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Preface

This book is aimed at practitioners who do not have a 

statistics degree and yet wish to apply statistics to help 

them arrive at valid and reliable conclusions while 

minimising the animal numbers required. Descriptions 

of the mathematical methods underpinning the topics 

covered in the book are purposefully kept to a min-

imum. If readers wish to gain a better understanding of 

the mathematics behind experimental design and stat-

istical analysis then reading a more advanced textbook 

would help further their understanding.

The solutions to practical problems encountered 

when conducting animal experiments are explained 

using non-technical approaches. We believe that in 

many situations advanced statistical ideas can be 

employed successfully by researchers with no statistical 

qualification, using a combination of common sense 

and modern statistical analysis software packages. In 

our experience statistical ideas are often introduced 

to scientists using mathematical terminology. This can 

be off-putting to non-mathematicians and can leave 

researchers with, at best, only rudimentary statistical 

tools and at worst a fear of statistics.

To keep the descriptions of the statistical tools covered 

in this book as simple as possible, we shall occasionally 

give pragmatic explanations. While such explanations 

may not apply in all cases and in all scientific disciplines, 

this approach does allow us to introduce methods in a 

clear and concise way. By allowing ourselves the freedom 

to simplify the problems pragmatically, we aim to make 

statistical tools more accessible. The reader is invited, 

once they have familiarised themselves with (and hope-

fully found the benefit of using) the tools described in 

this book, to read more advanced texts on the subject.

  



Prefacex

This book is divided into seven chapters which 

loosely correspond to the procedure a researcher 

should take when planning the experimental design, 

running the experiment and evaluating the data gener-

ated. Following an introductory chapter and a second 

describing certain statistical concepts, the third chapter 

covers different types of designs. Designs are outlined, 

where possible, in simple non-technical language. This 

is followed by a chapter describing the randomisation 

of the experimental material. The fifth chapter discusses 

the statistical analysis of animal experiments and this is 

followed by a chapter describing how these methods 

can be applied within the statistical software package 

InVivoStat. The final chapter draws some conclusions 

about the ideas contained within the text.

A scientist can apply all of the methodology 

described in this book. Certain topics covered are 

more advanced than others and while we aim to make 

all subjects accessible, the reader should be aware that 

the help of a professional statistician may be advisable 

when first implementing some of the more advanced 

tools. However, once the readers have familiarised 

themselves with the ideas contained within this book, 

we hope they will have a fuller appreciation of the help 

statistics can offer to improve the conclusions that can 

be made when running animal experiments.
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1

Many researchers, either directly or indirectly, rely on 

statistical ideas when carrying out animal experiments. 

While some statistical tools are well known and are 

applied routinely, other tools are less well understood 

and so are less well used. The overall aim of this book is 

to discuss statistical methodologies that can be applied 

throughout the many stages of the experimental pro-

cess. Researchers should be able to carry out most of 

the techniques described, although the advice of a pro-

fessional statistician is advisable for some of the more 

advanced topics. Making use of these techniques will 

ensure that experiments are conducted in a logical and 

efficient way, which should result in reliable and repro-

ducible decisions.

The particular types of study addressed in this book, 

as the title suggests, are studies involving animals. 

We attempt to cover all of the statistical tools that the 

animal researcher should use to run successful stud-

ies. Of course many of the problems faced by the ani-

mal researcher are common to other disciplines, and 

hence the ideas contained within this book can be 

applied to other areas. It should be noted that certain 

topics described in the text have been simplified to 

allow non-statisticians to apply the ideas without pro-

fessional statistical support. Such pragmatic descrip-

tions, while simplifying the technical details, are not 

universal and will not be applicable in all scientific 

disciplines.

There has been much interest in the use of statistics 

in animal research, in particular in the application of 

the 3Rs, replacement, reduction and refinement, as 

described by Russell and Burch (1959):

Every time any particle of statistical method is properly used, 

fewer animals are employed than would otherwise have been 

necessary.

Many authors have since highlighted how important the 

use of good experimental design is when conducting 

animal experiments; see Festing (1994, 2003a, 2003b) 

and the references contained within. Some of the more 

practical, as well as statistical, aspects of experimen-

tal design and statistics when applying the 3Rs are 

described in the book by Festing et  al. (2002). There 

have also been surveys into the use of statistics in ref-

ereed journals; see McCance (1995) and more recently 

Kilkenny et  al. (2009). The latter draws attention to 

some of the mistakes that can be made by researchers 

when designing and analysing animal experiments. 

The reliability of the reporting of animal experiments 

has been considered in, for example, Macleod et  al. 

(2009) and Rooke et al. (2011). These articles highlight 

that papers describing experiments that do not use 

suitable randomisation and/or blinding may contain 

biased results.

The main goal of this text is to demonstrate how sta-

tistics can aid the reduction and refinement of animal 

studies. The efficient use of statistics, both in terms of 

complex experimental design and powerful statistical 

analysis, can reduce the number of animals required. 

