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PREFACE

This book was borne out of frustration. After returning from an enjoyable and pro-

ductive sabbatical at the University of California at San Diego, I began expanding

" the empirical content of my graduate-level classes in macroeconomics and interna-
; tional finance. Students’ interest surged as they began to understand the concurrent

development of macroeconomic theory and time-series econometrics. The differ-

" ence between Keynesians, monetarists, the rational expectations school, and the

real business cycle approach could best be understood by their ability to explain the
empirical regularities in the economy. Old-style macroeconomic models were dis-
carded because of their empirical inadequacies, not because of any logical inconsis-
tencies. . ’

Iowa State University has a world-class Statistics Department, and most of our
economics students take three of four statistics classes. Nevertheless, students’
backgrounds were inadequate for the empirical portion of my courses. I needed to
present a reasonable number of lectures on the topics covered in this book. My
frustration was that the journal articles were written for those already technically
proficient in time-series’ econometrics. The existing time-series texts were inade-
quate to the task. Some focused on forecasting, others on theoretical econometric
issues, and still others on techniques that are infrequently used in the economics lit-
erature. The idea for this text began as my class notes and use of handouts grew in-
ordinately. Finally, I began teaching a new course in applied time-series economet-
rics.

My original intent was to write a text on time-series macroeconometrics. Fortu-
nately, my colleagues at lowa State convinced me to broaden the focus; applied mi-
croeconomists were also embracing time-series methods. I decided to include ex-
amples drawn from agricultural economics, international finance, and some of my
work with Todd Sandler on the study of transnational terrorism. You should find- - -
the examples in the text to provide a reasonable balance between macroeconomic
and microeconomic applications.

The text is intended for those with some background in multiple regression:.
analysis. 1 presume the reader understands the assumptions underlying the use of "
ordinary least squares. All of my students are familiar with the concepts of correla-
tion and covariation; they also know how to use t-tests and F-tests within a regres-
sion framework. I use terms such as mean square error, significance level, and un-
biased estimate without explaining their meaning. The last two chapters of the text
examine multiple time-series techniques. To work through these chapters, it is nec-
essary to know how to solve a systern of equations using matrix algebra, Chapter 1,
entitled “Difference Equations,” is the comerstone of the text. In my experience, >
this material and a knowledge of regression are sufficient to bring students to the’
point where they are able to read the professional journals and to embark on a seri-
ous applied study. : ;




I believe in teaching by induction. The method is to take a simple example and

build towards more general and more complicated models and econometric proce- -

dures. Detailed examples of each procedure are provided. Each concludes with a
step-by-step summary of the stages typically employed in using that procedure. The
approach is one of learning by doing. A large number of solved problems are in-

cluded in the body of each chapter. The Questions and Exercises at the end of each

chapter are especially important. They have been designed to complement the ma-
terial in the text. In order to work through the exercises, it is necessary to have ac-
cess 1o a software package such as RATS, SAS, SHAZAM, or TSP. Matrix pack-
ages such as MATLAB and GAUSS are not as convenient for univariate models.
Packages such as MINITAB, SPSSX, and MICROFIT can perform many of the
procedures covered in the exercises. You are encouraged to work through as many
of the examples and exercises as possible. The answers to all questions are con-
tained in the Instructor’s Manual. Most of the questions are answered in great de-
tail. In addition, the Instructor’s Manual contains the data disk and the computer
programs that can be used to answer the end of chapter exercises. Programs are
provided for the most popular software packages.

In spite of all my efforts, some errors have undoubtedly crept into the text.
Portions of the manuscript that are crystal clear to me, will surely be opaque to oth-
ers. Towards this end, I plan to keep a list of corrections and clarifications. You can
receive a copy (of what | hope is a short list) from my Internet address ENDERS @
IASTATE.EDU.

Many pcople made valuable suggestions for improving the manuscript. I am
grateful to my students who kept me challenged and were quick to point out errors.
Pin Chung was especially helpful in carefully reading the many drafts of the manu-
script and ferreting out numerous mistakes. Selahattin Dibooglu at the University
of Hlinois at Carbondale and Harvey Cutler at Colorado State University used por-
tions of the text in their own courses; their comments concerning the organization,
style, and clarity of presentation are much appreciated. My colleague Barry Falk
was more than willing to answer my questions and make helpful suggestions, Hae-
Shin Hwang, Texas A and M University; Paul D. McNelis, Georgetown University;
Hadi Estahan, University of Illinois; M. Daniel Westbrook, Georgetown
University; Beth Ingram, University of Iowa; and Subhash C. Ray, University of
Connecticut all provided insightful reviews of various stages of the manuscript.
Julio Herrera and Nifacio Velasco, the “food gurus™ at the University of Valladolid,
helped me survive the final stages of proofreading. Most of all, I would like to
thank my loving wife Linda for putting up with me while I was working on the text.
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Chapter 1

DIFFERENCE EQUATIONS

The theory of difference equations underlies all the time-series methods employed
in later chapters of this text. It is fair to say that time-series econometrics is con-
cerned with the estimation of difference equations containing stochastic compo-
nents. The traditional use of time-series analysis was to forecast the time path of a
variable. Uncovering the dynamic path of a series improves forecasts since the pre-
dictable components of the series can be extrapolated into the future. The growing
interest in economic dynamics has given a new emphasis to time-series economet-
rics. Stochastic difference equations arise quite naturally from dynamic economic
models. Appropriately estimated equations can be used for the interpretation of
economic data and for hypothesis testing.
The aims of this introductory chapter are to:

1. Explain how stochastic difference equations can be used for forecasting and to
illustrate how such equations can arise from familiar economic models. The

‘chapter is not meant to be a treatise on the theory: of difference equations. Only

those techniques that are essential to the appropriate estimation of linear time-
series models are presented. This chapter focuses ‘on single-equation ‘models;
multivariate models are considered in Chapters 5 and 6. :

2. Explain what it means to “solve” a difference equation. The solution will deter-
mine whether a variable has a stable or an explosive time path. A knowledge of
the stability conditions is essential to understanding the recent innovations in
time-series econometrics. The contemporary time-series literature pays. special
attention to the issue of stationary versus nonstationary variables. The stability
conditions underlie the conditions for stationarity. -

3. Demonstrate how to find the solution to a stochastic difference equation. There
are several different techniques that can be used; each has its own relative mer-
its. A number of examples are presented to help you understand the different
methods. Try to work through each example carefully. For extra practice, you
should complete the exercises at the end of the chapter.
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2 Difference Equations

1. TIME-SERIES MODELS

The task facing the modern time-series econometrician is to develop reasonably
simple models capable of forecasting, interpreting. and testing hypotheses concern-
ing economic data. The challenge has grown over time; the original use of time-
series analysis was primarily as an aid to forecasting. As such, a methodology was
developed to decompose a series into a trend, seasonal, cyclical, and an irregular
component. Uncovering the dynamic path of a scries improves forecast accuracy
since each of the predictable components can be extrapolated into the future.
Suppuse you observe the 50 data points shown in Figure 1.1 and are interested in
forecasting the subsequent values. By using the time-series methods discussed in
the next several chapters, it is possible to decompose this series into the trend, sea-

Figure 1.1 Hypothetical time series.
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sonal, and irregular components shown in the lower part of the figure. As you can
see, the trend changes the mean of the series and the seasonal component imparts a
regular cyclical pattern with peaks occurring every 12 units of time. In practice, the
trend and seasonal components will not be the simplistic deterministic functions
shown in the figure. With economic data, it is typical to find that a series contains
stochastic elements in the trend, seasonal, and irregular components. For the time
being, it is wise to sidestep these complications so that the projection of the trend
and seasonal components into periods 51 and beyond is straightforward. )

Notice that the irregular component, while not having a well-defined pattemn, is
somewhat predictable. If you examine the figure closely. you will see that the posi-
tive and negative values occur in runs; the occurrence of a large value in any period
tends to be followed by another large value. Short-run forecasts will make use of
this positive correlation in the irregular component. Over the entire span, however,
the irregular component exhibits a tendency to revert to zero. As shown in the
lower part of the figure, the projection of the irregular component past period 50
rapidly decays toward zero. The overall forecast, shown in the top part of the fig-
ure, is the sum of each forecasted component.

The general methodology used to make such forecasts entails finding the “equa-
tion of motion” driving a stochastic process and using that equation to predict sub-

- sequent outcomes. Let y, denote the value of a data point at period f; if we use this
 notation, the example in Figure 1.1 assumed we observed y, through ys,. For t = |
to 50, the equations of motion used to construct components of the y, series are

Trend: 7,=1+0.1t
Seasonal: S, = 1.6 sin(tn/2)
Irregular: [=071_ +¢

where T, = value of the trend component in period ¢
S, = value of the seasonal component in ¢

I, = the value of the irregular componentin ¢
€, = a pure random disturbance in ¢

i n

Thus, the irregular disturbance in ¢ is 70% of the previous period’s irregular distur-
bance plus a random disturbance term.

Each of these three equations is a type of difference equation. In its most gen-
eral form, a difference equation expresses the value of a variable as a function of its
own lagged values, time, and other variables. The trend and seasonal terms are both
functions of time and the irregular term is a function of its own lagged value and
the stochastic variable €,. The reason for introducing this set of equations is to make
the point that time-series econometrics is concerned with the estimation of differ-
ence equations containing stochastic components. The time-series econometrician
may estimate the properties of a single series or'a vector containing many interde-

. pendent series. Both univariate and multivariate forecasting methods are presented

in the text. Chapter 2 shows how to estimate the irregular part of a series, The first
half of Chapter 3 considers estimating the variance when the data exhibit periods of
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4 Difference Equations

volatility and tranquility. Estimation of the trend is considered in the last half of
Chapter 3 and in Chapter 4. Chapter 4 pays particular attention to the issue of
whether the trend is deterministic or stochastic. Chapter 5 discusses the properties
of a vector of stochastic difference equations and Chapter 6 is concerned with the
estimation of trends in a multivariate model.

Although forecasting was the mainstay of time-series analysis, the growing im-
portance of economic dynamics has gencrated new uses for time-series analysis.
Many economic theories have natural representations as stochastic difference equa-
tions. Moreover, many of these models have testable implications concerning the
time path of a key economic variable. Consider the following three examples.

1. The Random Walk Hypothesis: In its simplest form, the random walk model -
suggests that day-to-day changes in the price of a stock should have a mean
value of zero. After all, if it is known that a capital gain can be made by buying
a share on day 1 and selling it for an expected profit the very next day, efficient
speculation will drive up the current price. Similarly, no one will want to hold a
stock if it is expected to depreciate. Formally, the model asserts that the price of
a stock should evolve according to the stochastic difference equation:

Yt =X + €41
or
Ayu—l =€,
where 'y, = the price of a share of stock on day ¢

€., = arandom disturbance term that has an expected value of zero

Now consider the more general stochastic difference equation:

AYI+I O{)+a1yr +_€r+l

The random walk hypothesis requires the testable restriction o, = @, = 0.
Rejecting this restriction is equivalent to rejecting the theory. Given the infor-
mation available in period ¢, the theory also requires that the mean of €,,; be
equal to zero; evidence that €,,, is predictable inval:dates the random walk hy-
pothesis. Again, the appropriate estimation of a single-equation model is consid-
ered in Chapters 2 through 4.

2. Reduced Forms and Structural Equations: Often, it is useful to collapse a
system of difference equations into separate single-equation models. To illus-
trate the key issues involved, consider a stochastic version of Samuelson's
(1939) classic model:

— Yi=Cot, (1.0
C, =0y, +¢€, O<ax<i 1.2)
i=0Bc,—c ) +e, B>0 (1.3)

Time-Series Models 5

where y, c,, and i, denote real GNP, consumption, and investment in time period
1, respectively. In this Keynesian model, y,, ¢,, and i, are endogenous variables.
The previous period’s GNP and consumption, y,_; and c,_,, are called predeter-
mined or lagged endogenous variables. The terms €, and €, are zero mean ran-
dom disturbances for consumption and investment and the coefficients « and p
are parameters to be estimated.

The first equation equates aggregate output (GNP) with the sum of consump-
tion and investment spending. The sccond cquation asserts that consumption
spending is proportional to the previous period’s income plus a random distur-
bance term. The third equaiivn illustrates the accelerator principle. Investment
spending is proportional to the change in consumption; the idea is that growth in
consumption necessitates new investment spending. The error terms €, and €,
represent the portions of consumption and investment not explained by the be-
havioral equations of the model.

Equation (1.3) is a structural equation since it expresses the endogenous
variable i, as being dependent on the current realization of another endogenous
variable ¢, A reduced-form equation is one expressing the value of a variable
in terms of its own lags, lags of other endogenous variables, current and past
values of exogenous variables, and disturbance terms. As formulated, the con-

" sumption function is already in reduced form; current consumption depends

* only on lagged income and the current value of the stochastic disturbance term

€., Investment is not in reduced form since it depends on current period con-
sumption.

To derive a reduced-form equation for investment, substitute (1.2) into the in-
vestment equation to obtain

il = B(ay:-l te€,— Cl«l) +€,
= 0Py —Bery + e ey

Notice that the reduced-form equation for investment is not unique. You can

lag (1.2) one period to obtain c,, = by, , + €,.;. Using this expression, we can
also write the reduced-form investment equation as »

il = U'Byl—l - B(a)’/—z + Ec:-l) + Becl + €,
= O’B(yl—l - )’:—z) + B(éc, - €c1—1) +€; (1.4)

Similarly, a reduced-form equation for GNP can be obtained by subsmutmg
(1.2) and (1.4) into (1.1):

Y=0y, teE,t aﬁ()’,_\ - }'r—z) + B(Ec! - €c.*-l) + €,

=0l + By, = 0Py, + (1 +Ple, +€,~ Pey T sy

Equation (1.5) is a univariate reduced-form equation; y, is expressed solely
as a function of its own lags and disturbance terms. A univariate model is partic-
ularly useful for forecasting since it enables you to predict'a series based solely
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on its own current and past realizations. It is possible to estimate (1.5) using the
univariate time-series techniques explained in Chapters 2 through 4. Once you
obtain estimates of o and B, it is straightforward to use the observed values of y,
through y, to predict all future values in the series (i.€., Y115 Yiazs oo )-

Chapter 5 considers the estimation of multivariate models when all variables
are treated as jointly endogenous. The chapier also discusses the restrictions
needed to recover (i.c., identify) the structural model from the estimated re-
duced-form model.

. Error Correction: Forward and Spot Prices. Certain commodities and finan-

cial instruments can be bought and sold on the spot market for immediate deliv-
ery or for delivery at some specified future date. For example, suppose that the
price of a particular foreign currency on the spot market is s, dollars and the
price of the currency for delivery one-period into the future is f, dollars. Now,
consider a speculator who purchased forward currency at the price f, dollars per
unit. At the beginning of period r + 1, % speculator receives the currency and
pays f, dollars per unit received. Since spot foreign exchange can be sold at s
the speculator can earn a profit (or loss) of s,,, — f, per unit transacted.

1

The unbiased forward rate (UFR) hypothesis asserts that expected profits

from such speculative behavior should be zero. Formally, the hypothesis posits
the following relationship between forward and spot exchange rates:

Seet =f; €0 (1.6)

where €,,, has a mean value of zero from the perspective of time period .
In (1.6), the forward ratc in ¢ is an unbiased estimate of the spot rate in ¢ + 1.
Thus, suppose you collected data on the two rates and estimated the regression:

St = (x()+ alﬁ + €4y

If you were able to conclude that o, = 0, o, = | and the regression residuals
€,,, have a mean value of zero from the perspective of time period f, the UFR
hypothesis could be maintained.

The spot and forward markets are said to be in “long-run equilibrium” when
€,,, = 0. Whenever s,,, tuns out to differ from f,. some sort of adjustment must
occur to restore the equilibrium in the subsequent period. Consider the adjust-
ment process:

Spe2 =S = O(S, = f) F €0 a>0 -amn
,f:'$l:.fl+B(Sl+l '—fl)+eﬁ+) B>O (1.8)

where €,,,, and €;,, both have 2 mean value of zeto from the perspective of time
period t + 1 and 1, respectively.

Equations (1.7) and (1.8) illustrate the type of sumultaneous adjustment mech-
anism considered in Chapter 6. This dynamic model is called an error-correc-

Difference Equations and Their Solutions 7

tion model since the movement of the variables in any period is related to the
previous period’s gap from long-run equilibrium. If the spot rate s,,, turns out to
equal the forward rate f, (1.7) and (1.8) state that the spot and forward rates are
expected to remain unchanged. If there is a positive gap between the spot and
forward rates so that s,,, — f, > 0, (1.7) and (1.8) lead to the prediction that the
spot rate will fall and the forward ratc will rise.

2. DIFFERENCE EQUATIONS AND THEIR SOLUTIONS

Although many of the ideas in the previous section were probably familiar to you,
it is necessary to formalize some of the concepts used. In this section, we will ex-
amine the type of difference equation used in econometric analysis and make ex-
plicit what it means to “solve” such equations. To begin our examination of differ-
ence equations, consider the function y = f{r). If we evaluate the function when the
independent variable ¢ takes on the specific value t*, we get a specific value for the
dependent variable called y,.. Formally, y,. = f{t*). If we use this same notation,
¥,+55 fepresents the value of y when ¢ takes on the specific value t* + h. The first
difference of y is defined to be the value of the function when evaluated at t =
t* + h minus the value of the function evaluated at t*: :

A}’l‘%h E./(t* + h) _ﬂ{*)
= Yiern = Yin “'.9)

Differential calculus allows the change in the independent variable (i.e., the term
h) to approach zero. Since most economic data are collected over discrete periods,
however, it is more useful to allow the length of the time period to be greater than
zero. Using difference equations, we normalize units so that & represents a unit
change in ¢ (i.e., & = 1) and consider the sequence of equally spaced values of the
independent variable. Without any Joss of generality, we can always drop the aster-
isk on r* We can then form the first differences:

Ay, =fi0) = ft = D) =y, =y,
A.YIH :ﬂ!+ 1 —ﬂt) =Y =
A.v1+2 :ﬂt+ 2) _ﬂt+ 1) = Y2~ Yt

Often, it will be convenient to express the entire sequence of values {- y,_,, ¥,
Vi Yerts Yeuzr =} as {¥,}. We can then refer to any one particular value in the se-
quence as y,. Unless specified, the index f runs from —eo to +oo. In time-series

econometric models, we will use r to represent “time” and A the length of a time pe- -

rod. Thus, y, and y,,, might represent the realizations of the {y,} sequence.in the
first and second quarters of 1995, respectively.

In the same way, we can form the second difference as the change in the first
difference. Consider '

R s et e
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wAly, ABY) =AY =y ) =0 = Y = Oy = Vi) =Y~ Wy + Y2
Ahy/»l = A(A,VHI) = A(ynl - ,Vr) = (.yul - .V/) - (Avl - .V1~l) =Y~ 2y/ + ¥y

The nth difference (4™) is defined analogously. At this point, we risk taking the
theory of difference equations too far. As you will see. the need to use second dif-
ferences rarely arises in time-series analysis. It is safe to say that third- and higher-
order differences are never used in applied work.

Since this text considers linear time-series mcthods, it is possible to examine
only the special case of an nth-order linear difference equation with constant coeffi-
cients. The form for this special type of difference equation is given by

n B
Y, =a, +Zu,-y,~, +x, R )
= ’

The order of the difference equation is given by the value of n. The equation is lin-
ear because all values of the dependent variablg are raised to the first power.

Economic theory may dictate instances in which the various a, are functions of -

variables within the economy. However, as long as they do not depend on any of
the values of y, or x,, we can regard them as parameters. The term x, is called the
forcing process. The form of the forcing process cun be very general; x, can be any
function of time, current and lagged values of other variables, and/or stochastic dis-
turbances. By appropriate choice of the forcing process, we can obtain a wide vari-
ety of important macroeconomic models. Reexamine Equation (1.5), the reduced
form equation for GNP. This equation is a second-order difference equation since ,
depends on y,_,. The forcing process is the expression (1 + B)e_, + €, — Pe.,_,. You
will note that (1.5) has no intercept term corresponding to the expression a, in
(1.10).
An important special case for the {x,} sequence is

xl:ZBxEr—i R

={)

where the f; are constants (some of which can equal zero) and the individual ele-
ments of the sequence {€,] are not functions of the y,. At this point, it is useful to
allow the {¢,} sequence to be nothing more than a sequence of unspecified exoge-
nous variables. For example, let {€,} be a random error term and set B, =1 and B, =
B, = -+ =0, then Equation (1.10) becomes the autoregression equation:

Yw=agtay, tay, ot tay,, e

Letn=1,a,=0,and a; = | to obtain the random walk model. Notice that Equation

. (1.10) can be *vritten in terms of the difference operator (A). Subtracting y,_, from

(1.10), we obt::in

L ARG HRURLEAL e ML
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B : n
Vi~V =agt{a —Dy + 2““‘""' X
i=2

or dcﬁning ;ya {a,— 1), we get

B n A SHREN
A}’, =4y +‘Y_V,_] + 2aiyl—i +'\.I
i=2

Clearly, Equation (1.11) is just a modified version of (1.10).

A solution to a difference equation expresses the value of y, as a function of the
elements of the {x,} sequence and ¢ (and possibly some given values of the {y,} se-
quence called initial conditions). Examining (1.11) makes it clear that there is a
strong analogy to integral calculus when the problem is to find a primitive function
from a given derivative. We seek to find the primitive function f{t) given an equa-

tion expressed in the form of (1.10) or (1.11). Notice that a solution is a function .

rather than a number. The key property of a solution is that it satisfies the differ-
ence equation for all permissible values of 1 and {x,}. Thus, the substitution of a so-
lution into the difference equation must result in an identity. For example, consider
the simple difference equation Ay, =2 {(or y, = y,_; + 2). You can easily verify that a
solution to this difference equation is y, = 2 + ¢, where ¢ is any arbitrary constant.
By definition, if 2t + ¢ is a solution, it must hold for all permissible values of .
Thus for period ¢ — 1, y._, = 2(t — 1) + c. Now substitute the solution into the differ-
ence equation to form ‘

U+ec=2t- 1) +c+2 : (1.12)

It is straightforward to carry out the algebra and verify that (1.12) is an identity.
This simple example also illustrates that the solution to a difference equation need
not be unique; there is a solution for any arbitrary value of c.

Another useful example is provided by the irregular term shown in Figure §.1;
recall that the equation for this expression is I, = 0.7],_, + €. You can verify that the
solution to this first-order equation is

1, =2(0'7)i€1—i E (1.13)
i=0 . !

Since (1.13) holds for all time periods, the value of the irregulér chfyonent in
t—1is given by . o P

ibi i
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Now substitute (1.13) and (1.14) into /,=0.7/,_, + ¢, to obtain

€ +0.7¢,_, + (0.7, +(0.7) €,y +

=0.7(e,_, + 0.7, + (0.7 €, + (0.7)%,, + 1+ €, (1.15)

The two sides of (1.15) are identical; this proves that (1.13) is a solution to the
first-order stochastic difference equation 7, = 0.7/,_, + €,. Be aware of the distinction
between reduced-form equations and solutions. Since 7, = 0.7/,_, + ¢, holds for all
values of 4, it follows that I,_, = 0.71,_, + ¢,.,. Combining these two equations yields

I =07(00.71_,+¢._,) +e,
=049, +07¢,_,+€, = (1.16)

Equation (1.16) is a reduced-form equation since it expresses /, in terms of its
own lags and disturbance terms. However, (1.16} does not qualify as a solution
since it containg the “unknown” value of /,_,. To qualify as a solution, (1.16) must
express [, in terms of the elements of x,, 1, and any given initial conditions.

3. SOLUTION BY ITERATION

The solution given by (1.13) was simply postulated. The remaining portions of this
chapter develop the methods you can use to obtain such solutions. Each method has
its own merits; knowing the most appropriate to use in a particular circumstance is
a skill that comes only with practice. This section develops the method of iteration.
Although iteration is the most cumbersome and time-intensive method, most people
find it to be very intuitive. ,

If the value of y in some specific period is known, a direct method of solution is
to iterate forward from that period to obtain the subsequent time path of the entire y

sequence. Refer to this known value of y as the initial condition or value of y in

time period O (denoted by y,). It is easiest to illustrate the jterative technique using
the first-order difference equation:

Y, =ag+ay,., t+e, o '. (1.x7)'
Given the value of y,. it follows that y, will be given by
Yi=agtay,te
In the same way, y, must be ' sl
Y2=aot Uy, e

=ag+a(ag+ay,+€,) + e,
=g+ aga, + (@) Vo +a €, + €,

Solution by lreration . 14
Continuing the process in order to find y,, we obtain

yi=daytay; +€;
=ayl +a, +(a, )2 ]+(a)y0+a[e|+a[ez+eq

'Yﬁu‘éan easily verify that for all 1 > 0, repeated iteration yields -

i

i ' . i . ) ) ’
y,=a02a1+alyo+2ale,_i . (1.18)

i=0 i=0

Equation (1.18) is a solution to (1.17) since it expresses y, as a function of ¢, the
forcing process x, = £(a,)'¢,_;, and the known value of y,. As an exercise, it is useful
to show that iteration from y, back to y, yields exactly the formula given by (1.18).
Since y, = ag + a,y,_, + €,, it follows that

Yi=4ag + al(ao + a1y 2 + E1—l) + €
=ay(l +a,) +ae,_, +¢+ala+a,y,_,+€.y)

Continuing the iteration back to period 0 yields Equation (1.18).

lteration Without an Initial Condition

Suppose you were not provided with the initial condition for y,. The solution given
by (1.18) would not be appropriate since the value of y, is an unknown. You could
not select this initial value of y and iterate forward, nor could you iterate backward
from y, and simply choose to stop at ¢ = t,. Thus, suppose we continued to iterate
backward by substituting ao+ a,y_, + €, for y, in (1.18):

1-1 -1

i ' i
¥, = (IOEal +a, (ao +ayy_ +€0)+20‘51_i

i=0 i=0

*“oza +2 aje,;+a"'y., S (1.19)

SRR

Commuing to iterate backward another m periods, we obtaif*

t+m t+m | .- .
t+m+ .
Yy :aoza +2”1 €- 1+al D Yem-1 A (1.20).
© =0 i=0 : , _

Now examine the pattern emerging from (1.19) and (1.20). If lf],l <1, the term -
al*™*! approaches zero as m approaches infinity. Also, the infinite. sum.{} + a, +
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()" + -] converges o 11 — ). Thus, if we temporarily. assume that |a,‘ <1,
after continual substitution, (1.20) can be written as

o0

yo=apli-ap+ Y aje R (121)
i=0

You should take a few minutes to convince yourself that (1.21) is a solution to
the original difference equation (1.17); substitution of (1.21) into (1.17) yields an
identity. However, (1.21) is not a unique solution. For any arbitrary value of 4, a
solution to (1.17) is given by

¥, = Aay +ag(l=a))+ Y aje Soa

i=0
To verify that for any arbitrary value of A, (1.22) is a solution, substitute (1.22)

into (1.17) to obtain

aol(]—a,)+Aa,' +2 a,"e,ﬁ. = gy +ayiay/(l —-a,)+Aa;—I +Za:e/‘,_{. +e,

i=0 i=0
Since the two sides are identical, (1.22) is necessarily a solution to (1.17).

Reconciling the Two Iterative Methods

Given the iterative solution (1.22), suppose that you are now given an initial condi-

tion concerning the value of y in the arbitrary period ;. It is straightforward to

show that we can impose the initial condition on (1.22) to yield the same solution
as (1.18). Since (1.22) must be valid for all periods (including t,), then when =0,
it must be true that .

o0

y0=/\+~ao/(1—al)+;a:€_i so that
=0
A=y, =agl(l=a)= aje., | (123)
. i=0

Since y, :s given, we can view (1.23) as the value of A that renders (1.22) a solu-
tion to (1.17) given the initial condition. Hence, the presence of the initial condition
eliminates the “arbitrariness” of A. Substituting this value of A into (1.22) yields

Solution by Meration RX}

Y =Y "\9@/(1""1)"2“;5_; 11;¥§¢J1.1~f1.)+20;6,_; (1.249)
i=0 i=0

Simplification of (1.24) results in
t-1

» =[)’o‘ao/(l‘al)]a;+“0/(1‘”1)+2“;€z—1 oo U2y
=0

You should take a moment to verify that (1.25) is identical to (1.18).

Nonconvergent Sequences

Given that |a,| < 1, (1.21) is the limiting value of (1.20) as m grows infinitely
large. What happens to the solution in other circumstances? If Ia, > 1, it is not
; possible to move from (1.20) to (1.21) since the expression la, l’*’" grows infi-
; nitely large ‘as ¢ + m approaches infinity.! However, if there is an initial condition,
there is no need to obtain the infinite summation. Simply select the initial condition
Yo and iterate forward; the result will be (1.18):

' -1 Tl
: . it i
Lo o Y1 =‘102“1+01yo+za151-i
) i=0 i=0

- Although the successive values of the {y,} sequence will become progressively
larger in absolute value, all values in the series will be finite. )
A very interesting case arises if a; = 1. Rewrite (1.17) as

Y=g+ Y, T E

or

Ay, =ay+ €,

As you should verify by iterating from y, back to yg; a solution to this equation is® :
! .
y{:a01+261+y0 - (1.26)
i=}

After a moment's reflection, the form of the solution is quite intuitive. In every
period ¢, the value of y, changes by a, + €, units. After ¢ periods, there are t such
changes; hence, the total change is ta, plus the 1 values of the {e,} séquence. Notice

e
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Figure 1.2 Convergent and nonconvergent sequences.
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that the solution contains summation of all disturbances from e, through e,. Thus,
when a, = 1, each disturbance has a permanent nondecaying effect on the value of
¥, You should compare this result to the solution found in (1.21). For the case in
which |a; | <1, Ia[ l'is a decreasing function of ¢ so that the effects of past distur-
bances become successively smaller over time.

The importance of the magnitude of a, is illustrated in Figure 1.2. Twenty-five
random numbers with a theoretical mean equal to zero were computer-generated
and denoted oy ¢, through e,5. Then the value of y, was set equal to unity and the next
25 values of the {y,} sequence were constructed using the formula y, =09y, , + €,.
The result is shown by the thin line in part (a) of Figure 1.2. If you substitute a, =0
and a, = 0.9 into (1.18), you will see that the time path of {y,} consists of two parts.
The first part, 0.9', is shown by the slowly decaying thick line in the (a) panel of the
figure. This term dominates the solution for relatively small values of ¢. The influ-
ence of the random part is shown by the difference between the thin and thick lines;
you can see that the first several values of {e,} are negative. As f increases, the in-
fluence of the random component becomes more pronounced.

Using the previously drawn random numbers, we again set y, equal to unity and
a second sequence was constructed using the formula y, = 0.5y,_, + €,. This second
sequence is shown by the thin line in part (b) of Figure 1.2. The influence of the ex-
pression 0.5" is shown by the rapidly decaying thick line. Again, as.f increases, the
random portion of the solution becomes more dominant in the time path of {y,}.

When we compare the first two panels, it is clear that reducing the magnitude

of {a, | increases the rate of convergence. Moreover, the discrepancies between the
simulated values of y, and the thick line are less pronounced in the second part. As
you can see in (1.18), each value of €,_; enters the solution for y, with a coefficient
of {a,). The smaller value of @, means that the past realizations of ¢,_, have a
smaller influence of the current value of y,.

