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C h apter One

The Nature of Econometrics and
Economic Data

hapter 1 discusses the scope of econometrics and raises general issues that result

from the application of econometric methods. Section 1.3 examines the kinds of

data sets that are used in business, economics, and other social sciences. Section
1.4 provides an intuitive discussion of the difficulties associated with the inference of
causality in the social sciences.

1.1 WHAT IS ECONOMETRICS?

Imagine that you are hired by your state government to evaluate the effectiveness of a
publicly funded job training program. Suppose this program teaches workers various
ways to use computers in the manufacturing process. The twenty-week program offers
courses during nonworking hours. Any hourly manufacturing worker may participate,
and enrollment in all or part of the program is voluntary. You are to determine what, if
any, effect the training program has on each worker’s subsequent hourly wage.

Now suppose you work for an investment bank. You are to study the returns on dif-
ferent investment strategies involving short-term U.S. treasury bills to decide whether
they comply with implied economic theories.

The task of answering such questions may seem daunting at first. At this point,
you may only have a vague idea of the kind of data you would need to collect. By the
end of this introductory econometrics course, you should know how to use econo-
metric methods to formally evaluate a job training program or to test a simple eco-
nomic theory.

Econometrics is based upon the development of statistical methods for estimating
economic relationships, testing economic theories, and evaluating and implementing
government and business policy. The most common application of econometrics is the
forecasting of such important macroeconomic variables as interest rates, inflation rates,
and gross domestic product. While forecasts of economic indicators are highly visible
and are often widely published, econometric methods can be used in economic areas
that have nothing to do with macroeconomic forecasting. For example, we will study
the effects of political campaign expenditures on voting outcomes. We will consider the
effect of school spending on student performance in the field of education. In addition,
we will learn how to use econometric methods for forecasting economic time series.
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Econometrics has evolved as a separate discipline from mathematical statistics
because the former focuses on the problems inherent in collecting and analyzing nonex-
perimental economic data. Nonexperimental data are not accumulated through con-
trolled experiments on individuals, firms, or segments of the economy. (Nonexperimental
data are sometimes called observational data to emphasize the fact that the researcher
is a passive collector of the data.) Experimental data are often collected in laboratory
environments in the natural sciences, but they are much more difficult to obtain in the
social sciences. While some social experiments can be devised, it is often impossible,
prohibitively expensive, or morally repugnant to conduct the kinds of controlled experi-
ments that would be needed to address economic issues. We give some specific exam-
ples of the differences between experimental and nonexperimental data in Section 1.4.

Naturally, econometricians have borrowed from mathematical statisticians when-
ever possible. The method of multiple regression analysis is the mainstay in both fields,
but its focus and interpretation can differ markedly. In addition, economists have
devised new techniques to deal with the complexities of economic data and to test the
predictions of economic theories.

1.2 STEPS IN EMPIRICAL ECONOMIC ANALYSIS

Econometric methods are relevant in virtually every branch of applied economics. They
come into play either when we have an economic theory to test or when we have a rela-
tionship in mind that has some importance for business decisions or policy analysis. An
empirical analysis uses data to test a theory or to estimate a relationship.

How does one go about structuring an empirical economic analysis? It may seem
obvious, but it is worth emphasizing that the first step in any empirical analysis is the
careful formulation of the question of interest. The question might deal with testing a
certain aspect of an economic theory, or it might pertain to testing the effects of a gov-
ernment policy. In principle, econometric methods can be used to answer a wide range
of questions.

In some cases, especially those that involve the testing of economic theories, a for-
mal economic model is constructed. An economic model consists of mathematical
equations that describe various relationships. Economists are well-known for their
building of models to describe a vast array of behaviors. For example, in intermediate
microeconomics, individual consumption decisions, subject to a budget constraint, are
described by mathematical models. The basic premise underlying these models is util-
ity maximization. The assumption that individuals make choices to maximize their well-
being, subject to resource constraints, gives us a very powerful framework for creating
tractable economic models and making clear predictions. In the context of consumption
decisions, utility maximization leads to a set of demand equations. In a demand equa-
tion, the quantity demanded of each commodity depends on the price of the goods, the
price of substitute and complementary goods, the consumer’s income, and the individ-
ual’s characteristics that affect taste. These equations can form the basis of an econo-
metric analysis of consumer demand.

Economists have used basic economic tools, such as the utility maximization frame-
work, to explain behaviors that at first glance may appear to be noneconomic in nature.
A classic example is Becker’s (1968) economic model of criminal behavior.
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EXAMPLE 1.1
(Economic Model of Crime)

In a seminal article, Nobel prize winner Gary Becker postulated a utility maximization frame-
work to describe an individual’s participation in crime. Certain crimes have clear economic
rewards, but most criminal behaviors have costs. The opportunity costs of crime prevent the
criminal from participating in other activities such as legal employment. In addition, there
are costs associated with the possibility of being caught and then, if convicted, the costs
associated with incarceration. From Becker's perspective, the decision to undertake illegal
activity is one of resource allocation, with the benefits and costs of competing activities
taken into account.

Under general assumptions, we can derive an equation describing the amount of time
spent in criminal activity as a function of various factors. We might represent such a func-
tion as

y = f(xl’xz’x3’x4’x5’x6v-x7)s (1-1)

where
y = hours spent in criminal activities
x, = “wage” for an hour spent in criminal activity
X, = hourly wage in legal employment
X3 = income other than from crime or employment
x, = probability of getting caught
X5 = probability of being convicted if caught
x¢ = expected sentence if convicted
X, = age

Other factors generally affect a person’s decision to participate in crime, but the list above
is representative of what might result from a formal economic analysis. As is common in
economic theory, we have not been specific about the function f(-) in (1.1). This function
depends on an underlying utility function, which is rarely known. Nevertheless, we can use
economic theory—or introspection—to predict the effect that each variable would have on
criminal activity. This is the basis for an econometric analysis of individual criminal activity.

Formal economic modeling is sometimes the starting point for empirical analysis,
but it is more common to use economic theory less formally, or even to rely entirely on
intuition. You may agree that the determinants of criminal behavior appearing in equa-
tion (1.1) are reasonable based on common sense; we might arrive at such an equation
directly, without starting from utility maximization. This view has some merit,
although there are cases where formal derivations provide insights that intuition can
overlook.
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Here is an example of an equation that was derived through somewhat informal
reasoning.

EXA MPLE 1.2
(Job Training and Worker Productivity)

Consider the problem posed at the beginning of Section 1.1. A labor economist would like
to examine the effects of job training on worker productivity. In this case, there is little need
for formal economic theory. Basic economic understanding is sufficient for realizing that
factors such as education, experience, and training affect worker productivity. Also, econ-
omists are well aware that workers are paid commensurate with their productivity. This sim-
ple reasoning leads to a model such as

wage = f(educ,exper,training) (1.2)
where wage is hourly wage, educ is years of formal education, exper is years of workforce

experience, and training is weeks spent in job training. Again, other factors generally affect
the wage rate, but (1.2) captures the essence of the problem.

After we specify an economic model, we need to turn it into what we call an econo-
metric model. Since we will deal with econometric models throughout this text, it is
important to know how an econometric model relates to an economic model. Take equa-
tion (1.1) as an example. The form of the function f(-) must be specified before we can
undertake an econometric analysis. A second issue concerning (1.1) is how to deal with
variables that cannot reasonably be observed. For example, consider the wage that a
person can earn in criminal activity. In principle, such a quantity is well-defined, but it
would be difficult if not impossible to observe this wage for a given individual. Even
variables such as the probability of being arrested cannot realistically be obtained for a
given individual, but at least we can observe relevant arrest statistics and derive a vari-
able that approximates the probability of arrest. Many other factors affect criminal
behavior that we cannot even list, let alone observe, but we must somehow account for
them.

The ambiguities inherent in the economic model of crime are resolved by specify-
ing a particular econometric model:

crime = B, + B,wage,, + Byothinc + B;freqarr + B,freqconv

+ Bsavgsen + Bgage + u, 1.3)

where crime is some measure of the frequency of criminal activity, wage,, is the wage
that can be earned in legal employment, othinc is the income from other sources (assets,
inheritance, etc.), freqarr is the frequency of arrests for prior infractions (to approxi-
mate the probability of arrest), freqconv is the frequency of conviction, and avgsen is
the average sentence length after conviction. The choice of these variables is deter-
mined by the economic theory as well as data considerations. The term « contains unob-
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served factors, such as the wage for criminal activity, moral character, family back-
ground, and errors in measuring things like criminal activity and the probability of
arrest. We could add family background variables to the model, such as number of sib-
lings, parents’ education, and so on, but we can never eliminate « entirely. In fact, deal-
ing with this error term or disturbance term is perhaps the most important component
of any econometric analysis.

The constants B3, B, ..., B¢ are the parameters of the econometric model, and they
describe the directions and strengths of the relationship between crime and the factors
used to determine crime in the model.

A complete econometric model for Example 1.2 might be

wage = B, + Bieduc + B,exper + Bstraining + u, (1.4)

where the term u contains factors such as “innate ability,” quality of education, family
background, and the myriad other factors that can influence a person’s wage. If we
are specifically concerned about the effects of job training, then 35 is the parameter of
interest.

For the most part, econometric analysis begins by specifying an econometric model,
without consideration of the details of the model’s creation. We generally follow this
approach, largely because careful derivation of something like the economic model of
crime is time consuming and can take us into some specialized and often difficult areas
of economic theory. Economic reasoning will play a role in our examples, and we will
merge any underlying economic theory into the econometric model specification. In the
economic model of crime example, we would start with an econometric model such as
(1.3) and use economic reasoning and common sense as guides for choosing the vari-
ables. While this approach loses some of the richness of economic analysis, it is com-
monly and effectively applied by careful researchers.

Once an econometric model such as (1.3) or (1.4) has been specified, various
hypotheses of interest can be stated in terms of the unknown parameters. For example,
in equation (1.3) we might hypothesize that wage,,, the wage that can be earned in legal
employment, has no effect on criminal behavior. In the context of this particular econo-
metric model, the hypothesis is equivalent to 3, = 0.

An empirical analysis, by definition, requires data. After data on the relevant vari-
ables have been collected, econometric methods are used to estimate the parameters in
the econometric model and to formally test hypotheses of interest. In some cases, the
econometric model is used to make predictions in either the testing of a theory or the
study of a policy’s impact.

Because data collection is so important in empirical work, Section 1.3 will describe
the kinds of data that we are likely to encounter.

1.3 THE STRUCTURE OF ECONOMIC DATA

Economic data sets come in a variety of types. While some econometric methods can
be applied with little or no modification to many different kinds of data sets, the spe-
cial features of some data sets must be accounted for or should be exploited. We next
describe the most important data structures encountered in applied work.
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Cross-Sectional Data

A cross-sectional data set consists of a sample of individuals, households, firms, cities,
states, countries, or a variety of other units, taken at a given point in time. Sometimes
the data on all units do not correspond to precisely the same time period. For example,
several families may be surveyed during different weeks within a year. In a pure cross
section analysis we would ignore any minor timing differences in collecting the data. If
a set of families was surveyed during different weeks of the same year, we would still
view this as a cross-sectional data set.

An important feature of cross-sectional data is that we can often assume that they
have been obtained by random sampling from the underlying population. For exam-
ple, if we obtain information on wages, education, experience, and other characteristics
by randomly drawing 500 people from the working population, then we have a random
sample from the population of all working people. Random sampling is the sampling
scheme covered in introductory statistics courses, and it simplifies the analysis of cross-
sectional data. A review of random sampling is contained in Appendix C.

Sometimes random sampling is not appropriate as an assumption for analyzing
cross-sectional data. For example, suppose we are interested in studying factors that
influence the accumulation of family wealth. We could survey a random sample of fam-
ilies, but some families might refuse to report their wealth. If, for example, wealthier
families are less likely to disclose their wealth, then the resulting sample on wealth is
not a random sample from the population of all families. This is an illustration of a sam-
ple selection problem, an advanced topic that we will discuss in Chapter 17.

Another violation of random sampling occurs when we sample from units that are
large relative to the population, particularly geographical units. The potential problem
in such cases is that the population is not large enough to reasonably assume the obser-
vations are independent draws. For example, if we want to explain new business activ-
ity across states as a function of wage rates, energy prices, corporate and property tax
rates, services provided, quality of the workforce, and other state characteristics, it is
unlikely that business activities in states near one another are independent. It turns out
that the econometric methods that we discuss do work in such situations, but they some-
times need to be refined. For the most part, we will ignore the intricacies that arise in
analyzing such situations and treat these problems in a random sampling framework,
even when it is not technically correct to do so.

Cross-sectional data are widely used in economics and other social sciences. In eco-
nomics, the analysis of cross-sectional data is closely aligned with the applied micro-
economics fields, such as labor economics, state and local public finance, industrial
organization, urban economics, demography, and health economics. Data on individu-
als, households, firms, and cities at a given point in time are important for testing micro-
economic hypotheses and evaluating economic policies.

The cross-sectional data used for econometric analysis can be represented and
stored in computers. Table 1.1 contains, in abbreviated form, a cross-sectional data set
on 526 working individuals for the year 1976. (This is a subset of the data in the file
WAGE1.RAW.) The variables include wage (in dollars per hour), educ (years of educa-
tion), exper (years of potential labor force experience), female (an indicator for gender),
and married (marital status). These last two variables are binary (zero-one) in nature
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Table 1.1

A Cross-Sectional Data Set on Wages and Other Individual Characteristics

obsno wage educ exper female married
1 3.10 11 2 1 0
2 3.24 12 22 1 1
3 3.00 11 2 0 0
4 6.00 8 44 0 1
5 5.30 12 7 0 1
525 11.56 16 5 0 1
526 3.50 14 5 1 0

and serve to indicate qualitative features of the individual. (The person is female or not;
the person is married or not.) We will have much to say about binary variables in
Chapter 7 and beyond.

The variable obsno in Table 1.1 is the observation number assigned to each person
in the sample. Unlike the other variables, it is not a characteristic of the individual. All
econometrics and statistics software packages assign an observation number to each
data unit. Intuition should tell you that, for data such as that in Table 1.1, it does not
matter which person is labeled as observation one, which person is called Observation
Two, and so on. The fact that the ordering of the data does not matter for econometric
analysis is a key feature of cross-sectional data sets obtained from random sampling.

Different variables sometimes correspond to different time periods in cross-
sectional data sets. For example, in order to determine the effects of government poli-
cies on long-term economic growth, economists have studied the relationship between
growth in real per capita gross domestic product (GDP) over a certain period (say 1960
to 1985) and variables determined in part by government policy in 1960 (government
consumption as a percentage of GDP and adult secondary education rates). Such a data
set might be represented as in Table 1.2, which constitutes part of the data set used in
the study of cross-country growth rates by De Long and Summers (1991).
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Table 1.2

A Data Set on Economic Growth Rates and Country Characteristics

obsno country gpcrgdp govcons60 second60
1 Argentina 0.89 9 32
2 Austria 3.32 16 50
3 Belgium 2.56 13 69
4 Bolivia 1.24 18 12
61 Zimbabwe 2.30 17 6

The variable gpcrgdp represents average growth in real per capita GDP over the period
1960 to 1985. The fact that govcons60 (government consumption as a percentage of
GDP) and second60 (percent of adult population with a secondary education) corre-
spond to the year 1960, while gpcrgdp is the average growth over the period from 1960
to 1985, does not lead to any special problems in treating this information as a cross-
sectional data set. The order of the observations is listed alphabetically by country, but
there is nothing about this ordering that affects any subsequent analysis.

Time Series Data

A time series data set consists of observations on a variable or several variables over
time. Examples of time series data include stock prices, money supply, consumer price
index, gross domestic product, annual homicide rates, and automobile sales figures.
Because past events can influence future events and lags in behavior are prevalent in the
social sciences, time is an important dimension in a time series data set. Unlike the
arrangement of cross-sectional data, the chronological ordering of observations in a
time series conveys potentially important information.

A key feature of time series data that makes it more difficult to analyze than cross-
sectional data is the fact that economic observations can rarely, if ever, be assumed to
be independent across time. Most economic and other time series are related, often
strongly related, to their recent histories. For example, knowing something about the
gross domestic product from last quarter tells us quite a bit about the likely range of the
GDP during this quarter, since GDP tends to remain fairly stable from one quarter to
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the next. While most econometric procedures can be used with both cross-sectional and
time series data, more needs to be done in specifying econometric models for time
series data before standard econometric methods can be justified. In addition, modifi-
cations and embellishments to standard econometric techniques have been developed to
account for and exploit the dependent nature of economic time series and to address
other issues, such as the fact that some economic variables tend to display clear trends
over time.

Another feature of time series data that can require special attention is the data fre-
quency at which the data are collected. In economics, the most common frequencies
are daily, weekly, monthly, quarterly, and annually. Stock prices are recorded at daily
intervals (excluding Saturday and Sunday). The money supply in the U.S. economy is
reported weekly. Many macroeconomic series are tabulated monthly, including infla-
tion and employment rates. Other macro series are recorded less frequently, such as
every three months (every quarter). Gross domestic product is an important example of
a quarterly series. Other time series, such as infant mortality rates for states in the
United States, are available only on an annual basis.

Many weekly, monthly, and quarterly economic time series display a strong
seasonal pattern, which can be an important factor in a time series analysis. For ex-
ample, monthly data on housing starts differs across the months simply due to changing
weather conditions. We will learn how to deal with seasonal time series in Chapter 10.

Table 1.3 contains a time series data set obtained from an article by Castillo-
Freeman and Freeman (1992) on minimum wage effects in Puerto Rico. The earliest
year in the data set is the first observation, and the most recent year available is the last

Table 1.3

Minimum Wage, Unemployment, and Related Data for Puerto Rico

obsno year avgmin avgcov unemp gnp
1 1950 0.20 20.1 154 878.7
2 1951 0.21 20.7 16.0 925.0
3 1952 0.23 22.6 14.8 1015.9
37 1986 3.35 58.1 18.9 4281.6
38 1987 3.35 58.2 16.8 4496.7
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observation. When econometric methods are used to analyze time series data, the data
should be stored in chronological order.

The variable avgmin refers to the average minimum wage for the year, avgcov is
the average coverage rate (the percentage of workers covered by the minimum wage
law), unemp is the unemployment rate, and gnp is the gross national product. We will
use these data later in a time series analysis of the effect of the minimum wage on
employment.

Pooled Cross Sections

Some data sets have both cross-sectional and time series features. For example, suppose
that two cross-sectional household surveys are taken in the United States, one in 1985
and one in 1990. In 1985, a random sample of households is surveyed for variables such
as income, savings, family size, and so on. In 1990, a new random sample of households
is taken using the same survey questions. In order to increase our sample size, we can
form a pooled cross section by combining the two years. Because random samples are
taken in each year, it would be a fluke if the same household appeared in the sample
during both years. (The size of the sample is usually very small compared with the num-
ber of households in the United States.) This important factor distinguishes a pooled
cross section from a panel data set.

Pooling cross sections from different years is often an effective way of analyzing
the effects of a new government policy. The idea is to collect data from the years before
and after a key policy change. As an example, consider the following data set on hous-
ing prices taken in 1993 and 1995, when there was a reduction in property taxes in
1994. Suppose we have data on 250 houses for 1993 and on 270 houses for 1995. One
way to store such a data set is given in Table 1.4.

Observations 1 through 250 correspond to the houses sold in 1993, and observations
251 through 520 correspond to the 270 houses sold in 1995. While the order in which
we store the data turns out not to be crucial, keeping track of the year for each obser-
vation is usually very important. This is why we enter year as a separate variable.

A pooled cross section is analyzed much like a standard cross section, except that
we often need to account for secular differences in the variables across the time. In fact,
in addition to increasing the sample size, the point of a pooled cross-sectional analysis
is often to see how a key relationship has changed over time.

Panel or Longitudinal Data

A panel data (or longitudinal data) set consists of a time series for each cross-
sectional member in the data set. As an example, suppose we have wage, education, and
employment history for a set of individuals followed over a ten-year period. Or we
might collect information, such as investment and financial data, about the same set of
firms over a five-year time period. Panel data can also be collected on geographical
units. For example, we can collect data for the same set of counties in the United States
on immigration flows, tax rates, wage rates, government expenditures, etc., for the years
1980, 1985, and 1990.

The key feature of panel data that distinguishes it from a pooled cross section is the
fact that the same cross-sectional units (individuals, firms, or counties in the above
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Table 1.4

Pooled Cross Sections: Two Years of Housing Prices

obsno year hprice proptax sqrft bdrms bthrms
1 1993 85500 42 1600 3 2.0
2 1993 67300 36 1440 3 2.5
3 1993 134000 38 2000 4 2.5
250 1993 243600 41 2600 4 3.0
251 1995 65000 16 1250 2 1.0
252 1995 182400 20 2200 4 2.0
253 1995 97500 15 1540 3 2.0
520 1995 57200 16 1100 2 1.5

examples) are followed over a given time period. The data in Table 1.4 are not consid-
ered a panel data set because the houses sold are likely to be different in 1993 and 1995;
if there are any duplicates, the number is likely to be so small as to be unimportant. In
contrast, Table 1.5 contains a two-year panel data set on crime and related statistics for
150 cities in the United States.

There are several interesting features in Table 1.5. First, each city has been given a
number from 1 through 150. Which city we decide to call city 1, city 2, and so on, is
irrelevant. As with a pure cross section, the ordering in the cross section of a panel data
set does not matter. We could use the city name in place of a number, but it is often use-
ful to have both.

1
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Table 1.5
A Two-Year Panel Data Set on City Crime Statistics

obsno city year murders population unem police
1 1 1986 5 350000 8.7 440
2 1 1990 8 359200 7.2 471
3 2 1986 2 64300 5.4 75
4 2 1990 1 65100 5.5 75
297 149 1986 10 260700 9.6 286
298 149 1990 6 245000 9.8 334
299 150 1986 25 543000 43 520
300 150 1990 32 546200 52 493

A second useful point is that the two years of data for city 1 fill the first two rows
or observations. Observations 3 and 4 correspond to city 2, and so on. Since each of the
150 cities has two rows of data, any econometrics package will view this as 300 obser-
vations. This data set can be treated as two pooled cross sections, where the same cities
happen to show up in the same year. But, as we will see in Chapters 13 and 14, we can
also use the panel structure to respond to questions that cannot be answered by simply
viewing this as a pooled cross section.

In organizing the observations in Table 1.5, we place the two years of data for each
city adjacent to one another, with the first year coming before the second in all cases.
For just about every practical purpose, this is the preferred way for ordering panel data
sets. Contrast this organization with the way the pooled cross sections are stored in
Table 1.4. In short, the reason for ordering panel data as in Table 1.5 is that we will need
to perform data transformations for each city across the two years.

Because panel data require replication of the same units over time, panel data sets,
especially those on individuals, households, and firms, are more difficult to obtain than
pooled cross sections. Not surprisingly, observing the same units over time leads to sev-
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eral advantages over cross-sectional data or even pooled cross-sectional data. The ben-
efit that we will focus on in this text is that having multiple observations on the same
units allows us to control certain unobserved characteristics of individuals, firms, and
so on. As we will see, the use of more than one observation can facilitate causal infer-
ence in situations where inferring causality would be very difficult if only a single cross
section were available. A second advantage of panel data is that it often allows us to
study the importance of lags in behavior or the result of decision making. This infor-
mation can be significant since many economic policies can be expected to have an
impact only after some time has passed.

Most books at the undergraduate level do not contain a discussion of econometric
methods for panel data. However, economists now recognize that some questions are
difficult, if not impossible, to answer satisfactorily without panel data. As you will see,
we can make considerable progress with simple panel data analysis, a method which is
not much more difficult than dealing with a standard cross-sectional data set.

A Comment on Data Structures

Part 1 of this text is concerned with the analysis of cross-sectional data, as this poses
the fewest conceptual and technical difficulties. At the same time, it illustrates most of
the key themes of econometric analysis. We will use the methods and insights from
cross-sectional analysis in the remainder of the text.

While the econometric analysis of time series uses many of the same tools as cross-
sectional analysis, it is more complicated due to the trending, highly persistent nature
of many economic time series. Examples that have been traditionally used to illustrate
the manner in which econometric methods can be applied to time series data are now
widely believed to be flawed. It makes little sense to use such examples initially, since
this practice will only reinforce poor econometric practice. Therefore, we will postpone
the treatment of time series econometrics until Part 2, when the important issues con-
cerning trends, persistence, dynamics, and seasonality will be introduced.

In Part 3, we treat pooled cross sections and panel data explicitly. The analysis of
independently pooled cross sections and simple panel data analysis are fairly straight-
forward extensions of pure cross-sectional analysis. Nevertheless, we will wait until
Chapter 13 to deal with these topics.

1.4 CAUSALITY AND THE NOTION OF CETERIS PARIBUS
IN ECONOMETRIC ANALYSIS

In most tests of economic theory, and certainly for evaluating public policy, the econo-
mist’s goal is to infer that one variable has a causal effect on another variable (such
as crime rate or worker productivity). Simply finding an association between two or
more variables might be suggestive, but unless causality can be established, it is rarely
compelling.

The notion of ceteris paribus—which means “other (relevant) factors being
equal”—plays an important role in causal analysis. This idea has been implicit in some
of our earlier discussion, particularly Examples 1.1 and 1.2, but thus far we have not
explicitly mentioned it.
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You probably remember from introductory economics that most economic ques-
tions are ceteris paribus by nature. For example, in analyzing consumer demand, we
are interested in knowing the effect of changing the price of a good on its quantity de-
manded, while holding all other factors—such as income, prices of other goods, and
individual tastes—fixed. If other factors are not held fixed, then we cannot know the
causal effect of a price change on quantity demanded.

Holding other factors fixed is critical for policy analysis as well. In the job training
example (Example 1.2), we might be interested in the effect of another week of job
training on wages, with all other components being equal (in particular, education and
experience). If we succeed in holding all other relevant factors fixed and then find a link
between job training and wages, we can conclude that job training has a causal effect
on worker productivity. While this may seem pretty simple, even at this early stage it
should be clear that, except in very special cases, it will not be possible to literally hold
all else equal. The key question in most empirical studies is: Have enough other factors
been held fixed to make a case for causality? Rarely is an econometric study evaluated
without raising this issue.

In most serious applications, the number of factors that can affect the variable of
interest—such as criminal activity or wages—is immense, and the isolation of any
particular variable may seem like a hopeless effort. However, we will eventually see
that, when carefully applied, econometric methods can simulate a ceteris paribus
experiment.

At this point, we cannot yet explain how econometric methods can be used to esti-
mate ceteris paribus effects, so we will consider some problems that can arise in trying
to infer causality in economics. We do not use any equations in this discussion. For each
example, the problem of inferring causality disappears if an appropriate experiment can
be carried out. Thus, it is useful to describe how such an experiment might be struc-
tured, and to observe that, in most cases, obtaining experimental data is impractical. It
is also helpful to think about why the available data fails to have the important features
of an experimental data set.

We rely for now on your intuitive understanding of terms such as random, inde-
pendence, and correlation, all of which should be familiar from an introductory proba-
bility and statistics course. (These concepts are reviewed in Appendix B.) We begin
with an example that illustrates some of these important issues.

EXA MPLE 1.3
(Effects of Fertilizer on Crop Yield)

Some early econometric studies [for example, Griliches (1957)] considered the effects of
new fertilizers on crop yields. Suppose the crop under consideration is soybeans. Since fer-
tilizer amount is only one factor affecting yields—some others include rainfall, quality of
land, and presence of parasites—this issue must be posed as a ceteris paribus question.
One way to determine the causal effect of fertilizer amount on soybean yield is to conduct
an experiment, which might include the following steps. Choose several one-acre plots of
land. Apply different amounts of fertilizer to each plot and subsequently measure the yields;
this gives us a cross-sectional data set. Then, use statistical methods (to be introduced in
Chapter 2) to measure the association between yields and fertilizer amounts.
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As described earlier, this may not seem like a very good experiment, because we have
said nothing about choosing plots of land that are identical in all respects except for the
amount of fertilizer. In fact, choosing plots of land with this feature is not feasible: some of
the factors, such as land quality, cannot even be fully observed. How do we know the
results of this experiment can be used to measure the ceteris paribus effect of fertilizer? The
answer depends on the specifics of how fertilizer amounts are chosen. If the levels of fer-
tilizer are assigned to plots independently of other plot features that affect yield—that is,
other characteristics of plots are completely ignored when deciding on fertilizer amounts—
then we are in business. We will justify this statement in Chapter 2.

The next example is more representative of the difficulties that arise when inferring
causality in applied economics.

EXA MPLE 1. 4
(Measuring the Return to Education)

Labor economists and policy makers have long been interested in the “return to educa-
tion.” Somewhat informally, the question is posed as follows: If a person is chosen from the
population and given another year of education, by how much will his or her wage
increase? As with the previous examples, this is a ceteris paribus question, which implies
that all other factors are held fixed while another year of education is given to the person.

We can imagine a social planner designing an experiment to get at this issue, much as
the agricultural researcher can design an experiment to estimate fertilizer effects. One
approach is to emulate the fertilizer experiment in Example 1.3: Choose a group of people,
randomly give each person an amount of education (some people have an eighth grade
education, some are given a high school education, etc.), and then measure their wages
(assuming that each then works in a job). The people here are like the plots in the ferti-
lizer example, where education plays the role of fertilizer and wage rate plays the role of
soybean yield. As with Example 1.3, if levels of education are assigned independently of
other characteristics that affect productivity (such as experience and innate ability), then an
analysis that ignores these other factors will yield useful results. Again, it will take some
effort in Chapter 2 to justify this claim; for now we state it without support.

Unlike the fertilizer-yield example, the experiment described in Example 1.4 is
infeasible. The moral issues, not to mention the economic costs, associated with ran-
domly determining education levels for a group of individuals are obvious. As a logis-
tical matter, we could not give someone only an eighth grade education if he or she
already has a college degree.

