. ATHLET1.RAW and
ATHLET2.RAW are small data sets that could be expanded and updated.

16. Collect murder rates for a sample of cities or counties (say, from the FBI uni-
form crime reports) for two years. Make the latter year such that economic and
demographic variables are easy to obtain from the County and City Data Book.
From the Statistical Abstract of the United States, you can obtain the total num-
ber of people on death row, plus executions for intervening years at the state
level. If the years are 1990 and 1985, you might estimate

mrdrte90 � �0 � �1mrdrte85 � �2executions � other factors,

where interest is in the coefficient on executions. The lagged murder rate and
other factors serve as controls.

Other factors may also act as a deterrent to crime. For example, Cloninger
(1991) presented a cross-sectional analysis of the effects of lethal police
response on crime rates.

As a different twist, what factors affect crime rates on college campuses?
Does the fraction of students living in fraternities or sororities have an effect?
Does the size of the police force matter, or the kind of policing used? (Be care-
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ful about inferring causality here.) Does having an escort program help reduce
crime? What about crime rates in nearby communities? Recently, colleges and
universities have been required to report crime statistics; in previous years,
reporting was voluntary.

17. What factors affect manufacturing productivity at the state level? In addition to
levels of capital and worker education, you could look at degree of unioniza-
tion. A panel data analysis would be most convincing here, using two census
years (say 1980 and 1990). Clark (1984) provides an analysis of how union-
ization affects firm performance and productivity. What other variables might
explain productivity?

Firm-level data can be obtained from Compustat. For example, other fac-
tors being fixed, do changes in unionization affect stock price of a firm?

18. Use state- or county-level data or, if possible, school district-level data to look
at the factors that affect education spending per pupil. An interesting question
is: Other things being equal (such as income and education levels of residents),
do districts with a larger percentage of elderly people spend less on schools?
Census data can be matched with school district spending data to obtain a very
large cross section. The U.S. Department of Education compiles such data.

19. What are the effects of state regulations, such as motorcycle helmet laws, on
motorcycle fatalities? Or, do differences in boating laws—such as minimum
operating age—help to explain boating accident rates? The U.S. Department of
Transportation compiles such information. This can be merged with data from
the Statistical Abstract of the United States. A panel data analysis seems to be
warranted here.

20. What factors affect output growth? Two factors of interest are inflation and
investment [for example, Blomström, Lipsey, and Zejan (1996)]. You might use
time series data on a country you find interesting. Or, you could use a cross sec-
tion of countries, as in De Long and Summers (1991). Friedman and Kuttner
(1992) found evidence that, at least in the 1980s, the spread between the com-
mercial paper rate and the treasury bill rate affects real output.

21. What is the behavior of mergers in the U.S. economy (or some other economy)?
Shughart and Tollison (1984) characterize (the log of) annual mergers in the
U.S. economy as a random walk by showing that the difference in logs—
roughly, the growth rate—is unpredictable given past growth rates. Does this
still hold? Does it hold across various industries? What past measures of eco-
nomic activity can be used to forecast mergers?

22. What factors might explain racial and gender differences in employment and
wages? For example, Holzer (1991) reviewed the evidence on the “spatial mis-
match hypothesis” to explain differences in employment rates between blacks
and whites. Korenman and Neumark (1992) examined the effects of childbear-
ing on women’s wages, while Hersch and Stratton (1997) looked at the effects
of household responsibilities on men’s and women’s wages.

23. Obtain monthly or quarterly data on teenage employment rates, the minimum
wage, and factors that affect teen employment, to estimate the effects of the
minimum wage on teen employment. Solon (1985) used quarterly U.S. data,
while Castillo-Freeman and Freeman (1992) used annual data on Puerto Rico.
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It might be informative to analyze time series data on a low-wage state in the
United States—where changes in the minimum wage are likely to have the
largest effect.

24. At the city level, estimate a time series model for crime. An example is
Cloninger and Sartorius (1979). As a recent twist, you might estimate the
effects of community policing or midnight basketball programs, relatively new
innovations in fighting crime. Inferring causality is tricky. Including a lagged
dependent variable might be helpful. Because you are using time series data,
you should be aware of the spurious regression problem.

Grogger (1990) used data on daily homicide counts to estimate the deter-
rent effects of capital punishment. Might there be other factors—such as news
on lethal response by police—that have an effect on daily crime counts?

25. Are there aggregate productivity effects of computer usage? You would need to
obtain time series data, perhaps at the national level, on productivity, percent-
age of employees using computers, and other factors. What about spending
(probably as a fraction of total sales) on research and development? What soci-
ological factors might affect productivity? alcohol usage? divorce rates?

26. What factors affect chief executive officer salaries? The files CEOSAL1.RAW
and CEOSAL2.RAW are data sets that have various firm performance mea-
sures, as well as information such as tenure and education. You can certainly
update these data files and look for other interesting factors. Rose and Shepard
(1997) considered firm diversification as one important determinant of CEO
compensation.

27. Do differences in tax codes across states affect the amount of foreign direct
investment? Hines (1996) studied the effects of state corporate taxes, along
with the ability to apply foreign tax credits, on investment from outside the
United States.

28. What factors affect election outcomes? Does spending matter? Do votes on spe-
cific issues matter? Does the state of the local economy matter? See, for exam-
ple, Levitt (1994) and the data sets VOTE1.RAW and VOTE2.RAW. Fair
(1996) performed a time series analysis of U.S. presidential elections.

LIST OF JOURNALS

The following is a partial list of popular journals containing research in empirical busi-
ness, economics, and other social sciences. A complete set of journals can be found on
the Internet.

American Economic Review
American Journal of Agricultural Economics
American Political Science Review
Applied Economics
Brookings Papers on Economic Activity
Canadian Journal of Economics
Demography
Economic Inquiry
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Economica
Economics Letters
Empirical Economics
Federal Reserve Bulletin
International Economic Review
Journal of Applied Econometrics
Journal of Business and Economic Statistics
Journal of Development Economics
Journal of Economic Education
Journal of Empirical Finance
Journal of Environmental Economics and Management
Journal of Finance
Journal of Health Economics
Journal of Human Resources
Journal of Industrial Economics
Journal of International Economics
Journal of Labor Economics
Journal of Political Economy
Journal of Public Economics
Journal of Monetary Economics
Journal of Money, Credit, and Banking
Journal of Quantitative Criminology
Journal of Urban Economics
National Bureau of Economic Research Working Paper Series
National Tax Journal
Public Finance Quarterly
Quarterly Journal of Economics
Regional Science & Urban Economics
Review of Economic Studies
Review of Economics and Statistics

DATA SOURCES

There are numerous data sources available throughout the world. Governments of most
countries compile a wealth of data; some general and easily accessible data sources for
the United States, such as the Economic Report of the President, the Statistical Abstract
of the United States, and the County and City Data Book, have already been mentioned.
International financial data on many countries are published annually in International
Financial Statistics. Various magazines, like Business Week and U.S. News and World
Report, often publish statistics—such as CEO salaries and firm performance, or rank-
ing of academic programs—that are novel and can be used in an econometric analysis.

Rather than attempting to provide a list here, we instead give some Internet
addresses that are comprehensive sources for economists. A very useful site for econo-
mists, called Resources for Economists on the Internet, is maintained by Bill Goffe at
the University of Southern Mississippi. The address is
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http://econwpa.wustl.edu/EconFAQ/EconFAQ.html.

This site provides links to journals, data sources, and lists of professional and academic
economists. It is quite simple to use.

The Business and Economic Statistics section of the American Statistical
Association contains an extremely detailed list of data sources and provides links to
them. The address is

http://www.econ-datalinks.org.

In addition, the Journal of Applied Econometrics and the Journal of Business and
Economics Statistics have data archives that contain data sets used in most papers pub-
lished in the journals over the past several years. If you find a data set that interests you,
this is a good way to go, as much of the cleaning and formatting of the data have already
been done. The downside is that some of these data sets are used in econometric analy-
ses that are more advanced than we have learned about in this text. On the other hand,
it is often useful to estimate simpler models using standard econometric methods for
comparison.

Many universities, such as the University of California, Berkeley, the University of
Michigan, and the University of Maryland, maintain very extensive data sets as well as
links to a variety of data sets. Your own library possibly contains an extensive set of
links to data bases in business, economics, and the other social sciences. The regional
federal reserve banks, such as the one in St. Louis, manage a variety of data. The
National Bureau of Economic Research posts data sets used by some of its researchers.
Naturally, state and federal governments now publish a wealth of data that can be
accessed via the Internet. Census data are publicly available from the Department of
Census. (Two useful publications are the Census of Manufacturing, published in years
ending with two and seven, and the Census of the Population, published at the begin-
ning of each decade.) Other agencies, such as the Department of Justice, also make data
available to the public.
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This appendix covers some basic mathematics that are used in econometric analy-
sis. We summarize various properties of the summation operator, study properties
of linear and certain nonlinear equations, and review proportions and percents.

We also present some special functions that often arise in applied econometrics, includ-
ing quadratic functions and the natural logarithm. The first four sections require only
basic algebra skills. Section A.5 contains a brief review of differential calculus; while a
knowledge of calculus is not necessary to understand most of the text, it is used in some
end-of-chapter appendices and in several of the more advanced chapters in Part III.

A.1 THE SUMMATION OPERATOR AND DESCRIPTIVE
STATISTICS

The summation operator is a useful shorthand for manipulating expressions involving
the sums of many numbers, and it plays a key role in statistics and econometric analy-
sis. If {xi: i � 1, …, n} denotes a sequence of n numbers, then we write the sum of these
numbers as

�
n

i�1
xi � x1 � x2 � … � xn. (A.1)

With this definition, the summation operator is easily shown to have the following prop-
erties:

PROPERTY SUM. 1: For any constant c,

�
n

i�1
c � nc. (A.2)

PROPERTY SUM. 2: For any constant c,

�
n

i�1
cxi � c�

n

i�1
xi. (A.3)
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PROPERTY SUM. 3: If {(xi,yi): i � 1,2, …, n} is a set of n pairs of numbers, and a and
b are constants, then

�
n

i�1
(axi � byi) � a �

n

i�1
xi � b �

n

i�1
yi. (A.4)

It is also important to be aware of some things that cannot be done with the sum-
mation operator. Let {(xi,yi): i � 1,2, …, n} again be a set of n pairs of numbers with
yi � 0 for each i. Then,

�
n

i�1
(xi/yi) � ��

n

i�1
xi����

n

i�1
yi�.

In other words, the sum of the ratios is not the ratio of the sums. In the n � 2 case, the
application of familiar elementary algebra also reveals this lack of equality: x1/y1 �
x2/y2 � (x1 � x2)/(y1 � y2). Similarly, the sum of the squares is not the square of the

sum: �
n

i�1
x2

i � ��
n

i�1
xi�2

, except in special cases. That these two quantities are not gener-

ally equal is easiest to see when n � 2: x2
1 � x2

2 � (x1 � x2)
2 � x2

1 � 2x1x2 � x2
2.

Given n numbers {xi: i � 1, …, n}, we compute their average or mean by adding
them up and dividing by n:

x̄ � (1/n) �
n

i�1
xi. (A.5)

When the xi are a sample of data on a particular variable (such as years of education),
we often call this the sample average (or sample mean) to emphasize that it is com-
puted from a particular set of data. The sample average is an example of a descriptive
statistic; in this case, the statistic describes the central tendency of the set of points xi.

There are some basic properties about averages that are important to understand.
First, suppose we take each observation on x and subtract off the average: di � xi � x̄
(the “d” here stands for deviation from the average). Then the sum of these deviations
is always zero:

�
n

i�1
di � �

n

i�1
(xi � x̄) � �

n

i�1
xi � �

n

i�1
x̄ � �

n

i�1
xi � nx̄ � nx̄ � nx̄ � 0.

We summarize this as

�
n

i�1
(xi � x̄) � 0. (A.6)

A simple numerical example shows how this works. Suppose n � 5 and x1 � 6, x2 �
1, x3 � �2, x4 � 0, and x5 � 5. Then x̄ � 2, and the demeaned sample is
{4,�1,�4,�2,3}. Adding these up gives zero, which is just what equation (A.6) says.

In our treatment of regression analysis in Chapter 2, we need to know some addi-
tional algebraic facts involving deviations from sample averages. An important one is
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that the sum of squared deviations is the sum of the squared xi minus n times the square
of x̄:

�
n

i�1
(xi � x̄)2 � �

n

i�1
xi

2 � n(x̄)2. (A.7)

This can be shown using basic properties of the summation operator:

�
n

i�1
(xi � x̄)2 � �

n

i�1
(xi

2 � 2xix̄ � x̄2)

� �
n

i�1
xi

2 � 2x̄ �
n

i�1
xi � n(x̄)2

� �
n

i�1
xi

2 � 2n(x̄)2 � n(x̄)2 � �
n

i�1
xi

2 � n(x̄)2.

Given a data set on two variables, {(xi,yi): i � 1,2, …, n}, it can also be shown that

�
n

i�1
(xi � x̄)(yi � ȳ) � �

n

i�1
xi(yi � ȳ)

� �
n

i�1
(xi � x̄)yi � �

n

i�1
xiyi � n(x̄�ȳ);

(A.8)

this is a generalization of equation (A.7) (there, yi � xi for all i).
The average is the measure of central tendency that we will focus on in most of this

text. However, it is sometimes informative to use the median (or sample median) to
describe the central value. To obtain the median of the n numbers {x1, …, xn}, we first
order the values of the xi from smallest to largest. Then, if n is odd, the sample median
is the middle number of the ordered observations. For example, given the numbers
{�4,8,2,0,21,�10,18}, the median value is 2 (since the ordered sequence is
{�10,�4,0,2,8,18,21}). If we change the largest number in this list, 21, to twice its
value, 42, the median is still 2. By contrast, the sample average would increase from 5
to 8, a sizable change. Generally, the median is less sensitive than the average to
changes in the extreme values (large or small) in a list of numbers. This is why “median
incomes” or “median housing values” are often reported, rather than averages, when
summarizing income or housing values in a city or county.

If n is even, there is no unique way to define the median because there are two num-
bers at the center. Usually the median is defined to be the average of the two middle val-
ues (again, after ordering the numbers from smallest to largest). Using this rule, the
median for the set of numbers {4,12,2,6} would be (4 � 6)/2 � 5.

A.2 PROPERTIES OF LINEAR FUNCTIONS

Linear functions play an important role in econometrics because they are simple to
interpret and manipulate. If x and y are two variables related by
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y � �0 � �1x, (A.9)

then we say that y is a linear function of x, and �0 and �1 are two parameters (num-
bers) describing this relationship. The intercept is �0, and the slope is �1.

The defining feature of a linear function is that the change in y is always �1 times
the change in x:

�y � �1�x, (A.10)

where � denotes “change.” In other words, the marginal effect of x on y is constant and
equal to �1.

E X A M P L E  A . 1
( L i n e a r  H o u s i n g  E x p e n d i t u r e  F u n c t i o n )

Suppose that the relationship between monthly housing expenditure and monthly in-
come is

housing � 164 � .27 income. (A.11)

Then, for each additional dollar of income, 27 cents is spent on housing. If family income
increases by $200, then housing expenditure increases by (.27)200 � $54. This function is
graphed in Figure A.1.

According to equation (A.11), a family with no income spends $164 on housing, which
of course cannot be literally true. For low levels of income, this linear function would not
describe the relationship between housing and income very well, which is why we will
eventually have to use other types of functions to describe such relationships.

In (A.11), the marginal propensity to consume (MPC) housing out of income is .27. This
is different from the average propensity to consume (APC), which is

� 164/income � .27.

The APC is not constant, it is always larger than the MPC, and it gets closer to the MPC as
income increases.

Linear functions are easily defined for more than two variables. Suppose that y is
related to two variables, x1 and x2, in the general form

y � �0 � �1x1 � �2x2. (A.12)

It is rather difficult to envision this function because its graph is three-dimensional.
Nevertheless, �0 is still the intercept (the value of y when x1 � 0 and x2 � 0), and �1

and �2 measure particular slopes. From (A.12), the change in y, for given changes in x1

and x2, is

housing
income
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�y � �1�x1 � �2�x2. (A.13)

If x2 does not change, that is, �x2 � 0, then we have

�y � �1�x1 if �x2 � 0,

so that �1 is the slope of the relationship in the direction of x1:

�1 � if �x2 � 0.

Because it measures how y changes with x1, holding x2 fixed, �1 is often called the par-
tial effect of x1 on y. Since the partial effect involves holding other factors fixed, it is
closely linked to the notion of ceteris paribus. The parameter �2 has a similar interpre-
tation: �2 � �y/�x2 if �x1 � 0, so that �2 is the partial effect of x2 on y.

E X A M P L E  A . 2
( D e m a n d  f o r  C o m p a c t  D i s c s )

For college students, suppose that the monthly quantity demanded of compact discs is
related to the price of compact discs and monthly discretionary income by

�y
�x1
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quantity � 120 � 9.8 price � .03 income,

where price is dollars per disk and income is measured in dollars. The demand curve is the
relationship between quantity and price, holding income (and other factors) fixed. This is
graphed in two dimensions in Figure A.2 at an income level of $900. The slope of the
demand curve, �9.8, is the partial effect of price on quantity: holding income fixed, if the
price of compact discs increases by one dollar, then the quantity demanded falls by 9.8. (We
abstract from the fact that CDs can only be purchased in discrete units.) An increase in
income simply shifts the demand curve up (changes the intercept), but the slope remains
the same.

A.3 PROPORTIONS AND PERCENTAGES

Proportions and percentages play such an important role in applied economics that it is
necessary to become very comfortable in working with them. Many quantities reported
in the popular press are in the form of percentages; a few examples include interest
rates, unemployment rates, and high school graduation rates.
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Graph of quantity � 120 � 9.8 price � .03 income, with income fixed at $900.
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An important skill is being able to convert between proportions and percentages. A
percentage is easily obtained by multiplying a proportion by 100. For example, if the
proportion of adults in a county with a high school degree is .82, then we say that 82%
(82 percent) of adults have a high school degree. Another way to think of percents and
proportions is that a proportion is the decimal form of a percent. For example, if the
marginal tax rate for a family earning $30,000 per year is reported as 28%, then the pro-
portion of the next dollar of income that is paid in income taxes is .28 (or 28 cents).

When using percentages, we often need to convert them to decimal form. For exam-
ple, if a state sales tax is 6% and $200 is spent on a taxable item, then the sales tax paid
is 200(.06) � 12 dollars. If the annual return on a certificate of deposit (CD) is 7.6%
and we invest $3,000 in such a CD at the beginning of the year, then our interest income
is 3,000(.076) � 228 dollars. As much as we would like it, the interest income is not
obtained by multiplying 3,000 by 7.6.

We must be wary of proportions that are sometimes incorrectly reported as per-
centages in the popular media. If we read, “The percentage of high school students who
drink alcohol is .57,” we know that this really means 57% (not just over one-half of a
percent, as the statement literally implies). College volleyball fans are probably famil-
iar with press clips containing statements such as “Her hitting percentage was .372.”
This really means that her hitting percentage was 37.2%.

In econometrics, we are often interested in measuring the changes in various quan-
tities. Let x denote some variable, such as an individual’s income, the number of crimes
committed in a community, or the profits of a firm. Let x0 and x1 denote two values for
x: x0 is the initial value, and x1 is the subsequent value. For example, x0 could be the
annual income of an individual in 1994 and x1 the income of the same individual in
1995. The proportionate change in x in moving from x0 to x1 is simply

(x1 � x0)/x0 � �x/x0, (A.14)

assuming, of course, that x0 � 0. In other words, to get the proportionate change, we
simply divide the change in x by its initial value. This is a way of standardizing the
change so that it is free of units. For example, if an individual’s income goes from
$30,000 per year to $36,000 per year, then the proportionate change is 6,000/30,000 �
.20.

It is more common to state changes in terms of percentages. The percentage
change in x in going from x0 to x1 is simply 100 times the proportionate change:

%�x � 100(�x/x0); (A.15)

the notation “%�x” is read as “the percentage change in x.” For example, when income
goes from $30,000 to $33,750, income has increased by 12.5%; to get this, we simply
multiply the proportionate change, .125, by 100.

Again, we must be on guard for proportionate changes that are reported as percent-
age changes. In the previous example, for instance, reporting the percentage change in
income as .125 is incorrect and could lead to confusion.

When we look at changes in things like dollar amounts or population, there is no
ambiguity about what is meant by a percentage change. By contrast, interpreting per-
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centage change calculations can be tricky when the variable of interest is itself a per-
centage, something that happens often in economics and other social sciences. To illus-
trate, let x denote the percentage of adults in a particular city having a college
education. Suppose the initial value is x0 � 24 (24% have a college education), and the
new value is x1 � 30. There are two quantities we can compute to describe how the per-
centage of college-educated people has changed. The first is the change in x, �x. In this
case, �x � x1 � x0 � 6: the percentage of people with a college education has increased
by six percentage points. On the other hand, we can compute the percentage change in
x using equation (A.15): %�x � 100[(30 � 24)/24] � 25.

In this example, the percentage point change and the percentage change are very
different. The percentage point change is just the change in the percentages. The per-
centage change is the change relative to the initial value. Generally, we must pay close
attention to which number is being computed. The careful researcher makes this dis-
tinction perfectly clear; unfortunately, in the popular press as well as in academic
research, the type of reported change is often unclear.

E X A M P L E  A . 3
( M i c h i g a n  S a l e s  T a x  I n c r e a s e )

In March 1994, Michigan voters approved a sales tax increase from 4% to 6%. In political
advertisements, supporters of the measure referred to this as a two percentage point
increase, or an increase of two cents on the dollar. Opponents to the tax increase called it
a 50% increase in the sales tax rate. Both claims are correct; they are simply different ways
of measuring the increase in the sales tax. Naturally, each group reported the measure that
made their position most favorable.

For a variable such as salary, it makes no sense to talk of a “percentage point change
in salary” because salary is not measured as a percentage. We can describe a change in
salary either in dollar or percentage terms.

A.4 SOME SPECIAL FUNCTIONS AND THEIR
PROPERTIES

In Section A.2, we reviewed the basic properties of linear functions. We already indi-
cated one important feature of functions like y � �0 � �1x: a one-unit change in x
results in the same change in y, regardless of the initial value of x. As we noted earlier,
this is the same as saying the marginal effect of x on y is constant, something that is not
realistic for many economic relationships. For example, the important economic notion
of diminishing marginal returns is not consistent with a linear relationship.

In order to model a variety of economic phenomena, we need to study several non-
linear functions. A nonlinear function is characterized by the fact that the change in y
for a given change in x depends on the starting value of x. Certain nonlinear functions
appear frequently in empirical economics, so it is important to know how to interpret
them. A complete understanding of nonlinear functions takes us into the realm of cal-
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culus. Here, we simply summarize the most significant aspects of the functions, leav-
ing the details of some derivations for Section A.5.

Quadratic Functions

One simple way to capture diminishing returns is to add a quadratic term to a linear
relationship. Consider the equation

y � �0 � �1x � �2x
2, (A.16)

where �0, �1, and �2 are parameters. When �1 	 0 and �2 
 0, the relationship between
y and x has the parabolic shape given in Figure A.3, where �0 � 6, �1 � 8, and �2 � �2.

When �1 	 0 and �2 
 0, it can be shown (using calculus in the next section) that
the maximum of the function occurs at the point

x* � �1/(�2�2). (A.17)

For example, if y � 6 � 8x � 2x2 (so �1 � 8, �2 � �2), then the largest value of y
occurs at x* � 8/4 � 2, and this value is 6 � 8(2) � 2(2)2 � 14 (see Figure A.3).
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Graph of y � 6 � 8x � 2x2.
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The fact that equation (A.16) implies a diminishing marginal effect of x on y is
easily seen from its graph. Suppose we start at a low value of x and then increase x by
some amount, say c. This has a larger effect on y than if we start at a higher value of x
and increase x by the same amount c. In fact, once x 	 x*, an increase in x actually
decreases y.

The statement that x has a diminishing marginal effect on y is the same as saying
that the slope of the function in Figure A.3 decreases as x increases. While this is clear
from looking at the graph, we usually want to quantify how quickly the slope is chang-
ing. An application of calculus gives the approximate slope of the quadratic function as

slope � � �1 � 2�2x, (A.18)

for “small” changes in x. [The right-hand side of equation (A.18) is the derivative of
the function in equation (A.16) with respect to x.] Another way to write this is

�y � (�1 � 2�2x)�x for “small” �x. (A.19)

To see how well this approximation works, consider again the function y � 6 � 8x �
2x2. Then, according to equation (A.19), �y � (8 � 4x)�x. Now, suppose we start at
x � 1 and change x by �x � .1. Using (A.19), �y � (8 � 4)(.1) � .4. Of course, we
can compute the change exactly by finding the values of y when x � 1 and x � 1.1:
y0 � 6 � 8(1) � 2(1)2 � 12 and y1 � 6 � 8(1.1) � 2(1.1)2 � 12.38, and so the exact
change in y is .38. The approximation is pretty close in this case.

Now, suppose we start at x � 1 but change x by a larger amount: �x � .5. Then, the
approximation gives �y � 4(.5) � 2. The exact change is determined by finding the dif-
ference in y when x � 1 and x � 1.5. The former value of y was 12, and the latter value
is 6 � 8(1.5) � 2(1.5)2 � 13.5, so the actual change is 1.5 (not 2). The approximation
is worse in this case because the change in x is larger.

For many applications, equation (A.19) can be used to compute the approximate
marginal effect of x on y for any initial value of x and small changes. And, we can
always compute the exact change if necessary.

E X A M P L E  A . 4
( A  Q u a d r a t i c  W a g e  F u n c t i o n )

Suppose the relationship between hourly wages and years in the work force (exper) is
given by

wage � 5.25 � .48 exper � .008 exper2. (A.20)

This function has the same general shape as the one in Figure A.3. Using equation (A.17),
exper has a positive effect on wage up to the turning point, exper* � .48/[2(.008)] � 30.
The first year of experience is worth approximately .48, or 48 cents [see (A.19) with x �

0, �x � 1]. Each additional year of experience increases wage by less than the previous

�y
�x
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year—reflecting a diminishing marginal return to experience. At 30 years, an additional
year of experience would actually lower the wage. This is not very realistic, but it is one
of the consequences of using a quadratic function to capture a diminishing marginal
effect: at some point, the function must reach a maximum and curve downward. For
practical purposes, the point at which this happens is often large enough to be inconse-
quential, but not always.

The graph of the quadratic function in (A.16) has a U-shape if �1 
 0 and �2 	 0,
in which case there is an increasing marginal return. The minimum of the function is at
the point ��1/(2�2).

The Natural Logarithm

The nonlinear function that plays the most important role in econometric analysis is the
natural logarithm. In this text, we denote the natural logarithm, which we often refer
to simply as the log function, as

y � log(x). (A.21)

You might remember learning different symbols for the natural log; ln(x) or loge(x) are
the most common. These different notations are useful when logarithms with several
different bases are being used. For our purposes, only the natural logarithm is impor-
tant, and so log(x) denotes the natural logarithm throughout this text. This corresponds
to the notation usage in many statistical packages, although some use ln(x) [and most
calculators use ln(x)]. Economists use both log(x) and ln(x), which is useful to know
when you are reading papers in applied economics.

The function y � log(x) is defined only for x 	 0, and it is plotted in Figure A.4. It
is not very important to know how the values of log(x) are obtained. For our purposes,
the function can be thought of as a black box: we can plug in any x 	 0 and obtain
log(x) from a calculator or a computer.

Several things are apparent from Figure A.4. First, when y � log(x), the relationship
between y and x displays diminishing marginal returns. One important difference
between the log and the quadratic function in Figure A.3 is that when y � log(x), the
effect of x on y never becomes negative: the slope of the function gets closer and closer
to zero as x gets large, but the slope never quite reaches zero and certainly never
becomes negative.

The following are also apparent from Figure A.4:

log(x) 
 0 for 0 
 x 
 1

log(1) � 0

log(x) 	 0 for x 	 1.

In particular, log(x) can be positive or negative. Some useful algebraic facts about the
log function are
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log(x1�x2) � log(x1) � log(x2), x1, x2 	 0

log(x1/x2) � log(x1) � log(x2), x1, x2 	 0

log(xc) � clog(x), x 	 0, c any number.

Occasionally, we will need to rely on these properties.
The logarithm can be used for various approximations that arise in econometric

applications. First, log(1 � x) � x for x � 0. You can try this with x � .02, .1, and .5
to see how the quality of the approximation deteriorates as x gets larger. Even more use-
ful is the fact that the difference in logs can be used to approximate proportionate
changes. Let x0 and x1 be positive values. Then, it can be shown (using calculus) that

log(x1) � log(x0) � (x1 � x0)/x0 � �x/x0 (A.22)

for small changes in x. If we multiply equation (A.22) by 100 and write �log(x) �
log(x1) � log(x0), then

100��log(x) � %�x (A.23)

for small changes in x. The meaning of small depends on the context, and we will
encounter several examples throughout this text.

Why should we approximate the percentage change using (A.23) when the exact
percentage change is so easy to compute? Momentarily, we will see why the approxi-
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Graph of y � log(x).
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mation in (A.23) is useful in econometrics. First, let us see how good the approxima-
tion is in two examples.

First, suppose x0 � 40 and x1 � 41. Then, the percentage change in x in moving
from x0 to x1 is 2.5%, using 100(x1 � x0)/x0. Now, log(41) � log(40) � .0247 to four
digits, which when multiplied by 100 is very close to 2.5. The approximation works
pretty well. Now, consider a much bigger change: x0 � 40 and x1 � 60. The exact per-
centage change is 50%. However, log(60) � log(40) � .4055, so the approximation
gives 40.55%, which is much farther off.

Why is the approximation in (A.23) useful if it is only satisfactory for small
changes? To build up to the answer, we first define the elasticity of y with respect to
x as

� � . (A.24)

In other words, the elasticity of y with respect to x is the percentage change in y, when
x increases by 1%. This notion should be familiar from introductory economics.

If y is a linear function of x, y � �0 � �1x, then the elasticity is

� � �1� � �1� , (A.25)

which clearly depends on the value of x. (This is a generalization of the well-known
result from basic demand theory: the elasticity is not constant along a straight-line
demand curve.)

Elasticities are of critical importance in many areas of applied economics—not just
in demand theory. It is convenient in many situations to have constant elasticity mod-
els, and the log function allows us to specify such models. If we use the approximation
(A.23) for both x and y, then the elasticity is approximately equal to �log(y)/�log(x).
Thus, a constant elasticity model is approximated by the equation

log(y) � �0 � �1log(x), (A.26)

and �1 is the elasticity of y with respect to x (assuming that x, y 	 0).

E X A M P L E  A . 5
( C o n s t a n t  E l a s t i c i t y  D e m a n d  F u n c t i o n )

If q is quantity demanded and p is price, and these variables are related by

log(q) � 4.7 � 1.25 log(p),

then the price elasticity of demand is �1.25. Roughly, a 1% increase in price leads to a
1.25% fall in the quantity demanded.

x
�0 � �1x

x
y

x
y

�y
�x

%�y
%�x

x
y

�y
�x

Appendix A Basic Mathematical Tools

655

xd  7/14/99 8:51 PM  Page 655



For our purposes, the fact that �1 in (A.26) is only close to the elasticity is not impor-
tant. In fact, when the elasticity is defined using calculus—as in Section A.5—the defi-
nition is exact. For the purposes of econometric analysis, (A.26) defines a constant
elasticity model. Such models play a large role in empirical economics.

There are other possibilities for using the log function that often arise in empirical
work. Suppose that y 	 0, and

log(y) � �0 � �1x. (A.27)

Then �log(y) � �1�x, so 100��log(y) � (100��1)�x. It follows that, when y and x are
related by equation (A.27),

%�y � (100��1)�x. (A.28)

E X A M P L E  A . 6
( L o g a r i t h m i c  W a g e  E q u a t i o n )

Suppose that hourly wage and years of education are related by

log(wage) � 2.78 � .094 educ.

Then, using equation (A.28),

%�wage � 100(.094) �educ � 9.4 �educ.

It follows that one more year of education increases hourly wage by about 9.4%.

Generally, the quantity %�y/�x is called the semi-elasticity of y with respect to x.
The semi-elasticity is the percentage change in y when x increases by one unit. What
we have just shown is that, in model (A.27), the semi-elasticity is constant and equal to
100��1. In Example A.6, we can conveniently summarize the relationship between
wages and education by saying that one more year of education—starting from any
amount of education—increases the wage by about 9.4%. This is why such models play
an important role in economics.

Another relationship of some interest in applied economics is:

y � �0 � �1log(x), (A.29)

where x 	 0. How can we interpret this equation? If we take the change in y, we get
�y � �1�log(x), which can be rewritten as �y � (�1/100)[100��log(x)]. Thus, using
the approximation in (A.23), we have

�y � (�1/100)(%�x). (A.30)

In other words, �1/100 is the unit change in y when x increases by 1%.
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E X A M P L E  A . 7
( L a b o r  S u p p l y  F u n c t i o n )

Assume that the labor supply of a worker can be described by

hours � 33 � 45.1 log(wage),

where wage is hourly wage and hours is hours worked per week. Then, from (A.30),

�hours � (45.1/100)(%�wage) � .451 %�wage.

In other words, a 1% increase in wage increases the weekly hours worked by about .45, or
slightly less than one-half of an hour. If the wage increases by 10%, then �hours �

.451(10) � 4.51, or about four and one-half hours. We would not want to use this approx-
imation for much larger percentage changes in wages.

The Exponential Function

Before leaving this section, we need to discuss one more special function, one that is
related to the log. As motivation, consider equation (A.27). There, log(y) is a linear
function of x. But how do we find y itself as a function of x? The answer is given by the
exponential function.

We will write the exponential function as y � exp(x), which is graphed in Figure A.5.
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Graph of y � exp(x).
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From Figure A.5, we see that exp(x) is defined for any value of x and is always
greater than zero. Sometimes the exponential function is written as y � e x, but we
will not use this notation. Two important values of the exponential function are exp(0)
� 1 and exp(1) � 2.7183 (to four decimals).

The exponential function is the inverse of the log function in the following sense:
log[exp(x)] � x for all x, and exp[log(x)] � x for x 	 0. In other words, the log
“undoes” the exponential, and vice versa. (This is why the exponential function is
sometimes called the anti-log function.) In particular, note that log(y) � �0 � �1x is
equivalent to

y � exp(�0 � �1x).

If �1 	 0, the relationship between x and y has the same shape as in Figure A.5. Thus,
if log(y) � �0 � �1x with �1 	 0, then x has an increasing marginal effect on y. In
Example A.6, this means that another year of education leads to a larger change in wage
than the previous year of education.

Two useful facts about the exponential function are exp(x1 � x2) � exp(x1)exp(x2)
and exp[c�log(x)] � xc.

A.5 DIFFERENTIAL CALCULUS

In the previous section, we asserted several approximations that have foundations in
calculus. Let y � f (x) for some function f. Then, for small changes in x,

�y � ��x, (A.31)

where df/dx is the derivative of the function f, evaluated at the initial point x0. We also
write the derivative as dy/dx.

For example, if y � log(x), then dy/dx � 1/x. Using (A.31), with dy/dx evaluated at
x0, we have �y � (1/x0)�x, or �log(x) � �x/x0, which is the approximation given in
(A.22).

In applying econometrics, it helps to recall the derivatives of a handful of functions
because we use the derivative to define the slope of a function at a given point. We can
then use (A.31) to find the approximate change in y for small changes in x. In the lin-
ear case, the derivative is simply the slope of the line, as we would hope: if y � �0 �
�1x, then dy/dx � �1.

If y � xc, then dy/dx � cxc�1. The derivative of a sum of two functions is the
sum of the derivatives: d[ f (x) � g(x)]/dx � df(x)/dx � dg(x)/dx. The derivative of a
constant times any function is that same constant times the derivative of the function:
d[cf(x)]/dx � c[df (x)/dx]. These simple rules allow us to find derivatives of more com-
plicated functions. Other rules, such as the product, quotient, and chain rules will be
familiar to those who have taken calculus, but we will not review those here.

Some functions that are often used in economics, along with their deriva-
tives, are

df
dx
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y � �0 � �1x � �2x2; dy/dx � �1 � 2�2x

y � �0 � �1/x; dy/dx � ��1/(x
2)

y � �0 � �1��x ; dy/dx � (1/2)x�1/2

y � �0 � �1log(x); dy/dx � �1/x

y � exp(�0 � �1x); dy/dx � �1exp(�0 � �1x).

If �0 � 0 and �1 � 1 in this last expression, we get dy/dx � exp(x), when y � exp(x).
In Section A.4, we noted that equation (A.26) defines a constant elasticity model

when calculus is used. The calculus definition of elasticity is � . It can be shown 

using properties of logs and exponentials that, when (A.26) holds, � � �1.

When y is a function of multiple variables, the notion of a partial derivative
becomes important. Suppose that

y � f (x1,x2). (A.32)

Then, there are two partial derivatives, one with respect to x1 and one with respect to x2.

The partial derivative of y with respect to x1, denoted here by , is just the usual deriv-

ative of (A.32) with respect to x1, where x2 is treated as a constant. Similarly, is just
the derivative of (A.32) with respect to x2, holding x1 fixed.

Partial derivatives are useful for much the same reason as ordinary derivatives. We
can approximate the change in y as

�y � ��x1, holding x2 fixed. (A.33)

Thus, calculus allows us to define partial effects in nonlinear models just as we could
in linear models. In fact, if

y � �0 � �1x1 � �2x2,

then

� �1, � �2.

These can be recognized as the partial effects defined in Section A.2.
A more complicated example is

y � 5 � 4x1 � x1
2 � 3x2 � 7x1�x2. (A.34)

Now, the derivative of (A.34), with respect to x1 (treating x2 as a constant), is simply

� 4 � 2x1 � 7x2;
�y

�x1

�y

�x2

�y

�x1

�y

�x1

�y

�x2

�y

�x1
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y
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note how this depends on x1 and x2. The derivative of (A.34), with respect to x2, is 
� �3 � 7x1, so this depends only on x1.

E X A M P L E  A . 8
( W a g e  F u n c t i o n  w i t h  I n t e r a c t i o n )

A function relating wages to years of education and experience is

wage � 3.10 � .41 educ � .19 exper � .004 exper2

� .007 educ�exper.
(A.35)

The partial effect of exper on wage is the partial derivative of (A.35):

� .19 � .008 exper � .007 educ.

This is the approximate change in wage due to increasing experience by one year. Notice that
this partial effect depends on the initial level of exper and educ. For example, for a worker
who is starting with educ � 12 and exper � 5, the next year of experience increases wage by
about .19 � .008(5) � .007(12) � .234, or 23.4 cents per hour. The exact change can be cal-
culated by computing (A.35) at exper � 5, educ � 12 and at exper � 6, educ � 12, and then
taking the difference. This turns out to be .23, which is very close to the approximation.