Simulating a third sequence with «, = -0.5 yields the thin line shown in part (c).
The oscillations are due to the negative value of a,. The expression (-0.5)', shown
by the thick line, is positive when ¢ is even and negative when ¢ is odd. Since }a, |
< 1, the oscillations arc dampened.

The next three parts of Figure 1.2 all show nonconvergent sequences. Each uses
the initial condition y, = | and the same 25 values of {€,} used in the other simula-
tions. The thin line in part (d) shows the time path of y, = y,_, + €. Since each value
of €, has an expected value of zero, part (d) illustrates a random walk process. Here,
Ay, = €, so that the change in y, is random. The nonconvergence is shown by the
tendency of {y,} to meander. In part (¢), the thick line representing the explosive
expression (1.2)" dominates the random portion of the {y,} sequence. Also notice
that the discrepancy between the simulated {y,} sequence and the thick line widens
as ¢ increases. The reason is that past values of ¢,_; enter the solution for y, with the
coefficient (1.2). As i increases, the importance of these previous discrepancies be-
comes increasingly significant. Similarly, setting a; = —1.2 results in the exploding
oscillations shown in the lower-right part of Figure 1.2. The value (-1.2) is posi-
tive for even values of 1 and negative for odd values of 1.
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4. AN ALTERNATIVE SOLUTION METHODOLOGY

Solution by the iterative method breaks down in higher-order equations. The alge-
braic complexity quickly overwhelms any reasonable attempt to find a solution.

Fortunately, there are several alternative solution techniques than can be helpful in !
solving the nth-order equation given by (1.10). Using the principle that you should "]
Jearn to walk before you learn to run, we see that it is best to step through the first-_ ;!
order equation given by (1.17). Although you will be covering some familiar - |
ground, the first-order case illustrates the general methodology extremely well. To
split the procedure into its component parts, consider only the homogeneous por-..i

tion of (1.17):

Y=Yy (1.27) .

The solution to this homogeneous equation is called the homogeneous solution; .

at times, it will be useful to denote the homogeneous solution by the expression yF.
Obviously, the trivial solution y, = y,_, = - = 0 satisfies (1.27). However, this solu-
tion is not unique. By sefting a, and all values of {¢,} equal to zero, (1.18) becomes
¥, = a\y,. Hence, y, = a}y, must be a solution to (1.27). However, even this solution
does not constitute the full set of solutions. It is easy to verify that the expression af
muitiplied by any arbitrary constant 4 satisfies (1.27). Simply substitute y, = A(a,)
and y,., = A(a,)"" into (1.27) to obtain

A(a) =a,Ala)"™!

Since a)= a,{a,)"", it follows that y, = A(a,)’ solves (1.27). With the aid of the
thick lines in Figure 1.2, we can classify the properties of the homogeneous solu-
tion as follows:

1If la, | <1, the expression (a,)’ converges to zero as ¢ approaches infinity.
Convergence is direct if O < @, < 1 and oscillatory if ~1 <a,; <0.

2. If lal | >1, the homogeneous solution is not stable. If a, > 1, the homogeneous

solution approaches infinity as  increases. 1f a; < -1, the homogeneous solution -

oscillates explosively.

3. If a, = 1, any arbitrary constant A satisfies the homogeneous equation y, =y, ;. If
= -1, the system is meta-stable: (a,) = 1 for even values of t and ~1 for odd
values of .

Now consider (1.17) in its entircty. In the last section, you confirmed that (1.21)
is a valid solution to (1.17). Equation (1.21) is called a particular solution to the
difference equation; all such particular solutions will be denoted by the term y7.
The term “particular” stems from the fact that a solution to a difference equation
may not be unique; hence, (1.21) is just one particular solution out of the many pos-
sibilities.

In moving to (1.22), you verified that the particular solution was not unique. The
homogeneous solution Aa} plus the particular solution given by (1.21) constituted

RN e
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the complete sofution to (1.17). The general solution o a difference equation is de-
fined to be a particular solution plus all homogeneous solutions. Once the general
solution is obtained, the arbitrary constant A can be eliminated by imposing an ini-
tial condition for y,.

The Solution Methodology

The results of the first-order case arc directly applicable to the nth-order equation
given by (1.10). In this general case, it will be more difficult to find the particular
solution and there will be n distinct homogeneous solutions: Nevertheless, the <olu-
tion methodology will always entail the following four steps:

STEP 1: Form the homogeneous equation and find all n homogeneous solutions.
STEP 2. Find a particular solution.

STEP 3: Obtain the general solution as the sum of the particular solution and a hn-
ear combination of all homogeneous solutions.

STEP 4: Eliminate the arbitrary constant(s) by imposing the initial condition(s) on
the general solution.

Before we address the various techniques that can be used to obtain homoge-

neous and particular solutions, it is worthwhile to 1llustratc the methodo]ogy using
the equation:

)

¥, =09y,_,-02y,+3 (1.28)

Clearly, this second-order equation is in the form of (1.10) with ag =3, a;, = 0.9,
@, =~0.2, and x, = 0. Beginning with the first of the four steps, form the homoge-

- nous equation:

y,~09y,_,+02y,,=0 ) (1.29)

In the first-order case of (1.17), the homogeneous solution was A(a,)’. Section 6

will show you how to find the complete set of homogeneous solutions. For now, it
is sufficient to assert that the two homogeneous solutions are %, = (0.5) and y3, =

(0.4)". To verify the first solution, note that y%,_, = (0. 5)" and y§,_, = (0.5)*. Thus,
Y1 is a solution if it satisfies :

(0.5 = 0.9(0.5)" +0.20.5Y"2 =0
If we divide by (0.5)"%, the issue is whether

(0.5)*-0.9(0.5) +0.2=0




18 Difference Equations

Carrying out the algebra 0.25 - 0.45 + 0.2 does equal zero so that 0.5 .is a s'olu-
tion to (1.29). In the same way, it is easy to verify that ¥4, = (0.4)' is a solution since

(0.4) = 0.9(0.4)~" +0.2(0.4)* =0

Divide by (0.4)"? to obtain (0.4)" ~ 0.9(0.4) + 0.2 =0.16 - 0.3A6 +0.2=0. .

The second step is to obtain a particular solution; you can easily confirm that the
particular solution y” = 10 solves {1.28) as 10 = 0.9? 10) - 0.2(1.0) +3. o .

The third step is to combine the particular solution and a linear combination o
both homogeneous solutions to obtain

¥, =A0.5) + Ay 0.4) + 10

where A, and A, are arbitrary constants. N N

For thle fourth step, assume you have two initial conditions for the {y,} sequence.
So that we can keep our numbers reasonably round, suppose that y,=13 and y, =
11.3. Thus, for periods zero and one, our solution must satisfy

13=A,+A,+10
11.3 = 4,(0.5) + A,(0.4) + 10

Solving simulmnébusly for A, and A,, you should find A, = 1 and A, = 2. Hence,
the solution is

v, =(0.5) +2(0.4) + 10

Generalizing the Method

P

To show that the method is applicable to higher-order eqgiiations, ecmmﬁerﬂ%h&-

mogeneous part of (1.10):
n
i=]
As shown in Section 6, there are n homongneous solutions that :a.nsfy (1.30).
For now, it is sufficient to demonstrate the following proposition: If y," is @ homoge-

neous solution to (1.30). Ay" is also a solution for any arbitrary constant A. By as-
sumpt:on, ¥/ solves the homogeneous equation so that

n
h h IR PO 1.31
¥ = zui-vr—i ( ),
i=| )

30.
Y, = Z(I,-_V,_i . . a )

O O

R A AT ¥

. zero. Since y; solves the homogeneous equation, the exp
© parentheses is zero. Thus, (1.34) is an identity;
particular solutions solves (1.10).
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The expression Ay” is also a solution if:

n

Ay} ZZH;A%}’.[ ’ R (7))

i=]

We know (1.32) is satisfied since dividing each term by A yields (1.31). Now
suppose that there are two separate solutions to the homogeneous equation denoted -
by yi, and y4,. It is straightforward to show that for any two constants 4, and A, the

linear combination Ay}, + A2Y4, is also a solution to the homogeneous equation. If
Ayl + A%, is a solution to (1.30), it must satisfy

Ayl +AYs = a(A Y, + Ah ) + a Ay, + A5 D)+ + a (A, + AYsren)

Regrouping terms, we want to know if

n n
h h
[Al)’n - ZAxai)’n-i}“(Az)’;/ = ZAZGiygl—i] =0
i=1

i=1

Since Ay}, and A,%, are separate solutions to (1.30), each of the expressions in
parentheses is zero. Hence, the linear combinat

homogeneous equation. This result easil
tions to an nth-order equation.

Finally, the use of Step 3 is appropriate since the sum of any particular solution
and any linear combination of all homogeneous solutions is also a solution. To

prove the proposition, substitute the sum of the particular and homogeneous solu-
tions into (1.10) to obtain

ion is necessarily a solution to the
y generalizes to all n homogeneous solu-

h h
yrp+yl :a0+2ai(ytp~i+yr—i)+x1 . (1.33)

i=1

Recombining the terms in (1.33), we want to know if

n n S E
[}’/’ ~ 4y ‘Zaiy,p-i —-¥,]+[Yf' *Za.-.\‘f-fJ= U (1.34)
i= ’

i=1

Since y? solves (1.10), the expression in the first set of parentheses of (1.34) is
ression in the second set of

the sum of the homogeneous and

i
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5. THE COBWEB MODEL

An interesting way to illustrate the methodology outlined in the previous section is
1o consider a stochastic version of the traditional cobweb model. Since the model
was originally developed to explain the volatility in agricultural prices, let the mar-
ket for a product—say, wheat—be represented by

d=a~yp, y> 0 (1.35)
s, =b+PpF+e B>0 (1.36)
s, =d, (137
where d, = demand for wheat in period !
a s, = supply of wheatint

p. = market price of wheatin ¢

pX = price that farmers expect to prevail at

€, = azero mean stochastic supply shock

and parameters g, b, % and { are all positive such that a > 6.

The nature of the model is such that consumers buy as much wheat as desired at .

the market clearing price p,. At planting time, farmers do not know the price pre-
vailing at harvest time; they base their supply decision on the expected price (p¥).
The actual quantity produced depends on the planned quantity b + Bp¥ plus a ran-
dom supply shock €, Once the product is harvested, market equilibrium requires
that the quantity supplied equals the quantity demanded. Unlike the actual market
for wheat, the model ignores the possibility of storage. The essence of the cobweb
model is that farmers form their expectations in a naive fashion; let farmers use last
year’s price as the expected market price:
PE=pe (1.38)
Point E in Figure 1.3 represents the long-run equilibrium price and quantity com-
bination. Note that the equilibrium concept in this stochastic model differs from

_ that of the traditional cobweb model. If the system is stable, successive prices will

tend to converge to point E. However, the nature of the stochastic equilibrium is
such that the ever-present supply shocks prevent the system from remaining at E.
Nevertheless, it is useful to solve for the long-run price. If we set all values of the
{€,} sequence equal to zero, set p, = p,_; = - = p, and equate supply and demand,
the long-run equilibrium price is given by p = (a — b)/(y + B). Similarly, the equilib-
rium quantity (s) is given by s = (aP + yb)/(y + P).

To understand the dynamics of the system, suppose that farmers in ¢ plan to pro-
duce the equilibrium quantity s. However, let there be a negative supply shock such
that the actual quantity produced turns out 10 be 5, As shown by point 1 in Figure
1.3, consumers are willing to pay p, for the quantity s,; hence, market equilibrium in
t occurs at point 1. Updating one period allows us to see the main result of the cob-
web model. For simplicity, assume that all subscquent values of the supply shock
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are zero (i.€., €, = €,, = - = 0). Al the beginning of period ¢ + 1, farmers expect
the price at harvest time to be that of the previous period; thus, p¥, = p,.
Accordingly, they produce and market quantity s,,, (see point 2 in the ﬁgure); con-
sumers, however, are willing to buy quantity s,,, only if the price falls to that indi-
catefj by p.., (see point 3 in the figure). The next period begins with farmers ex-
pecting to be at point 4. The process continually repeats itself until the equilibrium
point E is attained.
As drawn, Figure 1.3 suggests that the market will always converge to the long- .

run equilibrium point. This result does not hold for all demand and supply curves.
To formally derive the stability condition, combine (1.35) through (1.38) to obtain

e b+ Bpr—l +e=a-p,
or .

pe=(BHp +(a- by —ely (1.39)

Clea'rly, (1.39) isa stochastic first-order linear difference equation with constant
coefficients. To obtain the general solution, proceed using the four steps listed at
the end of the last section:

1. Form the homogeneous equation: p, =-(-B/y)p,_,. In the next section, vyou will
lc?am how to find the solution(s) to a homogeneous equation. For now, it is suffi-
cient to verify that the homogeneous solution is

Figure 1.3 The cobweb model.
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4 3
P = APy
where A is an arbitrary constant. B T S .
2. If the ratio B/y is less than unity, you can it.erute(l.3‘9));~ba:ék§véi‘d’fm b m?,er.
. ify that the particular solution for the price is

i

Pl =(a=by(y+p) -y (-pr'e,; R

i=0
If B/y 2 1, the infinite summation in (1.40) is not convergent. As di§cusse>c1 Im
the last section, it is necessary to impose an initial condition on (1.40) if By 2 1.

3. The general solution is the sum of the homogeneous.and particular solutions; if
we combine these two solutions, the gencral solution is

Py =(a=bY(y+ )~ ()Y (-Bry)e,_; + AC-pY) (1.41)

i=0

4. In (1.41), A is an arbitrary constant that can be eliminated .if we know ‘the pn;:)e
. in some initial period. For convenience, let this initial period have a time sub-

zero, it must be the case that

- i 0
po =(a=bY(1+B)~ (1 Y (-Bry)e_; + AC-Bry)

i=0

Since (-B/)° = 1, the value of A is given by

A= py—(a=bY(+ B+ Y (-B)'e.

i=0

Substituting this solution for A back into (1.41) yields

H

p=@=bY(y +B)- W) Y (- e

i=0

HBN' | po = (a=bY(r+B) + U Y (B,

i=0

script of zero. Since the solution must hold for every period, including period”
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and after simplification of the two summations,

[ e S
(@b B = (prye, (=PI [Py ~ta= b¥iy+ )] (142)
i=0 e Yot «

We can interpret (1.42) in terms of Figure 1.3. In order to focus on the stability
of the system, temporarily assume that all values of the {¢,} sequence are zero,
Subsequently, we will return to a consideration of the effects of supply shocks. If
the system begins in long run equilibrium, the initial condition is such that Po =
(a—b)(y+ B). In this case, inspection of Equation (1.42) indicates that pe=(a-b)y

i \ remains in long-run
equilibrium. Instead, suppose that the process begins at a price below long-run
equilibrium: p, < (g - b)/(Y+ B). Equation (1.42) tells us that pris

Pr=(a =)+ B+ [py ~ (a - b)/y+ B (-Bry)! (1.43)

Since p, < (a — b)Yy + B) and ~By <0, it follows that P will be above the long- -
run equilibrium price (g — b)(y+ B). In period 2,

P2=(a=b)(y+B) + [p, ~ (a- by(y+ B (=Bryy* -

Although p, < (g — DYy +B), (~Pry?is positive; hence, p, is below the long-run
equilibdum. For the subsequent periods, note that (=B will be positive for even
values of + and negative for odd values of 1. Just as we found graphically, the suc-
cessive values of the {p.} sequence will oscillate above and below the long-run
equilibdum price. Since (B/YY goes to zero if B <y and explodes if B>, the mag-

oscillations will be explosive,

The economic interpretation of this stability condition is straightforward. The
slope of the supply curve [i.e., dp/d(s)] is 1/8 and the absolute value slope of the
demand curve [ie., ~dp, /d(d)} is 1/y. If the supply curve js steeper than the de-
mand curve 1/B > I/y or Bry <1, so that the system is stable. This is precisely the
case illustrated in Figure 1.3. As an exercise, you should draw a diagram with the
demand curve steeper than the supply curve and show that the price oscillates and
diverges from the long-run equilibrium,

Now consider the effects of the supply shocks. The contemporaneous effect of a

supply shock on the price of wheat is the partial derivative of p, with respect to [
from (1.42), we obtain T

OpJoe =~1ly (1.44)

Equation (1.44) is called the impact multiplier since it shows the impact effect
of a change in ¢, on the price in 1. In terms of Figure 1.3, a negative value of ¢, im-
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plies a price above the long-run price p; the price in ¢ rises by 17y units for each unit
decline in current period’s supply. Of course, this terminology is not specific to the
cobweb model; in terms of the nth-order model given by (1.10), the impact multi-
plier is the partial derivative of y, with respect to the partial change in the forcing
process.’®

The effects of the supply shock in ¢ persist into future periods. Updating (1.42)
by one perind vields the one-period multiplier:

a[),H/aE, = —( I/Y)(—ﬁ/y\
=Py
Point 3 in Figure 1.3 illustrates how the price in +1 is affected by the negative
supply shock in ¢. It is straightforward to derive the result that the effects of the
supply shock decay over time. Since B/y < 1, the absolute value of dp,/de, exceeds
p,.1/9€,. All the multipliers can be derived analogously; updating (1.42) by two pe-
riods yields:

S apalde = (NP
and after n periods,
apH—n/aEI = —( II‘Y)(—B/Y)H

The time path of all such multipliers is called the impulse response function.
This function has many important applications in time-series analysis since it
shows how the entire time path of a variable is affected by a stochastic shock. Here,
the impulse response function traces out the effects of a supply shock in the wheat
market. In other economic applications, you may be interested in the time path of a
money supply shock or a productivity shock on real GNP.

In actuality, the function can be derived without updating (1.42) since it is always
the case that:

apl*j/ael = 8[),/66, ¥l

To find the impulse response function, simply find the partial derivative of (1.42)
with respect to the various €, ;. These partial derivatives are nothing more than the
coelficients of the {¢,_;} sequence in (1.42).

Each of the three components in (1.42) has a direct economic interpretation. The
deterministic portion of the particular solution (¢ — b)/(y + B) is the long-run equi-
libdum price; if the stability condition is met, the {p,} sequence tends to converge
to this long-run value. The stochastic component of the particular solution captures

the short-run price adjustments due to the supply shocks. The ultimate decay of the

coefficients of the impulse response function guarantees that the effects of changes
in the various e, are of a short-run duration. The third component is the expression

a rr ———r————

n o
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(.-—B/y)'A = (—{5/7)’[p0 - (a — b)/(y+ B)]. The value of A is the initial period’s devia-
tion of ﬂle.p{xc.e' from its long-run equilibrium level. Given that Bry < 1, the impor-
tance of this initial deviation diminishes over time. ‘

6. SOLVING HOMOGENEOUS DIFFERENCE EQUATIONS

nghe.r—ordcr difference equaiions arise quite naturally in economic analysis
Equatxon (1.5)—the reduced-form GNP equation resulting from Samuels)cl)n's. '
(.1939) r'{lode]—is an example of a secund-order difference equation. Moreover, in
time-series econometrics, it is quite typical to estimate second- and highcr-orydcr

q . g minat g dcl the
1
nsi
equations IO be In our exami 10N ()l h()“l() €neous so u[l()llS, cons h

Y~ Ay _aYyl—Z‘_'O (1.45)

Given the findings in the first-order case, you should suspect that the homoge-

neous solution has the fo "= Aol i . N
yields rm y;' = Ac.’. Substitution of this trial solution into (1.45)

:A.a'v-—z_z,Aa"v—azAa*:O ‘ . T (146)

iClearly, any arbitrary value of A is satisfactory. If you diE\'ide (1.46) by A’ 2, the

problem is to find the values of o that satisfy

2
o —aqa-a,=0 (1.47)

Solving this quadratic equation—called the characteristic equation—yields two

values of a, called the characteristic roots. Using the quadratic formula, we find
that the two characteristic roots are ,

a, a, =(a, tyal +4a, )/2

=(a,£Vd)/2 o _ (1.48)

where d is the discriminant [(a,)? + 4a,).
Each of these two characteristic roots vi i i
' : yields a valid solution for (1.45). Again, -
these solutions are not unique. In fact, for any two arbitrary constantsgt, an)d Azg llhné

linear combination A,(a,) + A (o) i
2(0) also solves (1.45). As proof i
Ye=Aa) + Ax(0,) into (i.45) to obtain Proc Sl_mpl)’ subsitue

Aj(oy) + Ay = a[A(a)"" + Af0) '] + ayfA (o) + Ax(ay)?]

Now, regroup terms as follows:

Allay) - al(al)l‘il:— ax(o) ] + Azl(og) - 01(0"2)"_l = a)(0y) =0
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Since o, and @, each solve (1.45), both terms in brackets must equal zero. As
such, the complete homogeneous solution in the second-order case is

= A0 + Ay(ey)

Without knowing the specific values of a, and a,, we cannot find the two charac-
teristic roots &, and . Nevertheless, it is possible to characterize the nature of the
solution; there are three possible cases that are dependent on the value of the dis-
criminant 4.

CASE1

If a® + 4a, > 0, d is a real number and there will be two distinct real characteristic
roots. Hence, there are two separate solutions to the homogeneous equation denoted
by (o) and (a,). We already know that any linear combination of the two is also a
solution. Hence,

yr=Aa) + Ay ()

It should be clear that if the absolute value of either o, or o, exceeds unity, the
homogeneous solution will explode. Worksheet 1.1 examines two second-order
equations showing real and distinct characteristic roots. In the first example, y, =
0.2y,_, + 0.35y,_,, the characteristic roots are shown to be a; = 0.7 and o, = -0.5.
Hence, the full homogeneous solution is y” = A, (0.7) + A, (—0.5)". Since both roots
are less than unity in absolute value, the homogeneous solution is convergent. As
you can see in the graph on the bottom left-hand side of Worksheet 1.1, conver-
gence is not monotonic because of the influence of the expression (<0.5)".

WORKSHEET 1.1. Homogeneous Solutions: Second-Order Eduations

CASE *: v, =02y,_,)+ 0.35y,_4. Hence, ¢, =0.2, a, = 0.35.
Form the homogeneous equation: y, , — 0.2y, .1, — 0.35y,_5,=0.

A check of the discriminant reveals d = (a,)® + 4 * a,, so that d = 1.44.
Given that 4 > 0, the roots will be real and distinct.

Let the trial solution have the form y,, = o. Substitute into the homoge-
nous equation of = 0.2 - o' - 0.35 - " * = 0.

Divide by &'~ in order to obtain the characteristic equation:
ot - 0200~ 0.35=0 :

Compute the two characteristic roots:

T U

vl
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o, =05 (a, + Vd), o, =05 (a, - Vd)
=0.7 =-0.5
The homogeneous solution is A 07 +A,

-time path of this solution for the case in
equal unity and 1 runs from 1 to 20,

. (~.—O.5)’. The graph shows the
which the arbitrary constants

CASE2: ;, = 0.7y, + 0.35y,,_ - Hence, a, = 0.7, a, =053,

Form the homogeneous equation: y,,, ~ 0.7y, .,,~0.35y -0
S~ ‘ -2

A check of the discriminant reveals d = (@) +4-

Given that d > 0, the roots will be real a o thad = 189,

nd distinct.

Form the characteristic equation: of — 0.7 - ' ~035- 2=

Compute the two characteristic roots:

=05 (a,+Vd),  @,=05-(q —Vd)
=1.037 =-0.337

The homogeneous solution is A - 1037+ A
shows the time path of this solution for the ¢ 2
stants equal unity and ¢ runs from 1 to 20,

i - (-0.337)". The graph
ase in which the arbitrary con-

Case 2

10 20

In‘ the second example, y, = 0.7y,_, + 0.35y,

. obtain the solution for the two charac o

: oot is (1.037), the {

c{ay, =-0337) is re‘sponsible for the
(-0.337)" quickly approaches zero, the d

‘ - The worksheet indicates how to
teristic roots. Given that one : isti
. characteristic
¥} sequence explodes. The influence of the negative root
noqmonotonicity of the time path. Since
ominant root is the explosive value 1.037,
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1 " Divide by (a,/2)' and form
CASE 2 3
L ' . o) 2 _
! If & + 4a, = 0, it follows that d = 0 and &, = & = a,/2. Hence, a homogeneous so- ' Hadd) + i+ a2+ 2aq) =0
- a 2 = .
d homogeneous solution given . o i
' lution is a,/2. However, when d = gtt(he;;):si : asicc)(;:ogeneougs solution, substitute it Since we are operating in the circumstance where a? + 4a, = 0, each bracketed
by #(a,/2)'. To demonstrate that yi=ia ‘ expression is zero; hence, #(a,/2)' solves (1.45). Again, for arbitrary constants A,
4 l into (1.45) to determine whether | -and A,, the complete homogeneous solution is

- =27 — i
; a2y - a,l(t = D@2y = axl e = Da/2)™] 0 B yi' =A(a)2) + Ay i(a,/2)

Clearly, the system is expldsive if Ia, | >2.1f la, | <2, the term A(a,/2) con-

T ’ : N . verges, but you might think that the effect of the term #(a,/2)’ is ambiguous [since Ry
Figure 1.4 The homogeneous solution £+ (). the diminishing (a,/2)" is multiplied by ¢]. The ambiguity is correct in the limited N
o sense that the behavior of the homogeneous solution is not monotonic. As illus- ;
trated in Figure 1.4 for a,/2 = 0.95, 0.9, and —0.9, as long as |a, | < 2, lim[«(a,/2)']
is necessarily zero as ¢ — oo; hence, there is always convergence. For 0 < a, < 2, the
homogeneous solution appears to explode before ultimately converging to zero. For
-2 < a, <0, the behavior is wildly erratic; the homogeneous solution appears to os-
cillate explosively before the oscillations dampen and finally converge to zero.

-y

.-

8 T T T T

A URLN

e

.o

1(0.95% ,
0.9

P

CASE 3

(R

; If a? + 4a, < 0, it follows that d is negative so that the characteristic roots are imagi-
nary. Since a} 2 0, imaginary roots can occur only if a, < 0. Although hard to inter- o
pret directly, if we switch to polar coordinates, it is possible to transform the roots
into more easily understood trigonometric functions. The technical details are pre-
sented in Appendix 1 of this chapter. For now, write the two characteristic roots as

[

[OPR,

o, =(a, + N=d2, o, =(a, - iN-d)2

-

] wﬁere i~\f——T

As shown in Appendix 1, you can use de Moivre’s theorem to write the homoge-
neous solution as

LTy
s

.
B

<
&
o
b

i
s

= Pyr' cos(B1 + By) (1.49)
L r9) 0
i where §, and [3, are arbitrary constants, r = (—a,)'?, and the value of 8 is chosen so

as to simultaneously satisfy oL
-2 '

cos(8) = a/[2(-a) 7] o asy

20 50 80 100 . 1 The trigonometric functions impart a wavelike pattern to the time path of the ho-
0 20 ' mogeneous solution; note that the frequency of the oscillations is determined by 6.
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Since cos(81) = cos(2r + 6r), the stability condition is determined solely by the
magnitude of r = (~ay)"2 If faz | = 1, the oscillations are of unchanging amplitude;
the homogeneous solution is periodic. The oscillations will dampen if lgazl <1 and
explode if lazl > 1.

EXAMPLE: It is worthwhile to work through an exercise using an equation with
imaginary roots. The left-hand side of Worksheet 1.2 examines the behavior of the
equation y, = 1.6y,_, - 0.9y,_,. A quick check shows that the discriminant d is nega-
tive so that the characteristic roots are imaginary. If we transform to polar coordi-
nates, the value of r is given by (0.9)'% = 0.949. From (1.50), cos(8) = 1.6/(2 x
0.949) = 0.843. You can use a trig table or calculator to show that 6 = 0.567 {i.e.,if
cos(0) = 0.843, 8 = 0.567). Thus, the homogeneous solution is

¥ = B,(0.949) cos(0.567t + B,) (1.51)

The graph on the left-hand side of Worksheet 1.2 sets B, = 1 and B, = 0 and plots
the homogeneous solution for ¢ = 1, ..., 25. Case 2 uses the same value of a, (hence,

r=0.949) but sets a, = -0.6. Again, the value of d is negative; however, for this set

of calculations, cos(8) = —0.316 so that 8 is 1.25. Comparing the two graphs, you
can see that increasing the value of 6 acts to increase the frequency of the oscilla-
tions.

WORKSHEET 1.2 IMAGINARY ROOTS

CASE 1 CASE 2

Y l-éyl—l + O'ny—ﬂ Y+ 0'6YI—| + 0-9_)’,_2
(a) Check the discriminant d = a? + 4a,

i s d = (=1.6)F ~ 4(0.9) d = (0.6)* - 4(0.9)
::—1,04 :—3.24 -

Hence, the roots are imaginary. The homogeneous solution has the form
yr=PByr cos(Br + )
where 3, and §, are arbitrary constants.
(b) Obtain the value of r = (~ a,)'?

r=097
=0.949

r=(0.9)"2
=0.949

Wiy ey

R "

or
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(c) Obtain 6 from cos(6) = a/12(-a,)'?

cos(8) = 1.6/[2(0.9)'7)

=0.843 cos(6) = —0.6/[2(0.9)"?}

=-0.316
Given cos(9), use a trig table to find 6
C-0.567 =125
(d) Form the homogeneous solution: y; = 8~ cos(6r + B,
h _ 1
¥ =Bi(0.949) cos(0.567t 4 B;)  yh = B1(0.949) cos(1.25: + B,
ForB, =1and B, =

2 — ]

0, the time paths of the homogeneous solution are

T 2

1 25

~ Stability Conditions

'll'he general sfability conditions can be summarized using triangle ABC in Figure

mgt ‘.;\icazz(-)ﬁxs ti]e boundar).v between Cases 1 and 3; it is the locus of points’ such

=ai +4a, = 0. The region above A0B corresponds to Case 1 (since d > 0) and

LheI reéxon blelow AOB corresponds to Case 3 (since d < Q).
n Case 1 (in which the roots are real and disti ili i

; largest ro'ot.bc less than unity and the smallest root Il])(;t)g’r:;:x]'htg;r:eflu ”’I?;eﬁllat o

: characteristic root, oy = (g, + \/E)/2, will be less than unity if . et

‘ a;+ (@i +4a,)"2 <2 o (af-l~4az)”z<2--al

Hence, a} +4a, <4 - 44, +a?

a +a,< 1 (1.52)




SRS

-

32 Difference Equations

The smallest root, &, = (a, ~ \f?i_)IZ. will be greater than ~1 if

2 1
12 . > {a;+4a

o - (@ 440> or  2+a>(@i+da)
Hence, 4 + 4a, + a; > a; +4a,

or R , ;

(153
a, <l +a

Thus, the region of stability in Case 1 consists of all points in the regizn b(;)unded
b AOBt For any point in AOBC, conditions (1.52) and.('1.53) hol.d.and. l> . s
yln Cas.e 2 (repeated ToOts), a,> + 4a, = 0. The stability condition is |a, .