Statistics can also help the researcher understand the 

processes that underpin the animal model and help 

identify factors that are influencing the experimental 

results. Such an understanding will inevitably lead to 

a refinement in the experimental process and a reduc-

tion in the total number of animals used.

Introduction
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Introduction2 Introduction

Statistics, as a discipline, provides researchers with 

tools to help them arrive at valid conclusions. However, 

statistics, along with the application of some common 

sense, can also increase the understanding of the ani-

mal model through the application of graphical and 

mathematical techniques. For example, graphical tools 

play an important role in helping the researcher under-

stand the effect of the features of the experimental 

design and also uncover overall patterns present in the 

data. The application of a formal statistical test, with-

out first investigating the data graphically, can lead to 

the researcher drawing incorrect conclusions from the 

data. Consider the following real-life case study, which 

used graphical, as well as statistical, tools. If a conven-

tional statistical analysis had been carried out, without 

first investigating all of the information gathered within 

the experiment, then the conclusions would have been 

misleading.

Example 1.1:  Reducing blood cholesterol levels in mice

A scientist wanted to test the hypothesis that a novel compound had 

a beneficial effect on reducing high-density lipoprotein (HDL) chol-

esterol levels in a transgenic C57Bl/6J strain of mice. A blood sam-

ple was taken pretreatment and the baseline cholesterol level for 

each animal measured. The mice were then randomised to either the 

drug treatment group or the control group and dosed with either the 

drug treatment or vehicle twice daily for 2 weeks. At the end of this 

period, a terminal blood sample was taken and the HDL cholesterol 

level measured.

As the scientist wanted to make use of the baseline informa-

tion in the statistical analysis, it was decided that the percentage 

change from baseline would be a suitable response to investigate. 

This would, the scientist hoped, effectively remove the animal-to-

animal differences by normalising to the baseline level. While there 

was evidence of a decrease in HDL cholesterol level in the group 

of animals administered the drug treatment (a 20% decrease from 

baseline in the drug treatment group compared to a 10% decrease 

in the control group) this was not deemed statistically significant 

using an unpaired t-test (p = 0.191). A means with standard errors 

of the mean (SEMs) plot of the data (see Section 5.3.5) is presented 

in Figure 1.1.

As a follow-up the scientist also analysed the terminal HDL 

cholesterol level. From this analysis it appeared that there was a 

statistically significant increase in cholesterol level in the drug-

treated group compared to the control. A plot of the means 

with SEMs of the terminal HDL cholesterol level is presented in 

Figure 1.2.

Based on the results of this experiment, should we conclude the 

drug increases cholesterol levels? And why did the two analyses 

give such different conclusions? These questions can be answered 

by a simple scatterplot of the measured HDL cholesterol levels. If 

we plot terminal vs. baseline HDL cholesterol levels, an underlying 

problem with the experiment becomes clear. The scatterplot is pre-

sented in Figure 1.3.

From the plot it can be seen that there are two distinct groupings 

along the X-axis. The plot reveals that, in terms of the HDL baseline 

cholesterol level, the animals belong to one of two sub-populations. 
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Figure 1.1.  Plot of treatment means with standard errors 

for the percentage of baseline cholesterol response for 

Example 1.1.
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the terminal HDL cholesterol for Example 1.1.

 

 

 



Structure of this book 3

Unless we are careful how these baseline differences are accounted 

for, we could draw incorrect conclusions from the analysis. Given 

that there appears to be a correlation between baseline and ter-

minal cholesterol levels, this baseline difference is probably the 

most important feature of the experiment that influences the con-

clusion – perhaps more so than the treatment effect itself. The treat-

ment effect observed in the experiment will be influenced by the 

allocation of the mice (within each sub-population) to the treatment 

groups. In this case most of the mice that were allocated to the 

novel drug group were from the sub-population with the high base-

line level. So it is not surprising that, when analysing the terminal 

HDL cholesterol level, it appears that the terminal cholesterol level is 

higher in the treatment group. Obviously the researcher was unlucky 

that the randomisation of the mice to the treatment groups pro-

duced such an allocation.

The solution is twofold. Firstly, and most importantly, the 

researcher should try to identify what is causing the baseline dif-

ferences. We can then account for this effect in the experimental 

design. However, if we fail to identify what is causing the baseline 

differences, then the randomisation should be carried out so that 

the treatment replication is equal in both sub-populations. This will, 

of course, depend on whether the baseline information is available 

when allocating the mice to the treatment groups.

If the researcher produces the scatterplot of Figure 1.3, then it 

will become apparent that there are possible effects due to baseline 

cholesterol levels. However, without such a graphical investigation 

of the data the problem may not have been identified. It is import-

ant at this stage of the book to note that a valid statistical investi-

gation of a dataset is more about understanding the information 

contained within the data. It does not just involve the calculation 

of p-values. Graphs can be the best and simplest way to achieve 

this and should always be considered first, ideally by plotting the 

individual data points.