Differential calculus plays an important role in minimizing and maximizing func-
tions of one or more variables. If f(x1,x2, …, xk) is a differentiable function of k vari-
ables, then a necessary condition for x1*, x2*, …, xk* to either minimize or maximize f over
all possible values of xj is

(x1*,x2*, …, xk*) � 0, j � 1,2, …, k. (A.36)

In other words, all of the partial derivatives of f must be zero when they are evaluated
at the xh*. These are called the first order conditions for minimizing or maximizing a
function. Practically, we hope to solve equation (A.36) for the xh*. Then, we can use
other criteria to determine whether we have minimized or maximized the function. We
will not need those here. [See Sydsaeter and Hammond (1995) for a discussion of mul-
tivariable calculus and its use in optimizing functions.]

SUMMARY

The math tools reviewed here are crucial for understanding regression analysis and the
probability and statistics that are covered in Appendices B and C. The material on non-
linear functions—especially quadratic, logarithmic, and exponential functions—is crit-
ical for understanding modern applied economic research. The level of comprehension

�f

�xj

�wage

�exper

�y

�x2
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required of these functions does not include a deep knowledge of calculus, although
calculus is needed for certain derivations.

KEY TERMS
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661

Average
Ceteris Paribus
Constant Elasticity Model
Derivative
Descriptive Statistic
Diminishing Marginal Effect
Elasticity
Exponential Function
Intercept
Linear Function
Log Function
Marginal Effect

Median
Natural Logarithm
Nonlinear Function
Partial Derivative
Partial Effect
Percentage Change
Percentage Point Change
Proportionate Change
Semi-Elasticity
Slope
Summation Operator

PROBLEMS

A.1 The following table contains monthly housing expenditures for 10 families.

Monthly Housing
Family Expenditures

(Dollars)

1 300

2 440

3 350

4 1,100

5 640

6 480

7 450

8 700

9 670

10 530
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(i) Find the average monthly housing expenditure.
(ii) Find the median monthly housing expenditure.
(iii) If monthly housing expenditures were measured in hundreds of dollars,

rather than in dollars, what would be the average and median expendi-
tures?

(iv) Suppose that family number 8 increases its monthly housing expendi-
ture to $900 dollars, but the expenditures of all other families remain
the same. Compute the average and median housing expenditures.

A.2 Suppose the following equation describes the relationship between the average
number of classes missed during a semester (missed) and the distance from school (dis-
tance, measured in miles):

missed � 3 � 0.2 distance.

(i) Sketch this line, being sure to label the axes. How do you interpret the
intercept in this equation?

(ii) What is the average number of classes missed for someone who lives
five miles away?

(iii) What is the difference in the average number of classes missed for
someone who lives 10 miles away and someone who lives 20 miles
away?

A.3 In Example A.2, quantity of compact disks was related to price and income by
quantity � 120 � 9.8 price � .03 income. What is the demand for CDs if price � 15
and income � 200? What does this suggest about using linear functions to describe
demand curves?

A.4 Suppose the unemployment rate in the United States goes from 6.4% in one year
to 5.6% in the next.

(i) What is the percentage point decrease in the unemployment rate?
(ii) By what percent has the unemployment rate fallen?

A.5 Suppose that the return from holding a particular firm’s stock goes from 15% in
one year to 18% in the following year. The majority shareholder claims that “the stock
return only increased by 3%,” while the chief executive officer claims that “the return
on the firm’s stock has increased by 20%.” Reconcile their disagreement.

A.6 Suppose that Person A earns $35,000 per year and Person B earns $42,000.
(i) Find the exact percent by which Person B’s salary exceeds Person A’s.
(ii) Now use the difference in natural logs to find the approximate percent-

age difference.

A.7 Suppose the following model describes the relationship between annual salary
(salary) and the number of previous years of labor market experience (exper):

log(salary) � 10.6 � .027 exper.

(i) What is salary when exper � 0? when exper � 5? (Hint: You will need
to exponentiate.)

Appendix A Basic Mathematical Tools

662

xd  7/14/99 8:51 PM  Page 662



(ii) Use equation (A.28) to approximate the percentage increase in salary
when exper increases by five years.

(iii) Use the results of part (i) to compute the exact percentage difference in
salary when exper � 5 and exper � 0. Comment on how this compares
with the approximation in part (ii).

A.8 Let grthemp denote the proportionate growth in employment, at the county level,
from 1990 to 1995, and let salestax denote the county sales tax rate, stated as a pro-
portion. Interpret the intercept and slope in the equation

grthemp � .043 � .78 salestax.

A.9 Suppose the yield of a certain crop (in bushels per acre) is related to fertilizer
amount (in pounds per acre) as

yield � 120 � .19 ��fertilizer.

(i) Graph this relationship by plugging in several values for fertilizer.
(ii) Describe how the shape of this relationship compares with a linear

function between yield and fertilizer.
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This appendix covers key concepts from basic probability. Appendices B and C
are primarily for review; they are not intended to replace a course in probability
and statistics. Nevertheless, all of the probability and statistics concepts that we

use in the text are covered in these appendices.
Probability is of interest in its own right for students in business, economics, and

other social sciences. For example, consider the problem of an airline trying to decide
how many reservations to accept for a flight that has 100 available seats. If fewer than
100 people want reservations, then these should all be accepted. But what if more than
100 people request reservations? A safe solution is to accept at most 100 reservations.
However, since some people book reservations and then do not show up for the flight,
there is some chance that the plane will not be full even if 100 reservations are booked.
This results in lost revenue to the airline. A different strategy is to book more than 100
reservations and to hope that some people do not show up, and so the final number of
passengers is as close to 100 as possible. This policy runs the risk of the airline having
to compensate people who are necessarily bumped from an overbooked flight.

A natural question in this context is: Can we decide on the optimal (or best) num-
ber of reservations the airline should make? This is a nontrivial problem. Nevertheless,
given certain information (on airline costs and how frequently people show up for reser-
vations), we can use basic probability to arrive at a solution.

B.1 RANDOM VARIABLES AND THEIR PROBABILITY
DISTRIBUTIONS

Suppose that we flip a coin 10 times and count the number of times the coin turns up
heads. This is an example of an experiment. Generally, an experiment is any procedure
that can, at least in theory, be infinitely repeated, and has a well-defined set of out-
comes. We could, in principle, carry out the coin-flipping procedure again and again.
Before we flip the coin, we know that the number of heads appearing is an integer from
0 to 10, so the outcomes of the experiment are well-defined.

A random variable is one that takes on numerical values and has an outcome that
is determined by an experiment. In the coin-flipping example, the number of heads
appearing in 10 flips of a coin is an example of a random variable. Before we flip the
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coin 10 times, we do not know how many times the coin will come up heads. Once we
flip the coin 10 times and count the number of heads, we obtain the outcome of the ran-
dom variable for this particular trial of the experiment. Another trial can produce a dif-
ferent outcome.

In the airline reservation example mentioned earlier, the number of people showing
up for their flight is a random variable: before any particular flight, we do not know how
many people will show up.

To analyze data collected in business and the social sciences, it is important to have
a basic understanding of random variables and their properties. Following the usual
conventions in probability and statistics throughout Appendices B and C, we denote
random variables by upper case letters, usually W, X, Y, and Z; particular outcomes of
random variables are denoted by the corresponding lower case letters, w, x, y, and z. For
example, in the coin-flipping experiment, let X denote the number of heads appearing
in 10 flips of a coin. Then, X is not associated with any particular value, but we know
X will take on a value in the set {0,1,2, …, 10}. A particular outcome is, say, x � 6.

We indicate large collections of random variables by using subscripts. For example,
if we record last year’s income of 20 randomly chosen households in the United States,
we might denote these random variables by X1, X2, …, X20; the particular outcomes
would be denoted x1, x2, …, x20.

As stated in the definition, random variables are always defined to take on numeri-
cal values, even when they describe qualitative events. For example, consider tossing a
single coin, where the two outcomes are heads and tails. We can define a random vari-
able as follows: X � 1 if the coin turns up heads, and X � 0 if the coin turns up tails.

A random variable that can only take on the values zero and one is called a
Bernoulli (or binary) random variable. In basic probability, it is traditional to call the
event X � 1 a “success” and the event X � 0 a “failure.” For a particular application,
the success-failure nomenclature might not correspond to our notion of a success or
failure, but it is a useful terminology that we will adopt.

Discrete Random Variables

A discrete random variable is one that takes on only a finite or countably infinite
number of values. The notion of “countably infinite” means that even though an infinite
number of values can be taken on by a random variable, those values can be put in a
one-to-one correspondence with the positive integers. Because the distinction between
“countably infinite” and “uncountably infinite” is somewhat subtle, we will concentrate
on discrete random variables that take on only a finite number of values. Larsen and
Marx (1986, Chapter 3) contains a detailed treatment.

A Bernoulli random variable is the simplest example of a discrete random variable.
The only thing we need to completely describe the behavior of a Bernoulli random vari-
able is the probability that it takes on the value one. In the coin-flipping example, if the
coin is “fair,” then P(X � 1) � 1/2 (read as “the probability that X equals one is one-
half”). Because probabilities must sum to one, P(X � 0) � 1/2, also.

Social scientists are interested in more than flipping coins, so we must allow for
more general situations. Again, consider the example where the airline must decide how
many people to book for a flight with 100 available seats. This problem can be analyzed
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in the context of several Bernoulli random variables as follows: for a randomly selected
customer, define a Bernoulli random variable as X � 1 if the person shows up for the
reservation, and X � 0 if not.

There is no reason to think that the probability of any particular customer showing
up is 1/2; in principle, the probability can be any number between zero and one. Call
this number �, so that

P(X � 1) � � (B.1)

P(X � 0) � 1 � �. (B.2)

For example, if � � .75, then there is a 75% chance that a customer shows up after mak-
ing a reservation, and a 25% chance that the customer does not show up. Intuitively, the
value of � is crucial in determining the airline’s strategy for booking reservations.
Methods for estimating �, given historical data on airline reservations, is a subject of
mathematical statistics, something we turn to in Appendix C.

More generally, any discrete random variable is completely described by listing its
possible values and the associated probability that it takes on each value. If X takes on
the k possible values {x1, …, xk}, then the probabilities p1, p2, …, pk are defined by

pj � P(X � xj), j � 1,2, …, k, (B.3)

where each pj is between 0 and 1, and

p1 � p2 � … � pk � 1. (B.4)

Equation (B.3) is read as: “The probability that X takes on the value xj is equal to pj.”
Equations (B.1) and (B.2) show that the probabilities of success and failure for a

Bernoulli random variable are determined entirely by the value of �. Because Bernoulli
random variables are so prevalent, we have a special notation for them: X ~ Bernoulli(�)
is read as “X has a Bernoulli distribution with probability of success equal to �.”

The probability density function (pdf) of X summarizes the information concern-
ing the possible outcomes of X and the corresponding probabilities:

f(xj) � pj, j � 1,2,…,k, (B.5)

with f(x) � 0 for any x not equal to xj for some j. In other words, for any real number
x, f (x) is the probability that the random variable X takes on the particular value x. When
dealing with more than one random variable, it is sometimes useful to subscript the pdf
in question: fX is the pdf of X, fY is the pdf of Y, and so on.

Given the pdf of any discrete random variable, it is simple to compute the proba-
bility of any event involving that random variable. For example, suppose that X is the
number of free throws made by a basketball player out of two attempts, so that X can
take on the three values {0,1,2}. Assume that the pdf of X is given by

f(0) � .20, f(1) � .44, and f(2) � .36.

Appendix B Fundamentals of Probability

666

xd  7/14/99 8:57 PM  Page 666



The three probabilities sum to one, as they must. Using this pdf, we can calculate the
probability that the player makes at least one free throw: P(X � 1) � P(X � 1) �
P(X � 2) � .44 � .36 � .80. The pdf of X is shown in Figure B.1.

Continuous Random Variables

A variable X is a continuous random variable if it takes on any real value with zero
probability. This definition is somewhat counterintuitive, since in any application, we
eventually observe some outcome for a random variable. The idea is that a continuous
random variable X can take on so many possible values that we cannot count them or
match them up with the positive integers, so logical consistency dictates that X can take
on each value with probability zero. While measurements are always discrete in prac-
tice, random variables that take on numerous values are best treated as continuous. For
example, the most refined measure of the price of a good is in terms of cents. We can
imagine listing all possible values of price in order (even though the list may continue
indefinitely), which technically makes price a discrete random variable. However, there
are so many possible values of price that using the mechanics of discrete random vari-
ables is not feasible.

We can define a probability density function for continuous random variables, and,
as with discrete random variables, the pdf provides information on the likely outcomes
of the random variable. However, because it makes no sense to discuss the probability
that a continuous random variable takes on a particular value, we use the pdf of a con-
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The pdf of the number of free throws made out of two attempts.

f (x)

0 1 2 x

.20

.44

.36
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tinuous rv only to compute events involving a range of values. For example, if a and b
are constants where a � b, the probability that X lies between the numbers a and b,
P(a � X � b), is the area under the pdf between points a and b, as shown in Figure B.2.
If you are familiar with calculus, you recognize this as the integral of the function f
between the points a and b. The entire area under the pdf must always equal one.

When computing probabilities for continuous random variables, it is easiest to work
with the cumulative distribution function (cdf). If X is any random variable, then its
cdf is defined for any real number x by

F(x) � P(X � x). (B.6)

For discrete random variables, (B.6) is obtained by summing the pdf over all values xj

such that xj � x. For a continuous random variable, F(x) is the area under the pdf, f, to
the left of the point x. Since F(x) is simply a probability, it is always between 0 and 1.
Further, if x1 � x2, then P(X � x1) � P(X � x2), that is, F(x1) � F(x2). This means that
a cdf is an increasing (or at least nondecreasing) function of x.

Two important properties of cdfs that are useful for computing probabilities are the
following:
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The probability that X lies between the points a and b.

a
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For any number c, P(X � c) � 1 � F(c). (B.7)

For any numbers a � b, P(a � X � b) � F(b) � F(a). (B.8)

In our study of econometrics, we will use cdfs to compute probabilities only for con-
tinuous random variables, in which case it does not matter whether inequalities in prob-
ability statements are strict or not. That is, for a continuous random variable X,

P(X � c) � P(X � c), (B.9)

and

P(a � X � b) � P(a � X � b) � P(a � X � b) � P(a � X � b). (B.10)

Combined with (B.7) and (B.8), equations (B.9) and (B.10) greatly expand the proba-
bility calculations that can be done using continuous cdfs.

Cumulative distribution functions have been tabulated for all of the important
continuous distributions in probability and statistics. The most well-known of these
is the normal distribution, which we cover along with some related distributions in
Section B.5.

B.2 JOINT DISTRIBUTIONS, CONDITIONAL
DISTRIBUTIONS, AND INDEPENDENCE

In economics, we are usually interested in the occurrence of events involving more than
one random variable. For example, in the airline reservation example referred to earlier,
the airline might be interested in the probability that a person who makes a reservation
shows up and is a business traveler; this is an example of a joint probability. Or, the air-
line might be interested in the following conditional probability: conditional on the per-
son being a business traveler, what is the probability of he or she showing up? In the
next two subsections, we formalize the notions of joint and conditional distributions
and the important notion of independence of random variables.

Joint Distributions and Independence

Let X and Y be discrete random variables. Then, (X,Y ) have a joint distribution, which
is fully described by the joint probability density function of (X,Y ):

fX,Y (x,y) � P(X � x,Y � y), (B.11)

where the right-hand side is the probability that X � x and Y � y. When X and Y are
continuous, a joint pdf can also be defined, but we will not cover such details because
joint pdfs for continuous random variables are not used explicitly in this text.

In one case, it is easy to obtain the joint pdf if we are given the pdfs of X and Y. In
particular, random variables X and Y are said to be independent if and only if
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fX,Y (x,y) � fX(x)fY (y) (B.12)

for all x and y, where fX is the pdf of X, and fY is the pdf of Y. In the context of more
than one random variable, the pdfs fX and fY are often called marginal probability den-
sity functions to distinguish them from the joint pdf fX,Y. This definition of indepen-
dence is valid for discrete and continuous random variables.

To understand the meaning of (B.12), it is easiest to deal with the discrete case. If
X and Y are discrete, then (B.12) is the same as

P(X � x,Y � y) � P(X � x)P(Y � y); (B.13)

in other words, the probability that X � x and Y � y is the product of the two proba-
bilities P(X � x) and P(Y � y). One implication of (B.13) is that joint probabilities are
fairly easy to compute, since they only require knowledge of P(X � x) and P(Y � y).

If random variables are not independent, then they are said to be dependent.

E X A M P L E  B . 1
( F r e e  T h r o w  S h o o t i n g )

Consider a basketball player shooting two free throws. Let X be the Bernoulli random vari-
able equal to one if she or he makes the first free throw, and zero otherwise. Let Y be a
Bernoulli random variable equal to one if he or she makes the second free throw. Suppose
that she or he is an 80% free-throw shooter, so that P(X � 1) � P(Y � 1) � .8. What is
the probability of the player making both free throws?

If X and Y are independent, we can easily answer this question: P(X � 1,Y � 1) �

P(X � 1)P(Y � 1) � (.8)(.8) � .64. Thus, there is a 64% chance of making both free throws.
If the chance of making the second free throw depends on whether the first was made—
that is, X and Y are not independent—then this simple calculation is not valid.

Independence of random variables is a very important concept. In the next subsec-
tion, we will show that if X and Y are independent, then knowing the outcome of X does
not change the probabilities of the possible outcomes of Y, and vice versa. One useful
fact about independence is that if X and Y are independent and we define new random
variables g(X ) and h(Y ) for any functions g and h, then these new random variables are
also independent.

There is no need to stop at two random variables. If X1, X2, …, Xn are discrete ran-
dom variables, then their joint pdf is f(x1,x2, …, xn) � P(X1 � x1, X2 � x2, …, Xn � xn).
The random variables X1, X2, …, Xn are independent random variables if and only if
their joint pdf is the product of the individual pdfs for any (x1,x2, …, xn). This definition
of independence also holds for continuous random variables.

The notion of independence plays an important role in obtaining some of the clas-
sic distributions in probability and statistics. Earlier we defined a Bernoulli random
variable as a zero-one random variable indicating whether or not some event occurs.
Often, we are interested in the number of successes in a sequence of independent
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Bernoulli trials. A standard example of independent Bernoulli trials is flipping a coin
again and again. Since the outcome on any particular flip has nothing to do with the
outcomes on other flips, independence is an appropriate assumption.

Independence is often a reasonable approximation in more complicated situations.
In the airline reservation example, suppose that the airline accepts n reservations for a
particular flight. For each i � 1,2, …, n, let Yi denote the Bernolli random variable indi-
cating whether customer i shows up: Yi � 1 if customer i appears, and Yi � 0 other-
wise. Letting � again denote the probability of success (using reservation), each Yi has
a Bernoulli(�) distribution. As an approximation, we might assume that the Yi are inde-
pendent of one another, although this is not exactly true in reality: some people travel
in groups, which means that whether or not a person shows up is not truly independent
of whether all others show up. Modeling this kind of dependence is complex, however,
so we might be willing to use independence as an approximation.

The variable of primary interest is the total number of customers showing up out of
the n reservations; call this variable X. Since each Yi is unity when a person shows up,
we can write X � Y1 � Y2 � … � Yn. Now, assuming that each Yi has probability of
success � and that the Yi are independent, X can be shown to have a binomial distri-
bution. That is, the probability density function of X is

f(x) � � �� x(1 � �)n�x, x � 0,1,2, …, n, (B.14)

where � � � , and for any integer n, n! (read “n factorial”) is defined as

n! � n	(n � 1)	(n � 2)			1. By convention, 0! � 1. When a random variable X has the
pdf given in (B.14), we write X ~ Binomial(n,�). Equation (B.14) can be used to com-
pute P(X � x) for any value of x from 0 to n.

If the flight has 100 available seats, the airline is interested in P(X � 100). Suppose,
initially, that n � 120, so that the airline accepts 120 reservations, and the probability
that each person shows up is � � .80. Then, P(X � 100) � P(X � 101) � P(X � 102)
� … � P(X � 120), and each of the probabilities in the sum can be found from equa-
tion (B.14) with n � 120, � � .80, and the appropriate value of x (101 to 120). This is
a difficult hand calculation, but many statistical packages have commands for comput-
ing this kind of probability. In this case, the probability that more than 100 people will
show up is about .659, which is probably more risk of overbooking than the airline
wants to tolerate. If, instead, the number of reservations is 110, the probability of more
than 100 passengers showing up is only about .024.

Conditional Distributions

In econometrics, we are usually interested in how one random variable, call it Y, is
related to one or more other variables. For now, suppose that there is only variable
whose effects we are interested in, call it X. The most we can know about how X affects
Y is contained in the conditional distribution of Y given X. This information is sum-
marized by the conditional probability density function, defined by

n!
x!(n � x)!

n
x

n
x
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fY�X(y�x) � fX,Y(x,y)/fX(x) (B.15)

for all values of x such that fX(x) � 0. The interpretation of (B.15) is most easily seen
when X and Y are discrete. Then,

fY�X(y�x) � P(Y � y�X � x), (B.16)

where the right-hand side is read as “the probability that Y � y given that X � x.” When
Y is continuous, fY�X(y�x) is not interpretable directly as a probability, for the reasons dis-
cussed earlier, but conditional probabilities are found by computing areas under the
conditional pdf.

An important feature of conditional distributions is that, if X and Y are independent
random variables, knowledge of the value taken on by X tells us nothing about the prob-
ability that Y takes on various values (and vice versa). That is, fY�X(y�x) � fY(y), and
fX�Y(x�y) � fX(x).

E X A M P L E  B . 2
( F r e e  T h r o w  S h o o t i n g )

Consider again the basketball-shooting example, where two free throws are to be
attempted. Assume that the conditional density is

fY�X(1�1) � .85, fY�X(0�1) � .15

fY�X(1�0) � .70, fY�X(0�0) � .30.

This means that the probability of the player making the second free throw depends on
whether the first free throw was made: if the first free throw is made, the chance of mak-
ing the second is .85; if the first free throw is missed, the chance of making the second is
.70. This implies that X and Y are not independent; they are dependent.

We can still compute P(X � 1,Y � 1), provided we know P(X � 1). Assume that the
probability of making the first free throw is .8, that is, P(X � 1) � .8. Then, from (B.15), we
have

P(X � 1,Y � 1) � P(Y � 1�X � 1)	P(X � 1) � (.85)(.8) � .68.

B.3 FEATURES OF PROBABILITY DISTRIBUTIONS

For many purposes, we will be interested in only a few aspects of the distributions of
random variables. The features of interest can be put into three categories: measures of
central tendency, measures of variability or spread, and measures of association
between two random variables. We cover the last of these in Section B.4.

A Measure of Central Tendency: The Expected Value

The expected value is one of the most important probabilistic concepts that we will
encounter in our study of econometrics. If X is a random variable, the expected value
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(or expectation) of X, denoted E(X) and sometimes 
X or simply 
, is a weighted aver-
age of all possible values of X. The weights are determined by the probability density
function. Sometimes, the expected value is called the population mean, especially when
we want to emphasize that X represents some variable in a population.

The precise definition of expected value is simplest in the case that X is a discrete
random variable taking on a finite number of values, say {x1, …, xk}. Let f (x) denote the
probability density function of X. The expected value of X is the weighted average

E(X ) � x1 f(x1) � x2 f (x2) � … � xk f(xk) � �
k

j�1
xj f(xj). (B.17)

This is easily computed given the values of the pdf at each possible outcome of X.

E X A M P L E  B . 3
( C o m p u t i n g  a n  E x p e c t e d  V a l u e )

Suppose that X takes on the values �1, 0, and 2 with probabilities 1/8, 1/2, and 3/8, respec-
tively. Then,

E(X ) � (�1)	(1/8) � 0	(1/2) � 2	(3/8) � 5/8.

This example illustrates something curious about expected values: the expected value
of X can be a number that is not even a possible outcome of X. We know that X takes
on the value �1, 0, or 2, yet its expected value is 5/8. This makes the expected value
deficient for summarizing the central tendency of certain discrete random variables, but
calculations such as those just mentioned can be useful, as we will see later.

If X is a continuous random variable, then E(X ) is defined as an integral:

E(X) � �
�

��

xf(x)dx, (B.18)

which we assume is well-defined. This can still be interpreted as a weighted average.
Unlike in the discrete case, E(X ) is always a number that is a possible outcome of X. In
this text, we will not need to compute expected values using integration, although we
will draw on some well-known results from probability for expected values of special
random variables.

Given a random variable X and a function g(	), we can create a new random vari-
able g(X ). For example, if X is a random variable, then so is X2 and log(X ) (if X � 0).
The expected value of g(X ) is, again, simply a weighted average:

E[g(X)] � �
k

j�1
g(xj) fX(xj) (B.19)

or, for a continuous random variable,
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E[g(X)] � �
�

��

g(x)fX(x)dx. (B.20)

E X A M P L E  B . 4
( E x p e c t e d  V a l u e  o f  X 2 )

For the random variable in Example B.3, let g(X ) � X2. Then,

E(X2) � (�1)2(1/8) � (0)2(1/2) � (2)2(3/8) � 13/8.

In Example B.3, we computed E(X ) � 5/8, so that [E(X )]2 � 25/64. This shows that
E(X2) is not the same as [E(X )]2. In fact, for a nonlinear function g(X ), E[g(X )] �
g[E(X )] (except in very special cases).

If X and Y are random variables, then g(X,Y ) is a random variable for any function
g, and so we can define its expectation. When X and Y are both discrete, taking on val-
ues {x1,x2, …, xk} and {y1,y2, …, ym}, respectively, the expected value is

E[g(X,Y )] � �
k

h�1 
�

m

j�1
g(xh,yj)fX,Y(xh,yj),

where fX,Y is the joint pdf of (X,Y ). The definition is more complicated for continuous
random variables since it involves integration; we do not need it here. The extension to
more than two random variables is straightforward.

Properties of Expected Value

In econometrics, we are not so concerned with computing expected values from vari-
ous distributions; the major calculations have been done many times, and we will
largely take these on faith. We will need to manipulate some expected values using a
few simple rules. These are so important that we give them labels:

PROPERTY E.1
For any constant c, E(c) � c.

PROPERTY E.2
For any constants a and b, E(aX � b) � aE(X ) � b.

One useful implication of E.2 is that, if 
 � E(X ), and we define a new random vari-
able as Y � X � 
, then E(Y ) � 0; in E.2, take a � 1 and b � �
.

As an example of Property E.2, let X be the temperature measured in Celsius,
at noon on a particular day at a given location; suppose the expected temperature
is E(X) � 25. If Y is the temperature measured in Fahrenheit, then Y � 32 �
(9/5)X. From Property E.2, the expected temperature in Fahrenheit is E(Y ) � 32 �
(9/5)	E(X ) � 32 � (9/5)	25 � 77.

Generally, it is easy to compute the expected value of a linear function of many ran-
dom variables.
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PROPERTY E.3
If {a1,a2, …, an} are constants and {X1,X2, …, Xn} are random variables, then

E(a1X1 � a2X2 � … � anXn) � a1E(X1) � a2E(X2) � … � anE(Xn).

Or, using summation notation,

E(�
n

i�1
aiXi) � �

n

i�1
aiE(Xi). (B.21)

As a special case of this, we have (with each ai � 1)

E(�
n

i�1
Xi) � �

n

i�1
E(Xi), (B.22)

so that the expected value of the sum is the sum of expected values. This property is
used often for derivations in mathematical statistics.

E X A M P L E  B . 5
( F i n d i n g  E x p e c t e d  R e v e n u e )

Let X1, X2, and X3 be the numbers of small, medium, and large pizzas, respectively, sold dur-
ing the day at a pizza parlor. These are random variables with expected values E(X1) � 25,
E(X2) � 57, and E(X3) � 40. The prices of small, medium, and large pizzas are $5.50, $7.60,
and $9.15. Therefore, the expected revenue from pizza sales on a given day is

E(5.50 X1 � 7.60 X2 � 9.15 X3) � 5.50 E(X1) � 7.60 E(X2) � 9.15 E(X3)
� 5.50(25) � 7.60(57) � 9.15(40) � 936.70,

that is, $936.70. The actual revenue on any particular day will generally differ from this
value, but this is the expected revenue.

We can also use Property E.3 to show show that if X ~ Binomial(n,�), then E(X ) �
n�. That is, the expected number of successes in n Bernoulli trials is simply the num-
ber of trials times the probability of success on any particular trial. This is easily seen
by writing X as X � Y1 � Y2 � … � Yn, where each Yi ~ Bernoulli(�). Then,

E(X ) � �
n

i�1
E(Yi) � �

n

i�1
� � n�.

We can apply this to the airline reservation example, where the airline makes n � 120
reservations, and the probability of showing up is � � .85. The expected number of peo-
ple showing up is 120(.85) � 102. Therefore, if there are 100 seats available, the
expected number of people showing up is too large; this has some bearing on whether
it is a good idea for the airline to make 120 reservations.

Actually, what the airline should do is define a profit function that accounts for the
net revenue earned per seat sold and the cost per passenger bumped from the flight. This
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profit function is random because the actual number of people showing up is random.
Let r be the net revenue from each passenger. (You can think of this as the price of the
ticket for simplicity.) Let c be the compensation owed to any passenger bumped from
the flight. Neither r nor c is random; these are assumed to be known to the airline. Let
Y denote profits for the flight. Then, with 100 seats available,

Y � rX if X � 100

� 100r � c(X � 100) if X � 100.

The first equation gives profit if no more than 100 people show up for the flight; the
second equation is profit if more than 100 people show up. (In the latter case, the net
revenue from ticket sales is 100r, since all 100 seats are sold, and then c(X � 100) is
the cost of making more than 100 reservations.) Using the fact that X has a
Binomial(n,.85) distribution, where n is the number of reservations made, expected
profits, E(Y ), can be found as a function of n (and r and c). Computing E(Y ) directly
would be quite difficult, but it can be found quickly using a computer. Once values for
r and c are given, the value of n that maximizes expected profits can be found by search-
ing over different values of n.

Another Measure of Central Tendency: The Median

The expected value is only one possibility for defining the central tendency of a random
variable. Another measure of central tendency is the median. A general definition of
median is too complicated for our purposes. If X is continuous, then the median of X,
say m, is the value such that one-half of the area under pdf is to the left of m, and one-
half of the area is to the right of m.

When X is discrete and takes on a finite number of odd values, the median is
obtained by ordering the possible values of X and then selecting the value in the middle.
For example, if X can take on the values {�4,0,2,8,10,13,17}, then the median value of
X is 8. If X takes on an even number of values, there are really two median values;
sometimes these are averaged to get a unique median value. Thus, if X takes on the val-
ues {�5,3,9,17}, then the median values are 3 and 9; if we average these, we get a
median equal to 6.

In general, the median, sometimes denoted Med(X ), and the expected value, E(X ),
are different. Neither is “better” than the other as a measure of central tendency; they
are both valid ways to measure the center of the distribution of X. In one special case,
the median and expected value (or mean) are the same. If the probability distribution of
X is symmetrically distributed about the value 
, then 
 is both the expected value and
the median. Mathematically, the condition is f(
 � x) � f(
 � x) for all x. This case is
illustrated in Figure B.3.

Measures of Variability: Variance and
Standard Deviation

While the central tendency of a random variable is valuable, it does not tell us every-
thing we want to know about the distribution of a random variable. Figure B.4 shows
the pdfs of two random variables with the same mean. Clearly, the distribution of X is
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F i g u r e  B . 3

A symmetric probability distribution.
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more tightly centered about its mean than is the distribution of Y. We would like to have
a simple way of summarizing this.

Variance

For a random variable X, let 
 � E(X ). There are various ways to measure how far X
is from its expected value, but the simplest one to work with algebraically is the squared
difference, (X � 
)2. (The squaring serves to eliminate the sign from the distance mea-
sure; the resulting positive value corresponds to our intuitive notion of distance.) This
distance is itself a random variable since it can change with every outcome of X. Just as
we needed a number to summarize the central tendency of X, we need a number that
tells us how far X is from 
, on average. One such number is the variance, which tells
us the expected distance from X to its mean:

Var(X ) � E[(X � 
)2]. (B.23)

Variance is sometimes denoted 
 2
X, or simply 
2, when the context is clear. From

(B.23), it follows that the variance is always nonnegative.
As a computational device, it is useful to observe that
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2 � E(X2 � 2X
 � 
2) � E(X2) � 2
2 � 
2 � E(X2) � 
2. (B.24)

In using either (B.23) or (B.24), we need not distinguish between discrete and continu-
ous random variables: the definition of variance is the same in either case. Most often,
we first compute E(X ), then E(X2), and then we use the formula in (B.24). For exam-
ple, if X ~ Bernoulli(�), then E(X) � �, and, since X2 � X, E(X2) � �. It follows from
equation (B.24) that Var(X ) � E(X2) � 
2 � � � �2 � �(1 � �).

Two important properties of the variance follow.

PROPERTY VAR.1
Var(X ) � 0 if and only if there is a constant c, such that P(X � c) � 1, in which case,
E(X) � c.

This first property says that the variance of any constant is zero and if a random vari-
able has zero variance, then it is essentially constant.

PROPERTY VAR.2
For any constants a and b, Var(aX � b) � a2Var(X ).
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Random variables with the same mean but different distributions.
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This means that adding a constant to a random variable does not change the variance,
but multiplying a random variable by a constant increases the variance by a factor equal
to the square of that constant. For example, if X denotes temperature in Celsius and
Y � 32 � (9/5)X is temperature in Fahrenheit, then Var(Y ) � (9/5)2Var(X) �
(81/25)Var(X).

Standard Deviation

The standard deviation of a random variable, denoted sd(X), is simply the positive
square root of the variance: sd(X ) � ��Var(X ). The standard deviation is sometimes
denoted 
X, or simply 
, when the random variable is understood. Two standard devi-
ation properties immediately follow from Properties VAR.1 and VAR.2.

PROPERTY SD.1
For any constant c, sd(c) � 0.

PROPERTY SD.2
For any constants a and b,

sd(aX � b) � �a�sd(X ).

In particular, if a � 0, then sd(aX ) � a	sd(X ).

This last property makes the standard deviation more natural to work with than the
variance. For example, suppose that X is a random variable measured in thousands
of dollars, say income. If we define Y � 1,000X, then Y is income measured in dol-
lars. Suppose that E(X ) � 20, and sd(X ) � 6. Then E(Y ) � 1,000E(X ) � 20,000, and
sd(Y ) � 1,000	sd(X ) � 6,000, so that the expected value and standard deviation both
increase by the same factor, 1,000. If we worked with variance, we would have Var(Y )
� (1,000)2Var(X ), so that the variance of Y is one million times larger than the vari-
ance of X.

Standardizing a Random Variable

As an application of the properties of variance and standard deviation—and a topic of
practical interest in its own right—suppose that given a random variable X, we define a
new random variable by subtracting off its mean 
 and dividing by its standard devia-
tion 
:

Z � , (B.25)

which we can write as Z � aX � b, where a � (1/
), and b � �(
/
). Then, from
Property E.2,

E(Z ) � aE(X ) � b � (
/
) � (
/
) � 0.

From Property VAR.2,

X � 
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Var(Z ) � a2Var(X ) � (
2/
2) � 1.

Thus, the random variable Z has a mean of zero and a variance (and therefore a stan-
dard deviation) equal to one. This procedure is sometimes known as standardizing the
random variable X, and Z is called a standardized random variable. (In introductory
statistics courses, it is sometimes called the z-transform of X.) It is important to remem-
ber that the standard deviation, not the variance, appears in the denominator of (B.25).
As we will see, this transformation is frequently used in statistical inference.

As a specific example, suppose that E(X ) � 2, and Var(X ) � 9. Then Z � (X � 2)/3
has expected value zero and variance one.

B.4 FEATURES OF JOINT AND CONDITIONAL
DISTRIBUTIONS

Measures of Association: Covariance and Correlation

While the joint pdf of two random variables completely describes the relationship
between them, it is useful to have summary measures of how, on average, two random
variables vary with one another. As with the expected value and variance, this is simi-
lar to using a single number to summarize something about an entire distribution, which
in this case is a joint distribution of two random variables.

Covariance

Let 
X � E(X ) and 
Y � E(Y ) and consider the random variable (X � 
X)(Y � 
Y).
Now, if X is above its mean and Y is above its mean, then (X � 
X)(Y � 
Y) � 0. This
is also true if X � 
X and Y � 
Y. On the other hand, if X � 
X and Y � 
Y, or vice
versa, then (X � 
X)(Y � 
Y) � 0. How, then, can this product tell us anything about
the relationship between X and Y?

The covariance between two random variables X and Y, sometimes called the
population covariance to emphasize that it concerns the relationship between two vari-
ables describing a population, is defined as the expected value of the product (X �

X)(Y � 
Y):

Cov(X,Y ) � E[(X � 
X)(Y � 
Y)], (B.26)

which is sometimes denoted 
XY. If 
XY � 0, then, on average, when X is above its
mean, Y is also above its mean. If 
XY � 0, then, on average, when X is above its mean,
Y is below its mean.

Several expressions useful for computing Cov(X,Y ) are as follows:

Cov(X,Y) � E[(X � 
X)(Y � 
Y)] � E[(X � 
X)Y]

� E[X(Y � 
Y)] � E(XY) � 
X
Y.
(B.27)

It follows from (B.27), that if E(X) � 0 or E(Y ) � 0, then Cov(X,Y ) � E(XY ).
Covariance measures the amount of linear dependence between two random vari-

ables. A positive covariance indicates that two random variables move in the same
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direction, while a negative covariance indicates they move in opposite directions.
Interpreting the magnitude of a covariance can be a little tricky, as we will see shortly.

Since covariance is a measure of how two random variables are related, it is natural
to ask how covariance is related to the notion of independence. This is given by the fol-
lowing property.

PROPERTY COV.1
If X and Y are independent, then Cov(X,Y ) � 0.

This property follows from equation (B.27) and the fact that E(XY ) � E(X)E(Y ) when
X and Y are independent. It is important to remember that the converse of COV.1 is not
true: zero covariance between X and Y does not imply that X and Y are independent. In
fact, there are random variables X such that, if Y � X2, Cov(X,Y ) � 0. (Any random
variable with E(X) � 0 and E(X3) � 0 has this property.) If Y � X2, then X and Y are
clearly not independent: once we know X, we know Y. It seems rather strange that X and
X2 could have zero covariance, and this reveals a weakness of covariance as a general
measure of association between random variables. The covariance is useful in contexts
when relationships are at least approximately linear.

The second major property of covariance involves covariances between linear func-
tions.

PROPERTY COV.2
For any constants a1, b1, a2, and b2,

Cov(a1X � b1,a2Y � b2) � a1a2Cov(X,Y ). (B.28)

An important implication of COV.2 is that the covariance between two random vari-
ables can be altered simply by multiplying one or both of the random variables by a
constant. This is important in economics since monetary variables, inflation rates,
and so on, can be defined with different units of measurement without changing their
meaning.

Finally, it is useful to know that the absolute value of the covariance between any
two random variables is bounded by the product of their standard deviations; this is
known as the Cauchy-Schwartz inequality.

PROPERTY COV.3
�Cov(X,Y )� � sd(X )sd(Y ).

Correlation Coefficient

Suppose we want to know the relationship between amount of education and annual
earnings in the working population. We could let X denote education and Y denote earn-
ings and then compute their covariance. But the answer we get will depend on how we
choose to measure education and earnings. Property COV.2 implies that the covariance
between education and earnings depends on whether earnings are measured in dollars
or thousands of dollars, or whether education is measured in months or years. It is pretty
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clear that how we measure these variables has no bearing on how strongly they are
related. But the covariance between them does depend on the units of measurement.