Hence, the region of stability in Case 2 consists of all points on arc AOB. In Case 3
(d < 0), the stability condition is r = (—a,)'"* < 1. Hence,

—a,<1 {where a, < 0) ' B (1.54)

. N . For
Thus, the region of stability in Case 3 consists of all points in region AO0B. F
inti is sati dd<0.
an int in AOB, (1.54) is satisfied an < N ' .
)/]\psouccint way to characterize the stability conditions 18 to §tate that th? cl};?xrire
teristic roots must lie within the unit circle. Consider the semicircle drawn in Fig

i i i i s on
1.6. Real numbers are measured on the horizontal axis and imaginary numbe -

Figure 1.5 Characterizing the stability conditions.
az

P S gy =1-a ay=1+ay

@

s+]

N

o
n

ay=-2
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Figure 1.6 Characteristic roots and the unit circle.

Imaginary
d‘l/2/2 ............... aq
0 - 01/2 . ﬁ“l
r

o2

the vertical axis. If the characteristic roots ¢, and ., are both real, they can be plbt- :

ted on the horizontal axis. Stability requires that they lie within a circle of radius 1.

Complex roots will lie somewhere in the complex plane. If o, > 0, the roots o, =

(a, + i\/g)/Z and o, = (a, - iﬁ)/2 can be represented by the two points shown in

?gure 1.6. For example, ., is drawn by moving a,/2 units along the real axis and
d

/2 units along the imaginary axis. Using the distance formula, we can give the :
length of the radius r by

and using the fact that 2 = -1, we obtain
‘ r=(-a,)"?
. The stability condition requires that » < 1. Hence, when plotted on the cohplex

plane, the two roots @, and o, must lie within a circle of radius equal to unity, In"~

the time-series literature, it is simply stated that stability requires that all charac-
teristic roots lie within the unit circle. :

; . Higher-Order Systems

The same method can be used to find the homogcncous solution to highér-brdér

- difference equations. The homogeneous equation for (1.10) is




i
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n

yl — Z (Ilyf_'_ = 0 T (155)

i=1

Given the results in Section 4, you should suspect each homogeneous solution to
have the form y! = Ac', where A is an arbitrary constant. Thus, to find the value(s)
of o, we seek the solution for

Ad' - Za,.Aa"' =0 (1.56)
i=1 T

or, dividing through by o™, we seek the values of ¢ that solve
o - alan—l - 1120."“2 =, =0 (1.57)

This nth-order polynomial will yield n solutions for ¢t Denote these n character-
istic roots by o, @, ..., 0,.. Given the results.in Section 4, the linear combination
Ay + A0+ -+ + A0 is also a solution. The arbitrary constants A, through A,
can be eliminated by imposing n initial conditions on the general solution, The ¢,
may be real or complex numbers. Stability requires that all real-valued ¢, be less

than unity in absolute value. Complex roots will necessarily come in pairs. Stability-

requires that all roots lie within the unit circle shown in Figure 1.6. ‘

In most circumstances, there is little need to directly calculate the characteristic
roots of higher-order systems. Many of the technical details are included in
Appendix 2 to this chapter. However, there are some useful rules to check the sta-
bility conditions in higher-order systems.

1. In an nth-order equation, a necessary condition for all characteristic roots to lie
inside the unit circle is

2":(1,.<]

i=!

2. Since the values of the a; can be positive or negative, a sufficient condition for
all characteristic roots to lie inside the unit circle is

Slal<1
i=|

3. "Kt Yeast one chara ﬁét}c root equals unity if
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n

Zai=l

i=|

Any sequence that contains o
called a unit root process.

4. For a third-order equation, the stability conditions can ve written as
l-a -a,-a,>0
l+a,—a,+a,50
l-aa,+a,~a>0
3+a,+a;~-3a,>0 or 3-a,+a,+3a,>0
Given that the first three ine

valities are sati i
checked. One of the last condi ; sausfied, cther of the last two can be

tions is redundant given that the other three hold.

7. FINDING PARTICULAR SOLUTION
S
'DETERMINISTIC PROCESSES FoR

Finding the particular solution to a d
Ity and perseverance. The
thf: {x.} process. we begin

! ’ , in econometric analysis
contain both deterministic and stochastic components,

CASE 1

X, = 0. When all element .
comes ents of the {x,} process are zero, the difference equation be-

Yi=a,+ ayy. .y + AYpq+ o+ ay,,

(1.58)
sollv“é‘&tfé’qiﬁﬁif.téiﬁiéi‘ﬁe”&ihﬁiﬁfﬁ?iffiﬁ I L
C=aotaictac+ - +arc
$0 that
Czéo/(l"ax‘az"“‘an) (159

ne or more characteristic roots that equal unity is




bt ke

A an s

"-“'1

1

T

SRR |

T

36 Difference Equations

As long as (1 —a, = ax = = = dy) does not equal zero, the value of ¢ given by
(1.59) is a solution to (1.58). Hence, the particular solution to (1.58) is given by
yr=af(l—a, —ay=— = a,)-

Ifi-a,—a,-——a,=0,the value of ¢ in (1.59) is undefined; it is necessary to
try some other form for the solution. The key insight is that {y,} is a unit root
process if Za; = 1. Since {y,} is not convergent, it stands to reason that the constant
solution does not work. Instead, recall equations (1.12) and (1.26); these solutions
suggest that a linear time trend can appear in the solution of a unit root process. As
such, try the solution yf = cf. For ct to be a solution, it must be the case that

ot =ag+aclt =1) +axli - 2) + - ac(t—n
or combining like terms, we obtain
(1-a,—a;——a)cr= ao; cla, +2a,+3ay+ - +nay,)
Since | —a, —a;— - —a,=0, select the value of ¢ such that
c=ay(a, +2a, +3as ot na,)
For example, let
y,=2+0.75y,. +0.25y,

Here, a, = 0.75 and a; = 0.25; {y,} is a_unit root process since a; + a; = 1. The

particular solution has the form ct, where ¢ = 2/{0.75 + 2(0.25)] = 1.6. In the event

that the solution ¢t fails, sequentially try the solutions y? = ct, ct, -, cf". For an
nth-order equation, one of these solutions will always be the particular solution.

CASE 2

The Exponential Case. Let x, have the exponential form b(d)”, where b, d,and r
are constants. Since r has the natural interpretation as a growth rate, we would ex-
pect to encounter this type of forcing process case in a growth context. We illus-
trate the solution procedure using the first-order equation:

Y, = g+ @Y + bd” (1.60)

To try to gain an intuitive feel for the form of the solution, notice that if =0,
(1.60) is a special case of (1 58). Hence, you should expect a constant to appear in
the particular solution. Moreover. the expression d” grows at the constant rate r.
Thus, you might expect the particular solution to have the form y” = co + €,d",
where ¢y and ¢, are constants. If this equation is actually a solution, you should be
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ablc to SUbS[llu(c “ baCk ln[O (1.60) Zlnd ( 1 H Cll[l[y laklllg (he a )l)l()[)lld‘c
h )btﬂln an d . 1 1
SUbSll(ullonS, we get N

Cotcd =ag+a,lcy+c,d V] + bd” (1.61)
For this solution to “work,” it is necessary to select ¢ and ¢, such that

co=a/' —a) and ¢, =bdl(d -a,)

: . Thus, a particular solution is
¥ =[a/(l - a)] + [bd"Ad"—a))}d”

pr;I;@ nat;]ure of the sc:;]ution is that y? equals Ithe: constant ay/(1 — a;) plus an ex-

ion that grows at the rate r. Note that for {d"| < i i

s o/, | 1, the particular solution con-
lIf f:xthcr a =1 or a, = d’, use the “trick” suggested in Case 1. If a; = 1, try the

solution ¢4 = ct, and' if a, = d", try the solution ¢; = 1(bd")/(d" - a;). Use precisely the

same methodology in higher-order systems.

CASE 3

D;ate‘rmm‘lstic tim;: trend. Ir.1 this case, let the {x,} sequence be represented by the
relationship x, = br® where b is a constant and d a positive integer. Hence

; i _ ¥, =a0+2aiy,_i+btd _ (1.62)

i=]

Smie y, depends on ¢7, it follows that y,_, depends on (t — 1)%, y,_, depends on
(t = 2)% etc. As such, the particular solution has the form y? = ¢, -;- cl—tz+ P4+
c#”. To find the values of the ¢, substitute the particular sc;lutioon intlo (1 622) The
, selec‘t the 'value of each ¢, that result in an identity. Although various valu;:s o}d ar:
pOSS}ble, in economic applications it is common to see models incorporating a lin-
ear time trend (d = 1). For illustrative purposes, consider the second-order equation
fj,;e:;: a:jy,_, +ﬂ€17).’,_2 + bt. Posit the solution y? = ¢, + ¢, 1, where ¢q and ¢, are un-

ined coefficients. ituti is * ion” i
ordor ditfonenee eqsntion ;\;})dssututmg this “challenge solution” into the second-

Cotcyt=ag+a,fco+c,(t— D]+ aylco+c,(t—~2)] + bt (1.63)

aul\:)zw .sbel]ect \lzaluesfof ;; and ¢, so as to force Equatidn (1.63) to be an identity for
ssible values of 1. If we combine all constant term i i
the required values of ¢, and ¢, are * and ol terms fnvolvin
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¢, =bl{l —a,—ay)
o =1[ag - (2a, + a))c, /(1 "‘Bl“az)

5o that
co=layf(l —a, - a)} - (b1 - a, - a,)}][2a, + a,]
Thus, the particular solution will als. _untain a linear time trend. You should
have no difficulty foreseeing the solution technique if a; + a, = 1. In this circum-

stance—which is applicable to higher-order cases also—try multiplying the original
challenge solution by ¢,

8. THE METHOD OF UNDETERMINED COEFFICIENTS

At this point, it is appropriate to introduce the first of two useful methods of finding
particular solutions when there are stochastic componentsin the {y,} process. The

key insight of the method of undetermined coefficients is that the particular solu-.

tion to a linear difference equation is necessarily linear. Moreover, the solution can
depend only on time, a constant, and the elements of the forcing process {x,). Thus,
it is often possible to know the exact form of the solution even though the coeffi-
cients of the solution are unknown. The technique involves positing a solution—
called a challenge solution—that is a linear function of all terms thought to appear
in actual solution. The problem becomes one of finding the set of values for these
undetermined coefficients that solve the difference equation.

The actual technique for finding the coefficients is straightforward. Substitute the
challenge solution into the orginal difference equation and solve for the values of
the undetermined coefficients that yield an identity for all possible values of the in-
cluded variables. If it is not possible to obtain an identity, the form of the challenge
solution is incorrect. Try a new trial solution and repeat the process. In fact, we
used the method of undetermined coefficients when positing the challenge solu-
tions yf = co + ¢,d” and yP = ¢y + ¢,¢ for Cases 2 and 3 in Section 7.

To begin, reconsider the simple first-order equation Y =ag + ay,_, + €, Since

you have solved this equation using the iterative method, the equation is useful for

illustrating the method of undetermined coefficients. The nature of the {y,} process
is such that the particular solution can depend only on a constant term, time, and
the individual elements of the {e,} sequence. Since ¢ does not explicitly appear in
the forcing process, £ can be in the particular solution only if the characteristic root
is unity. Since the goal is to illustrate the method, posit the challenge solution:

¥ = b0+blt+2(xie,_, (1.64)
i=0 .

where by, by, and all the @, are the coefficients to be determined.

vy
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Substitute (1.64) into the original difference equation to form

by + byt + oye, + Q€ + €,y +
=aorabo+b(1- 1)+ Oobry + €, + ] +¢,

Collecting like terms, we obtain

(by - a,— aby+ab)) +b,(1 - a)t + (ot De, + (¢, - a\Qy)e,_,

(0 —a,a))e,, + (0, - Qe 3+ =0 (165

Equation (1.65) must hold for all values

of t and all possible valu f th
sequence. Thus, each of the following condit e €s of the {e,}

ions must hold:

A-1=0
o —a0;=0

o —~a0 =0

bo—ay—ayby+ayb, =0
by~ab, =0
2%
Notice that the first set of conditions can be solved for the'a,
lution of the first condition entails setting o,
next equation requires a, = a,.

recursively. The so-
‘ = 1. Given this solution for Oy, the
t eg  rec . Moving down the list, we obtain o, = a,¢; or
o, = aj. Contmumg the recursive process, we find @, = af, Now consider the last
two equations. There are two possible cases depending on the value of a,. Ifag, # 1,

it immediately follows that 5, = Oand by = a /(] — F . )
solution is , i o = ay/(1 — a,). For this case, the particular

L ve=lag/i=a)+ Y afe,

i=0

] Compzjlre this .resu]'l to (1.21); you will see that it is precisely the same solution
ounc'i using the iterative method. The general solution is the sum of this particular
solution plus the homogeneous solution Ad|. Hence, the general solution is

i =lag/(l~a))+ Y ale,_, + Aa]
i=0

Now, if there is an initial condition for y,, it follows that

Yo =lap/(1-a)]+ Y ale_+ A
i=0
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Combining these two equauons 50 as to climinate the arbnraxy constant A we
obtain . o

Y, :[ad/gtia‘)]+2afe,‘,+af yQ‘—[aO/(l—al)]—Zafe_i
& i=0 i=0
so that
11 ) - <
y, =[ag/(1—ap]+ Za;e,_,- r a{{ vo —[aol(imal)]} - (1.66)

i=0

It is easily verified that (1.66) is identical to (1.25). Instead, if a, = 1, by ean be
any arbitrary constant and b, = a,. The improper form of the solution is

y, =by+ayt %Ze,_i
’ i=0

The form of the solution is “improper” since the sum of the {€,} sequence may

not be finite. Hence, it is necessary to impose an initial condition. If the value yyis -

given, it follows that

b e o REhrE
i=0

. kmposing the initial condition on the improper form of the solution yields (1.26)

i
Y=Y +a01+2€i
i=1

To take a second example, consider the equation
yi=aotay. +te+Bie, (1.67)

Again, the solution can depend ohly on a constant, the elements of the {e,} se-
quence, and f raised to the first power. As in the previous example, t does not need
to be included in the challenge solution if the characteristic root differs from unity.

To reinforce this point, use the challenge solution given by (1.64). Substltute this -

tentative solution into (1.67) to obtain
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l:rt,-+!7,t+2401¢,_qg ﬁay+a, b0+b,(1-1)+201 i€ri-i |7 & FPie

i=0 i=0

Matching coefficients on all terms containing €, €,_,, €,_,, - yields

%=1

o, =a,0,+0, [sothata, =a, +f]

0 =a,0, {so that o, = a(a; + B))
0y =a,0, . (so that o, = (a,)(a; + B,)]
Q;=aa;, | [SO that cxi'_‘(al)i_l(al +B')]

Matching coefficients of 1mercep[ terms and coefficients of terms comammg 1,
we get

by =ay+ a,by - a,b,
b, =ab,

Again, there a.re  two cases, Ifa, # 1, then b, = =0and by = ay(1 - a;). The
pameular solution is

¥, =lag/(1-a))+€, +(q +B,)Za;-

i=l

The general solution augments the particular solution with the term Aa', You are
left with the exercise of imposing the initial condition for Yo on the general solution.
Now consider the case in which a, = 1. The undetermined coefficients are such that
b, = ag and by is an arbitrary constant. The improper form of the solution is

Vi=by+agt+e, +(1+B)Y €,

i=l

If y, is given, it follows that

Yo=botegr(1+B)Y €
i=|

Hence, imposing the initial condition, we obtain
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=1

CYmyptagt+e, +(14+B, ) e

izl

Higher-Order Systems

The identical procedure is used for higher-order systemns, A% an example, It us find
the particular solution to the second-nrder equation: :

NF Aot @y tan, ;te, +.68)
Since we have a second-order equation, we use the challenge solution:
Y= b+ byt + bor + Qe + €, + OLpE,_y

where by, by, b,, and the @ are the undetermined coefficients.
Substituting the challenge solution into (1.68) yields

' 2
(bo + byt + by + o€, + 06,y + O,y + - = ag+ alby+ bt~ 1) + bzz(t -1
OO, + Oy € Ly + OE, 3 + ]+ ay[by + by (= 2) + by(t - 2)
[ + Og€,p + O €,y + 0€, 4+ ] + €,

The necessary and sufficient conditions for the values of the o,’s to render the
equation above an identity for all possible realizations of the {¢,} sequence are

=1
O = a,04 [sothat a, = a]
W =a,0, + a0, [sothat o, = (a,)* + a,)

Oy = a0, + a,0, [so that &y = (a,)* + 2a,a,)

Notice that for any value of j 2 2, the coefficients solve the second-order thffelii :
ence rquation 0 = a,0y_, + a,0,,. Since we know @ ar}g (;,, we c.anlvso:;zseo;ias
i i erties of the coefficients will be precisely -

the o, iteratively. The prop

cussed when considering homogeneous solutions, namely the following:

i - i at con-
1. Converger.ce necessitates |a2| <l,a,+a,< 1, and a, ~a, < 1. Notice th

vergence implies that past values of the {¢,} sequence ultimately have a succes-

sively smaller influence on the current value of y,.

2. If the coefficients converge, convergence will be di.rect if (a? 1: 4ay) > 0, will
follow a sine/cosine pattern if (a} + 4a,) < 0. and will “explode” and then con-

verge if (a + 4a,) = 0. Appropriately setting the o, we are left with the remain-

ing expression:

“work,” it must satisfy
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by(l =a,—a) + [b,(1 =4, a;) +2b,(a, + 2a,))t
+[bo(l —a,-ay) - o+ a, (b, - b)) + 2a,(b, - 2b,)] = 0 (1.69)

Equation (1.69) must equal zero for all values of . First, consider the case in
which a, + a, # 1. Since (I - a, - a,) does not vanish, it is necessary to set the
value of b, equal to zero. Given that b, = 0 and the coefficient of + must equal
zero, it follows that b, must also be set equal to zero. Finally, given that
by =b, =0, we must set by = a/(1 - 4, = ay). instead, if a, + a, = 1, the solu-
tions for the b, depend on the specific values of Q, ay, and a,. The key point is
that the stability condition Jor the homogeneous equation is precisely the condi-

in the particular solution. The order of the polynomial is the number of unitary
characteristic roots. This result generalizes to higher-order equations.

ic portion of the particular
solution. In (1.67), for example, set €, = ¢,_, = 0 and obtain the solution a/(1-a,).

Now use the method of undetermined coefficients to find the particular solutjon of

Y=ay,, +e + Be_,. Add together the deterministic and stochastic components
to obtain all components of the particular solution,

A Solved Problem

To illustrate the methodology using a second-order equation, augment (1.28) with
the stochastic term €, SO that

Y=3+09y,, - 02y, ,+¢ (1.70)

You have already verified that the two homogeneous solutions are A,(0.5) and
A,(0.4)" and the deterministic portion of the particular solution is ¥? = 10. To find
the stochastic portion of the particular solution, form the challenge solution:

0ok, + e,y + e, + Ca€y + - = 0.9(0g¢,, + Xy€g + 06, 5+ e, + s Yoo
= 0.2[oge, , + €3+ 0€ 4 + Oy€, g + - ] +e€ (171
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Since (1.71) must hold for all possibie reahizations of €, €,_,, €,_y, -+, each of the
following conditions must hold:

o= |
o, =0.9u,
so that o, = 0.9, and forall i 2 2,
o, =0.9a,_, -0.2¢,, (1.72)

Now, it is possible to solve (1.72) iteratively so that a, ='0.901l - 0.2% = 0.’61,
oy = 0.9(0.61) - 0.2(0.9) = 0.369, etc. A more elegant solution mcth(?d; is to view
(1.72) as a second-order difference equation in the o, with initial conditions o = 1
and @, = 0.9. The solution to (1.72) is

o, = 5(0.5) - 4(0.4) (1.73)

To obtain (1.73), note that the solution to (1.72) is o; = A3(0.5) + A40.4Y, where

A, and A, are arbitrary constants. Imposing the conditionsooro =1 ax;d al.= O.?
yields (1.73). If we use (1.73), it follows that oy = 5(0.5)° -4(04)Y° =1, 0, =
5(0.5)' — 4(0.4)' =0.9; &, = 5(0.5)* - 4(0.4)* = 0.61, etc. ' ;

The general solution to (1.70) is the sum of the .two homogcncous solutions an
the deterministic and stochastic portions of the particular solution:

¥, =10+ A,(0.5) + A,(0.4) +Za‘.e,_i (1.74)
i=0 :

where the @ are given by (1.73). )
Given initial conditions for y, and y,, it follows that A, and A, must satisfy

Vo =10+ A, + A4, +2aie_i , (1.75)
i=0 . e
Y :10+A1(0-5)+A:(0-4)+2‘1i51—i (1.76)
i=0

Although the algebra becomes messy, (1.75) and (1.76) can be substituted into
(1.74) to eliminate the arbitrary constants:
-2

L =10+ (0.4) [5(yo —10)=10(y, = 10)]+ (0.5) [10(, —10)—4(y0—~10)]+2ai61_‘.

i=0
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9. LAG OPERATORS

If it is not important to know the actual values of the coefficients appearing in the
particular solution, it is often more convenient to use lag operators than the method

of undetermined coefficients. The lag operator L is defined to be a linear operator
such that for any value y,

Ly =y (.77

Thus, L' preceding y, simply means to lag v, by i periods. It is useful to remember
the following properties of lag operators:

1. The lag of a constant is a constant: Lc = ¢,

2. The distributive law holds for lag operators. We can set (L' + Dy, =Ly, + Uy, =
Y~ + yl—j‘ :

3. The associative law of multiplication holds for lag operators. We can set L'l/y, =
L'(Uy) = LY, = y,.;. Similarly, we can set L'Lly, = L** : = Y1 Note that
L, =y,

4. L raised to a negative power is actually a lead operator: L™y, =y, To explain,
define j =i and form Ly, =y, ; =y, :

5. For |a| < 1, the infinite sum (1 4 aL + *L% + L3 + )y, = y,/(1 - al). This

property of lag operators may not seem intuitive, but it follows directly from
properties 2 and 3 above.
Proof: Multiply each side by (1 ~ al) to form (I —al)l + aL + a°L* +
@’L’ + )y, =y, Multiply the two expressions to obtain (1 - aL + al — a®L% +
&L~ a®L® + )y, = y,. Given that |a| <1, the expression a"L"y, converges to
zero as n approaches infinity. Thus, the two sides of the equation are equal.

6. For |a| > I, the infinite sum [1 + (aL)™ + (aL)? + (aL)™> + -]y, = ~aly,)
(1-al).

Hence, y,/(1-aL)=—(aL)" Y (aL)™'y,
i=0 ' .
Proof: Multiply by (1 — aL) to form (1 = aL)[1 + (aL)™ + (aL)™® + (aL)™ + ]
" ¥, =-aly, Perform the indicated multiplication to obtain: {1 — aL + (aLy' -1+
(al)? = (al)™ + (aL)™ - (aL)™® -]y, = —aLy, Given that |a| > 1, the expres-

sion a™"L™"y, converges to zero as n approaches infinity. Thus, the two sides of
the equation are equal. ’

Lag operators.provide a concise notation for writing difference equations. Using

lag operators, we can write the pth-order equation y, = ag + a,y,_; + - +ay, ,+E
as

(- a)L - asz - apL”)y, =ag+ €,




-
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or more compactly as
ALYy, =ay+¢€,

i i - 2 —qalP). Gy :
where A(L) is the polynomial (1 - a,L —a,L . a, : ) .
Since A(L) can be viewed as a polynomial in the lag operatee, the notation A(lyis
used to denote the sum of the coefficients:
Ah=l-a —-a,—a,.
As a second example, lag operators can be used to express the equation y; = gg.+
Ay ot ay, , te + Bler—l +oet qul—q as

A(L)y, = aq + B(L)e,

i ders p and ¢, respectively. o
where A(L) and B(L) are polynomials of or . ‘ . ‘
It is straightforward to use lag operators to solve linear dxfferenlce ‘cquauons.
Again, consider the first-order equation y, = ag + @;¥,_; + €, where {a,| < 1. U;e

the definition of L to form

yr=ag+aly +e (1.78) |
Solving for y,, we obtain
ye=(ag+€)/(l —ayl) (179)

’ 2

From property |, we know that Lag = aq, so that a/(1 —a,L) = ag + a,a0 + ;zlao +
- = ay/(1 — a,). From property 5, we know that /(1 — a,.L) =g, + @y + i€ +
... Combining these two parts of the solution, we obtain the particular solution
given by (1.21). :

For practice, we can use lag operators to solve (1.67): y, =ag + a,y,_,‘+ €, +.B,e,f_,,
where [n, | <1.Use property 2 to form (I —a,L)y, = ay+ (1 + B,L)e,. Solving for
y, yields

v =lag+ (1 + B L)Vl ~a,L)
so that
v, = {a/(1 —apl+ [e/(1 = a, L)) + [Bre,.,/(1 = a,L)] (1.80)

Expanding the last two terms of (1.80) gives the same solution found using the
ethod of undetermined coefficients. o
K Now suppose y, = @o + a,¥,_; + €, but that la, | >1.The application of propen’)]/95
to (1.79) is inappropriate since it implies that y, is infinite. Instead, expand (1.79)

using property 6:
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y’:z[aol(l_.a')]_(alL)‘IE(a'L‘):‘ie' Lo ()

=0

=lag/(1=a))=(Va) Y (aL) e

i=0

41

:[ao/(l—aI)]-—(l/al)zal—iemﬁ Cam
=0

Lag Operators in Higher-Order Systems

We can also use lag operators to transform the nth-order equation y, =a4 + h,y;_, +
@Gy,p+ - +a,y,., +¢€ into

(I -aL-a,?—.. ~a,L"y,=a,+e,

or

Yi=(ag+ el ~al—a*—..ql"

From our previous analysis (also see Appendix 2 in this chapter), we know that
the stability condition is such that the characteristic roots of the equation a" —
a, 0™ — .~ g, =0 all lie within the unit circle. Notice that the values of ¢ solving
the characteristic equation are the reciprocals of the values of L that solve the equa-
tion 1 —a,L - —a,L"=0. In fact, the expression 1 —a,L - — g, L" is then called the
inverse characteristic equation, Thus, in the literature, it is often stated that the sta-
bility condition is for the characteristic roots of (I —a,L - = a,L™ to lie outside of
the unit circle.

In principle, one could use lag operators to actually obtain the coefficients of the
particular solution. To illustrate using the second-order case, consider y, = (a, + €,)/
(1-a L - a,L%. If we knew the factors of the quadratic equation were such that (1
=a\L—a,L?) = (1 - b,L)(1 - b,L)), we could write

Yo=(ao+€)/[(1 = b, L)1 - b,L)]
If both b, and b, are less than unity in absolute value, we can apply property 5 to

obtain

ag/(1-b, )]+zb;’5,_i

y’ = i=0
I=b,L




Th g, to obtain the particul
of the process. 1L1s preferable to v

48 Difference Equations

e to a(! = by) and to each of thie clements in the summz?lion
ar solution. If you want to know the actual coefficients
1se the methed of undetermined coefficients. The
v can be used to denote such particular solutions

Reapply the rul

beauty of lag operators is that the
succinctly. The general model

ALYy, = ay+ B(L)e,

has the particular solutior:

v - aA(L) + B(L)eJA(L)

10. FORWARD - VERSUS BACKWARD-LOOKING
SOLUTIONS

As suggested by (1.82), there is a forward-lonking solution to any hnealr ?.1fier;rrx]zz
equation. The text will not make much use of the fqrward-lookmg solutio

future realizations of stochastic variables are not. directly observz.lble. ﬁowc‘iver,
knowing how to obtain forward-looking solulion.s is gseful for' solving ralxc.)ga cz;(
pectations models. Let us return to the simple .ueranve technique to COHS]l ‘er fe
forward-looking solution to the first-order equation y, = g + @1y, + € Solving for
v,y We obtain

vy = =(ag + e+ v la, P ; (1.83)
Updating one period yields
v, = =(ag + e)a + voolay (1.84)
Since v, =2 — Ao~ €,.»)/a,. begin iterating forward:
2
y, == (ay,+ €, )May + (¥ —an— €,,.)/(a))

= —(ay,+ €.y~ (ant 5;42)/(“1)2 + ,Vl+2/(al)z \
= —(ay+ €, a, = (ag+ e, M@y + Ona— a0~ eallay)

Therefore. after n iterations,

- Se L+ lal
yo==ay ) 4y =2 A & T Nl

i=l i=t

o W we-maiatain that la,l <1, A
- comes-infiniely large. However. it 1o,

(1.89)

this forward-locking solution will diverge as n be- -
| > 1, the expression ay" goes 1o zero while
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—ag(ay' +aj® + ai® + ) converges to ay/(1 — a,). Hence, we can write the forward-
looking particular solution for y, as

on

¥, =(10/(]_(11)—Za;i61+i (1.86)

i=1

Note that (1.86) is similar i Torm to (1.82); the difference is that the future val-
ues of the disturbances affect the present. Clearly, if la, | > 1. the summation is
convergent so that (1.86) is a legitimate particular solution to the difference equa-
tion. Given an initial condition, a stochastic difference equation will have a for-
ward- and backward-looking solution. For example, using lag operators, we can
write the particular solution to y, = a, + a,y,_, + €, as (a, + €,)/(1 — a,L). Now multi-
ply the numerator and denominator by —a;' L™ to form ‘

ye=a/(l —a) —a;'L7'e /(1 —a7'L7h)

—-i e
=a0/(l_al)m2al €4 G i (1.87y
i=|

More generally, we can always obtain-a forward-looking solution for -any nth-order
equation. (For practice in using the alternative methods of solving difference equa-

tions, try to obtain this forward-looking solution using the method of undetermined
coefficients.)

|
Properties of the Alternative Solutions

The backward- and forward-looking solutions are two mathematically valid solu-
tions to any n.th order difference equation. In fact, since the equation itself is linear,
it is straightforward to show that any linear combination of the forward- and back-
ward-looking solutions is also a solution. For economic analysis, however, the dis-
tinction is important since the time paths implied by these alternative solutions are

quite different. First consider the backward-looking solution. If la, | <1, the ex- -

pression af converges toward zero as i — co. Also, notice that the effect of €,_; on ¥,
is aly if IaI | < 1, the effects of the past €, also diminish over time. Suppose instead
that {a, | > 1; in this instance, the backward-looking solution for y, explodes.

The situation is reversed using the forward solution. Here, if |a, (>< 1, the ex-
pression a;’ gets infinitely large as i approaches oo, Instead, if |a,| > 1, the for-
ward-looking solution leads to a finite sequence for {y,}. The reason is that a;’ con-
verges to zero as i increases. Note that the effect of €,,; on y, is a7’; if ]aI I > ], the
effects of the future values of €,,; have a diminishing influence on the current value
of y,. ' ’

From a purely mathematical point of view, there is no “most appropriate™ solu-
tion. However, economic theory may suggest that a-sequence be bounded in the
sense that the limiting value for any value in the sequence is finite. Real interest

)
i
B
'
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rates, real per capita income, and many other economic variables can hardly be ex-
pected to approach either plus or minus infinity. Iinposing boundary restrictions en-
tails using the backward-looking solution if lu, | <1 and the forward-looking solu-
tion if Ial | > 1. Similar remarks hold for higher-order equations.