In reality the treatment allocation observed in this example is 

quite extreme and perhaps indicates a biased selection process. It 

should be noted, however, that there is always a chance, however 

small, that the randomisation will generate a significant treatment 

effect due to the baseline. This will occasionally happen, even 

when the allocation process is valid. As long as the randomisa-

tion is performed correctly, then we should not be too concerned 

that effects present at the baseline will influence the treatment 

comparisons.

1.1  Structure of this book

The majority of the remainder of this text is split up into 

three main chapters. In Chapter 3 we describe families 

of experimental designs that can be employed when 

conducting animal research. The chapter consists of 

a description of each design and practical examples 

of their use. Also given is an explanation of when and 

where to apply each design. The section attempts to 

introduce each experimental design, without overuse 

of mathematical terminology.

In Chapter 4 some general issues involving random-

isation are discussed. We consider why the experimen-

tal material should be randomised and describe the 

influence this has on the statistical analysis. Techniques 

that can be employed to perform the randomisation are 

also given.

When conducting a statistical analysis, one of the first 

steps in the process is to define the statistical model 

that will be used to explain the observed data. There are 

several ways to justify the choice of statistical model. 

Given that the animal researcher has control over the 

experimental design, it seems sensible to make use of 

the design when deciding which statistical model to 

apply. One way of linking the experimental design to 

the statistical analysis is by considering the random-

isation applied to the experimental material. Most 

analyses, and certainly those considered in this book, 

make assumptions about the allocation of animals to 

treatment groups. For a valid statistical analysis of a 

designed experiment, a suitable randomisation should 

have been carried out.
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Figure 1.3.  Scatterplot of terminal HDL cholesterol vs. 

baseline HDL cholesterol, categorised by treatment for 

Example 1.1.
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Chapter 5 describes the statistical analysis techniques 

that the researcher should employ when analysing data 

generated using the designs described in Chapter 3. We 

approach the subject in a practical way, without the use 

of mathematical formulae. We assume the researcher 

has access to an advanced statistical package, such as 

InVivoStat, to compute all numerical results. The tools 

described in this book are flexible enough to cope with 

most experimental situations. Any assumptions made 

during the statistical analysis are also discussed. When 

these assumptions do not hold alternative approaches 

are given.

In Chapter  6 we describe how the researcher can 

perform the analyses discussed in Chapter  5 using 

the InVivoStat statistical software package. For each 

InVivoStat module the analysis procedure is described, 

including input and output options, and a worked 

example given. Where appropriate, a technical descrip-

tion of the implementation of the analysis methodology 

is also presented.

This text contains many ideas that the researcher 

may need to employ during the course of the experi-

mental process. Some of the techniques will be applied 

frequently during routine work and hence will be of 

interest to all readers. Other sections describe tech-

niques that are more advanced and would only be used 

occasionally, for example when setting up a new ani-

mal model.

1.1.1  Introductory sections

The following sections should be read by the casual 

reader who wishes to get a simple overview of the ideas 

contained within this text. These sections provide a fla-

vour of some of the more advanced sections.

Sections 2.1 and 2.3 – Statistical concepts

Readers should familiarise themselves with these sec-

tions as they provide the framework for all following sec-

tions on experimental design and statistical analysis.

Section 3.1 – Why design studies?

This section is an introduction into why we should be 

designing animal experiments and some information 

on the benefits that can be gained from an understand-

ing of experimental design.

Section 3.3 – Summary of design types

This section introduces the types of experimental 

design that are available to the researcher. Information 

is given on when and why they should be used.

Section 3.7.3 – Sample size calculation

This section discusses the factors that influence sam-

ple size and gives information on how to calculate suit-

able sample sizes in animal experiments.

Sections 4.2 and 4.4 – Randomisation

These sections describe why we need to randomise 

our experimental material and give practical examples 

of how to carry out the randomisation.

Section 5.1.2 – Introduction into statistical analysis

This section is a description, including a worked 

example, of our preferred analysis procedure using the 

InVivoStat software package.

Section 5.4 – Types of parametric analysis

This section describes the types of parametric ana-

lysis, some of their properties and gives information on 

when to use them.