The fact that the covariance depends on units of measurement is a deficiency that is
overcome by the correlation coefficient between X and Y:

Corr(X,Y ) � � ; (B.29)

the correlation coefficient between X and Y is sometimes denoted �XY (and is sometimes
called the population correlation).

Because 
X and 
Y are positive, Cov(X,Y ) and Corr(X,Y) always have the same
sign, and Corr(X,Y ) � 0 if and only if Cov(X,Y) � 0. Some of the properties of covari-
ance carry over to correlation. If X and Y are independent, then Corr(X,Y ) � 0, but zero
correlation does not imply lack of independence. (The correlation coefficient is also a
measure of linear dependence.) However, the magnitude of the correlation coefficient
is easier to interpret than the size of the covariance due to the following property.

PROPERTY CORR.1
�1 � Corr(X,Y) � 1.

If Corr(X,Y) � 0, or equivalently Cov(X,Y) � 0, then there is no linear relationship
between X and Y, and X and Y are said to be uncorrelated; otherwise, X and Y are cor-
related. Corr(X,Y) � 1 implies a perfect positive linear relationship, which means that
we can write Y � a � bX, for some constant a and some constant b � 0. Corr(X,Y ) �
�1 implies a perfect negative relationship, so that Y � a � bX, for some b � 0. The
extreme cases of positive or negative one rarely occur. Values of �XY closer to 1 or �1
indicate stronger linear relationships.

As mentioned earlier, the correlation between X and Y is invariant to the units of
measurement of either X or Y. This is stated more generally as follows.

PROPERTY CORR.2
For constants a1, b1, a2, and b2, with a1a2 � 0,

Corr(a1X � b1,a2Y � b2) � Corr(X,Y ).

If a1a2 � 0, then

Corr(a1X � b1,a2Y � b2) � �Corr(X,Y ).

As an example, suppose that the correlation between earnings and education in the
working population is .15. This measure does not depend on whether earnings are mea-
sured in dollars, thousands of dollars, or any other unit; it also does not depend on
whether education is measured in years, quarters, months, and so on.

Variance of Sums of Random Variables

Now that we have defined covariance and correlation, we can complete our list of major
properties of the variance.


XY


X
Y

Cov(X,Y )

sd(X)	sd(Y)
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PROPERTY VAR.3
For constants a and b,

Var(aX � bY ) � a2Var(X) � b2Var(Y ) � 2abCov(X,Y ).

It follows immediately that, if X and Y are uncorrelated—so that Cov(X,Y) � 0—then

Var(X � Y ) � Var(X ) � Var(Y ) (B.30)

and

Var(X � Y) � Var(X) � Var(Y). (B.31)

In the latter case, note how the variance of the difference is the sum, not the difference,
in the variances.

As an example of (B.30), let X denote profits earned by a restaurant during a Friday
night and let Y be profits earned on the following Saturday night. Then, Z � X � Y is
profits for the two nights. Suppose X and Y each have an expected value of $300 and a
standard deviation of $15 (so that the variance is 225). Expected profits for the two
nights is E(Z) � E(X ) � E(Y ) � 2	(300) � 600 dollars. If X and Y are independent,
and therefore uncorrelated, then the variance of total profits is the sum of the variances:
Var(Z ) � Var(X ) � Var(Y ) � 2	(225) � 450. It follows that the standard deviation of
total profits is ��450 or about $21.21.

Expressions (B.30) and (B.31) extend to more than two random variables. To state
this extension, we need a definition. The random variables {X1, …, Xn} are pairwise
uncorrelated random variables if each variable in the set is uncorrelated with every
other variable in the set. That is, Cov(Xi,Xj) � 0, for all i � j.

PROPERTY VAR.4
If {X1, …, Xn} are pairwise uncorrelated random variables and {ai: i � 1, …, n} are
constants, then

Var(a1X1 � … � anXn) � a2
1Var(X1) � … � a2

nVar(Xn).

In summation notation, we can write

Var(�
n

i�1
aiXi) � �

n

i�1
ai

2Var(Xi). (B.32)

A special case of Property VAR.4 occurs when we take ai � 1 for all i. Then, for pair-
wise uncorrelated random variables, the variance of the sum is the sum of the variances:

Var(�
n

i�1
Xi) � �

n

i�1
Var(Xi). (B.33)

Since independent random variables are uncorrelated (see Property COV.1), the vari-
ance of a sum of independent random variables is the sum of the variances.
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If the Xi are not pairwise uncorrelated, then the expression for Var(�
n

i�1
aiXi) is much

more complicated; it depends on each covariance, as well as on each variance. We will
not need the more general formula for our purposes.

We can use (B.33) to derive the variance for a binomial random variable. Let X ~
Binomial(n,�) and write X � Y1 � … � Yn, where the Yi are independent Bernoulli(�)
random variables. Then, by (B.33), Var(X ) � Var(Y1) � … � Var(Yn) � n�(1 � �).

In the airline reservations example with n � 120 and � � .85, the variance of the
number of passengers arriving for their reservations is 120(.85)(.15) � 15.3, and so the
standard deviation is about 3.9.

Conditional Expectation

Covariance and correlation measure the linear relationship between two random vari-
ables and treat them symmetrically. More often in the social sciences, we would like to
explain one variable, called Y, in terms of another variable, say X. Further, if Y is related
to X in a nonlinear fashion, we would like to know this. Call Y the explained variable
and X the explanatory variable. For example, Y might be hourly wage, and X might be
years of formal education.

We have already introduced the notion of the conditional probability density func-
tion of Y given X. Thus, we might want to see how the distribution of wages changes
with education level. However, we usually want to have a simple way of summarizing
this distribution. A single number will no longer suffice, since the distribution of Y,
given X � x, generally depends on the value of x. Nevertheless, we can summarize the
relationship between Y and X by looking at the conditional expectation of Y given X,
sometimes called the conditional mean. The idea is this. Suppose we know that X has
taken on a particular value, say x. Then, we can compute the expected value of Y, given
that we know this outcome of X. We denote this expected value by E(Y �X � x), or some-
times E(Y �x) for shorthand. Generally, as x changes, so does E(Y �x).

When Y is a discrete random variable taking on values {y1, …, ym}, then

E(Y �x) � �
m

j�1
yj fY�X(yj�x).

When Y is continuous, E(Y �x) is defined by integrating yfY�X(y�x) over all possible val-
ues of y. As with unconditional expectations, the conditional expectation is a weighted
average of possible values of Y, but now the weights reflect the fact that X has taken on
a specific value. Thus, E(Y �x) is just some function of x, which tells us how the expected
value of Y varies with x.

As an example, let (X,Y ) represent the population of all working individuals, where
X is years of education, and Y is hourly wage. Then, E(Y �X � 12) is the average hourly
wage for all people in the population with 12 years of education (roughly a high school
education). E(Y �X � 16) is the average hourly wage for all people with 16 years of edu-
cation. Tracing out the expected value for various levels of education provides impor-
tant information on how wages and education are related. See Figure B.5 for an
illustration.
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In principle, the expected value of hourly wage can be found at each level of edu-
cation, and these expectations can be summarized in a table. Since education can vary
widely—and can even be measured in fractions of a year—this is a cumbersome way
to show the relationship between average wage and amount of education. In economet-
rics, we typically specify simple functions that capture this relationship. As an exam-
ple, suppose that the expected value of WAGE given EDUC is the linear function

E(WAGE�EDUC) � 1.05 � .45 EDUC.

If this relationship holds in the population of working people, the average wage for peo-
ple with eight years of education is 1.05 � .45(8) � 4.65, or $4.65. The average wage
for people with 16 years of education is 8.25, or $8.25. The coefficient on EDUC
implies that each year of education increases the expected hourly wage by .45, or 45
cents.

Conditional expectations can also be nonlinear functions. For example, suppose that
E(Y �x) � 10/x, where X is a random variable that is always greater than zero. This func-
tion is graphed in Figure B.6. This could represent a demand function, where Y is quan-
tity demanded, and X is price. If Y and X are related in this way, an analysis of linear
association, such as correlation analysis, would be inadequate.
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The expected value of hourly wage given various levels of education.
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Properties of Conditional Expectation

Several basic properties of conditional expectations are useful for derivations in econo-
metric analysis.

PROPERTY CE.1:
E[c(X )�X] � c(X ), for any function c(X ).

This first property means that functions of X behave as constants when we compute
expectations conditional on X. For example, E(X2�X ) � X2. Intuitively, this simply
means that if we know X, then we also know X2.

PROPERTY CE.2
For functions a(X ) and b(X ),

E[a(X )Y � b(X )�X] � a(X)E(Y �X ) � b(X ).

For example, we can easily compute the conditional expectation of a function such as
XY � 2X2: E(XY � 2X2�X ) � XE(Y �X ) � 2X2.

The next property ties together the notions of independence and conditional expec-
tations.

PROPERTY CE.3
If X and Y are independent, then E(Y �X ) � E(Y ).
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This property means that, if X and Y are independent, then the expected value of Y given
X does not depend on X, in which case, E(Y �X ) always equals the (unconditional)
expected value of Y. In the wage and education example, if wages were independent of
education, then the average wages of high school and college graduates would be the
same. Since this is almost certainly false, we cannot assume that wage and education
are independent.

A special case of Property CE.3 is the following: if U and X are independent and
E(U ) � 0, then E(U�X ) � 0.

There are also properties of the conditional expectation that have to do with the fact
that E(Y �X ) is a function of X, say E(Y �X ) � 
(X ). Since X is a random variable, 
(X )
is also a random variable. Furthermore, 
(X) has a probability distribution and there-
fore an expected value. Generally, the expected value of 
(X) could be very difficult to
compute directly. The law of iterated expectations says that the expected value of

(X) is simply equal to the expected value of Y. We write this as follows.

PROPERTY CE.4
E[E(Y �X )] � E(Y ).

This property is a little hard to grasp at first. It means that, if we first obtain E(Y �X ) as
a function of X and take the expected value of this (with respect to the distribution of
X, of course), then we end up with E(Y ). This is hardly obvious, but it can be derived
using the definition of expected values.

Suppose Y � WAGE and X � EDUC, where WAGE is measured in hours, and
EDUC is measured in years. Suppose the expected value of WAGE given EDUC is
E(WAGE�EDUC ) � 4 � .60 EDUC. Further, E(EDUC ) � 11.5. Then, the law of iter-
ated expectations implies that E(WAGE ) � E(4 � .60 EDUC ) � 4 � .60 E(EDUC ) �
4 � .60(11.5) � 10.90, or $10.90 an hour.

The next property states a more general version of the law of iterated expectations.

PROPERTY CE.4�

E(Y �X ) � E[E(Y �X,Z )�X ].

In other words, we can find E(Y �X ) in two steps. First, find E(Y �X,Z ) for any other ran-
dom variable Z. Then, find the expected value of E(Y �X,Z ), conditional on X.

PROPERTY CE.5
If E(Y �X) � E(Y ), then Cov(X,Y ) � 0 (and so Corr(X,Y ) � 0). In fact, every function
of X is uncorrelated with Y.

This property means that, if knowledge of X does not change the expected value of Y,
then X and Y must be uncorrelated, which implies that if X and Y are correlated, then
E(Y �X ) must depend on X. The converse of Property CE.5 is not true: if X and Y are
uncorrelated, E(Y �X ) could still depend on X. For example, suppose Y � X2. Then,
E(Y �X ) � X2, which is clearly a function of X. However, as we mentioned in our dis-
cussion of covariance and correlation, it is possible that X and X2 are uncorrelated. The
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conditional expectation captures the nonlinear relationship between X and Y that corre-
lation analysis would miss entirely.

Properties CE.4 and CE.5 have two major implications: if U and X are random vari-
ables such that E(U�X ) � 0, then E(U ) � 0, and U and X are uncorrelated.

PROPERTY CE.6
If E(Y2) � � and E[g(X )2] � � for some function g, then E{[Y � 
(X )]2�X} �
E{[Y � g(X )]2�X} and E{[Y � 
(X )]2} � E{[Y � g(X )]2}.

This last property is very useful in predicting or forecasting contexts. The first inequal-
ity says that, if we measure prediction inaccuracy as the expected squared prediction
error, conditional on X, then the conditional mean is better than any other function of X
for predicting Y. The conditional mean also minimizes the unconditional expected
squared prediction error.

Conditional Variance

Given random variables X and Y, the variance of Y, conditional on X � x, is simply the
variance associated with the conditional distribution of Y, given X � x: E{[Y �
E(Y �x)]2�x}. The formula

Var(Y �X � x) � E(Y2�x) � [E(Y �x)]2

is often useful for calculations. Only occasionally will we have to compute a condi-
tional variance. But we will have to make assumptions about and manipulate con-
ditional variances for certain topics in regression analysis.

As an example, let Y � SAVING and X � INCOME (both of these measured annu-
ally for the population of all families). Suppose that Var(SAVING�INCOME) � 400 �
.25 INCOME. This says that, as income increases, the variance in saving levels also
increases. It is important to see that the relationship between the variance of SAVING
and INCOME is totally separate from that between the expected value of SAVING and
INCOME.

We state one useful property about the conditional variance.

PROPERTY CV.1
If X and Y are independent, then Var(Y �X ) � Var(Y ).

This property is pretty clear, since the distribution of Y given X does not depend on X,
and Var(Y �X ) is just one feature of this distribution.

B.5 THE NORMAL AND RELATED DISTRIBUTIONS

The Normal Distribution

The normal distribution, and those derived from it, are the most widely used distribu-
tions in statistics and econometrics. Assuming that random variables defined over pop-
ulations are normally distributed simplifies probability calculations. In addition, we will

Appendix B Fundamentals of Probability

688

xd  7/14/99 8:57 PM  Page 688



rely heavily on the normal and related distributions to conduct inference in statistics and
econometrics—even when the underlying population is not necessarily normal. We
must postpone the details, but be assured that these distributions will arise many times
throughout this text.

A normal random variable is a continuous random variable that can take on any
value. Its probability density function has the familiar bell shape graphed in Figure B.7.

Mathematically, the pdf of X can be written as

f(x) � exp[�(x � 
)2/2
2], �� � x � �, (B.34)

where 
 � E(X ), and 
2 � Var(X ). We say that X has a normal distribution with
expected value 
 and variance 
2, written as X ~ Normal(
,
2). Because the normal
distribution is symmetric about 
, 
 is also the median of X. The normal distribution is
sometimes called the Gaussian distribution after the famous statistician C. F. Gauss.

Certain random variables appear to roughly follow a normal distribution. Human
heights and weights, test scores, and county unemployment rates have pdfs roughly the
shape in Figure B.7. Other distributions, such as income distributions, do not appear to
follow the normal probability function. In most countries, income is not symmetrically
distributed about any value; the distribution is skewed towards the upper tail. In some

1


��2�
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The general shape of the normal probability density function.
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cases, a variable can be transformed to achieve normality. A popular transformation is
the natural log, which makes sense for positive random variables. If X is a positive ran-
dom variable, such as income, and Y � log(X) has a normal distribution, then we say
that X has a lognormal distribution. It turns out that the lognormal distribution fits
income distribution pretty well in many countries. Other variables, such as prices of
goods, appear to be well-described as lognormally distributed.

The Standard Normal Distribution

One special case of the normal distribution occurs when the mean is zero and the vari-
ance (and, therefore, the standard deviation) is unity. If a random variable Z has a
Normal(0,1) distribution, then we say it has a standard normal distribution. The pdf
of a standard normal random variable is denoted �(z); from (B.34), with 
 � 0 and

2 � 1, it is given by

�(z) � exp(�z2/2), �� � z � �. (B.35)

The standard normal cumulative distribution function is denoted �(z) and is
obtained as the area under �, to the left of z; see Figure B.8. Recall that �(z) � P(Z �
z); since Z is continuous, �(z) � P(Z � z), as well.

There is no simple formula that can be used to obtain the values of �(z) [because
�(z) is the integral of the function in (B.35), and this intregral has no closed form].

1

��2�
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The standard normal cumulative distribution function.
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Nevertheless, the values for �(z) are easily tabulated; they are given for z between �3.1
and 3.1 in Table G.1. For z � �3.1, �(z) is less than .001, and for z � 3.1, �(z) is
greater than .999. Most statistics and econometrics software packages include simple
commands for computing values of the standard normal cdf, so we can often avoid
printed tables entirely and obtain the probabilities for any value of z.

Using basic facts from probability—and, in particular, properties (B.7) and (B.8)
concerning cdfs—we can use the standard normal cdf for computing the probability of
any event involving a standard normal random variable. The most important formulas
are

P(Z � z) � 1 � �(z), (B.36)

P(Z � �z) � P(Z � z), (B.37)

and

P(a � Z � b) � �(b) � �(a). (B.38)

Because Z is a continuous random variable, all three formulas hold whether or not the
inequalities are strict. Some examples include P(Z � .44) � 1 � .67 � .33,
P(Z � �.92) � P(Z � .92) � 1 � .821 � .179, and P(�1 � Z � .5) � .692 � .159
� .533.

Another useful expression is that, for any c � 0,

P(�Z � � c) � P(Z � c) � P(Z � �c)

� 2	P(Z � c) � 2[1 � �(c)].
(B.39)

Thus, the probability that the absolute value of Z is bigger than some positive constant
c is simply twice the probability P(Z � c); this reflects the symmetry of the standard
normal distribution.

In most applications, we start with a normally distributed random variable, X ~
Normal(
,
2), where 
 is different from zero, and 
2 � 1. Any normal random vari-
able can be turned into a standard normal using the following property.

PROPERTY NORMAL.1
If X ~ Normal(
,
2), then (X � 
)/
 ~ Normal(0,1).

Property Normal.1 shows how to turn any normal random variable into a standard nor-
mal. Thus, suppose X ~ Normal(3,4), and we would like to compute P(X � 1). The steps
always involve the normalization of X to a standard normal:

P(X � 1) � P(X � 3 � 1 � 3) � P � � �1�
� P(Z � �1) � �(�1) � .159.

X � 3
2
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E X A M P L E  B . 6
( P r o b a b i l i t i e s  f o r  a  N o r m a l  R a n d o m  V a r i a b l e )

First, let us compute P(2 � X � 6) when X ~ Normal(4,9) (whether we use � or � is irrel-
evant because X is a continuous random variable). Now,

P(2 � X � 6) � P � � � � � P(�2/3 � Z � 2/3)

� �(.67) � �(�.67) � .749 � .251 � .498.

Now, let us compute P(�X � � 2):

P(�X� � 2) � P(X � 2) � P(X � �2) � 2	P(X � 2)

� 2	P � � � � 2	P(Z � �.67)

� 2[1 � �(�.67)] � .772.

Additional Properties of the Normal Distribution

We end this subsection by collecting several other facts about normal distributions that
we will later use.

PROPERTY NORMAL.2
If X ~ Normal(
,
2), then aX � b ~ Normal(a
 � b,a2
2).

Thus, if X ~ Normal(1,9), then Y � 2X � 3 is distributed as normal with mean
2E(X) � 3 � 5 and variance 22	9 � 36; sd(Y ) � 2sd(X ) � 2	3 � 6.

Earlier we discussed how, in general, zero correlation and independence are not the
same. In the case of normally distributed random variables, it turns out that zero corre-
lation suffices for independence.

PROPERTY NORMAL.3
If X and Y are jointly normally distributed, then they are independent if and only if
Cov(X,Y ) � 0.

PROPERTY NORMAL.4
Any linear combination of independent, identically distributed normal random vari-
ables has a normal distribution.

For example, let Xi, i � 1,2, and 3, be independent random variables distributed as
Normal(
,
2). Define W � X1 � 2X2 � 3X3. Then, W is normally distributed; we must
simply find its mean and variance. Now,

E(W ) � E(X1) � 2E(X2) � 3E(X3) � 
 � 2
 � 3
 � 0.

2 � 4
3

X � 4
3

6 � 4
3

X � 4
3

2 � 4
3
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Also,

Var(W ) � Var(X1) � 4Var(X2) � 9Var(X3) � 14
2.

Property Normal.4 also implies that the average of independent, normally distrib-
uted random variables has a normal distribution. If Y1, Y2, …, Yn are independent ran-
dom variables and each is distributed as Normal(
,
2), then

Y ~ Normal(
,
2/n). (B.40)

This result is critical for statistical inference about the mean in a normal population.

The Chi-Square Distribution

The chi-square distribution is obtained directly from independent, standard normal ran-
dom variables. Let Zi, i � 1,2, …, n, be independent random variables, each distributed
as standard normal. Define a new random variable as the sum of the squares of the Zi:

X � �
n

i�1
Zi

2. (B.41)

Then, X has what is known as a chi-square distribution with n degrees of freedom (or
df for short). We write this as X ~ �n

2. The df in a chi-square distribution corresponds to
the number of terms in the sum (B.41). The concept of degrees of freedom will play an
important role in our statistical and econometric analyses.

The pdf for chi-square distributions with varying degrees of freedom is given in
Figure B.9; we will not need the formula for this pdf, and so we do not reproduce it
here. From equation (B.41), it is clear that a chi-square random variable is always non-
negative, and that, unlike the normal distribution, the chi-square distribution is not sym-
metric about any point. It can be shown that if X ~ �n

2, then the expected value of X is
n [the number of terms in (B.41)], and the variance of X is 2n.

The t Distribution

The t distribution is the workhorse in classical statistics and multiple regression analy-
sis. We obtain a t distribution from a standard normal and a chi-square random variable.

Let Z have a standard normal distribution and let X have a chi-square distribution
with n degrees of freedom. Further, assume that Z and X are independent. Then, the ran-
dom variable

T � (B.42)

has a t distribution with n degrees of freedom. We will denote this by T ~ tn. The t dis-
tribution gets its degrees of freedom from the chi-square random variable in the denom-
inator of (B.42).

The pdf of the t distribution has a shape similar to that of the standard normal dis-
tribution, except that it is more spread out and therefore has more area in the tails. The

Z

��X/n
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expected value of a t distributed random variable is zero (strictly speaking, the expected
value exists only for n � 1), and the variance is n/(n � 2) for n � 2. (The variance does
not exist for n � 2 because the distribution is so spread out.) The pdf of the t distribu-
tion is plotted in Figure B.10 for various degrees of freedom. As the degrees of freedom
gets large, the t distribution approaches the standard normal distribution.

The F Distribution

Another important distribution for statistics and econometrics is the F distribution. In
particular, the F distribution will be used for testing hypotheses in the context of mul-
tiple regression analysis.

To define an F random variable, let X1 ~ �2
k1

and X2 ~ �2
k2

and assume that X1 and X2

are independent. Then, the random variable

F � (B.43)

has an F distribution with (k1,k2) degrees of freedom. We denote this as F ~ Fk1,k2
. The

pdf of the F distribution with different degrees of freedom is given in Figure B.11.

(X1/k1)
(X2/k2)
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The order of the degrees of freedom in Fk1,k2
is critical. The integer k1 is often called

the numerator degrees of freedom because it is associated with the chi-square variable
in the numerator. Likewise, the integer k2 is called the denominator degrees of freedom
because it is associated with the chi-square variable in the denominator. This can be a
little tricky since (B.43) can also be written as (X1k2)/(X2k1), so that k1 appears in the
denominator. Just remember that the numerator df is the integer associated with the chi-
square variable in the numerator of (B.43), and similarly for the denominator df.

SUMMARY

In this appendix, we have reviewed the probability concepts that are needed in econo-
metrics. Most of the concepts should be familiar from your introductory course in prob-
ability and statistics. Some of the more advanced topics, such as features of conditional
expectations, do not need to be mastered now—there is time for that when these con-
cepts arise in the context of regression analysis in Part 1.

In an introductory statistics course, the focus is on calculating means, variances,
covariances, and so on, for particular distributions. In Part 1, we will not need such cal-
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culations: we mostly rely on the properties of expectations, variances, and so on, that
have been stated in this appendix.

KEY TERMS
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Bernoulli (or Binary) Random Variable
Binomial Distribution
Chi-Square Distribution
Conditional Distribution
Conditional Expectation
Continuous Random Variable
Correlation Coefficient
Covariance
Cumulative Distribution Function (cdf)
Degrees of Freedom
Discrete Random Variable
Expected Value
Experiment
F Distribution

Independent Random Variables
Joint Distribution
Law of Iterated Expectations
Median
Normal Distribution
Pairwise Uncorrelated Random Variables
Probability Density Function (pdf)
Random Variable
Standard Deviation
Standard Normal Distribution
Standardized Random Variable
t Distribution
Variance
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PROBLEMS

B.1 Suppose that a high school student is preparing to take the SAT exam. Explain
why his or her eventual SAT score is properly viewed as a random variable.

B.2 Let X be a random variable distributed as Normal(5,4). Find the probabilities of
the following events:

(i) P(X � 6)
(ii) P(X � 4)
(iii) P(�X � 5� � 1)

B.3 Much is made of the fact that certain mutual funds outperform the market year
after year (that is, the return from holding shares in the mutual fund is higher than the
return from holding a portfolio such as the S&P 500). For concreteness, consider a ten-
year period and let the population be the 4,170 mutual funds reported in the Wall Street
Journal on 1/6/95. By saying that performance relative to the market is random, we
mean that each fund has a 50–50 chance of outperforming the market in any year and
that performance is independent from year to year.

(i) If performance relative to the market is truly random, what is the
probability that any particular fund outperforms the market in all 10
years?

(ii) Find the probability that at least one fund out of 4,170 funds outper-
forms the market in all 10 years. What do you make of your answer?

(iii) If you have a statistical package that computes binomial probabilities,
find the probability that at least five funds outperform the market in all
10 years.

B.4 For a randomly selected county in the United States, let X represent the proportion
of adults over age 65 who are employed, or the elderly employment rate. Then, X is
restricted to a value between zero and one. Suppose that the cumulative distribution
function for X is given by F(x) � 3x2 � 2x3 for 0 � x � 1. Find the probability that the
elderly employment rate is at least .6 (60%).

B.5 Just prior to jury selection for O. J. Simpson’s murder trial in 1995, a poll found
that about 20% of the adult population believed Simpson was innocent (after much of
the physical evidence in the case had been revealed to the public). Ignore the fact that
this 20% is an estimate based on a subsample from the population; for illustration, take
it as the true percentage of people who thought Simpson was innocent prior to jury
selection. Assume that the 12 jurors were selected randomly and independently from
the population (although this turned out not to be true).

(i) Find the probability that the jury had at least one member who believed
in Simpson’s innocence prior to jury selection. (Hint: Define the
Binomial(12,.20) random variable X to be the number of jurors believ-
ing in Simpson’s innocence.)

(ii) Find the probability that the jury had at least two members who
believed in Simpson’s innocence. [Hint: P(X � 2) � 1 � P(X � 1), and
P(X � 1) � P(X � 0) � P(X � 1).]
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B.6 (Requires calculus) Let X denote the prison sentence, in years, for people con-
victed of auto theft in a particular state in the United States. Suppose that the pdf of X
is given by

f(x) � (1/9)x2, 0 � x � 3.

Use integration to find the expected prison sentence.

B.7 If a basketball player is a 74% free-throw shooter, then, on average, how many free
throws will he or she make in a game with eight free-throw attempts?

B.8 Suppose that a college student is taking three courses: a two-credit course, a three-
credit course, and a four-credit course. The expected grade in the two-credit course is
3.5, while the expected grade in the three- and four-credit courses is 3.0. What is the
expected overall grade point average for the semester? (Remember that each course
grade is weighted by its share of the total number of units.)

B.9 Let X denote the annual salary of university professors in the United States, mea-
sured in thousands of dollars. Suppose that the average salary is 52.3, with a standard
deviation of 14.6. Find the mean and standard deviation when salary is measured in
dollars.

B.10 Suppose that at a large university, college grade point average, GPA, and SAT
score, SAT, are related by the conditional expectation E(GPA�SAT ) � .70 � .002 SAT.

(i) Find the expected GPA when SAT � 800. Find E(GPA�SAT � 1,400).
Comment on the difference.

(ii) If the average SAT in the university is 1,100, what is the average GPA?
(Hint: Use Property CE.4.)
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C.1 POPULATIONS, PARAMETERS, AND
RANDOM SAMPLING

Statistical inference involves learning something about a population given the avail-
ability of a sample from that population. By population, we mean any well-defined
group of subjects, which could be individuals, firms, cities, or many other possibilities.
By “learning,” we can mean several things, which are broadly divided into the cate-
gories of estimation and hypothesis testing.

A couple of examples may help you understand these terms. In the population of all
working adults in the United States, labor economists are interested in learning about
the return to education, as measured by the average percentage increase in earnings
given another year of education. It would be impractical and costly to obtain informa-
tion on earnings and education for the entire working population in the United States,
but we can obtain data on a subset of the population. Using the data collected, a labor
economist may report that his or her best estimate of the return to another year of edu-
cation is 7.5%. This is an example of a point estimate. Or, she or he may report a range,
such as “the return to education is between 5.6% and 9.4%.” This is an example of an
interval estimate.

An urban economist might want to know whether neighborhood crime watch pro-
grams are associated with lower crime rates. After comparing crime rates of neighbor-
hoods with and without such programs in a sample from the population, he or she can
draw one of two conclusions: neighborhood watch programs do affect crime, or they do
not. This example falls under the rubric of hypothesis testing.

The first step in statistical inference is to identify the population of interest. This
may seem obvious, but it is important to be very specific. Once we have identified
the population, we can specify a model for the population relationship of interest.
Such models involve probability distributions or features of probability distribu-
tions, and these depend on unknown parameters. Parameters are simply constants
that determine the directions and strengths of relationships among variables. In the
labor economics example above, the parameter of interest is the return to education
in the population.
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Sampling

For reviewing statistical inference, we focus on the simplest possible setting. Let Y be
a random variable representing a population with a probability density function f (y;�),
which depends on the single parameter �. The probability density function (pdf) of Y is
assumed to be known except for the value of �; different values of � imply different
population distributions, and therefore we are interested in the value of �. If we can
obtain certain kinds of samples from the population, then we can learn something about
�. The easiest sampling scheme to deal with is random sampling.

RANDOM SAMPLING
If Y1, Y2, …, Yn are independent random variables with a common probability density
function f (y;�), then {Y1, …, Yn} is said to be a random sample from f (y;�) [or a ran-
dom sample from the population represented by f (y;�)].

When {Y1, …, Yn} is a random sample from the density f(y;�), we also say that the Yi

are independent, identically distributed (or i.i.d.) samples from f (y;�). In some cases,
we will not need to entirely specify what the common distribution is.

The random nature of Y1, Y2, …, Yn in the definition of random sampling reflects
the fact that many different outcomes are possible before the sampling is actually car-
ried out. For example, if family income is obtained for a sample of n � 100 families in
the United States, the incomes we observe will usually differ for each different sample
of 100 families. Once a sample is obtained, we have a set of numbers, say
{y1,y2, …, yn}, which constitute the data that we work with. Whether or not it is appro-
priate to assume the sample came from a random sampling scheme requires knowledge
about the actual sampling process.

Random samples from a Bernoulli distribution are often used to illustrate statistical
concepts, and they also arise in empirical applications. If Y1, Y2, …, Yn are independent
random variables and each is distributed as Bernoulli(�), so that P(Yi � 1) � � and
P(Yi � 0) � 1 � �, then {Y1,Y2, …, Yn} constitutes a random sample from the
Bernoulli(�) distribution. As an illustration, consider the airline reservation example
carried along in Appendix B. Each Yi denotes whether customer i shows up for his or
her reservation; Yi � 1 if passenger i shows up, and Yi � 0 otherwise. Here, � is the
probability that a randomly drawn person from the population of all people who make
airline reservations shows up for his or her reservation.

For many other applications, random samples can be assumed to be drawn from a
normal distribution. If {Y1, …, Yn} is a random sample from the Normal(�,�2) popula-
tion, then the population is characterized by two parameters, the mean � and the vari-
ance �2. Primary interest usually lies in �, but �2 is of interest in its own right because
making inferences about � often requires learning about �2.

C.2 FINITE SAMPLE PROPERTIES OF ESTIMATORS

In this section, we study what are called finite sample properties of estimators. The term
“finite sample” comes from the fact that the properties hold for a sample of any size, no
matter how large or small. Sometimes, these are called small sample properties. In
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Section C.3, we cover “asymptotic properties,” which have to do with the behavior of
estimators as the sample size grows without bound.

Estimators and Estimates

To study properties of estimators, we must define what we mean by an estimator. Given
a random sample {Y1,Y2, …, Yn} drawn from a population distribution that depends on
an unknown parameter �, an estimator of � is a rule that assigns each possible outcome
of the sample a value of �. The rule is specified before any sampling is carried out; in
particular, the rule is the same, regardless of the data actually obtained.

As an example of an estimator, let {Y1, …, Yn} be a random sample from a popula-
tion with mean �. A natural estimator of � is the average of the random sample:

Ȳ � n�1 �
n

i�1
Yi. (C.1)

Ȳ is called the sample average but, unlike in Appendix A where we defined the sam-
ple average of a set of numbers as a descriptive statistic, Ȳ is now viewed as an estima-
tor. Given any outcome of the random variables Y1, …, Yn, we use the same rule to
estimate �: we simply average them. For actual data outcomes {y1, …, yn}, the estimate
is just the average in the sample: ȳ � (y1 � y2 � … � yn)/n.

E X A M P L E  C . 1
( C i t y  U n e m p l o y m e n t  R a t e s )

Suppose we obtain the following sample of unemployment rates for 10 cities in the United
States:

City Unemployment Rate

1 5.1

2 6.4

3 9.2

4 4.1

5 7.5

6 8.3

7 2.6
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City Unemployment Rate

8 3.5

9 5.8

10 7.5

Our estimate of the average city unemployment rate in the United States is ȳ � 6.0. Each
sample  generally results in a different estimate. But the rule for obtaining the estimate is
the same, regardless of which cities appear in the sample, or how many.

More generally, an estimator W of a parameter � can be expressed as an abstract
mathematical formula:

W � h(Y1,Y2, …, Yn), (C.2)

for some known function h of the random variables Y1, Y2, …, Yn. As with the special
case of the sample average, W is a random variable because it depends on the random
sample: as we obtain different random samples from the population, the value of W can
change. When a particular set of numbers, say {y1,y2, …, yn}, is plugged into the func-
tion h, we obtain an estimate of �, denoted w � h(y1, …, yn). Sometimes, W is called a
point estimator and w a point estimate to distinguish these from interval estimators and
estimates, which we will come to in Section C.4.

For evaluating estimation procedures, we study various properties of the probabil-
ity distribution of the random variable W. The distribution of an estimator is often called
its sampling distribution, since this distribution describes the likelihood of various
outcomes of W across different random samples. Because there are unlimited rules for
combining data to estimate parameters, we need some sensible criteria for choosing
among estimators, or at least for eliminating some estimators from consideration.
Therefore, we must leave the realm of descriptive statistics, where we compute things
such as sample average to simply summarize a body of data. In mathematical statistics,
we study the sampling distributions of estimators.

Unbiasedness

In principle, the entire sampling distribution of W can be obtained given the probabil-
ity distribution of Yi and the function h. It is usually easier to focus on a few features of
the distribution of W in evaluating it as an estimator of �. The first important property
of an estimator involves its expected value.

UNBIASED ESTIMATOR
An estimator, W of �, is unbiased if
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E(W) � �, (C.3)

for all possible values of �.

If an estimator is unbiased, then its probability distribution has an expected value equal
to the parameter it is supposed to be estimating. Unbiasedness does not mean that the
estimate we get with any particular sample is equal to �, or even very close to �. Rather,
if we could indefinitely draw random samples on Y from the population, compute an
estimate each time, and then average these estimates over all random samples, we
would obtain �. This thought experiment is abstract, because in most applications, we
just have one random sample to work with.

For an estimator that is not unbiased, we define its bias as follows.

BIAS OF AN ESTIMATOR
If W is an estimator of �, its bias is defined as

Bias(W ) � E(W ) � �. (C.4)

Figure C.1 shows two estimators, the first of which is unbiased and the second of which
has a positive bias.
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An unbiased estimator, W1, and an estimator with positive bias, W2.

w� = E(W1) E(W2)

pdf of W1 pdf of W2
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The unbiasedness of an estimator and the size of any possible bias depend on the
distribution of Y and on the function h. The distribution of Y is usually beyond our con-
trol (although we often choose a model for this distribution): it may be determined by
nature or social forces. But the choice of the rule h is ours, and if we want an unbiased
estimator, then we must choose h accordingly.

Some estimators can be shown to be unbiased quite generally. We now show that
the sample average Ȳ is an unbiased estimator of the population mean �, regardless of
the underlying population distribution. We use the properties of expected values (E.1
and E.2) that we covered in Section B.3:

E(Ȳ ) � E �(1/n) �
n

i�1
Yi� � (1/n)E ��

n

i�1
Yi� � (1/n) ��

n

i�1
E(Yi)�

� (1/n) ��
n

i�1
�� � (1/n)(n�) � �.

For hypothesis testing, we will need to estimate the variance �2 from a population
with mean �. Letting {Y1, …, Yn} denote the random sample from the population with
E(Y ) � � and Var(Y) � �2, define the estimator as

S2 � �
n

i�1
(Yi � Ȳ )2, (C.5)

which is usually called the sample variance. It can be shown that S2 is unbiased for �2:
E(S2) � �2. The division by n � 1, rather than n, accounts for the fact that the mean �
is estimated rather than known. If � were known, an unbiased estimator of �2 would be

n�1 �
n

i�1
(Yi � �)2, but � is rarely known in practice.

Although unbiasedness has a certain appeal as a property for an estimator—indeed,
its antonym, “biased”, has decidedly negative connotations—it is not without its prob-
lems. One weakness of unbiasedness is that some reasonable, and even some very good
estimators, are not unbiased. We will see an example shortly.

Another important weakness of unbiasedness is that unbiased estimators exist that
are actually quite poor estimators. Consider estimating the mean � from a population.
Rather than using the sample average Ȳ to estimate �, suppose that, after collecting a
sample of size n, we discard all of the observations except the first. That is, our esti-
mator of � is simply W � Y1. This estimator is unbiased since E(Y1) � �. Hopefully,
you sense that ignoring all but the first observation is not a prudent approach to esti-
mation: it throws out most of the information in the sample. For example, with n � 100,
we obtain 100 outcomes of the random variable Y, but then we use only the first of these
to estimate E(Y ).

The Sampling Variance of Estimators

The example at the end of the previous subsection shows that we need additional crite-
ria in order to evaluate estimators. Unbiasedness only ensures that the probability dis-
tribution of an estimator has a mean value equal to the parameter it is supposed to be
estimating. This is fine, but we also need to know how spread out the distribution of an

1

n � 1
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estimator is. An estimator can be equal to �, on average, but it can also be very far away
with large probability. In Figure C.2, W1 and W2 are both unbiased estimators of �. But
the distribution of W1 is more tightly centered about �: the probability that W1 is greater
than any given distance from � is less than the probability that W2 is greater than that
same distance from �. Using W1 as our estimator means that it is less likely that we will
obtain a random sample that yields an estimate very far from �.