Even though experimental data cannot be obtained for measuring the return to edu-
cation, we can certainly collect nonexperimental data on education levels and wages for
a large group by sampling randomly from the population of working people. Such data
are available from a variety of surveys used in labor economics, but these data sets have
a feature that makes it difficult to estimate the ceteris paribus return to education.
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People choose their own levels of education, and therefore education levels are proba-
bly not determined independently of all other factors affecting wage. This problem is a
feature shared by most nonexperimental data sets.

One factor that affects wage is experience in the work force. Since pursuing more
education generally requires postponing entering the work force, those with more edu-
cation usually have less experience. Thus, in a nonexperimental data set on wages and
education, education is likely to be negatively associated with a key variable that also
affects wage. It is also believed that people with more innate ability often choose
higher levels of education. Since higher ability leads to higher wages, we again have a
correlation between education and a critical factor that affects wage.

The omitted factors of experience and ability in the wage example have analogs in
the the fertilizer example. Experience is generally easy to measure and therefore is sim-
ilar to a variable such as rainfall. Ability, on the other hand, is nebulous and difficult to
quantify; it is similar to land quality in the fertilizer example. As we will see through-
out this text, accounting for other observed factors, such as experience, when estimat-
ing the ceteris paribus effect of another variable, such as education, is relatively
straightforward. We will also find that accounting for inherently unobservable factors,
such as ability, is much more problematical. It is fair to say that many of the advances
in econometric methods have tried to deal with unobserved factors in econometric
models.

One final parallel can be drawn between Examples 1.3 and 1.4. Suppose that in the
fertilizer example, the fertilizer amounts were not entirely determined at random.
Instead, the assistant who chose the fertilizer levels thought it would be better to put
more fertilizer on the higher quality plots of land. (Agricultural researchers should have
a rough idea about which plots of land are better quality, even though they may not be
able to fully quantify the differences.) This situation is completely analogous to the
level of schooling being related to unobserved ability in Example 1.4. Because better
land leads to higher yields, and more fertilizer was used on the better plots, any
observed relationship between yield and fertilizer might be spurious.

EXA MPLE 1.5
(The Effect of Law Enforcement on City Crime Levels)

The issue of how best to prevent crime has, and will probably continue to be, with us for
some time. One especially important question in this regard is: Does the presence of more
police officers on the street deter crime?

The ceteris paribus question is easy to state: If a city is randomly chosen and given 10
additional police officers, by how much would its crime rates fall? Another way to state the
question is: If two cities are the same in all respects, except that city A has 10 more police
officers than city B, by how much would the two cities’ crime rates differ?

It would be virtually impossible to find pairs of communities identical in all respects
except for the size of their police force. Fortunately, econometric analysis does not require
this. What we do need to know is whether the data we can collect on community crime
levels and the size of the police force can be viewed as experimental. We can certainly
imagine a true experiment involving a large collection of cities where we dictate how many
police officers each city will use for the upcoming year.
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While policies can be used to affect the size of police forces, we clearly cannot tell each
city how many police officers it can hire. If, as is likely, a city’s decision on how many police
officers to hire is correlated with other city factors that affect crime, then the data must be
viewed as nonexperimental. In fact, one way to view this problem is to see that a city’s
choice of police force size and the amount of crime are simultaneously determined. We will
explicitly address such problems in Chapter 16.

The first three examples we have discussed have dealt with cross-sectional data at
various levels of aggregation (for example, at the individual or city levels). The same
hurdles arise when inferring causality in time series problems.

EXAMPLE 1.6
(The Effect of the Minimum Wage on Unemployment)

An important, and perhaps contentious, policy issue concerns the effect of the minimum
wage on unemployment rates for various groups of workers. While this problem can be
studied in a variety of data settings (cross-sectional, time series, or panel data), time series
data are often used to look at aggregate effects. An example of a time series data set on
unemployment rates and minimum wages was given in Table 1.3.

Standard supply and demand analysis implies that, as the minimum wage is increased
above the market clearing wage, we slide up the demand curve for labor and total employ-
ment decreases. (Labor supply exceeds labor demand.) To quantify this effect, we can study
the relationship between employment and the minimum wage over time. In addition to
some special difficulties that can arise in dealing with time series data, there are possible
problems with inferring causality. The minimum wage in the United States is not deter-
mined in a vacuum. Various economic and political forces impinge on the final minimum
wage for any given year. (The minimum wage, once determined, is usually in place for sev-
eral years, unless it is indexed for inflation.) Thus, it is probable that the amount of the min-
imum wage is related to other factors that have an effect on employment levels.

We can imagine the U.S. government conducting an experiment to determine the
employment effects of the minimum wage (as opposed to worrying about the welfare of
low wage workers). The minimum wage could be randomly set by the government each
year, and then the employment outcomes could be tabulated. The resulting experimental
time series data could then be analyzed using fairly simple econometric methods. But this
scenario hardly describes how minimum wages are set.

If we can control enough other factors relating to employment, then we can still hope
to estimate the ceteris paribus effect of the minimum wage on employment. In this sense,
the problem is very similar to the previous cross-sectional examples.

Even when economic theories are not most naturally described in terms of causali-
ty, they often have predictions that can be tested using econometric methods. The fol-
lowing is an example of this approach.
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EXAMPLE 1.7
(The Expectations Hypothesis)

The expectations hypothesis from financial economics states that, given all information
available to investors at the time of investing, the expected return on any two investments
is the same. For example, consider two possible investments with a three-month investment
horizon, purchased at the same time: (1) Buy a three-month T-bill with a face value of
$10,000, for a price below $10,000; in three months, you receive $10,000. (2) Buy a six-
month T-bill (at a price below $10,000) and, in three months, sell it as a three-month T-bill.
Each investment requires roughly the same amount of initial capital, but there is an impor-
tant difference. For the first investment, you know exactly what the return is at the time of
purchase because you know the initial price of the three-month T-bill, along with its face
value. This is not true for the second investment: while you know the price of a six-month
T-bill when you purchase it, you do not know the price you can sell it for in three months.
Therefore, there is uncertainty in this investment for someone who has a three-month
investment horizon.

The actual returns on these two investments will usually be different. According to the
expectations hypothesis, the expected return from the second investment, given all infor-
mation at the time of investment, should equal the return from purchasing a three-month
T-bill. This theory turns out to be fairly easy to test, as we will see in Chapter 11.

SUNMIMARY

In this introductory chapter, we have discussed the purpose and scope of economet-
ric analysis. Econometrics is used in all applied economic fields to test economic the-
ories, inform government and private policy makers, and to predict economic time
series. Sometimes an econometric model is derived from a formal economic model,
but in other cases econometric models are based on informal economic reasoning and
intuition. The goal of any econometric analysis is to estimate the parameters in the
model and to test hypotheses about these parameters; the values and signs of the
parameters determine the validity of an economic theory and the effects of certain
policies.

Cross-sectional, time series, pooled cross-sectional, and panel data are the most
common types of data structures that are used in applied econometrics. Data sets
involving a time dimension, such as time series and panel data, require special treat-
ment because of the correlation across time of most economic time series. Other issues,
such as trends and seasonality, arise in the analysis of time series data but not cross-
sectional data.

In Section 1.4, we discussed the notions of ceteris paribus and causal inference. In
most cases, hypotheses in the social sciences are ceteris paribus in nature: all other rel-
evant factors must be fixed when studying the relationship between two variables.
Because of the nonexperimental nature of most data collected in the social sciences,
uncovering causal relationships is very challenging.
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Experimental Data
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C h apter Two

The Simple Regression Model

variables. For reasons we will see, the simple regression model has limita-

tions as a general tool for empirical analysis. Nevertheless, it is sometimes
appropriate as an empirical tool. Learning how to interpret the simple regression
model is good practice for studying multiple regression, which we’ll do in subse-
quent chapters.

The simple regression model can be used to study the relationship between two

2.1 DEFINITION OF THE SIMPLE REGRESSION MODEL

Much of applied econometric analysis begins with the following premise: y and x are
two variables, representating some population, and we are interested in “explaining y in
terms of x,” or in “studying how y varies with changes in x.” We discussed some exam-
ples in Chapter 1, including: y is soybean crop yield and x is amount of fertilizer; y is
hourly wage and x is years of education; y is a community crime rate and x is number
of police officers.

In writing down a model that will “explain y in terms of x,” we must confront three
issues. First, since there is never an exact relationship between two variables, how do
we allow for other factors to affect y? Second, what is the functional relationship
between y and x? And third, how can we be sure we are capturing a ceteris paribus rela-
tionship between y and x (if that is a desired goal)?

We can resolve these ambiguities by writing down an equation relating y to x. A
simple equation is

y =B+ Bix + u (2.1)

Equation (2.1), which is assumed to hold in the population of interest, defines the sim-
ple linear regression model. It is also called the rwo-variable linear regression model
or bivariate linear regression model because it relates the two variables x and y. We now
discuss the meaning of each of the quantities in (2.1). (Incidentally, the term “regres-
sion” has origins that are not especially important for most modern econometric appli-
cations, so we will not explain it here. See Stigler [1986] for an engaging history of
regression analysis.)
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Chapter 2 The Simple Regression Model

When related by (2.1), the variables y and x have several different names used
interchangeably, as follows. y is called the dependent variable, the explained vari-
able, the response variable, the predicted variable, or the regressand. x is called
the independent variable, the explanatory variable, the control variable, the pre-
dictor variable, or the regressor. (The term covariate is also used for x.) The terms
“dependent variable” and “independent variable” are frequently used in economet-
rics. But be aware that the label “independent” here does not refer to the statistical
notion of independence between random variables (see Appendix B).

The terms “explained” and “explanatory” variables are probably the most descrip-
tive. “Response” and “control” are used mostly in the experimental sciences, where the
variable x is under the experimenter’s control. We will not use the terms “predicted vari-
able” and “predictor,” although you sometimes see these. Our terminology for simple
regression is summarized in Table 2.1.

Table 2.1

Terminology for Simple Regression

y x
Dependent Variable Independent Variable
Explained Variable Explanatory Variable

Response Variable

Control Variable

Predicted Variable

Predictor Variable

Regressand

Regressor

The variable u, called the error term or disturbance in the relationship, represents
factors other than x that affect y. A simple regression analysis effectively treats all fac-
tors affecting y other than x as being unobserved. You can usefully think of « as stand-
ing for “unobserved.”

Equation (2.1) also addresses the issue of the functional relationship between y and
x. If the other factors in u are held fixed, so that the change in u is zero, Au = 0, then x
has a linear effect on y:

Ay = B,Ax if Au = 0. (2.2)

Thus, the change in y is simply 8, multiplied by the change in x. This means that 3, is
the slope parameter in the relationship between y and x holding the other factors in u
fixed; it is of primary interest in applied economics. The intercept parameter (3, also
has its uses, although it is rarely central to an analysis.
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EXAMPLE 2.1
(Soybean Yield and Fertilizer)

Suppose that soybean yield is determined by the model
vield = B, + B.fertilizer + u, (2.3)

so that y = yield and x = fertilizer. The agricultural researcher is interested in the effect of
fertilizer on yield, holding other factors fixed. This effect is given by B,. The error term u
contains factors such as land quality, rainfall, and so on. The coefficient B, measures the
effect of fertilizer on yield, holding other factors fixed: Ayield = B,Afertilizer.

EXAMPLE 2.2
(A Simple Wage Equation)

A model relating a person’s wage to observed education and other unobserved factors is
wage = B, + Beduc + u. (2.4)

If wage is measured in dollars per hour and educ is years of education, then 8, measures
the change in hourly wage given another year of education, holding all other factors fixed.
Some of those factors include labor force experience, innate ability, tenure with current
employer, work ethics, and innumerable other things.

The linearity of (2.1) implies that a one-unit change in x has the same effect on y,
regardless of the initial value of x. This is unrealistic for many economic applications.
For example, in the wage-education example, we might want to allow for increasing
returns: the next year of education has a larger effect on wages than did the previous
year. We will see how to allow for such possibilities in Section 2.4.

The most difficult issue to address is whether model (2.1) really allows us to draw
ceteris paribus conclusions about how x affects y. We just saw in equation (2.2) that 3,
does measure the effect of x on y, holding all other factors (in u) fixed. Is this the end
of the causality issue? Unfortunately, no. How can we hope to learn in general about
the ceteris paribus effect of x on y, holding other factors fixed, when we are ignoring all
those other factors?

As we will see in Section 2.5, we are only able to get reliable estimators of 3, and
B, from a random sample of data when we make an assumption restricting how the
unobservable u is related to the explanatory variable x. Without such a restriction, we
will not be able to estimate the ceteris paribus effect, 3,. Because u and x are random
variables, we need a concept grounded in probability.

Before we state the key assumption about how x and u are related, there is one assump-
tion about u that we can always make. As long as the intercept 3, is included in the equa-
tion, nothing is lost by assuming that the average value of u in the population is zero.
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Mathematically,

E(m) = 0. (2.5)

Importantly, assume (2.5) says nothing about the relationship between u and x but sim-
ply makes a statement about the distribution of the unobservables in the population.
Using the previous examples for illustration, we can see that assumption (2.5) is not very
restrictive. In Example 2.1, we lose nothing by normalizing the unobserved factors affect-
ing soybean yield, such as land quality, to have an average of zero in the population of
all cultivated plots. The same is true of the unobserved factors in Example 2.2. Without
loss of generality, we can assume that things such as average ability are zero in the pop-
ulation of all working people. If you are not convinced, you can work through Problem
2.2 to see that we can always redefine the intercept in equation (2.1) to make (2.5) true.

We now turn to the crucial assumption regarding how u and x are related. A natural
measure of the association between two random variables is the correlation coefficient.
(See Appendix B for definition and properties.) If u and x are uncorrelated, then, as ran-
dom variables, they are not linearly related. Assuming that # and x are uncorrelated goes
a long way toward defining the sense in which u and x should be unrelated in equation
(2.1). But it does not go far enough, because correlation measures only linear depen-
dence between u and x. Correlation has a somewhat counterintuitive feature: it is possi-
ble for u to be uncorrelated with x while being correlated with functions of x, such as
x2. (See Section B.4 for further discussion.) This possibility is not acceptable for most
regression purposes, as it causes problems for interpretating the model and for deriving
statistical properties. A better assumption involves the expected value of u given x.

Because u and x are random variables, we can define the conditional distribution of
u given any value of x. In particular, for any x, we can obtain the expected (or average)
value of u for that slice of the population described by the value of x. The crucial
assumption is that the average value of u does not depend on the value of x. We can
write this as

E(ulx) = E(u) = 0, (2.6)

where the second equality follows from (2.5). The first equality in equation (2.6) is the
new assumption, called the zero conditional mean assumption. It says that, for any
given value of x, the average of the unobservables is the same and therefore must equal
the average value of u in the entire population.

Let us see what (2.6) entails in the wage example. To simplify the discussion,
assume that u is the same as innate ability. Then (2.6) requires that the average level of
ability is the same regardless of years of education. For example, if E(abil|8) denotes
the average ability for the group of all people with eight years of education, and
E(abil|16) denotes the average ability among people in the population with 16 years of
education, then (2.6) implies that these must be the same. In fact, the average ability
level must be the same for all education levels. If, for example, we think that average
ability increases with years of education, then (2.6) is false. (This would happen if, on
average, people with more ability choose to become more educated.) As we cannot
observe innate ability, we have no way of knowing whether or not average ability is the
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same for all education levels. But this is an issue that we must address before applying

simple regression analysis.

In the fertilizer example, if fertilizer amounts are chosen independently of other fea-

QUESTION 2.1

Suppose that a score on a final exam, score, depends on classes
attended (attend) and unobserved factors that affect exam perfor-
mance (such as student ability):

score = By + Battend + u (2.7)

When would you expect this model to satisfy (2.6)?

E(ylx) =

tures of the plots, then (2.6) will hold: the
average land quality will not depend on the
amount of fertilizer. However, if more fer-
tilizer is put on the higher quality plots of
land, then the expected value of u changes
with the level of fertilizer, and (2.6) fails.

Assumption (2.6) gives [, another
interpretation that is often useful. Taking
the expected value of (2.1) conditional on
x and using E(ulx) = 0 gives

Bo+ Bix (2.8)

Equation (2.8) shows that the population regression function (PRF), E(y|x), is a lin-
ear function of x. The linearity means that a one-unit increase in x changes the expect-

Figure 2.1

E(y|x) as a linear function of x.

y

E(ylx) = By + BX

X
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Chapter 2 The Simple Regression Model

ed value of y by the amount 3,. For any given value of x, the distribution of y is cen-
tered about E(y|x), as illustrated in Figure 2.1.

When (2.6) is true, it is useful to break y into two components. The piece 3, + B,x
is sometimes called the systematic part of y—that is, the part of y explained by x—and
u is called the unsystematic part, or the part of y not explained by x. We will use
assumption (2.6) in the next section for motivating estimates of 3,and 3,. This assump-
tion is also crucial for the statistical analysis in Section 2.5.

2.2 DERIVING THE ORDINARY LEAST SQUARES
ESTIMATES

Now that we have discussed the basic ingredients of the simple regression model, we
will address the important issue of how to estimate the parameters 3, and 3, in equa-
tion (2.1). To do this, we need a sample from the population. Let {(x,y,): i=1,...,n}
denote a random sample of size n from the population. Since these data come from
(2.1), we can write

Yi= Bot Bix; t u (2.9)

for each i. Here, u; is the error term for observation i since it contains all factors affect-
ing y; other than x;.

As an example, x; might be the annual income and y, the annual savings for family
i during a particular year. If we have collected data on 15 families, then n = 15. A scat-
ter plot of such a data set is given in Figure 2.2, along with the (necessarily fictitious)
population regression function.

We must decide how to use these data to obtain estimates of the intercept and slope
in the population regression of savings on income.

There are several ways to motivate the following estimation procedure. We will use
(2.5) and an important implication of assumption (2.6): in the population, # has a zero
mean and is uncorrelated with x. Therefore, we see that u has zero expected value and
that the covariance between x and u is zero:

E(m) =0 (2.10)
Cov(x,u) = E(xu) = 0, (2.11)

where the first equality in (2.11) follows from (2.10). (See Section B.4 for the defini-
tion and properties of covariance.) In terms of the observable variables x and y and the
unknown parameters 3, and 3;, equations (2.10) and (2.11) can be written as

Ey = Bo—Bx) =0 (2.12)
and
E[x(y — Bo— Bx)] = 0, (2.13)

respectively. Equations (2.12) and (2.13) imply two restrictions on the joint probability
distribution of (x,y) in the population. Since there are two unknown parameters to esti-
mate, we might hope that equations (2.12) and (2.13) can be used to obtain good esti-
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Figure 2.2

Scatterplot of savings and income for 15 families, and the population regression
E(savings|income) = B, + B;income.
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mators of B;and B,. In fact, they can be. Given a sample of data, we choose estimates
B, and 3, to solve the sample counterparts of (2.12) and (2.13):

n' X (= Bo— Bix) = 0. (2-14)
i=1
n! 2 x(y; — Bo - lei) =0. (2.15)
i=1

This is an example of the method of moments approach to estimation. (See Section C.4
for a discussion of different estimation approaches.) These equations can be solved for
Bo and B;.

Using the basic properties of the summation operator from Appendix A, equation
(2.14) can be rewritten as

y= 30 + BAN_@ (2.16)

where y = n”! 2 y;1s the sample average of the y; and likewise for ¥. This equation allows
i=1

us to write ﬁ’o in terms of ﬁ’l, v, and &
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Bo=7 — Bix. (2.17)

Therefore, once we have the slope estimate él, it is straightforward to obtain the inter-
cept estimate ﬁo, given y and X.

Dropping the n~ " in (2.15) (since it does not affect the solution) and plugging (2.17)
into (2.15) yields

n

>y~ (5= BE) — Bix) =0

i=1

which, upon rearrangement, gives

n

21 x(y;—§) = él 21 x,(x; — X).

i=

From basic properties of the summation operator [see (A.7) and (A.8)],

2%@-@=§urm%m;am—w=§uﬁ@m—w

i=1

Therefore, provided that
> — >0, (2.18)
i=1

the estimated slope is

PR NES)
B == ) (2.19)

E (x; — )_5)2
i=1

Equation (2.19) is simply the sample covariance between x and y divided by the sam-
ple variance of x. (See Appendix C. Dividing both the numerator and the denominator
by n — 1 changes nothing.) This makes sense because 3, equals the population covari-
ance divided by the variance of x when E(x) = 0 and Cov(x,u) = 0. An immediate
implication is that if x and y are positively correlated in the sample, then B, is positive;
if x and y are negatively correlated, then B, is negative.

Although the method for obtaining (2.17) and (2.19) is motivated by (2.6), the only
assumption needed to compute the estimates for a particular sample is (2.18). This is
hardly an assumption at all: (2.18) is true provided the x;, in the sample are not all equal
to the same value. If (2.18) fails, then we have either been unlucky in obtaining our
sample from the population or we have not specified an interesting problem (x does not
vary in the population.). For example, if y = wage and x = educ, then (2.18) fails only
if everyone in the sample has the same amount of education. (For example, if everyone
is a high school graduate. See Figure 2.3.) If just one person has a different amount of
education, then (2.18) holds, and the OLS estimates can be computed.
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Figure 2.3

A scatterplot of wage against education when educ; = 12 for all i.
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0 12 educ

The estimates given in (2.17) and (2.19) are called the ordinary least squares
(OLS) estimates of B, and B,. To justify this name, for any 3, and B,, define a fitted
value for y when x = x; such as

9= By + Bix, (2.20)
for the given intercept and slope. This is the value we predict for y when x = x,. There

is a fitted value for each observation in the sample. The residual for observation i is the
difference between the actual y; and its fitted value:

L=y, = 9=y — [éo - lei~ (2.21)

Again, there are n such residuals. (These are not the same as the errors in (2.9), a point
we return to in Section 2.5.) The fitted values and residuals are indicated in Figure 2.4.
Now, suppose we choose 3, and (3, to make the sum of squared residuals,

X a2 =2 (i~ Bo— B (2.22)
i=1 i=1
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Figure 2.4

Fitted values and residuals.

y

|
| . .
.= Fitted value
Y1 | ? Y

as small as possible. The appendix to this chapter shows that the conditions necessary
for (Bo,ﬁl) to minimize (2.22) are given exactly by equations (2.14) and (2.15), without
n~!'. Equations (2.14) and (2.15) are often called the first order conditions for the OLS
estimates, a term that comes from optimization using calculus (see Appendix A). From
our previous calculations, we know that the solutions to the OLS first order conditions
are given by (2.17) and (2.19). The name “ordinary least squares” comes from the fact
that these estimates minimize the sum of squared residuals.

Once we have determined the OLS intercept and slope estimates, we form the OLS
regression line:

y= Bo + le’ (2-23)

where it is understood that ﬁo and Bl have been obtained using equations (2.17) and
(2.19). The notation J, read as “y hat,” emphasizes that the predicted values from equa-
tion (2.23) are estimates. The intercept, [§0, is the predicted value of y when x = 0,
although in some cases it will not make sense to set x = 0. In those situations, Bois not,
in itself, very interesting. When using (2.23) to compute predicted values of y for vari-
ous values of x, we must account for the intercept in the calculations. Equation (2.23)
is also called the sample regression function (SRF) because it is the estimated version
of the population regression function E(y|x) = 8, + B,x. It is important to remember
that the PRF is something fixed, but unknown, in the population. Since the SRF is
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obtained for a given sample of data, a new sample will generate a different slope and
intercept in equation (2.23).
In most cases the slope estimate, which we can write as

A

B, = ApiAx, (2:24)

is of primary interest. It tells us the amount by which § changes when x increases by
one unit. Equivalently,

A9 = B,Ax, (2.25)

so that given any change in x (whether positive or negative), we can compute the pre-
dicted change in y.

We now present several examples of simple regression obtained by using real data.
In other words, we find the intercept and slope estimates with equations (2.17) and
(2.19). Since these examples involve many observations, the calculations were done
using an econometric software package. At this point, you should be careful not to read
too much into these regressions; they are not necessarily uncovering a causal relation-
ship. We have said nothing so far about the statistical properties of OLS. In Section 2.5,
we consider statistical properties after we explicitly impose assumptions on the popu-
lation model equation (2.1).

EXAMPLE 2.3
(CEO Salary and Return on Equity)

For the population of chief executive officers, let y be annual salary (salary) in thousands of
dollars. Thus, y = 856.3 indicates an annual salary of $856,300, and y = 1452.6 indicates
a salary of $1,452,600. Let x be the average return equity (roe) for the CEQ’s firm for the
previous three years. (Return on equity is defined in terms of net income as a percentage
of common equity.) For example, if roe = 10, then average return on equity is 10 percent.

To study the relationship between this measure of firm performance and CEO com-
pensation, we postulate the simple model

salary = B, + B,roe + u.

The slope parameter 8, measures the change in annual salary, in thousands of dollars, when
return on equity increases by one percentage point. Because a higher roe is good for the
company, we think 8, > 0.

The data set CEOSAL1.RAW contains information on 209 CEOs for the year 1990; these
data were obtained from Business Week (5/6/91). In this sample, the average annual salary
is $1,281,120, with the smallest and largest being $223,000 and $14,822,000, respective-
ly. The average return on equity for the years 1988, 1989, and 1990 is 17.18 percent, with
the smallest and largest values being 0.5 and 56.3 percent, respectively.

Using the data in CEOSAL1T.RAW, the OLS regression line relating salary to roe is

salary = 963.191 + 18.501 roe, (2.26)
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where the intercept and slope estimates have been rounded to three decimal places; we
use “salary hat” to indicate that this is an estimated equation. How do we interpret the
equation? First, if the return on equity is zero, roe = 0, then the predicted salary is the inter-
cept, 963.191, which equals $963,191 since salary is measured in thousands. Next, we can
write the predicted change in salary as a function of the change in roe: Asalary = 18.501
(Aroe). This means that if the return on equity increases by one percentage point, Aroe =
1, then salary is predicted to change by about 18.5, or $18,500. Because (2.26) is a linear
equation, this is the estimated change regardless of the initial salary.

We can easily use (2.26) to compare predicted salaries at different values of roe.
Suppose roe = 30. Then salary = 963.191 + 18.501(30) = 1518.221, which is just over
$1.5 million. However, this does not mean that a particular CEO whose firm had an
roe = 30 earns $1,518,221. There are many other factors that affect salary. This is just
our prediction from the OLS regression line (2.26). The estimated line is graphed in Fig-
ure 2.5, along with the population regression function E(salary|roe). We will never know
the PRF, so we cannot tell how close the SRF is to the PRF. Another sample of data will
give a different regression line, which may or may not be closer to the population regres-
sion line.

Figure 2.5

The OLS regression line salary = 963.191 + 18.50 roe and the (unknown) population
regression function.

salary

salary = 963.191 + 18.501 roe

~

E(salaryiroe) = B, + B,roe

963.191

roe
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EXAMPLE 2. 4
(Wage and Education)

For the population of people in the work force in 1976, let y = wage, where wage is mea-
sured in dollars per hour. Thus, for a particular person, if wage = 6.75, the hourly wage is
$6.75. Let x = educ denote years of schooling; for example, educ = 12 corresponds to a
complete high school education. Since the average wage in the sample is $5.90, the con-
sumer price index indicates that this amount is equivalent to $16.64 in 1997 dollars.

Using the data in WAGE1.RAW where n = 526 individuals, we obtain the following OLS
regression line (or sample regression function):

wdge = —0.90 + 0.54 educ. (2.27)

We must interpret this equation with caution. The intercept of —0.90 literally means that a
person with no education has a predicted hourly wage of —90 cents an hour. This, of
course, is silly. It turns out that no one in the sample has less than eight years of education,
which helps to explain the crazy prediction for a zero education value. For a person with
eight years of education, the predicted wage
is wdge = —0.90 + 0.54(8) = 3.42, or

QUESTION 2.2 $3.42 per hour (in 1976 dollars).
The estimated wage from (2.27), when educ = 8, is $3.42 in 1976 The slope estimate in (2.27) implies that
dollars. What is this value in 1997 dollars? (Hint: You have enough one more year of education increases hourly
information in Example 2.4 to answer this qUeStiOn.) wage by 54 cents an hour. Thereforel four

more years of education increase the pre-
dicted wage by 4(0.54) = 2.16 or $2.16 per hour. These are fairly large effects. Because of
the linear nature of (2.27), another year of education increases the wage by the same
amount, regardless of the initial level of education. In Section 2.4, we discuss some meth-
ods that allow for nonconstant marginal effects of our explanatory variables.

EXAMPLE 2.5
(Voting Outcomes and Campaign Expenditures)

The file VOTE1.RAW contains data on election outcomes and campaign expenditures for
173 two-party races for the U.S. House of Representatives in 1988. There are two candi-
dates in each race, A and B. Let voteA be the percentage of the vote received by Candidate
A and shareA be the the percentage of total campaign expenditures accounted for by
Candidate A. Many factors other than shareA affect the election outcome (including the
quality of the candidates and possibly the dollar amounts spent by A and B). Nevertheless,
we can estimate a simple regression model to find out whether spending more relative to
one’s challenger implies a higher percentage of the vote.

The estimated equation using the 173 observations is

voteA = 40.90 + 0.306 shareA. (2.28)

This means that, if the share of Candidate A's expenditures increases by one percent-
age point, Candidate A receives almost one-third of a percentage point more of the
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total vote. Whether or not this is a causal effect is unclear, but the result is what we
might expect.

In some cases, regression analysis is not used to determine causality but to simply
look at whether two variables are positively or negatively related, much like a standard
correlation analysis. An example of this
occurs in Problem 2.12, where you are
asked to use data from Biddle and
Hamermesh (1990) on time spent sleeping
and working to investigate the tradeoff
between these two factors.

QUESTION 2.3

In Example 2.5, what is the predicted vote for Candidate A if shareA
= 60 (which means 60 percent)? Does this answer seem reasonable?