1.1.2  Approaches to consider when setting up 
a new animal model

When setting up a new animal model, or perhaps try-

ing to replicate a model described in the literature, 

there may be many factors that influence the animals’ 

responses, which will need to be quantified. Perhaps 

the researcher needs to decide which sex to use, how 

old the animals need to be, how long to dose the ani-

mals prior to testing… the list goes on. A common 

approach taken by researchers is to investigate each of 

these factors one at a time. However, there are better 

and more efficient (not to say more informative) ways 

to conduct these investigations. Use:

Large factorial designs (•	 Section 3.5.4) to assess fac-

tors and factor interactions and to maximise the win-

dow of opportunity

Nested designs (•	 Section 3.7) to decide on the replica-

tion required within the experiment

Power analysis to select suitable sample sizes (•	 Section 

3.7.3)

Parametric analysis tools, such as ANOVA (•	 Section 

5.4.3), repeated measures analysis (Section 5.4.4) or 

graphical tools (Section 5.3) to investigate how the 

factors relate to each other
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1.1.3  Approaches to consider when  
generating hypotheses

Once the animal model has been set up, the researcher 

might wish to start generating hypotheses. Consider 

using:

Small factorial designs (•	 Section 3.5.3) to assess inter-

actions between factors of interest

Block designs to reduce variability and allow the •	

researcher to manage experiments more efficiently 

(Section 3.4)

Parametric analysis tools, such as ANOVA (•	 Section 

5.4.3), repeated measures analysis (Section 5.4.4) or 

graphical tools (Section 5.3) to investigate how the 

factors relate to each other

1.1.4  Approaches to consider when testing 
hypotheses

When testing specific hypotheses, the researcher 

should be stricter (in the analysis) to avoid generating 

false positive results. Consider using:

Block designs to reduce variability and manage the •	

experiments more efficiently (Section 3.4)

Parametric analysis tools, such as ANOVA (•	 Section 

5.4.3) or repeated measures analysis (Section 5.4.4)

Planned comparisons or other suitable multiple •	

comparison procedures to compare individual group 

means (Section 5.4.8)

1.2  Statistical problems faced by  
animal researchers

From a statistical point of view the animal researcher 

faces two major issues. The first problem is that there 

will usually be substantial animal-to-animal variabil-

ity. If two animals are given the same treatment regime, 

then they will respond in subtly different ways. This, 

combined with the ethical imperative to use as few 

animals as possible, will cause many problems for the 

researcher.

The level of animal-to-animal variability varies 

between different animal models, disease areas, spe-

cies and even batches of animals. This has, perhaps, 

been reduced by the advent of inbred isogenic strains, 

which has meant that the animals themselves are less 

phenotypically variable (Festing et al., 2002, pp. 17–26). 

However, it is probably correct to assume that this 

source of variability will still be large in most animal 

experiments. The researcher should aim to quantify 

the size of the animal-to-animal variability but also try 

to discover any other sources of variability within the 

experiment that will increase this.

Once all the sources of variability have been identified 

and quantified, the second problem is determining the 

sample size required for the experiment. Sadly, many 

assume the advice of a statistician will be to increase 

sample size, regardless of the practical implications! 

While there are benefits to be gained from increasing 

sample size (for purely statistical reasons) there may 

be other techniques that statistics can offer, other than 

simply increasing animal numbers, which will improve 

the reliability and reproducibility of the experimental 

results.

In many animal experiments there is one statistical 

‘saving grace’ that can be used to reduce the impact 

of high variability and small sample sizes, and that is 

the experimental design. Researchers usually have 

almost complete control over the experimental design 

used. For example, animals can be ordered so that they 

arrive from the supplier at set dates, unlike clinical tri-

als where patients need to be enrolled. Researchers can 

also plan how the study is conducted. If the study is 

completed over 2 days, or two pieces of test equipment 

are used or two surgeons perform the surgery, then 

these can be taken into account when planning the 

study. Hypotheses that are to be tested are planned well 

in advance and so designs can be tailored to suit the 

questions being answered. Many characteristics of the 

animals are also recorded before the start of a study for 

welfare reasons, for example age and body weight. So 

there is extra information about the animals themselves 

that can be used in the analysis of the study data.

In conclusion, if the researcher is to avoid the statis-

tical pitfalls of high variability and small sample sizes, 

then it can be argued that the use of good experimen-

tal design (and the appropriate statistical analysis of 

the data generated when using such designs) is more 

crucial in animal research than in many other scientific 

disciplines.
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1.3  Pitfalls encountered when applying 
statistics in practice

There are many pitfalls that may trap the unwary 

researcher when carrying out animal research. The 

following examples are taken from a number of pub-

lished sources, namely Festing et  al. (2002, p.  11–16), 

McCance (1995), Gaines Das et al. (2009) and Kilkenny 

et al. (2009), along with the authors’ own experiences.

1.3.1  Pitfalls with experimental design

Using appropriate designs at specific points in 
the experimental process

Many researchers fail to employ the right design at the 

right time. This can lead to using more animals than 

is necessary and can undermine the reliability of the 

experimental conclusions. For example, when setting up 

a new animal model, or revising an existing one, there 

are certain types of design that can be used to investigate 

the many hypothesised factors that could influence the 

experimental results. These designs, the so-called large 

factorial designs, provide a quick, easy and systematic 

way of developing knowledge of the animal model. If 

the researcher fails to use these designs, then it may take 

longer to fully understand the animal model. Factorial 

designs are discussed later in this book (see Section 3.5).