To summarize the situation shown in Figure C.2, we rely on the variance (or stan-
dard deviation) of an estimator. Recall that this gives a single measure of the disper-
sion in the distribution. The variance of an estimator is often called its sampling
variance, since it is the variance associated with a sampling distribution. Remember,
the sampling variance is not a random variable; it is a constant, but it might be
unknown.

We now obtain the variance of the sample average for estimating the mean � from
a population:

Var(Ȳ ) � Var �(1/n) �
n

i�1
Yi� � (1/n2)Var ��

n

i�1
Yi� � (1/n2) ��

n

i�1
Var(Yi)�

� (1/n2) ��
n

i�1
�2� � (1/n2)(n�2) � �2/n.

(C.6)
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The sampling distributions of two unbiased estimators of �.
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Notice how we used the properties of variance from Sections B.3 and B.4 (VAR.2 and
VAR.4), as well as the independence of the Yi. To summarize: If {Yi: i � 1,2,…,n} is a
random sample from a population with mean � and variance �2, then Ȳ has the same
mean as the population, but its sampling variance equals the population variance, �2,
over the sample size.

An important implication of Var(Ȳ ) � �2/n is that it can be made very close to zero
by increasing the sample size n. This is a key feature of a reasonable estimator, and we
return to it in Section C.3.

As suggested by Figure C.2, among unbiased estimators, we prefer the estimator
with the smallest variance. This allows us to eliminate certain estimators from consid-
eration. For a random sample from a population with mean � and variance �2, we know
that Ȳ is unbiased, and Var(Ȳ ) � �2/n. What about the estimator Y1, which is just the
first observation drawn? Since Y1 is a random draw from the population, Var(Y1) � �2.
Thus, the difference between Var(Y1) and Var(Ȳ ) can be large even for small sample
sizes. If n � 10, then Var(Y1) is ten times as large as Var(Ȳ ) � �2/10. This gives us a
formal way of excluding Y1 as an estimator of �.

To emphasize this point, Table C.1 contains the outcome of a small simulation
study. Using the statistical package Stata, 20 random samples of size 10 were generated
from a normal distribution, with � � 2 and �2 � 1; we are interested in estimating �
here. For each of the 20 random samples, we compute two estimates, y1 and ȳ; these
values are listed in Table C.1. As can be seen from the table, the values for y1 are much
more spread out than those for ȳ: y1 ranges from �0.64 to 4.27, while ȳ ranges only
from 1.16 to 2.58. Further, in 16 out of 20 cases, ȳ is closer than y1 to � � 2. The aver-
age of y1 across the simulations is about 1.89, while that for ȳ is 1.96. The fact that these
averages are close to 2 illustrates the unbiasedness of both estimators (and we could get
these averages closer to 2 by doing more than 20 replications). But comparing just the
average outcomes across random draws masks the fact that the sample average Ȳ is far
superior to Y1 as an estimator of �.

Table C.1

Simulation of Estimators for a Normal(�,1) Distribution with � � 2

Replication y1 ȳ

1 �0.64 1.98

2 1.06 1.43

3 4.27 1.65

4 1.03 1.88

5 3.16 2.34

Appendix C Fundamentals of Mathematical Statistics

706

continued

xd  7/14/99 9:21 PM  Page 706



Table C.1 (concluded)

Replication y1 ȳ

6 2.77 2.58

7 1.68 1.58

8 2.98 2.23

9 2.25 1.96

10 2.04 2.11

11 0.95 2.15

12 1.36 1.93

13 2.62 2.02

14 2.97 2.10

15 1.93 2.18

16 1.14 2.10

17 2.08 1.94

18 1.52 2.21

19 1.33 1.16

20 1.21 1.75

Efficiency

Comparing the variances of Ȳ and Y1 in the previous subsection is an example of a gen-
eral approach to comparing different unbiased estimators.

RELATIVE EFFICIENCY
If W1 and W2 are two unbiased estimators of �, W1 is efficient relative to W2 when
Var(W1) 	 Var(W2) for all �, with strict inequality for at least one value of �.

Earlier, we showed that, for estimating the population mean �, Var(Ȳ ) 
 Var(Y1) for any
value of �2 whenever n � 1. Thus, Ȳ is efficient relative to Y1 for estimating �. We can-
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not always choose between unbiased estimators based on the smallest variance crite-
rion: given two unbiased estimators of �, one can have smaller variance from some val-
ues of �, while the other can have smaller variance for other values of �.

If we restrict our attention to a certain class of estimators, we can show that the sam-
ple average has the smallest variance. Problem C.2 asks you to show that Ȳ has the
smallest variance among all unbiased estimators that are also linear functions of Y1,
Y2, …, Yn. The assumptions are that the Yi have common mean and variance, and they
are pairwise uncorrelated.

If we do not restrict our attention to unbiased estimators, then comparing variances
is meaningless. For example, when estimating the population mean �, we can use a triv-
ial estimator that is equal to zero, regardless of the sample that we draw. Naturally, the
variance of this estimator is zero (since it is the same value for every random sample).
But the bias of this estimator is ��, and so it is a very poor estimator when ��� is large.

One way to compare estimators that are not necessarily unbiased is to compute the
mean squared error (MSE) of the estimators. If W is an estimator of �, then the MSE
of W is defined as MSE(W ) � E[(W � �)2]. The MSE measures how far, on average,
the estimator is away from �. It can be shown that MSE(W ) � Var(W) � [Bias(W)]2,
so that MSE(W ) depends on the variance and bias (if any is present). This allows us to
compare two estimators when one or both are biased.

C.3 ASYMPTOTIC OR LARGE SAMPLE PROPERTIES
OF ESTIMATORS

In Section C.2, we encountered the estimator Y1 for the population mean �, and we saw
that, even though it is unbiased, it is a poor estimator because its variance can be much
larger than that of the sample mean. One notable feature of Y1 is that it has the same
variance for any sample size. It seems reasonable to require any estimation procedure
to improve as the sample size increases. For estimating a population mean �, Ȳ
improves in the sense that its variance gets smaller as n gets larger; Y1 does not improve
in this sense.

We can rule out certain silly estimators by studying the asymptotic or large sample
properties of estimators. In addition, we can say something positive about estimators
that are not unbiased and whose variances are not easily found.

Asymptotic analysis involves approximating the features of the sampling distribu-
tion of an estimator. These approximations depend on the size of the sample.
Unfortunately, we are necessarily limited in what we can say about how “large” a sam-
ple size is needed for asymptotic analysis to be appropriate; this depends on the under-
lying population distribution. But large sample approximations have been known to
work well for sample sizes as small as n � 20.

Consistency

The first asymptotic property of estimators concerns how far the estimator is likely to
be from the parameter it is supposed to be estimating as we let the sample size increase
indefinitely.
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CONSISTENCY
Let Wn be an estimator of � based on a sample Y1,Y2, …, Yn of size n. Then, Wn is a
consistent estimator of �, if for every � � 0,

P(�Wn � �� � �) * 0 as n * 
. (C.7)

If Wn is not consistent for �, then we say it is inconsistent.

When Wn is consistent, we also say that � is the probability limit of Wn, written as
plim(Wn) � �.

Unlike unbiasedness—which is a feature of an estimator for a given sample size—
consistency involves the behavior of the sampling distribution of the estimator as the
sample size n gets large. To emphasize this, we have indexed the estimator by the sam-
ple size in stating this definition, and we will continue with this convention throughout
this section.

Equation (C.7) looks technical, and it can be rather difficult to establish based on
fundamental probability principles. By contrast, interpreting (C.7) is straightforward. It
means that the distribution of Wn becomes more and more concentrated about �, which
roughly means that for larger sample sizes, Wn is less and less likely to be very far from
�. This tendency is illustrated in Figure C.3.
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The sampling distributions of a consistent estimator for three sample sizes.
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If an estimator is not consistent, then it does not help us to learn about �, even with
an unlimited amount of data. For this reason, consistency is a minimal requirement of
an estimator used in statistics or econometrics. We will encounter estimators that are
consistent under certain assumptions and inconsistent when those assumptions fail.
When estimators are inconsistent, we can usually find their probability limits, and it
will be important to know how far these probability limits are from �.

As we noted earlier, unbiased estimators are not necessarily consistent, but those
whose variances shrink to zero as the sample size grows are consistent. This can be
stated formally: If Wn is an unbiased estimator of � and Var(Wn) * 0 as n * 
, then
plim(Wn) � �. Unbiased estimators that use the entire data sample will usually have a
variance that shrinks to zero as the sample size grows, thereby being consistent.

A good example of a consistent estimator is the average of a random sample drawn
from a population with � and variance �2. We have already shown that the sample aver-
age is unbiased for �. In equation (C.6), we derived Var(Ȳn) � �2/n for any sample size
n. Therefore, Var(Ȳn) * 0 as n * 
, and so Ȳn is a consistent estimator of � (in addi-
tion to being unbiased).

The conclusion that Ȳn is consistent for � holds even if Var(Ȳn) does not exist. This
classic result is known as the law of large numbers (LLN).

LAW OF LARGE NUMBERS
Let Y1, Y2, …, Yn be independent, identically distributed random variables with mean
�. Then,

plim(Ȳn) � �. (C.8)

The law of large numbers means that, if we are interested in estimating the population
average �, we can get arbitrarily close to � by choosing a sufficiently large sample.
This fundamental result can be combined with basic properties of plims to show that
fairly complicated estimators are consistent.

PROPERTY PLIM.1
Let � be a parameter and define a new parameter, � � g(�), for some continuous func-
tion g(�). Suppose that plim(Wn) � �. Define an estimator of � by Gn � g(Wn). Then,

plim(Gn) � �. (C.9)

This is often stated as

plim g(Wn) � g(plim Wn) (C.10)

for a continuous function g(�).

The assumption that g(�) is continuous is a technical requirement that has often been
described nontechnically as “a function that can be graphed without lifting your pencil
from the paper.” Since all of the functions we encounter in this text are continuous, we
do not provide a formal definition of a continuous function. Examples of continuous
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functions are g(�) � a � b� for constants a and b, g(�) � �2, g(�) � 1/�, g(�) � ���,
g(�) � exp(�), and many variants on these. We will not need to mention the continuity
assumption again.

As an important example of a consistent but biased estimator, consider estimating
the standard deviation, �, from a population with mean � and variance �2. We already

claimed that the sample variance Sn
2 � �

n

i�1
(Yi � Ȳ )2 is unbiased for �2. Using

the law of large numbers and some algebra, Sn
2 can also be shown to be consistent for

�2. The natural estimator of � � ���2 is Sn � ��Sn
2 (where the square root is always

the positive square root). Sn, which is called the sample standard deviation, is not
an unbiased estimator because the expected value of the square root is not the square
root of the expected value (see Section B.3). Nevertheless, by PLIM.1, plim Sn �
��plim Sn

2 � ���2 � �, so Sn is a consistent estimator of �.
Here are some other useful properties of the probability limit:

PROPERTY PLIM.2
If plim(Tn) � � and plim(Un) � �, then

(i) plim(Tn � Un) � � � �;
(ii) plim(TnUn) � ��;
(iii) plim(Tn/Un) � �/�, provided � � 0.

These three facts about probability limits allow us to combine consistent estimators in
a variety of ways to get other consistent estimators. For example, let {Y1, …, Yn} be a
random sample of size n on annual earnings from the population of workers with a high
school education and denote the population mean by �Y. Let {Z1, …, Zn} be a random
sample on annual earnings from the population of workers with a college education and
denote the population mean by �Z. We wish to estimate the percentage difference in
annual earnings between the two groups, which is � � 100�(�Z � �Y)/�Y. (This is the
percent by which average earnings for college graduates differs from average earnings
for high school graduates.) Since Ȳn is consistent for �Y, and Z̄n is consistent for �Z, it
follows from PLIM.1 and part (iii) of PLIM.2 that

Gn � 100�(Z̄n � Ȳn)/Ȳn

is a consistent estimator of �. Gn is just the percentage difference between Z̄n and Ȳn in
the sample, so it is a natural estimator. Gn is not an unbiased estimator of �, but it is still
a good estimator unless n is small.

Asymptotic Normality

Consistency is a property of point estimators. While it does tell us that the distribution
of the estimator is collapsing around the parameter as the sample size gets large, it tells
us essentially nothing about the shape of that distribution for a given sample size. For
constructing interval estimators and testing hypotheses, we need a way to approximate
the distribution of our estimators. Most econometric estimators have distributions that
are well-approximated by a normal distribution for large samples, which motivates the
following definition.

1

n � 1
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ASYMPTOTIC NORMALITY
Let {Zn: n � 1,2,…} be a sequence of random variables, such that for all numbers z,

P(Zn 	 z) * �(z) as n * 
, (C.11)

where �(z) is the standard normal cumulative distribution function. Then, Zn is said to
have an asymptotic standard normal distribution. In this case, we often write Zn ~ª
Normal(0,1). (The “a” above the tilda stands for “asymptotically” or “approximately.”)

Property (C.11) means that the cumulative distribution function for Zn gets closer
and closer to the cdf of the standard normal distribution, as the sample size n gets large.
When asymptotic normality holds, for large n, we have the approximation P(Zn 	 z)
� �(z). Thus, probabilities concerning Zn can be approximated by standard normal
probabilities.

The central limit theorem (CLT) is one of the most powerful results in probabil-
ity and statistics. It states that the average from a random sample for any population
(with finite variance), when standardized, has an asymptotic standard normal distribu-
tion.

CENTRAL LIMIT THEOREM
Let {Y1,Y2, …, Yn} be a random sample with mean � and variance �2. Then,

Zn � , (C.12)

has an asymptotic standard normal distribution.

The variable Zn in (C.12) is the standardized version of Ȳn: we have subtracted off
E(Ȳn) � � and divided by sd(Ȳn) � �/��n . Thus, regardless of the population distribu-
tion of Y, Zn has mean zero and variance one, which coincides with the mean and vari-
ance of the standard normal distribution. Remarkably, the entire distribution of Zn gets
arbitrarily close to the standard normal distribution as n gets large.

Most estimators encountered in statistics and econometrics can be written as func-
tions of sample averages, in which case, we can apply the law of large numbers and the
central limit theorem. When two consistent estimators have asymptotic normal distrib-
utions, we choose the estimator with the smallest asymptotic variance.

In addition to the standardized sample average in (C.12), many other statistics that
depend on sample averages turn out to be asymptotically normal. An important one is
obtained by replacing � with its consistent estimator Sn in equation (C.12):

(C.13)

also has an approximate standard normal distribution for large n. The exact (finite sam-
ple) distributions of (C.12) and (C.13) are definitely not the same, but the difference is
often small enough to be ignored for large n.

Ȳn � �

Sn /��n

Ȳn � �

�/��n
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Throughout this section, each estimator has been subscripted by n to emphasize the
nature of asymptotic or large sample analysis. Continuing this convention clutters the
notation without providing additional insight, once the fundamentals of asymptotic
analysis are understood. Henceforth, we drop the n subscript and rely on you to remem-
ber that estimators depend on the sample size, and properties such as consistency and
asymptotic normality refer to the growth of the sample size without bound.

C.4 GENERAL APPROACHES TO
PARAMETER ESTIMATION

Up to this point, we have used the sample average to illustrate the finite and large sam-
ple properties of estimators. It is natural to ask: Are there general approaches to esti-
mation that produce estimators with good properties, such as unbiasedness, consistency,
and efficiency?

The answer is yes. A detailed treatment of various approaches to estimation is
beyond the scope of this text; here, we provide only an informal discussion. A thorough
discussion is given in Larsen and Marx (1986, Chapter 5).

Method of Moments

Given a parameter � appearing in a population distribution, there are usually many ways
to obtain unbiased and consistent estimators of �. Trying all different possibilities and
comparing them on the basis of the criteria in Sections C.2 and C.3 is not practical.
Fortunately, some methods have been shown to have good general properties, and for
the most part, the logic behind them is intuitively appealing.

In the previous sections, we have seen some examples of method of moments pro-
cedures. Basically, method of moments estimation proceeds as follows. The parameter
� is shown to be related to some expected value in the distribution of Y, usually E(Y ) or
E(Y2) (although more exotic choices are sometimes used). Suppose, for example, that
the parameter of interest, �, is related to the population mean as � � g(�) for some
function g. Since the sample average Ȳ is an unbiased and consistent estimator of �, it
is natural to replace � with Ȳ, which gives us the estimator g(Ȳ ) of �. The estimator
g(Ȳ ) is consistent for �, and if g(�) is a linear function of �, then g(Ȳ ) is unbiased as
well. What we have done is replace the population moment, �, with its sample coun-
terpart, Ȳ. This is where the name “method of moments” comes from.

We cover two additional method of moments estimators that will be useful for our
discussion of regression analysis. Recall that the covariance between two random vari-
ables X and Y is defined as �XY � E[(X � �X)(Y � �Y)]. The method of moments

suggests estimating �XY by n�1 �
n

i�1
(Xi � X̄)(Yi � Ȳ ). This is a consistent estimator

of �XY, but it turns out to be biased for essentially the same reason that the sample vari-
ance is biased if n, rather than n � 1, is used as the divisor. The sample covariance is
defined as

SXY � �
n

i�1
(Xi � X̄)(Yi � Ȳ ). (C.14)

1

n � 1
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It can be shown that this is an unbiased estimator of �XY (and replacing n with n � 1
makes no difference as the sample size grows indefinitely, so this estimator is still con-
sistent).

As we discussed in Section B.4, the covariance between two variables is often dif-
ficult to interpret. Usually, we are more interested in correlation. Since the population
correlation is �XY � �XY/(�X�Y), the method of moments suggests estimating �XY as

RXY � � , (C.15)

which is called the sample correlation coefficient (or sample correlation for short).
Notice that we have canceled the division by n � 1 in the sample covariance and the
sample standard deviations. In fact, we could divide each of these by n, and we would
arrive at the same final formula.

It can be shown that the sample correlation coefficient is always in the interval
[�1,1], as it should be. Because SXY, SX, and SY are consistent for the corresponding
population parameter, RXY is a consistent estimator of the population correlation, �XY.
However, RXY is a biased estimator for two reasons. First, SX and SY are biased estima-
tors of �X and �Y, respectively. Second, RXY is a ratio of estimators, and so it would not
be unbiased, even if SX and SY were. For our purposes, this is not important, although
the fact that no unbiased estimator of �XY exists is a classical result in mathematical sta-
tistics.

Maximum Likelihood

Another general approach to estimation is the method of maximum likelihood, a topic
covered in many introductory statistics courses. A brief summary in the simplest case
will suffice here. Let {Y1,Y2, …, Yn} be a random sample from the population distribu-
tion f(y;�). Because of the random sampling assumption, the joint distribution of
{Y1,Y2, …, Yn} is simply the product of the densities: f (y1;�) f (y2;�) ��� f(yn;�). In the
discrete case, this is P(Y1 � y1,Y2 � y2, …, Yn � yn). Now, define the likelihood func-
tion as

L(�;Y1, …, Yn) � f(Y1;�) f (Y2;�)���f(Yn;�), (C.16)

which is a random variable because it depends on the outcome of the random sample
{Y1,Y2, …, Yn}. The maximum likelihood estimator of �, call it W, is the value of �
that maximizes the likelihood function (this is why we write L as a function of �, fol-
lowed by the random sample). Clearly, this value depends on the random sample. The
maximum likelihood principle says that, out of all the possible values for �, the value
that makes the likelihood of the observed data largest should be chosen. Intuitively, this
is a reasonable approach to estimating �.

Maximum likelihood estimation (MLE) is usually consistent and sometimes unbi-
ased. But so are many other estimators. The widespread appeal of MLE is that it is gen-

�
n

i�1
(Xi � X̄)(Yi � Ȳ )

��
n

i�1
(Xi � X̄)2�

1/2

��
n

i�1
(Yi � Ȳ )2�

1/2

SXY

SXSY
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erally the most asymptotically efficient estimator when the population model f(y;�) is
correctly specified. In addition, the MLE is sometimes the minimum variance unbi-
ased estimator; that is, it has the smallest variance among all unbiased estimators of �.
[See Larsen and Marx (1986, Chapter 5) for verification of these claims.] We only need
to rely on MLE for some of the advanced topics in Part 3 of the text.

Least Squares

A third kind of estimator, and one that plays a major role throughout the text, is called
a least squares estimator. We have already seen an example of least squares: the sam-
ple mean, Ȳ , is a least squares estimator of the population mean, �. We already know
Ȳ is a method of moments estimator. What makes it a least squares estimator? It can be
shown that the value of m which makes the sum of squared deviations

�
n

i�1
(Yi � m)2

as small as possible is m � Ȳ. Showing this is not difficult, but we omit the algebra.
For some important distributions, including the normal and the Bernoulli, the sam-

ple average Ȳ is also the maximum likelihood estimator of the population mean �. Thus,
the principles of least squares, method of moments, and maximum likelihood often
result in the same estimator. In other cases, the estimators are similar but not identical.

C.5 INTERVAL ESTIMATION AND CONFIDENCE
INTERVALS

The Nature of Interval Estimation

A point estimate obtained from a particular sample does not, by itself, provide enough
information for testing economic theories or for informing policy discussions. A point
estimate may be the researcher’s best guess at the population value, but, by its nature,
it provides no information about how close the estimate is “likely” to be to the popula-
tion parameter. As an example, suppose a researcher reports, on the basis of a random
sample of workers, that job training grants increase hourly wage by 6.4%. How are we
to know whether or not this is close to the effect in the population of workers who could
have been trained? Since we do not know the population value, we cannot know how
close an estimate is for a particular sample. However, we can make statements involv-
ing probabilities, and this is where interval estimation comes in.

We already know one way of assessing the uncertainty in an estimator: find its
sampling standard deviation. Reporting the standard deviation of the estimator, along
with the point estimate, provides some information on the accuracy of our estimate.
However, even if the problem of the standard deviation’s dependence on unknown
population parameters is ignored, reporting the standard deviation along with the point
estimate makes no direct statement about where the population value is likely to lie in
relation to the estimate. This limitation is overcome by constructing a confidence
interval.

We illustrate the concept of a confidence interval with an example. Suppose the
population has a Normal(�,1) distribution and let {Y1, …, Yn} be a random sample from
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this population. (We assume that the variance of the population is known and equal to
unity for the sake of illustration; we then show what to do in the more realistic case that
the variance is unknown.) The sample average, Ȳ, has a normal distribution with mean
� and variance 1/n: Ȳ ~ Normal(�,1/n). From this, we can standardize Ȳ, and since the
standardized version of Ȳ has a standard normal distribution, we have

P ��1.96 
 
 1.96� � .95.

The event in parentheses is identical to the event Ȳ � 1.96/��n 
 � 
 Ȳ � 1.96/��n ,
and so

P(Ȳ � 1.96/��n 
 � 
 Ȳ � 1.96/��n ) � .95. (C.17)

Equation (C.17) is interesting because it tells us that the probability that the random
interval [Ȳ � 1.96/��n ,Ȳ � 1.96/��n ] contains the population mean � is .95, or 95%.
This information allows us to construct an interval estimate of �, which is obtained by
plugging in the sample outcome of the average, ȳ. Thus,

[ ȳ � 1.96/��n,ȳ � 1.96/��n ] (C.18)

is an example of an interval estimate of �. It is also called a 95% confidence interval.
A shorthand notation for this interval is ȳ � 1.96/��n .

The confidence interval in equation (C.18) is easy to compute, once the sample data
{y1,y2, …, yn} are observed; ȳ is the only factor that depends on the data. For example,
suppose that n � 16 and the average of the 16 data points is 7.3. Then, the 95% confi-
dence interval for � is 7.3 � 1.96/��16 � 7.3 � .49, which we can write in interval
form as [6.81,7.79]. By construction, ȳ � 7.3 is in the center of this interval.

Unlike its computation, the meaning of a confidence interval is more difficult to
understand. When we say that equation (C.18) is a 95% confidence interval for �, we
mean that the random interval

[Ȳ � 1.96/��n ,Ȳ � 1.96/��n ] (C.19)

contains � with probability .95. In other words, before the random sample is drawn,
there is a 95% chance that (C.19) contains �. Equation (C.19) is an example of an in-
terval estimator. It is a random interval, since the endpoints change with different
samples.

A confidence interval is often interpreted as follows: “The probability that � is in
the interval (C.18) is .95.” This is incorrect. Once the sample has been observed and ȳ
has been computed, the limits of the confidence interval are simply numbers (6.81 and
7.79 in the example just given). The population parameter, �, while unknown, is also
just some number. Therefore, � either is or is not in the interval (C.18) (and we will
never know with certaintly which is the case). Probability plays no role, once the con-
fidence interval is computed for the particular data at hand. The probabilistic interpre-
tation comes from the fact that for 95% of all random samples, the constructed
confidence interval will contain �.

Ȳ � �

1/��n
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To emphasize the meaning of a confidence interval, Table C.2 contains calculations
for 20 random samples (or replications) from the Normal(2,1) distribution with sample
size n � 10. For each of the 20 samples, ȳ is obtained, and (C.18) is computed as ȳ �
1.96/��10 � ȳ � .62 (each rounded to two decimals). As you can see, the interval
changes with each random sample. Nineteen of the 20 intervals contain the population
value of �. Only for replication number 19 is � not in the confidence interval. In other
words, 95% of the samples result in a confidence interval that contains �. This did not
have to be the case with only 20 replications, but it worked out that way for this partic-
ular simulation.

Table C.2

Simulated Confidence Intervals from a Normal (�,1) Distribution with � � 2

Replication ȳ 95% Interval Contains �?

1 1.98 (1.36,2.60) Yes

2 1.43 (0.81,2.05) Yes

3 1.65 (1.03,2.27) Yes

4 1.88 (1.26,2.50) Yes

5 2.34 (1.72,2.96) Yes

6 2.58 (1.96,3.20) Yes

7 1.58 (0.96,2.20) Yes

8 2.23 (1.61,2.85) Yes

9 1.96 (1.34,2.58) Yes

10 2.11 (1.49,2.73) Yes

11 2.15 (1.53,2.77) Yes

12 1.93 (1.31,2.55) Yes

13 2.02 (1.40,2.64) Yes

14 2.10 (1.48,2.72) Yes

15 2.18 (1.56,2.80) Yes
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Table C.2 (concluded)

Replication ȳ 95% Interval Contains �?

16 2.10 (1.48,2.72) Yes

17 1.94 (1.32,2.56) Yes

18 2.21 (1.59,2.83) Yes

19 1.16 (0.54,1.78) No

20 1.75 (1.13,2.37) Yes

Confidence Intervals for the Mean from a Normally
Distributed Population

The confidence interval derived in equation (C.18) helps illustrate how to construct and
interpret confidence intervals. In practice, equation (C.18) is not very useful for the
mean of a normal population because it assumes that the variance is known to be unity.
It is easy to extend (C.18) to the case where the standard deviation � is known to be any
value: the 95% confidence interval is

[ ȳ � 1.96�/��n,ȳ � 1.96�/��n]. (C.20)

Therefore, provided � is known, a confidence interval for � is readily constructed. To
allow for unknown �, we must use an estimate. Let

s � � �
n

i�1
(yi � ȳ)2�1/2

(C.21)

denote the sample standard deviation. Then, we obtain a confidence interval that
depends entirely on the observed data by replacing � in equation (C.20) with its esti-
mate, s. Unfortunately, this does not preserve the 95% level of confidence because s
depends on the particular sample. In other words, the random interval [Ȳ � 1.96(S/��n)]
no longer contains � with probability .95 because the constant � has been replaced with
the random variable S.

How should we proceed? Rather than using the standard normal distribution, we
must rely on the t distribution. The t distribution arises from the fact that

~ tn�1, (C.22)
Ȳ � �

S/��n

1

n � 1
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where Ȳ is the sample average, and S is the sample standard deviation of the random
sample {Y1, …, Yn}. We will not prove (C.22); a careful proof can be found in a variety
of places [for example, Larsen and Marx (1988, Chapter 7)].

To construct a 95% confidence interval, let c denote the 97.5th percentile in the tn�1

distribution. In other words, c is the value such that 95% of the area in the tn�1 is
between �c and c: P(�c 
 tn�1 
 c) � .95. (The value of c depends on the degrees
of freedom n � 1, but we do not make this explicit.) The choice of c is illustrated in
Figure C.4. Once c has been properly chosen, the random interval [Y � c�S/��n,Y �
c�S/��n] contains � with probability .95. For a particular sample, the 95% confidence
interval is calculated as

[ ȳ � c�s/��n,ȳ � c�s/��n]. (C.23)

The values of c for various degrees of freedom can be obtained from Table G.2 in
Appendix G. For example, if n � 20, so that the df is n � 1 � 19, then c � 2.093. Thus,
the 95% confidence interval is [ ȳ � 2.093(s/��20)], where ȳ and s are the values
obtained from the sample. Even if s � � (which is very unlikely), the confidence inter-
val in (C.23) is wider than that in (C.20) because c � 1.96. For small degrees of free-
dom, (C.23) is much wider.
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More generally, let c� denote the 100(1 � �) percentile in the tn�1 distribution.
Then, a 100(1 � �)% confidence interval is obtained as

[ ȳ � c�/2s/��n,ȳ � c�/2s/��n]. (C.24)

Obtaining c�/2 requires choosing � and knowing the degrees of freedom n � 1; then,
Table G.2 can be used. For the most part, we will concentrate on 95% confidence inter-
vals.

There is a simple way to remember how to construct a confidence interval for the
mean of a normal distribution. Recall that sd(Ȳ ) � �/��n. Thus, s/��n is the point esti-
mate of sd(Ȳ ). The associated random variable, S/��n, is sometimes called the stan-
dard error of Y. Since what shows up in formulas is the point estimate s/��n, we define
the standard error of ȳ as se(ȳ) � s/��n. Then, (C.24) can be written in shorthand as

[ ȳ � c�/2�se(ȳ)]. (C.25)

This equation shows why the notion of the standard error of an estimate plays an impor-
tant role in econometrics.

E X A M P L E  C . 2
( E f f e c t  o f  J o b  T r a i n i n g  G r a n t s  o n  W o r k e r  P r o d u c t i v i t y )

Holzer, Block, Cheatham, and Knott (1993) studied the effects of job training grants on
worker productivity by collecting information on “scrap rates” for a sample of Michigan
manufacturing firms receiving job training grants in 1988. Table C.3 lists the scrap rates—
measured as number of items per 100 produced that are not usable and therefore need to
be scrapped—for 20 firms. Each of these firms received a job training grant in 1988; there
were no grants awarded in 1987. We are interested in contructing a confidence interval for
the change in the scrap rate from 1987 to 1988 for the population of all manufacturing
firms that could have received grants.

Table C.3

Scrap Rates for 20 Michigan Manufacturing Firms

Firm 1987 1988 Change

1 10 3 �7

2 1 1 0

3 6 5 �1

4 .45 .5 .05
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Table C.3 (concluded)

Firm 1987 1988 Change

5 1.25 1.54 .29

6 1.3 1.5 .2

7 1.06 .8 �.26

8 3 2 �1

9 8.18 .67 �7.51

10 1.67 1.17 �.5

11 .98 .51 �.47

12 1 .5 �.5

13 .45 .61 .16

14 5.03 6.7 1.67

15 8 4 �4

16 9 7 �2

17 18 19 1

18 .28 .2 �.08

19 7 5 �2

20 3.97 3.83 �.14

Average 4.38 3.23 �1.15

We assume that the change in scrap rates has a normal distribution. Since n � 20, a 95%
confidence interval for the mean change in scrap rates � is [y � 2.093�se( ȳ)], where se( ȳ) �
s/��n. The value 2.093 is the 97.5th percentile in a t19 distribution. For the particular sample
values, ȳ � �1.15 and se( ȳ) � .54 (each rounded to two decimals), and so the 95% confi-
dence interval is [�2.28,�.02]. The value zero is excluded from this interval, so we conclude
that, with 95% confidence, the average change in scrap rates in the population is not zero.
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At this point, Example C.2 is mostly illustrative because it has some potentially
serious flaws as an econometric analysis. Most importantly, it assumes that any sys-
tematic reduction in scrap rates is due to the job training grants. But many things can
happen over the course of the year to change worker productivity. From this analysis,
we have no way of knowing whether the fall in average scrap rates is attributable to the
job training grants or if, at least partly, some external force is responsible.

A Simple Rule of Thumb for a 95% Confidence Interval

The confidence interval in (C.25) can be computed for any sample size and any confi-
dence level. As we saw in Section B.4, the t distribution approaches the standard nor-
mal distribution as the degrees of freedom gets large. In particular, for � � .05, c�/2 *

1.96 as n * 
, although c�/2 is always greater than 1.96 for each n. A rule of thumb for
an approximate 95% confidence interval is

[ ȳ � 2�se(ȳ)]. (C.26)

In other words, we obtain ȳ and its standard error and then compute ȳ plus and minus
twice its standard error to obtain the confidence interval. This is slightly too wide for
very large n, and it is too narrow for small n. As we can see from Example C.2, even
for n as small as 20, (C.26) is in the ballpark for a 95% confidence interval for the mean
from a normal distribution. This means we can get pretty close to a 95% confidence
interval without having to refer to t tables.

Asymptotic Confidence Intervals for Nonnormal
Populations

In some applications, the population is clearly nonnormal. A leading case is the
Bernoulli distribution, where the random variable takes on only the values zero and one.
In other cases, the nonnormal population has no standard distribution. This does not
matter, provided the sample size is sufficiently large for the central limit theorem to give
a good approximation for the distribution of the sample average Ȳ . For large n, an
approximate 95% confidence interval is

[ ȳ � 1.96�se( ȳ)], (C.27)

where the value 1.96 is the 97.5th percentile in the standard normal distribution.
Mechanically, computing an approximate confidence interval does not differ from the
normal case. A slight difference is that the number multiplying the standard error
comes from the standard normal distribution, rather than the t distribution, because
we are using asymptotics. Because the t distribution approaches the standard normal
as the df increases, equation (C.25) is also perfectly legitimate as an approximate
95% interval; some prefer this to (C.27) because the former is exact for normal pop-
ulations.
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E X A M P L E  C . 3
( R a c e  D i s c r i m i n a t i o n  i n  H i r i n g )

The Urban Institute conducted a study in 1988 in Washington D.C. to examine the extent
of race discrimination in hiring. Five pairs of people interviewed for several jobs. In each pair,
one person was black, and the other person was white. They were given resumes indicat-
ing that they were virtually the same in terms of experience, education, and other factors
that determine job qualification. The idea was to make individuals as similar as possible with
the exception of race. Each person in a pair interviewed for the same job, and the
researchers recorded which applicant  received a job offer. This is an example of a matched
pairs analysis, where each trial consists of data on two people (or two firms, two cities, and
so on) that are thought to be similar in many respects but different in one important char-
acteristic.

Let �B denote the probability that the black person is offered a job and let �W be the
probability that the white person is offered a job. We are primarily interested in the differ-
ence, �B � �W. Let Bi denote a Bernoulli variable equal to one if the black person gets a job
offer from employer i, and zero otherwise. Similarly, Wi � 1 if the white person gets a job
offer from employer i, and zero otherwise. Pooling across the five pairs of people, there
were a total of n � 241 trials (pairs of interviews with employees). Unbiased estimators of
�B and �W are B̄ and W̄, the fractions of interviews for which blacks and whites were offered
jobs, respectively.

To put this into the framework of computing a confidence interval for a population
mean, define a new variable Yi � Bi � Wi. Now, Yi can take on three values: �1 if the black
person did not get the job but the white person did, 0 if both people either did or did not
get the job, and 1 if the black person got the job and the white person did not. Then, � �
E(Yi) � E(Bi) � E(Wi) � �B � �W.

The distribution of Yi is certainly not normal—it is discrete and takes on only three val-
ues. Nevertheless, an approximate confidence interval for �B � �W can be obtained by using
large sample methods.

Using the 241 observed data points, b̄ � .224 and w̄ � .357, and so ȳ � .224 �

.357 � �.133. Thus, 22.4% of black applicants were offered jobs, while 35.7% of white
applicants were offered jobs. This is prima facie evidence of discrimination against blacks,
but we can learn much more by computing a confidence interval for �. To compute an
approximate 95% confidence interval, we need the sample standard deviation. This turns
out to be s � .482 [using equation (C.21)]. Using (C.27), we obtain a 95% CI for � �

�B � �W as �.133 � 1.96(.482/��241) � �.133 � .031 � [�.164,�.102]. The approximate
99% CI is �.133 � 2.58(.482/��241) � [�.213,�.053]. Naturally, this contains a wider
range of values than the 95% CI. But even the 99% CI does not contain the value zero.
Thus, we are very confident that the population difference �B � �W is not zero.

One final comment needs to be made before we leave confidence intervals. Because
the standard error for ȳ, se(ȳ) � s/��n , shrinks to zero as the sample size grows, we see
that—all else equal—a larger sample size means a smaller confidence interval. Thus, an
important benefit of a large sample size is that it results in smaller confidence intervals.
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C.6 HYPOTHESIS TESTING

So far, we have reviewed how to evaluate point estimators, and we have seen—in the
case of a population mean—how to construct and interpret confidence intervals. But
sometimes the question we are interested in has a definite yes or no answer. Here are
some examples: (1) Does a job training program effectively increase average worker
productivity? (see Example C.2); (2) Are blacks discriminated against in hiring? (see
Example C.3); (3) Do stiffer state drunk driving laws reduce the number of drunk dri-
ving arrests? Devising methods for answering such questions, using a sample of data,
is known as hypothesis testing.

Fundamentals of Hypothesis Testing

To illustrate the issues involved with hypothesis testing, consider an election example.
Suppose there are two candidates in an election, Candidates A and B. Candidate A is
reported to have received 42% of the popular vote, while Candidate B received 58%.
These are supposed to represent the true percentages in the voting population, and we
treat them as such.

Candidate A is convinced that more people must have voted for him, and so he would
like to investigate whether the election was rigged. Knowing something about statistics,
Candidate A hires a consulting agency to randomly sample 100 voters to record whether
or not each person voted for him. Suppose that, for the sample collected, 53 people voted
for Candidate A. This sample estimate of 53% clearly exceeds the reported population
value of 42%. Should Candidate A conclude that the election was indeed a fraud?

While it appears that the votes for Candidate A were undercounted, we cannot be
certain. Even if only 42% of the population voted for Candidate A, it is possible that, in
a sample of 100, we observe 53 people who did vote for Candidate A. The question is:
How strong is the sample evidence against the officially reported percentage of 42%?

One way to proceed is to set up a hypothesis test. Let � denote the true proportion
of the population voting for Candidate A. The hypothesis that the reported results are
accurate can be stated as

H0: � � .42. (C.28)

This is an example of a null hypothesis. We always denote the null hypothesis by H0.
In hypothesis testing, the null hypothesis plays a role similar to that of a defendent on
trial in many judicial systems: just as a defendent is presumed to be innocent until
proven guilty, the null hypothesis is presumed to be true until the data strongly suggest
otherwise. In the current example, Candidate A must present fairly strong evidence
against (C.28) in order to win a recount.

The alternative hypothesis in the election example is that the true proportion vot-
ing for Candidate A in the election is greater than .42:

H1: � � .42. (C.29)

In order to conclude that H0 is false and that H1 is true, we must have evidence “beyond
reasonable doubt” against H0. How many votes out of 100 would be needed before we
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feel the evidence is strongly against H0? Most would agree that observing 43 votes out
of a sample of 100 is not enough to overturn the original election results; such an out-
come is well within the expected sampling variation. On the other hand, we do not need
to observe 100 votes for Candidate A to cast doubt on H0. Whether 53 out of 100 is
enough to reject H0 is much less clear. The answer depends on how we quantify
“beyond reasonable doubt.”