A Note on Terminolgy

In most cases, we will indicate the estimation of a relationship through OLS by writing
an equation such as (2.26), (2.27), or (2.28). Sometimes, for the sake of brevity, it is
useful to indicate that an OLS regression has been run without actually writing out the
equation. We will often indicate that equation (2.23) has been obtained by OLS in say-
ing that we run the regression of

yon Xx, (2.29)

or simply that we regress y on x. The positions of y and x in (2.29) indicate which is the
dependent variable and which is the independent variable: we always regress the depen-
dent variable on the independent variable. For specific applications, we replace y and x
with their names. Thus, to obtain (2.26), we regress salary on roe or to obtain (2.28),
we regress voteA on shareA.

When we use such terminology in (2.29), we will always mean that we plan to esti-
mate the intercept, BO, along with the slope, ,él. This case is appropriate for the vast
majority of applications. Occasionally, we may want to estimate the relationship
between y and x assuming that the intercept is zero (so that x = 0 implies that § = 0);
we cover this case briefly in Section 2.6. Unless explicitly stated otherwise, we always
estimate an intercept along with a slope.

2.3 MECHANICS OF OLS

In this section, we cover some algebraic properties of the fitted OLS regression line.
Perhaps the best way to think about these properties is to realize that they are features
of OLS for a particular sample of data. They can be contrasted with the statistical prop-
erties of OLS, which requires deriving features of the sampling distributions of the esti-
mators. We will discuss statistical properties in Section 2.5.

Several of the algebraic properties we are going to derive will appear mundane.
Nevertheless, having a grasp of these properties helps us to figure out what happens to
the OLS estimates and related statistics when the data are manipulated in certain ways,
such as when the measurement units of the dependent and independent variables change.
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Fitted Values and Residuals

We assume that the intercept and slope estimates, ,30 and ﬁl, have been obtained for the
given sample of data. Given ﬁo and ﬁl, we can obtain the fitted value y, for each obser-
vation. [This is given by equation (2.20).] By definition, each fitted value of y,is on the
OLS regression line. The OLS residual associated with observation i, i;, is the differ-
ence between y, and its fitted value, as given in equation (2.21). If &; is positive, the line
underpredicts y;; if 4, is negative, the line overpredicts y;. The ideal case for observation
i is when #@; = 0, but in most cases every residual is not equal to zero. In other words,
none of the data points must actually lie on the OLS line.

EXAMPLE 2.6
(CEO Salary and Return on Equity)

Table 2.2 contains a listing of the first 15 observations in the CEO data set, along with the
fitted values, called salaryhat, and the residuals, called uhat.

Table 2.2
Fitted Values and Residuals for the First 15 CEOs
obsno roe salary salaryhat uhat
1 14.1 1095 1224.058 —129.0581
2 10.9 1001 1164.854 —163.8542
3 235 1122 1397.969 —275.9692
4 59 578 1072.348 —494.3484
5 13.8 1368 1218.508 149.4923
6 20.0 1145 1333.215 —188.2151
7 16.4 1078 1266.611 —188.6108
8 16.3 1094 1264.761 —170.7606
9 10.5 1237 1157.454 79.54626
10 26.3 833 1449.773 —616.7726
11 25.9 567 1442.372 —875.3721
12 26.8 933 1459.023 —526.0231
continued
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Table 2.2 (concluded)

obsno roe salary salaryhat uhat
13 14.8 1339 1237.009 101.9911
14 223 937 1375.768 —438.7678
15 56.3 2011 2004.808 6.191895

The first four CEOs have lower salaries than what we predicted from the OLS regression line
(2.26); in other words, given only the firm’s roe, these CEOs make less than what we pre-
dicted. As can be seen from the positive uhat, the fifth CEO makes more than predicted
from the OLS regression line.

Algebraic Properties of OLS Statistics

There are several useful algebraic properties of OLS estimates and their associated sta-
tistics. We now cover the three most important of these.
(1) The sum, and therefore the sample average of the OLS residuals, is zero.
Mathematically,

n

> .= 0. (2.30)

i=1

This property needs no proof; it follows immediately from the OLS first order condi-
tion (2.14), when we remember that the residuals are defined by &, = y, — 30 - ,élx,-.
In other words, the OLS estimates ﬁo and ,él are chosen to make the residuals add up to
zero (for any data set). This says nothing about the residual for any particular observa-
tion i.

(2) The sample covariance between the regressors and the OLS residuals is zero.
This follows from the first order condition (2.15), which can be written in terms of the
residuals as

> xia, = 0. (2.31)
i=1

The sample average of the OLS residuals is zero, so the left hand side of (2.31) is pro-
portional to the sample covariance between x; and ;.

(3) The point (x,y) is always on the OLS regression line. In other words, if we take
equation (2.23) and plug in X for x, then the predicted value is y. This is exactly what
equation (2.16) shows us.
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EXAMPLE 2.7
(Wage and Education)

For the data in WAGE1.RAW, the average hourly wage in the sample is 5.90, rounded to
two decimal places, and the average education is 12.56. If we plug educ = 12.56 into the
OLS regression line (2.27), we get wage = —0.90 + 0.54(12.56) = 5.8824, which equals
5.9 when rounded to the first decimal place. The reason these figures do not exactly agree
is that we have rounded the average wage and education, as well as the intercept and slope
estimates. If we did not initially round any of the values, we would get the answers to agree
more closely, but this practice has little useful effect.

Writing each y; as its fitted value, plus its residual, provides another way to intepret
an OLS regression. For each i, write

Y= 9+ d. (2.32)

From property (1) above, the average of the residuals is zero; equivalently, the sample
average of the fitted values, J,, is the same as the sample average of the y;, or § = .
Further, properties (1) and (2) can be used to show that the sample covariance
between ¥, and &, is zero. Thus, we can view OLS as decomposing each y, into two
parts, a fitted value and a residual. The fitted values and residuals are uncorrelated in
the sample.

Define the total sum of squares (SST), the explained sum of squares (SSE), and
the residual sum of squares (SSR) (also known as the sum of squared residuals), as
follows:

SST = X, (3, — 3> (233)
i=1
SSE = >, (5, — 9> (2:34)
i=1
SSR = >, @2 (2.35)
i=1

SST is a measure of the total sample variation in the y,; that is, it measures how spread
out the y, are in the sample. If we divide SST by n — 1, we obtain the sample variance
of y, as discussed in Appendix C. Similarly, SSE measures the sample variation in the
9, (where we use the fact that § = %), and SSR measures the sample variation in the ;.
The total variation in y can always be expressed as the sum of the explained variation
and the unexplained variation SSR. Thus,

SST = SSE + SSR. (2.36)
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Proving (2.36) is not difficult, but it requires us to use all of the properties of the sum-
mation operator covered in Appendix A. Write

n

; 0= y)z = E (=9 + O~ y)]z

i=1

=§m+@—m2

=§ﬁ+2§mm—w+§@rwz
=SSR + 2 D ii.(, — ¥) + SSE.
i=1

Now (2.36) holds if we show that
> 05— 5) = 0. (2.37)

But we have already claimed that the sample covariance between the residuals and the
fitted values is zero, and this covariance is just (2.37) divided by n —1. Thus, we have
established (2.36).

Some words of caution about SST, SSE, and SSR are in order. There is no uniform
agreement on the names or abbreviations for the three quantities defined in equations
(2.33), (2.34), and (2.35). The total sum of squares is called either SST or TSS, so there
is little confusion here. Unfortunately, the explained sum of squares is sometimes called
the “regression sum of squares.” If this term is given its natural abbreviation, it can eas-
ily be confused with the term residual sum of squares. Some regression packages refer
to the explained sum of squares as the “model sum of squares.”

To make matters even worse, the residual sum of squares is often called the “error
sum of squares.” This is especially unfortunate because, as we will see in Section 2.5,
the errors and the residuals are different quantities. Thus, we will always call (2.35) the
residual sum of squares or the sum of squared residuals. We prefer to use the abbrevia-
tion SSR to denote the sum of squared residuals, because it is more common in econo-
metric packages.

Goodness-of-Fit

So far, we have no way of measuring how well the explanatory or independent variable,
x, explains the dependent variable, y. It is often useful to compute a number that sum-
marizes how well the OLS regression line fits the data. In the following discussion, be
sure to remember that we assume that an intercept is estimated along with the slope.

Assuming that the total sum of squares, SST, is not equal to zero—which is true
except in the very unlikely event that all the y; equal the same value—we can divide
(2.36) by SST to get 1 = SSE/SST + SSR/SST. The R-squared of the regression,
sometimes called the coefficient of determination, is defined as
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R?> = SSE/SST = 1 — SSR/SST. (2.38)

R?1is the ratio of the explained variation compared to the total variation, and thus it is
interpreted as the fraction of the sample variation in y that is explained by x. The sec-
ond equality in (2.38) provides another way for computing R*.

From (2.36), the value of R?is always between zero and one, since SSE can be no
greater than SST. When interpreting R?, we usually multiply it by 100 to change it into
a percent: 100-R? is the percentage of the sample variation in y that is explained by x.

If the data points all lie on the same line, OLS provides a perfect fit to the data. In
this case, R> = 1. A value of R? that is nearly equal to zero indicates a poor fit of the
OLS line: very little of the variation in the y; is captured by the variation in the y; (which
all lie on the OLS regression line). In fact, it can be shown that R? is equal to the square
of the sample correlation coefficient between y;, and ¥, This is where the term
“R-squared” came from. (The letter R was traditionally used to denote an estimate of a
population correlation coefficient, and its usage has survived in regression analysis.)

EXAMPLE 2.8
(CEO Salary and Return on Equity)

In the CEO salary regression, we obtain the following:

salary = 963.191 + 18.501 roe (2.39)
n =209, R = 0.0132

We have reproduced the OLS regression line and the number of observations for clarity.
Using the R-squared (rounded to four decimal places) reported for this equation, we can
see how much of the variation in salary is actually explained by the return on equity. The
answer is: not much. The firm’s return on equity explains only about 1.3% of the variation
in salaries for this sample of 209 CEOs. That means that 98.7% of the salary variations for
these CEOs is left unexplained! This lack of explanatory power may not be too surprising
since there are many other characteristics of both the firm and the individual CEO that
should influence salary; these factors are necessarily included in the errors in a simple
regression analysis.

In the social sciences, low R-squareds in regression equations are not uncommon,
especially for cross-sectional analysis. We will discuss this issue more generally under
multiple regression analysis, but it is worth emphasizing now that a seemingly low R-
squared does not necessarily mean that an OLS regression equation is useless. It is still
possible that (2.39) is a good estimate of the ceteris paribus relationship between salary
and roe; whether or not this is true does not depend directly on the size of R-squared.
Students who are first learning econometrics tend to put too much weight on the size of
the R-squared in evaluating regression equations. For now, be aware that using
R-squared as the main gauge of success for an econometric analysis can lead to trouble.

Sometimes the explanatory variable explains a substantial part of the sample varia-
tion in the dependent variable.
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EXAMPLE 2.9
(Voting Outcomes and Campaign Expenditures)

In the voting outcome equation in (2.28), R? = 0.505. Thus, the share of campaign expen-
ditures explains just over 50 percent of the variation in the election outcomes for this sam-
ple. This is a fairly sizable portion.

2.4 UNITS OF MEASUREMENT AND FUNCTIONAL
FORM

Two important issues in applied economics are (1) understanding how changing the
units of measurement of the dependent and/or independent variables affects OLS esti-
mates and (2) knowing how to incorporate popular functional forms used in economics
into regression analysis. The mathematics needed for a full understanding of func-
tional form issues is reviewed in Appendix A.

The Effects of Changing Units of Measurement on OLS
Statistics

In Example 2.3, we chose to measure annual salary in thousands of dollars, and the
return on equity was measured as a percent (rather than as a decimal). It is crucial to
know how salary and roe are measured in this example in order to make sense of the
estimates in equation (2.39).

We must also know that OLS estimates change in entirely expected ways when the
units of measurement of the dependent and independent variables change. In Example
2.3, suppose that, rather than measuring salary in thousands of dollars, we measure it in
dollars. Let salardol be salary in dollars (salardol = 845,761 would be interpreted as
$845,761.). Of course, salardol has a simple relationship to the salary measured in
thousands of dollars: salardol = 1,000-salary. We do not need to actually run the
regression of salardol on roe to know that the estimated equation is:

saldrdol = 963,191 + 18,501 roe. (2.40)

We obtain the intercept and slope in (2.40) simply by multiplying the intercept and the
slope in (2.39) by 1,000. This gives equations (2.39) and (2.40) the same interpretation.
Looking at (2.40), if roe = 0, then saldrdol = 963,191, so the predicted salary is
$963,191 [the same value we obtained from equation (2.39)]. Furthermore, if roe
increases by one, then the predicted salary increases by $18,501; again, this is what we
concluded from our earlier analysis of equation (2.39).

Generally, it is easy to figure out what happens to the intercept and slope estimates
when the dependent variable changes units of measurement. If the dependent variable
is multiplied by the constant c—which means each value in the sample is multiplied by
c—then the OLS intercept and slope estimates are also multiplied by c. (This assumes
nothing has changed about the independent variable.) In the CEO salary example, ¢ =
1,000 in moving from salary to salardol.

a1
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We can also use the CEO salary example to see what happens when we change
the units of measurement of the indepen-
dent variable. Define roedec = roe/100
QUESTION 2.4 to be the decimal equivalent of roe; thus,
Suppose that salary is measured in hundreds of dollars, rather than roedec = 0.23 means a return on equity of
in thousands of dollars, say salarhun. What will be the OLS intercept 23 percent. To focus on changing the units
and slope estimates in the regression of salarhun on roe? of measurement of the independent vari-
able, we return to our original dependent
variable, salary, which is measured in thousands of dollars. When we regress salary on

roedec, we obtain

salary = 963.191 + 1850.1 roedec. (2.41)

The coefficient on roedec is 100 times the coefficient on roe in (2.39). This is as it
should be. Changing roe by one percentage point is equivalent to Aroedec = 0.01. From
(2.41), if Aroedec = 0.01, then Asalary = 1850.1(0.01) = 18.501, which is what is
obtained by using (2.39). Note that, in moving from (2.39) to (2.41), the independent
variable was divided by 100, and so the OLS slope estimate was multiplied by 100, pre-
serving the interpretation of the equation. Generally, if the independent variable is
divided or multiplied by some nonzero constant, ¢, then the OLS slope coefficient is
also multiplied or divided by c respectively.

The intercept has not changed in (2.41) because roedec = 0 still corresponds to a
zero return on equity. In general, changing the units of measurement of only the inde-
pendent variable does not affect the intercept.

In the previous section, we defined R-squared as a goodness-of-fit measure for
OLS regression. We can also ask what happens to R* when the unit of measurement
of either the independent or the dependent variable changes. Without doing any alge-
bra, we should know the result: the goodness-of-fit of the model should not depend on
the units of measurement of our variables. For example, the amount of variation in
salary, explained by the return on equity, should not depend on whether salary is mea-
sured in dollars or in thousands of dollars or on whether return on equity is a percent
or a decimal. This intuition can be verified mathematically: using the definition of R?,
it can be shown that R?is, in fact, invariant to changes in the units of y or x.

Incorporating Nonlinearities in Simple Regression

So far we have focused on linear relationships between the dependent and independent
variables. As we mentioned in Chapter 1, linear relationships are not nearly general
enough for all economic applications. Fortunately, it is rather easy to incorporate many
nonlinearities into simple regression analysis by appropriately defining the dependent
and independent variables. Here we will cover two possibilities that often appear in
applied work.

In reading applied work in the social sciences, you will often encounter regression
equations where the dependent variable appears in logarithmic form. Why is this done?
Recall the wage-education example, where we regressed hourly wage on years of edu-
cation. We obtained a slope estimate of 0.54 [see equation (2.27)], which means that
each additional year of education is predicted to increase hourly wage by 54 cents.
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Because of the linear nature of (2.27), 54 cents is the increase for either the first year of
education or the twentieth year; this may not be reasonable.

Suppose, instead, that the percentage increase in wage is the same given one more
year of education. Model (2.27) does not imply a constant percentage increase: the per-
centage increases depends on the initial wage. A model that gives (approximately) a
constant percentage effect is

log(wage) = B, + B,educ + u, (2.42)

where log(-) denotes the natural logarithm. (See Appendix A for a review of loga-
rithms.) In particular, if Au = 0, then

Y%Awage = (100-B,)Aeduc. (2.43)

Notice how we multiply B3, by 100 to get the percentage change in wage given one addi-
tional year of education. Since the percentage change in wage is the same for each addi-
tional year of education, the change in wage for an extra year of education increases as
education increases; in other words, (2.42) implies an increasing return to education.
By exponentiating (2.42), we can write wage = exp(B, + B,educ + u). This equation
is graphed in Figure 2.6, with u = 0.

Figure 2.6
wage = exp(B, + B,educ), with B, > 0.

wage

0 educ
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Estimating a model such as (2.42) is straightforward when using simple regression.
Just define the dependent variable, y, to be y = log(wage). The independent variable is
represented by x = educ. The mechanics of OLS are the same as before: the intercept
and slope estimates are given by the formulas (2.17) and (2.19). In other words, we
obtain ,éo and Bl from the OLS regression of log(wage) on educ.

EXAMPLE 2.10
(A Log Wage Equation)

Using the same data as in Example 2.4, but using log(wage) as the dependent variable, we
obtain the following relationship:

logA(wage) = (0.584 + 0.083 educ (2.44)
n =526, R = 0.186.

The coefficient on educ has a percentage interpretation when it is multiplied by 100: wage
increases by 8.3 percent for every additional year of education. This is what economists
mean when they refer to the “return to another year of education.”

It is important to remember that the main reason for using the log of wage in (2.42) is
to impose a constant percentage effect of education on wage. Once equation (2.42) is
obtained, the natural log of wage is rarely mentioned. In particular, it is not correct to say
that another year of education increases log(wage) by 8.3%.

The intercept in (2.42) is not very meaningful, as it gives the predicted log(wage),
when educ = 0. The R-squared shows that educ explains about 18.6 percent of the vari-
ation in log(wage) (not wage). Finally, equation (2.44) might not capture all of the non-
linearity in the relationship between wage and schooling. If there are “diploma effects,”
then the twelfth year of education—graduation from high school—could be worth much
more than the eleventh year. We will learn how to allow for this kind of nonlinearity in
Chapter 7.

Another important use of the natural log is in obtaining a constant elasticity model.

EXAMPLE 2 .11
(CEO Salary and Firm Sales)

We can estimate a constant elasticity model relating CEO salary to firm sales. The data set
is the same one used in Example 2.3, except we now relate salary to sales. Let sales be
annual firm sales, measured in millions of dollars. A constant elasticity model is

log(salary) = B, + Blog(sales) + u, (2.45)
where B, is the elasticity of salary with respect to sales. This model falls under the simple
regression model by defining the dependent variable to be y = log(salary) and the inde-

pendent variable to be x = log(sales). Estimating this equation by OLS gives
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log(sal&ry) = 4.822 + 0.257 log(sales) (2.46)

n =209, R*=0.211.

The coefficient of log(sales) is the estimated elasticity of salary with respect to sales. It
implies that a 1 percent increase in firm sales increases CEO salary by about 0.257 per-
cent—the usual interpretation of an elasticity.

The two functional forms covered in this section will often arise in the remainder of
this text. We have covered models containing natural logarithms here because they
appear so frequently in applied work. The interpretation of such models will not be
much different in the multiple regression case.

It is also useful to note what happens to the intercept and slope estimates if we change
the units of measurement of the dependent variable when it appears in logarithmic form.
Because the change to logarithmic form approximates a proportionate change, it makes
sense that nothing happens to the slope. We can see this by writing the rescaled vari-
able as c,y; for each observation i. The original equation is log(y,) = B, + Bix; + u,. If
we add log(c,) to both sides, we get log(c,) + log(y,) = [log(c,) + Bol + Bix; + u;, or
log(c,y;) = [log(c,) + Byl + Bix; + u;. (Remember that the sum of the logs is equal to
the log of their product as shown in Appendix A.) Therefore, the slope is still 3,, but the
intercept is now log(c,) + B,. Similarly, if the independent variable is log(x), and we
change the units of measurement of x before taking the log, the slope remains the same
but the intercept does not change. You will be asked to verify these claims in Problem 2.9.

We end this subsection by summarizing four combinations of functional forms
available from using either the original variable or its natural log. In Table 2.3, x and y
stand for the variables in their original form. The model with y as the dependent vari-
able and x as the independent variable is called the level-level model, because each vari-
able appears in its level form. The model with log(y) as the dependent variable and x as
the independent variable is called the log-level model. We will not explicitly discuss the
level-log model here, because it arises less often in practice. In any case, we will see
examples of this model in later chapters.

Table 2.3

Summary of Functional Forms Involving Logarithms

Dependent Independent Interpretation
Model Variable Variable of B,
level-level y X Ay = B,Ax
level-log y log(x) Ay = (8,/100)%Ax
log-level log(y) X %Ay = (1008,)Ax
log-log log(y) log(x) %Ay = B,%Ax
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The last column in Table 2.3 gives the interpretation of 3,. In the log-level model,
100- B, is sometimes called the semi-elasticity of y with respect to x. As we mentioned
in Example 2.11, in the log-log model, B, is the elasticity of y with respect to x. Table
2.3 warrants careful study, as we will refer to it often in the remainder of the text.

The Meaning of “Linear” Regression

The simple regression model that we have studied in this chapter is also called the sim-
ple linear regression model. Yet, as we have just seen, the general model also allows for
certain nonlinear relationships. So what does “linear” mean here? You can see by look-
ing at equation (2.1) that y = B, + B,x + u. The key is that this equation is linear in the
parameters, 3, and ,. There are no restrictions on how y and x relate to the original
explained and explanatory variables of interest. As we saw in Examples 2.7 and 2.8, y
and x can be natural logs of variables, and this is quite common in applications. But we
need not stop there. For example, nothing prevents us from using simple regression to
estimate a model such as cons = B, + B,\/inc + u, where cons is annual consumption
and inc is annual income.

While the mechanics of simple regression do not depend on how y and x are
defined, the interpretation of the coefficients does depend on their definitions. For suc-
cessful empirical work, it is much more important to become proficient at interpreting
coefficients than to become efficient at computing formulas such as (2.19). We will get
much more practice with interpreting the estimates in OLS regression lines when we
study multiple regression.

There are plenty of models that cannot be cast as a linear regression model because
they are not linear in their parameters; an example is cons = 1/(B, + B,inc) + u.
Estimation of such models takes us into the realm of the nonlinear regression model,
which is beyond the scope of this text. For most applications, choosing a model that can
be put into the linear regression framework is sufficient.

2.5 EXPECTED VALUES AND VARIANCES OF THE OLS
ESTIMATORS

In Section 2.1, we defined the population model y = B, + B,x + u, and we claimed that
the key assumption for simple regression analysis to be useful is that the expected value
of u given any value of x is zero. In Sections 2.2, 2.3, and 2.4, we discussed the alge-
braic properties of OLS estimation. We now return to the population model and study
the statistical properties of OLS. In other words, we now view ﬁo and ,él as estimators
for the parameters 3, and 3, that appear in the population model. This means that we
will study properties of the distributions of Bo and ,8] over different random samples
from the population. (Appendix C contains definitions of estimators and reviews some
of their important properties.)

Unbiasedness of OLS

We begin by establishing the unbiasedness of OLS under a simple set of assumptions.
For future reference, it is useful to number these assumptions using the prefix “SLR”
for simple linear regression. The first assumption defines the population model.
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ASSUMPTION

SLR.1

(LINEAR

The Simple Regression Model

IN PARAMETERS)

In the population model, the dependent variable y is related to the independent variable x
and the error (or disturbance) u as
y=PBot Bix tu, (2.47)

where B, and B, are the population intercept and slope parameters, respectively.

To be realistic, y, x, and u are all viewed as random variables in stating the population
model. We discussed the interpretation of this model at some length in Section 2.1 and
gave several examples. In the previous section, we learned that equation (2.47) is not as
restrictive as it initially seems; by choosing y and x appropriately, we can obtain inter-
esting nonlinear relationships (such as constant elasticity models).

We are interested in using data on y and x to estimate the parameters (3, and, espe-
cially, B;. We assume that our data were obtained as a random sample. (See Appendix
C for a review of random sampling.)

ASSUMPTION SLR.2 (RANDOM SAMPLING)
We can use a random sample of size n, {(x,y): i = 1,2,...,n}, from the population
model.

We will have to address failure of the random sampling assumption in later chapters that
deal with time series analysis and sample selection problems. Not all cross-sectional
samples can be viewed as outcomes of random samples, but many can be.

We can write (2.47) in terms of the random sample as

vi=Bot Bx;+ u,i = 12,....n, (2.48)

where u; is the error or disturbance for observation i (for example, person i, firm i, city
i, etc.). Thus, u, contains the unobservables for observation i which affect y,;. The u;
should not be confused with the residuals, #;, that we defined in Section 2.3. Later on,
we will explore the relationship between the errors and the residuals. For interpret-
ing 3, and 3, in a particular application, (2.47) is most informative, but (2.48) is also
needed for some of the statistical derivations.

The relationship (2.48) can be plotted for a particular outcome of data as shown in
Figure 2.7.

In order to obtain unbiased estimators of B,and 3,, we need to impose the zero con-
ditional mean assumption that we discussed in some detail in Section 2.1. We now
explicitly add it to our list of assumptions.

ASSUMPTION
E(ulx) = 0.

SLR.3 (ZERO CONDITIONAL MEAN)
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Figure 2.7
Graph of y; = By + Bx; + u;.

y

Yi

For a random sample, this assumption implies that E(ui|xi) =0, foralli =1,2,...,n

In addition to restricting the relationship between u and x in the population, the zero
conditional mean assumption—coupled with the random sampling assumption—
allows for a convenient technical simplification. In particular, we can derive the statis-
tical properties of the OLS estimators as conditional on the values of the x; in our sam-
ple. Technically, in statistical derivations, conditioning on the sample values of the inde-
pendent variable is the same as treating the x; as fixed in repeated samples. This process
involves several steps. We first choose n sample values for x,, x,, ..., x, (These can be
repeated.). Given these values, we then obtain a sample on y (effectively by obtaining
a random sample of the u;). Next another sample of y is obtained, using the same val-
ues for xy, ..., x,,. Then another sample of y is obtained, again using the same x;. And
SO on.

The fixed in repeated samples scenario is not very realistic in nonexperimental con-
texts. For instance, in sampling individuals for the wage-education example, it makes
little sense to think of choosing the values of educ ahead of time and then sampling
individuals with those particular levels of education. Random sampling, where individ-
uals are chosen randomly and their wage and education are both recorded, is represen-
tative of how most data sets are obtained for empirical analysis in the social sciences.
Once we assume that E(ulx) = 0, and we have random sampling, nothing is lost in
derivations by treating the x; as nonrandom. The danger is that the fixed in repeated
samples assumption al/ways implies that u; and x; are independent. In deciding when
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simple regression analysis is going to produce unbiased estimators, it is critical to think
in terms of Assumption SLR.3.

Once we have agreed to condition on the x;, we need one final assumption for unbi-
asedness.

ASSUMPTION SLR.4 (SAMPLE VARIATION IN
THE INDEPENDENT VARIABLE)

In the sample, the independent variables x;, i = 1,2,...,n, are not all equal to the same con-
stant. This requires some variation in x in the population.

We encountered Assumption SLR.4 when we derived the formulas for the OLS esti-

mators; it is equivalent to E (x; — ¥)> > 0. Of the four assumptions made, this is the
i=1

least important because it essentially never fails in interesting applications. If Assump-

tion SLR.4 does fail, we cannot compute the OLS estimators, which means statistical

analysis is irrelevant.
Using the fact that E x;— 00, —y = E (x; — X)y, (see Appendix A), we can
i=1 i=1

write the OLS slope estimator in equation (2.19) as

N

A A

1 (x; — X)y;
B = -

(2.49)

(x; — 3_5)2

R

Il
-

Because we are now interested in the behavior of 3, across all possible samples, 3, is
properly viewed as a random variable.

We can write [§1 in terms of the population coefficients and errors by substituting the
right hand side of (2.48) into (2.49). We have

2 (x; = X)y; ; (x; = X)(Bo + Bix; + uy)

A i=1
= (2.50)

where we have defined the total variation in x; as s> = 2 (x; — X)*in order to simplify
i=1

the notation. (This is not quite the sample variance of the x; because we do not divide
by n — 1.) Using the algebra of the summation operator, write the numerator of 3, as

E (x; — DB, + E (x; — DBx; + E (x; — D,
. . . (2.51)

= Bo; (-5 + BE (x, — ), + E x, — Du,.
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As shown in Appendix A, 2 (x; — X) = 0 and 2 (x; — X)x; = 2 (x;, — X)* = 52
i=1 i=1 i=1

Therefore, we can write the numerator of ,[§1 as B,s2 + E (x; — X)u;. Writing this over

the denominator gives =1

n
E (x; — Xu; n
Bi=Bit F— = Bt (Us) 2 du, (2.52)
X i=1
where d; = x; — X. We now see that the estimator ﬁl equals the population slope S, plus
a term that is a linear combination in the errors {u,,u,,...,u, }. Conditional on the val-
ues of x;, the randomness in él is due entirely to the errors in the sample. The fact that
these errors are generally different from zero is what causes ﬁl to differ from ;.
Using the representation in (2.52), we can prove the first important statistical prop-
erty of OLS.

THEOREM 2.1 (UNBIASEDNESS OF OLS)
Using Assumptions SLR.1 through SLR.4,

E(Bo) = Bo, and E(B)) = B, (2.53)

for any values of B,and B;. In other words, j, is unbiased for ,, and 3, is unbiased for B;.

PR O O F: In this proof, the expected values are conditional on the sample values of
the independent variable. Since s2 and d; are functions only of the x;, they are nonrandom
in the conditioning. Therefore, from (2.53),

EB,) = B, + E[(1/5?) 21 du] = B, + (1/s2) Z E(du,)

=B, + (1/s2) 2 dE@w) = B, + (1/s2) E d-0 = B,

where we have used the fact that the expected value of each u; (conditional on {x;,X5,...,x,})
is zero under Assumptions SLR.2 and SLR.3.