Failure to account for nuisance effects in  
the design

Most researchers can probably list nuisance effects that 

could be accounted for in the study design. For example, 

animals may be housed in different cages or rooms, be 

selected from two or more litters or be operated on by 

one of two surgeons. The list can go on. It is important 

to check if these nuisance effects have an effect on the 

measured response. If not then they can be ignored and 

future designs simplified, otherwise strategies should 

be developed that take them into account.

If a design is not planned in advance, then compari-

sons between the treatments may become influenced 

(or biased) by other unwanted nuisance effects that 

were not taken into account. It may be the case that a 

nuisance effect cannot be separated from the treatment 

effect in the statistical analysis and so the treatment 

effect cannot be reliably assessed. We say that the two 

effects are completely confounded with each other. In 

the worst case scenario the observed treatment effect 

may be wholly due to the nuisance effect.

Consider, for example, an experiment where the con-

trol animals were tested on one piece of equipment and 

the treated animals are tested on a second. Any treat-

ment differences observed could be due to, or influ-

enced by, differences between the two pieces of equip-

ment. Unfortunately if such a design has been used 

then there is no statistical way of testing for this bias.

As a rule of thumb if the results from an experiment 

appear unusual, then there may be an underlying nuis-

ance effect that is influencing the results.

Experiments done on an ad hoc basis

Some researchers do not take a systematic approach 

when planning a series of studies. Rather than plan them 

in advance, studies are carried out in a piecemeal fash-

ion. For example, in a series of drug trials, higher doses 

of the compound are investigated by conducting extra 

studies, rather than including all doses in the design at 

the beginning of the experiment. In this situation, the 

dose-response relationships are assessed across studies, 

and hence any study-to-study differences will have influ-

enced the assessment of the dose-response relationship.

Control groups not used correctly

The purpose of a control group is to allow treatment 

effects to be assessed in the absence of any other experi-

mental effects. To achieve this, the control group must 

be exposed to exactly the same conditions as the treat-

ment groups (to allow the treatment comparisons to 

be unbiased). For example, in rodent studies it is often 

the case that the animals are housed in racks of cages. 

Each rack is allocated to a single treatment to avoid 

cross-contamination. However, if the racks containing 

the control animals were placed nearest to the door 

of the animal room, then these animals may be more 

disturbed than the treated animals. This could bias the 

treatment comparisons.
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Inefficient choice of treatment groups

If there are two or more factors of interest in a study, 

then it is recommended that all combinations of the 

factor levels are included in the design. For example, 

consider an experiment where there are two factors: 

drug (levels: vehicle and compound) and strain (levels: 

transgenic and wildtype). It is important that where pos-

sible all combinations of the two factors are included in 

the design, i.e. vehicle + transgenic, vehicle + wildtype, 

compound + transgenic and compound + wildtype. 

This is an example of a small full-factorial design, as 

discussed in Section 3.5.3. If a combination of the factor 

levels is not included in the final design, then drawing 

inferences from the analysis can become more difficult. 

The sensitivity of the statistical analysis to identify sig-

nificant treatment effects can also be compromised.

Too few animals per group

If the sample size is too small, then the experiment will 

lack sufficient statistical power to detect a real treat-

ment effect (see Section 3.7.3). Running a study with 

too few animals is a waste of animals as well as the 

researcher’s time and resources (Button et al., 2013). A 

power analysis, as described in Sections 3.7.3 and 6.8, 

should be completed before running a study to confirm 

the sample size is large enough to achieve meaningful 

results. There is at least anecdotal evidence that sug-

gests researchers generally underestimate the sample 

size required when conducting animal experiments. It 

is preferable to conduct one or two large (and reliable) 

studies instead of a series of smaller inconclusive ones.

Too many animals per group

It should be remembered that, when running a stat-

istical analysis, it is possible that a biologically irrele-

vant effect could be declared statistically significant 

if the sample size is too large. The researcher should 

begin the planning process by identifying the level of 

biological relevance. For example, perhaps a drug that 

causes a 20% change from control is of interest and 

merits further investigation. If an estimate of variabil-

ity is available, then an appropriate sample size can be 

selected so that the statistical analysis should generate 

a statistically significant result only when a biologically 

relevant effect has been observed. Failure to take bio-

logical relevance into account when designing a study 

can lead to oversensitive tests. Such tests will declare 

statistical significance when the biological effect is not 

large enough to be of practical interest. In practice it 

is perhaps more likely that the sample size in animal 

experiments will be too small than too large.

Failure to recognise the true structure of  
the design

In some experiments complex experimental designs are 

used and it can be difficult for the researcher to recognise 

the structure. The replication of the factors in the study 

may not have been chosen using a suitable technique 

and hence the statistical analysis may be less power-

ful than it could otherwise have been. For example, an 

experiment was planned to assess two types of flooring 

in guinea pig cages. There were 30 guinea pigs available 

for inclusion in the study. Animals were group housed 

and their preference to the floor types assessed indi-

vidually by measuring the time spent in either half of 

the cage. By considering the experimental design it was 

found that the sensitivity of the statistical tests could be 

improved, without increasing the total numbers of ani-

mals used, if the guinea pigs were housed in pairs rather 

than four per cage, as originally planned.