In hypothesis testing, we can make two kinds of mistakes. First, we can reject the
null hypothesis when it is in fact true. This is called a Type I error. In the election
example, a Type I occurs if we reject H0 when the true proportion of people voting for
Candidate A is in fact .42. The second kind of error is failing to reject H0 when it is
actually false. This is called a Type II error. In the election example, a Type II error
occurs if � � .42 but we fail to reject H0.

After we have made the decision of whether or not to reject the null hypothesis, we
have either decided correctly or we have committed an error. We will never know with
certainty whether an error was committed. However, we can compute the probability of
making either a Type I or a Type II error. Hypothesis testing rules are constructed to
make the probability of committing a Type I error fairly small. Generally, we define the
significance level (or simply the level ) of a test as the probability of a Type I error; it
is typically denoted by �. Symbolically, we have

� � P(Reject H0�H0). (C.30)

The right-hand side is read as: “The probability of rejecting H0 given that H0 is true.”
Classical hypothesis testing requires that we initially specify a significance level for

a test. When we specify a value for �, we are essentially quantifying our tolerance for
a Type I error. Common values for � are .10, .05, and .01. If � � .05, then the researcher
is willing to falsely reject H0 5% of the time, in order to detect deviations from H0.

Once we have chosen the significance level, we would then like to minimize the
probability of a Type II error. Alternatively, we would like to maximize the power of a
test against all relevant alternatives. The power of a test is just one, minus the proba-
bility of a Type II error. Mathematically,

�(�) � P(Reject H0��) � 1 � P(Type II��),

where � denotes the actual value of the parameter. Naturally, we would like the power
to equal unity whenever the null hypothesis is false. But this is impossible to achieve
while keeping the significance level small. Instead, we choose our tests to maximize the
power for a given significance level.

Testing Hypotheses About the Mean in a
Normal Population

In order to test a null hypothesis against an alternative, we need to choose a test statis-
tic (or statistic, for short) and a critical value. The choices for the statistic and critical
value are based on convenience and on the desire to maximize power given a signifi-
cance level for the test. In this subsection, we review how to test hypotheses for the
mean of a normal population.
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A test statistic, denoted T, is some function of the random sample. When we com-
pute the statistic for a particular outcome, we obtain an outcome of the test statistic,
which we will denote t.

Given a test statistic, we can define a rejection rule that determines when H0 is
rejected in favor of H1. In this text, all rejection rules are based on comparing the value
of a test statistic, t, to a critical value, c. The values of t that result in rejection of the
null hypothesis are collectively known as the rejection region. In order to determine
the critical value, we must first decide on a significance level of the test. Then, given
�, the critical value associated with � is determined by the distribution of T, assuming
that H0 is true. We will write this critical value as c, suppressing the fact that it depends
on �.

Testing hypotheses about the mean � from a Normal(�,�2) population is straight-
forward. The null hypothesis is stated as

H0: � � �0, (C.31)

where �0 is a value that we specify. In the majority of applications, �0 � 0, but the gen-
eral case is no more difficult.

The rejection rule we choose depends on the nature of the alternative hypothesis.
The three alternatives of interest are

H1: � � �0, (C.32)

H1: � 
 �0, (C.33)

and

H1: � � �0. (C.34)

Equation (C.32) gives a one-sided alternative, as does (C.33). When the alternative
hypothesis is (C.32), the null is effectively H0: � 	 �0, since we reject H0 only when
� � �0. This is appropriate when we are interested in the value of � but only when �
is at least as large as �0. Equation (C.34) is a two-sided alternative. This is acceptable
when we are interested in any departure from the null hypothesis.

Consider first the alternative in (C.32). Intuitively, we should reject H0 in favor of
H1 when the value of the sample average, ȳ, is “sufficiently” greater than �0. But how
should we determine when ȳ is large enough for H0 to be rejected at the chosen signif-
icance level? This requires knowing the probability of rejecting the null hypothesis
when it is true. Rather than working directly with ȳ, we use its standardized version,
where � is replaced with the sample standard deviation, s:

t � ��n(ȳ � �0)/s � (ȳ � �0)/se(ȳ), (C.35)

where se(ȳ) � s/��n is the standard error of ȳ. Given the sample of data, it is easy to
obtain t. The reason we work with t is that, under the null hypothesis, the random vari-
able

T � ��n(Ȳ � �0)/S
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has a tn�1 distribution. Now, suppose we have settled on a 5% significance level. Then,
the critical value c is chosen so that P(T � c�H0) � .05; that is, the probability of a Type
I error is 5%. Once we have found c, the rejection rule is

t � c, (C.36)

where c is the 100(1 � �) percentile in a tn�1 distribution; as a percent, the significance
level is 100��%. This is an example of a one-tailed test because the rejection region is
in one tail of the t distribution. For a 5% significance level, c is the 95th percentile in the
tn�1 distribution; this is illustrated in Figure C.5. A different significance level leads to
a different critical value.

The statistic in equation (C.35) is often called the t statistic for testing H0: � � �0.
The t statistic measures the distance from ȳ to �0 relative to the standard error of ȳ, se(ȳ).

E X A M P L E  C . 4
( E f f e c t  o f  E n t e r p r i s e  Z o n e s  o n  B u s i n e s s  I n v e s t m e n t s )

In the population of cities granted enterprise zones in a particular state [see Papke (1994)
for Indiana], let Y denote the percentage change in investment from the year before to the
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year after a city became an enterprise zone. Assume that Y has a Normal(�,�2) distribution.
The null hypothesis that enterprise zones have no effect on business investment is H0: � �

0; the alternative that they have a positive effect is H1: � � 0 (we assume that they do not
have a negative effect). Suppose that we wish to test H0 at the 5% level. The test statistic
in this case is

t � � . (C.37)

Suppose that we have a sample of 36 cities which are granted enterprise zones. Then, the
critical value is c � 1.69 (see Table G.2), and we reject H0 in favor of H1 if t � 1.69. Suppose
that the sample yields ȳ � 8.2 and s � 23.9. Then, t � 2.06, and H0 is therefore rejected
at the 5% level. Thus, we conclude that, at the 5% significance level, enterprise zones have
an effect on average investment. The 1% critical value is 2.44, and so H0 is not rejected at
the 1% level. The same caveat holds here as in Example C.2: we have not controlled for
other factors that might affect investment in cities over time, and so we cannot claim that
the effect is causal.

The rejection rule is similar for the one-sided alternative (C.32). A test with a sig-
nificance level of 100��% rejects H0 against (C.33) whenever

t 
 �c; (C.38)

in other words, we are looking for negative values of the t statistic—which implies ȳ 

�0—that are sufficiently far from zero to reject H0.

For two-sided alternatives, we must be careful to choose the critical value so that
the significance level of the test is still �. If H1 is given by H1: � � �0, then we reject
H0 if ȳ is far from �0 in absolute value: a ȳ much larger or much smaller than �0 pro-
vides evidence against H0 in favor of H1. A 100��% level test is obtained from the rejec-
tion rule

�t� � c, (C.39)

where �t� is the absolute value of the t statistic in (C.35). This gives a two-tailed test. We
must now be careful in choosing the critical value: c is the 100(1 � �/2) percentile in
the tn�1 distribution. For example, if � � .05, then the critical value is the 97.5th per-
centile in the tn�1 distribution. This ensures that H0 is rejected only 5% of the time when
it is true (see Figure C.6). For example, if n � 22, then the critical value is c � 2.08,
the 97.5th percentile in a t21 distribution (see Table G.2). The absolute value of the t sta-
tistic must exceed 2.08 in order to reject H0 against H1 at the 5% level.

It is important to know the proper language of hypothesis testing. Sometimes, the
appropriate phrase “we fail to reject H0 in favor of H1 at the 5% significance level” is
replaced with “we accept H0 at the 5% significance level.” The latter wording is incor-
rect. With the same set of data there are usually many hypotheses that cannot be

ȳ

se(ȳ)

ȳ

s/��n
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rejected. In the earlier election example, it would be logically inconsistent to say that
H0: � � .42 and H0: � � .43 are both “accepted,” since only one of these can be true.
But it is entirely possible that neither of these hypotheses is rejected. For this reason,
we always say “fail to reject H0” rather than “accept H0.”

Asymptotic Tests for Nonnormal Populations

If the sample size is large enough to invoke the central limit theorem (see Section C.3),
the mechanics of hypothesis testing for population means are the same whether or not
the population distribution is normal. The theoretical justification comes from the fact
that, under the null hypothesis,

T � ��n(Ȳ � �0)/S ~ª Normal(0,1).

Therefore, with large n, we can compare the t statistic in (C.35) with the critical values
from a standard normal distribution. Since the tn�1 distribution converges to the stan-
dard normal distribution as n gets large, the t and standard normal critical values will
be very close for extremely large n. Since asymptotic theory is based on n increasing
without bound, it cannot tell us whether the standard normal or t critical values are bet-
ter. For moderate values of n, say between 30 and 60, it is traditional to use the t distri-
bution because we know this is correct for normal populations. For n � 120, the choice
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between the t and standard normal distributions is largely irrelevant because the critical
values are practically the same.

Because the critical values chosen using either the standard normal or t distribution
are only approximately valid for nonnormal populations, our chosen significance levels
are also only approximate; thus, for nonnormal populations our significance levels are
really asymptotic significance levels. Thus, if we choose a 5% significance level, but
our population is nonnormal, then the actual significance level will be larger or smaller
than 5% (and we cannot know which is the case). When the sample size is large, the
actual significance level will be very close to 5%. Practically speaking, the distinction
is not important, and so we will now drop the qualifier “asymptotic.”

E X A M P L E  C . 5
( R a c e  D i s c r i m i n a t i o n  i n  H i r i n g )

In the Urban Institute study of discrimination in hiring (see Example C.3), we are primarily
interested in testing H0: � � 0 against H1: � 
 0, where � � �B � �W is the difference in
probabilities that blacks and whites receive job offers. Recall that � is the population mean
of the variable Y � B � W, where B and W are binary indicators. Using the n � 241 paired
comparisons, we obtained ȳ � �.133 and se(ȳ ) � .482/��241 � .031. The t statistic for
testing H0: � � 0 is t � �.133/.031 � �4.29. You will remember from Appendix B that
the standard normal distribution is, for practical purposes, indistinguishable from the t dis-
tribution with 240 degrees of freedom. The value �4.29 is so far out in the left tail of the
distribution that we reject H0 at any reasonable significance level. In fact, the .005 (one-half
of a percent) critical value (for the one-sided test) is about �2.58. A t value of �4.29 is very
strong evidence against H0 in favor of H1. Thus, we conclude that there is discrimination in
hiring.

Computing and Using p -Values

The traditional requirement of choosing a significance level ahead of time means that
different researchers, using the same data and same procedure to test the same hypoth-
esis, could wind up with different conclusions. Reporting the significance level at which
we are carrying out the test solves this problem to some degree, but it does not com-
pletely remove the problem.

To provide more information, we can ask the following question: What is the largest
significance level at which we could carry out the test and still fail to reject the null
hypothesis? This value is known as the p-value of a test (sometimes called the prob-
value). Compared with choosing a significance level ahead of time and obtaining a crit-
ical value, computing a p-value is somewhat more difficult. But with the advent of
quick and inexpensive computing, p-values are now fairly easy to obtain.

As an illustration, consider the problem of testing H0: � � 0 in a Normal(�,�2)
population. Our test statistic in this case is T � ��n�Ȳ/S, and we assume that n is large
enough to treat T as having a standard normal distribution under H0. Suppose that the
observed value of T for our sample is t � 1.52 (note how we have skipped the step of
choosing a significance level). Now that we have seen the value t, we can find the
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largest significance level at which we would fail to reject H0. This is the significance
level associated with using t as our critical value. Since our test statistic T has a stan-
dard normal distribution under H0, we have

p-value � P(T � 1.52�H0) � 1 � �(1.52) � .065, (C.40)

where �(�) denotes the standard normal cdf. In other words, the p-value in this exam-
ple is simply the area to the right of 1.52, the observed value of the test statistic, in a
standard normal distribution. See Figure C.7 for illustration.

Since p-value � .065, the largest significance level at which we can carry out
this test and fail to reject is 6.5%. If we carry out the test at a level below 6.5% (such
as at 5%), we fail to reject H0. If we carry out the test at a level larger than 6.5%
(such as 10%), we reject H0. With the p-value at hand, we can carry out the test at
any level.

The p-value in this example has another useful interpretation: it is the probability
that we observe a value of T as large as 1.52 when the null hypothesis is true. If the null
hypothesis is actually true, we would observe a value of T as large as 1.52 due to chance
only 6.5% of the time. Whether this is small enough to reject H0 depends on our toler-
ance for a Type I error. The p-value has a similar interpretation in all other cases, as we
will see.
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Generally, small p-values are evidence against H0, since they indicate that the
outcome of the data occurs with small probability if H0 is true. In the previous exam-
ple, if t had been a larger value, say t � 2.85, then the p-value would be 1 �
�(2.85) � .002. This means that, if the null hypothesis were true, we would observe
a value of T as large as 2.85 with probability .002. How do we interpret this? Either
we obtained a very unusual sample or the null hypothesis is false. Unless we have a
very small tolerance for Type I error, we would reject the null hypothesis. On the
other hand, a large p-value is weak evidence against H0. If we had gotten t � .47 in
the previous example, then p-value � 1 � �(.47) � .32. Observing a value of T
larger than .47 happens with probability .32, even when H0 is true; this is large
enough so that there is insufficient doubt about H0, unless we have a very high toler-
ance for Type I error.

For hypothesis testing about a population mean using the t distribution, we need
detailed tables in order to compute p-values. Table G.2 only allows us to put bounds on
p-values. Fortunately, many statistics and econometrics packages now compute p-values
routinely, and they also provide calculation of cdfs for the t and other distributions used
for computing p-values.

E X A M P L E  C . 6
( E f f e c t  o f  J o b  T r a i n i n g  G r a n t s  o n  W o r k e r  P r o d u c t i v i t y )

Consider again the Holzer et al. (1993) data in Example C.2. From a policy perspective,
there are two questions of interest. First, what is our best estimate of the mean change in
scrap rates, �? We have already obtained this for the sample of 20 firms listed in Table C.3:
the sample average of the change in scrap rates is �1.15. Relative to the initial average
scrap rate in 1987, this represents a fall in the scrap rate of about 26.3% (�1.15/4.38 �
�.263), which is a nontrivial effect.

We would also like to know whether the sample provides strong evidence for an effect
in the population of manufacturing firms that could have received grants. The null hypoth-
esis is H0: � � 0, and we test this against H1: � 
 0, where � is the average change in scrap
rates. Under the null, the job training grants have no effect on average scrap rates. The
alternative states that there is an effect. We do not care about the alternative � � 0; the
null hypothesis is effectively H0: � � 0.

Since ȳ � �1.15 and se(ȳ ) � .54, t � �1.15/.54 � �2.13. This is below the 5% crit-
ical value of �1.73 (from a t19 distribution) but above the 1% critical value, �2.54. The
p-value in this case is computed as

p-value � P(T19 
 �2.13), (C.41)

where T19 represents a t distributed random variable with 19 degrees of freedom. The
inequality is reversed from (C.40) because the alternative has the form (C.33), not (C.32).
The probability in (C.41) is the area to the left of �2.13 in a t19 distribution (see Fig-
ure C.8).

Appendix C Fundamentals of Mathematical Statistics

732

xd  7/14/99 9:21 PM  Page 732



Using Table G.2, the most we can say is that the p-value is between .025 and .01, but
it is closer to .025 (since the 97.5th percentile is about 2.09). Using a statistical package,
such as Stata, we can compute the exact p-value. It turns out to be about .023, which is
reasonable evidence against H0. This is certainly enough evidence to reject the null hypoth-
esis that the training grants had no effect at the 2.5% significance level (and therefore at
the 5% level).

Computing a p-value for a two-sided test is similar, but we must account for the
two-sided nature of the rejection rule. For t testing about population means, the p-value
is computed as

P(�Tn�1� � �t�) � 2P(Tn�1 � �t�), (C.42)

where t is the value of the test statistic, and Tn�1 is a t random variable. (For large n,
replace Tn�1 with a standard normal random variable.) Thus, to compute the absolute
value of the t statistic, find the area to the right of this value in a tn�1 distribution and
multiply the area by two.
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For nonnormal populations, the exact p-value can be difficult to obtain.
Nevertheless, we can find asymptotic p-values by using the same calculations. These
p-values are valid for large sample sizes. For n larger than, say, 120, we might as well
use the standard normal distribution. Table G.1 is detailed enough to get accurate
p-values, but we can also use a statistics or econometrics program.

E X A M P L E  C . 7
( R a c e  D i s c r i m i n a t i o n  i n  H i r i n g )

Using the matched pair data from the Urban Institute (n � 241), we obtained t � �4.29.
If Z is a standard normal random variable, P(Z 
 �4.29) is, for practical purposes, zero. In
other words, the (asymptotic) p-value for this example is essentially zero. This is very strong
evidence against H0.

SUMMARY OF HOW TO USE p-VALUES
(i) Choose a test statistic T and decide on the nature of the alternative. This deter-

mines whether the rejection rule is t � c, t 
 �c, or �t� � c.
(ii) Use the observed value of the t statistic as the critical value and compute the cor-

responding significance level of the test. This is the p-value. If the rejection rule is of
the form t � c, then p-value � P(T � t). If the rejection rule is t 
 �c, then p-value �
P(T 
 t); if the rejection rule is �t� � c, then p-value � P(�T � � �t�).

(iii) If a significance level � has been chosen, then we reject H0 at the 100��% level
if p-value 
 �. If p-value � �, then we fail to reject H0 at the 100��% level. Thus, it is
a small p-value that leads to rejection.

The Relationship Between Confidence Intervals and
Hypothesis Testing

Since contructing confidence intervals and hypothesis tests both involve probability
statements, it is natural to think that they are somehow linked. It turns out that they are.
After a confidence interval has been constructed, we can carry out a variety of hypoth-
esis tests.

The confidence intervals we have discussed are all two-sided by nature. (In this text,
we will have no need to construct one-sided confidence intervals.) Thus, confidence
intervals can be used to test against two-sided alternatives. In the case of a population
mean, the null is given by (C.31), and the alternative is (C.34). Suppose we have con-
structed a 95% confidence interval for �. Then, if the hypothesized value of � under
H0, �0, is not in the confidence interval, then H0: � � �0 is rejected against H1: � �
�0 at the 5% level. If �0 lies in this interval, then we fail to reject H0 at the 5% level.
Notice how any value for �0 can be tested once a confidence interval is constructed, and
since a confidence interval contains more than one value, there are many null hypothe-
ses that will not be rejected.
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E X A M P L E  C . 8
( T r a i n i n g  G r a n t s  a n d  W o r k e r  P r o d u c t i v i t y )

In the Holzer et al. example, we constructed a 95% confidence interval for the mean
change in scrap rate � as [�2.28,�.02]. Since zero is excluded from this interval, we reject
H0: � � 0 against H1: � � 0 at the 5% level. This 95% confidence interval also means that
we fail to reject H0: � � �2 at the 5% level. In fact, there is a continuum of null hypothe-
ses that are not rejected given this confidence interval.

Practical Versus Statistical Significance

In the examples covered so far, we have produced three kinds of evidence concerning
population parameters: point estimates, confidence intervals, and hypothesis tests.
These tools for learning about population parameters are equally important. There is an
understandable tendency for students to focus on confidence intervals and hypothesis
tests because these are things to which we can attach confidence or significance levels.
But in any study, we must also interpret the magnitudes of point estimates.

Statistical significance depends on the size of the t statistic and not just on the size
of ȳ. For testing H0: � � 0, t � ȳ/se(ȳ). Thus, statistical significance depends on the
ratio of ȳ to its standard error. A t statistic can be large either because ȳ is large or
because se(ȳ) is small.

E X A M P L E  C . 9
( E f f e c t  o f  F r e e w a y  W i d t h  o n  C o m m u t e  T i m e )

Let Y denote the change in commute time, measured in minutes, for commuters in a met-
ropolitan area from before a freeway was widened to after the freeway was widened.
Assume that Y ~ Normal(�,�2). The null hypothesis that the widening did not reduce aver-
age commute time is H0: � � 0; the alternative that it reduced average commute time is
H1: � 
 0. Suppose a random sample of commuters of size n � 300 is obtained to deter-
mine the effectiveness of the freeway project. The average change in commute time is com-
puted to be ȳ � �3.6, and the sample standard deviation is s � 18.7; thus, se(ȳ ) �

18.7/��300 � 1.08. The t statistic is t � �3.6/1.08 � �3.33, which is very statistically sig-
nificant; the p-value is essentially zero. Thus, we conclude that the freeway widening had
a statistically significant effect on average commute time.

If the outcome of the hypothesis test is all that were reported from the study, it would
be misleading. Reporting only statistical significance masks the fact that the estimated
reduction in average commute time, 3.6 minutes, is pretty meager. To be up front, we
should report the point estimate of �3.6, along with the significance test.

While the magnitude and sign of the t statistic determine statistical significance, the
point estimate ȳ determines what we might call practical significance. An estimate can
be statistically significant without being especially large. We should always discuss the
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practical significance along with the statistical significance of point estimates; this
theme will arise often in the text.

Finding point estimates that are statistically significant without being practically
significant often occurs when we are working with large samples. To discuss why this
happens, it is useful to have the following definition.

TEST CONSISTENCY
A consistent test rejects H0 with probability approaching one as the sample size grows,
whenever H1 is true.

Another way to say that a test is consistent is that, as the sample size tends to infin-
ity, the power of the test gets closer and closer to unity, whenever H1 is true. All of the
tests we cover in this text have this property. In the case of testing hypotheses about a
population mean, test consistency follows because the variance of Ȳ converges to zero
as the sample size gets large. The t statistic for testing H0: � � 0 is T � Ȳ /(S/��n). Since
plim(Ȳ ) � � and plim(S ) � �, it follows that if, say, � � 0, then T gets larger and
larger (with high probability) as n * 
. In other words, no matter how close � is to
zero, we can be almost certain to reject H0: � � 0, given a large enough sample size.
This says nothing about whether � is large in a practical sense.

C.7 REMARKS ON NOTATION

In our review of probability and statistics here and in Appendix B, we have been care-
ful to use standard conventions to denote random variables, estimators, and test statis-
tics. For example, we have used W to indicate an estimator (random variable) and w to
denote a particular estimate (outcome of the random variable W ). Distinguishing
between an estimator and an estimate is important for understanding various concepts
in estimation and hypothesis testing. However, making this distinction quickly becomes
a burden in econometric analysis because the models are more complicated: many ran-
dom variables and parameters will be involved, and being true to the usual conventions
from probability and statistics requires many extra symbols.

In the main text, we use a simpler convention that is widely used in econometrics.
If � is a population parameter, the notation �̂ (“theta hat”) will be used to denote both
an estimator and an estimate of �. This notation is useful in that it provides a simple
way of attaching an estimator to the population parameter it is supposed to be estimat-
ing. Thus, if the population parameter is �, then �̂ denotes an estimator or estimate of
�; if the parameter is �2, �̂2 is an estimator or estimate of �2; and so on. Sometimes,
we will discuss two estimators of the same parameter, in which case, we will need a dif-
ferent notation, such as �̃ (“theta tilda”).

While dropping the conventions from probability and statistics to indicate estima-
tors, random variables, and test statistics puts additional responsibility on you, it is not
a big deal, once the difference between an estimator and an estimate is understood. If
we are discussing statistical properties of �̂—such as deriving whether or not it is unbi-
ased or consistent—then we are necessarily viewing �̂ as an estimator. On the other
hand, if we write something like �̂ � 1.73, then we are clearly denoting a point estimate
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from a given sample of data. The confusion that can arise by using �̂ to denote both
should be minimal, once you have a good understanding of probability and statistics.

SUMMARY

We have discussed topics from mathematical statistics that are heavily relied on in
econometric analysis. The notion of an estimator, which is simply a rule for combining
data to estimate a population parameter, is fundamental. We have covered various prop-
erties of estimators. The most important small sample properties are unbiasedness and
efficiency, the latter of which depends on comparing variances when estimators are
unbiased. Large sample properties concern the sequence of estimators obtained as the
sample size grows, and they are also heavily relied on in econometrics. Any useful esti-
mator is consistent. The central limit theorem implies that, in large samples, the sam-
pling distribution of most estimators is approximately normal.

The sampling distribution of an estimator can be used to construct confidence inter-
vals. We saw this for estimating the mean from a normal distribution and for comput-
ing approximate confidence intervals in nonnormal cases. Classical hypothesis testing,
which requires specifying a null hypothesis, an alternative hypothesis, and a signifi-
cance level, is carried out by comparing a test statistic to a critical value. Alternatively,
a p-value can be computed that allows us to carry out a test at any significance level.

KEY TERMS
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Alternative Hypothesis
Asymptotic Normality
Bias
Central Limit Theorem (CLT)
Confidence Interval
Consistent Estimator
Consistent Test
Critical Value
Estimate
Estimator
Hypothesis Test
Inconsistent
Interval Estimator
Law of Large Numbers (LLN)
Least Squares Estimator
Maximum Likelihood Estimator
Mean Squared Error (MSE)
Method of Moments
Minimum Variance Unbiased Estimator
Null Hypothesis
One-Sided Alternative
One-Tailed Test
Population

Power of a Test
Practical Significance
Probability Limit
p-Value
Random Sample
Rejection Region
Sample Average
Sample Correlation Coefficient
Sample Covariance
Sample Standard Deviation
Sample Variance
Sampling Distribution
Sampling Variance
Significance Level
Standard Error
t Statistic
Test Statistic
Two-Sided Alternative
Two-Tailed Test
Type I Error
Type II Error
Unbiasedness
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PROBLEMS

C.1 Let Y1, Y2, Y3, and Y4 be independent, identically distributed random variables

from a population with mean � and variance �2. Let Ȳ � (Y1 � Y2 � Y3 � Y4) denote

the average of these four random variables.
(i) What are the expected value and variance of Ȳ in terms of � and �2?
(ii) Now, consider a different estimator of �:

W � Y1 � Y2 � Y3 � Y4.

This is an example of a weighted average of the Yi. Show that W is also
an unbiased estimator of �. Find the variance of W.

(iii) Based on your answers to parts (i) and (ii), which estimator of � do you
prefer, Ȳ or W?

(iv) Now, consider a more general estimator of �, defined by

Wa � a1Y1 � a2Y2 � a3Y3 � a4Y4,

where the ai are constants. What condition is needed on the ai for Wa to
be an unbiased estimator of �?

(v) Compute the variance of the estimator Wa from part (iv).

C.2 This is a more general version of Problem C.1. Let Y1, Y2, …, Yn be n pairwise
uncorrelated random variables with common mean � and common variance �2. Let Ȳ
denote the sample average.

(i) Define the class of linear estimators of � by

Wa � a1Y1 � a2Y2 � … � anYn,

where the ai are constants. What restriction on the ai is needed for Wa to
be an unbiased estimator of �?

(ii) Find Var(Wa).
(iii) For any numbers a1, a2, …, an, the following inequality holds: (a1 �

a2 � … � an)2/n 	 a1
2 � a2

2 � … � an
2. Use this, along with parts (i)

and (ii), to show that Var(Wa) � Var(Ȳ ) whenever Wa is unbiased, so
that Ȳ is the best linear unbiased estimator. [Hint: What does the
inequality become when the ai satisfy the restriction from part (i)?]

C.3 Let Y denote the sample average from a random sample with mean � and variance
�2. Consider two alternative estimators of �: W1 � [(n � 1)/n]Ȳ and W2 � Ȳ/2.

(i) Show that W1 and W2 are both biased estimators of � and find the
biases. What happens to the biases as n * 
? Comment on any impor-
tant differences in bias for the two estimators as the sample size gets
large.

(ii) Find the probability limits of W1 and W2. {Hint: Use properties PLIM.1
and PLIM.2; for W1, note that plim [(n � 1)/n] � 1.} Which estimator
is consistent?

(iii) Find Var(W1) and Var(W2).

1

2

1

4

1

8

1

8

1

4
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(iv) Argue that W1 is a better estimator than Ȳ if � is “close” to zero.
(Consider both bias and variance.)

C.4 For positive random variables X and Y, suppose the expected value of Y given X is
E(Y �X) � �X. The unknown parameter � shows how the expected value of Y changes
with X.

(i) Define the random variable Z � Y/X. Show that E(Z ) � �. [Hint: Use
Property CE.2 along with the law of iterated expectations, Property
CE.4. In particular, first show that E(Z�X) � � and then use CE.4.]

(ii) Use part (i) to prove that the estimator W � n�1 �
n

i�1
(Yi/Xi) is unbiased

for W, where {(Xi,Yi): i � 1,2, …, n} is a random sample.
(iii) The following table contains data on corn yields for several counties in

Iowa. The USDA predicts the number of hectares of corn in each county
based on satellite photos. Researchers count the number of “pixels” of
corn in the satellite picture (as opposed to, for example, the number of
pixels of soybeans or of uncultivated land) and use these to predict the
actual number of hectares. To develop a prediction equation to be used
for counties in general, the USDA surveyed farmers in selected coun-
ties to obtain corn yields in hectares. Let Yi � corn yield in county i and
let Xi � number of corn pixels in the satellite picture for county i. There
are n � 17 observations for eight counties. Use this sample to compute
the estimate of � devised in part (ii).

Plot Corn Yield Corn Pixels

1 165.76 374

2 96.32 209

3 76.08 253

4 185.35 432

5 116.43 367

6 162.08 361

7 152.04 288

8 161.75 369

9 92.88 206
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Plot Corn Yield Corn Pixels

10 149.94 316

11 64.75 145

12 127.07 355

13 133.55 295

14 77.70 223

15 206.39 459

16 108.33 290

17 118.17 307

C.5 Let Y denote a Bernoulli(�) random variable with 0 
 � 
 1. Suppose we are
interested in estimating the odds ratio, � � �/(1 � �), which is the probability of suc-
cess over the probability of failure. Given a random sample {Y1, …, Yn}, we know that
an unbiased and consistent estimator of � is Ȳ, the proportion of successes in n trials. A
natural estimator of � is G � {Ȳ/(1 � Ȳ )}, the proportion of successes over the pro-
portion of failures in the sample.

(i) Why is G not an unbiased estimator of �?
(ii) Use PLIM.2(iii) to show that G is a consistent estimator of �.

C.6 You are hired by the governor to study whether a tax on liquor has decreased aver-
age liquor consumption in your state. You are able to obtain, for a sample of individu-
als selected at random, the difference in liquor consumption (in ounces) for the years
before and after the tax. For person i who is sampled randomly from the population, Yi

denotes the change in liquor consumption. Treat these as a random sample from a
Normal(�,�2) distribution.

(i) The null hypothesis is that there was no change in average liquor con-
sumption. State this formally in terms of �.

(ii) The alternative is that there was a decline in liquor consumption; state
the alternative in terms of �.

(iii) Now, suppose your sample size is n � 900 and you obtain the estimates
ȳ � �32.8 and s � 466.4. Calculate the t statistic for testing H0 against
H1; obtain the p-value for the test. (Because of the large sample size,
just use the standard normal distribution tabulated in Table G.1.) Do
you reject H0 at the 5% level? at the 1% level?

(iv) Would you say that the estimated fall in consumption is large in mag-
nitude? Comment on the practical versus statistical significance of this
estimate.
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(v) What has been implicitly assumed in your analysis about other deter-
minants of liquor consumption over the two-year period in order to
infer causality from the tax change to liquor consumption?

C.7 The new management at a bakery claims that workers are now more productive
than they were under old management, which is why wages have “generally increased.”
Let Wi

b be Worker i’s wage under the old management and let Wi
a be Worker i’s wage

after the change. The difference is Di � Wi
a � Wi

b. Assume that the Di are a random
sample from a Normal(�,�2) distribution.

(i) Using the following data on 15 workers, construct an exact 95% confi-
dence interval for �.

(ii) Formally state the null hypothesis that there has been no change in aver-
age wages. In particular, what is E(Di) under H0? If you are hired to
examine the validity of the new management’s claim, what is the rele-
vant alternative hypothesis in terms of � � E(Di)?

(iii) Test the null hypothesis from part (ii) against the stated alternative at the
5% and 1% levels.

(iv) Obtain the p-value for the test in part (iii).

Worker Wage Before Wage After

1 8.30 9.25

2 9.40 9.00

3 9.00 9.25

4 10.50 10.00

5 11.40 12.00

6 8.75 9.50

7 10.00 10.25

8 9.50 9.50

9 10.80 11.50

10 12.55 13.10

11 12.00 11.50

12 8.65 9.00
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Worker Wage Before Wage After

13 7.75 7.75

14 11.25 11.50

15 12.65 13.00

C.8 The New York Times (2/5/90) reported three-point shooting performance for the
top ten three-point shooters in the NBA. The following table summarizes these data:

Player FGA-FGM

Mark Price 429-188

Trent Tucker 833-345

Dale Ellis 1,149-472

Craig Hodges 1,016-396

Danny Ainge 1,051-406

Byron Scott 676-260

Reggie Miller 416-159

Larry Bird 1,206-455

Jon Sundvold 440-166

Brian Taylor 417-157

Note: FGA � field goals attempted and FGM � field
goals made.

For a given player, the outcome of a particular shot can be modeled as a Bernoulli (zero-
one) variable: if Yi is the outcome of shot i, then Yi � 1 if the shot is made, and Yi � 0
if the shot is missed. Let � denote the probability of making any particular three-point
shot attempt. The natural estimator of � is Ȳ � FGM/FGA.

(i) Estimate � for Mark Price.
(ii) Find the standard deviation of the estimator Ȳ in terms of � and the

number of shot attempts, n.
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(iii) The asymptotic distribution of (Ȳ � �)/se(Ȳ ) is standard normal, where
se(Ȳ ) � ��Ȳ(1 � Ȳ )/n�. Use this fact to test H0: � � .5 against H1: � 

.5 for Mark Price. Use a 1% significance level.

C.9 Suppose that a military dictator in an unnamed country holds a plebiscite (a yes/no
vote of confidence) and claims that he was supported by 65% of the voters. A human
rights group suspects foul play and hires you to test the validity of the dictator’s claim.
You have a budget that allows you to randomly sample 200 voters from the country.

(i) Let X be the number of yes votes obtained from a random sample of 200
out of the entire voting population. What is the expected value of X if,
in fact, 65% of all voters supported the dictator?

(ii) What is the standard deviation of X, again assuming that the true frac-
tion voting yes in the plebiscite is .65?

(iii) Now, you collect your sample of 200, and you find that 115 people actu-
ally voted yes. Use the CLT to approximate the probability that you
would find 115 or fewer yes votes from a random sample of 200 if, in
fact, 65% of the entire population voted yes.

(iv) How would you explain the relevance of the number in part (iii) to
someone who does not having training in statistics?

C.10 Before a strike prematurely ended the 1994 major league baseball season, Tony
Gwynn of the San Diego Padres had 165 hits in 419 at bats, for a .394 batting average.
There was discussion about whether Gwynn was a potential .400 hitter that year. This
issue can be couched in terms of Gwynn’s probability of getting a hit on a particular at
bat, call it �. Let Yi be the Bernoulli(�) indicator equal to unity if Gwynn gets a hit dur-
ing his ith at bat, and zero otherwise. Then, Y1, Y2, …, Yn is a random sample from a
Bernoulli(�) distribution, where � is the probability of success, and n � 419.

Our best point estimate of � is Gwynn’s batting average, which is just the propor-
tion of successes: ȳ � .394. Using the fact that se(ȳ) � ��ȳ(1 � ȳ)/n� , construct an
approximate 95% confidence interval for �, using the standard normal distribution.
Would you say there is strong evidence against Gwynn’s being a potential .400 hitter?
Explain.
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This appendix summarizes the matrix algebra concepts, including the algebra of
probability, needed for the study of multiple linear regression models using
matrices in Appendix E. None of this material is used in the main text.

D.1 BASIC DEFINITIONS

DEFINITION D.1 (Matrix)
A matrix is a rectangular array of numbers. More precisely, an m � n matrix has m
rows and n columns. The positive integer m is called the row dimension, and n is called
the column dimension.

We use uppercase boldface letters to denote matrices. We can write an m � n matrix
generically as

A � [aij] � 

where aij represents the element in the ith row and the jth column. For example, a25

stands for the number in the second row and the fifth column of A. A specific example
of a 2 � 3 matrix is

A � (D.1)

where a13 � 7. The shorthand A � [aij] is often used to define matrix operations.

DEFINITION D.2 (Square Matrix)
A square matrix has the same number of rows and columns. The dimension of a square
matrix is its number of rows and columns.

�2 �1 7
�4 5 0�

�
a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

.

.

.
am1 am2 am3 . . . amn

�
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DEFINITION D.3 (Vectors)
(i) A 1 � m matrix is called a row vector (of dimension m) and can be written as x �
(x1,x2, …, xm).

(ii) An n � 1 matrix is called a column vector and can be written as

y � .

DEFINITION D.4 (Diagonal Matrix)
A square matrix A is a diagonal matrix when all of its diagonal elements are zero, that
is, aij � 0 for all i � j. We can always write a diagonal matrix as

A � .

DEFINITION D.5 (Identity and Zero Matrices)
(i) The n � n identity matrix, denoted I, or sometimes In to emphasize its dimension,
is the diagonal matrix with unity (one) in each diagonal position, and zero elsewhere:

I � In � .

(ii) The m � n zero matrix, denoted 0, is the m � n matrix with zero for all entries.
This need not be a square matrix.

D.2 MATRIX OPERATIONS

Matrix Addition

Two matrices A and B, each having dimension m � n, can be added element by ele-
ment: A � B � [aij � bij]. More precisely,

A � B � .�
a11 � b11 a12 � b12 . . . a1n � b1n

a21 � b21 a22 � b22 . . . a2n � b2n

.

.

.
am1 � bm1 am2 � bm2 . . . amn � bmn

�

�
1 0 0 . . . 0
0 1 0 . . . 0
. .
. .
. .
0 0 0 . . . 1

�

�
a11 0 0 . . . 0
0 a22 0 . . . 0
.
.
.
0 0 0 . . . ann

�

�
y1

y2

.

.

.
yn

�
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For example,

� � .

Matrices of different dimensions cannot be added.

Scalar Multiplication

Given any real number � (often called a scalar), scalar multiplication is defined as
�A � [�aij], or

�A � .

For example, if � � 2 and A is the matrix in equation (D.1), then

�A � .

Matrix Multiplication

To multiply matrix A by matrix B to form the product AB, the column dimension of A
must equal the row dimension of B. Therefore, let A be an m � n matrix and let B be
an n � p matrix. Then matrix multiplication is defined as

AB � �
n

k�1
aikbkj .

In other words, the (i, j)th element of the new matrix AB is obtained by multiplying each
element in the ith row of A by the corresponding element in the jth column of B and
adding these n products together. A schematic may help make this process more trans-
parent:

,�
AB

�
n

k�1
aikbkj

+

‹

‹

‹

‹

‹

(i, j)th element

���
B

b1j

b2j

b3j

.