The proof for B, is now straightforward. Average (2.48) across i to get y = B, + B.X +
G, and plug this into the formula for By

é():)_/—,é‘l)_c:ﬁo—i-ﬂ]i-}—ﬁ— B]x: B0+(B1_[§1)3_C+IZ~
Then, conditional on the values of the x;,
E(By) = Bo + El(B, — B)Z] + E@) = B, + EL(B, — BI%,

since E(@) = 0 by Assumptions SLR.2 and SLR.3. But, we showed that E(3,) = B,, which
implies that E[(8, — B8;)] = 0. Thus, E(8,) = B,. Both of these arguments are valid for any
values of Byand B,, and so we have established unbiasedness.
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Remember that unbiasedness is a feature of the sampling distributions of ,@'1 and 30,
which says nothing about the estimate that we obtain for a given sample. We hope that,
if the sample we obtain is somehow “typical,” then our estimate should be “near” the
population value. Unfortunately, it is always possible that we could obtain an unlucky
sample that would give us a point estimate far from 3,, and we can never know for sure
whether this is the case. You may want to review the material on unbiased estimators in
Appendix C, especially the simulation exercise in Table C.1 that illustrates the concept
of unbiasedness.

Unbiasedness generally fails if any of our four assumptions fail. This means that it
is important to think about the veracity of each assumption for a particular application.
As we have already discussed, if Assumption SLR.4 fails, then we will not be able to
obtain the OLS estimates. Assumption SLR.1 requires that y and x be linearly related,
with an additive disturbance. This can certainly fail. But we also know that y and x can
be chosen to yield interesting nonlinear relationships. Dealing with the failure of (2.47)
requires more advanced methods that are beyond the scope of this text.

Later, we will have to relax Assumption SLR.2, the random sampling assumption,
for time series analysis. But what about using it for cross-sectional analysis? Random
sampling can fail in a cross section when samples are not representative of the under-
lying population; in fact, some data sets are constructed by intentionally oversampling
different parts of the population. We will discuss problems of nonrandom sampling in
Chapters 9 and 17.

The assumption we should concentrate on for now is SLR.3. If SLR.3 holds, the
OLS estimators are unbiased. Likewise, if SLR.3 fails, the OLS estimators generally
will be biased. There are ways to determine the likely direction and size of the bias,
which we will study in Chapter 3.

The possibility that x is correlated with u is almost always a concern in simple
regression analysis with nonexperimental data, as we indicated with several examples
in Section 2.1. Using simple regression when u contains factors affecting y that are also
correlated with x can result in spurious correlation: that is, we find a relationship
between y and x that is really due to other unobserved factors that affect y and also hap-
pen to be correlated with x.

EXAMPLE 2 .12
(Student Math Performance and the School Lunch Program)

Let math10 denote the percentage of tenth graders at a high school receiving a passing
score on a standardized mathematics exam. Suppose we wish to estimate the effect of
the federally funded school lunch program on student performance. If anything, we
expect the lunch program to have a positive ceteris paribus effect on performance: all
other factors being equal, if a student who is too poor to eat regular meals becomes eli-
gible for the school lunch program, his or her performance should improve. Let Inchprg
denote the percentage of students who are eligible for the lunch program. Then a simple
regression model is

mathl0 = B, + B,Inchprg + u, (2.54)
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where u contains school and student characteristics that affect overall school performance.
Using the data in MEAP93.RAW on 408 Michigan high schools for the 1992-93 school
year, we obtain

mathl10 = 32.14 — 0.319 Inchprg
n =408, R*=0.171

This equation predicts that if student eligibility in the lunch program increases by 10 per-
centage points, the percentage of students passing the math exam falls by about 3.2 per-
centage points. Do we really believe that higher participation in the lunch program actually
causes worse performance? Almost certainly not. A better explanation is that the error term
u in equation (2.54) is correlated with Inchprg. In fact, u contains factors such as the pover-
ty rate of children attending school, which affects student performance and is highly corre-
lated with eligibility in the lunch program. Variables such as school quality and resources are
also contained in u, and these are likely correlated with /nchprg. It is important to remem-
ber that the estimate —0.319 is only for this particular sample, but its sign and magnitude
make us suspect that u and x are correlated, so that simple regression is biased.

In addition to omitted variables, there are other reasons for x to be correlated with
u in the simple regression model. Since the same issues arise in multiple regression
analysis, we will postpone a systematic treatment of the problem until then.

Variances of the OLS Estimators

In addition to knowing that the sampling distribution of Bl is centered about 3, (Bl is
unbiased), it is important to know how far we can expect Bl to be away from 3, on aver-
age. Among other things, this allows us to choose the best estimator among all, or at
least a broad class of, the unbiased estimators. The measure of spread in the distribu-
tion of 3, (and f3,) that is easiest to work with is the variance or its square root, the stan-
dard deviation. (See Appendix C for a more detailed discussion.)

It turns out that the variance of the OLS estimators can be computed under
Assumptions SLR.1 through SLR.4. However, these expressions would be somewhat
complicated. Instead, we add an assumption that is traditional for cross-sectional analy-
sis. This assumption states that the variance of the unobservable, u, conditional on x, is
constant. This is known as the homoskedasticity or “constant variance” assumption.

ASSUMPTION SLR.5 (HOMOSKEDASTICITY)
Var(ulx) = o?.

We must emphasize that the homoskedasticity assumption is quite distinct from
the zero conditional mean assumption, E(u[x) = 0. Assumption SLR.3 involves the
expected value of u, while Assumption SLR.5 concerns the variance of u (both condi-
tional on x). Recall that we established the unbiasedness of OLS without Assumption
SLR.5: the homoskedasticity assumption plays no role in showing that 3, and 3, are
unbiased. We add Assumption SLR.5 because it simplifies the variance calculations for
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B,and B, and because it implies that ordinary least squares has certain efficiency prop-
erties, which we will see in Chapter 3. If we were to assume that u and x are indepen-
dent, then the distribution of u given x does not depend on x, and so E(u|x) = E(u) = 0
and Var(ulx) = o But independence is sometimes too strong of an assumption.

Because Var(ulx) = E(u?|x) — [E(ux)]* and E(u|x) = 0, 0 = E(u?x), which means
o? is also the unconditional expectation of u?. Therefore, o> = E(u®) = Var(u), because
E(u) = 0. In other words, o? is the unconditional variance of u, and so o? is often called
the error variance or disturbance variance. The square root of o2, o, is the standard
deviation of the error. A larger o means that the distribution of the unobservables affect-
ing y is more spread out.

It is often useful to write Assumptions SLR.3 and SLR.5 in terms of the condi-
tional mean and conditional variance of y:

E(yl) = B, + Bix. (2.55)
Var(ylx) = o> (2.56)

In other words, the conditional expectation of y given x is linear in x, but the variance of
y given x is constant. This situation is graphed in Figure 2.8 where 8, > 0 and 3, > 0.

Figure 2.8

The simple regression model under homoskedasticity.

f(yl1x)
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When Var(u|x) depends on x, the error term is said to exhibit heteroskedasticity (or
nonconstant variance). Since Var(u|x) = Var(y|x), heteroskedasticity is present when-
ever Var(y|x) is a function of x.

EXA MPLE 2.13
(Heteroskedasticity in a Wage Equation)

In order to get an unbiased estimator of the ceteris paribus effect of educ on wage, we
must assume that E(uleduc) = 0, and this implies E(wageleduc) = B, + B,educ. If we also
make the homoskedasticity assumption, then Var(uleduc) = o does not depend on the
level of education, which is the same as assuming Var(wageleduc) = . Thus, while aver-
age wage is allowed to increase with education level—it is this rate of increase that we
are interested in describing—the variability in wage about its mean is assumed to be con-
stant across all education levels. This may not be realistic. It is likely that people with more
education have a wider variety of interests and job opportunities, which could lead to
more wage variability at higher levels of education. People with very low levels of educa-
tion have very few opportunities and often must work at the minimum wage; this serves
to reduce wage variability at low education levels. This situation is shown in Figure 2.9.
Ultimately, whether Assumption SLR.5 holds is an empirical issue, and in Chapter 8 we will
show how to test Assumption SLR.5.

Figure 2.9

Var (wageleduc) increasing with educ.

f(wageleduc)

wage

7
E(wageleduc) =
B, + B,educ

educ
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With the homoskedasticity assumption in place, we are ready to prove the fol-
lowing:

THEOREM 2.2 (SAMPLING VARIANCES OF THE
OLS ESTIMATORS)
Under Assumptions SLR.1 through SLR.5,

Var(,) = ,,L = o¥s? (2.57)

E (o — 3_5)2
i=1

n D a2
Var(By) = ——=—, (2.58)

2 (x; — )_5)2
i=1
where these are conditional on the sample values {x;,...,x,}.

PROOF: We derive the formula for Var(B,), leaving the other derivation as an
exercise. The starting point is equation (2.52): é1 = B, + (1/s2) 2 du,. Since B, is just a
i=1

constant, and we are conditioning on the x;, s? and d; = x; — X are also nonrandom.
Furthermore, because the u; are independent random variables across i (by random
sampling), the variance of the sum is the sum of the variances. Using these facts, we have

Var(B,) = (1/s2)*Var (Z d,ui) = (1/s2) (2 d%Var(u,.))
i=1 i=1

(1/s2)? (2 d?oz) [since Var(u;) = o> for all i]
i=1

o’(1/s2)? (2 dlz) = o*(1/5)°s? = o*Is?,
i=1

which is what we wanted to show.

The formulas (2.57) and (2.58) are the “standard” formulas for simple regression
analysis, which are invalid in the presence of heteroskedasticity. This will be important
when we turn to confidence intervals and hypothesis testing in multiple regression
analysis.

For most purposes, we are interested in Var(BAl). It is easy to summarize how this
variance depends on the error variance, o, and the total variation in {x,X,,...,x,}, s2.
First, the larger the error variance, the larger is Var(BAI). This makes sense since more
variation in the unobservables affecting y makes it more difficult to precisely estimate
B;. On the other hand, more variability in the independent variable is preferred: as the
variability in the x; increases, the variance of B, decreases. This also makes intuitive
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sense since the more spread out is the sample of independent variables, the easier it is
to trace out the relationship between E(y|x) and x. That is, the easier it is to estimate 3.
If there is little variation in the x;, then it can be hard to pinpoint how E(y|x) varies with
x. As the sample size increases, so does the total variation in the x;. Therefore, a larger
sample size results in a smaller variance for ,él.

This analysis shows that, if we are interested in Bl, and we have a choice, then we
should choose the x; to be as spread out as possible. This is sometimes possible with
experimental data, but rarely do we have this luxury in the social sciences: usually we
must take the x; that we obtain via random
sampling. Sometimes we have an opportu-

QUESTION 2.5 nity to obtain larger sample sizes, although

Show that, when estimating B,, it is best to have X = 0. Whjt is Var(B,) this can be costly.
in this case? (Hint: For any sample of numbers, E X2 = E (x; — X)%, FOF the purposes of.cgnstructmg ?Or,lfl_
Py =1 dence intervals and deriving test statistics,
with equality only if x = 0.) we will need to work with the standard
deviations of Bl and BO, sd(Bl) and sd([%).
Recall that these are obtained by taking the square roots of the variances in (2.57) and
(2.58). In particular, sd(Bl) = o/s,, where o is the square root of ¢, and s, is the square

root of s2.

Estimating the Error Variance

The formulas in (2.57) and (2.58) allow us to isolate the factors that contribute to
Var(ﬁl) and Var(ﬁo). But these formulas are unknown, except in the extremely rare case
that o is known. Nevertheless, we can use the data to estimate o, which then allows
us to estimate Var(ﬁl) and Var(ﬁo).

This is a good place to emphasize the difference between the the errors (or distur-
bances) and the residuals, since this distinction is crucial for constructing an estimator
of 0. Equation (2.48) shows how to write the population model in terms of a random-
ly sampled observation as y; = B, + B,x; + u;, where u; is the error for observation i.
We can also express y; in terms of its fitted value and residual as in equation (2.32):

= B, + Bix; + @i, Comparing these two equations, we see that the error shows up in
the equation containing the population parameters, By and B;. On the other hand, the
residuals show up in the estimated equation with BO and 31 The errors are never observ-
able, while the residuals are computed from the data.

We can use equations (2.32) and (2.48) to write the residuals as a function of the
errors:

0; = y; — Bo - BAlxi = (Bo+ Bixi T u) — Bo - BAlxi’
or
= u;= (By = Bo) = (B, — B (2.59)
Although the expected value of ﬁo equals S, and similarly for ,él, i1, is not the same as

u;. The difference between them does have an expected value of zero.
Now that we understand the difference between the errors and the residuals, we can
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n
return to estimating o2. First, 0 = E(u?), so an unbiased “estimator” of o%is n~ ' >, u?.
i=1
Unfortunately, this is not a true estimator, because we do not observe the errors u;,. But,
we do have estimates of the u,;, namely the OLS residuals ;. If we replace the errors
n

with the OLS residuals, have n~" 2 7?7 = SSR/n. This is a true estimator, because it
i=1

gives a computable rule for any sample of data on x and y. One slight drawback
to this estimator is that it turns out to be biased (although for large n the bias is small).
Since it is easy to compute an unbiased estimator, we use that instead.

The estimator SSR/n is biased essentially because it does not account for two
restrictions that must be satisfied by the OLS residuals. These restrictions are given by
the two OLS first order conditions:

2 = 2 X, =0 (2.60)

i=1

One way to view these restrictions is this: if we know n — 2 of the residuals, we can
always get the other two residuals by using the restrictions implied by the first order
conditions in (2.60). Thus, there are only n — 2 degrees of freedom in the OLS resid-
uals [as opposed to n degrees of freedom in the errors. If we replace i, with u;in (2.60),
the restrictions would no longer hold.] The unbiased estimator of o~ that we will use
makes a degrees-of-freedom adjustment:

o7=———> 4>= SSR/(n — 2). (2.61)
i=1

(This estimator is sometimes denoted s, but we continue to use the convention of
putting “hats” over estimators.)

THEOREM 2.3 (UNBIASED ESTIMATION OF o¢?2)
Under Assumptions SLR.1 through SLR.5,

E(523) = o°

PR O OF: Ifweaverage equation (2.59) across all i and use the fact that the OLS
residuals average out to zero, we have 0 = @ — (B, — By) — (By — B1)X; subtracting this
from (2.59) gives 0. = (u; — @) — (B, — By)x; — X). Therefore, 7 = (u - 0)2 + (B —

B x; — %)? = 2(u; — By — B, — X)., Summing across all / gives 2 a? 2 (u; — a)?
+ (B — 31)22 06— X2 — 2B, — By) 2 uix; — %). Now, the expected value of the first

=1
termis (n — 1)0 something that is shown in Appendix C. The expected value of the second
term is simply o2 because E[(3, — B;)2] = Var(B,) = ¢?/s2. Finally, the third term can be
written as 2(8, — B,)’s% taking expectations gives Za'. Putting these three terms

X1
n

together gives E (E 0,2) =(n— 1o?+ a?— 20? = (n— 2)d?, so that E[SSR/A(n — 2)] =
i=1
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Part 1 Regression Analysis with Cross-Sectional Data

If 62 is plugged into the variance formulas (2.57) and (2.58), then we have unbiased
estimators of Var(3,) and Var(f3,). Later on, we will need estimators of the standard
deviations of 3, and 3y, and this requires estimating o. The natural estimator of o is

o=V, (2.62)

and is called the standard error of the regression (SER). (Other names for ¢ are the
standard error of the estimate and the root mean squared error, but we will not use
these.) Although & is not an unbiased estimator of o, we can show that it is a consis-
tent estimator of o (see Appendix C), and it will serve our purposes well.

The estimate ¢ is interesting since it is an estimate of the standard deviation in the
unobservables affecting y; equivalently, it estimates the standard deviation in y after the
effect of x has been taken out. Most regression packages report the value of & along
with the R-squared, intercept, slope, and other OLS statistics (under one of the several
names listed above). For now, our primary interest is in using & to estimate the stan-
dard deviations of ﬁo and ﬁl. Since sd([-?l) = ol/s,, the natural estimator of

sd(B,) is
R 1 172
se(By) = ols, = &/(E (x;, — x)Z) ;
i=1

this is called the standard error of ﬁl. Note that se(,é‘l) is viewed as a random variable
when we think of running OLS over different samples of y; this is because & varies with
different samples. For a given sample, se([g’,) is a number, just as ,él is simply a number
when we compute it from the given data.

Similarly, se(BO) is obtained from sd(,éo) by replacing o with & . The standard error
of any estimate gives us an idea of how precise the estimator is. Standard errors play a
central role throughout this text; we will use them to construct test statistics and confi-
dence intervals for every econometric procedure we cover, starting in Chapter 4.

2.6 REGRESSION THROUGH THE ORIGIN

In rare cases, we wish to impose the restriction that, when x = 0, the expected value of
y is zero. There are certain relationships for which this is reasonable. For example, if
income (x) is zero, then income tax revenues (y) must also be zero. In addition, there
are problems where a model that originally has a nonzero intercept is transformed into
a model without an intercept.

Formally, we now choose a slope estimator, which we call 3,, and a line of the form

5= B, (2.63)

where the tildas over (3, and y are used to distinguish this problem from the much more
common problem of estimating an intercept along with a slope. Obtaining (2.63) is
called regression through the origin because the line (2.63) passes through the point
x =0, § = 0. To obtain the slope estimate in (2.63), we still rely on the method of ordi-
nary least squares, which in this case minimizes the sum of squared residuals
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Z (i — Bﬂi)z- (2.64)

Using calculus, it can be shown that 3, must solve the first order condition
2 x:(y; — lei) = 0. (2.65)

i=1

From this we can solve for f3,:

N

2 XiYi

B, ==, (2.66)

n

N

X
1

provided that not all the x; are zero, a case we rule out.

Note how 8, compares with the slope estimate when we also estimate the intercept
(rather than set it equal to zero). These two estimates are the same if, and only if, ¥ =
0. (See equation (2.49) for B.) Obtaining an estimate of 3, using regression through the
origin is not done very often in applied work, and for good reason: if the intercept 3, #
0 then B, is a biased estimator of B8,. You will be asked to prove this in Problem 2.8.

SUMIMARY

We have introduced the simple linear regression model in this chapter, and we have cov-
ered its basic properties. Given a random sample, the method of ordinary least squares
is used to estimate the slope and intercept parameters in the population model. We have
demonstrated the algebra of the OLS regression line, including computation of fitted
values and residuals, and the obtaining of predicted changes in the dependent variable
for a given change in the independent variable. In Section 2.4, we discussed two issues
of practical importance: (1) the behavior of the OLS estimates when we change the
units of measurement of the dependent variable or the independent variable; (2) the use
of the natural log to allow for constant elasticity and constant semi-elasticity models.

In Section 2.5, we showed that, under the four Assumptions SLR.1 through SLR.4,
the OLS estimators are unbiased. The key assumption is that the error term u has zero
mean given any value of the independent variable x. Unfortunately, there are reasons to
think this is false in many social science applications of simple regression, where the
omitted factors in u are often correlated with x. When we add the assumption that the
variance of the error given x is constant, we get simple formulas for the sampling vari-
ances of the OLS estimators. As we saw, the variance of the slope estimator Bl increases
as the error variance increases, and it decreases when there is more sample variation in
the independent variable. We also derived an unbiased estimator for o = Var(u).

In Section 2.6, we briefly discussed regression through the origin, where the slope
estimator is obtained under the assumption that the intercept is zero. Sometimes this is
useful, but it appears infrequently in applied work.
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Much work is left to be done. For example, we still do not know how to test
hypotheses about the population parameters, 3, and 3,. Thus, although we know that
OLS is unbiased for the population parameters under Assumptions SLR.1 through
SLR.4, we have no way of drawing inference about the population. Other topics, such
as the efficiency of OLS relative to other possible procedures, have also been omitted.

The issues of confidence intervals, hypothesis testing, and efficiency are central to
multiple regression analysis as well. Since the way we construct confidence intervals
and test statistics is very similar for multiple regression—and because simple regres-
sion is a special case of multiple regression—our time is better spent moving on to mul-
tiple regression, which is much more widely applicable than simple regression. Our
purpose in Chapter 2 was to get you thinking about the issues that arise in econometric
analysis in a fairly simple setting.

KEY TERMS

Coefficient of Determination
Constant Elasticity Model
Control Variable

Covariate

Degrees of Freedom
Dependent Variable

Elasticity

Error Term (Disturbance)
Error Variance

Explained Sum of Squares (SSE)
Explained Variable
Explanatory Variable

First Order Conditions

Fitted Value
Heteroskedasticity
Homoskedasticity
Independent Variable
Intercept Parameter

Ordinary Least Squares (OLS)
OLS Regression Line

PROBLEMS

Population Regression Function (PRF)
Predicted Variable

Predictor Variable

Regressand

Regression Through the Origin
Regressor

Residual

Residual Sum of Squares (SSR)
Response Variable

R-squared

Sample Regression Function (SRF)
Semi-elasticity

Simple Linear Regression Model
Slope Parameter

Standard Error of 3,

Standard Error of the Regression (SER)
Sum of Squared Residuals

Total Sum of Squares (SST)

Zero Conditional Mean Assumption

2.1 Let kids denote the number of children ever born to a woman, and let educ denote
years of education for the woman. A simple model relating fertility to years of educa-

tion is

kids = B, + B,educ + u,

where u is the unobserved error.

60



Chapter 2 The Simple Regression Model

(i) What kinds of factors are contained in u? Are these likely to be corre-
lated with level of education?

(i) Will a simple regression analysis uncover the ceteris paribus effect of
education on fertility? Explain.

2.2 In the simple linear regression model y = B, + B,x + u, suppose that E(u) # 0.
Letting oy, = E(u), show that the model can always be rewritten with the same slope,
but a new intercept and error, where the new error has a zero expected value.

2.3 The following table contains the ACT scores and the GPA (grade point average)
for 8 college students. Grade point average is based on a four-point scale and has been
rounded to one digit after the decimal.

Student GPA ACT
1 2.8 21
2 34 24
3 3.0 26
4 35 27
5 3.6 29
6 3.0 25
7 2.7 25
8 3.7 30

(i) Estimate the relationship between GPA and ACT using OLS; that is,
obtain the intercept and slope estimates in the equation

GPA = f3, + B,ACT.

Comment on the direction of the relationship. Does the intercept have a
useful interpretation here? Explain. How much higher is the GPA pre-
dicted to be, if the ACT score is increased by 5 points?

(i) Compute the fitted values and residuals for each observation and verify
that the residuals (approximately) sum to zero.

(iii)) What is the predicted value of GPA when ACT = 20?

(iv) How much of the variation in GPA for these 8 students is explained by
ACT? Explain.

2.4 The data set BWGHT.RAW contains data on births to women in the United States.
Two variables of interest are the dependent variable, infant birth weight in ounces
(bwght), and an explanatory variable, average number of cigarettes the mother smoked
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per day during pregnancy (cigs). The following simple regression was estimated using
data on n = 1388 births:

bwght = 119.77 — 0.514 cigs

(i) What is the predicted birth weight when cigs = 0?7 What about when
cigs = 20 (one pack per day)? Comment on the difference.

(ii)) Does this simple regression necessarily capture a causal relationship
between the child’s birth weight and the mother’s smoking habits?
Explain.

2.5 In the linear consumption function
cons = ﬁo + BA, inc,

the (estlmated) marginal propensity to consume (MPC) out of income is simply the
slope, B,, while the average propensity to consume (APC) is cons/inc = Bolmc + B,
Using observations for 100 families on annual income and consumption (both measured
in dollars), the following equation is obtained:

cons = —124.84 + 0.853 inc
n = 100, R*> = 0.692

(i) Interpret the intercept in this equation and comment on its sign and
magnitude.

(i) What is predicted consumption when family income is $30,000?

(iii) With inc on the x-axis, draw a graph of the estimated MPC and APC.

2.6 Using data from 1988 for houses sold in Andover, MA, from Kiel and McClain
(1995), the following equation relates housing price (price) to the distance from a
recently built garbage incinerator (dist):

log(price) = 9.40 + 0.312 log(dist)
n =135 R>=0.162

(i) Interpret the coefficient on log(dist). Is the sign of this estimate what
you expect it to be?

(i) Do you think simple regression provides an unbiased estimator of the
ceteris paribus elasticity of price with respect to dist? (Think about the
city’s decision on where to put the incinerator.)

(iii)) What other factors about a house affect its price? Might these be corre-
lated with distance from the incinerator?

2.7 Consider the savings function
sav = By + Biinc + u, u = Vinc e,

where e is a random variable with E(e) = 0 and Var(e) = o2. Assume that e is inde-
pendent of inc.
(i) Show that E(u|inc) = 0, so that the key zero conditional mean assump-
tion (Assumption SLR.3) is satisfied. [Hint: If e is independent of inc,
then E(elinc) = E(e).]
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(ii) Show that Var(u|inc) = oZinc, so that the homoskedasticity Assumption
SLR.5 is violated. In particular, the variance of sav increases with inc.
[Hint: Var(elinc) = Var(e), if e and inc are independent.]

(iii) Provide a discussion that supports the assumption that the variance of
savings increases with family income.

2.8 Consider the standard simple regression model y = B, + Bx + u under
Assumptions SLR.1 through SLR.4. Thus, the usual OLS estimators BO and [31 are unbi-
ased for their respective population parameters. Let 3, be the estimator of 3, obtained
by assuming the intercept is zero (see Section 2.6).
(i) Find E(B,) in terms of the x;, 3, and 3,. Verify that B, is unbiased for
B, when the population intercept (f3,) is zero. Are there other cases
where 3, is unbiased?
(i) Find the variance of B,. (Hint: The variance does not depend on B,.)

(ili) Show that Var(B,) = Var(Bl). [Hint: For any sample of data, E = 2
i=1 i=1

(x; — X)?, with strict inequality unless X = 0.]
(iv) Comment on the tradeoff between bias and variance when choosing
between 3, and ;.

29 (i) Let ﬁo and ﬁl be the intercept and slope from the regression of y; on x;, using n
observations. Let ¢, and ¢,, with ¢, # 0, be constants. Let 3, and 3, be the mtercept and
slope from the regression c,y, on ¢,x,. Show that 3, = (c1/c2)B1 and B, = ¢, ,80, thereby
verifying the claims on units of measurement in Section 2.4. [Hinz: To obtain $3,, plug
the scaled versions of x and y into (2.19). Then, use (2.17) for 3,, being sure to plug in
the scaled x and y and the correct slope.]
(i) Now let 3,and S, be from the regressmn (c; ty)on(c; +x) (w1th no
restriction on ¢, or ¢,). Show that 3, = 31 and B, = BO +c - c2[31

CONMPUTER EXERCISES

2.10 The data in 401K.RAW are a subset of data analyzed by Papke (1995) to study the
relationship between participation in a 401(k) pension plan and the generosity of the
plan. The variable prate is the percentage of eligible workers with an active account;
this is the variable we would like to explain. The measure of generosity is the plan
match rate, mrate. This variable gives the average amount the firm contributes to each
worker’s plan for each $1 contribution by the worker. For example, if mrate = 0.50,
then a $1 contribution by the worker is matched by a 50¢ contribution by the firm.

(i) Find the average participation rate and the average match rate in the

sample of plans.
(i1) Now estimate the simple regression equation

prdte = ﬁo + ﬁlmrate,

and report the results along with the sample size and R-squared.
(iii) Interpret the intercept in your equation. Interpret the coefficient on mrate.
(iv) Find the predicted prate when mrate = 3.5. Is this a reasonable predic-
tion? Explain what is happening here.
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(v) How much of the variation in prate is explained by mrate? Is this a lot
in your opinion?

2.11 The data set in CEOSAL2.RAW contains information on chief executive officers
for U.S. corporations. The variable salary is annual compensation, in thousands of dol-
lars, and ceoten is prior number of years as company CEO.
(i) Find the average salary and the average tenure in the sample.
(ii)) How many CEOs are in their first year as CEO (that is, ceoten = 0)?
What is the longest tenure as a CEO?
(iii)) Estimate the simple regression model

log(salary) = B, + Biceoten + u,

and report your results in the usual form. What is the (approximate) pre-
dicted percentage increase in salary given one more year as a CEO?

2.12 Use the data in SLEEP75.RAW from Biddle and Hamermesh (1990) to study whether
there is a tradeoff between the time spent sleeping per week and the time spent in paid
work. We could use either variable as the dependent variable. For concreteness, estimate
the model

sleep = B, + B,totwrk + u,

where sleep is minutes spent sleeping at night per week and rotwrk is total minutes
worked during the week.
(i) Report your results in equation form along with the number of obser-
vations and R*. What does the intercept in this equation mean?
(i1) If totwrk increases by 2 hours, by how much is sleep estimated to fall?
Do you find this to be a large effect?

2.13 Use the data in WAGE2.RAW to estimate a simple regression explaining monthly
salary (wage) in terms of 1Q score (IQ).

(i) Find the average salary and average IQ in the sample. What is the stan-
dard deviation of 1Q? (IQ scores are standardized so that the average in
the population is 100 with a standard deviation equal to 15.)

(i) Estimate a simple regression model where a one-point increase in IQ
changes wage by a constant dollar amount. Use this model to find the
predicted increase in wage for an increase in /Q of 15 points. Does IQ
explain most of the variation in wage?

(iii)) Now estimate a model where each one-point increase in /Q has the
same percentage effect on wage. If IQ increases by 15 points, what is
the approximate percentage increase in predicted wage?