Cagan’s Money Demand Function

Cagan’s model of hyperinflation provides an excellent example of choosing the ap-
propriateness of forward- versus backward-looking solutions. Let the demand for
money take the form

nll_pt:a——B(I)l:»lmpl) B>O (1.88)
where m, = logarithm of the nominal moncy supply in?
p, = thelogarithm of price level in ¢
pry = the logarithm of the price level expected in period 1 + 1

The key point of the model is that the demand for real money balances (m, — p,) -

is negatively related to the expected rate of inflation (p,, — p,). Because Cagan was
interested in the relationship between inflation and money demand, all other van-
ables were subsumed into the constant a. Since our task is to work with forward-
looking solutions, let the money supply function simply be the process

m=m+e,

where m = the average value of the money supply
e, = adisturbance term with a mean value of zero

t

As opposed to the cobweb model, let individuals have forward-looking perfect
foresight so the expected price for £ + | equals the price that actually prevails:

p:il =P
Under perfect foresight, agents in period ¢ are assumed to know the price level in
t + 1. In the context of the example, agents are able to solve difference equations

and can simply “figure out” the time path of prices. Thus, we can write the money
market equilibrium condition as

"l+€r—p/:a_B[pul “P;]
or
P = (1 + 1B, =~m~o)B ~€/B (1.89)

For practice, we use the method of undetermined coefficients to obtain the par-
ticular solution. (You should check your abilities by repeating the exercise using
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lag operzftors.) We use the forward-looking solution since the coefficient on
(1 + 1/B) is greater than unity in absolute value. Try the challenge solution:

P
b= bO +Zai€r+i
i=0

Substituting this challenge solution intw the aoove, we obtain
by +Zai€1+l+i _((1+B)/B)Lbo +zai61+iJ: (a-—m-¢,)/B (1.90)
i=0 i=0

For (1.90) to be an identity for all possible realizations of {e,}, it must be the

case that '
by~ byl +B)/B:(a‘m)/B = b, =m-aq
—0o(1+ BB =-1/8 = oy = /(1 +p)
o= o, (1+ BB =0 = o, = B/(1 + By
o — 0, (1 +BYB=0 = o, = BY(1 +B)M

In compact form, the particular solution can be written as

P = m_a+(1/B>Z[B/“+B)1W61+1 ’ (191

i=0

The next step is to find the homogeneous solution. Form the homogeneous equa-

tion, p,,, — (1 + 1/B)p, = 0. For any arbitrary constant A, it is easy to verify that the
solution is

pr=A(l + 1/BY

Hence, the general solution is

p=m=a+(UB) Y [B/(1+B)] e,y + AL+ 1/B) (1.92)
i=0 .

If you examine (1 ‘92)‘ closely, you will note that-the impulse response function is
convergent; the expression [(B/(1 + B)1"™* converges to zero as i approaches infinity.
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However, the homogeneous portion of the solution is divergen?. For (1.92) to yield
a nonexplosive price sequence, we must be able to set the arbitrary constant equal
1o zero. To understand the economic implication of setting A = 0, suppose that th.e
initial condition is such that the price level in period zero is po. If we impose this
initial condition, (1.92) becomes

Po=m—0+ (1/13)2[[3/(1 +B)]'"e, + A
i=0
8olving fer A yields
A=po+o—m— (1/B)i[u/(1 +B)" e,
i=0
Thus, the initial condition must be such t:at

A=0  or  py=m-o+(UHYBABITE sy

i=0

Examine the three separate components of (1.92). The deterministic expression -

m — o is the same type of long-run “equilibrium™ condition encounlered_o'n s.everal
other occasions; a stable sequence tends to converge toward the determxm§t1c por-
tion of its particular solution. The second component of the particular solution con-
sists of the short-run responses induced by the various €, shocks. These @ovements
are necessarily of a short-term duration because the coefficients of. the impulse re-
sponse function must decay. The point is that the particular solunor} captures the
overall long-run and short-run equilibrium behavior of lhc. s'ysfem..Fmall?/,.t}.le ho-
mogeneous solution can be viewed as a measure of disequnl%bnurrT_ in the initial pe-
riod. Since (1.91) is the overall equilibrium solution for period 4, it should' be clear
that the value of p, in (1.93) is the equilibrium value of the pn‘cg for period zero.
After all, (1.93) is nothing more than (1.91) with the time sub.?cr.lpt lagged ¢ peri-
ods. Thus, the expression A(1 + 1/B)" must be zero if the deviation from equilib-
rium in the initial period is zero. .

Imposing the requirement that the {p,} sequence be bounded necessitates that the
general solution be

p,=m=-os (RS (BAL+BI e,

i=0

i

Notice that the price in each and every period ¢ is proportional to the miean value’

of the money supply; this point is easy to verify since all variables are expressgd in
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logarithms and dp/am = 1. Temporary changes in the money supply behave in an
interesting fashion. The impulse response function indicates that future increases in
the money supply, represented by the various «,,,, serve to increase the price level
in the current period. The idea is that future money supply increases imply higher
prices in the future. Forward-looking agents reduce their current money holdings,

with a consequent increase in the current price level, in response (o this anticipated
inflation.

SUMMARY AND CONCLUSIONS

Time-series econometrics is concerned with the estimation of difference equations

" containing stochastic components. Originally, time-series models were used for

forecasting. Uncovering the dynamic path of a series improves. forecasts since the
predictable components of the series can be extrapolated into the future. The grow-
ing interest in economic dynamics has given a new emphasis to time-series econo-
metrics. Stochastic difference equations arise quite naturally from dynamic eco-
nomic models. Appropriately estimated equations can be used for the interpretation
of economic data and for hypothesis testing.

This introductory chapter focused on methods of “solving” stochastic difference
equations. Although iteration can be useful, it is impractical in many-circumstances.
The solution to a linear difference equation can be divided into two parts: a particu-
lar solution and homogeneous solution. One complicating factor is that the homo-
geneous solution is not unique. The general solution is a linear combination of the
particular solution and all homogeneous solutions. Imposing 7 initial conditions on
the general solution of an nth-order equation yields a unique solution.

The homogeneous portion of a difference equation is a measure of the “disequi-
librium” in the initial period(s). The homogeneous equation is especially important

_in that it yields the characteristic roots; an nth-order equation has n such character-

istic roots. If all the characteristic roots lie within the unit circle, the series will be
convergent. As you will see in Chapter 2, there is a direct relationship between the
stability conditions and the issue of whether an economic variable is statiopary or
nonstationary.

The method of undetermined coefficients and use of lag operators are powerful
tools for obtaining the particular solution. The particular solution will be a linear
function of the current and past values of the forcing process. In addition, this solu-
tion may contain an intercept term and a.polynomial function of time. Unit roots
and characteristic roots outside of the unit circle require the imposition of an initial
condition for the particular solution to be meaningful. Some economic models ai-
low for forward-looking solutions; in such circumstances, anticipated future events
have consequences for the present period. : ‘ }

The tools developed in this chapter are aiméd at paving the way for the study of
time-series econometrics. It is a good idea to work all the exercises presented be-
low. Characteristic roots, the method of undetermined coefficients, and lag opera- -

tors will be encountered throughout the remainder of the text.
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QUESTIONS AND EXERCISES

G

1. Consider the difference equation y, = a, + a,v,., with the initial cotﬁfﬁpn Yo

Jill solved the difference equation by iterating backward:

Ye=0gt a1y
=ag+ a(dg+ ay,.s)
. 2 =1 'y
=ay+aga, +aga+ o+ aua +ay

Bill added the homogeneous and particular solutions to obtain y, = a/(} — a;) +
alyo — ad/(1 —apl.
A. Show that the two solutions are identical for |a, | <1.

B. Show that for a, = I, Jill's solution is equivalent to y, = ayt + yo. How
would you use Bill's method to arrive at this same conclusion in the case
a =17

2. The cobweb model in Section 5 assumed static price expectations. Consider an
alternative formulation called adaptive expectations. Let the expected price in ¢
(denoted by p¥) be a weighted average of the price in ¢ — 1 and the price expec-
tation of the previous period. Formally,

pr=oap._, +(1-apk,, D<a=1l
Clearly, when o = 1, the static and adaptive expectations schemes are equiv-
alent. An interesting feature of this model is that it can be viewed as a differ-
ence equation expressing the expected price as a function of its own lagged
value and the forcing variable p,_,. '

A. Find the homogeneous solution for p*

B. Use lag operators to {ind the particular solution. Check your answer by sub- .

stituting your answer in the original difference equation.

3. Suppose that the money supply process has the form m,=m +pm,_, +¢€, where |

misaconstantand 0<p < 1.

A. Show that it is possible to express m,,, in terms of the known value m, and |

the sequence {€,,y, €20 o s €0 0)

B. Suppose that all values of €,,; for 7 > 0 have a mean value of zero. Explain
how you could use your result in part A to forecast the money supply n pe-
riods into the future.

4. Find the particular solutions for each of the following:

Loy=ay e tBie,
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ii. _vE,; a,y,)_, +€,+Pe, (Hin: The form of the solution is v, = 5¢ €+
i€2-e ‘ — o

5. The unit root problem in time-series cconometrics is concerned wit

Th h character-
1stic roots that are cqual to unity. In order to preview the issue:

A. Find the homogeneous solution to each of the following: (

. Hinr: Each has :
- least one unit root. e

i Ye=2ap+ l's.yl—l - 0‘5y1—2 +€, ii. Yi=dp+ Yy, tE,
ULy, =ag+2y,_, -y, +€, V.Y, =ay+ v, + 0.25y,., - 0.25y,_,
+ €, »

B. Show that each of the backward-looking solutions is not convergent.

. Show that Equation i can be written entirely in first differences; that is
Ay, = ay + 0.5Ay,_, + €,. Find the particular solution for Ay,. (Hint:; Define

. .
¥ =4y, so that y* = a, — 0.5y%, + €, Find the particular solution for y* in
terms of the {¢,} sequence.) o

- Similarly transform the other equations into their first-difference form. Find

the bz.lckward-looking particular solution, if it exists, for the transformed
equations. '

E. Given the initial condition y,, find the solution for ¥, = ay=y,_, +€
_y €.

6. A researcher estimated the following relationship for the inflation rate (m,):

7, =-0.05+0.7m,_, + 0.6m,_, + ¢,

A. Suppose that in periods 0 and 1, the inflation rate was 10 and 11%, respec-

tlve.ly. Find the homogeneous, particular, and general solutions for the in-
flation rate.

. stcus; the shape of the impulse response function. Given that the United
States is not headed for runaway inflation, why do you believe that the re-
searcher’s equation is poorly estimated? ’

Consider the stochastic process Y=ay+anyv,_, + e,

A. Find the homogeneous solution and determine the stability condition.

B. Find the particular solution using the method of undetermined coefficients

[l;\(econsnder the Cagan demand for money function in which m, — p,=a-
Pray _[),)~ ,

A. Show that the backward-looking particular solution for p, is divergent.
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13, Obtain the forward-looking particular solution for p, in terms of the {m,}
sequence. In forming the general solution, why is it necessary to assume
that the money market is in long-run equilibrium?

C. Find the impact multiplier. How does an increase in m,,, affect p,? Provide
an intitive explanation of the shape of the entire impulse response func-

tion.

9. For each of the following, verify that the posited solution satisfies the differ-
ence equation. The symbols ¢. ¢, and a., denote constants:

Equation Solution
Ayi=ya=0 ye=c
B.y-y.=a y=ctay
Cy-y2=0 y,=c+ ey~
D. Y= Y2 =€ ‘ yl:C+CO(_I),+61+€1—2+61—4+"'

10. Part 1: For each of the following, determine whether {y,} reprf?sent§ a stable
process. Determine whether the characteristic roots are real or imaginary and
the real parts are positive or negative.

Ay =12y, +02y5 7 By, — 12y, + 04y,
C.y—-12y_,-12y., D. y,+ 1.2y,

E. y,— 0.7y, - 0.25y, 3+ 0.175y,; =0
(Hint: (x - 0.5)(x + 0.5)(x = 0.7) = X' = 0.7x? = 0.25x + 0.175.]

Part 2: Write each of the above equations using lag operators. Determing the
characteristic roots of the inverse characteristic equation.

11. Consider the stochastic difference equation:

Y= O'Syl—l +e - 0'561—-1

A. Suppose that the initial conditions arc such that y, = Oand ¢, =€) = 'O.
Now suppose that €, = 1. Determine the values y, through ys by forward it-
eration.

B. Find the homogeneous and particular solutions.
C. Impose the initial conditions in order to obtain the general solution.
D. Trace out the time path of an €, shock on the entire time path of the {v,] se-

quence.

12. Use Equation (1.5) to determine the restrictions on & and {3 necessary to ensure
that the {y,} process is stable.
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ENDNOTES

1. Another possibility is to obtain the forward-looking solution; such solutions are discussed
in Section 10.

2. Alternatively, you can substitute (1.26) into (1.17). Note that when ¢, is a pure random
disturbance, y, = a, + y,_; + €, is called a random walk plus drift model,

3. Any linear equation in the variables x, through x, is homogeneous if has the form ax, +
4% + - + a,x, = 0. To obtain the homogencc.. portion of (1.10), simply sct the inter-
cept term a, and forcing process x, equal to zero. Hence, the homogeneous equation for
(LIOYisv.=a,v_, +ay,_, + - + A,V

4. It b > q, the demand and supply curves do not intersect in the positive quadrant. The as-
sumption a > b guarantees that the equilibrium price is positive.

5. For example, if the forcing process is x, = €, + Bie., + Pae,p + -, the impact multiplier
can be taken as the partial derivative of y, with respect to x,. However, this text follows
the usual practice of considering multipliers with respect to the {e,} process.

APPENDIX 1 Imaginary Roots and de Moivre’s Theorem

Consider a second-order difference equation Yi = a1y, + ayy,_, such that the dis-

criminant d is negative (i.e., d = a? + 4a, < 0). From Section 6, we know that the
full homogeneous solution can be written in the form

Vi=A 0+ A0 (AL1)
where the two imaginary characteristic roots are

o, =, +iNd2  and

The purpose of this appendix is to explain how to rewrite and interpret (A1.1) in |

terms of standard trigonometric functions. You might first want to refresh your
memory concerning two useful trig identities. For any two angles 8, and 6,,

sin(8, + 6,) =sin(8,) cos(6,) + cos(8,) sin(B,)
cos(B; + 8,) = cos(8,) cos(8,) - sin(8,) sin(8,) (ALY

If 6, = 6,, we can drop subscripts and form
/
sin(26) = 2 sin(B) cos(0) ' :
€0s(28) = cos(B) cos(8) - sin(B) sin(0) ' (A1.4)

The first task is to demonstrate how to express imaginary numbers in the com-
plex plane. Consider Figure Al.1 in which the horizontal axis measures real num-
bers and the vertical axis imaginary numbers. The complex number a + bi can be
represented by the point a units. from the origin along the horizontal axis and b

o, = (a, —i\/Z)/Z (AL2)

pHarRimutdunrvie =
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Imaginary

0 a “  Real

xR

units from the origin along the vertical axis. It is convenient to represent the dl.S-
tance from the origin by the length of the vector denoted by r. Consider angle 6 in

triangle Oab and note that cos(8) = a/r and sin(6) = b/r. Hence, the lengths a and b.

can be measured by
a=rcos(f) and b =rsin(8)

In terms of (A1.2), we can define a = /2 and b= Jdrn. Thus, the chgracteristic‘
roots o, and @, can be written as

oy =a+bi=r[cos(B) +isin(B)] ;
o, =a-bi = rlcos(8) — i sin(6)] (AL5)

: . i | ’ in wi xpression
The next step is to consider the expressions ¢} and ¢t5. Begin with the exp
o? and recall that i2=—1:

af = {rlcos(B) + i sin(®)]} { r{cos(B) + i sin(6)])
- IJ[COS(G) cos(8) — sin(B) sin(B) + 2/ sin(B) cos(6)]

From (Al.4),
| a? = Plcos(28) + i sin(20)]
If we continue in this fashion, it is straighiforward to demonstrate that

af=rleos(rB) +isin(i8)]  and ;= rlcos(t0) ~isin(rB)]  (AL§)
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Since y! is a real number and @y and @, are complex, it follows that A and 4,

must be complex. Although A, and A, are arbitrary complex numbers, they must
have the form

A= B,[cos(B,) + i sin(B,)] and Az = By[cos(B,) - i sin(B,)] (ALT)

where B, and B, are arbitrary real numbers measured in radians.
In order to calculate A, (at!), use (A1.6) and (A1.7) to forn

A, 0= B [cos(B,) + i SIn(B))r feos() + i sin(19)] )
= B,7[cos(B,) cos(f) — sin(B,) sin(16) + i cos(19) sin(B,) + i sin(#0) cos(B,)]

Using (A1.3) and (A1.4), we obtain

A100= Bir'lcos(1® + By) + i sin(1 + B)] - (A1.8):
You should use the same technique to convince yourself that o

Ay =B\r'lcos(t0+ By) - isin( + By)] | (AL9)
Since the homogeneous solution yh is_lhe sum of (A1.8) and (A1.9), -

yi=B,r'cos(:9 + By) +isin(rB + B,)] + B,r'[cos(tB + B,) — i sin(16 + 8,)]
=2B,r'cos(19 + B,)

Since By is arbitrary, the homogeneous solution can be written in terms of the ar-
bitrary constants B, and B,

1= Byr' cos(6 + B,) (ALID)
Now imagine a circle with a radius of unity superimposed on Figure Al.1. The

stability condition is for the distance r = 0b to be less than unity. Hence, in the liter-

ature it is said that the stability condition s for the characteristic roots to lie within
this unit circle.

APPENDIX 2 Characteristic Roots in Higher-Order
Equations

/
The characteristic equation to an nth-order difference equation is

O~ a, 0"~ a0 e g = () S (ALY

As stated in Section 6, the n values of o that solve this characteristic equation
are called the characteristic roots. Denote the n solutions by «,, o, -, a,. Given

(AL10) .
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the results in Section 4, the linear combination A0t} + A, 05+ «-
lution to (Al.12).
A priori, the characteristic roots can take on any values. There is no resmctlon

+ A, is also a so-

that they be real versus complex nor any restriction concerning their sign or magni-

tude. Consider the following possibilities:

1. All the @, are real and distinct. There are several important subcases. First sup-
pose that each value of o, is less than unity in absolute value. In this case, the
homogeneous sclution (A1.12) converges since the limit of each o equals zero
as t approaches infinity. For a negative value of o, the expression @] is positive
for even values of r and negative for odd values of t. Thus, if any of the «; are
negative (but less than I in absolute value), the solution will tend to exhibit
some oscillation. If any of the @, are greater than unity in absolute value, the so-
lution will diverge.

2. All the o are real but m < n of the roots are repeated. Let the solution be
such that &, = 0, = -+ = @,,,. Call the single distinct value of this root a* and let
the other n—m roots be denoted by ¢,,., through c,. In the case of a second-or-
der equation with a repeated root, you saw that one solution was A&’ and the
other was A,t¢/. With m repeated roots, it is-casily verified that o™, Fat™, - |
™'’ are also solutions to the homogeneous equation. With m repeated roots,
the linear combination of all these solutions is

AT+ AJET + AP F e AT A Oy o F AL (ALLD)

3. Some of the roots are complex. Complex roots (which necessarily come in
conjugate pairs) have the form o, £ i6, where o; and 8 are real numbers and i is
defined 10 be V~1. For any such pair, a solution to the homogeneous equation is
A(a, +i8) + Ay(a, — i8)', where A, and A, are arbitrary constants. Transform-
ing to polar coordinates, we can write the associated two solutions in the form
B,r" cos(Br + B,) with arbitrary constants 3, and B,. Here stability hinges on the
magnitude of r'; if [rl < 1, the system converges, However, even if there is
convergence, convergence is not direct since the sine and cosine functions im-
part oscillatory behavior to the time path of y,. For example, if there are three
roots, two of which are complex, the homogencous solution has the form

Biricos(Br+B,) + A0,

Stability of Higher-Order Systems: In practice, it is difficult to find the actual
values of the characteristic roots. Unless the characteristic equation is easily fac-
tored, it is necessary to use numerical methods to obtain the characteristic roots.
However, for most purposes, it is sufficient to know the qualitative properties of the
solution; usually, it is sufficient to know whether all the roots lie within the unit cir-
cle. The Schur theorem gives the necessary and sufficient conditions for stability.
Given the characteristic equation of (A1.12), the theorem states that if all the n de-

'Al
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terminants below are pos;uve, the real parts of all characteristic roots are less than |

in absolute value:

Paa sraade 2k

1 ~a,
T | -a, 1
0 0 -a, -a,_, -a,.,
-1 0 -a, - -a, | 0 0 -a, —a,.,
-a 1 0 -, =~a ] 0 0 ~a
A = 1 2 | n
27—, 01 8, N ! I —a, -a,
-a,., —-a, 0 ~-a,, ~a, 0 0 1 -q
~A,_y =,y —a 0 0 1
] 0 0 0  -a, -a,, -a,
; -a; | 0 0 0 -a, . —ay
~-a, -—a, 1 0 0 0 -a, —-a,
A | TGt TGy <Gy . 1 0 0 0 .. -a,
oo ~a, O 0 . 0 I -ay =a, . . -a,,
-a,., —a, 0 . . 0 0 I . .. =,
~-a, —-as -a, . . 0 0 0 . v. I -a
-a, -a;, -ay . . -~a, 0 0 . .. 1

To understand the way each determinant is formed, note that each can be parti-
tioned into four subareas. Each subarea of A, is a triangular / x i matrix. The north-
west subarea has the value 1 on the diagonal and all zeros above the diagonal. The
subscript increases by I as we move down any column beginning from the diago-
nal. The southeast subarea is the transpose of the northwest subarea. Notice that the
northeast subarea has a, on the diagonal and all zeros below the diagonal. The sub-
script decreases by 1 as we move up any column beginning from the diagonal. The
southwest subarea is the transpose of the northeast subarea. As defined above, the
value of a, is unity.

Special Cases: As stated above, the Schur theorem gives the necessary and suffi-
cient-conditions for all roots to lie in the unit circle. Rather than calculate all these
determinants, it is often possible to use the simple rules discussed in Section 6.
Those of you familiar with matrix algebra may w1sh to consult Samuelson (1941)
for format proofs of these conditions.
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Chapter 2

STATIONARY TIME-SERIES MODELS

The theory of linear difference equations can be extended to allow the forcing
process {x,} to be stochastic. This class of linear stochastic difference equations un-
derlies much of the theory of time-series econometrics. Especially important is the
Box~Jenkins (1976) methodology for estimating time-series models of the form:

Y=g+ Yy ot apYi-p +€ + Blel—l +ot quz—q

Such models are called autoregressive integrated moving average (ARIMA)
time-series models. The aims of this chapter are to:

1. Present the theory of stochastic linear difference equations and consider the
time-series properties of stationary ARIMA models; a stationary ARIMA model
is called an ARMA model. It is shown that the stability conditions of the previ-
ous chapter are necessary conditions for stationarity.

2. Develop the tools used in estimating ARMA models. Especially useful are the
autocorrelation and partial autocorrelation functions. It is shown how th¢
Box-Jenkins methodology relies on these tools to estimate an ARMA model
from sample data.

3. Consider various test statistics to check for model adequacy. Several examples
of estimated ARMA models are analyzed in detail. It is shown how a properly
estimated model can be used for forecasting.

o /. '
1. :STOCHASTlC DIFFERENCE EQUATIVON MODELS .

" In this chapter, we continue to work with discrete, rather than continuous, time-

' series models. Recall from the discussion in Chapter | lhat we’can evaluate the :
funcuon y=f(t) at 1o and ro + hto form

3
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Ay = f((n +h) - f1y)

As a practical matter, most economic time-series data are collected for discrete
time periods. Thus, we consider only the equidistant intervals fo, £, + h, ty + 2h.
I, + 3k, ... and conveniently set h = 1. Be carcful to recognize, however, that a dis-
crete time series implies 7, but not necessarily v, is discrete. For example, although
Scotland’s annual rainfall is a continuous variable, the sequence of such annual
rainfall totals for years | through ¢ is a discrele time series. In many economic ap-
plications, ¢ refers to “time™ <o that h represents the change in time. However, ¢
need not refer to the type of time interval as measured by a clock or calendar.
Instead of allowing our measurement units to be minutes, days, quarters, or years.
we can use ¢ to refer to an ordered event number. We could let y, denote the out-
come of spin ¢ on a roulette wheel; y, can then take on any of the 38 values 00, 0, [,

., 30.

A discrete variable y is said to be a random variable (i.e., stochastic) if for any
real number r, there exists a probability p(y < r) that y takes on a value less than or
equal to r. This definition is fairly gencral; in common usage, it is typically implied
that there is at least one value of r for which 0 < p(y = r) < 1. If there is some r for
which p(y = r) = 1, y is deterministic rather than random.

It is useful to consider the elements of an observed time series { Yo, Y1 Yz» - + - » ¥}
as being realizations (i.e., outcomes) of a stochastic process. As in Chapter 1, we
continue 1o let the notation y, refer to an element of the entire sequence {y,}. In our
roulette example, y, denotes the outcome of spin 7 on a roulette wheel. If we ob-
serve spins 1 through 7, we can form the sequence yy, y, ..., Yy, OF mMore com-
pactly, {y,}. In the same way, the term y, could be used to denote GNP in time pe-
riod t. Since we cannot forecast GNP perfectly, y, is a random variable. Once we
learn the value of GNP in period 1, y, becomes one of the realized values from a sto-
chastic process. (Of course, measurement error may prevent us from ever knowing
the “true” value of GNP.)

For discrete variables, the probability distribution of y, is given by a formula (or
table) that specifies each possible realized value of y, and the probability associated

with that 1calization. If the realizations are linked across time, there exists the joint :
. yr = rp), where r; is the realized value

probability distribution p(y, = r,, y, =713, .
of y in period i. Having observed the ﬁrst t lcalmmons we can form the expec:ted
value of y,,1, Yo - -
conditional mean, or cxpected value, of y,,; is denoted by E,(y,.; ly,, Yoot - - s Y1) OF
Ly

Of course, if y, refers to the outcome of spinning a fair roulette wheel, the proba-
bility distribution is easily characterized. In contrast, we may never be able to com-
pletely describe the probability distribution for GNP. Nevertheless, the task of

economic theorists is to develop models that capture the essence of the true data- ‘

generating process. Stochastic difference equations are one convenient way of
modeling dynamic economic process. To take a simple example, suppose that the
Federal Reserve’s money supply target grows 3% each year. Hence,

, conditioned on the observed values of y, through y,. " This
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m} = 1.03m¥, | .1
or given the initial condition m?¥, the particular solution is
mF = (1.03)'m}

where m}
omy

the logarithm of the money supply target in year ¢
the initial condition for the target muucy supply in period zero

il

Of course, the actual money supply m, and target need not be equal. Suppose that
at the end of period ¢ — 1, there exist m,_, outstanding dollars that are carried.for-
ward into period ¢. Hence, at the beginning of t there are m,_, dollars so that the gap
between actual and desired money holdings is m* —m, _,. Suppose that the Fed can-
not perfectly control the money supply but attempts to change the money supply by

p percent (p < 100%) of any gap between the desired and actual money supply. We
can model this behavior as

Am,=p(mF —m,_)) +¢,

or using (2.1), we obtain

m,=p(1.03Ym3 + (1 —p)m,_, + €, 2.2)

where €, = the uncontrollable portion of the money supply

We assume the mean of ¢, is zero in all time periods.

{Although the economic theory is overly simple, the model does illustrate the key
points discussed above. Note the following:

1. Although t'he money supply is a continuous variable, (2.2) is a discrete differ-
ence equation. Since the forcing process {¢,} is stochastic, the money supply is
stoc;hastlc; we can call (2.2) a linear stochastic difference equation,

;2. If we knew the distribution of {e,}, we could calculate the distribution for each
. element in the {m,} sequence. Since (2.2) shows how the realizations of the {m,}
sequence are linked across time, we would be able to calculate the various joint
probabilities. Notice that the distribution of the money supply sequence is com-

pletely determined by the parameters of the difference equation (2.2) and distri-
bution of the {¢€,} sequence.

13. Having observed the first ¢ observations in the {m,} sequence, we can make
i forecasts of m,,,, m,,,, . ... For example, if we update (2.2) by one pericd and

take the conditional expectatxon the forecast of m,,, i is p(1. 03)*'m¥ + (1 =~ p)m,.
Hence, Egn,,, = p(1.03)* ! mg + (1 - p)m,.

Before we proceed too far along these lines, let us go back to the basw buddmg
‘block of discrete stochastic time-series models: the white-noise process. A se-
quence {€,} is a white-noise process if each value in the sequence has a mean of
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zero, a constant variance, and is serially uncorrelated. Formally, if the netation E(x)
denotes the theoretical mean value of x, the sequence {€,} is a white-neise process
if for each time period ¢,

Ele)=Lle,_)=-=0
E(€)=E(e)==0"  [orwvar(e) = var(e, ) == G7]
and for all

E(e,e,,)=E(e,_ e, )=0foralls [or covie, €,_,) = cov(e,_;, &) = 0]

In the remainder of this text, {€,} will always refer to a white-noise process and
o? to the variance of that process. When it is necessary to refer to two or more
white-noise processes, symbols such as {€,,} and {€,} will be used. Now, use a
white-noise process to construct the more interesting time series:

= 231’61—[ ¥

For each period ¢, x, is constructed by taking the values e, €,._,, ..., €_, and mul-
tiplying each by the associated value of B;. A sequence formed in this manner is
called 2 moving average of order ¢ and denoted by MA(q). To illustrate a typical
moving average process, suppose you win $1 if a fair coin shows a head and lose
$1 if it shows a tail. Denote the outcome on toss ¢ by €, (i.e., for toss ¢, €, is either
+31 or =$1). If you wish to keep track of your “hot streaks,” you might want to cal-
culate your average winnings on the last four tosses. For each coin toss ¢, your aver-
age winnings on the last four tosses are 1/4e, + 1/4¢,_, + 1/4¢,_, + 1/4¢,_5. In terms
of (2.3), this sequence is a moving average process such that 8, = 0.25 for i < 3 and
zero otherwise.

Although the {e,} sequence is a white-noise process, the constructed {x,] se-
quence will not be a white-noise process if two or more of the B, differ from zero.
To illustrate using an MA(1) process, set B, = 1. B, = 0.5, and all other B, = . In
this circumstance, E(x) = E(e, + 0.5¢,_,) = 0 and var(x,) = var(e, + 0.5¢,.)) = 1.25¢%
You can easily convince yourself that E(x,) = E(x,_,) and var(x,) = var(x,_,) for all 5.
Hence, the first two conditions for {x,} to be a white-noise process are satisfied.
However, E(xx,_,) = E[(e, + 0.5¢,_)(€,_, + 0.5¢,_.)] = E[€e,_; + 0.5(e,_)* + 0.5¢.,,
+0.23¢,_,€,_,) = 0.50% Given there exists a nonzero value of s such that E(v,x,_) #
0, the {x,} sequence is not a white-noise process.