Trying to do too much with limited resources

Occasionally the researcher will try to achieve too much 

in a single study. This can cause problems if there are a 

fixed number of animals available to use. For example, 

a study was planned to assess the effect of a treatment 

on plaque deposition in the brains of a strain of trans-

genic mice. It was hoped that the treated group could 

be compared to the control group at five distinct time 

points (2, 3, 4, 6 and 12 months of age). However, only 

40 mice from the transgenic strain were available for 

inclusion in the study. If the ten groups (five time points 

by two treatments) were included in the study, then 

there would only be four mice per group per time point. 

This would not have been enough to detect biologically 
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relevant effects, assuming testing differences between 

treatment and control was the purpose of the study. 

Choosing three time points, say 2, 6 and 12  months, 

would allow either six or seven mice per group and still 

allow possible differences with age to be detected.

Ignoring the possibility of within-animal testing

In certain situations it is possible to administer more 

than one treatment to each animal. This can be achieved 

using a crossover design (i.e. testing a sequence of treat-

ments over time on each animal; see Section 3.4.9) or a 

dose-escalation design (see Section 3.8.2). With such 

designs it is important to allow sufficient time gaps 

between test periods to allow the treatment effects to 

wash out of the animals’ biological systems. In theory 

each animal should return to approximately its base-

line level before receiving the next treatment.

Alternatively if treatments can be applied locally, for 

example when assessing the effect of cream treatments 

on a skin condition, then more than one cream can be 

tested at the same time in each animal. In both cases 

comparisons between treatments can be made within-

animal. This removes any animal-to-animal variability 

from the assessment of the treatment effects and gener-

ally provides more sensitive tests. Ignoring the possibil-

ity of testing multiple compounds in the same animal 

could seriously compromise the experimental results 

and increase overall animal use.

Quality of responses

The type of response measured in the experiment 

should be considered at the planning stage. As a gen-

eral rule numerically continuous responses contain 

the most information, see Section 3.2.1, as they can 

be observed at many values. The researcher can there-

fore differentiate subtle effects when using this type of 

response. A response that is discrete, ordinal or bin-

ary (see Section 3.2.1) will be measured on a scale that 

has fewer distinct values. It is therefore more difficult 

to observe experimentally induced small changes and 

hence these responses contain less information. Such 

experiments will require more animals to achieve the 

same level of statistical sensitivity (Festing et al., 2002). 

Also the statistical tests available to analyse discrete, 

ordinal or binary responses can be less powerful than 

those available for continuous ones (see Sections 5.5.1 

and 5.5.2).

For example, consider a study to assess the effect of 

transporting rats from a supplier to the test establish-

ment on the formation of lesions in the liver. Let us 

assume the researcher wants to assess the severity of 

the lesioning. The initial plan was to count the number 

of animals showing lesions (a yes/no binary response). 

However, counting the total number of lesions per 

animal would contain more information (a count 

response is on a numerical scale). Such responses can 

be analysed using more powerful statistical analysis 

techniques, such as ANOVA (see Section 5.4.3), and 

hence fewer animals would be required. Better still, 

if an imaging technique such as magnetic resonance 

imaging (MRI) were used to measure the total lesion 

volume per animal (a continuous numerical response) 

then even fewer animals would be required.

Designs chosen through habit

The experimental design being used should always 

be questioned and may change as new information 

becomes available or practical techniques are refined. A 

review should be conducted after the initial study data 

have been analysed and any nuisance effects (either 

proven or suspected) should be accounted for in fol-

low-up studies. A design should not be selected simply 

because it has been used extensively in the literature.

Unusual designs
It has been suggested that journal referees are unwill-

ing to publish results from unusually designed studies. 

If the author has included a specific description of the 

design in the manuscript, and given reasons why it was 

selected, then we argue that referees should feel more 

confident in the results obtained. Perhaps in future as 

researchers become familiar with the benefits of using 

complex designs, then there will be fewer unusual 

cases.

Internal validity
Internal validity is defined as the extent to which the 

design and conduct of the experiment eliminates 

the possibility of bias (van der Worp et  al., 2010). If 
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the experiment is internally valid then any observed 

treatment effects (when compared to a suitable con-

trol) should be purely due to the treatment itself and 

not other unforeseen effects. To avoid bias, studies 

should be randomised (to avoid selection bias) and 

blinded (to avoid performance and detection bias). 

The latter should ensure that the researcher’s beliefs 

do not, however subtly, influence the outcome of the 

experiment. There is evidence that failure to blind 

an experiment correctly can result in an apparent 

increase in treatment efficacy; see Rooke et al. (2011) 

for example.