2.14 For the population of firms in the chemical industry, let rd denote annual expen-
ditures on research and development, and let sales denote annual sales (both are in mil-
lions of dollars).
(i) Write down a model (not an estimated equation) that implies a constant
elasticity between rd and sales. Which parameter is the elasticity?
(i) Now estimate the model using the datain RDCHEM.RAW. Write out the
estimated equation in the usual form. What is the estimated elasticity of
rd with respect to sales? Explain in words what this elasticity means.
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A P P E N D 1 X 2 A

Minimizing the Sum of Squared Residuals

We show that the OLS estimates ,@0 and Bl do minimize the sum of squared residuals,
as asserted in Section 2.2. Formally, the problem is to characterize the solutions 3, and
B, to the minimization problem

min 2 (i = by — blxi)2’

0D i=1

where by and b, are the dummy arguments for the optimization problem; for simplicity,
call this function Q(b,,b,). By a fundamental result from multivariable calculus (see
Appendix A), a necessary condition for ,30 and B1 to solve the minimization problem is
that the partial derivatives of Q(b,,b,) with respect to b, and b, must be zero when eval-
vated at By, B,: 90(By.B)/dby = 0 and 9Q(B,,B,)/db, = 0. Using the chain rule from
calculus, these two equations become

-2 ; ;i — éo - .élxi) =0.

-2 2 x(y; — Bo - lei) =0.
i=1

These two equations are just (2.14) and (2.15) multiplied by —2n and, therefore, are
solved by the same 30 and ﬁl.

How do we know that we have actually minimized the sum of squared residuals?
The first order conditions are necessary but not sufficient conditions. One way to veri-
fy that we have minimized the sum of squared residuals is to write, for any b, and b,,

O(bo,b)) = E 0= Bo— Bixi+ (By— bo) + (B, — b)x)?

2 @+ (Bo— by) + (B, — by)x,)?

3

7+ n(By — bl + (B — b)) E 2+ 2By — bo)(B, — by) E X,

1

where we have used equations (2.30) and (2.31). The sum of squared residuals does not
depend on b, or b,, while the sum of the last three terms can be written as

n

2 [(30 — by) + (él - bl)xi]za

i=1

as can be verified by straightforward algebra. Because this is a sum of squared terms,
it can be at most zero. Therefore, it is smallest when b, = 3, and b, = S,.
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Multiple Regression Analysis:
Estimation

dent variable, y, as a function of a single independent variable, x. The primary draw-

back in using simple regression analysis for empirical work is that it is very diffi-
cult to draw ceteris paribus conclusions about how x affects y: the key assumption,
SLR.3—that all other factors affecting y are uncorrelated with x—is often unrealistic.

Multiple regression analysis is more amenable to ceteris paribus analysis because it
allows us to explicitly control for many other factors which simultaneously affect the
dependent variable. This is important both for testing economic theories and for evaluat-
ing policy effects when we must rely on nonexperimental data. Because multiple regres-
sion models can accommodate many explanatory variables that may be correlated, we can
hope to infer causality in cases where simple regression analysis would be misleading.

Naturally, if we add more factors to our model that are useful for explaining y, then
more of the variation in y can be explained. Thus, multiple regression analysis can be
used to build better models for predicting the dependent variable.

An additional advantage of multiple regression analysis is that it can incorporate
fairly general functional form relationships. In the simple regression model, only one
function of a single explanatory variable can appear in the equation. As we will see, the
multiple regression model allows for much more flexibility.

Section 3.1 formally introduces the multiple regression model and further dis-
cusses the advantages of multiple regression over simple regression. In Section 3.2, we
demonstrate how to estimate the parameters in the multiple regression model using the
method of ordinary least squares. In Sections 3.3, 3.4, and 3.5, we describe various sta-
tistical properties of the OLS estimators, including unbiasedness and efficiency.

The multiple regression model is still the most widely used vehicle for empirical
analysis in economics and other social sciences. Likewise, the method of ordinary least
squares is popularly used for estimating the parameters of the multiple regression model.

In Chapter 2, we learned how to use simple regression analysis to explain a depen-

3.1 MOTIVATION FOR MULTIPLE REGRESSION
The Model with Two Independent Variables

We begin with some simple examples to show how multiple regression analysis can be
used to solve problems that cannot be solved by simple regression.

66



Chapter 3 Multiple Regression Analysis: Estimation

The first example is a simple variation of the wage equation introduced in Chapter
2 for obtaining the effect of education on hourly wage:

wage = B, + B,educ + B,exper + u, (3.1)

where exper is years of labor market experience. Thus, wage is determined by the two
explanatory or independent variables, education and experience, and by other unob-
served factors, which are contained in u. We are still primarily interested in the effect
of educ on wage, holding fixed all other factors affecting wage; that is, we are interest-
ed in the parameter S3;.

Compared with a simple regression analysis relating wage to educ, equation (3.1)
effectively takes exper out of the error term and puts it explicitly in the equation.
Because exper appears in the equation, its coefficient, 3,, measures the ceteris paribus
effect of exper on wage, which is also of some interest.

Not surprisingly, just as with simple regression, we will have to make assumptions
about how u in (3.1) is related to the independent variables, educ and exper. However,
as we will see in Section 3.2, there is one thing of which we can be confident: since
(3.1) contains experience explicitly, we will be able to measure the effect of education
on wage, holding experience fixed. In a simple regression analysis—which puts exper
in the error term—we would have to assume that experience is uncorrelated with edu-
cation, a tenuous assumption.

As a second example, consider the problem of explaining the effect of per student
spending (expend) on the average standardized test score (avgscore) at the high school
level. Suppose that the average test score depends on funding, average family income
(avginc), and other unobservables:

avgscore = B, + B,expend + B,avginc + u. (3.2)

The coefficient of interest for policy purposes is 3;, the ceteris paribus effect of expend
on avgscore. By including avginc explicitly in the model, we are able to control for its
effect on avgscore. This is likely to be important because average family income tends
to be correlated with per student spending: spending levels are often determined by both
property and local income taxes. In simple regression analysis, avginc would be in-
cluded in the error term, which would likely be correlated with expend, causing the
OLS estimator of B, in the two-variable model to be biased.

In the two previous similar examples, we have shown how observable factors other
than the variable of primary interest [educ in equation (3.1), expend in equation (3.2)]
can be included in a regression model. Generally, we can write a model with two inde-
pendent variables as

Y= Bot Bixi + Boxs T u, (3.3)

where f3,is the intercept, 3, measures the change in y with respect to x,, holding other
factors fixed, and [, measures the change in y with respect to x,, holding other factors
fixed.
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Multiple regression analysis is also useful for generalizing functional relationships
between variables. As an example, suppose family consumption (cons) is a quadratic
function of family income (inc):

cons = By + Biinc + B,inc® + u, (3.4)

where u contains other factors affecting consumption. In this model, consumption
depends on only one observed factor, income; so it might seem that it can be handled
in a simple regression framework. But the model falls outside simple regression
because it contains two functions of income, inc and inc” (and therefore three parame-
ters, By, B, and ,). Nevertheless, the consumption function is easily written as a
regression model with two independent variables by letting x, = inc and x, = inc.

Mechanically, there will be no difference in using the method of ordinary least
squares (introduced in Section 3.2) to estimate equations as different as (3.1) and (3.4).
Each equation can be written as (3.3), which is all that matters for computation. There
is, however, an important difference in how one interprets the parameters. In equation
(3.1), B, is the ceteris paribus effect of educ on wage. The parameter 3, has no such
interpretation in (3.4). In other words, it makes no sense to measure the effect of inc on
cons while holding inc? fixed, because if inc changes, then so must inc?! Instead, the
change in consumption with respect to the change in income—the marginal propen-
sity to consume—is approximated by

Acons

Aine =~ 3, + 2[B,inc.
See Appendix A for the calculus needed to derive this equation. In other words, the mar-
ginal effect of income on consumption depends on 3, as well as on 3, and the level of
income. This example shows that, in any particular application, the definition of the
independent variables are crucial. But for the theoretical development of multiple
regression, we can be vague about such details. We will study examples like this more
completely in Chapter 6.

In the model with two independent variables, the key assumption about how u is
related to x, and x, is

E(u|x1 X)) = 0. (3.5)

The interpretation of condition (3.5) is similar to the interpretation of Assumption
SLR.3 for simple regression analysis. It means that, for any values of x, and x, in the
population, the average unobservable is equal to zero. As with simple regression, the
important part of the assumption is that the expected value of u is the same for all com-
binations of x, and x,; that this common value is zero is no assumption at all as long as
the intercept 3, is included in the model (see Section 2.1).

How can we interpret the zero conditional mean assumption in the previous exam-
ples? In equation (3.1), the assumption is E(uleduc,exper) = 0. This implies that other
factors affecting wage are not related on average to educ and exper. Therefore, if we
think innate ability is part of u, then we will need average ability levels to be the same
across all combinations of education and experience in the working population. This
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may or may not be true, but, as we will see in Section 3.3, this is the question we need
to ask in order to determine whether the method of ordinary least squares produces
unbiased estimators.

The example measuring student performance [equation (3.2)] is similar to the wage
equation. The zero conditional mean assumption is E(u|expend,avginc) = 0, which
means that other factors affecting test scores—school or student characteristics—are,

QUESTION 3.1

A simple model to explain city murder rates (murdrate) in terms of
the probability of conviction (prbconv) and average sentence length
(avgsen) is

murdrate = B, + B,prbconv + B,avgsen + u.

What are some factors contained in u? Do you think the key assum-
ption (3.5) is likely to hold?

on average, unrelated to per student fund-
ing and average family income.

When applied to the quadratic con-
sumption function in (3.4), the zero condi-
tional mean assumption has a slightly dif-
ferent interpretation. Written literally,
equation (3.5) becomes E(ulinc,inc?) = 0.
Since inc? is known when inc is known,
including inc? in the expectation is redun-

dant: E(ulinc,inc®) = 0 is the same as
E(ulinc) = 0. Nothing is wrong with putting inc? along with inc in the expectation when
stating the assumption, but E(u|inc) = 0 is more concise.

The Model with k Independent Variables

Once we are in the context of multiple regression, there is no need to stop with two
independent variables. Multiple regression analysis allows many observed factors to
affect y. In the wage example, we might also include amount of job training, years of
tenure with the current employer, measures of ability, and even demographic variables
like number of siblings or mother’s education. In the school funding example, addi-
tional variables might include measures of teacher quality and school size.

The general multiple linear regression model (also called the multiple regression
model) can be written in the population as

Y= Bot Bixi + Boxy + Bixs + ...+ B+ u, (3.6)

where [, is the intercept, (3, is the parameter associated with x,, 3, is the parameter
associated with x,, and so on. Since there are k independent variables and an intercept,
equation (3.6) contains k + 1 (unknown) population parameters. For shorthand pur-
poses, we will sometimes refer to the parameters other than the intercept as slope para-
meters, even though this is not always literally what they are. [See equation (3.4),
where neither 8, nor (3, is itself a slope, but together they determine the slope of the
relationship between consumption and income.]

The terminology for multiple regression is similar to that for simple regression and
is given in Table 3.1. Just as in simple regression, the variable u is the error term or
disturbance. It contains factors other than x,, x,, ..., x, that affect y. No matter how
many explanatory variables we include in our model, there will always be factors we
cannot include, and these are collectively contained in u.

When applying the general multiple regression model, we must know how to inter-
pret the parameters. We will get plenty of practice now and in subsequent chapters, but
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Table 3.1

Terminology for Multiple Regression

Yy X1y X3y eeey X
Dependent Variable Independent Variables
Explained Variable Explanatory Variables
Response Variable Control Variables
Predicted Variable Predictor Variables
Regressand Regressors

it is useful at this point to be reminded of some things we already know. Suppose that
CEO salary (salary) is related to firm sales and CEO tenure with the firm by

log(salary) = B, + B,log(sales) + B,ceoten + Bsceoten® + u. 3.7)

This fits into the multiple regression model (with kK = 3) by defining y = log(salary),
x, = log(sales), x, = ceoten, and x; = ceoten. As we know from Chapter 2, the para-
meter 3, is the (ceteris paribus) elasticity of salary with respect to sales. If 35 = 0, then
1008, is approximately the ceteris paribus percentage increase in salary when ceoten
increases by one year. When (; # 0, the effect of ceoten on salary is more compli-
cated. We will postpone a detailed treatment of general models with quadratics until
Chapter 6.

Equation (3.7) provides an important reminder about multiple regression analysis.
The term “linear” in multiple linear regression model means that equation (3.6) is lin-
ear in the parameters, B;. Equation (3.7) is an example of a multiple regression model
that, while linear in the 8, is a nonlinear relationship between salary and the variables
sales and ceoten. Many applications of multiple linear regression involve nonlinear
relationships among the underlying variables.

The key assumption for the general multiple regression model is easy to state in
terms of a conditional expectation:

E(u|x1,x2, v X)) = 0. (3.8)

At a minimum, equation (3.8) requires that all factors in the unobserved error term be
uncorrelated with the explanatory variables. It also means that we have correctly
accounted for the functional relationships between the explained and explanatory vari-
ables. Any problem that allows u to be correlated with any of the independent variables
causes (3.8) to fail. In Section 3.3, we will show that assumption (3.8) implies that OLS
is unbiased and will derive the bias that arises when a key variable has been omitted
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from the equation. In Chapters 15 and 16, we will study other reasons that might cause
(3.8) to fail and show what can be done in cases where it does fail.

3.2 MECHANICS AND INTERPRETATION OF ORDINARY
LEAST SQUARES

We now summarize some computational and algebraic features of the method of ordi-
nary least squares as it applies to a particular set of data. We also discuss how to inter-
pret the estimated equation.

Obtaining the OLS Estimates

We first consider estimating the model with two independent variables. The estimated
OLS equation is written in a form similar to the simple regression case:

y= éo + ,élxl + Bzxz’ (3.9)

where BO is the estimate of S, ,él is the estimate of 3,, and ,éz is the estimate of 3,. But
how do we obtain BO, ,él, and Bz? The method of ordinary least squares chooses the
estimates to minimize the sum of squared residuals. That is, given n observations on y,
X1, and x,, {(x;1,%,0,y;): i = 1,2, ..., n}, the estimates BO, Bl, and Bz are chosen simulta-
neously to make

; ¥ — ﬁAo - Elxil - BAle_z)z (3.10)

as small as possible.

In order to understand what OLS is doing, it is important to master the meaning of
the indexing of the independent variables in (3.10). The independent variables have two
subscripts here, i followed by either 1 or 2. The i subscript refers to the observation
number. Thus, the sum in (3.10) is over all i = 1 to n observations. The second index is
simply a method of distinguishing between different independent variables. In the
example relating wage to educ and exper, x;; = educ; is education for person i in the
sample, and x;, = exper; is experience for person i. The sum of squared residuals in

equation (3.10) is 2 (wage; — ﬁo - ﬁleduc,» - Bzexper,»)z. In what follows, the i sub-
i=1

script is reserved for indexing the observation number. If we write x;;, then this means
the i™ observation on the j" independent variable. (Some authors prefer to switch the
order of the observation number and the variable number, so that x,;is observation i on
variable one. But this is just a matter of notational taste.)

In the general case with k independent variables, we seek estimates f3;, B3, ..., B, in
the equation

y= B+ Bix; + B, + ... + B, (3.1)
The OLS estimates, k + 1 of them, are chosen to minimize the sum of squared residuals:
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2 ; — Bl'xil e T kaik)z- (3.12)

This minimization problem can be solved using multivariable calculus (see Appendix
3A). This leads to k + 1 linear equations in k¥ + 1 unknowns BO, Bl, .. Bk

; (v, — ,éo - .élxil T e T Blcxik) =0

21 X (y; — A ﬁl'xil T e T ékxik) =0

2 Xio(y; — B]'xil R Ekxik) =0 (3.13)
2 X (y; — lezl = e T BAkxik) = 0.

These are often called the OLS first order conditions. As with the simple regression
model in Section 2.2, the OLS first order conditions can be motivated by the method of
moments: under assumption (3.8), E(u) = 0 and E(x;u) = 0, where j = 1,2, ..., k. The
equations in (3.13) are the sample counterparts of these population moments.

For even moderately sized n and k, solving the equations in (3.13) by hand calcula-
tions is tedious. Nevertheless, modern computers running standard statistics and econo-
metrics software can solve these equations with large n and k very quickly.

There is only one slight caveat: we must assume that the equations in (3.13) can be
solved uniquely for the ,[3’1 For now, we just assume this, as it is usually the case in well-
specified models. In Section 3.3, we state the assumption needed for unique OLS esti-
mates to exist (see Assumption MLR .4).

As in simple regression analysis, equation (3.11) is called the OLS regression line,
or the sample regression function (SRF). We will call ﬁo the OLS intercept estimate
and ﬁl, ooy Bk the OLS slope estimates (corresponding to the independent variables x,,
Xy veey Xp)-

In order to indicate that an OLS regression has been run, we will either write out
equation (3.11) with y and x;, ..., x, replaced by their variable names (such as wage,
educ, and exper), or we will say that “we ran an OLS regression of y on xy, x5, ..., x;”
or that “we regressed y on x, x,, ..., X;.” These are shorthand for saying that the method
of ordinary least squares was used to obtain the OLS equation (3.11). Unless explicitly
stated otherwise, we always estimate an intercept along with the slopes.

Interpreting the OLS Regression Equation

More important than the details underlying the computation of the [§j is the
interpretation of the estimated equation. We begin with the case of two independent
variables:
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A

y=Bt lel + ézx2~ (3.14)

The intercept Bo in equation (3.14) is the predicted value of y when x; = 0 and x, = 0.
Sometimes setting x, and x, both equal to zero is an interesting scenario, but in other
cases it will not make sense. Nevertheless, the intercept is always needed to obtain a
prediction of y from the OLS regression line, as (3.14) makes clear.

The estimates ,81 and ,82 have partial effect, or ceteris paribus, interpretations.
From equation (3.14), we have

Ay = [§le1 + BzAx

so we can obtain the predicted change in y given the changes in x, and x,. (Note how
the intercept has nothing to do with the changes in y.) In particular, when x, is held
fixed, so that Ax, = 0, then

Ay = EIA’CI

holding x, fixed. The key point is that, by including x, in our model, we obtain a coef-
ficient on x, with a ceteris paribus interpretation. This is why multiple regression analy-
sis is so useful. Similarly,

holding x, fixed.

EXA MPLE 3.1
(Determinants of College GPA)

The variables in GPAT.RAW include college grade point average (co/GPA), high school GPA
(hsGPA), and achievement test score (ACT) for a sample of 141 students from a large uni-
versity; both college and high school GPAs are on a four-point scale. We obtain the fol-
lowing OLS regression line to predict college GPA from high school GPA and achievement
test score:

colGPA = 129 + .453 hsGPA + .0094 ACT. (3.15)

How do we interpret this equation? First, the intercept 1.29 is the predicted college GPA if
hsGPA and ACT are both set as zero. Since no one who attends college has either a zero
high school GPA or a zero on the achievement test, the intercept in this equation is not, by
itself, meaningful.

More interesting estimates are the slope coefficients on hsGPA and ACT. As expected,
there is a positive partial relationship between co/lGPA and hsGPA: holding ACT fixed,
another point on hsGPA is associated with .453 of a point on the college GPA, or almost
half a point. In other words, if we choose two students, A and B, and these students
have the same ACT score, but the high school GPA of Student A is one point higher than
the high school GPA of Student B, then we predict Student A to have a college GPA .453
higher than that of Student B. [This says nothing about any two actual people, but it is our
best prediction.]
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The sign on ACT implies that, while holding hsGPA fixed, a change in the ACT score of
10 points—a very large change, since the average score in the sample is about 24 with a
standard deviation less than three—affects co/GPA by less than one-tenth of a point. This
is a small effect, and it suggests that, once high school GPA is accounted for, the ACT score
is not a strong predictor of college GPA. (Naturally, there are many other factors that con-
tribute to GPA, but here we focus on statistics available for high school students.) Later,
after we discuss statistical inference, we will show that not only is the coefficient on ACT
practically small, it is also statistically insignificant.

If we focus on a simple regression analysis relating co/GPA to ACT only, we obtain

colGPA = 2.40 + .0271 ACT:

thus, the coefficient on ACT is almost three times as large as the estimate in (3.15). But this
equation does not allow us to compare two people with the same high school GPA, it cor-
responds to a different experiment. We say more about the differences between multiple
and simple regression later.

The case with more than two independent variables is similar. The OLS regression
line is

y = [:30 ar ﬁlxl aF [;2)62 F voo AP ﬁkxk. (3.16)
Written in terms of changes,
A9 = BiAx, + BAx, + ... + BAx,. (3.12)

The coefficient on x, measures the change in y due to a one-unit increase in x;, holding
all other independent variables fixed. That is,

A9 = B,Ax,, (3.18)
holding x,, x5, ..., x, fixed. Thus, we have controlled for the variables x,, x5, ..., x, when

estimating the effect of x, on y. The other coefficients have a similar interpretation.
The following is an example with three independent variables.

EXAMPLE 3.2
(Hourly Wage Equation)

Using the 526 observations on workers in WAGE1.RAW, we include educ (years of educa-
tion), exper (years of labor market experience), and tenure (years with the current em-
ployer) in an equation explaining log(wage). The estimated equation is

logA(wage) = .284 + .092 educ + .0041 exper + .022 tenure. (3.19)

As in the simple regression case, the coefficients have a percentage interpretation. The only
difference here is that they also have a ceteris paribus interpretation. The coefficient .092
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means that, holding exper and tenure fixed, another year of education is predicted to
increase log(wage) by .092, which translates into an approximate 9.2 percent [100(.092)]
increase in wage. Alternatively, if we take two people with the same levels of experience
and job tenure, the coefficient on educ is the proportionate difference in predicted wage
when their education levels differ by one year. This measure of the return to education at
least keeps two important productivity factors fixed; whether it is a good estimate of the
ceteris paribus return to another year of education requires us to study the statistical prop-
erties of OLS (see Section 3.3).

On the Meaning of “Holding Other Factors Fixed” in
Multiple Regression

The partial effect interpretation of slope coefficients in multiple regression analysis can
cause some confusion, so we attempt to prevent that problem now.

In Example 3.1, we observed that the coefficient on ACT measures the predicted dif-
ference in colGPA, holding hsGPA fixed. The power of multiple regression analysis is
that it provides this ceteris paribus interpretation even though the data have not been
collected in a ceteris paribus fashion. In giving the coefficient on ACT a partial effect
interpretation, it may seem that we actually went out and sampled people with the same
high school GPA but possibly with different ACT scores. This is not the case. The data
are a random sample from a large university: there were no restrictions placed on the
sample values of 41sGPA or ACT in obtaining the data. Rarely do we have the luxury of
holding certain variables fixed in obtaining our sample. If we could collect a sample of
individuals with the same high school GPA, then we could perform a simple regression
analysis relating colGPA to ACT. Multiple regression effectively allows us to mimic this
situation without restricting the values of any independent variables.

The power of multiple regression analysis is that it allows us to do in nonexperi-
mental environments what natural scientists are able to do in a controlled laboratory set-
ting: keep other factors fixed.

Changing More than One Independent Variable
Simultaneously

Sometimes we want to change more than one independent variable at the same time to
find the resulting effect on the dependent variable. This is easily done using equation
(3.17). For example, in equation (3.19), we can obtain the estimated effect on wage when
an individual stays at the same firm for another year: exper (general workforce experi-
ence) and fenure both increase by one year. The total effect (holding educ fixed) is

Alog(wage) = .0041 Aexper + 022 Atenure = 0041 + 022 = .0261,

or about 2.6 percent. Since exper and fenure each increase by one year, we just add the
coefficients on exper and tenure and multiply by 100 to turn the effect into a percent.

OLS Fitted Values and Residuals

After obtaining the OLS regression line (3.11), we can obtain a fitted or predicted value
for each observation. For observation i, the fitted value is simply
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$:= Byt Bixi T Boxpp + ...+ By, (3.20)

which is just the predicted value obtained by plugging the values of the independent
variables for observation i into equation (3.11). We should not forget about the intercept

QUESTION 3.2

In Example 3.1, the OLS fitted line explaining college GPA in terms
of high school GPA and ACT score is

colGPA = 1.29 + 453 hsGPA + .0094 ACT.

If the average high school GPA is about 3.4 and the average ACT
score is about 24.2, what is the average college GPA in the sample?

in obtaining the fitted values; otherwise,
the answer can be very misleading. As an
example, if in (3.15), hsGPA; = 3.5 and
ACT, = 24, colGPA, = 1.29 + 453(3.5) +
.0094(24) = 3.101 (rounded to three
places after the decimal).

Normally, the actual value y, for any
observation i will not equal the predicted
value, §;; OLS minimizes the average

squared prediction error, which says nothing about the prediction error for any particu-
lar observation. The residual for observation i is defined just as in the simple regres-
sion case,

=y, — ¥ (3.21)

There is a residual for each observation. If &; > 0, then §; is below y;, which means
that, for this observation, y, is underpredicted. If i, < 0, then y, < ¥,, and y, is over-
predicted.

The OLS fitted values and residuals have some important properties that are imme-
diate extensions from the single variable case:

1. The sample average of the residuals is zero.

2. The sample covariance between each independent variable and the OLS residu-
als is zero. Consequently, the sample covariance between the OLS fitted values
and the OLS residuals is zero.

3. The point (X15X2 +oos Xp) is always on the OLS regression line: j = [%0 + ﬁl)"cl
+ B, + ... + B

The first two properties are immediate consequences of the set of equations used to
obtain the OLS estimates. The first equation in (3.13) says that the sum of the residuals

is zero. The remaining equations are of the form E x;ii; = 0, which imply that the each
i=1

independent variable has zero sample covarianceiwith iI;. Property 3 follows immedi-
ately from Property 1.

A “"Partialling Out” Interpretation of Multiple
Regression

When applying OLS, we do not need to know explicit formulas for the /§jthat solve the
system of equations (3.13). Nevertheless, for certain derivations, we do need explicit
formulas for the B These formulas also shed further light on the workings of OLS.

Consider again the case with k = 2 independent variables, § = ,80 + ,Ble + /32x2
For concreteness, we focus on ,8l One way to express 31 is
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BIZ(E filyi) /(Efzzl)? (3.22)

o=l i=1

where the 7;; are the OLS residuals from a simple regression of x, on x,, using the sam-
ple at hand. We regress our first independent variable, x,, on our second independent
variable, x,, and then obtain the residuals (y plays no role here). Equation (3.22) shows
that we can then do a simple regression of y on 7, to obtain ﬁl. (Note that the residu-
als 7,; have a zero sample average, and so B, is the usual slope estimate from simple
regression.)

The representation in equation (3.22) gives another demonstration of B,’s partial
effect interpretation. The residuals 7, are the part of x;, that is uncorrelated with x;,.
Another way of saying this is that 7, is x;, after the effects of x;, have been partialled
out, or netted out. Thus, BAI measures the sample relationship between y and x, after x,
has been partialled out.

In simple regression analysis, there is no partialling out of other variables because
no other variables are included in the regression. Problem 3.17 steps you through the
partialling out process using the wage data from Example 3.2. For practical purposes,
the important thing is that ,él in the equation § = ﬁo + ﬁlxl + Bzxz measures the change
in y given a one-unit increase in x,;, holding x, fixed.

In the general model with k explanatory variables, ,él can still be written as in equa-
tion (3.22), but the residuals 7;; come from the regression of x, on x,, ..., x;. Thus, ,@’1
measures the effect of x, on y after x,, ..., x; have been partialled or netted out.

Comparison of Simple and Multiple Regression
Estimates

Two special cases exist in which the simple regression of y on x; will produce the same
OLS estimate on x, as the regression of y on x, and x,. To be more precise, write the
simple regression of y on x, as ¥ = B, + B,x, and write the multiple regression as
$ = By + Bix, + Box,. We know that the simple regression coefficient 3, does not usu-
ally equal the multiple regression coefficient Bl. There are two distinct cases where 3,
and B, are identical:

1. The partial effect of x, on y is zero in the sample. That is, ﬁz = 0.
2. x, and x, are uncorrelated in the sample.

The first assertion can be proven by looking at two of the equations used to determine

Bo» Bi, and By 2 X (Vi = Bo = Bixin = BoXp) = 0and By = § — BiX; — BoX,. Setting
i=1

B, = 0 gives the same intercept and slope as does the regression of y on x,.

The second assertion follows from equation (3.22). If x, and x, are uncorrelated in
the sample, then regressing x, on x, results in no partialling out, and so the simple
regression of y on x,; and the multiple regression of y on x, and x, produce identical esti-
mates on x,.

Even though simple and multiple regression estimates are almost never identical,

we can use the previous characterizations to explain why they might be either very dif-
ferent or quite similar. For example, if 3, is small, we might expect the simple and mul-
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tiple regression estimates of 3, to be similar. In Example 3.1, the sample correlation
between hsGPA and ACT is about 0.346, which is a nontrivial correlation. But the coef-
ficient on ACT is fairly little. It is not suprising to find that the simple regression of
colGPA on hsGPA produces a slope estimate of .482, which is not much different from
the estimate .453 in (3.15).

EXAMPLE 3.3
(Participation in 401(k) Pension Plans)

We use the data in 401K.RAW to estimate the effect of a plan’s match rate (mrate) on the
participation rate (prate) in its 401(k) pension plan. The match rate is the amount the firm
contributes to a worker’s fund for each dollar the worker contributes (up to some limit);
thus, mrate = .75 means that the firm contributes 75 cents for each dollar contributed by
the worker. The participation rate is the percentage of eligible workers having a 401(k)
account. The variable age is the age of the 401(k) plan. There are 1,534 plans in the data
set, the average prate is 87.36, the average mrate is .732, and the average age is 13.2.
Regressing prate on mrate, age gives

prdte = 80.12 + 5.52 mrate + .243 age. (3.23)

Thus, both mrate and age have the expected effects. What happens if we do not control
for age? The estimated effect of age is not trivial, and so we might expect a large change
in the estimated effect of mrate if age is dropped from the regression. However, the simple
regression of prate on mrate yields prate = 83.08 + 5.86 mrate. The simple regression esti-
mate of the effect of mrate on prate is clearly different from the multiple regression esti-
mate, but the difference is not very big. (The simple regression estimate is only about 6.2
percent larger than the multiple regression estimate.) This can be explained by the fact that
the sample correlation between mrate and age is only .12.