Exercise | at the end of this chapter asks you to find the mean, variance, and co-
variance of your “hot streaks™ in coin tossing. For practice, you should complete
that exercise before continuing.
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2. ARMA MODELS

It is possible to combine a moving average process with a linear difference equa-
lion to obtain an autoregressive moving average model. Consider the pth-order dif-
ference equation:

Yr=ay+ L“iyl—i Ty (2.4)

Now let {x,} be the MA(g) process given by (2.3) so that we can wrile

P q : -
Y=ap+ zai)’r-i + EB.'EI_,‘ : A CRS)
i=} =0

We follow the convention of normalizing units so that B, is always equal to
unity. If the characteristic roots of (2.5) are all in the unit circle, {y,} is called an
autoregressive moving average (ARMA) model for y,. The autoregressive part of
the model is the “difference equation” given by the homogeneous portion of (2.4)
and the moving average part is the {x,} sequence. If the homogeneous part of the

difference equation contains p lags and the model for x, g lags, the model is called
;an ARMA(p, q) model. If ¢ = 0, the process is called a pure autoregressive process

denoted by AR(p), and if p = 0, the process is a pure moving average process de-

- noted by MA(g). In an ARMA model, it is perfectly permissible to allow p and/or ¢

to be infinite. In this chapter, we consider only models in which all‘the characteris-

“tic roots of (2.4) are within the unit circle. However, if one or more characteristic

roots is greater than or equal to unity, the {y,} sequence is said to be an integrated

- process and (2 5) is called an autoregressive integrated moving average (ARIMA)
- model.

Treating (2.5) as a difference equation suggests that we can “solve” for y, in
terms of the {¢,} sequence. The solution of an ARMA(p, g) model expressing y, in
terms of the {€,} sequence is the moving average representation of y,. The proce-

. dure is no different from that discussed in Chapter 1. For the AR(1) model Yi=ay +

a,y..; + €, the moving average representation was shown to be
Y =ap/(l=a))+ ZG{el—i
i=0
For the general ARMA(p, ¢) model, rewrite (2.5) using lag operators so that

zp:a:l" Adt *‘%"'ZB, €

AN

i=1

L




—~ 5

so that the particalar solution tor y, is
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q S
) ‘*EBIEI—:‘ :
- =0

y, = __“_7’___. (. N ¢ 1)1

l——ZU,Li

i=1

Fortunately, it will not be necessary for us to expand (2.6) to obtain the specific
coefficient for each element in {¢,}. The important point to recognize is that the ex-
pansion will yield an MA(eo) process. The issue is whether such an expansion is
convergent so that the stochastic difference equation given by (2.6) is stable. As
you will see in the next section, the stability condition is that the characteristic roots
of the polynomial (1 - Za,L") must lie outside of the unit circle. It is also shown that
if y, is a linear stochastic difference equation, the stability condition is a necessary
condition for the time series {y,] to be stationary.

3. STATIONARITY

Suppose that the quality control division of a manufacturing firm samples four ma-
chines each hour. Every hour, quality control finds the mean of the machines’ out-
put levels. The plot of each machine’s hourly output is shown in Figure 2.1. If y,
represents machine y;’s output at hour ¢, the means (¥,) are readily calculated as

4
5)‘, = EYII/4
i=]

For hours 5, 10, and 15, these mean values are 5.57, 5.59, and 5.73, respectively.

The sample variance for each hour can similarly be constructed. Unfortunately,
applied econometricians do not usually have the luxury of being able to obtain an
ensemble (i.e., multiple time-series data of the same process over the same time pe-
riod). Typically, we observe only one set of realizations for any particular series,
Fortunately, if {y,} is a stationary series, the mean, variance, and autocorrelations
can usually be well approximated by sufficiently long time averages based on the
single set of realizations. Suppose you observed only the output of machine 1 for
20 periods. If you knew that the output was stationary, you could approximate the
mean level of output by

20
5= nl20

1=1

In using this approximation, you would be assuming that the mean was the same
for each period. In this example, the means of the four series are 5.45, 5.66, 5.45,
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Figure2.1 Hourly output of four machines.
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and.5.71. Formally, a stochastic process having a finite mean and variance is co-
variance stationary if for all ¢ and r-s, ’

Ey)=E(y. )=p
Elo, - = El(y,, ~ ) = c;
E[(yl - l»l)(}’,-; - “-)] = E[(vz—j - “)(yr—j—: “)] =Y,

@.7)
[var(y)) = var(y,_,) = 67] 2.8)

(covhn ¥, ) =cov(y i y)] 29

where 11, &% and all v, are constants

In (2:9), allowing s = 0 means that Yo is equivalent to the variance of y,. Simply
put, a time series is covariance stationary if its mean and all amocovariz;nces are
unaffected by a change of time origin. In the literature, a covariance stationary
process is also referred to as a weakly stationary, second-order stationary, or wide-
sense stationary process. A strongly stationary process need not have a ﬁ;lite mean

- and/or variance (i.c., i andfor Yo need not be finite); this terminology implies that

weak stationarity can be a more stringent condition than strong stationarity. The
fext considers only covariance stationary series so that there is no ambiguity i.n us-
ing the terms stationary and covariance stationary interchangeably. One further
word about terminology. In multivariate models, the term autocovariance is re-
served foxf the covariance between y, and its own lags. Cross-covariance refers to
the covariance between one series and another. In unjvariate time-series models
there is no ambiguity and the terms autocovariance and covariance are used inter:
changeably.

For a covartince stationary series, we can define the autocorrelation between ¥
andy,_, as '

P, =Y
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here Y, and ¥, are defined by (2.9). ' ‘
; Sinczoy an}(; Yo are time-independent, the autocorrelation coefficients p, are also

time-independent. Although the autocorrelation bctweefl y, and y,_, can ((iilffer fr?;;
the autocorrelation between y, and y,_,, the autocorrelation })etween y,and y,_, m
be identical to that between y,_; and y,_,_,. Obviously, p= 1.

Stationarity Restrictions for an AR(1) Process

For expositional convenience, first consider the necessary an?-sgt"ﬁm‘efi»t gondmolns
for an AR(1) process 1o be stationary. Let | |

y=agta)y . tE

where €, = whitc noise

Suppose that the process started in period zero, so that yyis a dclerm1n¥suctm1[l;lzil:
condition. In Section 3 of the last chapter, it was shown that the solution to '
ec uation is (also see Question 2 at the end of this chapter)

-1 UL ‘
i fL ! 10
y,=002“{+“1>0+2a1£1-" @10
i=0 =0

Taking the expected value of (2.10), we obtain
D L
Eyo=aop aitaly . . @D
i=0

Updating by s periods yields

G

’ t+s-1 E )
f g al* 2.12)
EYies =0 Z“; +a"yo ‘ (

i=0

" we compare (2.11) and (2.12), it is clear that both means are. ;:Im::f:::r;?init;
Since Ey, is not equal to Ey,,,. the sequence c'annot be stanonarz.1 ;)he v ;eSSion
large, we can consider the limiting value .Of y,in (2.10). If g,[h SL;m g [1p+ oo
(a,)'y, converges to zero as ¢ becomes infinitely large an , 'fela <? i
ra,)? + (a;)® + -] converges to ay(} —a,). Thus, as t — e andi .

S 213
limy, 2510/(1“al)+20;€1—i 213
i=0

Now take expectations of (2.13) so that for sufﬁciemly large values of 1, I:E:y,i
1/(1 = @) Thus, the mean value of y, is finite and time-independent so that Ey, =
¢ eyt *

Stationarity 71

Ey,;, = for all +. Tumning to the limiting value of the variance, we find

EQ, - ) = El(€, + aye,_, + (a,)%,_, + )7
=01+ (a,) +(a)* + ] = 6¥[1 - (a,)%]

which is also finite and time-independent. Finally, it is easily demonstrated that the
limiting values of all autocovariances are finite and time-independent:

E[(yl - H)()’,—x - !»1)] = E{ {el +ae_; + (01)2614, + ."][EI—J + A€y (01)261—1-2 + ]}
=0T+ (@) + () + )
-=0%a,)'/[1 - (a,)?] (2.14)
In summary, if we can use the limiting value of (2.10), the {¥] sequ'ence‘will be
stationary. For any given y, and la, | < I, it follows that ¢ must be sufficiently
large. Thus, if a sample is generated by a process that has recently begun, the real-
izations may not be stationary. It is for this very reason that many econometricians
assume that the data-generating process has been occurring for an infinitely long
time. In practice, the researcher must be wary of any data generated from a “new”
process. For example, {y,} could represent the daily change in the dollar/mark ex-
change rate beginning immediately after the demise of the Bretton Woods fixed ex-
change rate system. Such a series may not be stationary due to the fact there were
deterministic initial conditions (exchange rate changes were essentially zero in the
Bretton Woods era). The careful researcher wishing to use stationary series might-
consider excluding some of these carlier observations from the period of analysis,
Little would change had we not been given the initial condition. Without the ini-

" tial value Yo, the sum of the homogeneous and particular solutions for y,is

Cvi=a/(-a)+ Y ale  +A@) S
: i=0 R

where A = an arbitrary constant

If we take the expectation of (2.15), it is clear that the {y,} sequence cannot be sta-

" tionary uniess the expression A(a,)' is equal to zero. Either the sequence must have
 started infinitely long ago (so that @ = 0) or the arbitrary constant A must be zero.

Recall that the arbitrary constant has the. interpretation of a deviation from long-run

- equilibrium. A succinct way to state the stability conditions is the following:

1. The homogeneous solution must be zero. Either the sequence must have started

infinitely far in the past or the process must always be in equilibrium (so that the
arbitrary constant is zero). - . ’

2. The chafacteristic root a, must be less than unity in absolute value.

These two conditions readily generalize to all ARMA(p, q) processes. We know
that the homogeneous solution to (2.5) has the form
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or if the roots are repeated,

S WY P
i=]

i=m+] -

where the A; represent p arbitrary values, o are the repeated roots, and the o are the
{p — m) distinct roots. '

If any portion of the homogeneous equation is present, the mean, variance, and
all covariances will be time-dependent. Hence, for any ARMA(p, q) model, station-
arity nccessitates that the homogeneous solution be zero. The next section ad-
dresses the stationarity restrictions for the particular solution.

4. STATIONARITY RESTRICTIONS FOR AN
ARMAp, q) MODEL

As a prelude to the stationarity conditions for the general ARMA(p, q) model, first
consider the restrictions necessary to ensure that an ARMA(2, 1) model is station-
ary. Since the magnitude of the intercept term does not affect the stability (or sta-
tionarity) conditions, set a, = 0 and write

Y=V +a’_vt—2+€1+ BXEI—-I (2-16)

From the previous section, we know that the homogeneous solution must be
zero. As such, it is only necessary to find the particular solution. Using the method
of undetermined coefficicnts, we can write the challenge solution as

Y 32”,61-, . (2.17)

For (2.17) to be a solution of (2.16), the various o must satisfy

OgE, + OLE, ) + Oy€,_y + O4€,_3 + - = A, (0g€, | + O €, 5 + 0L, 3 + (1€, 4 + )
+ @y O€ g + O &,y + Op€, 4 + OE s+ ) + € + Big,

To match coefficients on the terms containing €,, €,_;, €,_5, . . . , it is necessary to set

1. 0p=1
2. 0y =a,05+ P,

~

3. 0= a0 + a0, foralliz?2

=o,=a +B

' . I
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The key point is that for i > 2, the coefficients satisfy the difference equation o; =
@0, + a,0 5. If the characteristic roots of (2.16) are within the unit circle, the
{o;} must constitute a convergent sequence. For example, reconsider the case in
which a, = 1.6, a, = ~0.9, and let B, = 0.5. Worksheet 2.1 shows that the coeffi-

cients satisfying (2.17) are 1, 2.1, 2.46, 2.046, 1.06, ~0.146, . . . . (also see
Worksheet 1.2 of the previous chapter).

WORKSHEET 2.1  Coefficients of the ARMA(2,1) Process:
Ye=1.6y,;—09y,, + e, + 0.5¢,,.

If we use the method of undetermined coefficients, the ¢, must satisfy
%=1
o, =1.6+0.5 hence, a, = 2.1

=160, -090, foralli=234...

Notice that the coefficients follow a second-order difference equationh with imagi-
nary roots. With de Moivre's theorem, the coefficients will satisfy

a; =0.949'B, cos(0.567i + B,)
Imposing the initial conditions fof (o2 and a, yields
1v= B, cos(B,) and 2.1 =0.9490, cos(0.567 ‘+:f32)
Since B, = 1/cos(B,), we seek the solution to
cos(B,) — (0.949/2.1) - cos(0.567 + B,) =0
From a trig table, the solution for B, is —1.197. Hence, the o, satisfy
- 1/1.197 - 0.949 - c0s(0.567+i - 1.197)

Alternatively, we ¢an use the initial values of O and @, to find the other &, by iter-
ation. The sequence of the ¢, is shown in the graph below.
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The first 10 values of the sequence are k. before proceeding,) Considering conditions (2.7), (2.8), and (2.9), we ask the fol-

o 1 ; s S 6 . g 9 10 } lowing: |

G 100 2.10 246 2046 1.06 ~0.146 1187 1786 1961 —1226 —0.378 1 1. Is the mean finite and tin’le-independer'u? Take the expected value of .x, and re-
E member that the expectation of a sum is the sum of the individual expectations.
e Hence, -

To verify that the {v,) sequence generated by (2.17) is stationary, take the expec-
tation of (2.17) to form Ey, = Ey,_; = 0 for all t and /. Hence, the mean is finite and . E(x)=E(e, + Bre,_, + Ba€,a + )
ime-i 1ant. Si ¢ is assumed to be a white-noise proc.ss, ihe & T Co )
llm.e mvanant‘ Since the {€,} §equ§ncu 1 assu . b e p oo i | 3 = Ee, + B,Ee,., + Pofie, + =0
variance of y, is constant and time-independent, that is, >

, Repeat the procedure win x,_:
Var(y,) = E[0g€, + O €,y + O€, + 03€,3 + )]

2
=o' D,
i=0

E(,Y,_:) = E(er-—s + BIEI—J—I + Bler-x-z + "') =0

Hence, all elements in the (x,} sequence have the same finite mean (it = 0).

Hence, var(y,) = var(y,_,) for all 7 and s. Finally, the covariance between y, and 2. Is the variance finite and time-independent? Form var(x,) as

Yies i Var(x) = E[(e, + Bie. + Bye + 7]

Cov(y,,y,_l) - E[(E, O €+ O 5+ "')(El—l + O €,_5 + 0 €, 3 + 0LE, 4 + )]
=070y + OO + 030, + )

Cov(y, ¥ra) = El(g, + 06,y + Cp€py + )€, + Q€3 + 0€, 4 + Ua€ps + 20
= 030, + O30, + OOy + )

Square the term in parentheses and take expectations. Since {e€,} is a white-
noise process, all terms Fee, . = 0 for s # 0. Hence, :

Var() = E(e)? + (B)E(€,-1) + (B E(e, o) + -
=01+ (B)* + (B)* + -]

so that . )

As long as Z(B,)? is finite, it follows that var(x,) is finite. Thus, Z(B,)* being fi-

nite is a necessary condition for {x,} to be stationary. To determine whether
var(x,) = var(x,_.), form

Cov(y, Ys) = GO, + Oy Oy + CgyyOlp + +7) (2.18)

Hence, cov(y, ¥,,) is constant and independent of 1. Instead, if the characteristic
roots of (2.16) do not lie within the unit circle, the {0} sequence will not be con-
vergent. As such, the {y,} sequence cannot be convergent.

It is not too difficult to generalize these results to the entire class of ARMA(p, q)
models. Begin by considering the conditions ensuring the stationarity of a pure
MA(e0) process. By appropriately restricting the B, all the finite-order MA(g)
processes can be obtained as special cases. Consider

Var(x,) = E[(€,_ + Bre,y + Brgryr + )P = [1 + B + (B + ]

Thﬁs, var(x,) = var(x,_,) forall rand t - 5.

3. Are all autocovariances finite and time-independent? First form E(x.x,_,) as
E(xex, ) = El(e, + Brey + Pagg + )€ + Bregy + Bagrnyy + )]
Carrying out the multiplication and noting that E(ee,_;) = 0 for s # 0, we get

E(xx ) = 67 (B, + BiBouy + Bofra + )
where {€,} = a white-noise process with variance o? Lo o - "

, l‘iesmf:tmg t}}e sum B, + '[S,BJH + B,B,.2.+ - to be finite means that E(xx,_,) is
finite. Given this second restriction, it is clear that the covariance between x, and
x,_, depends on'only the number of periods separating the variables (i.e., the
value of s), but not the time subscript 1. ‘

We have already determined that {x,} is not a white-noise process; now the issue
is whether {x,} is covariance stationary? (If you need to refresh your memory con- .
cerning mathematical expectations, you should consult the appendix to this chapter

/
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In summary. the necessary and sufficient conditions for any MA process to be
stationary are for the sums of (1), Z(B,)%, and of (2). (B, + B\B,ss + BiBeez + =) t0
be finite. Since (2) must hold for all values of s and B, = 1, condition (1) is redun-
dant. The direct implication is that a finite-order MA process will always be sta-
tionary. For an infinite-order process, (2) must hold for all s > 0.

Stationarity Restrictions for the Autoregressive Coefficients

Now consider the pure autoregressive model:

14
Y=o+ Y ayte o7 2.19)
i=1 :

If the characteristic roots of the homogeneous equation of (2,19) all lie inside the
unit circle, it is possible to write the particular solution as ' o

. a -
, o, . Vi :_—O—+zai€r-i . . .
e i e G e 20

p
l_zni i=0

i=]

where the ¢; = undetermined coefficients

Although it is possible to find the undetermined coefficients {0}, we know that
(2.20) is a convergent sequence so long as the characteristic roots of (2.19) are in-
side the unit circle. To sketch the proof, the method of undetermined coefficients
allows us to write the particular sclution in the form of (2.20). We also know-that
the sequence {0} will eventuzily solve the difference equation: C

o= @ Uy = 304 5~ — a0, ,=0 BN
i
»
If the characteristic roots of (2.21) are all inside the unit circle, the {a;} sequence
will be convergent. Although (2.20) is an infinite-order moving average process,
the convergence of the MA coefficients implies that Zot? is finite. Hence, we can
use (2.20) to check the three conditions for stationarity. Since 05 =1, |

1

| Eyl:E.vH:aO/(l ‘Eai) ‘

You should recall from Chapter | that a necessary condition of all characteristic
roots to lie inside the unit circle is | = Za; # 0. Hence, the mean of the sequence'is
finite and time-invariant: i

2. Var(y,) = E[{€, + 0,€,_, + 0,€,_, + (1€, 4 + =)'} = 07 Zof

'-. of (2.23) is stationary as long as the roots of | =

.. vergent sequence. Time-series econometrics rul
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and
Var(yl—_\') = E[(EI"S + alel—x——l + aZEr—s—2 + aJel—r—J + )ZJ = Glza;
. 20 e . .
Given that Za? is finite, the variance is finite and time-independent

3. Cov(y, y,.) = El(e, + aje,_, + O, )€y Oy, + e,y 4 )
TV OGO+ 0, + )

Thus, the covariance between Yoand y,
and 1 —s.

Nothing of substance is chan ini
. ged by combining the A
into the general ARMA(p, ¢) model: ® e ARP) and MAG) models

1S constant and time-invariant for al] ¢

= ag +Za"y"i +.\‘I ) Ca
i=|
“ q AT ey e
T ZB"E'—" 2.22)
RS i=0 ; .

‘ If t.}fle roots of the inverse characteristic equation lie ouiside of the unit circle
t[}1’.6., if the roots qf the 'homogeneous form of (2.22) lie inside the.unit circle] and
e {x,} sequence is Stattonary, the {y,} sequence will be stationary. Consider

dy €

Yy =

‘ B Bre,y
7 +_%P +—-Ep RN (2.23)

p
1-Yq, 1-Y ol =Y al =Y al
=]

=l iz =1

. Withvery little effort, you can convince yourself that the {

‘ .. . h Y.} sequence satisfies
the three conditions for stationarity. Each of the expressions e

‘ on the right-hand side
' . . Za,L' are outside the unit circle
Given fhat {x,} is stationary, only the roots of the autoregressive portion of (2.22)
(?etermme whether the {y,) sequence is stationary. -

: \ghat :?bout the possibility of using the forward-looking solution? For example
In Cagan’s monetary model you saw that the forward:looking solution yields a con:
: . . es out this type ‘of perfect fore-
mght/forward-lookmg solution. It is the expectation of future events (not the real-

ized .value of future.evcnts) that affects the present. After all, if you had perfect
foresight, econometric forecasting would be unnecessary. )
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5. THE AUTOCORRELATION FUNCTION

The autocovariances and autcorrelations of the type found in (2.18) serve as useful
tools in the Box-Jerkins (1976) approach to identifying and estimating time-series
models. We illustrate by considering four important examples: the AR(l), AR(2),
MA(D and ARMAC(], 1) models. For the AR(1) model, y, = ap + a,y.; + &, 2.14)
shows

Yo = 01 = (¢,)’)
y, = G a T = (a,))

Forming the autocorrelations by dividing each v, by v, we find that py=1,p, =
ay; Py =@ ..., p,=(a). For an AR(1) process, a necessary condition for sta-
tionarity is for lal f< 1. Thus, the plot of p, against s—called the autocorrelation
function (ACF) or correlogram—should converge to zero geometrically if the se-
ries is stationary. If a, is positive, convergence will be direct, and if a, is negative,
the autocorrelations will follow a dampened oscillatory path around zero. The first
two graphs on the left-hand side of Figurc 2.2 show the theoretical autocorrela_lién
functions for a, = 0.7 and a, = —0.7, respectively. Here, po is not shown since its
value is necessarily unity. ‘

The Autocorrelation Function of an AR(2) Process "

Now consider the more complicated AR(2) process y, = @y, + dpYz + €. We
omit an intercept term {a,) since it has no eflect on the ACF. For the second-order
process to be stationary, we know that it is necessary (o restrict the roots of (I'—
a,L = a,L*) to be outside the unit circle. In Section 4, we derived the autocovari-
ances of an ARMA(2, 1) process by usc of the method of undetermined coeffi-
cients. Now we want to illustrate an alternative technique using the Yule-Walker
equations. Multiply the second-order difference equation by y, fors=0,s=1,
s =72, . .and take expectations to form

Ey,}‘, = (IlEyl—-l.Vl + (11[‘ V-2V + EElyl
E.ylyl—l = alE.YIAI.Yr—I + a,‘Eyl—lyz—l + EEJ/—AI
Eyy, 2= qEy, g+ @EY, o + E€yis

E}'L)JI'-V = aIE.yl—lyz—x + UZE.VI—Z.VIvJ + Eﬁlyl—.( (224)
By definition, the autocovariances of a stationary series are such that Eyy, , =
Evi_y, = E¥)oYeses = Y- We also know that the coefficient on e, is unity so that

Ee,y, =% Since Ee,y,_, = 0, we can use the cquations in (2.24) to form

Vo= @Y+ ApYa + O0 i e (229)

-0.5 1

Figure 2.2 Theoretical ACF and PACF p
ACF
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80 Stationary Time-Series Models

Yi =aYo + aty A (2.26)
Y= @Yoo + a2Ye-z o ‘ ) » (2.27)

Dividing (2.26) and (2.27} by v, yields

P =a;pp + asp, (2.28)
px = alp:—l + a2p:-2 (229)

We know ﬁxat Po = 1, so that from (2.28), p, = a,/(1 = a,). Hence, we tan find all

p, for s 2 2 by solving the difference equation (2.29). For example, for s = 2 and
s=3, ] . 1

pr=(a,)/(1-ay) +a,
Py =a,[(@)/(1 — a)+ a,] + aa,/(1 — ay)

Although the values of the p, are cumbersome to derive, we can easily character-

ize their properties. Given the solutions for p, and p,, the key point to note is that
the p, all satisfy the difference equation (2.29). As in the general case of a second-
order difference equation, the solution may be oscillatory or direct. Note that the
stationarity condition for y, necessitates that the characteristic roots of (2.29) lie in-
side of the unit circle. Hence, the {p,} sequence must be convergent. The correlo-

gram for an AR(2) process must be such that p, = 1 and p, is determined by (2.28).

These two values can be viewed as “initial values” for the second-order difference
equation (2.29).

The fourth graph on the left-hand side of Figure 2.2 shows the ACF for the
process y, — 0.7y,_, — 0.49y,_, + €,. The propertics of the various p, follow directly
from the homogeneous equation y, = 0.7y,_, + 0.49y,, = 0. The roots are obtained
from the solution to '

o= {0.7 £ [(=0.7)% - 4(0.49)]'2) /2

Since the discriminant d = (=0.7)% — 4(0.49) is negative, the characteristic roots
are imaginary so that the solution oscillates. However, since a, = -0.49, the solu-
tion is convergent and the {y,} sequence is stationary. ’

Finally, we may wish to find the covariances rather than the autocorrelations.
Since we know all the autocorrelations, if we can find the variance of y, (i.e., ¥,),
we can {ind all the other y,. To find 7, use (2.25) and note that p; = Y,/Yo, S0

Var()’:)(pq —a\p, —aPy) = o’

Substittion for py, py, and p, yields

ol
_ =[(1—ay)(1+a,
Yo = var(y,) = [(1—ay)/( +u*)]l:(al+az—1)(02‘al-l):l
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The Autocorrelation Function of an MA(1) Process

Next .consider the. M{X(l) process y, = €, + Be,_,. Again, obtain the Yule-Walker
equations by multiplying y, by each y,_, and take expectations:

YO = var(yl) = EyLyl = E[(ﬁ, + BE,,,)(G, + Bel—l)] = (I + B2)02
Yl = Eyr.))l—l = E[(E/ + Ber—l)(ey—l + BEI—Z)] = BCZ

and

YX = E)’Lyl—s = E[(el + Bel—l)(el‘x + BEI—S‘l)] = O for all s > l

Hence, by dividing each v, by 7,, it is immediately seen that the ACF is simply
Po= Lp =P/l +PB*, andp, =0 for all s > 1. The third graph on the left-hand side
of Figure 2.2 shows the ACF for the MA(1) process y, =€, ~ 0.7¢,_,. As an exercise, -

you should demonstrate that the ACF for the MA(2) process y, = €, + Bie,, + B,
€., has two spikes and then cuts to zero.

The Autocorrelation Function of an ABMA(1, 1) Process

Finally, lety, = a)y,_, + €, + B,e,_,. Using the now familiar procedure, we find the
Yule-Walker equations: '

Eyy,=a\Ey,,y, + Eey, + BiEeyy, = Yo=ayY, + 0% + Bila; +Bo? a0y

Eyy . =aiEy, .y, + Eey,_, + BiEe,_y,-, =Y =a,Y + B,0? (23D
Eyy, 2=a\Ey Y0+ Eey, 5 + BiEe1y.n =% =aY (2.32)
EyL)’z—: = alEyr—ly.»—: + Eezyz—s + BlEer——lyr-: = ‘Y: = ale—l (2-33)

Solving (2.30) and (2.31) simultaneously for Yo and v, yields

= 1+Bf +2aB
(1-a})

_(I+aP)a +Bl)0'2
(1-af)

Hence,
g = (raB@B)
YT (+pl+2a8) - B:34)

and p, = a,p,._, forall s > 2.
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82 Stationary Time-Series Models

Thus, the ACF for an ARMA(!, 1) process is such that the magnitude of p, de-
pends on both a, and B,. Beginning with this value of p,, the ACF of an ARMA(],
1) process looks like that of the AR(1) process. If 0 < a, < 1, convergence will be
direct, and if -1 < a, < 0, the autocorrelations will oscillate. The ACF for the func-
tion y, = -0.7y,_, + € — 0.7¢,_, is shown in the last graph on the left-hand side of
Figure 2.2. The top portion of Worksheet 2.2 derives these autocorrelations.

We leave you with the exercise of deriving the correlogram of the ARMAQR, 1)
process used in Worksheet 2.1. You should be able to recognize the point that the
correlogram can reveal the pattern of the autoregressive coefficients. For an
ARMA(p, ¢) model beginning at lag g, the values of the p, will satisfy

Pi=mPiy ¥ AP+ AP,

The first p — | values can be treated as initial conditions that satisfy the Yule-
Walker equations.

6. THE PARTIAL AUTOCORRELATION FUNCTION

In an AR(1) process, y, and y,_, are correlated even though y,_, does not directly ap-
pear in the model. The correlation between y, and y,_, (i.e., p;) is equal to the corre-
lation between y, and y,_, (i.e., p,) multiplicd by the correlation between y,, and
y._2 (i.e., p; again) so that p, = p}. It is important to note that all such “indirect”
correlations are present in the ACF of any autoregressive process. In contrast, the
partial autocorrelation between y, and y,_, climinates the effects of the intervening
values y,_, through y,_.,,. As such, in an AR(1) process, the partial autocorrelation
between y, and y,_, is equal to zero. The most direct way to find the partial autocor-
relation function is to first form the series {y}*} by subtracting the mean of y (1)
from each observation: y* = y, ~ p. Next, form the first-order autoregression equa-
tion:

PR *
)r*-(DHYI‘I +¢,

where: e, = .n error term

Here, the symbol {e,} is used since this error process may not be white-noise.

Since there are no intervening values, ¢,, is both the autocorrelation and partial
autocorrelation between y, and y,_,. Now form the second-order autoregression
equation:

YE =0k 0yt e

Here, ¢,, is the partial autocorrelation coefficient between y, and y,_,. In other
words, ¢,, is the correlation between y, and y,_, controlling for (i.e., “netting out”)
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the effect of y..,. Repeating this process for all additional lags s yields the partial
autocorrelation function (PACF). In practice, with sample size T, only T/4 lags are
used in obtaining the sample PACF. '

Since most statistical computer packages perform these transformations, there is
little need to elaborate on the computational procedure. However, it should be
pointed out that a simple computional method relying on the so-called Yule-
Walker equations is available. One can form the partial autocorrelations from the
autocorrelations as ' '

b =0 ) - o (2.35)
b= {(p2—pDI(1 - p} (2.36)

andform@ndl@s, o ) |

! s—1 ’
Ps— Z ¢s—l.jp:—j
=

by = ——p—,  §=3,4,5, ... (237
I*Z‘b;-x,jpj L
j=1

. where q)xj: q):—l.j_q)nq):—l.:—j»j: 1,2,3,... ys—1

For an AR(p) process, there is no direct correlation between y, and y,_, for s > p.
Hence, all values of ¢,, for s > p will be zero and the PACF fora pure AR(p)

 process should cut to zero for all lags greater than p. This is a useful feature of the
. PACF that can aid in the identification of an AR(p) model. In contrast, consider the

PACF for the MA(1) process y, = €, + Be,_,. As long as B # —1, we can write y, /(1
+ pL) =, which we know has the infinite-order autoregressive representation:

Y= B)ﬁ—lb"’ BZyr~2 - ﬁSYr—s t+ =€

As such, the PACF will nor jump to zero since y, will be correlated with all 'its
own lags. Instead, the PACF coefficients exhibit'a geometrically decaying pattern,

: If B <0, decay is direct, and if B > 0, the PACF coefficients oscillate.