.

.
bnj

+

‹

jth column

��
A

ai1 ai2 ai3 . . . ain�ith row *

��

�4 �2 14
�8 10 0�

�
�a11 �a12 . . . �a1n

�a21 �a22 . . . �a2n

.

.

.
�am1 �am2 . . . �amn

�

�3 �1 3
0 7 3��1 0 �4

4 2 3��2 �1 7
�4 5 0�
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where, by the definition of the summation operator in Appendix A,

�
n

k�1
aikbkj � ai1b1j � ai2b2 j � … � ainbnj.

For example,

� .

We can also multiply a matrix and a vector. If A is an n � m matrix and y is an m � 1
vector, then Ay is an n � 1 vector. If x is a 1 � n vector, then xA is a 1 � m vector.

Matrix addition, scalar multiplication, and matrix multiplication can be combined
in various ways, and these operations satisfy several rules that are familiar from basic
operations on numbers. In the following list of properties, A, B, and C are matrices with
appropriate dimensions for applying each operation, and � and 	 are real numbers.
Most of these properties are easy to illustrate from the definitions.

PROPERTIES OF MATRIX MULTIPLICATION: (1) (� � 	)A � �A � 	A; (2) �(A �
B) � �A � �B; (3) (�	)A � �(	A); (4) �(AB) � (�A)B; (5) A � B � B � A;
(6) (A � B) � C � A � (B � C); (7) (AB)C � A(BC); (8) A(B � C) � AB � AC;
(9) (A � B)C � AC � BC; (10) IA � AI � A; (11) A � 0 � 0 � A � A; (12) A �
A � 0; (13) A0 � 0A � 0; (14) AB � BA, even when both products are defined.

The last property deserves further comment. If A is n � m and B is m � p, then AB is
defined, but BA is defined only if n � p (the row dimension of A equals the column
dimension of B). If A is m � n and B is n � m, then AB and BA are both defined, but
they are not usually the same; in fact, they have different dimensions, unless A and B
are both square matrices. Even when A and B are both square, AB � BA, except under
special circumstances.

Transpose

DEFINITION D.6 (Transpose)
Let A � [aij] be an m � n matrix. The transpose of A, denoted A
 (called A prime), is
the n � m matrix obtained by interchanging the rows and columns of A. We can write
this as A
 � [aji].

For example,

A � , A
 � .

PROPERTIES OF TRANSPOSE: (1) (A
)
 � A; (2) (�A)
 � �A
 for any scalar �; (3)

(A � B)
 � A
+ B
; (4) (AB)
 � B
A
, where A is m � n and B is n � k; (5) x
x � �
n

i�1
xi

2,

�2 �4
�1 5

7 0��2 �1 7
�4 5 0�

�1 0 12 �1
�1 �2 �24 1��0 1 6 0

�1 2 0 1
3 0 0 0��2 �1 0

�4 1 0�
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where x is an n � 1 vector; (6) If A is an n � k matrix with rows given by the
1 � k vectors a1,a2, …, an, so that we can write

A � ,

then A
 � (a1
 a2
 . . . an
).

DEFINITION D.7 (Symmetric Matrix)
A square matrix A is a symmetric matrix if and only if A
 � A.

If X is any n � k matrix, then X
X is always defined and is a symmetric matrix, as can
be seen by applying the first and fourth transpose properties (see Problem D.3).

Partitioned Matrix Multiplication

Let A be an n � k matrix with rows given by the 1 � k vectors a1,a2, …, an, and let B
be an n � m matrix with rows given by 1 � m vectors b1,b2, …, bn:

A � , B � .

Then,

A
B � �
n

i�1
ai
bi,

where for each i, ai
bi is a k � m matrix. Therefore, A
B can be written as the sum of n
matrices, each of which is k � m. As a special case, we have

A
A � �
n

i�1
ai
ai,

where ai
ai is a k � k matrix for all i.

Trace

The trace of a matrix is a very simple operation defined only for square matrices.

DEFINITION D.8 (Trace)
For any n � n matrix A, the trace of a matrix A, denoted tr(A), is the sum of its diag-
onal elements. Mathematically,

�
b1

b2

.

.

.
bn

��
a1

a2

.

.

.
an

�

�
a1

a2

.

.

.
an

�
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tr(A) � �
n

i�1
aii.

PROPERTIES OF TRACE: (1) tr(In) � n; (2) tr(A
) � tr(A); (3) tr(A � B) � tr(A) �
tr(B); (4) tr(�A) � �tr(A), for any scalar �; (5) tr(AB) � tr(BA), where A is m � n and
B is n � m.

Inverse

The notion of a matrix inverse is very important for square matrices.

DEFINITION D.9 (Inverse)
An n � n matrix A has an inverse, denoted A�1, provided that A�1A � In and AA�1 �
In. In this case, A is said to be invertible or nonsingular. Otherwise, it is said to be non-
invertible or singular.

PROPERTIES OF INVERSE: (1) If an inverse exists, it is unique; (2) (�A)�1 �
(1/�)A�1, if � � 0 and A is invertible; (3) (AB)�1 � B�1A�1, if A and B are both
n � n and invertible; (4) (A
)�1 � (A�1)
.

We will not be concerned with the mechanics of calculating the inverse of a matrix. Any
matrix algebra text contains detailed examples of such calculations.

D.3 LINEAR INDEPENDENCE. RANK OF A MATRIX

For a set of vectors having the same dimension, it is important to know whether one
vector can be expressed as a linear combination of the remaining vectors.

DEFINITION D.10 (Linear Independence)
Let {x1,x2, …, xr} be a set of n � 1 vectors. These are linearly independent vectors if
and only if

�1x1 � �2x2 � … � �r xr � 0 (D.2)

implies that �1 � �2 � … � �r � 0. If (D.2) holds for a set of scalars that are not all
zero, then {x1,x2, …, xr} is linearly dependent.

The statement that {x1,x2, …, xr} is linearly dependent is equivalent to saying that at
least one vector in this set can be written as a linear combination of the others.

DEFINITION D.11 (Rank)
(i) Let A be an n � m matrix. The rank of a matrix A, denoted rank(A), is the maxi-
mum number of linearly independent columns of A.

(ii) If A is n � m and rank(A) � m, then A has full column rank.
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If A is n � m, its rank can be at most m. A matrix has full column rank if its columns
form a linearly independent set. For example, the 3 � 2 matrix

can have at most rank two. In fact, its rank is only one because the second column is
three times the first column.

PROPERTIES OF RANK: (1) rank(A
) � rank(A); (2) If A is n � k, then rank(A) �
min(n,k); (3) If A is k � k and rank(A) � k, then A is nonsingular.

D.4 QUADRATIC FORMS AND POSITIVE DEFINITE
MATRICES

DEFINITION D.12 (Quadratic Form)
Let A be an n � n symmetric matrix. The quadratic form associated with the matrix
A is the real-valued function defined for all n � 1 vectors x:

f(x) � x
Ax � �
n

i�1
aiix

2
i � 2 �

n

i�1 
�
j�i

aijxixj.

DEFINITION D.13 (Positive Definite and Positive Semi-Definite)
(i) A symmetric matrix A is said to be positive definite (p.d.) if

x
Ax � 0 for all n � 1 vectors x except x � 0.

(ii) A symmetric matrix A is positive semi-definite (p.s.d.) if

x
Ax 
 0 for all n � 1 vectors.

If a matrix is positive definite or positive semi-definite, it is automatically assumed to
be symmetric.

PROPERTIES OF POSITIVE DEFINITE AND POSITIVE SEMI-DEFINITE MATRICES:
(1) A positive definite matrix has diagonal elements that are strictly positive, while a
p.s.d. matrix has nonnegative diagonal elements; (2) If A is p.d., then A�1 exists and is
p.d.; (3) If X is n � k, then X
X and XX
 are p.s.d.; (4) If X is n � k and rank(X) � k,
then X
X is p.d. (and therefore nonsingular).

D.5 IDEMPOTENT MATRICES

DEFINITION D.14 (Idempotent Matrix)
Let A be an n � n symmetric matrix. Then A is said to be an idempotent matrix if and
only if AA � A.

For example,

�1 3
2 6
0 0�
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is an idempotent matrix, as direct multiplication verifies.

PROPERTIES OF IDEMPOTENT MATRICES: Let A be an n � n idempotent matrix.
(1) rank(A) � tr(A); (2) A is positive semi-definite.

We can construct idempotent matrices very generally. Let X be an n � k matrix with
rank(X) � k. Define

P � X(X
X)�1X


M � In � X(X
X)�1X
 � In � P.

Then P and M are symmetric, idempotent matrices with rank(P) � k and rank(M) �
n � k. The ranks are most easily obtained by using Property 1: tr(P) � tr[(X�X)�1X�X]
(from Property 5 for trace) � tr(Ik) � k (by Property 1 for trace). It easily follows that
tr(M) � tr(In) � tr(P) � n � k.

D.6 DIFFERENTIATION OF LINEAR AND QUADRATIC
FORMS

For a given n � 1 vector a, consider the linear function defined by

f(x) � a
x,

for all n � 1 vectors x. The derivative of f with respect to x is the 1 � n vector of
partial derivatives, which is simply

�f(x)/�x � a
.

For an n � n symmetric matrix A, define the quadratic form

g(x) � x
Ax.

Then,

�g(x)/�x � 2x
A,

which is a 1 � n vector.

D.7 MOMENTS AND DISTRIBUTIONS OF RANDOM
VECTORS

In order to derive the expected value and variance of the OLS estimators using matri-
ces, we need to define the expected value and variance of a random vector. As its name
suggests, a random vector is simply a vector of random variables. We also need to
define the multivariate normal distribution. These concepts are simply extensions of
those covered in Appendix B.

�1 0 0
0 0 0
0 0 1�
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Expected Value

DEFINITION D.15 (Expected Value)
(i) If y is an n � 1 random vector, the expected value of y, denoted E( y), is the vector
of expected values: E( y) � [E(y1),E(y2), …, E(yn)]
.

(ii) If Z is an n � m random matrix, E(Z) is the n � m matrix of expected values:
E(Z) � [E(zij)].

PROPERTIES OF EXPECTED VALUE: (1) If A is an m � n matrix and b is an n � 1
vector, where both are nonrandom, then E(Ay � b) � AE( y) � b; (2) If A is p � n and
B is m � k, where both are nonrandom, then E(AZB) � AE(Z)B.

Variance-Covariance Matrix

DEFINITION D.16 (Variance-Covariance Matrix)
If y is an n � 1 random vector, its variance-covariance matrix, denoted Var( y), is
defined as

Var( y) � ,

where � j
2 � Var(yj) and � ij � Cov(yi,yj). In other words, the variance-covariance matrix

has the variances of each element of y down its diagonal, with covariance terms in the
off diagonals. Because Cov(yi,yj) � Cov(yj,yi), it immediately follows that a variance-
covariance matrix is symmetric.

PROPERTIES OF VARIANCE: (1) If a is an n � 1 nonrandom vector, then Var(a
y) �
a
[Var(y)]a 
 0; (2) If Var(a
y) � 0 for all a � 0, Var(y) is positive definite; (3)
Var( y) � E[( y � �)(y � �)
], where � � E( y); (4) If the elements of y are uncorre-
lated, Var(y) is a diagonal matrix. If, in addition, Var(yj) � �2 for j � 1,2, …, n, then
Var(y) � � 2In; (5) If A is an m � n nonrandom matrix and b is an n � 1 nonrandom
vector, then Var(Ay � b) � A[Var(y)]A
.

Multivariate Normal Distribution

The normal distribution for a random variable was discussed at some length in
Appendix B. We need to extend the normal distribution to random vectors. We will not
provide an expression for the probability distribution function, as we do not need it. It
is important to know that a multivariate normal random vector is completely character-
ized by its mean and its variance-covariance matrix. Therefore, if y is an n � 1 multi-
variate normal random vector with mean � and variance-covariance matrix �, we write
y ~ Normal(�,�). We now state several useful properties of the multivariate normal
distribution.

�
�1

2 �12 . . . �1n

�21 �2
2 . . . �2n

.

.

.
�n1 �n2 . . . �n

2
�
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PROPERTIES OF THE MULTIVARIATE NORMAL DISTRIBUTION: (1) If y ~
Normal(�,�), then each element of y is normally distributed; (2) If y ~ Normal(�,�),
then yi and yj, any two elements of y, are independent if and only if they are uncorre-
lated, that is, � ij � 0; (3) If y ~ Normal(�,�), then Ay � b ~ Normal(A� � b,A�A
),
where A and b are nonrandom; (4) If y ~ Normal(0,�), then, for nonrandom matrices
A and B, Ay and By are independent if and only if A�B
 � 0. In particular, if � � �2In,
then AB
 � 0 is necessary and sufficient for independence of Ay and By; (5) If y ~
Normal(0,�2In), A is a k � n nonrandom matrix, and B is an n � n symmetric, idem-
potent matrix, then Ay and y
By are independent if and only if AB � 0; (6) If y ~
Normal(0,�2In) and A and B are nonrandom symmetric, idempotent matrices, then
y
Ay and y
By are independent if and only if AB � 0.

Chi-Square Distribution

In Appendix B, we defined a chi-square random variable as the sum of squared inde-
pendent standard normal random variables. In vector notation, if u ~ Normal(0,In), then
u
u ~ �n

2.

PROPERTIES OF THE CHI-SQUARE DISTRIBUTION: (1) If u ~ Normal(0,In) and A is
an n � n symmetric, idempotent matrix with rank(A) � q, then u
Au ~ �q

2; (2) If u ~
Normal(0,In) and A and B are n � n symmetric, idempotent matrices such that AB �
0, then u
Au and u
Bu are independent, chi-square random variables.

t Distribution

We also defined the t distribution in Appendix B. Now we add an important property.

PROPERTY OF THE t DISTRIBUTION: If u ~ Normal(0,In), c is an n � 1 nonrandom
vector, A is a nonrandom n � n symmetric, idempotent matrix with rank q, and Ac �
0, then {c
u/(c
c)1/2}/(u
Au)1/ 2 ~ tq.

F Distribution

Recall that an F random variable is obtained by taking two independent chi-square
random variables and finding the ratio of each standardized by degrees of freedom.

PROPERTY OF THE F DISTRIBUTION: If u ~ Normal(0,In) and A and B are n � n non-
random symmetric, idempotent matrices with rank(A) � k1, rank(B) � k2, and AB �
0, then (u
Au/k1)/(u
Bu/k2) ~ Fk1,k2

.

SUMMARY

This appendix contains a condensed form of the background information needed to
study the classical linear model using matrices. While the material here is self-
contained, it is primarily intended as a review for readers who are familiar with matrix
algebra and multivariate statistics, and it will be used extensively in Appendix E.
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KEY TERMS
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Chi-Square Random Variable
Column Vector
Diagonal Matrix
Expected Value
F Random Variable
Idempotent Matrix
Identity Matrix
Inverse
Linearly Independent Vectors
Matrix
Matrix Multiplication
Multivariate Normal Distribution
Positive Definite 

Positive Semi-Definite 
Quadratic Form
Random Vector
Rank of a Matrix
Row Vector
Scalar Multiplication
Square Matrix
Symmetric Matrix
t Distribution
Trace of a Matrix
Transpose
Variance-Covariance Matrix
Zero Matrix

PROBLEMS

D.1 i(i) Find the product AB using

A � , B � .

(ii) Does BA exist?

D.2 If A and B are n � n diagonal matrices, show that AB � BA.

D.3 Let X be any n � k matrix. Show that X
X is a symmetric matrix.

D.4 (i)i Use the properties of trace to argue that tr(A
A) � tr(AA
) for any n � m ma-
trix A.

(ii) For A � , verify that tr(A
A) � tr(AA
).

D.5 (i)i Use the definition of inverse to prove the following: if A and B are n � n
nonsingular matrices, then (AB)�1 � B�1A�1.

(ii) If A, B, and C are all n � n nonsingular matrices, find (ABC)�1 in terms of
A�1, B�1, and C�1.

D.6 (i)i Show that if A is an n � n symmetric, positive definite matrix, then A must
have strictly positive diagonal elements.

(ii) Write down a 2 � 2 symmetric matrix with strictly positive diagonal ele-
ments that is not positive definite.

D.7 Let A be an n � n symmetric, positive definite matrix. Show that if P is any
n � n nonsingular matrix, then P
AP is positive definite.

D.8 Prove Property 5 of variances for vectors, using Property 3.

�2 0 �1
0 3 0�

�0 1 6
1 8 0
3 0 0��2 �1 7

�4 5 0�

xd  7/14/99 9:28 PM  Page 754





This appendix derives various results for ordinary least squares estimation of the
multiple linear regression model using matrix notation and matrix algebra (see
Appendix D for a summary). The material presented here is much more ad-

vanced than that in the text.

E.1 THE MODEL AND ORDINARY LEAST SQUARES
ESTIMATION

Throughout this appendix, we use the t subscript to index observations and an n to
denote the sample size. It is useful to write the multiple linear regression model with k
parameters as follows:

yt � �1 � �2xt2 � �3xt3 � … � �kxtk � ut, t � 1,2, …, n, (E.1)

where yt is the dependent variable for observation t, and xtj, j � 2,3, …, k, are the inde-
pendent variables. Notice how our labeling convention here differs from the text: we
call the intercept �1 and let �2, …, �k denote the slope parameters. This relabeling is not
important, but it simplifies the matrix approach to multiple regression.

For each t, define a 1 � k vector, xt � (1,xt2, …, xtk), and let � � (�1,�2, …, �k)� be
the k � 1 vector of all parameters. Then, we can write (E.1) as

yt � xt� � ut, t � 1,2, …, n. (E.2)

[Some authors prefer to define xt as a column vector, in which case, xt is replaced
with xt� in (E.2). Mathematically, it makes more sense to define it as a row vector.] We
can write (E.2) in full matrix notation by appropriately defining data vectors and
matrices. Let y denote the n � 1 vector of observations on y: the t th element of y is yt.
Let X be the n � k vector of observations on the explanatory variables. In other
words, the t th row of X consists of the vector xt. Equivalently, the (t, j)th element of X
is simply xtj:
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n 
X
� k

� � .

Finally, let u be the n � 1 vector of unobservable disturbances. Then, we can write (E.2)
for all n observations in matrix notation:

y � X� � u. (E.3)

Remember, because X is n � k and � is k � 1, X� is n � 1.
Estimation of � proceeds by minimizing the sum of squared residuals, as in Section

3.2. Define the sum of squared residuals function for any possible k � 1 parameter vec-
tor b as

SSR(b) � �
n

t�1
(yt � xtb)2.

The k � 1 vector of ordinary least squares estimates, �̂ � (�̂1,�̂2, …, �̂k)�, minimizes
SSR(b) over all possible k � 1 vectors b. This is a problem in multivariable calculus.
For �̂ to minimize the sum of squared residuals, it must solve the first order condition

�SSR(�̂)/�b � 0. (E.4)

Using the fact that the derivative of (yt � xtb)2 with respect to b is the 1 � k vector
�2(yt � xtb)xt, (E.4) is equivalent to

�
n

t�1
xt�(yt � xt�̂) � 0. (E.5)

(We have divided by �2 and taken the transpose.) We can write this first order condi-
tion as

�
n

t�1
(yt � �̂1 � �̂2xt2 � … � �̂kxtk) � 0

�
n

t�1
xt2(yt � �̂1 � �̂2xt2 � … � �̂k xtk) � 0

.

.

.

�
n

t�1
xtk(yt � �̂1 � �̂2xt2 � … � �̂kxtk) � 0,

which, apart from the different labeling convention, is identical to the first order condi-
tions in equation (3.13). We want to write these in matrix form to make them more use-
ful. Using the formula for partitioned multiplication in Appendix D, we see that (E.5)
is equivalent to

�
1 x12 x13 . . . x1k

1 x22 x23 . . . x2k

.

.

.
1 xn2 xn3 . . . xnk

��
x1

x2

.

.

.
xn

�
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X�(y � X�̂) � 0 (E.6)

or

(X�X)�̂ � X�y. (E.7)

It can be shown that (E.7) always has at least one solution. Multiple solutions do not
help us, as we are looking for a unique set of OLS estimates given our data set.
Assuming that the k � k symmetric matrix X�X is nonsingular, we can premultiply both
sides of (E.7) by (X�X)�1 to solve for the OLS estimator �̂:

�̂ � (X�X)�1X�y. (E.8)

This is the critical formula for matrix analysis of the multiple linear regression model.
The assumption that X�X is invertible is equivalent to the assumption that rank(X) � k,
which means that the columns of X must be linearly independent. This is the matrix ver-
sion of MLR.4 in Chapter 3.

Before we continue, (E.8) warrants a word of warning. It is tempting to simplify the
formula for �̂ as follows:

�̂ � (X�X)�1X�y � X�1(X�)�1X�y � X�1y.

The flaw in this reasoning is that X is usually not a square matrix, and so it cannot be
inverted. In other words, we cannot write (X�X)�1 � X�1(X�)�1 unless n � k, a case
that virtually never arises in practice.

The n � 1 vectors of OLS fitted values and residuals are given by

ŷ � X�̂, û � y � ŷ � y � X�̂.

From (E.6) and the definition of û, we can see that the first order condition for �̂ is the
same as

X�û � 0. (E.9)

Because the first column of X consists entirely of ones, (E.9) implies that the OLS
residuals always sum to zero when an intercept is included in the equation and that the
sample covariance between each independent variable and the OLS residuals is zero.
(We discussed both of these properties in Chapter 3.)

The sum of squared residuals can be written as

SSR � �
n

t�1
û t

2 � û�û � ( y � X�̂)�(y � X�̂). (E.10)

All of the algebraic properties from Chapter 3 can be derived using matrix algebra. For
example, we can show that the total sum of squares is equal to the explained sum of
squares plus the sum of squared residuals [see (3.27)]. The use of matrices does not pro-
vide a simpler proof than summation notation, so we do not provide another derivation.
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The matrix approach to multiple regression can be used as the basis for a geometri-
cal interpretation of regression. This involves mathematical concepts that are even more
advanced than those we covered in Appendix D. [See Goldberger (1991) or Greene
(1997).]

E.2 FINITE SAMPLE PROPERTIES OF OLS

Deriving the expected value and variance of the OLS estimator �̂ is facilitated by
matrix algebra, but we must show some care in stating the assumptions.

A S S U M P T I O N  E . 1  ( L I N E A R  I N  P A R A M E T E R S )

The model can be written as in (E.3), where y is an observed n � 1 vector, X is an n � k
observed matrix, and u is an n � 1 vector of unobserved errors or disturbances.

A S S U M P T I O N  E . 2  ( Z E R O  C O N D I T I O N A L  M E A N )

Conditional on the entire matrix X, each error ut has zero mean: E(ut�X) � 0, t � 1,2, …, n.
In vector form,

E(u�X) � 0. (E.11)

This assumption is implied by MLR.3 under the random sampling assumption, MLR.2.
In time series applications, Assumption E.2 imposes strict exogeneity on the explana-
tory variables, something discussed at length in Chapter 10. This rules out explanatory
variables whose future values are correlated with ut; in particular, it eliminates lagged
dependent variables. Under Assumption E.2, we can condition on the xtj when we com-
pute the expected value of �̂.

A S S U M P T I O N  E . 3  ( N O  P E R F E C T  C O L L I N E A R I T Y )

The matrix X has rank k.

This is a careful statement of the assumption that rules out linear dependencies among
the explanatory variables. Under Assumption E.3, X�X is nonsingular, and so �̂ is
unique and can be written as in (E.8).

T H E O R E M  E . 1  ( U N B I A S E D N E S S  O F  O L S )

Under Assumptions E.1, E.2, and E.3, the OLS estimator �̂ is unbiased for �.

P R O O F : Use Assumptions E.1 and E.3 and simple algebra to write

�̂ � (X�X)�1X�y � (X�X)�1X�(X� � u)

� (X�X)�1(X�X)� � (X�X)�1X�u � � � (X�X)�1X�u,
(E.12)

where we use the fact that (X�X)�1(X�X) � Ik. Taking the expectation conditional on X gives
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E(�̂�X) � � � (X�X)�1X�E(u�X)

� � � (X�X)�1X�0 � �,

because E(u�X) � 0 under Assumption E.2. This argument clearly does not depend on the
value of �, so we have shown that �̂ is unbiased.

To obtain the simplest form of the variance-covariance matrix of �̂, we impose the
assumptions of homoskedasticity and no serial correlation.

A S S U M P T I O N  E . 4  ( H O M O S K E D A S T I C I T Y  A N D

N O  S E R I A L  C O R R E L A T I O N )

(i) Var(ut�X) � 	2, t � 1,2, …, n. (ii) Cov(ut,us�X) � 0, for all t 
 s. In matrix form, we can
write these two assumptions as

Var(u�X) � 	2In, (E.13)

where In is the n � n identity matrix.

Part (i) of Assumption E.4 is the homoskedasticity assumption: the variance of ut can-
not depend on any element of X, and the variance must be constant across observations,
t. Part (ii) is the no serial correlation assumption: the errors cannot be correlated across
observations. Under random sampling, and in any other cross-sectional sampling
schemes with independent observations, part (ii) of Assumption E.4 automatically
holds. For time series applications, part (ii) rules out correlation in the errors over time
(both conditional on X and unconditionally).

Because of (E.13), we often say that u has scalar variance-covariance matrix
when Assumption E.4 holds. We can now derive the variance-covariance matrix of
the OLS estimator.

T H E O R E M  E . 2  ( V A R I A N C E - C O V A R I A N C E

M A T R I X  O F  T H E  O L S  E S T I M A T O R )

Under Assumptions E.1 through E.4,

Var(�̂�X) � 	2(X�X)�1. (E.14)

P R O O F : From the last formula in equation (E.12), we have

Var(�̂�X) � Var[(X�X)�1X�u�X] � (X�X)�1X�[Var(u�X)]X(X�X)�1.

Now, we use Assumption E.4 to get

Var(�̂�X) � (X�X)�1X�(	2In)X(X�X)�1

� 	2(X�X)�1X�X(X�X)�1 � 	2(X�X)�1.
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Formula (E.14) means that the variance of �̂j (conditional on X) is obtained by multi-
plying 	2 by the jth diagonal element of (X�X)�1. For the slope coefficients, we gave an
interpretable formula in equation (3.51). Equation (E.14) also tells us how to obtain the
covariance between any two OLS estimates: multiply 	2 by the appropriate off diago-
nal element of (X�X)�1. In Chapter 4, we showed how to avoid explicitly finding
covariances for obtaining confidence intervals and hypotheses tests by appropriately
rewriting the model.

The Gauss-Markov Theorem, in its full generality, can be proven.

T H E O R E M  E . 3  ( G A U S S - M A R K O V  T H E O R E M )

Under Assumptions E.1 through E.4, �̂ is the best linear unbiased estimator.

P R O O F : Any other linear estimator of � can be written as

�̃ � A�y, (E.15)

where A is an n � k matrix. In order for �̃ to be unbiased conditional on X, A can consist
of nonrandom numbers and functions of X. (For example, A cannot be a function of y.) To
see what further restrictions on A are needed, write

�̃ � A�(X� � u) � (A�X)� � A�u. (E.16)

Then,

E(�̃�X) � A�X� � E(A�u�X)

� A�X� � A�E(u�X) since A is a function of X

� A�X� since E(u�X) � 0.

For �̃ to be an unbiased estimator of �, it must be true that E(�̃�X) � � for all k � 1 vec-
tors �, that is,

A�X� � � for all k � 1 vectors �. (E.17)

Because A�X is a k � k matrix, (E.17) holds if and only if A�X � Ik. Equations (E.15) and
(E.17) characterize the class of linear, unbiased estimators for �.

Next, from (E.16), we have

Var(�̃�X) � A�[Var(u�X)]A � 	2A�A,

by Assumption E.4. Therefore,

Var(�̃�X) � Var(�̂�X) � 	2[A�A � (X�X)�1]

� 	2[A�A � A�X(X�X)�1X�A] because A�X � Ik

� 	2A�[In � X(X�X)�1X�]A

� 	2A�MA,

where M � In � X(X�X)�1X�. Because M is symmetric and idempotent, A�MA is positive
semi-definite for any n � k matrix A. This establishes that the OLS estimator �̂ is BLUE. How
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is this significant? Let c be any k � 1 vector and consider the linear combination
c�� � c1�1 � c2�2 � … � ck�k, which is a scalar. The unbiased estimators of c�� are c��̂

and c��̃. But

Var(c�̃�X) � Var(c��̂�X) � c�[Var(�̃ �X) � Var(�̂�X)]c � 0,

because [Var(�̃�X) � Var(�̂ �X)] is p.s.d. Therefore, when it is used for estimating any linear
combination of �, OLS yields the smallest variance. In particular, Var(�̂j�X) � Var(�̃j�X) for
any other linear, unbiased estimator of �j.

The unbiased estimator of the error variance 	2 can be written as

	̂2 � û�û/(n � k),

where we have labeled the explanatory variables so that there are k total parameters,
including the intercept.

T H E O R E M  E . 4  ( U N B I A S E D N E S S O F  �̂ 2 )

Under Assumptions E.1 through E.4, 	̂2 is unbiased for 	2: E(	̂ 2�X) � 	 2 for all 	2 
 0.

P R O O F : Write û � y � X�̂ � y � X(X�X)�1X�y � My � Mu, where M � In �

X(X�X)�1X�, and the last equality follows because MX � 0. Because M is symmetric and
idempotent,

û�û � u�M�Mu � u�Mu.

Because u�Mu is a scalar, it equals its trace. Therefore,

� E(u�Mu�X) � E[tr(u�Mu)�X] � E[tr(Muu�)�X]

� tr[E(Muu�|X)] � tr[ME(uu�|X)]

� tr(M	2In) � 	2tr(M) � 	2(n � k).

The last equality follows from tr(M) � tr(In) � tr[X(X�X)�1X�] � n � tr[(X�X)�1X�X] � n �

tr(Ik) � n � k. Therefore,

E(	̂2�X) � E(u�Mu�X)/(n � k) � 	2.

E.3 STATISTICAL INFERENCE

When we add the final classical linear model assumption, �̂ has a multivariate normal
distribution, which leads to the t and F distributions for the standard test statistics cov-
ered in Chapter 4.

A S S U M P T I O N  E . 5  ( N O R M A L I T Y  O F  E R R O R S )

Conditional on X, the ut are independent and identically distributed as Normal(0,	2).
Equivalently, u given X is distributed as multivariate normal with mean zero and variance-
covariance matrix 	2In: u ~ Normal(0,	2In).
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Under Assumption E.5, each ut is independent of the explanatory variables for all t. In
a time series setting, this is essentially the strict exogeneity assumption.

T H E O R E M  E . 5  ( N O R M A L I T Y  O F  �̂ )

Under the classical linear model Assumptions E.1 through E.5, �̂ conditional on X is dis-
tributed as multivariate normal with mean � and variance-covariance matrix 	2(X�X)�1.

Theorem E.5 is the basis for statistical inference involving �. In fact, along with the
properties of the chi-square, t, and F distributions that we summarized in Appendix D,
we can use Theorem E.5 to establish that t statistics have a t distribution under
Assumptions E.1 through E.5 (under the null hypothesis) and likewise for F statistics.
We illustrate with a proof for the t statistics.

T H E O R E M  E . 6

Under Assumptions E.1 through E.5,

(�̂j � �j)/se(�̂j) ~ tn�k, j � 1,2, …, k.

P R O O F : The proof requires several steps; the following statements are initially
conditional on X. First, by Theorem E.5, (�̂j � �j)/sd(�̂ ) ~ Normal(0,1), where sd(�̂j) �

	��cjj, and cjj is the j th diagonal element of (X�X)�1. Next, under Assumptions E.1 through
E.5, conditional on X,

(n � k)	̂2/	2 ~ �2
n�k. (E.18)

This follows because (n � k)	̂2/	2 � (u/	)�M(u/	), where M is the n�n symmetric, idem-
potent matrix defined in Theorem E.4. But u/	 ~ Normal(0,In) by Assumption E.5. It follows
from Property 1 for the chi-square distribution in Appendix D that (u/	)�M(u/	) ~ �2

n�k

(because M has rank n � k).
We also need to show that �̂ and 	̂2 are independent. But �̂ � � � (X�X)�1X�u, and

	̂2 � u�Mu/(n � k). Now, [(X�X)�1X�]M � 0 because X�M � 0. It follows, from Property 5
of the multivariate normal distribution in Appendix D, that �̂ and Mu are independent.
Since 	̂2 is a function of Mu, �̂ and 	̂2 are also independent.

Finally, we can write

(�̂j � �j)/se(�̂j) � [(�̂j � �j)/sd(�̂j)]/(	̂
2/	2)1/2,

which is the ratio of a standard normal random variable and the square root of a
�2

n�k/(n � k) random variable. We just showed that these are independent, and so, by def-
inition of a t random variable, (�̂j � �j)/se(�̂j) has the tn�k distribution. Because this distri-
bution does not depend on X, it is the unconditional distribution of (�̂j � �j)/se(�̂j) as well.

From this theorem, we can plug in any hypothesized value for �j and use the t statistic
for testing hypotheses, as usual.

Under Assumptions E.1 through E.5, we can compute what is known as the Cramer-
Rao lower bound for the variance-covariance matrix of unbiased estimators of � (again
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conditional on X) [see Greene (1997, Chapter 4)]. This can be shown to be 	2(X�X)�1,
which is exactly the variance-covariance matrix of the OLS estimator. This implies that
�̂ is the minimum variance unbiased estimator of � (conditional on X): Var(�̃�X) �
Var(�̂�X) is positive semi-definite for any other unbiased estimator �̃; we no longer
have to restrict our attention to estimators linear in y.

It is easy to show that the OLS estimator is in fact the maximum likelihood estima-
tor of � under Assumption E.5. For each t, the distribution of yt given X is
Normal(xt�,	2). Because the yt are independent conditional on X, the likelihood func-
tion for the sample is obtained from the product of the densities:

�
n

t�1
(2�	2)�1/2exp[�(yt � xt�)2/(2	2)].

Maximizing this function with respect to � and 	2 is the same as maximizing its nat-
ural logarithm:

�
n

t�1
[�(1/2)log(2�	2) � (yt � xt�)2/(2	2)].

For obtaining �̂, this is the same as minimizing �
n

t�1
(yt � xt�)2—the division by 2	2

does not affect the optimization—which is just the problem that OLS solves. The esti-
mator of 	2 that we have used, SSR/(n � k), turns out not to be the MLE of 	2; the
MLE is SSR/n, which is a biased estimator. Because the unbiased estimator of 	2

results in t and F statistics with exact t and F distributions under the null, it is always
used instead of the MLE.

SUMMARY

This appendix has provided a brief discussion of the linear regression model using
matrix notation. This material is included for more advanced classes that use matrix
algebra, but it is not needed to read the text. In effect, this appendix proves some of the
results that we either stated without proof, proved only in special cases, or proved
through a more cumbersome method of proof. Other topics—such as asymptotic prop-
erties, instrumental variables estimation, and panel data models—can be given concise
treatments using matrices. Advanced texts in econometrics, including Davidson and
MacKinnon (1993), Greene (1997), and Wooldridge (1999), can be consulted for
details.

KEY TERMS
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First Order Condition
Matrix Notation
Minimum Variance Unbiased

Scalar Variance-Covariance Matrix
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PROBLEMS

E.1 Let xt be the 1 � k vector of explanatory variables for observation t. Show that the
OLS estimator �̂ can be written as

�̂ � 	�
n

t�1
xt�xt


�1

	�
n

t�1
xt�yt
 .

Dividing each summation by n shows that �̂ is a function of sample averages.

E.2 Let �̂ be the k � 1 vector of OLS estimates.
(i) Show that for any k � 1 vector b, we can write the sum of squared

residuals as

SSR(b) � û�û � (�̂ � b)�X�X(�̂ � b).

[Hint: Write (y � Xb)�(y � Xb) � [û � X(�̂ � b)]�[û � X(�̂ � b)]
and use the fact that X�û � 0.]

(ii) Explain how the expression for SSR(b) in part (i) proves that �̂
uniquely minimizes SSR(b) over all possible values of b, assuming X
has rank k.

E.3 Let �̂ be the OLS estimate from the regression of y on X. Let A be a k � k non-
singular matrix and define z t � xtA, t � 1, …, n. Therefore, zt is 1 � k and is a non-
singular linear combination of xt. Let Z be the n � k matrix with rows zt. Let �̃ denote
the OLS estimate from a regression of y on Z.

(i) Show that �̃ � A�1�̂.
(ii) Let ŷ t be the fitted values from the original regression and let ỹ t be the

fitted values from regressing y on Z. Show that ỹ t � ŷ t, for all t �
1,2, …, n. How do the residuals from the two regressions compare?

(iii) Show that the estimated variance matrix for �̃ is 	̂2A�1(X�X)�1A�1�,
where 	̂2 is the usual variance estimate from regressing y on X.

(iv) Let the �̂j be the OLS estimates from regressing yt on 1, xt2, …, xtk, and
let the �̃j be the OLS estimates from the regression of yt on 1,
a2xt2, …, akxtk, where aj 
 0, j � 2, …, k. Use the results from part (i)
to find the relationship between the �̃j and the �̂j.

(v) Assuming the setup of part (iv), use part (iii) to show that se(�̃j) �
se(�̂j)/�aj�.

(vi) Assuming the setup of part (iv), show that the absolute values of the t
statistics for �̃j and �̂j are identical.
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CHAPTER 2

QUESTION 2.1
When student ability, motivation, age, and other factors in u are not related to atten-
dance, (2.6) would hold. This seems unlikely to be the case.

QUESTION 2.2
About $9.64. To see this, from the average wages measured in 1976 and 1997 dollars,
we can get the CPI deflator as 16.64/5.90 � 2.82. When we multiply 3.42 by 2.82, we
obtain about 9.64.

QUESTION 2.3
59.26, as can be seen by plugging shareA � 60 into equation (2.28). This is not unrea-
sonable: if Candidate A spends 60% of the total money spent, he or she is predicted to
receive just over 59% of the vote.

QUESTION 2.4
The equation will be salâryhun � 9,631.91 � 185.01 roe, as is easily seen by multi-
plying equation (2.39) by 10.

QUESTION 2.5
Equation (2.58) can be written as Var(�̂0) � (�2n�1) ��

n

i�1
xi

2����
n

i�1
(xi � x̄)2�, where

the term multiplying �2n�1 is greater than or equal to one, but it is equal to one if and
only if x̄ � 0. In this case, the variance is as small as it can possibly be: Var(�̂0) � �2/n.

CHAPTER 3

QUESTION 3.1
Just a few factors include age and gender distribution, size of the police force (or, more
generally, resources devoted to crime fighting), population, and general historical fac-
tors. These factors certainly might be correlated with prbconv and avgsen, which means
(3.5) would not hold. For example, size of the police force is possibly correlated with
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both prbcon and avgsen, as some cities put more effort into crime prevention and
enforcement. We should try to bring as many of these factors into the equation as pos-
sible.

QUESTION 3.2
We use the third property of OLS concerning predicted values and residuals: when we
plug the average values of all independent variables into the OLS regression line, we
obtain the average value of the dependent variable. So �colGPA � 1.29 � .453 �hsGPA
� .0094 �ACT � 1.29 � .453(3.4) � .0094(24.2) � 3.06. You can check the average of
colGPA in GPA1.RAW to verify this to the second decimal place.