In the case with k independent variables, the simple regression of y on x, and the
multiple regression of y on x;, x,, ..., x;, produce an identical estimate of x; only if (1)
the OLS coefficients on x, through x, are all zero or (2) x, is uncorrelated with each of
X,, ..., X;. Neither of these is very likely in practice. But if the coefficients on x, through
x; are small, or the sample correlations between x; and the other independent variables
are insubstantial, then the simple and multiple regression estimates of the effect of x,
on y can be similar.

Goodness-of-Fit

As with simple regression, we can define the total sum of squares (SST), the
explained sum of squares (SSE), and the residual sum of squares or sum of squared
residuals (SSR), as

SST = > (v; — 3)° (3.24)
i=1
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SSE= 2, (5, — 7 (3.25)
i=1

SSR = > a2, (3.26)
i=1

Using the same argument as in the simple regression case, we can show that

SST = SSE + SSR. (3.27)

In other words, the total variation in {y;} is the sum of the total variations in {y,} and
in {&,}.

Assuming that the total variation in y is nonzero, as is the case unless y;is constant
in the sample, we can divide (3.27) by SST to get

SSR/SST + SSE/SST = 1.

Just as in the simple regression case, the R-squared is defined to be

R*>= SSE/SST = 1 — SSR/SST, (3.28)

and it is interpreted as the proportion of the sample variation in y;, that is explained by
the OLS regression line. By definition, R*is a number between zero and one.

R? can also be shown to equal the squared correlation coefficient between the
actual y, and the fitted values J,. That is,

n 2
(2 0= 9 G — §>)
(E i — y)z) (2 $— §)2)

(We have put the average of the J,in (3.29) to be true to the formula for a correlation
coefficient; we know that this average equals y because the sample average of the resid-
uals is zero and y; = §; + ;.)

An important fact about R?is that it never decreases, and it usually increases when
another independent variable is added to a regression. This algebraic fact follows
because, by definition, the sum of squared residuals never increases when additional
regressors are added to the model.

The fact that R* never decreases when any variable is added to a regression makes
it a poor tool for deciding whether one variable or several variables should be added to
a model. The factor that should determine whether an explanatory variable belongs in
a model is whether the explanatory variable has a nonzero partial effect on y in the pop-
ulation. We will show how to test this hypothesis in Chapter 4 when we cover statisti-
cal inference. We will also see that, when used properly, R* allows us to test a group of
variables to see if it is important for explaining y. For now, we use it as a goodness-
of-fit measure for a given model.

R =

(3.29)

79



Part 1 Regression Analysis with Cross-Sectional Data

EXA MPLE 3. 4
(Determinants of College GPA)

From the grade point average regression that we did earlier, the equation with R? is

colGPA = 1.29 + 453 hsGPA + .0094 ACT
n =141, R> = .176.

This means that hsGPA and ACT together explain about 17.6 percent of the variation in col-
lege GPA for this sample of students. This may not seem like a high percentage, but we
must remember that there are many other factors—including family background, person-
ality, quality of high school education, affinity for college—that contribute to a student’s
college performance. If hsGPA and ACT explained almost all of the variation in co/GPA, then
performance in college would be preordained by high school performance!

EXAMPLE 3.5
(Explaining Arrest Records)

CRIME1.RAW contains data on arrests during the year 1986 and other information on
2,725 men born in either 1960 or 1961 in California. Each man in the sample was arrest-
ed at least once prior to 1986. The variable narr86 is the number of times the man was
arrested during 1986, it is zero for most men in the sample (72.29 percent), and it varies
from 0 to 12. (The percentage of the men arrested once during 1986 was 20.51.) The vari-
able pcnv is the proportion (not percentage) of arrests prior to 1986 that led to conviction,
avgsen is average sentence length served for prior convictions (zero for most people),
ptime86 is months spent in prison in 1986, and gemp86 is the number of quarters during
which the man was employed in 1986 (from zero to four).
A linear model explaining arrests is

narr86 = By + Bpcnv + Bravgsen + Biptime86 + B,gemp86 + u,

where pcnv is a proxy for the likelihood for being convicted of a crime and avgsen is a mea-
sure of expected severity of punishment, if convicted. The variable ptime86 captures the
incarcerative effects of crime: if an individual is in prison, he cannot be arrested for a crime
outside of prison. Labor market opportunities are crudely captured by gemp86.

First, we estimate the model without the variable avgsen. We obtain

narr86 = 712 — .150 pcnv — .034 ptime86 — .104 gemp86
n=2/725,R*= .0413

This equation says that, as a group, the three variables pcnv, ptime86, and gemp86 explain
about 4.1 percent of the variation in narr86.

Each of the OLS slope coefficients has the anticipated sign. An increase in the propor-
tion of convictions lowers the predicted number of arrests. If we increase pcnv by .50 (a
large increase in the probability of conviction), then, holding the other factors fixed,
Anafr86 = —.150(.5) = —.075. This may seem unusual because an arrest cannot change
by a fraction. But we can use this value to obtain the predicted change in expected arrests
for a large group of men. For example, among 100 men, the predicted fall in arrests when
pcnv increases by .5 is —7.5.
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Similarly, a longer prison term leads to a lower predicted number of arrests. In fact, if
ptime86 increases from 0 to 12, predicted arrests for a particular man falls by .034(12) =
.408. Another quarter in which legal employment is reported lowers predicted arrests by
.104, which would be 10.4 arrests among 100 men.

If avgsen is added to the model, we know that R? will increase. The estimated equation is

narr86 = 707 — .151 pcnv + .0074 avgsen — .037 ptime86 — .103 gemp86
n =225, R* = .0422.

Thus, adding the average sentence variable increases R? from .0413 to .0422, a practically
small effect. The sign of the coefficient on avgsen is also unexpected: it says that a longer
average sentence length increases criminal activity.

Example 3.5 deserves a final word of caution. The fact that the four explanatory
variables included in the second regression explain only about 4.2 percent of the varia-
tion in narr86 does not necessarily mean that the equation is useless. Even though these
variables collectively do not explain much of the variation in arrests, it is still possible
that the OLS estimates are reliable estimates of the ceteris paribus effects of each inde-
pendent variable on narr86. As we will see, whether this is the case does not directly
depend on the size of R”. Generally, a low R” indicates that it is hard to predict individ-
ual outcomes on y with much accuracy, something we study in more detail in Chapter
6. In the arrest example, the small R* reflects what we already suspect in the social sci-
ences: it is generally very difficult to predict individual behavior.

Regression Through the Origin

Sometimes, an economic theory or common sense suggests that 3, should be zero, and
so we should briefly mention OLS estimation when the intercept is zero. Specifically,
we now seek an equation of the form

V=B + Box, + ... + By, (3.30)
where the symbol “~” over the estimates is used to distinguish them from the OLS esti-
mates obtained along with the intercept [as in (3.11)]. In (3.30), when x, = 0, x, = 0,

.., x, = 0, the predicted value is zero. In this case, ;. ..., 3, are said to be the OLS esti-
mates from the regression of y on x,, x,, ..., X, through the origin.

The OLS estimates in (3.30), as always, minimize the sum of squared residuals, but
with the intercept set at zero. You should be warned that the properties of OLS that
we derived earlier no longer hold for regression through the origin. In particular, the
OLS residuals no longer have a zero sample average. Further, if R* is defined as

1 — SSR/SST, where SST is given in (3.24) and SSR is now E (v, — Buxiy — .. —
i=1

Bx,)% then R? can actually be negative. This means that the sample average, 7,
“explains” more of the variation in the y, than the explanatory variables. Either we
should include an intercept in the regression or conclude that the explanatory variables
poorly explain y. In order to always have a nonnegative R-squared, some economists
prefer to calculate R? as the squared correlation coefficient between the actual and fit-
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ted values of y, as in (3.29). (In this case, the average fitted value must be computed
directly since it no longer equals y.) However, there is no set rule on computing R-
squared for regression through the origin.

One serious drawback with regression through the origin is that, if the intercept 3,
in the population model is different from zero, then the OLS estimators of the slope
parameters will be biased. The bias can be severe in some cases. The cost of estimating
an intercept when [ is truly zero is that the variances of the OLS slope estimators are
larger.

3.3 THE EXPECTED VALUE OF THE OLS ESTIMATORS

We now turn to the statistical properties of OLS for estimating the parameters in an
underlying population model. In this section, we derive the expected value of the OLS
estimators. In particular, we state and discuss four assumptions, which are direct exten-
sions of the simple regression model assumptions, under which the OLS estimators are
unbiased for the population parameters. We also explicitly obtain the bias in OLS when
an important variable has been omitted from the regression.

You should remember that statistical properties have nothing to do with a particular
sample, but rather with the property of estimators when random sampling is done
repeatedly. Thus, Sections 3.3, 3.4, and 3.5 are somewhat abstract. While we give exam-
ples of deriving bias for particular models, it is not meaningful to talk about the statis-
tical properties of a set of estimates obtained from a single sample.

The first assumption we make simply defines the multiple linear regression (MLR)
model.

ASSUMPTION MLR.1T (LINEAR IN PARAMETERS)
The model in the population can be written as

Y= Bot Bixi T Byt ...+ Byt ou, (3.31)

where Bq, B, ..., Beare the unknown parameters (constants) of interest, and u is an unob-
servable random error or random disturbance term.

Equation (3.31) formally states the population model, sometimes called the true
model, to allow for the possibility that we might estimate a model that differs from
(3.31). The key feature is that the model is linear in the parameters 3,, B, ..., B As
we know, (3.31) is quite flexible because y and the independent variables can be arbi-
trary functions of the underlying variables of interest, such as natural logarithms and
squares [see, for example, equation (3.7)].

ASSUMPTION MLR.2 (RANDOM SAMPLING)
We have a random sample of n observations, {(X;1, X, ..., Xi.y;): i = 1,2,...,n}, from the pop-
ulation model described by (3.31).
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Sometimes we need to write the equation for a particular observation i: for a ran-

domly drawn observation from the population, we have

Yi = Bo T Bixit T Boxpp + ...+ Bxy T u; (3.32)

Remember that i refers to the observation, and the second subscript on x is the variable
number. For example, we can write a CEO salary equation for a particular CEO i as

log(salary,) = B, + Bilog(sales;) + B.ceoten; + Bsceoterns + u;.  (3.33)

The term u; contains the unobserved factors for CEO i that affect his or her salary. For
applications, it is usually easiest to write the model in population form, as in (3.31). It
contains less clutter and emphasizes the fact that we are interested in estimating a pop-
ulation relationship.

In light of model (3.31), the OLS estimators BO, [§1, ,@2, ooy ,ék from the regression

of y on xy, ..., x, are now considered to be estimators of B,, B;, ..., B.. We saw, in
Section 3.2, that OLS chooses the estimates for a particular sample so that the residu-
als average out to zero and the sample correlation between each independent variable
and the residuals is zero. For OLS to be unbiased, we need the population version of
this condition to be true.

ASSUMPTION MLR.3 (ZERO CONDITIONAL MEAN)
The error u has an expected value of zero, given any values of the independent variables.
In other words,

E(u|x1,x2, v X)) = 0. (3.34)

One way that Assumption MLR.3 can fail is if the functional relationship between

the explained and explanatory variables is misspecified in equation (3.31): for example,
if we forget to include the quadratic term inc” in the consumption function cons =
Bo + Biinc + Byinc* + u when we estimate the model. Another functional form mis-
specification occurs when we use the level of a variable when the log of the variable is what
actually shows up in the population model, or vice versa. For example, if the true model
has log(wage) as the dependent variable but we use wage as the dependent variable in our
regression analysis, then the estimators will be biased. Intuitively, this should be pretty
clear. We will discuss ways of detecting functional form misspecification in Chapter 9.

Omitting an important factor that is correlated with any of x;, x,, ..., x; causes

Assumption MLR.3 to fail also. With multiple regression analysis, we are able to
include many factors among the explanatory variables, and omitted variables are less
likely to be a problem in multiple regression analysis than in simple regression analy-
sis. Nevertheless, in any application there are always factors that, due to data limitations
or ignorance, we will not be able to include. If we think these factors should be con-
trolled for and they are correlated with one or more of the independent variables, then
Assumption MLR.3 will be violated. We will derive this bias in some simple models
later.
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There are other ways that u can be correlated with an explanatory variable. In
Chapter 15, we will discuss the problem of measurement error in an explanatory vari-
able. In Chapter 16, we cover the conceptually more difficult problem in which one or
more of the explanatory variables is determined jointly with y. We must postpone our
study of these problems until we have a firm grasp of multiple regression analysis under
an ideal set of assumptions.

When Assumption MLR.3 holds, we often say we have exogenous explanatory
variables. If x;is correlated with u for any reason, then x; is said to be an endogenous
explanatory variable. The terms “exogenous” and “endogenous” originated in simul-
taneous equations analysis (see Chapter 16), but the term “endogenous explanatory
variable” has evolved to cover any case where an explanatory variable may be cor-
related with the error term.

The final assumption we need to show that OLS is unbiased ensures that the OLS
estimators are actually well-defined. For simple regression, we needed to assume that
the single independent variable was not constant in the sample. The corresponding
assumption for multiple regression analysis is more complicated.

ASSUMPTION MLR.4 (NO PERFECT COLLINEARITY)
In the sample (and therefore in the population), none of the independent variables is con-
stant, and there are no exact linear relationships among the independent variables.

The no perfect collinearity assumption concerns only the independent variables.
Beginning students of econometrics tend to confuse Assumptions MLR.4 and MLR.3,
so we emphasize here that MLR.4 says nothing about the relationship between u and
the explanatory variables.

Assumption MLR .4 is more complicated than its counterpart for simple regression
because we must now look at relationships between all independent variables. If an
independent variable in (3.31) is an exact linear combination of the other independent
variables, then we say the model suffers from perfect collinearity, and it cannot be esti-
mated by OLS.

It is important to note that Assumption MLR.4 does allow the independent variables
to be correlated; they just cannot be perfectly correlated. If we did not allow for any cor-
relation among the independent variables, then multiple regression would not be very
useful for econometric analysis. For example, in the model relating test scores to edu-
cational expenditures and average family income,

avgscore = 3, + B,expend + B,avginc + u,

we fully expect expend and avginc to be correlated: school districts with high average
family incomes tend to spend more per student on education. In fact, the primary moti-
vation for including avginc in the equation is that we suspect it is correlated with
expend, and so we would like to hold it fixed in the analysis. Assumption MLR.4 only
rules out perfect correlation between expend and avginc in our sample. We would be
very unlucky to obtain a sample where per student expenditures are perfectly corre-
lated with average family income. But some correlation, perhaps a substantial amount,
is expected and certainly allowed.
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The simplest way that two independent variables can be perfectly correlated is when
one variable is a constant multiple of another. This can happen when a researcher inad-
vertently puts the same variable measured in different units into a regression equation.
For example, in estimating a relationship between consumption and income, it makes
no sense to include as independent variables income measured in dollars as well as
income measured in thousands of dollars. One of these is redundant. What sense would
it make to hold income measured in dollars fixed while changing income measured in
thousands of dollars?

We already know that different nonlinear functions of the same variable can appear
among the regressors. For example, the model cons = B, + B,inc + B,inc* + u does
not violate Assumption MLR.4: even though x, = inc?is an exact function of x, = inc,
inc*is not an exact linear function of inc. Including inc? in the model is a useful way to
generalize functional form, unlike including income measured in dollars and in thou-
sands of dollars.

Common sense tells us not to include the same explanatory variable measured in
different units in the same regression equation. There are also more subtle ways that one
independent variable can be a multiple of another. Suppose we would like to estimate
an extension of a constant elasticity consumption function. It might seem natural to
specify a model such as

log(cons) = B, + B,log(inc) + B.log(inc?) + u, (3.35)

where x, = log(inc) and x, = log(inc?). Using the basic properties of the natural log (see
Appendix A), log(inc®) = 2-log(inc). That is, x, = 2x,, and naturally this holds for all
observations in the sample. This violates Assumption MLR.4. What we should do
instead is include [log(inc)]?, not log(inc?), along with log(inc). This is a sensible exten-
sion of the constant elasticity model, and we will see how to interpret such models in
Chapter 6.

Another way that independent variables can be perfectly collinear is when one inde-
pendent variable can be expressed as an exact linear function of two or more of the
other independent variables. For example, suppose we want to estimate the effect of
campaign spending on campaign outcomes. For simplicity, assume that each election
has two candidates. Let voteA be the percent of the vote for Candidate A, let expendA
be campaign expenditures by Candidate A, let expendB be campaign expenditures by
Candidate B, and let totexpend be total campaign expenditures; the latter three variables
are all measured in dollars. It may seem natural to specify the model as

voteA = B, + BexpendA + B,expendB + Bstotexpend + u, (3.36)

in order to isolate the effects of spending by each candidate and the total amount of
spending. But this model violates Assumption MLR.4 because x; = x; + x, by defini-
tion. Trying to interpret this equation in a ceteris paribus fashion reveals the problem.
The parameter of 3, in equation (3.36) is supposed to measure the effect of increasing
expenditures by Candidate A by one dollar on Candidate A’s vote, holding Candidate
B’s spending and total spending fixed. This is nonsense, because if expendB and fotex-
pend are held fixed, then we cannot increase expendA.
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The solution to the perfect collinearity in (3.36) is simple: drop any one of the three
variables from the model. We would probably drop fotexpend, and then the coefficient
on expendA would measure the effect of increasing expenditures by A on the percent-
age of the vote received by A, holding the spending by B fixed.

The prior examples show that Assumption MLR.4 can fail if we are not careful in
specifying our model. Assumption MLR.4 also fails if the sample size, n, is too small
in relation to the number of parameters
being estimated. In the general regression
model in equation (3.31), there are k + 1
In the previous example, if we use as explanatory variables expendA, parameters, and MLR .4 fails if n < k + 1.
expendB, and shareA, where shareA = .1 OO-(expenc_lA/totexpend) is Intuitively, this makes sense: to estimate
the percentage share of total campaign expenditures made by
Candidate A, does this violate Assumption MLR.4? k + 1 parameters, we need at least k + 1

observations. Not surprisingly, it is better

to have as many observations as possible, something we will see with our variance cal-
culations in Section 3.4.

If the model is carefully specified and n = k + 1, Assumption MLR.4 can fail in
rare cases due to bad luck in collecting the sample. For example, in a wage equation
with education and experience as variables, it is possible that we could obtain a random
sample where each individual has exactly twice as much education as years of experi-
ence. This scenario would cause Assumption MLR.4 to fail, but it can be considered
very unlikely unless we have an extremely small sample size.

We are now ready to show that, under these four multiple regression assumptions,
the OLS estimators are unbiased. As in the simple regression case, the expectations are
conditional on the values of the independent variables in the sample, but we do not
show this conditioning explicitly.

QUESTION 3.3

THEOREM 3.1 (UNBIASEDNESS OF OLS)
Under Assumptions MLR.1 through MLR 4,

EB) = Bj=0.1,.... k, (3.37)

for any values of the population parameter g;. In other words, the OLS estimators are unbi-
ased estimators of the population parameters.

In our previous empirical examples, Assumption MLR.4 has been satisfied (since
we have been able to compute the OLS estimates). Furthermore, for the most part, the
samples are randomly chosen from a well-defined population. If we believe that the
specified models are correct under the key Assumption MLR.3, then we can conclude
that OLS is unbiased in these examples.

Since we are approaching the point where we can use multiple regression in serious
empirical work, it is useful to remember the meaning of unbiasedness. It is tempting, in
examples such as the wage equation in equation (3.19), to say something like “9.2 per-
cent is an unbiased estimate of the return to education.” As we know, an estimate can-
not be unbiased: an estimate is a fixed number, obtained from a particular sample,
which usually is not equal to the population parameter. When we say that OLS is unbi-
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ased under Assumptions MLR.1 through MLR .4, we mean that the procedure by which
the OLS estimates are obtained is unbiased when we view the procedure as being
applied across all possible random samples. We hope that we have obtained a sample
that gives us an estimate close to the population value, but, unfortunately, this cannot
be assured.

Including Irrelevant Variables in a Regression Nodel

One issue that we can dispense with fairly quicky is that of inclusion of an irrelevant
variable or overspecifying the model in multiple regression analysis. This means that
one (or more) of the independent variables is included in the model even though it has
no partial effect on y in the population. (That is, its population coefficient is zero.)

To illustrate the issue, suppose we specify the model as

Y= Bot Bix; T B, T Bixs t (3.38)

and this model satisfies Assumptions MLR.1 through MLR.4. However, x; has no effect
on y after x; and x, have been controlled for, which means that 8; = 0. The variable x;
may or may not be correlated with x, or x,; all that matters is that, once x, and x, are
controlled for, x; has no effect on y. In terms of conditional expectations, E(y|x;,x,x;)
= EQ/lx.x0) = By + Bixy + Baoxo.

Because we do not know that B8; = 0, we are inclined to estimate the equation
including x5:

y= ﬁo + élxl + ﬁzxz + BA3x3' (3.39)

We have included the irrelevant variable, x5, in our regression. What is the effect of
including x5 in (3.39) when its coefficient in the population model (3.38) is zero? In
terms of the unbiasedness of ,[§1 and 32, there is no effect. This conclusion requires no
special derivation, as it follows immediately from Theorem 3.1. Remember, unbiased-
ness means E([%A-) = B;for any value of 3, inc}uding B; = 0. Thus, we can conclude that
E(Bo) = Bo EEBI) = B, E(B>) = B,, and E(B;) = O (for any values of B, B,, and 3,).
Even though S; itself will never be exactly zero, its average value across many random
samples will be zero.

The conclusion of the preceding example is much more general: including one or
more irrelevant variables in a multiple regression model, or overspecifying the model,
does not affect the unbiasedness of the OLS estimators. Does this mean it is harmless
to include irrelevant variables? No. As we will see in Section 3.4, including irrelevant
variables can have undesirable effects on the variances of the OLS estimators.

Omitted Variable Bias: The Simple Case

Now suppose that, rather than including an irrelevant variable, we omit a variable that
actually belongs in the true (or population) model. This is often called the problem of
excluding a relevant variable or underspecifying the model. We claimed in Chapter
2 and earlier in this chapter that this problem generally causes the OLS estimators to be
biased. It is time to show this explicitly and, just as importantly, to derive the direction
and size of the bias.
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Deriving the bias caused by omitting an important variable is an example of mis-
specification analysis. We begin with the case where the true population model has two
explanatory variables and an error term:

Yy = Bo T Bixi T Boxy T u, (3.40)

and we assume that this model satisfies Assumptions MLR.1 through MLR 4.

Suppose that our primary interest is in 3,, the partial effect of x, on y. For example,
y is hourly wage (or log of hourly wage), x, is education, and x, is a measure of innate
ability. In order to get an unbiased estimator of 3,, we should run a regression of y on
x, and x, (which gives unbiased estimators of 8, 3,, and 3,). However, due to our igno-
rance or data inavailability, we estimate the model by excluding x,. In other words, we
perform a simple regression of y on x, only, obtaining the equation

5= B+ Bix:. (3.41)

We use the symbol “~” rather than “*”” to emphasize that 3, comes from an underspec-
ified model.

When first learning about the omitted variables problem, it can be difficult for the
student to distinguish between the underlying true model, (3.40) in this case, and the
model that we actually estimate, which is captured by the regression in (3.41). It may
seem silly to omit the variable x, if it belongs in the model, but often we have no choice.
For example, suppose that wage is determined by

wage = B, + Bieduc + B,abil + u. (3.42)

Since ability is not observed, we instead estimate the model
wage = B, + B,educ + v,

where v = B,abil + u. The estimator of 3, from the simple regression of wage on educ
is what we are calling 3,.

We derive the expected value of 3, conditional on the sample values of x, and x,.
Deriving this expectation is not difficult because 3, is just the OLS slope estimator from
a simple regression, and we have already studied this estimator extensively in Chapter
2. The difference here is that we must analyze its properties when the simple regression
model is misspecified due to an omitted variable.

From equation (2.49), we can express 3, as

2 (X1 — X))y
B == (3.43)

The next step is the most important one. Since (3.40) is the true model, we write y for
each observation i as
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Y= Bot Bixi t Boxin t+ 1 (3.44)

(not y; = B, + Bix;; + u;, because the true model contains x,). Let SST, be the denom-
inator in (3.43). If we plug (3.44) in for y; in (3.43), the numerator in (3.43) becomes

Z (x;1 = X)(Bo T Bixsy + Boxin + uy)
= Blzl (x;1 — 3_51)2 + ﬁzz (x;1 — X)x + 21 (x;1 — X)u;
= BiSST, + B, 2 (xi — )xp + 2 (x;y — B, (3.45)
i=1 i=1

If we divide (3.45) by SST,, take the expectation conditional on the values of the inde-
pendent variables, and use E(x;) = 0, we obtain

5 E (X1 — X)X
E(B) = B, + le:,i— (3.46)
Z (x; — 3_51)2

Thus, E(B,) does not generally equal B8,: B, is biased for 3,.

The ratio multiplying 3, in (3.46) has a simple interpretation: it is just the slope
coefficient from the regression of x, on x;, using our sample on the independent vari-
ables, which we can write as

%= 8+ 8x,. (3.47)

Because we are conditioning on the sample values of both independent variables, 51 is
not random here. Therefore, we can write (3.46) as

E(Bl) =B+ stl’ (3.48)

which implies that the bias in 3, is E(B,) — B, = 3251. This is often called the omitted
variable bias.

From equation (3.48), we see that there are two cases where 3, is unbiased. The first
is pretty obvious: if 8, = 0—so that x, does not appear in the true model (3.40)—then
B, is unbiased. We already know this from the simple regression analysis in Chapter 2.
The second case is more interesting. If 51 = 0, then 3, is unbiased for 3,, even if 3, # 0.

Since 51 is the sample covariance between x; and x, over the sample variance of x,,
51 = 0 if, and only if, x, and x, are uncorrelated in the sample. Thus, we have the impor-
tant conclusion that, if x, and x, are uncorrelated in the sample, then §3, is unbiased. This
is not surprising: in Section 3.2, we showed that the simple regression estimator 3, and
the multiple regression estimator ,@1 are the same when x; and x, are uncorrelated in
the sample. [We can also show that 3, is unbiased without conditioning on the x,, if
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Table 3.2
Summary of Bias in B, When x, is Omitted in Estimating Equation (3.40)

Corr(x,,x,) >0 Corr(xy,x,) <0
B,>0 positive bias negative bias
B, <0 negative bias positive bias

E(x,]x,) = E(x,); then, for estimating 3,, leaving x, in the error term does not violate the
zero conditional mean assumption for the error, once we adjust the intercept.]

When x, and x, are correlated, 51 has the same sign as the correlation between x; and
X,: 51 > 0 if x, and x, are positively correlated and 51 < 0if x, and x, are negatively cor-
related. The sign of the bias in B, depends on the signs of both B8, and 51 and is sum-
marized in Table 3.2 for the four possible cases when there is bias. Table 3.2 warrants
careful study. For example, the bias in S, is positive if 8, > 0 (x, has a positive effect
on y) and x, and x, are positively correlated. The bias is negative if 8, > 0 and x, and
X, are negatively correlated. And so on.

Table 3.2 summarizes the direction of the bias, but the size of the bias is also very
important. A small bias of either sign need not be a cause for concern. For example, if
the return to education in the population is 8.6 percent and the bias in the OLS estima-
tor is 0.1 percent (a tenth of one percentage point), then we would not be very con-
cerned. On the other hand, a bias on the order of three percentage points would be much
more serious. The size of the bias is determined by the sizes of 3, and 51.

In practice, since 3, is an unknown population parameter, we cannot be certain
whether (3, is positive or negative. Nevertheless, we usually have a pretty good idea
about the direction of the partial effect of x, on y. Further, even though the sign of
the correlation between x, and x, cannot be known if x, is not observed, in many cases
we can make an educated guess about whether x, and x, are positively or negatively
correlated.

In the wage equation (3.42), by definition more ability leads to higher productivity
and therefore higher wages: 8, > 0. Also, there are reasons to believe that educ and
abil are positively correlated: on average, individuals with more innate ability choose
higher levels of education. Thus, the OLS estimates from the simple regression equa-
tion wage = B, + B,educ + v are on average too large. This does not mean that the
estimate obtained from our sample is too big. We can only say that if we collect many
random samples and obtain the simple regression estimates each time, then the average
of these estimates will be greater than f3,.

EXAMPLE 3.6
(Hourly Wage Equation)

Suppose the model log(wage) = B, + B,educ + B.abil + u satisfies Assumptions MLR.1
through MLR.4. The data set in WAGE1.RAW does not contain data on ability, so we esti-
mate B, from the simple regression
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logzwage) = .584 + .083 educ
n =526, R*> = .186.

This is only the result from a single sample, so we cannot say that .083 is greater than B;
the true return to education could be lower or higher than 8.3 percent (and we will never
know for sure). Nevertheless, we know that the average of the estimates across all random
samples would be too large.

As a second example, suppose that, at the elementary school level, the average score
for students on a standardized exam is determined by

avgscore = 3, + B,expend + B,povrate + u,

where expend is expenditure per student and povrate is the poverty rate of the children
in the school. Using school district data, we only have observations on the percent of
students with a passing grade and per student expenditures; we do not have information
on poverty rates. Thus, we estimate (3, from the simple regression of avgscore on
expend.

We can again obtain the likely bias in B,. First, 3, is probably negative: there is
ample evidence that children living in poverty score lower, on average, on standardized
tests. Second, the average expenditure per student is probably negatively correlated
with the poverty rate: the higher the poverty rate, the lower the average per-student
spending, so that Corr(x,,x,) < 0. From Table 3.2, 3, will have a positive bias. This
observation has important implications. It could be that the true effect of spending is
zero; that is, 8, = 0. However, the simple regression estimate of 3, will usually be
greater than zero, and this could lead us to conclude that expenditures are important
when they are not.