Worksheet 2.2 illustrates the procedure used in constructing the PACF for the

3 ARMA(}I, 1) model shown in the fifth graph on the right-hand side of Figure 2.2:

»=-0Ty., +¢-07¢

First calculate the autocorrelations. Clearly, p, = 1; use Equation (2.34) to calcu-

. late as p, = -0.8445. Thereafter, the ACF coefficients decay at the rate p, =
* (-0.0)p,, for i 2 2. Using (2.35) and (2.36), we obtain ¢,, = —0,8445 and ¢, =
. 2.—;).4250. All subsequent ¢,, and ¢,, can be calculated from (2.37) as in Worksheet
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WORKSHEET 2.2 Calculation of the partial autocorrelations of
Ye=-0T7y. ., +€-0Te,, . . R

The Partial Autocorrelation F, unction 85

Table 2.1:  Properties of the ACF and PACF

Process ACF PACF
e S J . White-noise Allp, =0, Alld,, =0.
: .34) to calculate a8 ‘ Ps
STEP 1: Calculate the autocorrelations. Use (2.34) & N AR(1:a,>0  Direct exponential decay: p, = aj. ¢ =py;o,=0fors>2,
. e AR():a, <0 Oscillating decay: p.=a. ¢ =p;i0,.,=0fors22.
o = (14+0.49(-0.7-0.7) = -0.8445 o ) AR(p) Decays toward zero. Coefficients may Spikes through lag p. All 0,,
1= ' i =
14+ 0.49 +2(0.49 oscillate. =0fors>p.
MA(D):B>0 Positive spike at lag 1. p, =0 for Oscillating decay: ¢,, > 0.
The remaining correlations decay at the rate p; = -0.7p,_,, so that £27

STEP2:

STEP 3:

. Similarly. (0 find s, use

MA():B<0  Negative spikeatlag 1.p, = 0 for s > 2.

Decay: ¢,, <0.
- 0.59] py=-0.414 p,=0.290 ps=-0.203 . ARMA(I, 1): Exponential decay beginning at lag 1. Oscillating decay beginning at
P2=1 =-0.010 pg = 0.070 Po=-0.049 - - 3 a,>0 Signp,=sign(a,+ﬂ). lag 1. ¢, =p,.
pe=0.142 pr=-0. 8 ARMA(I, 1): Oscillating decay beginning at lag 1. Exponentiat decay beginning at
. . . d (2.36). a, <0 Sign p, =sign(a, + ). » lag 1. ¢,, =p, and sign(é,,)
Calculate the first two partial autocorrelations using (2.35) and ( . = sign(6, ).
Hence ARMA (p, q) Decay (either direct or oscillatory) Decay (either direct or oscil-
’ B 4 beginning at lag ¢. . latory) beginning at lag p.
o, =p, =-0.844 _ ' 3 o
2= [0.591 ~ (-0.8445 Y[ - (-0.8445)") =-0.425
Construct all remaining ¢, iteratively using (2.37). To find ¢5,, note that

$21 = &5y = 0201y = —1.204 and fOﬂp

-1
5 2
b3y = [Pz = 2¢’2,‘P3-/’ ]{1 - 2 ¢2jpj}
j=1

j=

More generally, the PACF of a stationary ARMA(p, g) process must ultimately
decay toward zero beginning at lag p. The decay pattern depends on the coefficients
of the polynomial (1 + B,L + BoL? + - 4 B,L?). Table 2.1 summarizes some of the
properties at the ACF and PACF for various ARMA processes. Also, the right-

hand-side graphs of Figure 2.2 show the partial autocorrelation functions of the five

indicated processes.
=[~0.414 - (=1.204)(0.591) — (-0.425)(-0.8445)}/

For stationary processes, the key points to note are the following:
204)(-0.8445) — (—0.425)(0.591)]
[1 —(~1.204)(-0.8445) — (

1. The ACF of an ARMA(p, g) process will begin to decay at lag q. Beginning at
lag g, the coefficients of the ACF (i.e., the p,) will satisfy the difference equation
Pi=ap,  +ap,5+ - + a,P;-,)- Since the characteristic roots are inside the
unit circle, the autocorrelations will decay beginning at lag g. Moreover, the pat-

tern of the autocorrelation coefficients wil] mimic that suggested by the charac-
teristic roots.

=-0.262

!

s e Rl
=1pa— ) Gypaj | 1= ) dyjp;
bas =1 Pa }2:; A g’ 2. The PACF of an ARMA(p, q) process will begin to decay at lag p. Beginning at

. lag p, the coefficients of the PACF (i.e., the d,,) will mimic the ACF coefficients

. from the model y,/(1 + BiL+BL+ -+ BLY. :

' We can jllustrate the usefulness of the
Yi=ag+ 0.7y, + €. If we compare th
shows the monotonic decay of the aut
- single spike at lag 1. Suppose that a r
the ACF and PACF functions, If the ac
. retical patterns, the researcher might

Since Oy = Oy — G330, it follows that ¢3, = —1.315 and &5, = _074
Hence, ' ACF and PACF functions using the model
¢ top two graphs of Figure 2.2, the ACF
ocorrelations, while the PACFE exhibits the
esearcher collected sample data and plotted
tual patterns compared favorably to the theo-
try to estimate data using an AR(1) model.

das=-0.173 |

If we continue in this fashion, it is possible to demonstrate that ¢5,%
—0.117, g = ~0.081, 0, = —0.056, and dgq = —0.039.

T
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distributed with a mean equal to zero. For the PACF coefficients, under the null hy-
pothesis of an AR(p) model (i.e, under the null that all ¢, .. are zero), the vari-
ance of the ¢, ,,; is approximately T~".

In practice, we can use these sample values to form the sample autocorrelation
and partial autocorrelation functions and test for significance using (2.41). For ex-
ample, if we use a 95% confidence interval (i.e., two standard deviations), and the °

Correspondingly, if the ACF exhibited a single spike and the PACF monotonic de- -
cay (see the third graph of the figure for the model y, = €, — 0.7¢,_), the researcher

might try an MA(1) model.

7. SAMPLE AUTOCORRELATIONS OF « @ |
STATIONARY SERIES - F

T FEy oo e ey v

calculated value of r, exceeds 277", it is possible to reject the null hypothesis that
> first-order autocorrelation is 1no: “2tistically different from zero. Rejecting this.
. : ; - hypothesis means rejecting an MA(s — 1) = MA(0) process and accepting the alter-
In practice, the {heoretical mean, variance, and autocorrelations of a series are un f YpP! ) b4 ( ) @p pung

native g > 0. Next, try s = 2; var(r,) is (1 + 22T 1f » s 0.5 and T 100, the vari-

. ‘s is stationary, we can use the sample ( L+ |
known to lhe researcher, O e o ance of r, is 0.015 and the standard deviation about 0.123. Thus, if the calculated

mean, variance, and autocorrelations to estimate the parameters of the actual data-

generating process. Let there be T observations labeled y, through y,. We can let ¥,
&, and r, be estimates of i, o?, and p,, respectively, where:

T
Z)’l
y == (2.38)
Y T

s ey ey

(2.39)

and foreach valueof s=1,2,...,

T —
3 =P =)
ro= sl . (2.40)

, ‘Z(y, -’
r=1

The sample autocorrelation function [i.e., the ACF dcriv‘ed 'from. (2.40)]‘ and1 1
PACF can be compared to various theoretical functions to help identify the actual !

nature of the data-generating process. Box and Jcnk.ins (1?76) disc.uss the dl]?m:u
tion of the sample values of 7, under the null that y, is stationary with normaby' is-
tributed errors. Allowing var(r,) to denote the sampling variance of r,, they obtain

fors=1

= 1+22 r; T fors>1 @41

if the true value of r, =0 [ie, if the true data-generating process is'an MAG —al})
process). Moreover, in large samples (i.e., for large values of 1), r, will be normally

value of r* exceeds 2(0.123), it is possible to reject the hypothesis r, = 0. Here, re-
jecting the null means accepting the alternative that g > 1. Repeating for the various
values of s is helpful in identifying the order to the process. In practice, the maxi-
mum number of sample autocorrelations and partial autocorrelations to use is 7/4.

When looking over a large number of autocorrelations, we will see that some ex-
ceed two standard deviations as a result of pure chance even though the true values
in the data-generating process are zero. The Q-statistic can be used to test whether a
group of autocorrelations is significantly different from zero. Box and Pierce
(1970) used the sample autocorrelations to form the statistic

Q0= Ti r,(2
k=l

If the data are generated from a stationary ARMA process, Q is asymptotically
x* distributed with s degrees of freedom. The intuition behind the use of the statis-
tic is that high sample autocorrelations lead to large values of Q. Certainly, a white-
noise process (in which all autocorrelations should be zero) would have a Q value
of zero. If the calculated value of Q exceeds the appropriate value in a ¥? table, we
can rejéect the null of no significant autocorrelations. Note that rejecting the null
means accepting an alternative that at least one autocorrelation is not zero. '

i A problem with the Box-Pierce Q-statistic is that it works poorly even in moder-

" ately large samples. Ljung and Box (1978) report superior small sample perfor-

mance for the modified Q-statistic calculated as

Q=T(T+2)Y (T ~K) L aw
k=t B

zero at the specified significance level. The Box—Pierce and Ljung-Box Q-statistics
also serve as a check to see if the residuals from an estimated ARMA(p. g) model

RS0V 8 124

If the sample value of Q calculated from (2.42) exceeds the critical value of 3%
with s degrees of freedom, then at least one value of r, is statistically different from
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behave as a white-noise process. However, when we form the s correlations from
an estimated ARMA(p, g) model. the degrees of freedom are reduced by the num-
ber of estimated coefficients. Hence, if using the residuals of an ARMA(p. q)
model, O has a % with s-p-q degrees of freedom (if a constant is included, the de-
grees of freedom are s-p-g-1).

Model Selection Criteria

One natural question to ask of any estimated model is: How well does it fit the
data? Adding additivnai lags for p andivr ¢ will necessarily reduce the su of
squares of the estimated residuals. However. adding such lags entails the estimation
of additional coefficients and an associated loss of degress of freedom. Moreover,
the inclusion of extranecus coefficients will reduce the forecasting performance of
the fitted model. There exist various model selection criteria that trade off a reduc-
tion in the sum of squares of the residuals for a more parsimonious model. The

two most commonly used model selection criteria are the Akaike information crite-

rion (AIC) and Schwartz Bayesian criterion (SBC), calculated as

AIC = T In(residual sum of squares) + 2n
SBC = 7T In(residual sum of squares) + n in(T)

where n= number of parameters estimated (p + g + possible constant term); ©
T = number of usable observations. :

Typically in creating lagged variables, some observations are lost. To adequately
compare the alternative models, T should be kept fixed. For example, with 100 data
points, estimate an AR(1) and AR(2) using only the last 98 observations in each es-
timation. Compare the two models using 7= 98.2

Ideally, the AIC and SBC will be as small as possible (note that both can be neg-
ative). We can use these criteria to aid in selecting the most appropriate model;
model A is said to fit better than model B if the AIC (or SBC) for A is smailer than
that for model B. In using the criteria to compare alternative models, we must esti-
mate over the same sample period so that they will be comparable. For each, in-
creasiny the number of regressors increases 7, but should have the effect of reduc-
ing the residual sum of squares. Thus, if a regressor has no explanatory power,
adding it to the model will cause both the AIC and SBC to increase. Since In(T)
will be greater than 2, the SBC will always select a more parsimonious model than
the AIC: the marginal cost of adding regressors is greater with the SBC than the
AlC.

Of the two criteria, the SBC has superior large sample properties. Let the true or-
der of the data-generating process be (p*, g*) and suppose that we use the AIC and
SBC 16 estimate all ARMA models of order (p. g) where p 2 p* and g 2 ¢*. Both
the AIC and SBC will select models of orders greater than or equal to (p*, ¢*) as
the sample size approaches infinity. However, the SBC is asymptotically consis-
tent, whereas the AIC is biased toward selecting an overparameterized model.
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Estimation of an AR{1) Mode!

Let us use a specific example to see how the sample autocorrelation function and
partial autocorrelation function can be used as an aid in identifying an ARMA
model. A computer program was used to draw 100 normally distributed random
numbers with a theoretical variance equal to unity. Call these random variates «,,
where t runs from 1 to 100. Beginning with ¢ = 1, values of y, were generated using
the formula y, = 0.7v,_; + €, and initial condition y, = 0. Note that the problem of
nonstationarity is avoided since the initial condition is consistent with long-run
equilibrium. The upper-left-hand graph of Figure 2.3 shows the sample correlogram
and upper-right-hand graph the sample PACF. You should take a minute to com-
gazre the ACF and PACF to those of the theoretical processes illustrated in Figure

In practice, we never know the true data-gencrating process. However, suppose
we were presented with these 100 sample values and asked to uncover the true
process. The first step might be to compare the sample ACF and PACF to those of
the various theoretical models. The decaying pattern of the ACF and the single

Figure 2.3 ACF and PACEF for two simulated processes.
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90 Stationary Time-Series Models

large spike in the sample PACF suggest an AR(1) model. The first three autocorre-
lations are r, = 0.74, r, = 0.58, and ry = 0.47, which are somewhat greater than the
theoretical values of 0.7, 0.49 (0.7* = 0.49), and 0.343. In the PACF, there is a siz-

~ able spike of 0.74 at lag one and all other partial autocorrelations (except for lag

12) are very small.

" Under the null hypothesis of an MA(0Q) process, the standard deviation of ry is
T-12 = 0.1. Since the sample value of r, = 0.74 is more than seven standard devia-
tions from zero, we can reject the null that ry equals zero. wu standard deviation of
r, is obtained by applying (2.41) to the sampling data, where s =2:

Var(rz) = [1 + 2(074)2]/100 =0.021

Since (0.021)'2 = 0.1449, the sample value of ry is approximately four standard
deviations from zero; at conventional significance levels, we can reject the null hy-
pothesis that r, equals zero. We can similarly test the significance of the other val-
ues of the autocorrelations. ‘

As you can see in the second part of the figure, other than ¢, ;, all partial auto-
correlations (except for lag 12) are less than 2T-42 = 0.2. The decay of the ACF

and single spike of the PACF give the strong impression of a first-order autoregres- - E

sive model. If we did not know the true underlying process and happened to be us-
ing monthly data, we might be concerned with the significant partial autocorrela-
tion at lag 12. After all, with monthly data we might expect some direct relationship
between y, and y,_j,-

Although we know that the data were actually generated from an AR(1) process,
it is illuminating to compare the estimates of two different models. Suppose we €s-
timate an AR(1) model and also try to capture the spike at lag 12 with an MA coef-
ficient. Thus, we can consider the two tentative models:

Model L:y,=a, v, + €&
Model 2: y,=a,v,_, + €+ B12€12

Table 2.2 reports the results of the two estimations.® The coefficient of model 1
satisfies the stability condition lall < 1 and has a low standard error (the associ-
ated r-statistic for a null of zero is more than 12). As a useful diagnostic check, we
plot the correlogram of the residuals of the fitted model in Figure 2.4. The Q-statis-
tics for these residuals indicate that each one of the autocorrelations is less than two
standard deviations from zero. The Ljung-Box Q-statistics of these residuals indi-
cate that as a group, lags 1 through 8, | through 16, and 1 through 24 are not sig-
nificantly different from zero. This is strong evidence that the AR(1) model “fits”
the data well. After all, if residual autocorrelations were significant, the AR(1)
mode] would not be utilizing all available information concerning movements in
the {y,} sequence. For example, suppose we wanted to forecast y,,, conditioned on
all available information up to and including period . With model 1, the value of
Vyor 180 Y01 = A1Y, + €. Henee, the forecast from model 1 is a,y,. If the residual au-
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Table 2.2: Estimates of an. AR(1) Model

Model 1 Model 2
Y=Y T & Yi=ay &+ B,

Degrees, of freedom : 99 98
Sum of squared residuals . 85.21 85.17
Estimated a, (standard 0.7910 (0.0622) 0.7953 (0.0683)

error) '
Estimated B (standard error) -0.033 (0.1134)
AIC/SBC AIC =442.07/SBC =444.67 AlC=44401/SBC=

449.21

Ljung-Box Q-statistics for
the residuals (significance
level in parentheses)

0(8) = 6.43(0.490)
0(16) = 15.86 (0.391)
0(24) =21.74 (0.536)

Q(8) = 6.48 (0.485)
Q(16) = 15.75 (0.400)
Q(24)=121.56 (0.547)

tocorrelations had been significant, this forecast would not be capturing all the
available information set.

Examining the results for model 2, note that both models yield similar estimates
for the first-order autoregressive coefficient and associated standard error.
How'ever, the estimate for B,, is of poor quality; the insignificant ¢ value suggests
that it should be dropped from the model. Moreover,‘comparing the AIC and SBC
values of tvhe two models suggests that any benefits of a reduced residual sum of
squares are overwhelmed by the detrimental effects of estimating an additional pa-

_ rameter. All these indicators point to the choice of model I.

- Figure 2.4 ACF of residuals from model 1.
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Exercise 7 at the end of this chapter entails various estimations using this data
set. In this exercise you are asked to show that the AR(1) model perfprms b<?tI:r
;han some alternative specifications. It is important that you complete this exercise.

Estimation of an ARMA(1, 1) Model

A second {y,} sequence was constructed to illustrate the estimation of an ARMA-
(1, 1) Givcn’ 100 normally distributed values of the {¢,}, 100 values of {y,} were
generated using

y,==0T7y,_, +¢€ ~0.7¢,,

where y, and €, were both set equal to zero.

Both the sample ACF and PACF from the simulated data (see the se?orlld sctdoi
“in Fi ivalent to those of the theoretical mode
hs'in Figure 2.3) are roughly equiva ‘

ftrx?\)un in Fiogure 2.2. However, if the true data-generating procei: w:;(uztiknoxzn],
er mig! tain discrepancies. An mode
searcher might be concerned about certain ‘ :
tc};eu]rde yield a sample ACF and PACF similar to those in the figure. Table 2.3 re

ports tﬂe results of estimating the data using the following three models:

Model I: y,=a,y,_, +¢,
Model 2: y,=ayy,., + €+ Bj€,,
Model 3: y, = a\y,_, + ay, ; + €,

In examining Table 2.3, notice that all the estimated values of a, are highly sig-
nificant; each of the estimated values is at least eight standarfl (?evnfzatlons grec;rr; f:g:

i , is i iate. The Q-statistics for mo ndi-
It is clear that the AR(1) model is inappropriate. : L indt

is signifi lation in the residuals. The estima

te that there is significant autocorre :
?R?VlA(l 1) model does not suffer from this problem. Moreover, both the AIC and
SBC select model 2 over model 1.

Table 2.3: Estimates of an ARMA(1, 1) Model

Estimates® Q-Statistics® AIC/SBC
T S e
T e oun- im0 ShCodses
B e i

“Standard errors in parentheses. o iy e
i i . Significance levels in pare
*Ljung-Box Q-statistics of the residuals from the fitted model. S g
ses.
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With the same type of reasoning, model 2 is preferred 1o model 3. Note that for
each model, the estimated coefficients are highly significant and the point estimates
imply convergence. Although the Q-statistic at 24 lags indicates that these two
.models do not suffer from correlated residuals, the Q-statistic at 8 lags indicates se-
rial correlation in the residuals of mode} 3. Thus, the AR(2) model does not capture

short-term dynamics as well as the ARMA(1, 1) model. Also note that the AIC and
SBC both select model] 2.

Estimation of an AR(2) Model

A third data series was simulated as

Y= 0‘7.))1—1 - 0-49)',_2 te
The estimated coefficients of the ACF and PACF of the series are
ACF:

Lag:  1: 0.4655046 —0.1607289 -0.321629] -0.1077528 -0.0518159 ~0.1649841
7. -0.0995764  0.1283475 0.1795718  0.0343415 -0.0869808 -0.1133948
13: ~0.1639613 -0.057905] 0.1151097  0.2540039 0.0460659 —0.1745434
19: -0.1503307 0.0100510 0.0318942 ~0.0869327 -0.0456013  0.0516806

PACF:

I: 04655046 -0.4818344 0.0225089  0.0452089
7: 0.1011489 0.0367555 -0.0758751  0.0229422

13: ~0.1671389  0.2066915 0.0074996  0.0851050
19: —0.0223151

-0.2528370 —0.1206075
~0.0203879 -0.1391730

~0.2156580 0.0131360
-0.0324078  0.0148130 —0.0609358  1.0374894 ~0.1842465

Note the large autocorrelation at lag 16 and large partial autocorrelations at lags
14 and 17. Given the way the process was simulated, the presence of these autocor-

CoefTicient Estimate Standard Error  t-Statistic Significance
a, 0.692389807 0.089515769 7.73484 " 0.00000000
a - -0.480874620  0.089576524 =5.36831  0.00000055

AIC =21 9,87333; SBC=225.04327

. Overall, the model appears to be adequate. However, the two AR(2) coefficients
are unable to capture the correlations at very long lags. For example, the partial au-
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96 Stationary Time-Series Models

Jenkins argue that parsimonious models produce better forecasts than overparame-
terized models. A parsimonious model fits the data well without incorporating any
needless cocfficients. The aim is to approximate the true data-generating process
but not to pin down the exact process. The goal of parsimony suggested eliminating
the MA(12) coefficient in the simulated AR(1) model above.

In selecting an appropriate model, the econometrician needs to be aware that sev-
eral very different models may have very similar properties. As an extreme exam-
ple, note t~~t the AR(1) model y, = 0.5y,_; + ¢, has the equivalent infinite-order
moving average representation y, = €, + 0.5¢,_, + 0.25¢,_, + 0.125¢, 3 + 0.0625¢,_, +
... In most samples, approvimating this MA(ee) process with an MA(Z) or MA(D
model will give a very good fit. However, the AR(1) model is the more parsimo-
nious model and is preferred.

Also be aware of the common factor problem. Suppose we wanted to fit the
ARMA(2, 3) model:

(L =aL=alhy,= (1 +BL+BL?+ Bl 24y

Also suppose that (1 — a,L — a,L*) and (1 + B,L + B,L7 + B,L*) can each be fac-
tored as (1 + cL)(1 + al) and (1 + ¢L)(1 + b,L + b,L?), respectively. Since (1 + cL)
is a common factor to each, (2.43) has thc equivalent, but more parsimonious,
form:*

(1 +aLlyy, = (1 + b,L + b,L7e, (2.44)

In order to ensure that the model is parsimonious, the various g; and f3; should all
have t-statistics of 2.0 or greater (so that each coefficient is significantly different
from zero at the 5% level). Moreover, the cocfficients should not be strongly corre-
lated with each other. Highly collinear coetficients are unstable; usually one or
more can be eliminated from the model without reducing forecast performance.

Stationarity and Invertibility

The distribution theory underlying the use of the sample ACF and PACF as approx-
imations to those «f the true data-generating process assumes that the {y,} sequence
is stationary. Morcover, f-statistics and Q-statistics also presume that the data.are
stationary. The estimated autoregressive coefficients should be consistent with this
underlying assumption. Hence, we should be suspicious of an AR(1) model if the
estimated value of a, is close to unity. For an ARMA(Z, ¢) model, the characteristic
roots of the estimated polynomial (1 — a,L — a,L”) should lie outside of the unit cir-
cle. ‘

The Box-Jenkins approach alse nccessitates that the model be invertible.
Formally, {y,} is invertible if it can be represented by a finite-order or convergent
autoregressive process. Invertibility is important because the use of the ACF and
PACF implicitly assumes that the {y,} sequence can be well approximated by an
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a_utpregressive model Asa dgm@nstration, consider the simple MA(1) model:

) yl=€I_BI€I—| (2.45)
sothatif!B,I<1. |
o -Bh=e,
) or
Yot By + By + Biyis + - =, @)

' If IB, | < 1, (2.46) can be estimated using the Box—Jenkins method. However
if IB, 2 1, the {y,} sequence cannot be represented by a finite-order AR process‘:
as such, it is not invertible, More genérally, for an ARMA model to have a conver-
gent AR representation, the roots of the polynomial (1 + BiL+B,L* + . ¢ B.LY
must lie outside of the unit circle. Note that there is nothing “improper” about a
non-invertible model. The {y,} sequence implied by y, = €, — €,_, is stationary in
that it has a constant time-invariant mean (Ey, = Ey,_,= 0, a constant time-invariant
variance [var(y,) = var(y,_,) = 6°(1 + B})], and the autocovariances ¥, =-B,6% and

all other 7, = 0. The problem is that the technique does not allow for the estimation
of such models. If B, =1, (2.46) becomes

I= Ve ¥ Y2~ Yzt Y o

Clearly, the autocorrelations and partial autocorrelations between y,and y,_, will
never decay. '

Goodness of Fit

A good model will fit the data well. Obviously, R? and the average of the residual
sum of squares are common *“goodness-of-fit” measures in ordinary least squares.
The problem with these measurces is that the “fit” necessarily improves as more pa-
rameters are included in the model. Parsimony suggests using the AIC and/or SBC
as more appropriate measures of the overall fit of the model. Also. be cautious of
estimates that fail to converge rapidly. Most software packages estimate the param-
eters of an ARMA model using non-linear search procedures. If the search fails to -
converge rapidly, it is possible that the estimated parameters are unstable. Ifi such

circumstances, adding an additional observation or two can greatly alter the esti-
mates. " S

* The third stage in the Box-Jenkins methodology involves diagnbsﬁc ci;eéking.' ‘

The sl.andar‘d practice is to plot the residuals to Jook for outliers and evidence of pe-
riods in which the model does not fit the data well. If all plausible ARMA models
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98 Stationary Time-Series Models

show evidence of a poor fit during a rcasonably long portion of the sample, it is
wise to consider using intervention analysis, transfer function analysis, or any other
of the multivariate estimation methods discussed in later chapters. If the variance of
the residuals is increasing, a logarithmic transformation may be appropriate.
Alternatively, you may wish to actually model any tendency of the variance to
change using the ARCH techniques discusscd in Chapter 3.

[t is particularly important that the residuals from an estimated model be serially
uncorreiated. Any evidence of serial correlition implies a systematic movemen: in
the {v,} sequence that is not accounted for by the ARMA coefficients included in
the model. Hence, any of the tentative models yielding nonrandom residuals should
be eliminated from consideration. To check for correlation in the residuals, con-
struct the ACF and PACF of the residuals of the estimated model. You can then
use (2.41) and (2.42) to determine whether any or all of the residual autocorrela-
tions or partial autocorrelations are statistically significant.” Although there is no
significance level that is deemed “most appropriate,” be wary of any model yield-
ing (1) several residual correlations that are marginally significant and (2) a Q-sta-

tistic that is barely significant at the 10% Icvel. In such circumstances, it is usually”

possible to formulate a better performing model.

In the previous section, recall that the estimated AR(1) model had Box-Ljung
Q-statistics indicating a possible MA term at lag 12. As a result, we also estimated
the model y, = 0.7953y,_, + €, — 0.033¢,_,. The procedure of adding another coeffi-
cient is called overfitting. Overfit a mode! if the initiat ACF and PACF yield am-

biguous implications conceming the proper form of the ARMA coefficients. In the -

first example, the AR(1) model (i.e., model 1) outperformed the ARMAC(L, 1)
mode}. Obviously, in other circumstances, the “overfitted” model may outperform
the first model. As an additional diagnostic check, some researchers will overfit a
model by including a coefficient at some randomly selected lag. If such overfitting
greatly affects the model, the estimated mo-el is likely to yield poor forecasts.

If there are sufficient observations, fitting the same ARMA model to each of two

subsamples can provide useful information concerning the assumption that the

data-generating process is unchanging. In the estimated AR(2) model in the last
section, the sample was split in half. In general, suppose you estimated an
ARMA(p, g) model using a sample size of T observations. Denote the sum,of:the
squared residuals as SSR. Divide the T observations into two subsamples with ¢,
observations in the first and r, = T — 1, observations in the second. Use each sub-
sample to estimate the two models:

y=aglH) +a Dy, + -+, (Vy_, +€+ Bihe,, +-+B,(De,,

using £y, . ... L
Y= (1()(2) + 511(2)}‘/4 +ot a[l(?‘)_\‘f—/’.-’- €+ Bl(z)el—l + ot Bq(z)el—q

using t,,,.- - ., Iy

Let the sum of the squared residuals from each model be SSR, and SSR,. respec- ‘

tively. To test the restriction that all ceeflicients are equat [i.e., ag(1) = a(2) and
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a()=a(2)and ... a,(1)=a,2) and B,(1)=B,(2) and ... B,(1) = B,(2)], usc an
F-test and form:®

- (SSR-SSR,~SSR,)/ (n)
(SSRy+SSR, /(T ~2n)

(2.47)

where n = number of parameters estimated (n = p + ¢ + 1 if an intercept is in-
cluded and p + g otherwise) '
the number of deg;ees of freedom are (n. T ~ 2n).

Intuitively, if the restriction that the two sets of coefficients is not binding, the
total from the two models (i.e., SSR, + SSR;) should equal the sum of the squared
residuals from the entire sample estimation. Hence, F should equal zero. The larger
the calculated value of F, the more restrictive is the assumption that the two sets of
coefficients are equal. :

Similarly, the model can be estimated over nearly all the sample period. If we
use 20 years of quarterly data, for example, the model might be estimated using
only the first 19 years of data. Then, the model can be used to make forecasts of the
last year of data. For each period ¢, the forecast error is the difference between the
forecast and known value of y,. The sum of the squared forecast errors is a useful
way to compare the adequacy of alternative models. Those models with poor out-
of-sample forecasts should be elimirated. Some of the details in constructing out-
of-sample forecasts are discussed in t1e next section.

9. THE FORECAST FUNCTION

Perhaps the most important use of an ARMA model is to forecast future values of
the {,} sequence.” To simplify-the discussion, it is assumed that the actual data-
generating process and current and past realizations of the {¢,} and {»,} sequences
are known to the researcher. First, consider the forecasts from the AR(1) model Y =
ay+ ayy, ) + €. Updating one period, we obtain . :

Y1 = ay + ay, +e€

141

If you know the coefficients a, and a,, you can forecast ¥,.1 conditioned on the
information available at period r as

Elyn-! =a,+ayy, (2.48)

where Ey,,; = a short-hand way to write the conditional expectation of y,,; given
the information available at ¢ '

Formally, Ey,.; = E(y,., 'y,, Victs Yoty o oo s € €py o a L)
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100 Starionary Time-Series Models

In the same way, SINCE Y 2 = Ao + @Y1+ €ra2: the forecast of Y., conditioned on

the information available at period 7 is

Eyia=a+ il

and using (2.48), we obtain

E{.VHB =yt + ),
It should nut require too much efforttv convince yourself that
2 3
ElyN} =dy + Aoty + doy +ayy:

and in general, ..

E,ij:ao(l + a; +a%+ '"+aj;_l)+allyr .(2‘50?

Equation (2.50)—called the forecast fu_nction——yields the j-step ahead forfe?asts
for each value y,,;. Since 1a, | <1, (2.50) yields a convergent sequence 0 %rﬁ-
casts. If we take the limit of Ey,,; asj — e, we find that Ey,.; = a(,/(l.—. a,). This
result is really quite general. For any stationary ARMA model, the condxltzonkclzl);ore-
cast of y,,; converges 1o the unconditional mean as j — - Unfonuna.te y, the fore ‘
casts from an ARMA model will not be perfectly accuraté. Forecastlr?g from time
period 1, we can define the j-step ahead forecast error, f.(j)—as the difference be-
tween the realized value of y,,; and forecasted value:

f,(_}) =Yy, v Eryn—j

Hence, the one-step :head forecast error is: f(1) = Y1 — E,y,f, =¢,, (e, t?}c
“unforecastable” portion of y,., given the information available in £). To find the

two-step ahead forecast error, we need to form f(2) = Y2~ EVrea: Since y,,2=dp+
I
4y + @3y, + € + @€y AN Eypy = o+ @ido + Yo it follows that

f(2) =€+ A€

You should take a few moments 10 Jdemonstrate that for the AR(1) model, the
j-step ahead forecast error is given by

. 2 3 el (2.51)
f,(_]) = Frﬂ + alemj—l + (I)E,,J,Q + (1\6,,,1-_) + + al e”‘

Equation (2.51) shows that the forecasts from (2.50)’yield unbiased es[imates;f
each value y,,;. The proof is trivial; since E€,., = Eg == Eg,,, =0, the condi-
tional expc—ctation of (2.51) is Ef,(j) = 0. Since the expected value of the forecast
error is zero, the forecasts are unbiased.
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Although unbiased, the forecasts from an ARMA model are necessarily inaccu-
rate. To find the variance of the forecast error, continue to assume that the elements
of the {¢,} sequence are independent with variance o2 Hence, from (2.51) the vari-
ance of the forecast error is .