External validity
Assuming an experiment has been blinded and the 

randomisation performed correctly (hence the experi-

ment has good internal validity), then there is still a 

risk that the external validity of the experiment will be 

questionable. Van der Worp et al. (2010) define external 

validity as: ‘the extent to which the results of an animal 

experiment provide a correct basis for generalisation to 

the human condition’. In many areas of animal research 

there are, perhaps valid, concerns about the reliabil-

ity of animal models to predict responses in human 

patients. For example, the use of models for inducing 

a disease that is not sufficiently similar to the human 

disease could result in development of test compounds 

that work in animals but not humans. While such 

practical considerations are beyond the scope of this 

text, correct experimental design can help avoid such 

problems. If both males and females were included 

in the experimental design and statistical analysis, for 

example, then this would avoid the problem described 

in van der Worp et al. (2010) where only male or female 

animals were used in an animal experiment whereas 

the disease itself occurred in both male and female 

human patients.

1.3.2  Pitfalls with randomisation

Randomising when designing is actually better

Sometimes it is easier to rely on the randomisation to 

remove the influence of a nuisance effect, rather than 

include a factor in the experimental design that will 

account for it. If a factor is included in the experimental 

design and subsequent statistical analysis, then the size 

of the effect can be assessed at the analysis stage and its 

influence on the experimental results removed.

Consider an experiment where rats are shown a 

series of visual stimuli over a set period of time, some 

of which provide a food reward. The stimuli could be 

shown to the rats in a random order. However, if the 

order was planned and controlled then the researcher 

could account for time and learning effects in the stat-

istical analysis.

Failing to randomise

The process of assigning animals to treatment groups 

should be done at random, preferably using a ran-

domisation technique such as picking balls from a 

bag. Selecting animals at random from the cage is not 

truly a random process and could introduce unwanted 

systematic effects that may influence the outcome 

of the experiment. For example, consider what hap-

pens when animals arrive from the supplier and are 

assigned to cages. If the inquisitive animals are picked 

out first, and these animals are assigned to the control 

group cages, then you may end up with all the active 

animals as controls. If one of the responses measured 

is locomotor activity, then you may already have a 

group effect present at baseline (caused by the non-

random allocation), which will bias any treatment 

comparisons.

Incorrect randomisation

As we shall see in Chapter 4, the choice of randomisa-

tion has implications on the type of analysis that can be 

performed. For example, the analysis of a full-factorial 

design (Sections 6.3.3 and 6.3.3) is different from that 

of a complete block design (Section 6.3.3) even though 

structurally they may be the same. The analysis of fac-

torial designs includes additional factor interactions 

in the analysis whereas the analysis of block designs 

should not include treatment by block interactions. 

The difference in these two analysis approaches, as 

we shall see in Section 4.2.2, is based on the different 

randomisations applied. Failure to employ the correct 

randomisation may lead to an unreliable statistical 

analysis.
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Blinding studies

One should be careful when randomising studies to 

ensure that all the scientists involved in the experiment 

are blinded to the treatment allocation (see Section 

4.1.2). If the assessments are qualitative in nature, and 

the treatment the animal receives is known, then it is 

difficult for a scientist to remain impartial. There is now 

evidence that a failure to blind an experiment properly 

may induce an increased observed treatment effect 

(Macleod et  al., 2009). Observers assessing the treat-

ment effect should be blinded to the treatment alloca-

tion, as should those administering the treatments to 

the animals and anyone performing routine husbandry 

duties.

1.3.3  Pitfalls with statistical analysis

The t-test

The t-test is a simple and popular statistical test. This 

test involves comparing the difference between two 

treatment means with the variability of the responses 

from these two groups only. In the authors’ experience, 

animal experiments are usually complicated affairs 

and hence the t-test is rarely the most appropriate test 

to use; see also Nieuwenhuis et al. (2011). The statis-

tical analysis should reflect the experimental design 

employed and make full use of its properties. This is 

not to say the conclusions drawn from the results of 

t-tests are incorrect, just that more powerful tests could 

perhaps have been used, thus allowing sample sizes to 

be reduced. We contend that journal referees should 

always question the use of t-tests in submitted articles.

Using all information collected

The principal purpose of the statistical analysis of many 

animal experiments is to test the hypothesis that one 

group is in some sense different from another. However, 

there may be more information that can be recovered 

from the data collected. For example, use of graph-

ical tools to investigate interrelationships between the 

responses in a study can help the researcher under-

stand more about the underlying processes in the 

animal model. These insights, gained by an appropriate 

statistical analysis, may enable the scientist to reduce 

animal usage in future studies.

Data trawling

Sometimes it is tempting for a researcher to conduct a 

data-trawling exercise to try to find a statistical result 

that agrees with a preconceived idea of what the result 

should be. This strategy can lead to erroneous false 

positive conclusions. Such approaches are perhaps 

more likely to occur when the researcher has freedom to 

choose (and change) the analysis methods, for example 

in academic research or early drug discovery studies, as 

opposed to regulatory testing such as safety assessment 

and toxicology studies, where analysis strategies are 

predefined in advance in the protocol.