When reading and performing empirical work in economics, it is important to mas-
ter the terminology associated with biased estimators. In the context of omitting a vari-
able from model (3.40), if E(3,) > B,, then we say that B, has an upward bias. When
E(B,) < B,, B, has a downward bias. These definitions are the same whether S, is pos-
itive or negative. The phrase biased towards zero refers to cases where E(f3,) is closer
to zero than ;. Therefore, if B, is positive, then B, is biased towards zero if it has a
downward bias. On the other hand, if 8, < 0, then 3, is biased towards zero if it has an
upward bias.

Omitted Variable Bias: More General Cases

Deriving the sign of omitted variable bias when there are multiple regressors in the esti-
mated model is more difficult. We must remember that correlation between a single
explanatory variable and the error generally results in all OLS estimators being biased.
For example, suppose the population model

y=Bot Bixi t Boxy + Baxs +u, (3.49)
satisfies Assumptions MLR.1 through MLR .4. But we omit x; and estimate the model as
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y= Bo + lel + Bzx2~ (3.50)

Now, suppose that x, and x; are uncorrelated, but that x, is correlated with x;. In other
words, x, is correlated with the omitted variable, but x, is not. It is tempting to think that,
while 3, is probably biased based on the derivation in the previous subsection, 3, is
unbiased because x, is uncorrelated with x;. Unfortunately, this is not generally the
case: both 3, and 3, will normally be biased. The only exception to this is when x, and
X, are also uncorrelated.

Even in the fairly simple model above, it is difficult to obtain the direction of the
bias in B, and B,. This is because x,, x,, and x; can all be pairwise correlated.
Nevertheless, an approximation is often practically useful. If we assume that x; and x,
are uncorrelated, then we can study the bias in 3, as if x, were absent from both the pop-
ulation and the estimated models. In fact, when x, and x, are uncorrelated, it can be
shown that

. E (1 — X3
E(B) =B+ B5 l:ri—
; (‘le -

This is just like equation (3.46), but 35 replaces 8, and x; replaces x,. Therefore, the bias
in B3, is obtained by replacing 3, with 85 and x, with x; in Table 3.2. If 8, > 0 and
Corr(x,,x;) > 0, the bias in 3, is positive. And so on.

As an example, suppose we add exper to the wage model:

wage = B, + Beduc + Bexper + Biabil + u.

If abil is omitted from the model, the estimators of both 8, and f3, are biased, even if
we assume exper is uncorrelated with abil. We are mostly interested in the return to edu-
cation, so it would be nice if we could conclude that 3, has an upward or downward bias
due to omitted ability. This conclusion is not possible without further assumptions. As
an approximation, let us suppose that, in addition to exper and abil being uncorrelated,
educ and exper are also uncorrelated. (In reality, they are somewhat negatively corre-
lated.) Since B; > 0 and educ and abil are positively correlated, 8, would have an
upward bias, just as if exper were not in the model.

The reasoning used in the previous example is often followed as a rough guide for
obtaining the likely bias in estimators in more complicated models. Usually, the focus
is on the relationship between a particular explanatory variable, say x;, and the key
omitted factor. Strictly speaking, ignoring all other explanatory variables is a valid prac-
tice only when each one is uncorrelated with x,, but it is still a useful guide.

3.4 THE VARIANCE OF THE OLS ESTIMATORS

‘We now obtain the variance of the OLS estimators so that, in addition to knowing the
central tendencies of Bj, we also have a measure of the spread in its sampling distribu-
tion. Before finding the variances, we add a homoskedasticity assumption, as in Chapter
2. We do this for two reasons. First, the formulas are simplified by imposing the con-
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stant error variance assumption. Second, in Section 3.5, we will see that OLS has an
important efficiency property if we add the homoskedasticity assumption.
In the multiple regression framework, homoskedasticity is stated as follows:

ASSUMPTION MLR.5 (HOMOSKEDASTICITY)
Var(ulx,,...,x,) = o°.

Assumption MLR.5 means that the variance in the error term, u, conditional on the
explanatory variables, is the same for all combinations of outcomes of the explanatory
variables. If this assumption fails, then the model exhibits heteroskedasticity, just as in
the two-variable case.

In the equation

wage = B, + B,educ + B,exper + Bstenure + u,

homoskedasticity requires that the variance of the unobserved error u does not depend
on the levels of education, experience, or tenure. That is,

Var(u|educ, exper, tenure) = o°.

If this variance changes with any of the three explanatory variables, then heteroskedas-
ticity is present.

Assumptions MLR.1 through MLR.5 are collectively known as the Gauss-Markov
assumptions (for cross-sectional regression). So far, our statements of the assumptions
are suitable only when applied to cross-sectional analysis with random sampling. As we
will see, the Gauss-Markov assumptions for time series analysis, and for other situa-
tions such as panel data analysis, are more difficult to state, although there are many
similarities.

In the discussion that follows, we will use the symbol x to denote the set of all inde-
pendent variables, (x,, ..., x;). Thus, in the wage regression with educ, exper, and tenure
as independent variables, x = (educ, exper, tenure). Now we can write Assumption
MLR.3 as

E(Y|x) = Bot+ Bix; + Boxy + ...+ By,

and Assumption MLR.5 is the same as Var(y|x) = o?. Stating the two assumptions in
this way clearly illustrates how Assumption MLR.5 differs greatly from Assumption
MLR.3. Assumption MLR.3 says that the expected value of y, given x, is linear in the
parameters, but it certainly depends on x,, x,, ..., x;. Assumption MLR.5 says that the
variance of y, given x, does not depend on the values of the independent variables.

We can now obtain the variances of the [§j, where we again condition on the sample
values of the independent variables. The proof is in the appendix to this chapter.

THEOREM 3.2 (SAMPLING VARIANCES OF THE
OLS SLOPE ESTIMATORS)

Under Assumptions MLR.1 through MLR.5, conditional on the sample values of the inde-
pendent variables,
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0_2

- 3.51
SST,(1 — R?) )

Var(B) =

n

forj =1,2,...,k, where SST, => (x % is the total sample variation in x; and R” is
i=1
the R-squared from regressing x; on all other independent variables (and including an

intercept).

Before we study equation (3.51) in more detail, it is important to know that all of
the Gauss-Markov assumptions are used in obtaining this formula. While we did not
need the homoskedasticity assumption to conclude that OLS is unbiased, we do need it
to validate equation (3.51).

The size of Var(ﬁ_,-) is practically important. A larger variance means a less precise
estimator, and this translates into larger confidence intervals and less accurate hypothe-
ses tests (as we will see in Chapter 4). In the next subsection, we discuss the elements
comprising (3.51).

The Components of the OLS Variances: Multicollinearity

Equation (3.51) shows that the variance of ﬁj depends on three factors: o2, SST;, and
R;. Remember that the index j simply denotes any one of the independent variables
(such as education or poverty rate). We now consider each of the factors affecting
Var(ﬁj) in turn.

THE ERROR VARIANCE, o2 From equation (3.51), a larger o means larger variances
for the OLS estimators. This is not at all surprising: more “noise” in the equation (a
larger o®) makes it more difficult to estimate the partial effect of any of the independent
variables on y, and this is reflected in higher variances for the OLS slope estimators.
Since o~ is a feature of the population, it has nothing to do with the sample size. It is
the one component of (3.51) that is unknown. We will see later how to obtain an unbi-
ased estimator of o”.

For a given dependent variable y, there is really only one way to reduce the error
variance, and that is to add more explanatory variables to the equation (take some fac-
tors out of the error term). This is not always possible, nor is it always desirable for rea-
sons discussed later in the chapter.

THE TOTAL SAMPLE VARIATION IN x;, SST;. From equation (3.51), the larger the
total variation in x;, the smaller is Var(B) Thus everything else being equal, for esti-
mating B; we prefer to have as much sample variation in x; as possible. We already dis-
covered this in the simple regression case in Chapter 2. While it is rarely possible for
us to choose the sample values of the independent variables, there is a way to increase
the sample variation in each of the independent variables: increase the sample size. In
fact, when sampling randomly from a population, SST;increases without bound as the
sample size gets larger and larger. This is the component of the variance that systemat-
ically depends on the sample size.
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When SST; is small, Var(B) can get very large, but a small SST;is not a violation of
Assumption MLR 4. Technically, as SST; goes to zero, Var(B) approaches infinity. The
extreme case of no sample variation in x;, SST; = 0, is not allowed by Assumption
MLR 4.

THE LINEAR RELATIONSHIPS AMONG THE INDEPENDENT VARIABLES, Rf. The
term Rj2 in equation (3.51) is the most difficult of the three components to understand.
This term does not appear in simple regression analysis because there is only one inde-
pendent variable in such cases. It is important to see that this R-squared is distinct from
the R-squared in the regression of y on x,, x,, ..., X;: R is obtained from a regression
involving only the independent variables in the 0r1g1nal model, where x; plays the role
of a dependent variable.

Consider first the k = 2 case: y = By, + Bix; + B.x, + u. Then Var(,él)
= 0?/[SST,(1 — R?)], where R} is the R-squared from the simple regression of x, on x,
(and an intercept, as always). Since the R-squared measures goodness-of-fit, a value of
R? close to one indicates that x, explains much of the variation in x, in the sample. This
means that x, and x, are highly correlated.

As R? increases to one, Var(Bl) gets larger and larger. Thus, a high degree of linear
relationship between x, and x, can lead to large variances for the OLS slope estimators.
(A similar argument applies to B,.) See Figure 3.1 for the relationship between Var(3,)
and the R-squared from the regression of x, on x,.

In the general case, Rj2 is the proportion of the total variation in x; that can be
explained by the other independent variables appearing in the equation. For a given o
and SST;, the smallest Var(,éj) is obtained when Rj2 = 0, which happens if, and only if,
x; has zero sample correlation with every other independent variable. This is the best
case for estimating f3;, but it is rarely encountered.

The other extreme case, R2 = 1, is ruled out by Assumption MLR.4, because
R2 = 1 means that, in the sample X;is a perfect linear combination of some of the other
mdependent variables in the regression. A more relevant case is when R; is “close” to
one. From equation (3.51) and Figure 3.1, we see that this can cause Var(B) to be large:
Var(B ) — o as R2 — 1. High (but not perfect) correlation between two or more of the
independent Varlables is called multicollinearity.

Before we discuss the multicollinearity issue further, it is important to be very clear
on one thing: a case where R; is close to one is not a violation of Assumption MLR 4.

Since multicollinearity violates none of our assumptions, the “problem” of multi-
collinearity is not really well-defined. When we say that multicollinearity arises for esti-
mating B; when R} is “close” to one, we put “close” in quotation marks because there
is no absolute number that we can cite to conclude that multicollinearity is a problem.
For example, Rj2 = .9 means that 90 percent of the sample variation in x; can be
explained by the other independent variables in the regression model. Unquestionably,
this means that x; has a strong linear relationship to the other independent variables. But
whether this translates into a Var(B) that is too large to be useful depends on the sizes
of o” and SST,. As we will see in Chapter 4, for statistical inference, what ultimately
matters is how big BJ is in relation to its standard deviation.

Just as a large value of R2 can cause large Var(B) so can a small value of SST,.
Therefore, a small sample size can lead to large sampling variances, too. Worrymg
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Figure 3.1

Var (8,) as a function of R2.

Var (B,)

about high degrees of correlation among the independent variables in the sample is
really no different from worrying about a small sample size: both work to increase
Var(Bj). The famous University of Wisconsin econometrician Arthur Goldberger, react-
ing to econometricians’ obsession with multicollinearity, has [tongue-in-cheek] coined
the term micronumerosity, which he defines as the “problem of small sample size.”
[For an engaging discussion of multicollinearity and micronumerosity, see Goldberger
(1991).]

Although the problem of multicollinearity cannot be clearly defined, one thing is
clear: everything else being equal, for estimating (3; it is better to have less correlation
between x; and the other independent variables. This observation often leads to a dis-
cussion of how to “solve” the multicollinearity problem. In the social sciences, where
we are usually passive collectors of data, there is no good way to reduce variances of
unbiased estimators other than to collect more data. For a given data set, we can try
dropping other independent variables from the model in an effort to reduce multi-
collinearity. Unfortunately, dropping a variable that belongs in the population model
can lead to bias, as we saw in Section 3.3.

Perhaps an example at this point will help clarify some of the issues raised con-
cerning multicollinearity. Suppose we are interested in estimating the effect of various
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school expenditure categories on student performance. It is likely that expenditures on
teacher salaries, instructional materials, athletics, and so on, are highly correlated:
wealthier schools tend to spend more on everything, and poorer schools spend less on
everything. Not surprisingly, it can be difficult to estimate the effect of any particular
expenditure category on student performance when there is little variation in one cate-
gory that cannot largely be explained by variations in the other expenditure categories
(this leads to high Rj2 for each of the expenditure variables). Such multicollinearity
problems can be mitigated by collecting more data, but in a sense we have imposed the
problem on ourselves: we are asking questions that may be too subtle for the available
data to answer with any precision. We can probably do much better by changing the
scope of the analysis and lumping all expenditure categories together, since we would
no longer be trying to estimate the partial effect of each separate category.

Another important point is that a high degree of correlation between certain inde-
pendent variables can be irrelevant as to how well we can estimate other parameters in
the model. For example, consider a model with three independent variables:

Y= Bot Bixi T Boxy + Bixs + o,

where x, and x; are highly correlated. Then Var(Bz) and Var(B3) may be large. But the
amount of correlation between x, and x; has no direct effect on Var(8,). In fact, if x, is
uncorrelated with x, and x5, then R? = 0 and Var(,él) = ¢?%/SST,, regardless of how
much correlation there is between x, and x;. If B, is the parameter of interest, we do not
really care about the amount of correlation

between x, and x;.

QUESTION 3.4

Suppose you postulate a model explaining final exam score in terms
of class attendance. Thus, the dependent variable is final exam
score, and the key explanatory variable is number of classes attend-
ed. To control for student abilities and efforts outside the classroom,
you include among the explanatory variables cumulative GPA, SAT
score, and measures of high school performance. Someone says,
“You cannot hope to learn anything from this exercise because
cumulative GPA, SAT score, and high school performance are likely
to be highly collinear.” What should be your response?

The previous observation is important
because economists often include many
controls in order to isolate the causal effect
of a particular variable. For example, in
looking at the relationship between loan
approval rates and percent of minorities in
a neighborhood, we might include vari-
ables like average income, average hous-
ing value, measures of creditworthiness,

and so on, because these factors need to be accounted for in order to draw causal con-
clusions about discrimination. Income, housing prices, and creditworthiness are gener-
ally highly correlated with each other. But high correlations among these variables do
not make it more difficult to determine the effects of discrimination.

Variances in Misspecified Models

The choice of whether or not to include a particular variable in a regression model can
be made by analyzing the tradeoff between bias and variance. In Section 3.3, we derived
the bias induced by leaving out a relevant variable when the true model contains two
explanatory variables. We continue the analysis of this model by comparing the vari-
ances of the OLS estimators.

Write the true population model, which satisfies the Gauss-Markov assumptions, as

Yy = Bot Bixi + Box, +ou.
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We consider two estimators of ;. The estimator 3, comes from the multiple regression
v = By + Bix; + Box,. (3.52)

In other words, we include x,, along with x,, in the regression model. The estimator ,él
is obtained by omitting x, from the model and running a simple regression of y on x;:

y= Bo + ler (3.53)

When B, # 0, equation (3.53) excludes a relevant variable from the model and, as we
saw in Section 3.3, this induces a bias in ,él unless x,; and x, are uncorrelated. On the
other hand, B, is unbiased for B, for any value of 3,, including 3, = 0. It follows that,
if bias is used as the only criterion, B3, is preferred to ﬁl.

The conclusion that 3, is always preferred to 8, does not carry over when we bring
variance into the picture. Conditioning on the values of x, and x, in the sample, we have,
from (3.51),

Var(B,) = a/[SST,(1 — RY)], (3.54)

where SST, is the total variation in x,, and R} is the R-squared from the regression of
X, on x,. Further, a simple modification of the proof in Chapter 2 for two-variable
regression shows that

Var(B3,) = 0?/SST,. (3.55)

Comparing (3.55) to (3.54) shows that Var(,él) is always smaller than Var(,[jj’l), unlgss X,
and x, are uncorrelated in the sample, in which case the two estimators 3, and 3, are
the same. Assuming that x, and x, are not uncorrelated, we can draw the following
conclusions:

1. When S, # 0, f3, is biased, B3, is unbiased, and Var(8,) < Var(3,).
2. When 3, = 0, 3, and 3, are both unbiased, and Var(83,) < Var(8,).

From the second conclusion, it is clear that j, is preferred if 8, = 0. Intuitively, if x,
does not have a partial effect on y, then including it in the model can only exacerbate
the multicollinearity problem, which leads to a less efficient estimator of 3,. A higher
variance for the estimator of 3, is the cost of including an irrelevant variable in a model.

The case where B, # 0 is more difficult. Leaving x, out of the model results in a
biased estimator of 3,. Traditionally, econometricians have suggested comparing the
likely size of the bias due to omitting x, with the reduction in the variance—summa-
rized in the size of R?—to decide whether x, should be included. However, when
B, # 0, there are two favorable reasons for including x, in the model. The most impor-
tant of these is that any bias in 3, does not shrink as the sample size grows; in fact, the
bias does not necessarily follow any pattern. Therefore, we can usefully think of the
bias as being roughly the same for any sample size. On the other hand, Var(j,) and
Var(3,) both shrink to zero as n gets large, which means that the multicollinearity
induced by adding x, becomes less important as the sample size grows. In large sam-
ples, we would prefer §3,.
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The other reason for favoring 3, is more subtle. The variance formula in (3.55) is
conditional on the values of x;, and x;, in the sample, which provides the best scenario
for B,. When 8, # 0, the variance of 3, conditional only on x, is larger than that pre-
sented in (3.55). Intuitively, when 8, # 0 and x, is excluded from the model, the error
variance increases because the error effectively contains part of x,. But formula (3.55)
ignores the error variance increase because it treats both regressors as nonrandom. A
full discussion of which independent variables to condition on would lead us too far
astray. It is sufficient to say that (3.55) is too generous when it comes to measuring the
precision in 3,.

Estimating o* Standard Errors of the OLS Estimators

We now show how to choose an unbiased estimator of ¢, which then allows us to
obtain unbiased estimators of Var(g)).
Since o* = E(u?), an unbiased “estimator” of ¢ is the sample average of the

squared errors: nlguf Unfortunately, this is not a true estimator because we do not

i=1
observe the u,. Nevertheless, recall that the errors can be written as u; = y, — B, — BiXi

— Box;» — ... — Bx;, and so the reason we do not observe the u;is that we do not know
the B;. When we replace each B; with its OLS estimator, we get the OLS residuals:
4;=y; = Po— Pt = BoXio = oo — B

It seems natural to estimate o by replacing u; with the 7. In the simple regression case,
we saw that this leads to a biased estimator. The unbiased estimator of o in the gen-
eral multiple regression case is

G2 (Eﬁ%)/(n —k—1)=SSR/(n — k— 1). (3.56)
i=1

We already encountered this estimator in the K = 1 case in simple regression.

The term n — k — 1 in (3.56) is the degrees of freedom (df) for the general OLS
problem with n observations and k independent variables. Since there are k + 1 para-
meters in a regression model with k independent variables and an intercept, we can write

df=n—(k+1)
= (number of observations) — (number of estimated parameters). (3.57)

This is the easiest way to compute the degrees of freedom in a particular application:
count the number of parameters, including the intercept, and subtract this amount from
the number of observations. (In the rare case that an intercept is not estimated, the num-
ber of parameters decreases by one.)

Technically, the division by n — k — 1 in (3.56) comes from the fact that the ex-
pected value of the sum of squared residuals is E(SSR) = (n — k — 1)o?. Intuitively,
we can figure out why the degrees of freedom adjustment is necessary by returning to

the first order conditions for the OLS estimators. These can be written as E it;= 0 and
i=1
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Ex,-jﬁ,- = 0, where j = 1,2, ..., k. Thus, in obtaining the OLS estimates, k + 1 restric-
i=1

tions are imposed on the OLS residuals. This means that, given n — (k + 1) of the
residuals, the remaining k + 1 residuals are known: there are only n — (k + 1) degrees
of freedom in the residuals. (This can be contrasted with the errors u;, which have n
degrees of freedom in the sample.)

For reference, we summarize this discussion with Theorem 3.3. We proved this the-
orem for the case of simple regression analysis in Chapter 2 (see Theorem 2.3). (A gen-
eral proof that requires matrix algebra is provided in Appendix E.)

THEOREM 3.3 (UNBIASED ESTIMATION OF o?)
Under the Gauss-Markov Assumptions MLR.1 through MLR.5, E(6?) = o”.

The positive square root of &% denoted &; is called the standard error of the
regression or SER. The SER is an estimator of the standard deviation of the error term.
This estimate is usually reported by regression packages, although it is called different
things by different packages. (In addition to ser, & is also called the standard error of
the estimate and the root mean squared error.)

Note that & can either decrease or increase when another independent variable is
added to a regression (for a given sample). This is because, while SSR must fall when
another explanatory variable is added, the degrees of freedom also falls by one. Because
SSR is in the numerator and df is in the denominator, we cannot tell beforehand which
effect will dominate.

For constructing confidence intervals and conducting tests in Chapter 4, we need to
estimate the standard deviation of ;, which is just the square root of the variance:

sd(B) = o/[SST(1 — R)]"~.

Since o is unknown, we replace it with its estimator, & . This gives us the standard
error of ;:

se(Bj) = o /[SST;(1 — RH]"~. (3.58)

Just as the OLS estimates can be obtained for any given sample, so can the standard
errors. Since se(Bj) depends on &, the standard error has a sampling distribution, which
will play a role in Chapter 4.

We should emphasize one thing about standard errors. Because (3.58) is obtained
directly from the variance formula in (3.51), and because (3.51) relies on the
homoskedasticity Assumption MLR.5, it follows that the standard error formula in
(3.58) is not a valid estimator of sd(ﬁ_,) if the errors exhibit heteroslfedasticity. Thus,
while the presence of heteroskedilsticity does not cause bias in the 5, it does lead to
bias in the usual formula for Var(j3,), which then invalidates the standard errors. This is
important because any regression package computes (3.58) as the default standard error
for each coefficient (with a somewhat different representation for the intercept). If we
suspect heteroskedasticity, then the “usual” OLS standard errors are invalid and some
corrective action should be taken. We will see in Chapter 8 what methods are available
for dealing with heteroskedasticity.
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3.5 EFFICIENCY OF OLS: THE GAUSS-MARKOV
THEOREM

In this section, we state and discuss the important Gauss-Markov Theorem, which jus-
tifies the use of the OLS method rather than using a variety of competing estimators.
We know one justification for OLS already: under Assumptions MLR.1 through
MLR .4, OLS is unbiased. However, there are many unbiased estimators of the 3; under
these assumptions (for example, see Problem 3.12). Might there be other unbiased esti-
mators with variances smaller than the OLS estimators?

If we limit the class of competing estimators appropriately, then we can show that
OLS is best within this class. Specifically, we will argue that, under Assumptions
MLR.1 through MLR.5, the OLS estimator ,éj for ;is the best linear unbiased esti-
mator (BLUE). In order to state the theorem, we need to understand each component
of the acronym “BLUE.” First, we know what an estimator is: it is a rule that can be
applied to any sample of data to produce an estimate. We also know what an unbiased
estimator is: in the current context, an estimator, say Bj, of ;is an unbiased estimator
of B;if E(B) = B, for any By, B, ..., Bs

What about the meaning of the term “linear”? In the current context, an estimator
Bj of B;is linear if, and only if, it can be expressed as a linear function of the data on the
dependent variable:

Bj = 2 WiiVis (3.59)
i=1

where each w;; can be a function of the sample values of all the independent variables.
The OLS estimators are linear, as can be seen from equation (3.22).

Finally, how do we define “best”? For the current theorem, best is defined as small-
est variance. Given two unbiased estimators, it is logical to prefer the one with the
smallest variance (see Appendix C).

Now, let By, B,, ..., B, denote the OLS estimators in the model (3.31) under
Assumptions MLR.1 through MLR.5. The Gauss-Markov theorem says that, for any
estimator [3_, which is linear and unbiased, Var(B_,-) = Var(B/-), and the inequality is usu-
ally strict. In other words, in the class of linear unbiased estimators, OLS has the small-
est variance (under the five Gauss-Markov assumptions). Actually, the theorem says
more than this. If we want to estimate any linear function of the §,, then the corre-
sponding linear combination of the OLS estimators achieves the smallest variance
among all linear unbiased estimators. We conclude with a theorem, which is proven in
Appendix 3A.

THEOREM 3.4 (GAUSS-MARKOV THEOREM)
Under Assumptions MLR.1 through MLR.5, Bo, B, ..., B are the best linear unbiased esti-
mators (BLUEs) of By, B, ..., Bk respectively.

It is because of this theorem that Assumptions MLR.1 through MLR.5 are known as the
Gauss-Markov assumptions (for cross-sectional analysis).
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The importance of the Gauss-Markov theorem is that, when the standard set of
assumptions holds, we need not look for alternative unbiased estimators of the form
(3.59): none will be better than OLS. Equivalently, if we are presented with an esti-
mator that is both linear and unbiased, then we know that the variance of this estima-
tor is at least as large as the OLS variance; no additional calculation is needed to show
this.

For our purposes, Theorem 3.4 justifies the use of OLS to estimate multiple regres-
sion models. If any of the Gauss-Markov assumptions fail, then this theorem no longer
holds. We already know that failure of the zero conditional mean assumption
(Assumption MLR.3) causes OLS to be biased, so Theorem 3.4 also fails. We also
know that heteroskedasticity (failure of Assumption MLR.5) does not cause OLS to be
biased. However, OLS no longer has the smallest variance among linear unbiased esti-
mators in the presence of heteroskedasticity. In Chapter 8, we analyze an estimator that
improves upon OLS when we know the brand of heteroskedasticity.

SUMMARY

1. The multiple regression model allows us to effectively hold other factors fixed
while examining the effects of a particular independent variable on the dependent vari-
able. It explicitly allows the independent variables to be correlated.

2.  Although the model is linear in its parameters, it can be used to model nonlinear
relationships by appropriately choosing the dependent and independent variables.

3. The method of ordinary least squares is easily applied to the multiple regression
model. Each slope estimate measures the partial effect of the corresponding indepen-
dent variable on the dependent variable, holding all other independent variables fixed.

4.  R?is the proportion of the sample variation in the dependent variable explained by
the independent variables, and it serves as a goodness-of-fit measure. It is important not
to put too much weight on the value of R*> when evaluating econometric models.

5. Under the first four Gauss-Markov assumptions (MLR.1 through MLR.4), the
OLS estimators are unbiased. This implies that including an irrelevant variable in a
model has no effect on the unbiasedness of the intercept and other slope estimators. On
the other hand, omitting a relevant variable causes OLS to be biased. In many circum-
stances, the direction of the bias can be determined.

6. Under the five Gauss-Markov assumptions, the variance of an OLS slope estima-
tor is given by Var(,@-) = 0”/[SST,(1 — R})]. As the error variance o~ increases, so does
Var(3,), while Var(B;) decreases as the sample variation in x;, SST,, increases. The term
Rj2 measures the amount of cAollinearity between x; and the other explanatory variables.
As Rj2 approaches one, Var(g)) is unbounded.

7. Adding an irrelevant variable to an equation generally increases the variances of
the remaining OLS estimators because of multicollinearity.

8.  Under the Gauss-Markov assumptions (MLR.1 through MLR.5), the OLS estima-
tors are best linear unbiased estimators (BLUE).
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KEY TERMS
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Best Linear Unbiased Estimator (BLUE)
Biased Towards Zero

Ceteris Paribus

Degrees of Freedom (df)
Disturbance

Downward Bias

Endogenous Explanatory Variable
Error Term

Excluding a Relevant Variable
Exogenous Explanatory Variables
Explained Sum of Squares (SSE)
First Order Conditions
Gauss-Markov Assumptions
Gauss-Markov Theorem
Inclusion of an Irrelevant Variable
Intercept

Micronumerosity
Misspecification Analysis
Multicollinearity

Multiple Linear Regression Model
Multiple Regression Analysis

PROBLEMS

Omitted Variable Bias

OLS Intercept Estimate

OLS Regression Line

OLS Slope Estimate

Ordinary Least Squares
Overspecifying the Model
Partial Effect

Perfect Collinearity

Population Model

Residual

Residual Sum of Squares
Sample Regression Function (SRF)
Slope Parameters

Standard Deviation of 3_,-
Standard Error of 5;

Standard Error of the Regression (SER)
Sum of Squared Residuals (SSR)
Total Sum of Squares (SST)
True Model

Underspecifying the Model
Upward Bias

3.1 Using the data in GPA2.RAW on 4,137 college students, the following equation

was estimated by OLS:

coigpa = 1.392 — .0135 hsperc + .00148 sat
n = 4,137, R* = .273,

where colgpa is measured on a four-point scale, hsperc is the percentile in the high
school graduating class (defined so that, for example, hsperc = 5 means the top five
percent of the class), and sar is the combined math and verbal scores on the student

achievement test.

(i) Why does it make sense for the coefficient on Asperc to be negative?

(ii)) What is the predicted college GPA when Asperc = 20 and sat = 10507

(iii)) Suppose that two high school graduates, A and B, graduated in the same
percentile from high school, but Student A’s SAT score was 140 points
higher (about one standard deviation in the sample). What is the pre-
dicted difference in college GPA for these two students? Is the differ-

ence large?

@iv)

Holding Asperc fixed, what difference in SAT scores leads to a predict-

ed colgpa difference of .50, or one-half of a grade point? Comment on

your anSwer.
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3.2 The data in WAGE2.RAW on working men was used to estimate the following
equation:

educ = 10.36 — .094 sibs + .131 meduc + 210 feduc
n =722, R*= 214,

where educ is years of schooling, sibs is number of siblings, meduc is mother’s years
of schooling, and feduc is father’s years of schooling.