Var{f(H1 =01 +a% + at + ab + - + @}V (2.52)

‘Since the one-step forecast error variance is o, the two-step ahead forecast error
variance is (1 + a?), etc. The essential point to note is that the variance of the
forecast error is an increasing function of j. As such, you can fiave moic cuniiduce
in short-term rather than long-term forecasts. In the limit as j — oo, the forecast er-
ror variance converges to 6%/(1 — a?); hence, the forecast error variance converges
to the unconditional variance of the {y,} sequence.

Moreover, assuming that the {€,} sequence is normally distributed, you can place
confidence intervals around the forecasts. The one-step ahead forecast of y,,, is
a, + a,y, and the variance is 6% As such, the 95% confidence interval for the one-

step ahead forecast can be constructed as
ay +a,y, * 1.96c
In the same way, the two-step ahead forecast is a,(1 + a,) + aly, and (2.52) indi-

cates that var[f,(2)] is 6*(1 + a?). Thus, the 95% confidence interval for the two-
step ahead forecast is

a1 +a,) + aly, £ 1.966(1 +a})'*

Of course, if there is any uncertainty concerning the parameters, the confidence
intervals will be wider than those reported here.

lterative Forecasts

" The derivation of (2.50)—the forecast function for an AR(1) model—relied on for- ‘

ward iteration. To generalize the discussion, it is possible to use the iterative tech-
nique to derive the forecast function for any ARMA(p, ) model. To keep the alge-
bra simple, consider the ARMA(2, 1) model:

Y= Ao+ Gy, + A+ €+ BiE » (2.53)

Updating one period yields
| Yest :ao'*al)’r*a?)’:—l_'*' €.+ Bi€
If we continue to assume that (1) all coefficients are known; (2) all variables sub-

scripted 7, £ 1, 1 — 2, etc. are known at period r; and (3) Eje,.; = 0 for j > O, the con-
ditional expectation of y,,, is
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Eyuy = ag+ayy, + @y, +Bie, o (2.54)

! Equation (2.54) is the one-step ahead forecast of y,,,. To find the two-step ahead
: forecast, update (2.53) by two periods:

Y2 = Uy +a ¥ Ay, +E€,,t Blﬁl*l
{ The conditional expectation of y,,, is
Eyua=ay+ By, +ayy, MmN

Equation (2.55) expresses the two-step ahead forecast in terms of the one-step
ahead forecast and current value of y,. Combining (2.54) and (2.55) yields

EYia = Go+a(ao+a,y, + axy,_y + Bie) +ay,
2
=ay(l +a,) + (@} + @)y, + aay,., + a, B,

You should be able to demonstrate that the three-step ahead forecast is

Ezy“J =dy + alErynz + azE/ynl

_% i . =ay+a{all +a)+[al+aly, +aay,, +aBe) +
b ayao + a,y, + ayy,, + Bye)
=ay(] + a, + @ + ay) + (@} + 2a,ay)y, + (diay + ady,_ + Bi@l + ar)e,  (256)
¥
; Finally, all j-step ahead forecasts can be obtained from
! Ezij =ay+ alELYNj—l + aZEl.VHj-:‘ .] =2 i (2.57)
e Equations (2.56) and (2.57) suggest that the forecasts will satisfy a second-order
difference equation. As long as the characteristic roots of (2.57) lie inside the unit
i circle, the forecasts will coverge to the unconditional mean ao/(1 — a, — a,).
An Alternative Derivation of the Forecast Function’
L Instead of using the iterative technique, it is often preferable to derive the forecast
3? ¥ function using the solution methodology discussed in Section 4 of Chapter 1. For

any ARMA(p, q) model, the solution technique entails (1) finding all homogeneous
solutions; (2) finding the particular solution; (3) forming the general solution as the
sum of the homogeneous and particular solutions; and (4) imposing the initial con-
ditions. This solution methodology will express y, in terms of the p initial condi-
NS Yo, Y1, - - - » ¥poy and g initial values €, €,. ... €,_,. The only twist is that the
forecast function expresses y,,; in terms of ¥ ¥,_1, . oo 2 Yicpuy and €, €,_,, ...,
€,_qu1- To illustrate the appropriate modification of the time subscripts, consider the
U AR(2) model:

[OROR

- and the {¢,} sequence. Updating by j periods, we find
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vi=3+09y,_,-02y,,+¢

In Section 8 of Chapter 1, it was shown that the solution is

) -2
% =10+(04)[5(y5 ~10)~ 100y, = 10)]+ (0.5)"[10(y, ~ 10) - 4(yy — 10)] + za,.e

i=(}

1=i

where the values of o, satisly o = 5(0.5) - 4(0.4y".

The problem is to modify this equation so as to express y,,; in terms of v, y,_,
/ ’

Yiaj =104+0.4Y[5(y,_, =10)=10(y, 10)]
1

FOTI00y, =10) =405, ~10)]+ Y ae,, s

i=()

Taking the conditional expectation of y,,; yields the forecast function:
Ey; =10+ (0.4Y[5(y,_, — 10) = 10(y, — 10)] + (0.5Y[10(y, - 10) —4(y,_, - 10)]

Obviously, as j increases, the forecast approaches the unconditional mean of 10.
For practice, try the ARMAC(1, 1) model:

V= ag+ay, +e + B,

\favhere {€} is a white-noise process, ]a, [ < I, and there is a given initial condition
or y,

You should recognize that the homogeneous equation y, - @,y,.., = 0 has the solu-

tion A(a,)’, where A is an arbitrary constant, Next, use lag operators to obtain the
particular solution as

vi=a/(l—a)+el(l —a,L)+Bie_ /(1 —al) (2.58)

so0 that the general solution is

oo oo

v, =ay/(l-a)+ 201161_;‘*5:20{6,4-;+A“1’ T s9)

=0 i=0

Now impose the initial condition for ¥, Since (2. 59) must hold for all penods
including period zero, it follows that :

0—(10/(l~a,)+ Za,e_,+B Za,e ,_,+A (2.60)

i=0 i=0
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Solving (2.60) for A climinates the arbitrary constant. Cqmbinmg .(2'59) and |
(2.60), we get BN

i=1) i=0

v =ay/l—a+ Za{e,“i +£312a;e,_1;i4 s

i=0 i=0
s0 that

-1 =1

. , :
¥, =ag/(l—a)+ 2“;6!—1 +Bx2”f€, =t —ap/=aplar o0

=0 i=0

To this point, (2.61) is simply the general solution to the stochastic difference
equation represented by an ARMA(L, 1) process. This solution expresses thg cur-
rent value of y, in terms of the constants a,, «,, and B,. {€) sequence, and initial

value of y,. N .
The important point is that (2.61) can be used to forecast y, conditioned on infor-

mation available at period zero. Given Ege; = 0 for i > 0, it follows that
Epy, =al(l —a))+ Biat ey + vy — a1 - apla (2:62)

Equation (2.62) can be viewed as the t-step ahend forecast function giy§n infor-
mation available in period zcro. To form the j-step ahead forecasts condltlone.d on
information available at 1, first change the time subscript in (2.62) so that the j-step
ahead forecasts are

Ew; = ay/(b —a) + B,a'{" €, + vy — a1l - ql)]aé
= [a /(1 = a))(1 = a)) + Bai™ €0+ yoat P (2.63)

Next, update (2.63) by 1 periods so that

Ey,.,=la/(l —a))() = a)) + Pal e, + ya 264

(A4S0

Equation (2.64) is in the desired form; (2.64) expressed the forecast of y,,; condi-
tioned on information available at period 1. The various j-step ahead forecasts are

EL))I*I—_-(IO+BYEI+LIlyl ,
Ey,a=lag/(l —a)i(l = a7) + Biase, + vay

2 3
ELVM] = [(10/(] - (1,)‘(1 - ‘/?) + BlaI€l+)‘lal

S o i al
+| yg =ay/th—uy) —Etlle_f—i3| A€y |

Ao oa i
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Given that |aI | < 1, the limiting value of the forecast as j — oo is the uncondi-

. tional mean: lim Ey,,, = a/(1 - a,).

As a check, you can compare (2.64) to (2.50); after all, the AR(l) and ARMA(1,

. 1) models are equivalent if §, = 0. If B, = 0, (2.64) becomes ‘

Ey,;=la/(1 —ap)(] —a}) + ya’, (2.65)

Note that (2.65) is identical to (2.50); for |a,| < 1,

i=0

il
ay Y 4l =lap/(1~a)(1-af)

The example illustrates the basic point that for any ARMA( P, q) model, the fore- .

cast function for y,,; will have the form

Euey = 0() + @y, + 020t + = 4 0Yicpar + 1D + o 4 V€ g (266) -

where  all values of o,(j) and ¥,(j) are undetermined coefficients.

The notation ou(j) and y,(j) is designed to stress the point that the coefficients are a
function of j. Since we are working with stationary and invertible processes, we

know the nature of the solution is such that as j = oo, 0o(j) = ay/(1 — Zay), o.(j) —

0, and that Z[y,(/)]* is finite.

In practice, you will not know the actual order of the ARMA process or coeffi-
cients of that process. Instead, to create out-of-sample forecasts, it is necessary to
use the estimated coefficients from what you believe to be the most appropriate
form of an ARMA model. The rule of thumb is that forecasts from an ARMA
model should never be trusted if the model is estimated with fewer than 50 observa-
tions. Suppose you have T observations of the {y,} sequence and choose to fit an
ARMA(2, 1) model to the data. Let a hat or caret (i.e.: a ") over a parameter denote
the estimated value of a parameter and let {£,} denote the residuals of the estimated
model. Hence, the estimated AR(2, 1) model can be written as

Ye :ao +a|y1—1 +a2yr—2 + €, + Blel—l

Given that the sample contains T observations; the out-of-sample forecasts are
easily constructed. For example, you can use (2.54) to forecast the value of yr,, as

Eyvray =g +d\yr +dovr, P& (267
Given the estimated values of dy, d,, and d,, (2.67) can easily be constructed us-

ing the actual values y,, y,_,, and &, (i.e., the last residual of your estimated model).
Similarly, the forecast of y,,, can be constructed as
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Eqyro =do + 8By, + vy

where E;yr,, = the forecast from (2.67)
Given these two forecasts, all subsequent forecasts ¢an be obtained from the dif-

ference equation:

Epvry=ao+ @\ Epyr, + 2y EJ‘)‘T*J% forj22

10. A MODEL OF THE WPI

The ARMA estimations performed in Section 8 were almost too straightforward. In
practice, we rarely find a data series precisely conforming to a theoretical ACF or
PACF. This section is intended to illustrate some of the ambiguities frequently en-
countered in the Box~Jenkins technique. These ambiguities may lead two equally

skilled econometricians to estimate and forecast a series using very different .

ARMA processes. Many view the necessity to rely on the researcher’s judgment
and experience as a serious weakness of a procedure that is designed to be scien-
tific.

It is useful to illustrate the Box-Jenkins modeling procedure by estimating a
quarterly model of the U.S. Wholesale Price Index (WPI). The file labeled
WPLWKI on the data disk contains the data used in this section. Exercise 10 at the
end of this chapter will help you to reproduce the results reported below.

The top graph of Figure 2.5 clearly reveals that there is little point in modeling
the series as being stationary; there is a decidedly positive trend or drift throughout
the period 1960:1 to 1990:1V. The first difference of the series seems to have a con-
stant mean, although inspection of the middle graph suggests that the variance is an
increasing function of time. As shown in the bottom graph of the same figure, the
first difference of the logarithm (denoted by Alwpi) is the most likely candidate to
be covariance stationary. The large volatility of the WPI accompanying the oil
price shocks in the 1970s should make us somewhat wary of the assumption that
the process is covariance stationary. At this point, some researchers would make
additional transformations intended to reduce the volatility exhibited in the 1970s.
However, it seems reasonable to estimate a model of the {Alwpi,} sequence. As al-
ways, you should maintain a healthy skepticism of the accuracy of your model.

Before reading on, you should examine the autocorrelation and partial autocorre-
lation functions of the {Alwpi,} sequence shown in Figure 2.6. Try to identify the
tentative models that you would want to estimate. In making your decision, note the
following:

1. The ACF and PACF converge to zero reasonably quickly. We do not want to
overdifference the data and try to model the {A%wpi,) sequence.

2. The theoretical ACF of a pure MA(q) process cuts off to zero at lag g and the
theoretical ACF of an AR(1) model decays geometrically. Examination of the
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two graphs of Figure 2.6 suggests that neither of these specifications seems ap-
propriate for the sample data.

3. The PACF is such that ¢, , = 0.609 and cuts off to 0.252 abruptly (i.e., §,, =
0.252). Overall, the PACF suggests that we should consider models such asp = 1
and p = 2. The ACF is suggestive of an AR(2) process or a process with both au-
toregressive and moving average components.

4. Note the jump in ACF at lag 4 and the small spike in the PACF at lag 4 (¢,4 =
0.198). Since we are using quarterly data, we nugii want to incorporate a sci-
sonal factor at lag 4. :

Figure 2.5 U.S. wholesale price index (1985 = 100).
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Figure 2.6 ACF and PACF for the logarithmic change in the WPL
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Points 1 to 4 suggest an ARMA(!, 1) or AR(2) model. In addition, we might
want to consider models with a seasonal term at lag 4. Since computing time is in-
expensive, we can estimate a variety of modcls and compare their results, Table 2.4
reports estimates of {ive tentative models; note the following points:

1. The estimated AR(1) model confirms our analysis in the identification stage.
Although the estimated value of g, (0.618) is less than unity in absolute value
and more than eight standard deviations from zero, the AR(1) specification is in-
adequate. Forming the Ljung-Box Q-statistic for 12 lags of the residuals yields
a value of 23.6; we can reject the null that O = 0 at the 1% significance level.
Hence, the lagged residuals of this model exhibit substantial serial autocorrela-
tion. Then we must eliminate this mode! from consideration.
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2. The AR(2) model is an improvement over the AR(1) specification. The esti-

mated coefficients (a, = 0.456 and a, = 0.258) are cach significantly different
from zero at the 1% level and imply characteristic roots in the unit circle. Q-sta-
tistics indicate that the autocorrelations of the residuals are not statistically sig-
nificant. As measured by the AIC, the fit of the AR(2) model is superior to that
of the A.R(l); the SBC is the same for the two models. Overall, the AR(2) mode!
dominates the AR(1) specification.

3. The ARMA(], 1) specification dominate t»2 AR(2) model. The estimated coef-

ficients are of high quality (with ¢ values of 14.9 and —4.22). The estimated
value of ¢, is positive but fess than unit- and the Q-statistics indirate that the
autocorrelations of the residuals are not statistically significant. Moreover, ail
goodness-of-fit measures select the ARMA(, 1) specification over the AR(2)
model. Thus, there is little reason to maintain the AR(2) specification.

Table 2.4: Estimates of the WPI (Logarithmic First Differences)

p= 1 p= 2 p= 1 p= 1 p= 1
q=0 ¢=0 g=1 g=14 g=2
a, 0.011 0.011 0.012 0.011 0.012
4.14) (3.31) - . (2.63) (2.76) T (2.62)
a, 0.618 0.456 0.887 0.791 0.887
(8.54) (5.11) (14.9) 9.21) (13.2)
a, ) 0.258
_ (2.89) ,
8, ‘ -0.484 -0.409 -0.483
, . (—4.22) (-3.62) . (—4.19)
B, - -0.002
. ' (-0.019)
B : 0315
‘ (3.36)
SSR 0.0156 0.0145 0.0141 0.0134 0.0141
L AIC -503.3 -506.1 -513.1 -518.2 ~511.
. SBC  —497.7 -497.7 -504.7 -507.0 ~499.9

“ Q(12) . 23.6(0.008) 11.7 (0.302) 11.7 (0.301) 4.8 (0.898) 11.7 (0.301)
©0(24) 28.6 (0.157) 15.6 (0.833) 15.4 (0.842) 9.3 (0.991) 15.3(0.841)
QG0 40.1 (0.082) 22.8(0.742) 22.7 (0.749) 14.8 (0.972) 22.6 (0.749)

Notes: Each coefficient is reported with the associated r-statistic for the null hypothesis that the esti-
mated value is equal to zero, ) ’

SSR is the sum of squared residuals.

Q(n) reports the Ljung-Box Q-statistic for the autocorrelations of the 1 residuals of the estimated
model. With 122 observations, T/4 is approximately equal to 30. Significance levels are in paren-
theses. ’
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4. Inorder 1o account for the possibility of seasonality, we estimated the ARMA(,

1) model with an additional moving average cocfficient at lag 4, that is, we esti-
mated a model of the form v, = aq + a,v,_, + €, + B€,_; + B.e,_s. More sophisti-
cated seasonal patterns are considered in the next section. For now, note that the
additive expression B,e,_ is often preferable to an additive autoregressive term
of the form a,v,_,. For truly seasonal shocks, the expression €., best captures
spikes—not decay—at the quarterly lags. The coefficients of the estimated
ARMATL, (1, 4)] model are all highly significant with ¢-statistics of 9.21, =3.62,
and 3.36.* The Q-statistics are all very low, implying that the autocorrelations of
the residuals are statistically equal to zero. Morcover. the AIC and SBC strangly
select this model over the ARMA(1, 1) model.

5. In contrast, the ARMA(I, 2) contains a superfluous coefficient. The t-statistic

for (3, is sufficiently low that we should eliminate this model.

Having identified and estimated a plausible model, we want to perform addi-
tional diagnostic checks of model adequacy. Due to the high volatility in the 1970s,
the sample was split into the two subperiods: 1960:1 to 1971:1V and 1972:1 10
1990:1V. Model estimates for each subperiod are

Alwpi, = 0.004 + 0.641Ahwpi,_, + €, - 0351e_, + 0.172¢,, (1960:1-1971:1V)
and
Abwpi,=0.016 + 0.753Ahvpi,_, + €,— 0.39%4¢,_, + 0.335¢,_, (1972:1-1990:1V)

The coefficients of the two models appear to be quite similar; we can formally
test for the equality of coefficients using (2.47). Respectively, the sums of squared
residuals for the two models are SSR, = 0.001359 and SSR, = 0.011681, and from
Table 2.4 we can see that SSR = 0.0134. Since 7= 122 and n = 4 (including the in-
tercept means there are four estimated coefficients), (2.47) becomes

F=1(0.0134 - 0.001359 - 0.011631)/41/[0.001359 + 0.011681)/(122-8)]
=0.78681

With 4 degrees of freedom in the numerator and 114 in the denominator, we can-
not reject the null of no structural change in the coefficients (i.e., we accept the hy-
pothesis that there is no change in the structural coefficients).

As a final check, out-of-sample forecasts were constructed for each of the two

models. By using additional data through 1992:11. the variance of the out-of-sample
forecast errors of the ARMA(1, 1) and ARMA[I. (1,4)] models were calculated to
be 0.00011 and 0.00008, respectively. Clearly, all the diagnostics select the
ARMAIL, (1.4)] model. Although the ARMA[I. (1,4)] model appears to be ade-
quate, other researchers might have selected a decidedly different model. Consider
some of the alternatives listed below:
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1. Trends: Although the logarithmic change of the WPI wholesale appears to be
stationary, the ACF converges to zero rather slowly. Moreover, both the
ARMAC(], 1) and ARMA[L, (1,4)] models yield estimated values of a, (0.887
and 0.791, respectively) that are close to unity. Some researchers might have
chosen to model the second difference of the series. Others might have de-

tests for the appropriate form of the trend.

. The seasonality of e duta was modeled using a moving average term at lag 4:
However, there are many other plausible ways to model the seasonality in the
data, as discussed in the next section. For example, many computer programs
are capable of estimating multiplicative seasonal coefficients. Consider the mul-
tiplicative seasonal model:

(I=a,Lyy,=(1+ P, L)1 + ByLYe,
Here, the seasonal expression B,e,_, enters the model in a multiplicative, rather
than a linear, fashion. Experimenting with various multiplicative seasonal coef-
ficients might be a way to improve forecasting performance.

. Given the volatility of the {Alwpi,} sequence during the 1970s, the assumption
of a constant variance might not be appropriate. Transforming the data using a
square root, rather than the logarithm, might be more appropriate. A general
class of transformations was proposed by Box and Cox (1964). Suppose that all

values of {y,} are positive so that it is possible to construct the transformed {y*}
sequence as

yE=OF-D/A,  A#0
= ln(y)), A=0

The common practice is to transform the data using a preselected value of A.
Selecting a value of A that is close to zero acts to “smooth” the sequence. As in
the WPI example (which simply set A = 0), an ARMA model can be fit to the
transformed data. Although some software programs have the capacity to simul-
taneously estimate A along with the other parameters of the ARMA model, this
approach has fallen out of fashion. Instead, it is possible to actually model the
variance using the methods discussed in Chapter 3.

11. SEASONALITY

Many economic processes exhibit some form of seasonality, The agricultural, con-
struction, and travel sectors have obvious seasonal patterns resulting from their de-

¢ pendence on the weather. Similarly, the Thanksgiving-Christmas holiday season

has a pronounced influence on the retail trade. In fact, the seasonal variation of

some series may account for the preponderance of its total variance. Forecasts that

trended the data using a deterministic time trend. Chapter 4 discusses formal -

1
;
i
2
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1ignore important seasonal patterns will have a high variance. In the last section, we

saw how the inclusion of a four-quarter seasonal factor could help improve the .

model of the WPI. This section expands that discussion by illustrating some of the
techniques that can be used to identify scasonal patterns.

Too many people fall into the trap of ignoring seasonality if they are working
with deseasonalized or seasonaily adjusted data. Suppose you collect a data set
that the U.S. Burcau of the Census hax “seasonally adjusted” using its X-11
method.® In principle. your seasonally adjusted data should have the seasonal pat-
tern removed. However, caution is necessary. Although a standardized procedure
may be necessary for a government agency reporting hundreds of series, the proce-

dure might not be best for an individual wanting to model a single series. Even if -

you use seasonally adjusted data, a seasonal pattern might remain. This is particu-
larly true if you do not use the entire span of data; the portion of the data used in
your study can display more (or less) seasonality than the overall span. There is an-
other important reason to be concerned about seasonality when using deseasonal-
ized data. Implicit in any method of seasonal adjustment is a two-step procedure.
First, the seasonality is removed, and second, the autoregressive and moving aver-
age coefficients are estimated using Box-Jenkins techniques. As surveyed in Bell
and Hillmer (1984), often the seasonal arid ARMA coefficients are best identified
and estimated jointly. In such circumstances, it is wise to avoid using seasonally
adjusted data.

Models of Seasonal Data

The Box-Jenkins technique for modeling seasonal data is no different from that of
nonseasonal data. The twist introduced by seasonal data of period s is that the sea-

sonal coefficients of the ACF and PACF appear at lags s, 2s, 3s, . . ., rather than at
lags 1,2, 3, ... . For example, two purely seasonal models for quarterly data might
be

vEayave,  lal<r e

and

v,=€ + €4 (2.69)

You can easily convince yourself that the theoretical correlogram for (2.68) is
such that p; = (a,)"* if i/4 is an integer, and p, = 0 otherwise; thus, the ACF exhibits
decay at lags 4, 8, 12, ... . For model (2.69), the ACF exhibits a single spike at lag
4 and all other correlations are zero.

In practice, identification will be complicated by the fact that the seasonal pattern
will interact with the nonseasonal pattern in the data. The ACF and PACF for a
combined seasonal/nonseasonal process will reflect both elements. Note that the fi-
nal model of the wholesale price index estimated in the last section had the form

ve=ay te+ e + B . (2.70)
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Alternatively, an autoregressive coefficient at lag 4 might have been used to cap-
ture the seasonality:

ylzaIYI—l+a4yl—4+€I+Bl€l-l (2'71)

Both these methods treat the seasonal coefficients additively; an AR or MA cocf-
ficient is added at the seasonal period. Multiplicative seasonality allows for the in-
teraction of the ARMA and scasonal effects. Cons..!2r the multiplicative specifica-
tions: .

(1—a L)y, = (1 +B,L)(1 + BuL¥)e, S am
(1 = a,L)(1 — aLYy, = (1 + B,L)e, . an

Equation (2.72) differs from (2.70) in that it allows the moving average term at

lag 1 1o interact with the seasonal moving average effect at lag 4. In the same way,

(2.73) allows the autoregressive term at lag 1 to interact with the seasonal autore-
gressive effect at lag 4. Many researchers prefer the muitiplicative form since a rich
interaction pattern can be captured with a small number of coefficients. Rewrite
(2.72) as

ye=ay o+ e+ Bie + Bt BiBa€.s (2.74)

Estimating only three coefficients (i.c., a,, B, and B,) allows us to capture the ef-
fects of an autoregressive term at lag 1 and the effects of moving average terms at
lags 1, 4, and 5. Of course, you do not really get something for nothing. The esti-
mates of the three moving average coefficients are interrelated. A rescarcher esti-

- mating the unconstrained model y, = a,y,_; + €, + B,€.; + Pu€, + Pse,_s would nec-

essarily obtain a smaller residual sum of squares, since B is not constrained to
equal B,B,. However, (2.72} is clearly the more parsimonious model. If the uncon-
strained value of Bs approximates the product {3,B,, the multiplicative model will be
preferable. For this reason, most software packages have routines capable of esti-
mating multiplicative models. Otherwise, there are no theoretical grounds leading
us to prefer one form of seasonality over another. As illustrated in the last section,
experimentation and diagnostic checks are probably the best way to obtain the most
appropriate model.

Seasonal Differencing

Spain is undoubtedly the most popular destination for European vacationers.
During the months of July and August, the beaches along the Mediterranean coast
swell ‘with tourists basking in the sun. Figure 2.7 shows the monthly number of
tourists visiting Spain between January 1970 and March 1989; the.strong seasonal
pattern dominates the movement in the series. You will also note that Spain’s popu-
larity has been growing; the series appears to be nonstationary in that the mean is

_increasing over time,
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Figure 2.7  Tourism in Spain.
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This combination of strong seasonality and nonstationarity is often found in eco-
nomic data. The ACF for a nonstationary seasonal process is similar to that for a
nonstationary nonseasonal process; with seasonal data the spikes at lags s, 2s, 3s, ...
do not exhibit rapid decay. The other autocorrelations are dwarfed by the seasonal
effects. Notice ACF for the Spanish tourism data shown in Figure 2.8. The autocor-
relation coefficients at lags 12, 24, 36, and 48 are all close to unity and the seasonal
peaks decay slowly. The coefficients at lags 6, 18, 30, and 42 are all negative since
tourism is always low 6 months from the summer boom. '

Let y, denote the log of number of tourists visiting Spain each month; the first

step in the Box—Jenkins method is to difference the {y,} sequence so as to make-it -

stationary. In contrast to the other series we examined, the appropriate way to dif-
ference strongly seasonal data is at the seasonal period. Formal tests for seasonal
differencing are cxamined in Chapter 4. For now, it is sufficient to note that the
seasonal difference (1 = L'?)y, = y, — ¥,_;» will have a smaller variance than the first
difference y, — y,_y. In the Spamsh data, the strong seasonality means that January-
to-January and July-to-July changes are not as pronounced as the changes between
June and July. Figure 2.9 shows the first ‘and twelfth differences of the data; clearly,
the twelfth difference has less variation and should be easier to identify and esti-
mate.

The logarithmic twelfth difference (i.e., ¥, — ¥,_,,) displays a flat ACF showing
little tendency to decay. The first 12'of the autocorrelations are '
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P1 P2 P3 P Ps Ps P7 Ps Py Pio P Pin
026 031 026 028 023 024 0.19 021 0.19 020 0.15 -0.17

There is no'reasonable way to fit a low-order model to the seasonally differenced
data; the seasonal differencing did not eliminate the time-varying mean. In order to
impart stationarity into the series, the next step is to take the first difference of the

“already seasonally differenced data. The ACF and PACF for the series (1 - L)
(1= L'%)y, are shown in Figure 2.10: the properties of this series are much more
; amenable to the Box-Jenkins methodology. For the first 10 coefticients, the single
. spike in the ACF and uniform decay of the PACF suggest an MA(1l) model. The
: significant coefficients at lags 11, 12, and 13 might result from additive or multi-
plicative seasonal factors. The estimates of the following three models are reported

_in Table 2.5:

(1 =L ~ L)1 = apl)y, =+ BL),

Model 1: Autoregressive
(1L =L(1 = Ly, = (1 + BLY(L + BioL e,

Model 2: Multiplicative moving
average
(1=L"( ~Ly,=(1 +B,L+PB,L"%e,  Model 3: Additive moving average
The point estimates of the coefficients all imply stationarity and invertibility.
Moreover, all are at least six standard deviations from zero. However, the diagnos-
tic statistics all suggest that model 2 is preferred. Model 2 has the best fit in that it
has the lowest sum of squared residuals (SSR). Moreover, the Q-statistics for lags

Figure 2.8 Correlogram of tourism in Spain. ’
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Figure 2.9  First and twelfth differences. S
6

Million s

Jan.'70 Jan. '74 Jan.'78 Jan. '82 Jan. '86
—— First —— Twelfth .
Table 2.5: Three Models of Spanish Tourism
Model 1! Model 2 Model 3
a5 -0.408
(-6.54)
B -0.738 EEER 0.740 e ~-0.640
I (~15.56) (=16.14) (=14.75)
8 R - ST -0.306
? (—=13.12) (~7.00)
SSR 2.823 st B 3.367
alc a8 ‘ 21298 268.70
SBC 2245 219.75 275.47
Q(12) 8.59 (0.571) ’ 4.38 (0.928) 25.54 (0.004)
Q24) ' SR 41011 (0.007) 15.71 (0.830) 66.58 (0.000)
Q(48) 67.91 (0.019) 37.61 (0.806) 99.31 (0.000)

. N .
Clearly, there is no difference between an additive seasonality and maltiplicative seasonality
when all other autoregressive coefficients are zero.
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12, 24, and 48 indicate that the residual autocorrelations are insignificant. In con-
trast, the residual correlations for model 1 are significant at long lags [i.e., Q(24)
and Q(48) are significant at the 0.007 and 0.019 levels] and the residual correla-
tions for model 3 are significant for lags 12, 24, and 48. Other diagnostic methods
including overfitting and splitting the sample suggest that model 2 is appropriate.
The procedures illustrated in this example of fitting a model to highly seasonal
data are.typical of many other series. With highly season

al data, it is necessary to
supplement the Box-Jenkins method:

1. In the identification stage, it is necessary to seasona!!ly 2Tl iCuce g data and
check the ACF of the resultant series. Often, the seasonally differenced data will

not be stationary. In such instances, the data may also need to be first-differ-
enced.