QUESTION 3.3
No. The variable shareA is not an exact linear function of expendA and expendB,
even though it is an exact nonlinear function: shareA � 100�[expendA/(expendA �
expendB)]. Therefore, it is legitimate to have expendA, expendB, and shareA as explana-
tory variables.

QUESTION 3.4
As we discussed in Section 3.4, if we are interested in the effect of x1 on y, correla-
tion among the other explanatory variables (x2, x3, and so on) does not affect Var(�̂1).
These variables are included as controls, and we do not have to worry about this kind
of collinearity. Of course, we are controlling for them primarily because we think
they are correlated with attendance, but this is necessary to perform a ceteris paribus
analysis.

CHAPTER 4

QUESTION 4.1
Under these assumptions, the Gauss-Markov assumptions are satisfied: u is indepen-
dent of the explanatory variables, so E(u�x1, …, xk) � E(u), and Var(u�x1, …, xk) �
Var(u). Further, it is easily seen that E(u) � 0. Therefore, MLR.3 and MLR.5 hold. The
classical linear model assumptions are not satisfied, because u is not normally distrib-
uted (which is a violation of MLR.6).

QUESTION 4.2
H0: �1 � 0, H1: �1 � 0.

QUESTION 4.3
Because �̂1 � .56 � 0 and we are testing against H1: �1 � 0, the one-sided p-value is
one-half of the two-sided p-value, or .043.

QUESTION 4.4
H0: �5 � �6 � �7 � �8 � 0. k � 8 and q � 4. The restricted version of the model is

score � �0 � �1classize � �2expend � �3tchcomp � �4enroll � u.
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QUESTION 4.5
The F statistic for testing exclusion of ACT is [(.291 � .183)/(1 � .291)](680 � 3) �
103.13. Therefore, the absolute value of the t statistic is about 10.16. The t statistic on
ACT is negative, because �̂ACT is negative, so tACT � �10.16.

QUESTION 4.6
Not by much. The F test for joint significance of droprate and gradrate is easily com-
puted from the R-squareds in the table: F � [(.361 � .353)/(1 � .361)](402/2) � 2.52.
The 10% critical value is obtained from Table G.3(a) as 2.30, while the 5% critical
value from Table G.3(b) is 3. The p-value is about .082. Thus, droprate and gradrate
are jointly significant at the 10% level, but not at the 5% level. In any case, controlling
for these variables has a minor effect on the b/s coefficient.

CHAPTER 5

QUESTION 5.1
This requires some assumptions. It seems reasonable to assume that �2 � 0 (score
depends positively on priGPA) and Cov(skipped,priGPA) � 0 (skipped and priGPA are
negatively correlated). This means that �2
1 � 0, which means that plim �̃1 � �1.
Because �1 is thought to be negative (or at least nonpositive), a simple regression is
likely to overestimate the importance of skipping classes.

QUESTION 5.2
�̂j � 1.96se(�̂j) is the asymptotic 95% confidence interval. Or, we can replace 1.96
with 2.

CHAPTER 6

QUESTION 6.1
Because fincdol � 1,000�faminc, the coefficient on fincdol will be the coefficient on
faminc divided by 1,000, or .0927/1,000 � .0000927. The standard error also drops
by a factor of 1,000, and so the t statistic does not change, nor do any of the other
OLS statistics. For readability, it is better to measure family income in thousands of
dollars.

QUESTION 6.2
We can do this generally. The equation is

log(y) � �0 � �1log(x1) � �2x2 � …,

where x2 is a proportion rather than a percentage. Then, ceteris paribus, �log(y) �
�2�x2, 100��log(y) � �2(100��x2), or %�y � �2(100��x2). Now, because �x2 is the
change in the proportion, 100��x2 is a percentage point change. In particular, if �x2 �
.01, then 100��x2 � 1, which corresponds to a one percentage point change. But then
�2 is the percentage change in y when 100��x2 � 1.
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QUESTION 6.3
The new model would be stndfnl � �0 � �1atndrte � �2priGPA � �3ACT �
�4priGPA2 � �5ACT2 � �6priGPA�atndrte � �7ACT�atndrte � u. Therefore, the par-
tial effect of atndrte on stndfnl is �1 � �6priGPA � �7ACT. This is what we multiply
by �atndrte to obtain the ceteris paribus change in stndfnl.

QUESTION 6.4
From equation (6.21), R̄2 � 1 � �̂2/[SST/(n � 1)]. For a given sample and a given
dependent variable, SST/(n � 1) is fixed. When we use different sets of explanatory
variables, only �̂2 changes. As �̂2 decreases, R̄2 increases. If we make �̂ , and therefore
�̂2, as small as possible, we are making R̄2 as large as possible.

QUESTION 6.5
One possibility is to collect data on annual earnings for a sample of actors, along with
profitability of the movies in which they each appeared. In a simple regression analy-
sis, we could relate earnings to profitability. But we should probably control for other
factors that may affect salary, such as age, gender, and the kinds of movies in which the
actors performed. Methods for including qualitative factors in regression models are
considered in Chapter 7.

CHAPTER 7

QUESTION 7.1
No, because it would not be clear when party is one and when it is zero. A better name
would be something like Dem, which is one for Democratic candidates, and zero for
Republicans. Or, Rep, which is one for Republicans, and zero for Democrats.

QUESTION 7.2
With outfield as the base group, we would include the dummy variables frstbase,
scndbase, thrdbase, shrtstop, and catcher.

QUESTION 7.3
The null in this case is H0: 
1 � 
2 � 
3 � 
4 � 0, so that there are four restrictions.
As usual, we would use an F test (where q � 4 and k depends on the number of other
explanatory variables).

QUESTION 7.4
Because tenure appears as a quadratic, we should allow separate quadratics for men
and women. That is, we would add the explanatory variables female�tenure and
female�tenure2.

QUESTION 7.5
We plug pcnv � 0, avgsen � 0, tottime � 0, ptime86 � 0, qemp86 � 0, black � 1, and
hispan � 0 into (7.31): arr̂86 � .380 � .038(4) � .170 � .398, or almost .4. It is hard
to know whether this is “reasonable.” For someone with no prior convictions who was
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employed throughout the year, this estimate might seem high, but remember that the
population consists of men who were already arrested at least once prior to 1986.

CHAPTER 8

QUESTION 8.1
This statement is clearly false. For example, in equation (8.7), the usual standard error
for black is .147, while the heteroskedasticity-robust standard error is .118.

QUESTION 8.2
The F test would be obtained by regressing û2 on marrmale, marrfem, and singfem
(singmale is the base group). With n � 526 and three independent variables in this
regression, the df are 3 and 522.

QUESTION 8.3
Not really. Because this is a simple regression model, heteroskedasticity only matters if
it is related to inc. But the Breusch-Pagan test in this case is equivalent to a t statistic in
regressing û2 on inc. A t statistic of .96 is not large enough to reject the homoskedas-
ticity assumption.

QUESTION 8.4
We can use weighted least squares but compute the heteroskedasticity-robust standard
errors. In equation (8.26), if our variance model is incorrect, we still have het-
eroskedasticity. Thus, we can make a guess at the form of heteroskedasticity and per-
form WLS, but our analysis can be made robust to incorrect forms of heteroskedasticity.
Unfortunately, we probably have to explicity obtain the transformed variables.

CHAPTER 9

QUESTION 9.1
These are binary variables, and squaring them has no effect: black2 � black, and
hispan2 � hispan.

QUESTION 9.2
When educ�IQ is in the equation, the coefficient on educ, say �1, measures the effect of
educ on log(wage) when IQ � 0. (The partial effect of education is �1 � �9IQ.) There
is no one in the population of interest with an IQ close to zero. At the average popula-
tion IQ, which is 100, the estimated return to education from column (3) is .018 �
.00034(100) � .052, which is almost what we obtain as the coefficient on educ in col-
umn (2).

QUESTION 9.3
No. If educ* is an integer—which means someone has no education past the previous
grade completed—the measurement error is zero. If educ* is not an integer, educ �
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educ*, and so the measurement error is negative. At a minimum, e1 cannot have zero
mean, and e1 and educ* are probably correlated.

QUESTION 9.4
An incumbent’s decision not to run may be systematically related to how he or she
expects to do in the election. Therefore, we may only have a sample of incumbents who
are stronger, on average, than all possible incumbents who could run. This results in a
sample selection problem if the population of interest includes all incumbents. If we are
only interested in the effects of campaign expenditures on election outcomes for incum-
bents who seek reelection, there is no sample selection problem.

CHAPTER 10

QUESTION 10.1
The impact propensity is .48, while the long-run propensity is .48 � .15 � .32 � .65.

QUESTION 10.2
The explanatory variables are xt1 � zt and xt2 � zt�1. The absence of perfect collinear-
ity means that these cannot be constant, and there cannot be an exact linear relationship
between them in the sample. This rules out the possibility that all the z1, …, zn take on
the same value or that the z0, z1, …, zn�1 take on the same value. But it eliminates other
patterns as well. For example, if zt � a � bt for constants a and b, then zt�1 � a �
b(t � 1) � (a � bt) � b � zt � b, which is a perfect linear function of zt.

QUESTION 10.3
If {zt} is slowly moving over time—as is the case for the levels or logs of many eco-
nomic time series—then zt and zt�1 can be highly correlated. For example, the correla-
tion between unemt and unemt�1 in PHILLIPS.RAW is .74.

QUESTION 10.4
No, because a linear time trend with 
1 � 0 becomes more and more negative as t gets
large. Since gfr cannot be negative, a linear time trend with a negative trend coefficient
cannot represent gfr in all future time periods.

QUESTION 10.5
The intercept for March is �0 � 
2. Seasonal dummy variables are strictly exogenous
because they follow a deterministic pattern. For example, the months do not change
based upon whether either the explanatory variables or the dependent variable change.

CHAPTER 11

QUESTION 11.1
(i) No, because E(yt) � 
0 � 
1t depends on t. (ii) Yes, because yt � E(yt) � et is an
i.i.d. sequence.
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QUESTION 11.2
We plug inft

e � (1/2)inft�1 � (1/2)inft�2 into inft � inft
e � �1(unemt � �0) � et and

rearrange: inft � (1/2)(inft�1 � inft�2) � �0 � �1unemt � et, where �0 � ��1�0, as
before. Therefore, we would regress yt on unemt, where yt � inft � (1/2)(inft�1 �
inft�2). Note that we lose the first two observations in constructing yt.

QUESTION 11.3
No, because ut and ut�1 are correlated. In particular, Cov(ut,ut�1) � E[(et �

1et�1)(et�1 � 
1et�2)] � 
1E(et

2
�1) � 
1�e

2 � 0 if 
1 � 0. If the errors are serially
correlated, the model cannot be dynamically complete.

CHAPTER 12

QUESTION 12.1
We use equation (12.4). Now, only adjacent terms are correlated. In particular, the
covariance between xtut and xt�1ut�1 is xtxt�1Cov(ut,ut�1) � xtxt�1
�e

2. Therefore, the
formula is

Var(�̂1) � SSTx
�2 ��

n

t�1
xt

2Var(ut) � 2 �
n�1

t�1
xtxt�1E(utut�1)�

� �2/SSTx � (2/SSTx
2) �

n�1

t�1

�e

2xtxt�1

� �2/SSTx � 
�e
2(2/SSTx

2) �
n�1

t�1
xtxt�1

where �2 � Var(ut) � �e
2 � 
1

2�e
2 � �e

2(1 � 
1
2). Unless xt and xt�1 are uncorrelated in

the sample, the second term is nonzero whenever 
 � 0. Notice that if xt and xt�1 are
positively correlated and 
 � 0, the true variance is actually smaller than the usual vari-
ance. When the equation is in levels (as opposed to being differenced), the typical case
is 
 � 0, with positive correlation between xt and xt�1.

QUESTION 12.2
�̂ � 1.96se(�̂), where se(�̂) is the standard error reported in the regression. Or, we could
use the heteroskedasticity-robust standard error. Showing that this is asymptotically
valid is complicated because the OLS residuals depend on �̂j, but it can be done.

QUESTION 12.3
The model we have in mind is ut � �1ut�1 � �4ut�4 � et, and we want to test H0: �1 �
0, �4 � 0 against the alternative that H0 is false. We would run the regression of ût on
ût�1 and ût�4 to obtain the usual F statistic for joint significance of the two lags. (We
are testing two restrictions.)

QUESTION 12.4
We would probably estimate the equation using first differences, as �̂ � .92 is close
enough to one to raise questions about the levels regression. See Chapter 18 for more
discussion.
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QUESTION 12.5
Because there is only one explanatory variable, the White test is easy to compute.
Simply regress û t

2 on returnt�1 and returnt
2
�1 (with an intercept, as always) and com-

pute the F test for joint significance of returnt�1 and returnt
2
�1. If these are jointly sig-

nificant at a small enough significance level, we reject the null of homoskedasticity.

CHAPTER 13

QUESTION 13.1
Yes, assuming that we have controlled for all relevant factors. The coefficient on black
is 1.076, and, with a standard error of .174, it is not statistically different from one. The
95% confidence interval is from about .735 to 1.417.

QUESTION 13.2
The coefficient on highearn shows that, in the absence of any change in the earnings
cap, high earners spend much more time—on the order of 29.2% on average [because
exp(.256) � 1 � .292]—on workers’ compensation.

QUESTION 13.3
First, E(vi1) � E(ai � ui1) � E(ai) � E(vi1) � 0. Similarly, E(vi2) � 0. Therefore, the
covariance between vi1 and vi2 is simply E(vi1vi2) � E[(ai � ui1)(ai � ui2)] � E(ai

2) �
E(aiui1) � E(aiui2) � E(ui1ui2) � E(ai

2), because all of the covariance terms are zero by
assumption. But E(ai

2) � Var(ai), because E(ai) � 0. This causes positive serial corre-
lation across time in the errors within each i, which biases the usual OLS standard
errors in a pooled cross-sectional regression.

QUESTION 13.4
Because �admn � admn90 � admn85 is the difference in binary indicators, it can be �1
if and only if admn90 � 0 and admn85 � 1. In other words, Washington state had an
administrative per se law in 1985 but it was repealed by 1990.

QUESTION 13.5
No, just as it does not cause bias and inconsistency in a time series regression with
strictly exogenous explanatory variables. There are two reasons it is a concern. First,
serial correlation in the errors in any equation generally biases the usual OLS standard
errors and test statistics. Second, it means that pooled OLS is not as efficient as esti-
mators that account for the serial correlation (as in Chapter 12).

CHAPTER 14

QUESTION 14.1
Whether we use first differencing or the within transformation, we will have trouble
estimating the coefficient on kidsit. For example, using the within transformation, if
kidsit does not vary for family i, then kïdsit � kidsit � �kidsi � 0 for t � 1,2,3. As long
as some families have variation in kidsit, then we can compute the fixed effects estima-
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tor, but the kids coefficient could be very imprecisely estimated. This is a form of mul-
ticollinearity in fixed effects estimation (or first-differencing estimation).

QUESTION 14.2
If a firm did not receive a grant in the first year, it may or may not receive a grant in
the second year. But if a firm did receive a grant in the first year, it could not get a grant
in the second year. That is, if grant�1 � 1, then grant � 0. This induces a negative cor-
relation between grant and grant�1. We can verify this by computing a regression of
grant on grant�1, using the data in JTRAIN.RAW for 1989. Using all firms in the sam-
ple, we get

grânt � (.248) � (.248) grant�1.
grânt � (.035) � (.072) grant�1.

n � 157, R2 � .070.

The coefficient on grant�1 must be the negative of the intercept, because grânt � 0
when grant�1 � 1.

QUESTION 14.3
It suggests that the unobserved effect ai is positively correlated with unionit. Remember,
pooled OLS leaves ai in the error term, while fixed effects removes ai. By definition, ai

has a positive effect on log(wage). By the standard omitted variables analysis (see
Chapter 3), OLS has an upward bias when the explanatory variable (union) is positively
correlated with the omitted variable (ai). Thus, belonging to a union appears to be pos-
itively related to time-constant, unobserved factors that affect wage.

QUESTION 14.4
Not if all sisters within a family have the same mother and father. Then, because the
parents’ race variables would not change by sister, they would be differenced away in
(14.13).

CHAPTER 15

QUESTION 15.1
Probably not. In the simple equation (15.18), years of education is part of the error term.
If some men who were assigned low draft lottery numbers obtained additional school-
ing, then lottery number and education are negatively correlated, which violates the first
requirement for an instrumental variable in equation (15.4).

QUESTION 15.2
(i) For (15.27), we require that high school peer group effects carry over to college.
Namely, for a given SAT score, a student who went to a high school where smoking
marijuana was more popular would smoke more marijuana in college. Even if the iden-
tification condition (15.27) holds, the link might be weak.

(ii) We have to assume that percent of students using marijuana at a student’s high
school is not correlated with unobserved factors that affect college grade point average.
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While we are somewhat controlling for high school quality by including SAT in the
equation, this might not be enough. Perhaps high schools that did a better job of prepar-
ing students for college also had fewer students smoking marijuana. Or, marijuana
usage could be correlated with average income levels. These are, of course, empirical
questions that we may or may not be able to answer.

QUESTION 15.3
While prevalence of the NRA and subscribers to gun magazines are probably correlated
with the presence of gun control legislation, it is not obvious that they are uncorrelated
with unobserved factors that affect the violent crime rate. In fact, we might argue that
a population interested in guns is a reflection of high crime rates, and controlling for
economic and demographic variables is not sufficient to capture this. It would be hard
to argue persuasively that these are truly exogenous in the violent crime equation.

QUESTION 15.4
As usual, there are two requirements. First, it should be the case that growth in govern-
ment spending is systematically related to the party of the president, after netting out
the investment rate and growth in the labor force. In other words, the instrument must
be partially correlated with the endogenous explanatory variable. While we might think
that government spending grows more slowly under Republican presidents, this cer-
tainly has not always been true in the United States and would have to be tested using
the t statistic on REPt�1 in the reduced form gGOVt � �0 � �1REPt�1 � �2INVRATt �
�3gLABt � vt. We must assume that the party of the president has no separate effect on
gGDP. This would be violated if, for example, monetary policy differs systematically
by presidential party and has a separate effect on GDP growth.

CHAPTER 16

QUESTION 16.1
Probably not. It is because firms choose price and advertising expenditures jointly that
we are not interested in the experiment where, say, advertising changes exogenously
and we want to know the effect on price. Instead, we would model price and advertis-
ing each as a function of demand and cost variables. This is what falls out of the eco-
nomic theory.

QUESTION 16.2
We must assume two things. First, money supply growth should appear in equation
(16.22), so that it is partially correlated with inf. Second, we must assume that money
supply growth does not appear in equation (16.23). If we think we must include money
supply growth in equation (16.23), then we are still short an instrument for inf. Of
course, the assumption that money supply growth is exogenous can also be questioned.

QUESTION 16.3
Use the Hausman test from Chapter 15. In particular, let v̂2 be the OLS residuals from
the reduced form regression of open on log(pcinc) and log(land). Then, use an OLS
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regression of inf on open, log(pcinc), and v̂2 and compute the t statistic for significance
of v̂2. If v̂2 is significant, the 2SLS and OLS estimates are statistically different.

QUESTION 16.4
The demand equation looks like

log( fisht) � �0 � �1log(prcfisht) � �2log(inct)

� �3log(prcchickt) � �4log(prcbeeft) � ut1,

where logarithms are used so that all elasticities are constant. By assumption, the
demand function contains no seasonality, so the equation does not contain monthly
dummy variables (say febt, mart, …, dect, with January as the base month). Also, by
assumption, the supply of fish is seasonal, which means that the supply function does
depend on at least some of the monthly dummy variables. Even without solving the
reduced form for log(prcfish), we conclude that it depends on the monthly dummy vari-
ables. Since these are exogenous, they can be used as instruments for log(prcfish) in the
demand equation. Therefore, we can estimate the demand-for-fish equation using
monthly dummies as the IVs for log(prcfish). Identification requires that at least one
monthly dummy variable appears with a nonzero coefficient in the reduced form for
log(prcfish).

CHAPTER 17

QUESTION 17.1
H0: �4 � �5 � �6 � 0, so that there are three restrictions and therefore three df in the
LR or Wald test.

QUESTION 17.2
We need the partial derivative of �(�̂0 � �̂1nwifeinc � �̂2educ � �̂3exper � �̂4exper2

� …) with respect to exper, which is �(�)(�̂3 � 2�̂4exper), where �(�) is evaluated at
the given values and the initial level of experience. Therefore, we need to evaluate the
standard normal probability density at .270 � .012(20.13) � .131(12.3) � .123(10) �
.0019(102) � .053(42.5) � .868(0) � .036(1) � .463, where we plug in the initial level
of experience (10). But �(.463) � (2�)�1/2exp[�(.4632)/2] � .358. Next, we multiply
this by �̂3 � 2�̂4exper, which is evaluated at exper � 10. The partial effect using the
calculus approximation is .358[.123 � 2(.0019)(10)] � .030. In other words, at the
given values of the explanatory variables and starting at exper � 10, the next year of
experience increases the probability of labor force participation by about .03.

QUESTION 17.3
No. The number of extramarital affairs is a nonnegative integer, which presumably
takes on zero or small numbers for a substantial fraction of the population. It is not real-
istic to use a Tobit model, which, while allowing a pileup at zero, treats y as being con-
tinuously distributed over positive values. Formally, assuming that y � max(0,y*),
where y* is normally distributed, is at odds with the discreteness of the number of extra-
marital affairs when y � 0.
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QUESTION 17.4
The adjusted standard errors are the usual Poisson MLE standard errors multiplied by
�̂ � ��2 � 1.41, so the adjusted standard errors will be about 41% higher. The quasi-
LR statistic is the usual LR statistic divided by �̂2, so it will be one-half of the usual LR
statistic.

QUESTION 17.5
By assumption, mvpi � �0 � xi� � ui, where, as usual, xi� denotes a linear function
of the exogenous variables. Now, observed wage is the largest of the minimum wage
and the marginal value product, so wagei � max(minwagei,mvpi), which is very similar
to equation (17.34), except that the max operator has replaced the min operator.

CHAPTER 18

QUESTION 18.1
We can plug these values directly into equation (18.1) and take expectations. First,
because zs � 0, for all s � 0, y�1 � 
 � u�1. Then, z0 � 1, so y0 � 
 � 
0 � u0.
For h � 1, yh � 
 � 
h�1 � 
h � uh. Because the errors have zero expected values,
E(y�1) � 
, E(y0) � 
 � 
0, and E(yh) � 
 � 
h�1 � 
h, for all h � 1. As h * �,

h * 0. It follows that E(yh) * 
 as h * �, that is, the expected value of yh returns to
the expected value before the increase in z, at time zero. This makes sense: while the
increase in z lasted for two periods, it is still a temporary increase.

QUESTION 18.2
Under the described setup, �yt and �xt are i.i.d. sequences that are independent of one
another. In particular, �yt and �xt are uncorrelated. If �̂1 is the slope coefficient from
regressing �yt on �xt, t � 1,2, …, n, then plim �̂1 � 0. This is as it should be, as we are
regressing one I(0) process on another I(0) process, and they are uncorrelated. We write
the equation �yt � �0 � �1�xt � et, where �0 � �1 � 0. Because {et} is independent
of {�xt}, the strict exogeneity assumption holds. Moreover, {et} is serially uncorrelated
and homoskedastic. By Theorem 11.2 in Chapter 11, the t statistic for �̂1 has an approx-
imate standard normal distribution. If et is normally distributed, the classical linear
model assumptions hold, and the t statistic has an exact t distribution.

QUESTION 18.3
Write xt � xt�1 � at, where {at} is I(0). By assumption, there is a linear combination,
say st � yt � �xt, which is I(0). Now, yt � �xt�1 � yt � �(xt � at) � st � �at. Because
st and at are I(0) by assumption, so is st � �at.

QUESTION 18.4
Just use the sum of squared residuals form of the F test and assume homoskedasticity.
The restricted SSR is obtained by regressing �hy6t � �hy3t�1 � (hy6t�1 � hy3t�2) on
a constant. Notice that 
0 is the only parameter to estimate in �hy6t � 
0 � �0�hy3t�1

� 
(hy6t�1 � hy3t�2) when the restrictions are imposed. The unrestricted sum of
squared residuals is obtained from equation (18.39).
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QUESTION 18.5
We are fitting two equations: ŷt � 
̂ � �̂t and ŷt � �̂ � 
̂yeart. We can obtain the rela-
tionship between the parameters by noting that yeart � t � 49. Plugging this into the
second equation gives ŷt � �̂ � 
̂(t � 49) � (�̂ � 49
̂) � 
̂t. Matching the slope and
intercept with the first equation gives 
̂ � �̂—so that the slopes on t and yeart are iden-
tical—and 
̂ � �̂ � 49
̂. Generally, when we use year rather than t, the intercept will
change, but the slope will not. (You can verify this by using one of the time series data
sets, such as HSEINV.RAW or INVEN.RAW.) Whether we use t or some measure of
year does not change fitted values, and, naturally, it does not change forecasts of future
values. The intercept simply adjusts appropriately to different ways of including a trend
in the regression.
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778

A p p e n d i x G

Statistical Tables

TABLE G.1

Cumulative Areas Under the Standard Normal Distribution

z 0 1 2 3 4 5 6 7 8 9

�3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
�2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
�2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
�2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
�2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
�2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
�2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
�2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
�2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
�2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
�2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
�1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
�1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
�1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
�1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
�1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
�1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
�1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
�1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
�1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
�1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
�0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
�0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
�0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148

continued
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TABLE G.1 (concluded)

z 0 1 2 3 4 5 6 7 8 9

�0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
�0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
�0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
�0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
�0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
�0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
�0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Examples: If Z ~ Normal(0,1) then P(Z � �1.32) � .0934 and P(Z � 1.84) � .9671.
Source: This table was generated using the Stata® function normd.

xd  7/14/99 9:37 PM  Page 779



Appendix G Statistical Tables

780

TABLE G.2

Critical Values of the t Distribution

Significance Level

1-Tailed: .10 .05 .025 .01 .005
2-Tailed: .20 .10 .050 .02 .010

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947

16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845

21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787

26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704
60 1.296 1.671 2.000 2.390 2.660
90 1.291 1.662 1.987 2.368 2.632

120 1.289 1.658 1.980 2.358 2.617
� 1.282 1.645 1.960 2.326 2.576

Examples: The 1% critical value for a one-tailed test with 25 df is 2.485. The 5% critical for a two-tailed test
with large (� 120) df is 1.96.
Source: This table was generated using the Stata® function invt.
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TABLE G.3a

10% Critical Values of the F Distribution

Numerator Degrees of Freedom

1 2 3 4 5 6 7 8 9 10

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32
11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10

15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06
16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96

20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94
21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87
26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86
27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84
29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83

30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82
40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71
90 2.76 2.36 2.15 2.01 1.91 1.84 1.78 1.74 1.70 1.67

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65

� 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60

Example: The 10% critical value for numerator df � 2 and denominator df � 40 is 2.44.
Source: This table was generated using the Stata® function invfprob.
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TABLE G.3b

5% Critical Values of the F Distribution

Numerator Degrees of Freedom

1 2 3 4 5 6 7 8 9 10

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99
90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91

� 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83

Example: The 5% critical value for numerator df � 4 and large denominator df (�) is 2.37.
Source: This table was generated using the Stata® function invfprob.
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TABLE G.3c

1% Critical Values of the F Distribution

Numerator Degrees of Freedom

1 2 3 4 5 6 7 8 9 10

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63
90 6.93 4.85 4.01 3.54 3.23 3.01 2.84 2.72 2.61 2.52

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47

� 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32

Example: The 1% critical value for numerator df � 3 and denominator df � 60 is 4.13.
Source: This table was generated using the Stata® function invfprob.
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TABLE G.4

Critical Values of the Chi-Square Distribution

Significance Level

.10 .05 .01

1 2.71 3.84 6.63
2 4.61 5.99 9.21
3 6.25 7.81 11.34
4 7.78 9.49 13.28
5 9.24 11.07 15.09

6 10.64 12.59 16.81
7 12.02 14.07 18.48
8 13.36 15.51 20.09
9 14.68 16.92 21.67

10 15.99 18.31 23.21

11 17.28 19.68 24.72
12 18.55 21.03 26.22
13 19.81 22.36 27.69
14 21.06 23.68 29.14
15 22.31 25.00 30.58

16 23.54 26.30 32.00
17 24.77 27.59 33.41
18 25.99 28.87 34.81
19 27.20 30.14 36.19
20 28.41 31.41 37.57

21 29.62 32.67 38.93
22 30.81 33.92 40.29
23 32.01 35.17 41.64
24 33.20 36.42 42.98
25 34.38 37.65 44.31

26 35.56 38.89 45.64
27 36.74 40.11 46.96
28 37.92 41.34 48.28
29 39.09 42.56 49.59
30 40.26 43.77 50.89

Example: The 5% critical value with df � 8 is 15.51.
Source: This table was generated using the Stata® function
invchi.
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A

Adjusted R-Squared: A goodness-of-fit measure in
multiple regression analysis that penalizes additional
explanatory variables by using a degrees of freedom
adjustment in estimating the error variance.

Alternative Hypothesis: The hypothesis against which
the null hypothesis is tested.

AR(1) Serial Correlation: The errors in a time series
regression model follow an AR(1) model.

Asymptotic Bias: See inconsistency.
Asymptotic Confidence Interval: A confidence interval

that is approximately valid in large sample sizes.
Asymptotic Normality: The sampling distribution of a

properly normalized estimator converges to the stan-
dard normal distribution.

Asymptotic Properties: Properties of estimators and test
statistics that apply when the sample size grows with-
out bound.

Asymptotic Standard Error: A standard error that is
valid in large samples.

Asymptotic t Statistic: A t statistic that has an approxi-
mate standard normal distribution in large samples.

Asymptotic Variance: The square of the value we must
divide an estimator by in order to obtain an asymptotic
standard normal distribution.

Asymptotically Efficient: For consistent estimators with
asymptotically normal distributions, the estimator with
the smallest asymptotic variance.

Asymptotically Uncorrelated: A time series process in
which the correlation between random variables at
two points in time tends to zero as the time interval
between them increases. (See also weakly depen-
dent.)

Attenuation Bias: Bias in an estimator that is always
toward zero; thus, the expected value of an estimator

with attenuation bias is less in magnitude than the
absolute value of the parameter.

Augmented Dickey-Fuller Test: A test for a unit root
that includes lagged changes of the variable as regres-
sors.

Autocorrelation: See serial correlation.
Autoregressive Conditional Heteroskedasticity (ARCH):

A model of dynamic heteroskedasticity where the vari-
ance of the error term, given past information, depends
linearly on the past squared errors.

Autoregressive Process of Order One [AR(1)]: A time
series model whose current value depends linearly on
its most recent value plus an unpredictable distur-
bance.

Auxiliary Regression: A regression used to compute a
test statistic—such as the test statistics for het-
eroskedasticity and serial correlation—or any other
regression that does not estimate the model of primary
interest.

Average: The sum of n numbers divided by n.

B

Balanced Panel: A panel data set where all years (or
periods) of data are available for all cross-
sectional units.

Base Group: The group represented by the overall inter-
cept in a multiple regression model that includes
dummy explanatory variables.

Base Period: For index numbers, such as price or pro-
duction indices, the period against which all other time
periods are measured.

Base Value: The value assigned to the base period for
constructing an index number; usually the base value is
one or 100.
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Benchmark Group: See base group.
Bernoulli Random Variable: A random variable that

takes on the values zero or one.
Best Linear Unbiased Estimator (BLUE): Among all

linear, unbiased estimators, the estimator with the
smallest variance. OLS is BLUE, conditional on the
sample values of the explanatory variables, under the
Gauss-Markov assumptions.

Beta Coefficients: See standardized coefficients.
Bias: The difference between the expected and the popu-

lation parameter values of an estimator.
Biased Estimator: An estimator whose expectation, or

sampling mean, is different from the population value
it is supposed to be estimating.

Biased Towards Zero: A description of an estimator
whose expectation in absolute value is less than the
absolute value of the population parameter.

Binary Response Model: A model for a binary (dummy)
dependent variable.

Binary Variable: See dummy variable.
Binomial Distribution: The probability distribution of

the number of successes out of n independent Bernoulli
trials, where each trial has the same probability of suc-
cess.

Bivariate Regression Model: See simple linear regres-
sion model.

BLUE: See best linear unbiased estimator.
Breusch-Godfrey Test: An asymptotically justified test

for AR(p) serial correlation, with AR(1) being the most
popular; the test allows for lagged dependent variables
as well as other regressors that are not strictly exoge-
nous.

Breusch-Pagan Test: A test for heteroskedasticity where
the squared OLS residuals are regressed on the
explanatory variables in the model.

C

Causal Effect: A ceteris paribus change in one variable
has an effect on another variable.

Censored Regression Model: A multiple regression
model where the dependent variable has been censored
above or below some known threshold.

Central Limit Theorem: A key result from probability
theory which implies that the sum of independent ran-
dom variables, or even weakly dependent random vari-
ables, when standardized by its standard deviation, has
a distribution that tends to standard normal as the sam-
ple size grows.

Ceteris Paribus: All other relevant factors are held fixed.
Chi-Square Distribution: A probability distribution

obtained by adding the squares of independent stan-
dard normal random variables. The number of terms in
the sum equals the degrees of freedom in the distribu-
tion.

Chow Statistic: An F statistic for testing the equality of
regression parameters across different groups (say, men
and women) or time periods (say, before and after a
policy change).

Classical Errors-in-Variables (CEV): A measurement
error model where the observed measure equals the
actual variable plus an independent, or at least an
uncorrelated, measurement error.

Classical Linear Model: The multiple linear regression
model under the full set of classical linear model
assumptions.

Classical Linear Model (CLM) Assumptions: The ideal
set of assumptions for multiple regression analysis: for
cross-sectional analysis, Assumptions MLR.1 through
MLR.6 and for time series analysis, Assumptions TS.1
through TS.6. The assumptions include linearity in the
parameters, no perfect collinearity, the zero conditional
mean assumption, homoskedasticity, no serial correla-
tion, and normality of the errors.

Cluster Effect: An unobserved effect that is common to
all units, usually people, in the cluster.

Cluster Sample: A sample of natural clusters or groups
which usually consist of people.

Cochrane-Orcutt (CO) Estimation: A method of esti-
mating a multiple linear regression model with AR(1)
errors and strictly exogenous explanatory variables;
unlike Prais-Winsten, Cochrane-Orcutt does not use
the equation for the first time period.

Coefficient of Determination: See R-squared.
Cointegration: The notion that a linear combination of

two series, each of which is integrated of order one, is
integrated of order zero.

Composite Error: In a panel data model, the sum of the
time constant unobserved effect and the idiosyncratic
error.

Conditional Distribution: The probability distribution of
one random variable, given the values of one or more
other random variables.

Conditional Expectation: The expected or average value
of one random variable, called the dependent or
explained variable, that depends on the values of one or
more other variables, called the independent or explana-
tory variables.
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Conditional Forecast: A forecast that assumes the future
values of some explanatory variables are known with
certainty.

Conditional Variance: The variance of one random vari-
able, given one or more other random variables.

Confidence Interval (CI): A rule used to construct a ran-
dom interval so that a certain percentage of all data
sets, determined by the confidence level, yields an
interval that contains the population value.

Confidence Level: The percentage of samples in which
we want our confidence interval to contain the popula-
tion value; 95% is the most common confidence level,
but 90% and 99% are also used.

Consistent Estimator: An estimator that converges in
probability to the population parameter as the sample
size grows without bound.

Consistent Test: A test where, under the alternative
hypothesis, the probability of rejecting the null hypoth-
esis converges to one as the sample size grows without
bound.

Constant Elasticity Model: A model where the elasticity
of the dependent variable, with respect to an explana-
tory variable, is constant; in multiple regression, both
variables appear in logarithmic form.

Contemporaneously Exogenous Regressor: In time
series or panel data applications, a regressor that is
uncorrelated with the error term in the same time
period, but not necessarily in other time periods.

Continuous Random Variable: A random variable that
takes on any particular value with probability zero.

Control Group: In program evaluation, the group that
does not participate in the program.

Control Variable: See explanatory variable.
Corner Solution: A nonnegative dependent variable that

is roughly continuous over strictly positive values but
takes on the value zero with some regularity.

Correlation Coefficient: A measure of linear depen-
dence between two random variables that does not
depend on units of measurement and is bounded
between �1 and 1.

Count Variable: A variable that takes on nonnegative
integer values.

Covariance: A measure of linear dependence between
two random variables.

Covariance Stationary: A time series process with con-
stant mean and variance where the covariance between
any two random variables in the sequence depends only
on the distance between them.

Covariate: See explanatory variable.
Critical Value: In hypothesis testing, the value against

which a test statistic is compared to determine whether
or not the null hypothesis is rejected.

Cross-Sectional Data Set: A data set collected from a
population at a given point in time.

Cumulative Distribution Function (cdf): A function
that gives the probability of a random variable being
less than or equal to any specified real number.

D

Data Censoring: A situation that arises when we do not
always observe the outcome on the dependent variable
because at an upper (or lower) threshold we only know
that the outcome was above (or below) the threshold.
(See also censored regression model.)

Data Frequency: The interval at which time series data
are collected. Yearly, quarterly, and monthly are the
most common data frequencies.

Data Mining: The practice of using the same data set to
estimate numerous models in a search to find the “best”
model.

Davidson-MacKinnon Test: A test that is used for test-
ing a model against a nonnested alternative; it can be
implemented as a t test on the fitted values from the
competing model.

Degrees of Freedom (df ): In multiple regression analy-
sis, the number of observations minus the number of
estimated parameters.

Denominator Degrees of Freedom: In an F test, the
degrees of freedom in the unrestricted model.

Dependent Variable: The variable to be explained in 
a multiple regression model (and a variety of other
models).

Descriptive Statistic: A statistic used to summarize a set
of numbers; the sample average, sample median, and
sample standard deviation are the most common.

Deseasonalizing: The removing of the seasonal compo-
nents from a monthly or quarterly time series.

Detrending: The practice of removing the trend from a
time series.

Dickey-Fuller Distribution: The limiting distribution of
the t statistic in testing the null hypothesis of a unit
root.

Dickey-Fuller (DF) Test: A t test of the unit root null
hypothesis in an AR(1) model. (See also augmented
Dickey-Fuller test.)

Difference in Slopes: A description of a model where
some slope parameters may differ by group or time
period.
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Difference-in-Differences Estimator: An estimator that
arises in policy analysis with data for two time periods.
One version of the estimator applies to independently
pooled cross sections and another to panel data sets.

Diminishing Marginal Effect: The marginal effect of an
explanatory variable becomes smaller as the value of
the explanatory variable increases.

Discrete Random Variable: A random variable that
takes on at most a finite or countably infinite number of
values.

Distributed Lag Model: A time series model that relates
the dependent variable to current and past values of an
explanatory variable.

Disturbance: See error term.
Downward Bias: The expected value of an estimator is

below the population value of the parameter.
Dummy Dependent Variable: See binary response

model.
Dummy Variable: A variable that takes on the value zero

or one.
Dummy Variable Regression: In a panel data setting, the

regression that includes a dummy variable for each
cross-sectional unit, along with the remaining explana-
tory variables. It produces the fixed effects estimator.