(i) Does sibs have the expected effect? Explain. Holding meduc and feduc
fixed, by how much does sibs have to increase to reduce predicted years
of education by one year? (A noninteger answer is acceptable here.)

(i) Discuss the interpretation of the coefficient on meduc.

(iii) Suppose that Man A has no siblings, and his mother and father each
have 12 years of education. Man B has no siblings, and his mother and
father each have 16 years of education. What is the predicted difference
in years of education between B and A?

3.3 The following model is a simplified version of the multiple regression model used
by Biddle and Hamermesh (1990) to study the tradeoff between time spent sleeping and
working and to look at other factors affecting sleep:

sleep = By + Btotwrk + Breduc + Biage + u,

where sleep and totwrk (total work) are measured in minutes per week and educ and
age are measured in years. (See also Problem 2.12.)

(i) If adults trade off sleep for work, what is the sign of 3,?

(ii)) What signs do you think 3, and B; will have?

(iii) Using the data in SLEEP75.RAW, the estimated equation is

sléep = 3638.25 — .148 totwrk — 11.13 educ + 2.20 age
n =706, R> = .113.

If someone works five more hours per week, by how many minutes is
sleep predicted to fall? Is this a large tradeoft?
(iv) Discuss the sign and magnitude of the estimated coefficient on educ.
(v) Would you say totwrk, educ, and age explain much of the variation in
sleep? What other factors might affect the time spent sleeping? Are
these likely to be correlated with fotwrk?

3.4 The median starting salary for new law school graduates is determined by
log(salary) = By + B,LSAT + B,GPA + Bslog(libvol) + B,log(cost)
+ Bsrank + u,

where LSAT is median LSAT score for the graduating class, GPA is the median college
GPA for the class, libvol is the number of volumes in the law school library, cost is the
annual cost of attending law school, and rank is a law school ranking (with rank = 1
being the best).

(i) Explain why we expect 85 = 0.
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(ii)) What signs to you expect for the other slope parameters? Justify your
answers.
(i) Using the data in LAWSCH85.RAW, the estimated equation is

log(sdlary) = 8.34 + .0047 LSAT + .248 GPA + .095 log(libvol)
+ .038 log(cost) — .0033 rank
n =136, R = .842.

What is the predicted ceteris paribus difference in salary for schools
with a median GPA different by one point? (Report your answer as a
percent.)

(iv) Interpret the coefficient on the variable log(libvol).

(v) Would you say it is better to attend a higher ranked law school? How
much is a difference in ranking of 20 worth in terms of predicted start-
ing salary?

3.5 In a study relating college grade point average to time spent in various activities,
you distribute a survey to several students. The students are asked how many hours they
spend each week in four activities: studying, sleeping, working, and leisure. Any activ-
ity is put into one of the four categories, so that for each student the sum of hours in the
four activities must be 168.

(i) In the model

GPA = B, + B;study + Bysleep + Bswork + B,leisure + u,

does it make sense to hold sleep, work, and leisure fixed, while chang-
ing study?

(i) Explain why this model violates Assumption MLR .4.

(iii) How could you reformulate the model so that its parameters have a use-
ful interpretation and it satisfies Assumption MLR.4?

3.6 Consider the multiple regression model containing three independent variables,
under Assumptions MLR.1 through MLR.4:

Y = Bo T Bixi T Boxy + Bixs + u

You are interested in estimating the sum of the parameters on x, and x,; call this 6, =
B: + B,. Show that §, = B, + [, 1is an unbiased estimator of 6,.

3.7 Which of the following can cause OLS estimators to be biased?
(i) Heteroskedasticity.
(i) Omitting an important variable.
(iii)) A sample correlation coefficient of .95 between two independent vari-
ables both included in the model.

3.8 Suppose that average worker productivity at manufacturing firms (avgprod)
depends on two factors, average hours of training (avgtrain) and average worker
ability (avgabil):

avgprod = B, + Byavgtrain + B,avgabil + u.
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Assume that this equation satisfies the Gauss-Markov assumptions. If grants have been
given to firms whose workers have less than average ability, so that avgtrain and avga-
bil are negatively correlated, what is the likely bias in 3, obtained from the simple
regression of avgprod on avgtrain?

3.9 The following equation describes the median housing price in a community in
terms of amount of pollution (nox for nitrous oxide) and the average number of rooms
in houses in the community (rooms):

log(price) = B, + B;log(nox) + B,rooms + u.

(i) What are the probable signs of 3, and 3,7 What is the interpretation of
B,? Explain.

(i) Why might nox [more precisely, log(nox)] and rooms be negatively cor-
related? If this is the case, does the simple regression of log(price) on
log(nox) produce an upward or downward biased estimator of 3,?

(iii) Using the data in HPRICE2.RAW, the following equations were esti-
mated:

log(pfice) = 11.71 — 1.043 log(nox), n = 506, R*> = .264.
log(pfice) = 9.23 — .718 log(nox) + .306 rooms, n = 506, R? = 514.

Is the relationship between the simple and multiple regression estimates of the elastic-
ity of price with respect to nox what you would have predicted, given your answer in
part (ii)? Does this mean that —.718 is definitely closer to the true elasticity than
—1.043?

3.10 Suppose that the population model determining y is

y =Byt Bixy T Boxy + Baxs tou,

and this model satisifies the Gauss-Markov assumptions. However, we estimate the
model that omits x5. Let B,, 3,, and 3, be the OLS estimators from the regression of y
on x, and x,. Show that the expected value of 3, (given the values of the independent
variables in the sample) is

E FaXia
3 i=1
EB) =B + Bs——,
>
i=1
where the 7}, are the OLS residuals from the regression of x, on x,. [Hint: The formula

for B, comes from equation (3.22). Plug y;, = By, + Byx;; + Boxin + Bsx;z + u;into this
equation. After some algebra, take the expectation treating x;; and 7;; as nonrandom.]

3.11 The following equation represents the effects of tax revenue mix on subsequent
employment growth for the population of counties in the United States:

growth = B, + B,sharep + B,share, + Bishareg + other factors,
where growth is the percentage change in employment from 1980 to 1990, sharep is the

share of property taxes in total tax revenue, share, is the share of income tax revenues,
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and shareg is the share of sales tax revenues. All of these variables are measured in
1980. The omitted share, share, includes fees and miscellaneous taxes. By definition,
the four shares add up to one. Other factors would include expenditures on education,
infrastructure, and so on (all measured in 1980).

(i) Why must we omit one of the tax share variables from the equation?

(ii)) Give a careful interpretation of 3.

3.12 (i) Consider the simple regression model y = B, + B;x + u under the first four
Gauss-Markov assumptions. For some function g(x), for example g(x) = x* or g(x) =
log(1 + x?), define z; = g(x;). Define a slope estimator as

Bl = (21 (z;— Z_)yi)/(; (z; — Z_)xi)'

Show that ,él is linear and unbiased. Remember, because E(u|x) = 0, you can treat both
x;and z; as nonrandom in your derivation.
(i) Add the homoskedasticity assumption, MLR.5. Show that

" n n 2
Var(B,) = o (2 (@ — 2)2) / (E - z>x,») :

(iii) Show directly that, under the Gauss-Markov assumptions, Var(ﬁ’l) =
Var(B,), where (3, is the OLS estimator. [Hint: The Cauchy-Schwartz
inequality in Appendix B implies that

n 2 n n
(n“ > @ - D — )a) = (n > @- 2)2) (n > - 502);
i=1 i=1 i=1

notice that we can drop ¥ from the sample covariance.]

COMPUTER EXERCISES

3.13 A problem of interest to health officials (and others) is to determine the effects of
smoking during pregnancy on infant health. One measure of infant health is birth
weight; a birth rate that is too low can put an infant at risk for contracting various ill-
nesses. Since factors other than cigarette smoking that affect birth weight are likely to
be correlated with smoking, we should take those factors into account. For example,
higher income generally results in access to better prenatal care, as well as better nutri-
tion for the mother. An equation that recognizes this is

bwght = B, + B,cigs + B, faminc + u.

(i) What is the most likely sign for 3,?

(i) Do you think cigs and faminc are likely to be correlated? Explain why
the correlation might be positive or negative.

(iii)) Now estimate the equation with and without faminc, using the data in
BWGHT.RAW. Report the results in equation form, including the sam-
ple size and R-squared. Discuss your results, focusing on whether
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adding faminc substantially changes the estimated effect of cigs on
bwght.

3.14 Use the data in HPRICE1.RAW to estimate the model
price = By + Bisqrft + B,bdrms + u,

where price is the house price measured in thousands of dollars.

(i) Write out the results in equation form.

(i) What is the estimated increase in price for a house with one more bed-
room, holding square footage constant?

(iii)) What is the estimated increase in price for a house with an additional
bedroom that is 140 square feet in size? Compare this to your answer in
part (ii).

(iv) What percentage of the variation in price is explained by square footage
and number of bedrooms?

(v) The first house in the sample has sqrft = 2,438 and bdrms = 4. Find the
predicted selling price for this house from the OLS regression line.

(vi) The actual selling price of the first house in the sample was $300,000
(so price = 300). Find the residual for this house. Does it suggest that
the buyer underpaid or overpaid for the house?

3.15 The file CEOSAL2.RAW contains data on 177 chief executive officers, which can
be used to examine the effects of firm performance on CEO salary.

(i) Estimate a model relating annual salary to firm sales and market value.
Make the model of the constant elasticity variety for both independent
variables. Write the results out in equation form.

(i) Add profits to the model from part (i). Why can this variable not be
included in logarithmic form? Would you say that these firm perfor-
mance variables explain most of the variation in CEO salaries?

(iii) Add the variable ceoten to the model in part (ii). What is the estimated
percentage return for another year of CEO tenure, holding other factors
fixed?

(iv) Find the sample correlation coefficient between the variables
log(mktval) and profits. Are these variables highly correlated? What
does this say about the OLS estimators?

3.16 Use the data in ATTEND.RAW for this exercise.
(i) Obtain the minimum, maximum, and average values for the variables
atndrte, priGPA, and ACT.
(ii)) Estimate the model

atndrte = By + B,priGPA + B,ACT + u

and write the results in equation form. Interpret the intercept. Does it have a
useful meaning?

(iii) Discuss the estimated slope coefficients. Are there any surprises?

(iv) What is the predicted atndrte, if priGPA = 3.65 and ACT = 20?7 What
do you make of this result? Are there any students in the sample with
these values of the explanatory variables?
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(v) If Student A has priGPA = 3.1 and ACT = 21 and Student B has
priGPA = 2.1 and ACT = 26, what is the predicted difference in their
attendance rates?

3.17 Confirm the partialling out interpretation of the OLS estimates by explicitly doing
the partialling out for Example 3.2. This first requires regressing educ on exper and
tenure, and saving the residuals, 7,. Then, regress log(wage) on 7,. Compare the coeffi-
cient on 7, with the coefficient on educ in the regression of log(wage) on educ, exper,
and tenure.

A P P E N D 1 X 3 A

3A.1 Derivation of the First Order Conditions, Equations (3.13)

The analysis is very similar to the simple regression case. We must characterize the
solutions to the problem

min i — by — bix;y — ... — by’
by b b, 1221()’ 0 1Xi1 ik

Taking the partial derivatives with respect to each of the b; (see Appendix A), evaluat-
ing them at the solutions, and setting them equal to zero gives

_ZZ i — :éo_ leilv_ v T ka,»k) =0
22,000 By Bt~ e~ B = 0. = 1k

Cancelling the —2 gives the first order conditions in (3.13).

3A.2 Derivation of Equation (3.22)

To derive (3.22), write x;, in terms of its fitted value and its residual from the regression
of x,onto x,, ..., Xz X;; = X;; + 7y, i = 1, ..., n. Now, plug this into the second equa-
tion in (3.13):

; (& + ARy — BAO - BAlxil e T ,ékxik) = 0. (3.60)

By the definition of the OLS residual i, since %;, is just a linear function of the explana-

tory variables x;,, ..., X, it follows that 2 X1, = 0. Therefore, (3.60) can be expressed
i=1
as

n

2 Fa(y; — Bo - Bl-xil e T ,élcxik) = 0. (3.61)

i=1
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Since the 7, are the residuals from regressmg X; onto Xx,, ..., E x,#y = 0forj =2,
k Therefore, (3.61) is equivalent to 2 Py — Bxi) = 0. Fmally, we use the fact

that E X171 = 0, which means that Bl solves

i=1
n

; Py — Blfil) =0
Now straightforward algebra gives (3.22), provided, of course, that 2 72 > 0; this is

ensured by Assumption MLR.4.

3A.3 Proof of Theorem 3.1

We prove Theorem 3.1 for B,; the proof for the other slope parameters is virtually iden-
tical. (See Appendix E for a more succinct proof using matrices.) Under Assumption
MLR .4, the OLS estimators exist, and we can write ﬁl as in (3.22). Under Assumption
MLR 1, we can write y; as in (3.32); substltute this for Vi in (3.22). Then, using

2 7 =0, E x;f; =0forallj=2,...,k and 2 X Fy = E 7%, we have
i=1 i=1 i=1

- (Zl f,-lui)/(E r,l) (3.62)

Now, under Assumptions MLR.2 and MLR .4, the expected value of each u;,, given all
independent variables in the sample, is zero. Since the 7, are just functions of the sam-
ple independent variables, it follows that

EBBIX) = B + (E r:-IE<u,-|X>) / (E r,l)

(S5 9) 5

where X denotes the data on all independent variables and E(B, |X) is the expected value
of B, given x;,, ..., x;, for all i = 1, ..., n. This completes the proof.

3A.4 Proof of Theorem 3.2

Again, we prove this for j = 1. Write ﬁl as in equation (3.62). Now, under MLR.5,
= ¢?foralli = 1,..., n. Under random sampling, the u, are independent, even
conditional on X, and the #;, are nonrandom conditional on X. Therefore,

Var(B,|X) = (E 72 Var(u, |X)) / (E f,?,)

(S /(37) -/ (27)
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n
Now, since E 7% is the sum of squared residuals from regressing x, on to x,, ..., X,
N A

i=1
7% = SST,(1 — R?}). This completes the proof.

i=1

3A.5 Proof of Theorem 3.4

We show that, for any other linear unbiased estimator 3, of B3,, Var(B,) = Var(J,),
where B, is the OLS estimator. The focus on j = 1 is without loss of generality.
For 3, as in equation (3.59), we can plug in for y, to obtain

:él = Bo 12:} wi + B é} WX + Bzé Wi X + .ot Bké} WXy T é Wil
Now, since the w;, are functions of the x;;,
E(B1|X) = ,Boé wi t Blg WXy + Bzé WiXpt ..o+ Bkg WXy T gwilE(uJX)

= Bol:El Wi T Blé WXy T Bzé WiXpp T .o F Bké WiiXik

because E(u,|X) = 0, for all i = 1, ..., n under MLR.3. Therefore, for E(3,|X) to equal
B, for any values of the parameters, we must have

Dwa =0, 2 wax, =1, 2 wyx, =0,j=2, ..., k (3.63)
i=1 i=1 i=1

Now, let 7, be the residuals from the regression of x;; on to X;,, ..., X;. Then, from
(3.63), it follows that

2 Wity = 1. (3.64)
i=1

Now, consider the difference between Var(f3, |X) and Var(ﬁl|X ) under MLR.1 through
MLR.5:

a2 D w2, — 0'2/( f,—zl). (3.65)
i=1

i=1

Because of (3.64), we can write the difference in (3.65), without o2, as

n n 2 n
2 W%l - (2 Wilfil)/(z fizl)' (3.66)
i=1 i=1 i=1

But (3.66) is simply

E (Wi — ?1’3’1)% (3.67)
i=1
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n

where ¥, = (E ann)/( E f,-zl), as can be seen by squaring each term in (3.67),
i=1

i=1
summing, and then cancelling terms. Because (3.67) is just the sum of squared residu-
als from the simple regression of w;, on to 7;,—remember that the sample average of
7, 1s zero—(3.67) must be nonnegative. This completes the proof.
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C h apt e r Four

Multiple Regression Analysis:
Inference

to the problem of testing hypotheses about the parameters in the population

regression model. We begin by finding the distributions of the OLS estimators
under the added assumption that the population error is normally distributed. Sections
4.2 and 4.3 cover hypothesis testing about individual parameters, while Section 4.4 dis-
cusses how to test a single hypothesis involving more than one parameter. We focus on
testing multiple restrictions in Section 4.5 and pay particular attention to determining
whether a group of independent variables can be omitted from a model.

This chapter continues our treatment of multiple regression analysis. We now turn

4.1 SAMPLING DISTRIBUTIONS OF THE OLS
ESTIMATORS

Up to this point, we have formed a set of assumptions under which OLS is unbiased,
and we have also derived and discussed the bias caused by omitted variables. In Section
3.4, we obtained the variances of the OLS estimators under the Gauss-Markov assump-
tions. In Section 3.5, we showed that this variance is smallest among linear unbiased
estimators.

Knowing the expected value and variance of the OLS estimators is useful for
describing the precision of the OLS estimators. However, in order to perform statistical
inference, we need to know more than just the first two moments of Bj; we need to know
the full sampling distribution of the ,éj Even under the Gauss-Markov assumptions, the
distribution of §; can have virtually any shape.

When we condition on the values of the independent variables in our sample, it is
clear that the sampling distributions of the OLS estimators depend on the underlying
distribution of the errors. To make the sampling distributions of the ﬁj tractable, we now
assume that the unobserved error is normally distributed in the population. We call this
the normality assumption.

ASSUMPTION MLR.6 (NORMALITY)
The population error u is independent of the explanatory variables x;, X5, ..., x, and is nor-
mally distributed with zero mean and variance o: u ~ Normal(0,a?).
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Assumption MLR.6 is much stronger than any of our previous assumptions. In fact,
since u is independent of the x; under MLR.6, E(ulx,, ..., x,) = E(u) = 0, and Var(ulx,,
..., X;) = Var(u) = 0. Thus, if we make Assumption MLR.6, then we are necessarily
assuming MLR.3 and MLR.5. To emphasize that we are assuming more than before, we
will refer to the the full set of assumptions MLR.1 through MLR.6.

For cross-sectional regression applications, the six assumptions MLR.1 through
MLR.6 are called the classical linear model (CLM) assumptions. Thus, we will refer
to the model under these six assumptions as the classical linear model. It is best to
think of the CLM assumptions as containing all of the Gauss-Markov assumptions plus
the assumption of a normally distributed error term.

Under the CLM assumptions, the OLS estimators ,@0, ,@1, ooy ,ék have a stronger effi-
ciency property than they would under the Gauss-Markov assumptions. It can be shown
that the OLS estimators are the minimum variance unbiased estimators, which
means that OLS has the smallest variance among unbiased estimators; we no longer
have to restrict our comparison to estimators that are linear in the y,. This property of
OLS under the CLM assumptions is discussed further in Appendix E.

A succinct way to summarize the population assumptions of the CLM is

ylx ~ Normal(B, + Bix; + Boxs + ... + Bux,07),

where x is again shorthand for (xy, ..., x;). Thus, conditional on x, y has a normal dis-
tribution with mean linear in x,, ..., x;, and a constant variance. For a single independent
variable x, this situation is shown in Figure 4.1.

The argument justifying the normal distribution for the errors usually runs some-
thing like this: Because u is the sum of many different unobserved factors affecting y,
we can invoke the central limit theorem (see Appendix C) to conclude that u# has an
approximate normal distribution. This argument has some merit, but it is not without
weaknesses. First, the factors in u can have very different distributions in the popula-
tion (for example, ability and quality of schooling in the error in a wage equation).
While the central limit theorem (CLT) can still hold in such cases, the normal approx-
imation can be poor depending on how many factors appear in # and how different are
their distributions.

A more serious problem with the CLT argument is that it assumes that all unob-
served factors affect y in a separate, additive fashion. Nothing guarantees that this is so.
If u is a complicated function of the unobserved factors, then the CLT argument does
not really apply.

In any application, whether normality of u can be assumed is really an empirical
matter. For example, there is no theorem that says wage conditional on educ, exper, and
tenure is normally distributed. If anything, simple reasoning suggests that the opposite
is true: since wage can never be less than zero, it cannot, strictly speaking, have a nor-
mal distribution. Further, since there are minimum wage laws, some fraction of the pop-
ulation earns exactly the minimum wage, which also violates the normality assumption.
Nevertheless, as a practical matter we can ask whether the conditional wage distribu-
tion is “close” to being normal. Past empirical evidence suggests that normality is not
a good assumption for wages.

Often, using a transformation, especially taking the log, yields a distribution that is
closer to normal. For example, something like log(price) tends to have a distribution
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Figure 4.1

The homoskedastic normal distribution with a single explanatory variable.

f(ylx)

normal distributions

that looks more normal than the distribution of price. Again, this is an empirical issue,
which we will discuss further in Chapter 5.

There are some examples where MLR.6 is clearly false. Whenever y takes on just a
few values, it cannot have anything close to a normal distribution. The dependent vari-
able in Example 3.5 provides a good example. The variable narr86, the number of times
a young man was arrested in 1986, takes on a small range of integer values and is zero
for most men. Thus, narr86 is far from being normally distributed. What can be done
in these cases? As we will see in Chapter 5—and this is important—nonnormality of
the errors is not a serious problem with large sample sizes. For now, we just make the
normality assumption.

Normality of the error term translates into normal sampling distributions of the OLS
estimators:

THEOREM 4.1 (NORMAL SAMPLING DISTRIBUTIONS)
Under the CLM assumptions MLR.1 through MLR.6, conditional on the sample values of the
independent variables,

B, ~ Normal[ B, Var($3)], @1
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where Var(B/-) was given in Chapter 3 [equation (3.51)]. Therefore,

(B, — B)/sd(f) ~ Normal(0,1).

The proof of (4.1) is not that difficult, given the properties of normally distributed ran-

it

dom variables in Appendix B. Each ﬁf/ can be written as B_/ =B+ > w,u;, where w, =
i=1

7;/SSR;, #;is the i" residual from the regression of the x; on all the other independent

> i

variables, and SSR; is the sum of squared residuals from this regression [see equation
(3.62)]. Since the w;; depend only on the independent variables, they can be treated as

QUESTION 4.1

Suppose that u is independent of the explanatory variables, and it
takes on the values —2, —1, 0, 1, and 2 with equal probability of
1/5. Does this violate the Gauss-Markov assumptions? Does this vio-

nonrandom. Thus, B/-is just a linear combi-
nation of the errors in the sample, {u;: i =
1,2, ...,n}. Under Assumption MLR.6
(and the random sampling Assumption
MLR.2), the errors are independent, iden-
tically distributed Normal(0,0%) random

late the CLM assumptions? variables. An important fact about inde-

pendent normal random variables is that a
linear combination of such random variables is normally distributed (see Appendix B).
This basically completes the proof. In Section 3.3, we showed that E(ﬁ_/) = BB;, and we
derived Var(f3)) in Section 3.4; there is no need to re-derive these facts.

The second part of this theorem follows immediately from the fact that when we
standardize a normal random variable by dividing it by its standard deviation, we end
up with a standard normal random variable.

The conclusions of Theorem 4.1 can be strengthened. In addition to (4.1), any lin-
ear combination of the ,é’o, Bl, e BAk is also normally distributed, and any subset of the
B,- has a joint normal distribution. These facts underlie the testing results in the remain-
der of this chapter. In Chapter 5, we will show that the normality of the OLS estimators
is still approximately true in large samples even without normality of the errors.

4.2 TESTING HYPOTHESES ABOUT A SINGLE
POPULATION PARAMETER: THE t TEST

This section covers the very important topic of testing hypotheses about any single para-
meter in the population regression function. The population model can be written as

y=Bot Byt ... + Bixe +ou, (4.2)

and we assume that it satisfies the CLM assumptions. We know that OLS produces
unbiased estimators of the ;. In this section, we study how to test hypotheses about a
particular ;. For a full understanding of hypothesis testing, one must remember that the
B; are unknown features of the population, and we will never know them with certainty.
Nevertheless, we can hypothesize about the value of 8; and then use statistical inference
to test our hypothesis.

In order to construct hypotheses tests, we need the following result:
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THEOREM 4.2 (t DISTRIBUTION FOR THE
STANDARDIZED ESTIMATORS)
Under the CLM assumptions MLR.1 through MLR.6,

(B — Bise(B) ~ t, 1 (4.3)

where k + 1 is the number of unknown parameters in the population model y = B, +
Bix; + ... + Bxi + u (k slope parameters and the intercept B,).

This result differs from Theorem 4.1 in some notable respects. Theorem 4.1 showed
that, under the CLM assumptions, (Bj - Bj)/sd(ﬁ_,) ~AN0rmal(0,l). The ¢ distribution in
(4.3) comes from the fact that the constant o in sd(3,) has been replaced with the ran-
dom variable & . The proof that this leads to a ¢ distribution with n — k — 1 degrees of
freedom is not especially insightful. Essentially, the proof shows that (4.3) can be writ-
ten as the ratio of the standard normal random variable (ﬁ, - Bj)/sd([%_,) over the square
root of &%/¢. These random variables can be shown to be independent, and (n — k —
&% a* ~ x2_;_,. The result then follows from the definition of a ¢ random variable
(see Section B.5).

Theorem 4.2 is important in that it allows us to test hypotheses involving the §;. In
most applications, our primary interest lies in testing the null hypothesis

Hy: B; =0, (4.4)

where j corresponds to any of the k independent variables. It is important to understand
what (4.4) means and to be able to describe this hypothesis in simple language for a par-
ticular application. Since (3; measures the partial effect of x; on (the expected value of)
v, after controlling for all other independent variables, (4.4) means that, once x,, x,, ...,
X;_1, X;41, ..., X; have been accounted for, x; has no effect on the expected value of y. We
cannot state the null hypothesis as “x;does have a partial effect on y” because this is true
for any value of B;other than zero. Classical testing is suited for testing simple hypothe-
ses like (4.4).

As an example, consider the wage equation
log(wage) = B, + Bieduc + B.exper + Bstenure + u.

The null hypothesis Hy: 8, = 0 means that, once education and tenure have been
accounted for, the number of years in the work force (exper) has no effect on hourly
wage. This is an economically interesting hypothesis. If it is true, it implies that a per-
son’s work history prior to the current employment does not affect wage. If 8, > 0, then
prior work experience contributes to productivity, and hence to wage.

You probably remember from your statistics course the rudiments of hypothesis
testing for the mean from a normal population. (This is reviewed in Appendix C.) The
mechanics of testing (4.4) in the multiple regression context are very similar. The hard
part is obtaining the coefficient estimates, the standard errors, and the critical values,
but most of this work is done automatically by econometrics software. Our job is to
learn how regression output can be used to test hypotheses of interest.

The statistic we use to test (4.4) (against any alternative) is called “the” t statistic
or “the” t ratio of B, and is defined as
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lg, = Bilse(B). (4.5)

We have put “the” in quotation marks because, as we will see shortly, a more general
form of the ¢ statistic is needed for testing other hypotheses about §,. For now, it is
important to know that (4.5) is suitable only for testing (4.4). When it causes no confu-
sion, we will sometimes write ¢ in place of 1y

The ¢ statistic for B is simple to compute given B and its standard error. In fact, most
regression packages do the division for you and report the ¢ statistic along with each
coefficient and its standard error.

Before discussing how to use (4.5) formally to test Hy: 8; = 0, it is useful to see why
7 has features that make it reasonable as a test statistic to detect 3; # 0. First, since
se(B) is always positive, 7 has the same sign as B if B is positive, then so is g, and if
B is negative, so is 1y Second for a given value of se(B) a larger value of B leads to
larger values of 1 If B becomes more negative, so does 1

Since we are testlng H,: B; = 0, it is only natural to look at our unbiased estimator
of B, B , for guidance. In any interesting application, the point estimate B will never
exactly be zero, whether or not Hy, is true. The question is: How far is B from zero? A
sample value of B very far from zero provides evidence against Hy: B; = 0. However,
we must recognize that there is a sampling error in our estimate B , so the size of B must
be weighed against its sampling error. Since the the standard error of B is an estimate
of the standard deviation of B, tBJ measures how many estimated standard deviations B
is away from zero. This is precisely what we do in testing whether the mean of a pop-
ulation is zero, using the standard ¢ statistic from introductory statistics. Values of 15,
sufficiently far from zero will result in a rejection of H,. The precise rejection rule
depends on the alternative hypothesis and the chosen significance level of the test.

Determining a rule for rejecting (4.4) at a given significance level—that is, the prob-
ability of rejecting H, when it is true—requires knowing the sampling distribution of 73,
when Hj is true. From Theorem 4.2, we know this to be 7,_,_,. This is the key theoret-
ical result needed for testing (4.4).

Before proceeding, it is important to remember that we are testing hypotheses about
the population parameters. We are not testing hypotheses about the estimates from a
particular sample. Thus, it never makes sense to state a null hypothesis as “H,: B, =0"
or, even worse, as “Hy: .237 = 0” when the estimate of a parameter is .237 in the sam-
ple. We are testing whether the unknown population value, B,, is zero.

Some treatments of regression analysis define the ¢ statistic as the absolute value of
(4.5), so that the 7 statistic is always positive. This practice has the drawback of making
testing against one-sided alternatives clumsy. Throughout this text, the # statistic always
has the same sign as the corresponding OLS coefficient estimate.

Testing Against One-Sided Alternatives

In order to determine a rule for rejecting H,, we need to decide on the relevant alter-
native hypothesis. First consider a one-sided alternative of the form

H,: B> 0. (4.6)
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This means that we do not care about alternatives to H, of the form H;: 8; < 0; for some
reason, perhaps on the basis of introspection or economic theory, we are ruling out pop-
ulation values of 3;less than zero. (Another way to think about this is that the null hypoth-
esis is actually Hy: B, = 0; in either 