2. Use the ACF and PACF to identify potential models. Try to estimate models
with low-order nonseasonal ARMA coefficients. Consider both additive and

multiplicative seasonality. Allow the appropriate form of seasonality to be deter-
mined by the various diagnostic statistics.

A compact notation has been developed that allows for the efficient representa-
tion of intricate models. As in previous sections, the dth di

fference of a series is de-
noted by A“. For example, '

Azy/ = A(y: - yl—l)
=Ye= 2 4y,

Figure 2.10 ACF and PACF for Spanish Tourism.
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A seasonal difference is denoted by A, where s is the period of the data. The Dth
such seasonal difference is A, For example, if we wanted the second seasonal dif-
ference of the Spanish data, we could form

estimated model (1) is parsimonious; (2) has coefficients that imply stationarity and
invertibility; (3) fits the data well; (4) has residuals that approximate a white-noise
process; (5) has coefficients that do not change over the sample period; and (6) has
good out-of-sample forecasts.

In utilizing the Box-Jenkins methodology, you will find yourself making many
scemingly ad hoc choices. The most parsimonious mode! may not have the best fit
or out-of-sample forecasts. You will find yourself addressing the following types of

A%Z.yl IZOy Ye- l‘ T
=Apy, -8y ;
=Y~ Yietz = Visi2 = Viaa)

2= Wzt Y 2

:model more appropriate than an ARMA(1, 2) specification? How to best model

seasonality? Given this latitude, many view e Box-Jenkins methodology as an ant

_nlhcr than a science. Nevertheless, the technique is best learned through experi-

ence. The exercises at the end of this chapter are designed to guide you through the

S types of choices you will encounter in your own research.

Combining the tw~ *par of differencing yicids AAR Multiplicative models are
written in the form ARIMA(p, d, g)(P. D, Q),

where pand g = the nonseasonal ARMA coefficients

= number of nonseasonal differences

= number of multiplicative autoregressive coefficients;
= number of seasonal differences

= number of muitiplicative moving average coefficients
= seasonal period

"QUESTIONS AND EXERCISES

LoD TR

1. In the coin-tossing example of Section 1, your winnings on the last four tosses

Using this notation, we can say that tht fitted model of Spanish tourism is an (w,) can be denoted by

ARIMA(O, 1, 1), 1, 1),, model. In applied work, the ARIMA(OQ, 1, 1)G, 1, 1), ;
model occurs routinely; it is called the “airline model” ever since Box and Jenkins |

w,= 1/4e, + 1/de,_| + 1/de,_, + 1/de,
(1976) used this model to analyze airline travel data. :

A. Find the expected value of w,. Find the expected value given that ¢, ; =
€,=1.

SUMMARY AND CONCLUSIONS _ ,
A % B. Find var(w,). Find var(w,) conditional on €,y = ¢,_, = 1.
The chapter focuses on the Box~Jenkins (1976) approach to identification, estima- ;
tion, diagnostic checking, and forecasting a univariate time series. ARMA models
can be viewed as a special class of linear stochastic difference equations. By defini-
tion, an ARMA model is covariance stationary in that it has a finite and time;
invariant mean and covariances, For an ARMA model to be stationary, the charae
teristic roots of the difference equation must lic inside the unit circle. Moreover, the
process must have started infinitely far in the past or the process must alwavs be i i
equilibrium. LA
In the identification stage, the series is plotted and the sample autocorrelauons
and partial correlations are examined. As illustrated using the U.S. Wholesale Pnccjf
Index, a slowly decaying autocorrelation function suggests nonstationarity behav__
ior. In such circumstances, Box and Jenkins recommend differencing the da.”

C. Find: i. Cov(w,, w, ) ii. Cov(w,, w,_5) itl. Cov(w,, w,_s)

- Substitute (2.10) into y, = a5 + a,y,_, + €,. Show that the resulting equation is an
identity.

A. Find the homogencous solution to y, = ay + a,y,., + ¢,

B. Find the particular solution given that ,al <1

solutions.

Consxder the second-order autoregressive process Y= ag + ay,, + €, where

Formal tests for nonstationarity are presented in Chapter 4. A common practice is - l <l _
to use a logarithmic or Box-Cox transformation if the variance does not a ear 10 S ..
PP A. Find:i. £y, i. E,_,y, . Ey,.,
be constant. Chapter 3 presents some modern techniques that can be used to modcl . , .
the variance. iv. Cov(y, y,y) v. Cov(y, y,.2) ‘vi. The: pamal autocorrelauons

0y, and ¢,

B. Find the impulse response function. leen Vi2s trace out the effects on an e,
shock on the {y,} sequence.

The sample autocorrelations and partial correlations of the suitably traneformcd
data are compared to those of various theoretical ARMA processes. All plausible
models are estimated and compared using a battery of diagnostic criteria. A well

_Questions: What is the most appropriate data transformation? Is an ARMA(2, 1)

C. Show how to obtain (2.10) by combining the homogeneous and particular

©ag
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C. Determine the forecast function E,v,,.. The forecast error f, is the differ-
ence between v
[Hint: Find E,f,, var(f,), and E(f, f,_) for j=010s.]

. L "
. Two different balls are drawn from o jar containing three balls numbered 1, 2.
and . Let x = number on the first hall drawn and v = sum of the two balis

drawn.

A. Find the joint probability distribution for x and y; that is, find prob(x = 1,

v=3) . problx=1.v=5. .. .. and prob(x =4, v = 6).

B. Find each of the following: E(x), E(v), E(y|x =1), E(x‘_v =35), var(xly =
5), and E(P).

C. Consider the two functions w, = 3x2 and w? = x™". Find E(w, + w,) and
E(w, +w, | y=3).

" D. How would your answers change if the balls were drawn with replacement?

. The general solution to ‘an nth-order difference equation requires n arbitrary
... constants. Consider the second-order equation y, = a + 0.75y,., — 0.125y,_, +

€,

A. Find the homogeneous and particular solutions. Discuss the shape of the
impulse response function.

B. Find the values of the initial conditions (and A, and A,) that ensure the {)“,]
sequence is stationary. (Note: A, and A, are the arbitrary constants in the
homogeneous solution.)

C. Given your answer to part B, derive the correlogram for the {y,} sequence.

. Consider the second-order stochastic difference cquation y, = 1.5y, = 0.5y,, +

€,

A. Find the characteristic roots of the homogeneous equation.

B. Demonstrate that the roots of 1 — 1.5L + O.SL? are the reciprocals of your:

answer in part A.

C. Given initial conditions for y, and v,, find the solution for y, in terms of the

current and past values of the {¢,} sequence. Explain why it is not possible

to obtain the backward-looking selution for v, unless such initial conditions
are given.

D. Find the ferecast function for y .

E. Find: Ey, Ey,,,, var(y,), var(y,, ). and cov(y,,. |, »).

. The file entitled SIM_2.WK! contains the simulated data sets used in this

chapter. The first column contains the 100 values of the simulated AR(1)

.. and Ey,,.. Derive the correlogram of the {f,} sequence. :
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process used in Section 7. This first series is entitled Y1. Use this series to perform
the following tasks. (Note: Due to differences in data handling and rounding, your
answers need only approximate those presented here.)

A. Plot the sequence against time. Do the data appear to be stationary? Show
that the properties of the sequence are :
Sampic mean  -0.3707418062

Variance - 39987
Skewness -0.31011

Stgnificance Level (Sk=0) 0.21239328

B. Verify that the first 12 coefficients of the ACF and PACF are

ACF:
1: 07394472 0.5842742 0.4711050  0.3885974 0.3443779  0.3350913
7. 02972263 0.3251532  0.2689484 0.2007989  0.1886648  0.0824283

PACF:
I: 07394472 0.0827240  0.0302925  0.0255945 0.0601115  0.0889358
7:-0.0165339  0.1438633 -0.1002335 —0.0653566 0.0699036 -0.2040202

Ljung-Box Q-statistics: Q(8) = 177.5774,
0(16)=197.8423, Q(24) = 201.2825

- C. Use the data to verify the results given in Table 2.2.

. D. Determine whether it is appropriate to include a constant in the AR(D)
process. You should obtain the following estimates:

Standard Significance
: Coefficient Estimate . Error t-Statistic Level
1. CONSTANT  —0.538045291  (.380434 146 —1.41429  0.16044514

12, AR{1} 0.756861387  0.067241069  11.25594  0.00000000

;E. Estimate the series as an AR(2) process without an intercept. You should
obtain:

Standard Significance
CoefTicient Estimate Error ¢-Statistic - Level
1. AR{1} 0.7048671016 0.0993987373 7.09131  0.00000000
2. AR{2}

0.1094585628 0.0986680252 110936 0.26998889

" Ljung-Box Q-statistics: Q(8)=5.1317, Q(16) =15.8647, 0(24)=21.0213

F. Estimate the series as an ARMA(I, 1) process without an intercept. You
should obtain:
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Standard Significance
CoefTicient Estimate Error t-Statistic Level
1. AR{1} 0.846376753  0.068533381  12.34985  0.00000000
2. MA( 1} —0.148770547  0.125784398 -1.18274  0.23977273

Verify that the first |2 coefficients of the ACF and PACF of the residuals are:

ACT:
o -00060900  -0N2A5955  ~0.0375520 -0.0749124  —0.0683620  0.0546530
7: -0.0808082 0.1598166 0.0732022 -0.0080406 0.1686742 -0.0484844

PACF:
1: 0.0069909 -0.0366462 -0.0381264 ~0.0770739 ~0.0733243  0.0460005
7: -0.0923797 0.1542973 0.0630681 0.0027253 0.1917630 ~-0.0374165

significance level 0.5 1057476
significance level 0.32919794
significance level 0.51487365

Ljung-Box Q-statistics: Q(8) = 5.2628,
. Q(16) = 15.7449,
0(24) =21.0950,

G. Compare the AIC and SBC values from the models estimated in parts D, E,
and F.

. The second column in file entitled SIM_2. WK contains the 100 values of the

simulated ARMA(], 1) process used in Section 7. This series is entitled Y2.
Use this series to perform the following tasks. (Note: Due to differences in data
handling and rounding, your answers need only approximate those presen;ed

here.)

A. Plot the sequence against time. Do the data appear to be stationary? Show
that the properties of the sequence are:

0.02254818000  Variance 5.743104

Sample mean
-0.06175 Significance level (Sk-=0)  0.80390523

Skewness

ACF:
1. -0.8343333 0.5965289  ~0.4399659 0.3497724  -0.3187446  0.3316348
7. -0.3371782 03166057 ~0.2761498  0.1789268 -0.0839171  0.0375968

PACF:

1: -0.8343833 —0.3280611 -0.1942907 -0.0145160 -0.1398293  0.0891764
70 0.0004335  0.0143663  0.0166776 -0.1987829 —0.0462213 —0.0212410

B. Verify the results in Table 2.3,

. The third column in SIM_2.WK!1 contains the 100 values of an A
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C. Estimate the process using a pure MA(2) model. You should obtain:

Standard Signifi
' ' gnificance

Coefficient Estimate Error t-Statistic Level
I.MA(1} —1.152648087 0.087208938 -13.21709 0.00000000
2. MA{2) 0.521919469 0.087336869 5.97594  0.00000004
D. Verify that the first 12 coetlicients of the ACF and PACF of the residuals

are
ACF:

I.: -0.1281102  0.2841720 -02721070  0.0641308 -0.1690135  0.1591088
701711865 0.1009624  -0.2300744  0,0202238 -0.0918914  ~0.0507396

" PACF:

b -0.1281102  0.2722277 =0.2314021 -0.0521753 —0.0407344  0.0989550
7:-0.1253922 —0.0203505  -0.1278106 -0.0870339  0.0170745 ~-0.1709188

Ljung~Box Q-statistics: 08) = 28.4771,
o(16) = 37.4666,
0(24) = 38.8424,

significance leve] 0.00007638
significance level 0.00062675
significance level 0.01470990

R(2) process;
. owing tasks. (Note:
g and rounding, your answers need only ap-

this series is entitled Y3, Use this series to perform the foll
Due to differences in data handlin
proximate those presented here.)

A. Plot the sequence against time. Verify the ACF and PACF coefficients re-

ported in Section 7. Compare the sample ACF and PACEF t
¢ th -
oretical AR(2) process. © (hose of a the

B. Estimate the series as an AR(1) process. You should find:

Standard Signi
. . gnificance
CoefTicient Estimate Error t-Statistic Level
1. AR{1} 0.4676067905 0.089295] 880 523664 0.00000093
ACF of the Residuals: :
11 0.2226399 -0.3349466 -0.3386407 0.0569540 0.0807033 -0.1656232
7: -0.1358947 0.1490039 041810292‘ —0.0022135 -0.0893884 -0.0245175

PACF of the Residuals:

1102226399  -0.4045690 =0.1309423  0.0803672 ~0.1663664  ~0.2353309
7: -.-0‘0327129 0.0578083  ~0.0587342 0.0005358  0.0422312 -0.0381843

Sty . . e b
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Ljung-Box Q-statistics: Q(8) = 36,9968,
Q(16) = 55.8708,
Q(24) = 69.0486,

significance level 0.00000470
significance level 0.00000127
significance level 0.00000170

C. Why is the AR(1) model inadequate?

D. Could an ARMAC(I, 1) process generate the type of sample ACF and PACF:’ ,

found in part A? Estimate the serics as an ARMA(1, 1) process. You
should obtain:

Stundard Significance
Coefficient Estimate Error t-Statistic Level

1. AR{1} 0.1861328174 0.1592235925 1.16900  0.24526729
2. MA{1}) 0.5057665581 0.1407905283 3.59233  0.00051680
ACF of the Residuals:
1: 0.0284101 -0.1131579 -0.3143993 0.0716440  0.0162748 -0.1293382
7. -0.1197985 0.1392267 0.1194444 0.0174992 -0.1155456  0.0427301
PACEF of the Residuals:
1: 0.0284101 -0.1140571 -0.3118831 0.0757999 -0.0596767 —0.2396433
7: -0.0872039 0.1041284 —0.0272326 ~0.0175071 -0.0164607 0.0486076

Ljung-Box Q-Statistics: Q(8) = 17.7685,
Q(16) =37.0556,
0(24) = 44.9569.

significance level 0.00683766
significance level 0.00072359
significance level 0.00268747

Why ts the ARMA(L, 1) model inadequate?

E. Estimate the series as an AR(2) process to verify the results reported in the
text. Also show that

ACF of the Residuals:

I: 0.0050856 0.0167033 -0.1311013  0.0737802 -0.0183142 —0.1857531
7: -0.1223167  0.1169804  0.0827404 -0.0445903 -0.1014803  0.0879798
13: -0.1499004  0.0365971 -0.1062701  0.2608459 —-0.0365855 -0.1119749
19: -0.0855518  0.0179101  0.0695385 -0.1661957 -0.0183144  0.0479631

PACEF of the Residuals:
1 0.0050856  0.0166779 -0.1313096  0.0764420 -0.0160463 -0.2098313
7: =0.1023138  0.1265615 0.0378627 —0.0653412 -0.0679885 0.0629571

13: ~0.2287224  0.0563135 -0.0068239  0.2076758 -0.0936362 -0.1587757
19: <0.0419646 —0.0410407  0.0716762 —0.1014686  0.0384143 -0.0779761
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Ljung-Box Q-Statistics: Q(8) = 9.2697,
Q(16) = 24.6248,
0(24)=31.8487,

significance level 0.15896993
significance level 0.03845761
significance Ievel 0.08001287

The Q-statistics indicate that the autocorrelations at longer lags are statistically

different from zero at the usual significance levels. Why might you choose not 10
model such long lags when using actual economic data?

F. Now estimate the series as an AR(2) but also include a moving average
term at lag 16. Show that the residuals are such that

- ACF of the Residuals:
C 1 00265736  0.0040771 -0.0933018  0.0858766  0.0225622 -0.1521287
7. -0.1643954  0.0947202  0.1447444  0.0017055 -0.0718022 0.0512581

13: -0.1023376  0.0151149 -0.1029252  0.0174225 -0.0629532 -0.1078434

19: -0.0754905 -0.0307818  0.0130560 -0.1275938 0.0223896  0.0338]57
PACEF of the Residuals:

1:  0.0265736  0.0033733 -0.0935665 0.0917077  0.0182999 -0.1663372
7. -0.1432380  0.1106009  0.1204167 -0.0169905 ~0.0350092 0:0517180
13: -0.1887574  0.0078523  0.0014991 0.0232808 -0.0985569 -0.1417484

19: -0.0753388 -0.0797882  0.0086627 —0.1045587  0.0291697 -0.0227024
Ljung-Box Q-statistics: Q(8) = 8.2222,
Q(16)=13.9801,
0(24) = 19.0856,

significance level 0.14440657
significance level 0.37524746
significance level 0.57964913

C. Compare the AIC and SBC values from the models estimated in parts B, D,
E,and F.

. The file called WPLLWK1 contains the U.S. Wholesale Price Index from

1960:Ql to 1992:Q32. Make the data transformations indicated in the text.

A. Use the sample from 1960:Q1 to 1990:Q4 in order to reproduce the results
“of Section 10.

B. Use the fitted model to create “out-of-sample” forecasts for the 1991:Q1 to
1992:Q2 period.

C. Consider some of the plausible alternative models suggested in the text.
i. Try to fit a model to the second-difference of the logarithm of the WPI.

ii. Estimate the multiplicative seasonal model

D. Compare these models to that of part B.
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The file entitled US.WK1 contains quarterly value of the U.S. money supply

(M 1) from 60:Q1 to 91:Q4. :

A. Plot the sequence against time. Verify that the pwﬁé{’_ties of the sequence
are T

Sarrtomean 3.80169890625 Vari: nce o 5.260577E+22
Skewness 0.83949 Significance level (Sk=0) 0.00012712

B. Detrend the data by estimating the reuression:
Alog(M1) = a, + b(time) + €,
The ACF of the residuals is

1- 0.8835022  0.8752123  0.8064355  (.8334758  0.7165115  0.6968131

7. 06249026  0.6437679  0.5285896  0.5118881 0.4507793 04770092 |

Ljung-Box Q-statistics: Q(8) = 630.0809, significance level 0.000
O(16) = 836.4612, significance level 0.000

Does detrending seem to render the sequence staticnary?

C. Calculate the ACF and PACEF of the first difference of log(M1). You should
obtain:

ACF:

I: 0.5394848  0.3234781 -0.5573607  0.8528067 —0.5168406  0.2986240 )

7. 20.5523817 07950047 -0.5096188  0.2695013 -0.5425407  0.7549618

PACF:
1 ~0.5304848  0.0457493 -0.5175494  0.7167389 -0.0356317 -0.1396979

7. -0.0457462  0.1998479 -0.0995162 —0.1475262 -0.0125845  0.0905883 ';

Explain the observed pattern at lags 4, 8. and 12.
D. Seasonally difference the money supply as &, log(M1) = A log(M1),
- Alog(M1),_. You should find that the ACF and PACF are

ACF:
1 0.8585325 0.7148654 0.5452426 0.3963377 0.3401345-  0.2636718
7. 0.1814409 0.0991204 0.0554050 0.0287039 0.0423198  0.0651970

PACE:

1: 08585325 ~-0.0844838 -0.1831526 -0.0283342  0.2688532 —0.1594976 R

7. —0.1789985 -0.0055668  0.2312324 -0.0787959 -0.0015501 0.0736405
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E. For convenience, let ml, denote A, log(M1). Estimate the seasonally differ-
enced log of the money supply as the AR(1) process:

mly=a,+aml_, + €,

. Standard - Significs
Coefficient . Estimate Error t-Statistic lg?lhi'c:'nce
CONSTANT 0.06217 0.0090502490  6.86967 0.000000
AR{1} - 0.86241 0.0446622831 1020070 nNnooes

ERVAVIVIV]

Examine the diagnostic statistics to show that this model is inappropriate

F. Estimate log(M1) using each of the following:

ARIMAC(L, 0,0)0, 1, 1)
ARIMA[L, 0, )]0, 1, 0)

Why is each inadequate?

G. Define Aml, = ml, — ml,_, so that Aml, is the first difference of

. h
difference of the money supply. Estimate Aml, as ¢ seasonal.

Aml,:(l +B4L4)€, . Lt

You should. obtain:

' v Standard Si niﬁcance
Coefficient Estimate Error t-Statistic gLevel
MA{4) . —0.672328387  0.071121156 -9.45328 . 0.00000000

ACEF of Residuals:

I: 0.0616653  0.1387445 —-0.0388472  0.0720538 0.0875724 0.0110692
7. -0.0622441  -0.0953258 -0.0131446 —0.1265891 -0.0802878 —0.0407282

PACF of Residuals:

I: 0.0616653  0.1354570 -0.0558297  0.0601665 0.0952727 -0.0207820

7: -0.0826424  -0.0831404  0.0052625 -0.1232642 -0.0717116  0.0263945

Ljung-Box Q-statistics: Q(8) = 6.5331, significance level 0.479
Q(16) = 10.3813,  significance level 0.795
Q(24) = 14.0666, significance level 0,925
Q(32) =17.4491, - sign_iﬁcance level 0.976

Explain why this model is superior to any of those in part F.

3
3
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ENDNOTES

I. The appendix to this chapter provides a revicw ol constructing joint probabilities, ex-
pected values, and variances.

2. Some authors let T equal the maximum number of observations that can be used in the es-
timation; hence, T changes with the number of parameters estimated. Since there is no un-
derlying distributional theory associated with the AIC and SBC, this procedure cannot he
said to be incorrect. Also be aware that there are several equivalent formulations of the
AlC and SBC. Your software package may nut yicld the precise numbers reported in e
text.

3. Newl, an coonoiietric software packages oo o Box—Jenking esusnanon procedure.
Mechanics of the estimation usually entail nothing more than specifying the number of
autoregressive and moving average coefficients 10 include in the estimated model.

4. Most software programs will not be able to estimate (2.43) since there is not a unjque set
of parameter values that minimizes the likelihood function.

5. Some software programs report the Durbin-W atson test statistic as a check for first-order
serial correlation. This well-known test statistic is biased toward finding no serial correla-

tion in the presence of lagged dependent variables. Hence, it is ususally not used in -

ARMA models. :

6. Estimation of an AR(p) mode! usually entails a loss of the number of usable observa-
tions, Hence, to estimate a sample using T observations, it will be necessary to have (T +
p) observations. Also note that the procedure outlined necessitates that the second sub-
sample period incorporate the lagged values 1, t,,_(, ..., tpput-

7. Many of the details concerning optimal forecasts are contained in the appendix to Chapter
3.

8. In essence, the estimated equation is an ARMA(!, 4) mode!l with the coefficients {3, and
B3, constrained to be equal to zero. In order to distinguish between the two specifications,
the notation ARMA(I, (1,4)] is used to indicate that only the moving average terms at
lags | and 4 are included in the model.

9. The details of the X-11 procedure are not important for our purposes. The SAS statistical
package can preform the X-11 procedure. The technical details of the procedure are ex-
plained in the Bureau of the Census report (1969).

APPENDIX Expected Values and Variance

1. Expected value of a discrete random variable )
A random variable x is defined to be discrete if the range of x is countable. If x
is discrete, there is a finite set of numbers x,. x,, ..., x, such that x takes on
values only in that set. Let f(x;) = the probability that x = x;. The mean or ‘ex-
pected value of x is defined to be

E(x)= ) x,f(x))

J=t

Note the following: ' A
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. We can let 7 go to infinity; the notion of a discrete variable is that the set be

.dgnumgrab}e” or a countable infinity. For example, the set of:all positive
ntegers is discrete.

. Ifojf(,rj) does not converge, the mean is said not to exist,

. E(x) is an “average” of the possible values of x; in the sum, e

: . ach possible x
ts weighted by the probability that x = X;, that is, e

Loy =wyx, +wpx, + o WX,

where Zwy =

2. Expected value of a continuous random variable

3. Expected value of a function !

No»y let x be a continuous random variable. Deno
the interval (x,, x,} be denoted by f(x, <
by Figure A2.1, it follows that

te the probability that x is in
X £.x,). If the function f(x) is depicted

f(.rOst,r,)zjf(x)dx

o
The mean, or expected value, of x is S

oo

E(x)= J'xf(_r) dx

—oo

&

Let x be a random variable and g(x) a function. The

; mean or ex
o expected value of

Elg(x)]= Y g(x;)f(x)

=

Figure A2.1 Frequency of x.
flo) -
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for diserete x or

Flg(n)= je« r)f(x) dr

—oo

for continuous x. Note: If g(x;) = x;, we obtain 1 1 simple mcan.
4. Properties of the expectations operator

. The expected value of a constant ¢ is the valuc of the (:Qﬁstam That is.
E(¢c)=c.

Proof:

oo

g(x):cjcf(x) d,\‘zcjf(x) dyx=c

oo —o0

2. The expected value of a constant times a function is the constant times the
expected value of the function. ~ ;

LY iR

Proof:

Fleg(0l= [ cgtfx) de=c [ u(x)f (o) dx = cElg(x)}

ot

3. The expected value of a sum is the suin of the expectations:
Ele,g1(0)  cy85(0)] = ¢, £g,(¥) = cEgx(x)

Proof:

=3
oo

'[[clgxi})i cﬂzé@iﬁb dx = Jclgl () f(x)ydek Jc‘zgz(x)f(x) dx

—oo
—cn

= ¢ Elg, ()] £ c,E{g,(x)]

S. Variance of a Random Variable .
The variance of x is defined such that var(x) = E{[x = E()]"}:

Var(x) = E[¥* = 2x E(x) + E(x) E(x)]
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Since E(x) is a constant, E[E(x)] = E(x) and E{xE(x)] = [E(x)]*. Using these
results and the property that the expectation of a sum is the sum of the expecta-
tions, we obtain

Var(o) = E() - 2E[x E(0)] + B}
= E(F) = [Ewyy

. Jointly Distributed Discrete Random Variables

Let x and y be random variables such that xtakes on values x, x,,...,x,and y

valiee v v, Monlet [y dencie the probability that x = x; and y = y;. If
glx, y) denotes a funcuon of x and y, the expected value of the function is

Elg(x, y)]—ZZf,,g(x,.y,
ci=l j=l

Expected value of a sum
Let the function g(x, y) be x + y. The expected value of x + yis: .

E(X+)’)=22f,j(xi+)’j)

i
=szuxi+zzf.y)’j
BEE e 1 J I J

=Z(fljx1+f2sz+ +f;lj'xn)+2(f;'lyl+ﬁ2y2+ At fimYm)
j i

Note that (f,, + fi> + fi3 + - + f1,.} is the probability that x takes on the value
x, denoted by f|. More generally, (f; + f + fia + - + f;) is the probability
that x takes on the value x; denoted by f; or f(x). Since (fy; + for + fo; + = +

f.) is the probability that y = y, denoted by f(y,), the two summations above .

can be written as

E(x + y) = L f(x)) + Zyf(y;)
= E(x) + EQ)

Hence, we have generalized the result of 4.3 above to show that the expected :

value of a sum is the sum of the expectations.

. Covariance and Correlation

The covariance bétween x and y, cov(x, y), is defined to be

Cov(x, y) = E{[x - ExO]Ily - E()’)]}
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. Conditional Expectation

. Statistical Independence

Stationary Time-Series Models
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Multiply [x ~ E(x)} by [y — E(y)] and use the property that the expected E(xy) = .
’ )= fuxy, +
value of a sum is the sum of the expectations: W S22 % ik bt £ xy, ¢ faxayi+ fxyy,

Hfak Yyt oy et TaiZa¥i + fu2%, 92 + frsXuys + o

nmxnym
Cov(x, ) = E(xy) = ELXE()] = E[E(0)] + EE(OER)) 4 i indepe
S S~ ElsE) 5 Since x and y are independent, fy= flx)f(y). Hence
E(xy) = Zf:‘lxiyl + o +Z-f;mxiym
i=1 i=1

The correlation coefTicient between v and v is defined to be

___covlxy) ¥ n
yvar(x)yva. . ) y " SRR =2f(x‘.)f\)l)xiyl +Zf(x‘)f(y2)xiy2+ +ZJ\"i)f()’m)fV')' .
i=l i=1 i= o
Since cov{x, ¥) = L(xy) = E(x)E(x), we can 2xpress the expectation of the prod- & -

uct of x and y, E(xy), as

i=|

=f()’1))’|2f(x,»)xi + .. +f(ym)}’m2f(x,~)x,-
i=|
E(xy) = E()E(y) 4 covix, ¥) .
= E()EW + py, 0,0, Recall that Xf(x)x; = E(x). Thus
where the standard deviation of variable z (:lenoted by o) = the positive square
root of z. E(xy) = EQ[f(y,)y, + fOy, + -+ Fmdy )
so that E(xy) = E(x)E(y). Since cov(x, y) = E(xy) —
follows that the covariance and correlation
. events is zero,

EXE(y), it immediately

Let x and y be jointly distributed random variables, where fi denotes the prob- coefficient. of two independent

ability that x = x; and y = y,. Each of the f; values is a conditional probability;
each is the probability that x takes on the value », given that y takes on the spe-
cific value y,.

The expected value of x conditional on y taking on the value y;is:

.. An Example of Conditional Expectation

' Since the concept of conditional expectation plays such an important role bin
moc!em macroeconomics, it is worthwhile to consider the specific example of
tossing dice. Let x denote the number of spots showing on die 1, y the number
.of spots on die 2, and § the sum of the spots (S=x + ¥). Each die is fair so that
t}?e probability of any face turning up is 1/6. Since the outcomes on die 1 and
die 2 are independent events, the probability of any specific values forxand y

is thc. product of the probabilities. The possible outcomes and the probability
associated with each outcome $ are - '

E(—"|.\’,) = fljxl oyttt fnj-\’n

If x and y are statistically independent, the probability of x = x; and y = yiis
the probability that x = x; multiplied by the probability that y =y, If we use the
notation in number 6 above, nwo events arc stutistically independent if and only
if £, = f(x)f(y). For example, if we simultaneously toss a fair coin and roll a
fair die, the probability of obtaining a heal and a three is 1/12; the probability
of a head is 1/2 and the probability of obtaining a three is 1/6.

An extremely important implication follows directly from this definition. If
xand y are independent cvents, the expected value of the product of the out-
comes is the product of the expected outcomes:

s 2 3 4 5 6 7 8 9 10 11 12

f) 136 2736 336 4736 5736 6/36  5/36 4/36 3/36 2/36 1736

To find the expected value of the su
the probability associated with that o
been to Las Vegas, the expected valu
quentially and that the first turns up 3
sum given that x = 3? We know that y

m S, multiply each possible outcome by
utcome. As you well know if you have
e is 7. Suppose-that you roll the dice se-
Spots. What is the expected value of the
can take on values | through 6 each with

E(oy) = E(0)E(y)

The proof is straightforward. Form E(xy) as
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a probability of 1/6. Given x = 3, the possible outcomes for S are 4 through 9,
each with a probability of 1/6. Hence, the conditional probability of S given
three spots on die 1 is E(Slx =3) = (1/6)4 + (1/6)5 + (1/6)6 + (1/6)7 + (1/6)8 +
(1/6)9 =6.5.

Chapter 3

MODELING ECONGMIC
TIME SERIES: TRENDS AND
VOLATILITY

: Many cconomic time series do not have a constant mean and most cxhibit phase