Dummy Variable Trap: The mistake of including too
many dummy variables among the independent vari-
ables; it occurs when an overall intercept is in the
model and a dummy variable is included for each
group.

Duration Analysis: An application of the censored
regression model, where the dependent variable is time
elapsed until a certain event occurs, such as the time
before an unemployed person becomes reemployed.

Durbin-Watson (DW) Statistic: A statistic used to test
for first order serial correlation in the errors of a time
series regression model under the classical linear
model assumptions.

Dynamically Complete Model: A time series model
where no further lags of either the dependent variable
or the explanatory variables help to explain the mean of
the dependent variable.

E

Econometric Model: An equation relating the dependent
variable to a set of explanatory variables and unob-
served disturbances, where unknown population parame-
ters determine the ceteris paribus effect of each ex-
planatory variable.

Economic Model: A relationship derived from economic
theory or less formal economic reasoning.

Economic Significance: See practical significance.
Elasticity: The percent change in one variable given a 1%

ceteris paribus increase in another variable.
Empirical Analysis: A study that uses data in a formal

econometric analysis to test a theory, estimate a rela-
tionship, or determine the effectiveness of a policy.

Endogeneity: A term used to describe the presence of an
endogenous explanatory variable.

Endogenous Explanatory Variable: An explanatory
variable in a multiple regression model that is corre-
lated with the error term, either because of an omitted
variable, measurement error, or simultaneity.

Endogenous Sample Selection: Nonrandom sample
selection where the selection is related to the dependent
variable, either directly or through the error term in the
equation.

Endogenous Variables: In simultaneous equations mod-
els, variables that are determined by the equations in
the system.

Engle-Granger Two-Step Procedure: A two-step method
for estimating error correction models whereby the coin-
tegrating parameter is estimated in the first stage, and the
error correction parameters are estimated in the second.

Error Correction Model: A time series model in first
differences that also contains an error correction term,
which works to bring two I(1) series back into long-run
equilibrium.

Error Term: The variable in a simple or multiple regres-
sion equation that contains unobserved factors that
affect the dependent variable. The error term may also
include measurement errors in the observed dependent
or independent variables.

Error Variance: The variance of the error term in a mul-
tiple regression model.

Errors-in-Variables: A situation where either the depen-
dent variable or some independent variables are mea-
sured with error.

Estimate: The numerical value taken on by an estimator
for a particular sample of data.

Estimator: A rule for combining data to produce a numer-
ical value for a population parameter; the form of the
rule does not depend on the particular sample obtained.

Event Study: An econometric analysis of the effects of
an event, such as a change in government regulation or
economic policy, on an outcome variable.

Excluding a Relevant Variable: In multiple regression
analysis, leaving out a variable that has a nonzero par-
tial effect on the dependent variable.
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Exclusion Restrictions: Restrictions which state that cer-
tain variables are excluded from the model (or have
zero population coefficients).

Exogenous Explanatory Variable: An explanatory vari-
able that is uncorrelated with the error term.

Exogenous Sample Selection: Sample selection that
either depends on exogenous explanatory variables or is
independent of the error term in the equation of interest.

Exogenous Variable: Any variable that is uncorrelated
with the error term in the model of interest.

Expected Value: A measure of central tendency in the
distribution of a random variable, including an estima-
tor.

Experiment: In probability, a general term used to denote
an event whose outcome is uncertain. In econometric
analysis, it denotes a situation where data are collected
by randomly assigning individuals to control and treat-
ment groups.

Experimental Data: Data that have been obtained by
running a controlled experiment.

Experimental Group: See treatment group.
Explained Sum of Squares (SSE): The total sample vari-

ation of the fitted values in a multiple regression model.
Explained Variable: See dependent variable.
Explanatory Variable: In regression analysis, a variable

that is used to explain variation in the dependent variable.
Exponential Function: A mathematical function defined

for all values that have an increasing slope but a con-
stant proportionate change.

Exponential Smoothing: A simple method of forecast-
ing a variable that involves a weighting of all previous
outcomes on that variable.

Exponential Trend: A trend with a constant growth rate.

F

F Distribution: The probability distribution obtained by
forming the ratio of two independent chi-square ran-
dom variables, where each has been divided by its
degrees of freedom.

F Statistic: A statistic used to test multiple hypotheses
about the parameters in a multiple regression model.

Feasible GLS (FGLS) Estimator: A GLS procedure
where variance or correlation parameters are unknown
and therefore must first be estimated. (See also gener-
alized least squares estimator.)

Finite Distributed Lag (FDL) Model: A dynamic model
where one or more explanatory variables are allowed to
have lagged effects on the dependent variable.

First Difference: A transformation on a time series con-
structed by taking the difference of adjacent time peri-
ods, where the earlier time period is subtracted from
the later time period.

First-Differenced Equation: In time series or panel data
models, an equation where the dependent and indepen-
dent variables have all been first-differenced.

First-Differenced Estimator: In a panel data setting, the
pooled OLS estimator applied to first differences of the
data across time.

First Order Conditions: The set of linear equations used
to solve for the OLS estimates.

Fitted Values: The estimated values of the dependent
variable when the values of the independent variables
for each observation are plugged into the OLS regres-
sion line.

Fixed Effect: See unobserved effect.
Fixed Effects Estimator: For the unobserved effects

panel data model, the estimator obtained by applying
pooled OLS to a time-demeaned equation.

Fixed Effects Transformation: For panel data, the time-
demeaned data.

Forecast Error: The difference between the actual out-
come and the forecast of the outcome.

Forecast Interval: In forecasting, a confidence interval
for a yet unrealized future value of a time series vari-
able. (See also prediction interval.)

Functional Form Misspecification: A problem that
occurs when a model has omitted functions of the
explanatory variables (such as quadratics) or uses the
wrong functions of either the dependent variable or
some explanatory variables.

G

Gauss-Markov Assumptions: The set of assumptions
(Assumptions MLR.1 through MLR.5 or TS.1 through
TS.5) under which OLS is BLUE.

Gauss-Markov Theorem: The theorem which states
that, under the five Gauss-Markov assumptions (for
cross-sectional or time series models), the OLS estima-
tor is BLUE (conditional on the sample values of the
explanatory variables).

Generalized Least Squares (GLS) Estimator: An esti-
mator that accounts for a known structure of the error
variance (heteroskedasticity), serial correlation pattern
in the errors, or both, via a transformation of the origi-
nal model.
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Geometric (or Koyck) Distributed Lag: An infinite dis-
tributed lag model where the lag coefficients decline at
a geometric rate.

Goodness-of-Fit Measure: A statistic that summarizes
how well a set of explanatory variables explains a
dependent or response variable.

Granger Causality: A limited notion of causality where
past values of one series (xt) are useful for predicting
future values of another series (yt), after past values of
yt have been controlled for.

Growth Rate: The proportionate change in a time
series from the previous period. It may be approxi-
mated as the difference in logs or reported in per-
centage form.

H

Heckit Method: An econometric procedure used to cor-
rect for sample selection bias due to incidental trun-
cation or some other form of nonrandomly missing
data.

Heterogeneity Bias: The bias in OLS due to omitted het-
erogeneity (or omitted variables).

Heteroskedasticity: The variance of the error term, given
the explanatory variables, is not constant.

Heteroskedasticity of Unknown Form: Hetero-
skedasticity that may depend on the explanatory vari-
ables in an unknown, arbitrary fashion.

Heteroskedasticity-Robust F Statistic: An F-type sta-
tistic that is (asymptotically) robust to heteroskedastic-
ity of unknown form.

Heteroskedasticity-Robust LM Statistic: An LM statis-
tic that is robust to heteroskedasticity of unknown
form.

Heteroskedasticity-Robust Standard Error: A stan-
dard error that is (asymptotically) robust to het-
eroskedasticity of unknown form.

Heteroskedasticity-Robust t Statistic: A t statistic that is
(asymptotically) robust to heteroskedasticity of
unknown form.

Highly Persistent Process: A time series process where
outcomes in the distant future are highly correlated
with current outcomes.

Homoskedasticity: The errors in a regression model have
constant variance, conditional on the explanatory vari-
ables.

Hypothesis Test: A statistical test of the null, or main-
tained, hypothesis against an alternative hypothesis.

I

Identified Equation: An equation whose parameters can
be consistently estimated, especially in models with
endogenous explanatory variables.

Idiosyncratic Error: In panel data models, the error that
changes over time as well as across units (say, individ-
uals, firms, or cities).

Impact Elasticity: In a distributed lag model, the imme-
diate percentage change in the dependent variable
given a 1% increase in the independent variable.

Impact Multiplier: See impact propensity.
Impact Propensity: In a distributed lag model, the imme-

diate change in the dependent variable given a one-unit
increase in the independent variable.

Incidental Truncation: A sample selection problem
whereby one variable, usually the dependent variable,
is only observed for certain outcomes of another vari-
able.

Inclusion of an Irrelevant Variable: The including of an
explanatory variable in a regression model that has a
zero population parameter in estimating an equation by
OLS.

Inconsistency: The difference between the probability
limit of an estimator and the parameter value.

Independent Random Variables: Random variables
whose joint distribution is the product of the marginal
distributions.

Independent Variable: See explanatory variable.
Independently Pooled Cross Section: A data set

obtained by pooling independent random samples from
different points in time.

Index Number: A statistic that aggregates information
on economic activity, such as production or prices.

Infinite Distributed Lag (IDL) Model: A distributed lag
model where a change in the explanatory variable can
have an impact on the dependent variable into the
indefinite future.

Influential Observations: See outliers.
Information Set: In forecasting, the set of variables that

we can observe prior to forming our forecast.
In-Sample Criteria: Criteria for choosing forecasting

models that are based on goodness-of-fit within the
sample used to obtain the parameter estimates.

Instrumental Variable (IV): In an equation with an
endogenous explanatory variable, an IV is a variable
that does not appear in the equation, is uncorrelated
with the error in the equation, and is (partially) corre-
lated with the endogenous explanatory variable.

ry.qxd  7/14/99 9:45 PM  Page 796



Glossary

797

Instrumental Variables (IV) Estimator: An estimator in
a linear model used when instrumental variables are
available for one or more endogenous explanatory vari-
ables.

Integrated of Order One [I(1)]: A time series process
that needs to be first-differenced in order to produce an
I(0) process.

Integrated of Order Zero [I(0)]: A stationary, weakly
dependent time series process that, when used in
regression analysis, satisfies the law of large numbers
and the central limit theorem.

Interaction Effect: In multiple regression, the partial
effect of one explanatory variable depends on the value
of a different explanatory variable.

Interaction Term: An independent variable in a regres-
sion model that is the product of two explanatory vari-
ables.

Intercept Parameter: The parameter in a multiple linear
regression model that gives the expected value of the
dependent variable when all the independent variables
equal zero.

Intercept Shift: The intercept in a regression model dif-
fers by group or time period.

Internet: A global computer network that can be used to
access information and download data bases.

Interval Estimator: A rule that uses data to obtain lower
and upper bounds for a population parameter. (See also
confidence interval.)

Inverse Mills Ratio: A term that can be added to a mul-
tiple regression model to remove sample selection bias.

J

Joint Distribution: The probability distribution deter-
mining the probabilities of outcomes involving two or
more random variables.

Joint Hypothesis Test: A test involving more than one
restriction on the parameters in a model.

Jointly Statistically Significant: The null hypothesis that
two or more explanatory variables have zero population
coefficients is rejected at the chosen significance level.

Just Identified Equation: For models with endogenous
explanatory variables, an equation that is identified but
would not be identfied with one fewer instrumental
variable.

L

Lag Distribution: In a finite or infinite distributed lag

model, the lag coefficients graphed as a function of the
lag length.

Lagged Dependent Variable: An explanatory variable
that is equal to the dependent variable from an earlier
time period.

Lagged Endogenous Variable: In a simultaneous equa-
tions model, a lagged value of one of the endogenous
variables.

Lagrange Multiplier Statistic: A test statistic with large
sample justification that can be used to test for omitted
variables, heteroskedasticity, and serial correlation,
among other model specification problems.

Large Sample Properties: See asymptotic properties.
Latent Variable Model: A model where the observed

dependent variable is assumed to be a function of an
underlying latent, or unobserved, variable.

Law of Iterated Expectations: A result from probability
that relates unconditional and conditional expectations.

Law of Large Numbers (LLN): A theorem which says
that the average from a random sample converges in
probability to the population average; the LLN also
holds for stationary and weakly dependent time series.

Leads and Lags Estimator: An estimator of a cointegrat-
ing parameter in a regression with I(1) variables, where
the current, some past, and some future first differences
in the explanatory variable are included as regressors.

Level-Level Model: A regression model where the
dependent variable and the independent variables are in
level (or original) form.

Level-Log Model: A regression model where the depen-
dent variable is in level form and (at least some of) the
independent variables are in logarithmic form.

Likelihood Ratio Statistic: A statistic that can be used 
to test single or multiple hypotheses when the con-
strained and unconstrained models have been esti-
mated by maximum likelihood. The statistic is twice
the difference in the unconstrained and constrained
log-likelihoods.

Limited Dependent Variable: A dependent or response
variable whose range is restricted in some important
way.

Linear Function: A function where the change in the
dependent variable, given a one-unit change in an inde-
pendent variable, is constant.

Linear Probability Model (LPM): A binary response
model where the response probability is linear in its
parameters.

Linear Time Trend: A trend that is a linear function of
time.

ry.qxd  7/14/99 9:45 PM  Page 797



Glossary

798

Linear Unbiased Estimator: In multiple regression
analysis, an unbiased estimator that is a linear function
of the outcomes on the dependent variable.

Logarithmic Function: A mathematical function defined
for positive arguments that has a positive, but dimin-
ishing, slope.

Log-Level Model: A regression model where the depen-
dent variable is in logarithmic form and the indepen-
dent variables are in level (or original) form.

Log-Log Model: A regression model where the depen-
dent variable and (at least some of) the explanatory
variables are in logarithmic form.

Logit Model: A model for binary response where the
response probability is the logit function evaluated at a
linear function of the explanatory variables.

Log-Likelihood Function: The sum of the log-likelihoods,
where the log-likelihood for each observation is the log
of the density of the dependent variable given the
explanatory variables; the log-likelihood function is
viewed as a function of the parameters to be estimated.

Long-Run Elasticity: The long-run propensity in a dis-
tributed lag model with the dependent and independent
variables in logarithmic form; thus, the long-run elas-
ticity is the eventual percentage increase in the
explained variable, given a permanent 1% increase in
the explanatory variable.

Long-Run Multiplier: See long-run propensity.
Long-Run Propensity: In a distributed lag model, the

eventual change in the dependent variable given a per-
manent, one-unit increase in the independent variable.

Longitudinal Data: See panel data.
Loss Function: A function that measures the loss when a

forecast differs from the actual outcome; the most com-
mon examples are absolute value loss and squared loss.

M

Marginal Effect: The effect on the dependent variable
that results from changing an independent variable by
a small amount.

Martingale: A time series process whose expected value,
given all past outcomes on the series, simply equals the
most recent value.

Martingale Difference Sequence: The first difference of
a martingale. It is unpredictable (or has a zero mean),
given past values of the sequence.

Matched Pairs Sample: A sample where each observa-
tion is matched with another, as in a sample consisting
of a husband and wife or a set of two siblings.

Matrix: An array of numbers.
Matrix Notation: A convenient mathematical notation,

grounded in matrix algebra, for expressing and manip-
ulating the multiple regression model.

Maximum Likelihood Estimation (MLE): A broadly
applicable estimation method where the parameter esti-
mates are chosen to maximize the log-likelihood func-
tion.

Mean: See expected value.
Mean Absolute Error (MAE): A performance measure

in forecasting, computed as the average of the absolute
values of the forecast errors.

Mean Squared Error: The expected squared distance that
an estimator is from the population value; it equals the
variance plus the square of any bias.

Measurement Error: The difference between an
observed variable and the variable that belongs in a
multiple regression equation.

Median: In a probability distribution, it is the value
where there is a 50% chance of being below the value
and a 50% chance of being above it. In a sample of
numbers, it is the middle value after the numbers have
been ordered.

Method of Moments Estimator: An estimator obtained
by using the sample analog of population moments;
ordinary least squares and two stage least squares are
both method of moments estimators.

Micronumerosity: A term introduced by Arthur
Goldberger to describe properties of econometric esti-
mators with small sample sizes.

Minimum Variance Unbiased Estimator: An estimator
with the smallest variance in the class of all unbiased
estimators.

Missing Data: A data problem that occurs when we do
not observe values on some variables for certain obser-
vations (individuals, cities, time periods, and so on) in
the sample.

Moving Average Process of Order One [MA(1)]: A
time series process generated as a linear function of the
current value and one lagged value of a zero-mean,
constant variance, uncorrelated stochastic process.

Multicollinearity: A term that refers to correlation among
the independent variables in a multiple regression
model; it is usually invoked when some correlations are
“large,” but an actual magnitude is not well-defined.

Multiple Hypothesis Test: A test of a null hypothesis
involving more than one restriction on the parameters.

Multiple Linear Regression (MLR) Model: A model
linear in its parameters, where the dependent variable is
a function of independent variables plus an error term.
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Multiple Regression Analysis: A type of analysis that is
used to describe estimation of and inference in the mul-
tiple linear regression model.

Multiple Restrictions: More than one restriction on the
parameters in an econometric model.

Multiple Step-Ahead Forecast: A time series forecast of
more than one period into the future.

Multiplicative Measurement Error: Measurement error
where the observed variable is the product of the true
unobserved variable and a positive measurement error.

N

n-R-Squared Statistic: See Lagrange multiplier statistic.
Natural Experiment: A situation where the economic

environment—sometimes summarized by an explana-
tory variable—exogenously changes, perhaps inadver-
tently, due to a policy or institutional change.

Natural Logarithm: See logarithmic function.
Nominal Variable: A variable measured in nominal or

current dollars.
Nonexperimental Data: Data that have not been

obtained through a controlled experiment.
Nonlinear Function: A function whose slope is not con-

stant.
Nonnested Models: Two (or more) models where no

model can be written as a special case of the other by
imposing restrictions on the parameters.

Nonrandom Sample Selection: A sample selection
process that cannot be characterized as drawing ran-
domly from the population of interest.

Nonstationary Process: A time series process whose
joint distributions are not constant across different
epochs.

Normal Distribution: A probability distribution com-
monly used in statistics and econometrics for modeling
a population. Its probability distribution function has a
bell shape.

Normality Assumption: The classical linear model
assumption which states that the error (or dependent
variable) has a normal distribution, conditional on the
explanatory variables.

Null Hypothesis: In classical hypothesis testing, we take
this hypothesis as true and require the data to provide
substantial evidence against it.

Numerator Degrees of Freedom: In an F test, the num-
ber of restrictions being tested.

O

Observational Data: See nonexperimental data.
OLS: See ordinary least squares.
OLS Intercept Estimate: The intercept in an OLS

regression line.
OLS Regression Line: The equation relating the pre-

dicted value of the dependent variable to the indepen-
dent variables, where the parameter estimates have
been obtained by OLS.

OLS Slope Estimate: A slope in an OLS regression line.
Omitted Variable Bias: The bias that arises in the OLS

estimators when a relevant variable is omitted from the
regression.

Omitted Variables: One or more variables, which we
would like to control for, have been omitted in estimat-
ing a regression model.

One-Sided Alternative: An alternative hypothesis which
states that the parameter is greater than (or less than)
the value hypothesized under the null.

One-Step-Ahead Forecast: A time series forecast one
period into the future.

One-Tailed Test: A hypothesis test against a one-sided
alternative.

On-Line Data Bases: Data bases that can be accessed via
a computer network.

On-Line Search Services: Computer software that
allows the Internet or data bases on the Internet to be
searched by topic, name, title, or key words.

Order Condition: A necessary condition for identifying
the parameters in a model with one or more endoge-
nous explanatory variables: the total number of exoge-
nous variables must be at least as great as the total
number of explanatory variables.

Ordinal Variable: A variable where the ordering of the
values conveys information but the magnitude of the
values does not.

Ordinary Least Squares (OLS): A method for estimating
the parameters of a multiple linear regression model.
The ordinary least squares estimates are obtained by
minimizing the sum of squared residuals.

Outliers: Observations in a data set that are substantially
different from the bulk of the data, perhaps because of
errors or because some data are generated by a differ-
ent model than most of the other data.

Out-of-Sample Criteria: Criteria used for choosing fore-
casting models that are based on a part of the sample
that was not used in obtaining parameter estimates.
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Overall Significance of a Regression: A test of the joint
significance of all explanatory variables appearing in a
multiple regression equation.

Overdispersion: In modeling a count variable, the vari-
ance is larger than the mean.

Overidentified Equation: In models with endogenous
explanatory variables, an equation where the number of
instrumental variables is strictly greater than the num-
ber of endogenous explanatory variables.

Overidentifying Restrictions: The extra moment condi-
tions that come from having more instrumental variables
than endogenous explanatory variables in a linear model.

Overspecifying a Model: See inclusion of an irrelevant
variable.

P

p-value: The smallest significance level at which the null
hypothesis can be rejected. Equivalently, the largest
significance level at which the null hypothesis cannot
be rejected.

Panel Data: A data set constructed from repeated cross
sections over time. With a balanced panel, the same
units appear in each time period. With an unbalanced
panel, some units do not appear in each time period,
often due to attrition.

Pairwise Uncorrelated Random Variables: A set of two
or more random variables where each pair is uncorre-
lated.

Parameter: An unknown value that describes a popula-
tion relationship.

Parsimonious Model: A model with as few parameters
as possible for capturing any desired features.

Partial Effect: The effect of an explanatory variable on
the dependent variable, holding other factors in the
regression model fixed.

Percent Correctly Predicted: In a binary response
model, the percentage of times the prediction of zero or
one coincides with the actual outcome.

Percentage Change: The porportionate change in a vari-
able, multiplied by 100.

Percentage Point Change: The change in a variable that
is measured as a percent.

Perfect Collinearity: In multiple regression, one inde-
pendent variable is an exact linear function of one or
more other independent variables.

Plug-In Solution to the Omitted Variables Problem: A
proxy variable is substituted for an unobserved omitted
variable in an OLS regression.

Point Forecast: The forecasted value of a future out-
come.

Poisson Distribution: A probability distribution for
count variables.

Poisson Regression Model: A model for a count depen-
dent variable where the dependent variable, conditional
on the explanatory variables, is nominally assumed to
have a Poisson distribution.

Policy Analysis: An empirical analysis that uses econo-
metric methods to evaluate the effects of a certain pol-
icy.

Pooled Cross Section: A data configuration where inde-
pendent cross sections, usually collected at different
points in time, are combined to produce a single data
set.

Pooled OLS Estimation: OLS estimation with indepen-
dently pooled cross sections, panel data, or cluster sam-
ples, where the observations are pooled across time (or
group) as well as across the cross-sectional units.

Population: A well-defined group (of people, firms,
cities, and so on) that is the focus of a statistical or
econometric analysis.

Population Model: A model, especially a multiple linear
regression model, that describes a population.

Population R-Squared: In the population, the fraction of
the variation in the dependent variable that is explained
by the explanatory variables.

Population Regression Function: See conditional
expectation.

Power of a Test: The probability of rejecting the null hy-
pothesis when it is false; the power depends on the val-
ues of the population parameters under the alternative.

Practical Significance: The practical or economic impor-
tance of an estimate, which is measured by its sign and
magnitude, as opposed to its statistical significance.

Prais-Winsten (PW) Estimation: A method of estimat-
ing a multiple linear regression model with AR(1)
errors and strictly exogenous explanatory variables;
unlike Cochrane-Orcutt, Prais-Winsten uses the equa-
tion for the first time period in estimation.

Predetermined Variable: In a simultaneous equations
model, either a lagged endogenous variable or a lagged
exogenous variable.

Predicted Variable: See dependent variable.
Prediction: The estimate of an outcome obtained by plug-

ging specific values of the explanatory variables into an
estimated model, usually a multiple regression model.

Prediction Error: The difference between the actual out-
come and a prediction of that outcome.

Prediction Interval: A confidence interval for an
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unknown outcome on a dependent variable in a multi-
ple regression model.

Predictor Variable: See explanatory variable.
Probability Density Function (pdf): A function that, for

discrete random variables, gives the probability that the
random variable takes on each value; for continuous
random variables, the area under the pdf gives the prob-
ability of various events.

Probability Limit: The value to which an estimator con-
verges as the sample size grows without bound.

Probit Model: A model for binary responses where the
response probability is the standard normal cdf evalu-
ated at a linear function of the explanatory variables.

Program Evaluation: An analysis of a particular private
or public program using econometric methods to obtain
the causal effect of the program.

Proportionate Change: The change in a variable relative
to its initial value; mathematically, the change divided
by the initial value.

Proxy Variable: An observed variable that is related but
not identical to an unobserved explanatory variable in
multiple regression analysis.

Q

Quadratic Functions: Functions that contain squares of
one or more explanatory variables; they capture dimin-
ishing or increasing effects on the dependent variable.

Qualitative Variable: A variable describing a non-
quantitative feature of an individual, a firm, a city, and
so on.

Quasi-Demeaned Data: In random effects estimation for
panel data, it is the original data in each time period
minus a fraction of the time average; these calculations
are done for each cross-sectional observation.

Quasi-Differenced Data: In estimating a regression
model with AR(1) serial correlation, it is the difference
between the current time period and a multiple of the
previous time period, where the multiple is the param-
eter in the AR(1) model.

Quasi-Experiment: See natural experiment.
Quasi-Likelihood Ratio Statistic: A modification of the

likelihood ratio statistic that accounts for possible dis-
tributional misspecification, as in a Poisson regression
model.

Quasi-Maximum Likelihood Estimation: Maximum
likelihood estimation but where the log-likelihood
function may not correspond to the actual conditional
distribution of the dependent variable.

R

R-Bar Squared: See adjusted R-squared.
R-Squared: In a multiple regression model, the propor-

tion of the total sample variation in the dependent vari-
able that is explained by the independent variable.

R-Squared Form of the F Statistic: The F statistic for
testing exclusion restrictions expressed in terms of the
R-squareds from the restricted and unrestricted models.

Random Effects Estimator: A feasible GLS estimator in
the unobserved effects model where the unobserved
effect is assumed to be uncorrelated with the explana-
tory variables in each time period.

Random Effects Model: The unobserved effects panel
data model where the unobserved effect is assumed to
be uncorrelated with the explanatory variables in each
time period.

Random Sampling: A sampling scheme whereby each
observation is drawn at random from the population. In
particular, no unit is more likely to be selected than any
other unit, and each draw is independent of all other
draws.

Random Variable: A variable whose outcome is uncer-
tain.

Random Walk: A time series process where next
period’s value is obtained as this period’s value, plus
an independent (or at least an uncorrelated) error
term.

Random Walk with Drift: A random walk that has a
constant (or drift) added in each period.

Rank Condition: A sufficient condition for identification
of a model with one or more endogenous explanatory
variables.

Rational Distributed Lag (RDL) Model: A type of infi-
nite distributed lag model where the lag distribution
depends on relatively few parameters.

Real Variable: A monetary value measured in terms of a
base period.

Reduced Form Equation: A linear equation where an
endogenous variable is a function of exogenous vari-
ables and unobserved errors.

Reduced Form Error: The error term appearing in a
reduced form equation.

Reduced Form Parameters: The parameters appearing
in a reduced form equation.

Regressand: See dependent variable.
Regression Error Specification Test (RESET): A gen-

eral test for functional form in a multiple regression
model; it is an F test of joint significance of the
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squares, cubes, and perhaps higher powers of the fitted
values from the initial OLS estimation.

Regression Through the Origin: Regression analysis
where the intercept is set to zero; the slopes are
obtained by minimizing the sum of squared residuals,
as usual.

Regressor: See explanatory variable.
Rejection Region: The set of values of a test statistic that

leads to rejecting the null hypothesis.
Rejection Rule: In hypothesis testing, the rule that deter-

mines when the null hypothesis is rejected in favor of
the alternative hypothesis.

Residual: The difference between the actual value and
the fitted (or predicted) value; there is a residual for
each observation in the sample used to obtain an OLS
regression line.

Residual Analysis: A type of analysis that studies the
sign and size of residuals for particular observations
after a multiple regression model has been estimated.

Residual Sum of Squares: See sum of squared residuals.
Response Probability: In a binary response model, the

probability that the dependent variable takes on the
value one, conditional on explanatory variables.

Response Variable: See dependent variable.
Restricted Model: In hypothesis testing, the model

obtained after imposing all of the restrictions required
under the null.

Root Mean Squared Error (RMSE): Another name for
the standard error of the regression in multiple regres-
sion analysis.

S

Sample Average: The sum of n numbers divided by n; a
measure of central tendency.

Sample Correlation: For outcomes on two random vari-
ables, the sample covariance divided by the product of
the sample standard deviations.

Sample Covariance: An unbiased estimator of the popu-
lation covariance between two random variables.

Sample Regression Function: See OLS regression line.
Sample Selection Bias: Bias in the OLS estimator which

is induced by using data that arise from endogenous
sample selection.

Sample Standard Deviation: A consistent estimator of
the population standard deviation.

Sample Variance: An unbiased, consistent estimator of
the population variance.

Sampling Distribution: The probability distribution of
an estimator over all possible sample outcomes.

Sampling Variance: The variance in the sampling distri-
bution of an estimator; it measures the spread in the
sampling distribution.

Score Statistic: See Lagrange multiplier statistic.
Seasonal Dummy Variables: A set of dummy variables

used to denote the quarters or months of the year.
Seasonality: A feature of monthly or quarterly time series

where the average value differs systematically by sea-
son of the year.

Seasonally Adjusted: Monthly or quarterly time series
data where some statistical procedure—possibly
regression on seasonal dummy variables—has been
used to remove the seasonal component.

Selected Sample: A sample of data obtained not by ran-
dom sampling but by selecting on the basis of some
observed or unobserved characteristic.

Semi-Elasticity: The percentage change in the dependent
variable given a one-unit increase in an independent
variable.

Sensitivity Analysis: The process of checking whether
the estimated effects and statistical significance of key
explanatory variables are sensitive to inclusion of other
explanatory variables, functional form, dropping of
potentially outlying observations, or different methods
of estimation.

Serial Correlation: In a time series or panel data model,
correlation between the errors in different time periods.

Serial Correlation-Robust Standard Error: A standard
error for an estimator that is (asymptotically) valid
whether or not the errors in the model are serially cor-
related.

Serially Uncorrelated: The errors in a time series or
panel data model are pairwise uncorrelated across time.

Short-Run Elasticity: The impact propensity in a distrib-
uted lag model when the dependent and independent
variables are in logarithmic form.

Significance Level: The probability of Type I error in
hypothesis testing.

Simple Linear Regression Model: A model where the
dependent variable is a linear function of a single inde-
pendent variable, plus an error term.

Simultaneity: A term that means at least one explanatory
variable in a multiple linear regression model is deter-
mined jointly with the dependent variable.

Simultaneity Bias: The bias that arises from using OLS to
estimate an equation in a simultaneous equations model.

Simultaneous Equations Model (SEM): A model that
jointly determines two or more endogenous variables,
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where each endogenous variable can be a function of
other endogenous variables as well as of exogenous
variables and an error term.

Slope Parameter: The coefficient on an independent
variable in a multiple regression model.

Spreadsheet: Computer software used for entering and
manipulating data.

Spurious Correlation: A correlation between two vari-
ables that is not due to causality, but perhaps to the
dependence of the two variables on another unobserved
factor.

Spurious Regression Problem: A problem that arises
when regression analysis indicates a relationship
between two or more unrelated time series processes
simply because each has a trend, is an integrated time
series (such as a random walk), or both.

Stable AR(1) Process: An AR(1) process where the pa-
rameter on the lag is less than one in absolute value.
The correlation between two random variables in the
sequence declines to zero at a geometric rate as the dis-
tance between the random variables increases, and so a
stable AR(1) process is weakly dependent.

Standard Deviation: A common measure of spread in
the distribution of a random variable.

Standard Deviation of �̂j: A common measure of spread
in the sampling distribution of �̂j.

Standard Error of �̂j: An estimate of the standard devi-
ation in the sampling distribution of �̂j.

Standard Error of the Estimate: See standard error of
the regression.

Standard Error of the Regression (SER): In multiple
regression analysis, the estimate of the standard devia-
tion of the population error, obtained as the square root
of the sum of squared residuals over the degrees of
freedom.

Standard Normal Distribution: The normal distribution
with mean zero and variance one.

Standardized Coefficient: A regression coefficient that
measures the standard deviation change in the depen-
dent variable given a one standard deviation increase in
an independent variable.

Standardized Random Variable: A random variable
transformed by subtracting off its expected value and
dividing the result by its standard deviation; the new ran-
dom variable has mean zero and standard deviation one.

Static Model: A time series model where only contem-
poraneous explanatory variables affect the dependent
variable.

Stationary Process: A time series process where the mar-
ginal and all joint distributions are invariant across time.

Statistical Inference: The act of testing hypotheses about
population parameters.

Statistically Different from Zero: See statistically sig-
nificant.

Statistically Insignificant: Failure to reject the null
hypothesis that a population parameter is equal to zero,
at the chosen significance level.

Statistically Significant: Rejecting the null hypothesis
that a parameter is equal to zero against the specified
alternative, at the chosen significance level.

Stochastic Process: A sequence of random variables
indexed by time.

Strict Exogeneity: An assumption that holds in a time
series or panel data model when the explanatory vari-
ables are strictly exogenous.

Strictly Exogenous: A feature of explanatory variables in
a time series or panel data model where the error term
at any time period has zero expectation, conditional on
the explanatory variables in all time periods; a less
restrictive version is stated in terms of zero correlations.

Strongly Dependent: See highly persistent process.
Structural Equation: An equation derived from eco-

nomic theory or from less formal economic reasoning.
Structural Error: The error term in a structural equation,

which could be one equation in a simultaneous equa-
tions model.

Structural Parameters: The parameters appearing in a
structural equation.

Sum of Squared Residuals: In multiple regression
analysis, the sum of the squared OLS residuals across
all observations.

Summation Operator: A notation, denoted by �, used to
define the summing of a set of numbers.

T

t Distribution: The distribution of the ratio of a standard
normal random variable and the square root of an inde-
pendent chi-square random variable, where the chi-
square random variable is first divided by its df.

t Ratio: See t statistic.
t Statistic: The statistic used to test a single hypothesis

about the parameters in an econometric model.
Test Statistic: A rule used for testing hypotheses where

each sample outcome produces a numerical value.
Text Editor: Computer software that can be used to edit

text files.
Text (ASCII) File: A universal file format that can be trans-

ported across numerous computer platforms.
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Time-Demeaned Data: Panel data where, for each cross-
sectional unit, the average over time is subtracted from
the data in each time period.

Time Series Data: Data collected over time on one or
more variables.

Time Series Process: See stochastic process.
Time Trend: A function of time that is the expected value

of a trending time series process.
Tobit Model: A model for a dependent variable that takes

on the value zero with positive probability but is
roughly continuously distributed over strictly positive
values. (See also corner solution.)

Top Coding: A form of data censoring where the value of
a variable is not reported when it is above a given
threshold; we only know that it is at least as large as the
threshold.

Total Sum of Squares (SST): The total sample variation
in a dependent variable about its sample average.

Treatment Group: In program evaluation, the group that
participates in the program. (See also experimental
group.)

Trending Process: A time series process whose
expected value is an increasing or decreasing function
of time.

Trend-Stationary Process: A process that is stationary
once a time trend has been removed; it is usually
implicit that the detrended series is weakly depen-
dent.

Truncated Regression Model: A classical linear regres-
sion model for cross-sectional data in which the sam-
pling scheme entirely excludes, on the basis of
outcomes on the dependent variable, part of the popu-
lation.

True Model: The actual population model relating the
dependent variable to the relevant independent vari-
ables, plus a disturbance, where the zero conditional
mean assumption holds.

Two Stage Least Squares (2SLS) Estimator: An instru-
mental variables estimator where the IV for an endoge-
nous explanatory variable is obtained as the fitted value
from regressing the endogenous explanatory variable on
all exogenous variables.

Two-Sided Alternative: An alternative where the pop-
ulation parameter can be either less than or greater than
the value stated under the null hypothesis.

Two-Tailed Test: A test against a two-sided alternative.
Type I Error: A rejection of the null hypothesis when it

is true.
Type II Error: The failure to reject the null hypothesis

when it is false.

U

Unbalanced Panel: A panel data set where certain years
(or periods) of data are missing for some cross-
sectional units.

Unbiased Estimator: An estimator whose expected
value (or mean of its sampling distribution) equals the
population value (regardless of the population value).

Unconditional Forecast: A forecast that does not rely on
knowing, or assuming values for, future explanatory
variables.

Uncorrelated Random Variables: Random variables
that are not linearly related.

Underspecifying a Model: See excluding a relevant vari-
able.

Unidentified Equation: An equation with one or more
endogenous explanatory variables where sufficient
instrumental variables do not exist to identify the pa-
rameters.

Unit Root Process: A highly persistent time series
process where the current value equals last period’s
value, plus a weakly dependent disturbance.

Unobserved Effect: In a panel data model, an unob-
served variable in the error term that does not change
over time. For cluster samples, an unobserved variable
that is common to all units in the cluster.

Unobserved Effects Model: A model for panel data or
cluster samples where the error term contains an unob-
served effect.

Unobserved Heterogeneity: See unobserved effect.
Unrestricted Model: In hypothesis testing, the model

that has no restrictions placed on its parameters.
Upward Bias: The expected value of an estimator is

greater than the population parameter value.

V

Variance: A measure of spread in the distribution of a
random variable.

Variance of the Prediction Error: The variance in the
error that arises when predicting a future value of the
dependent variable based on an estimated multiple
regression equation.

Vector Autoregressive (VAR) Model: A model for two
or more time series where each variable is modeled as
a linear function of past values of all variables, plus dis-
turbances that have zero means given all past values of
the observed variables.

ry.qxd  7/14/99 9:45 PM  Page 804



Glossary

805

W

Weakly Dependent: A term that describes a time series
process where some measure of dependence between
random variables at two points in time—such as corre-
lation—diminishes as the interval between the two
points in time increases.

Weighted Least Squares (WLS) Estimator: An estima-
tor used to adjust for a known form of heteroskedastic-
ity, where each squared residual is weighted by the
inverse of the (estimated) variance of the error.

White Test: A test for heteroskedasticity that involves
regressing the squared OLS residuals on the OLS fitted
values and on the squares of the fitted values; in its
most general form, the squared OLS residuals are
regressed on the explanatory variables, the squares of
the explanatory variables, and all the nonredundant
cross products of the explanatory variables.

Within Estimator: See fixed effects estimator.

Within Transformation: See fixed effects transforma-
tion.

Y

Year Dummy Variables: For data sets with a time series
component, dummy (binary) variables equal to one in
the relevant year and zero in all other years.

Z

Zero Conditional Mean Assumption: A key assumption
used in multiple regression analysis which states that,
given any values of the explanatory variables, the
expected value of the error equals zero. (See
Assumptions MLR.3, TS.2, and TS.2�.)
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