A commonly encountered example of this pitfall 

occurs when performing multiple comparison pro-

cedures. The researcher is confronted (usually by the 

computer package) with a long list of available tests 

and little information about their individual properties 

and when or where to use them. It may be tempting to 

try out many tests and choose the one that provides the 

‘best’ result. We would not recommend this approach. 

However, it is important to have some degree of flexi-

bility in the analysis performed. In animal experiments, 

with small sample sizes, there is always the risk that 

the predefined analysis is not suitable. We recommend 

that the researcher should define in advance (before 

running the experiment) exactly how the data will be 

analysed. Once the data have been collected and a dif-

ferent analysis strategy is required, then this should be 

reported (alongside the original analysis plan) together 

with a justification of why the strategy has changed. 

Such an approach will lead to transparency in the ana-

lysis and give the audience an idea of how much the 

results are data driven.

Using graphical tools improperly

There are many texts on the use and misuse of graphical 

tools; see for example Tufte (1983). It is a subject in its 

own right. Graphs should be as simple as possible and 

 

 

 

 

 

 

 

 

 

 

 

 



Pitfalls encountered when applying statistics 11

yet convey the message in a clear and concise way. In 

Section 5.3 of this book we will describe some graphical 

tools that, in the authors’ experience, are of the most 

use to the researcher. We shall also discuss the limita-

tions of some of the graphs that are commonly used.

Identification of outliers

The issue of outliers is a controversial one that we shall 

consider in Section 5.4.1. Some scientists always pre-

fer to leave unusual observations in the dataset, others 

feel it is sensible to exclude them. We reserve com-

ments about outliers to later in the book; however, we 

note here that usually the purpose of running a study 

is to estimate and compare certain group means. If an 

outlier artificially raises (or lowers) one of these means, 

then perhaps it should be removed. Furthermore if an 

observation artificially raises the variability that we test 

these means against, then again perhaps we are justi-

fied in removing it.

If an outlier can be explained biologically, then there 

is a greater justification for removing it. For example, 

in a study investigating the effect of two types of sur-

gical technique on post-operative recovery, one of the 

individual operations was artificially lengthened. The 

increased time taken to complete the operation may 

have influenced the animal’s post-operation recovery. 

Failure to remove this animal’s results from the statis-

tical analysis could have affected the conclusions.

Pseudo-replication

This problem occurs when a nested design has been 

employed in the study but then has been ignored in 

the statistical analysis (see Section 3.7.4). If the scien-

tist fails to identify the pseudo-replication then, as dis-

cussed in Lazic (2010), this can result in a false estimate 

of the precision of the experimental results. This can 

undermine the conclusions of the statistical analysis.

Consider a ‘simple’ experiment where each animal 

receives one of the treatments and a single response is 

measured. The treatments are assigned to individual 

animals, so the treatment effects should be assessed 

against the (animal-to-animal) variability of the 

response, using a suitable statistical test. To calculate 

this animal-to-animal variability, as a rule of thumb, 

we require one observation per animal in the statis-

tical analysis. If each animal has been sampled several 

times, then these samples should be summarised to 

give a single result per animal.

Lazic (2010) describes a study to assess the effect of 

a treatment on cells in the brain. Treatment or control 

was administered to a number of rats. The rat brains 

were sliced into sections and a number of cells from 

each section were assessed. The correct analysis is to 

summarise the results from all the cells from all sec-

tions within an animal (for example taking an average) 

and then carrying out a t-test using these summary 

observations. An incorrect analysis would involve 

completing a t-test on the individual cell observa-

tions recorded in the study. This is sometimes called 

false replication as the animal-to-animal variability 

has been mixed-up with the (usually smaller) within-

animal measurement-to-measurement variability. 

One of the assumptions of this analysis is that individ-

ual observations are independent (see Section 5.4.1). 

This is clearly not the case if multiple responses are 

taken from the same animal.

The same is true of biological assays. Consider an 

experiment where the samples taken from one animal 

are assayed in triplicate on a 96-well plate. It is gener-

ally accepted that the three results (per animal) should 

be averaged before any formal statistical analysis is car-

ried out. Only one response per sample is then used in 

the statistical analysis.

Analysis of repeatedly measured responses

A common mistake made by researchers is the failure to 

identify a repeated-measures structure in the data. For 

example, multiple measurements may be taken from 

the same animal but at specific time points or from 

specific brain regions. There could also be an experi-

mental design structure imposed on the within-animal 

sampling. For example, when imaging the brain using 

an MRI scanner, images are taken from front to back of 

the brain. This constitutes non-random within-animal 

sampling.
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The levels of the factor that define the repeated 

measurements cannot be randomised, for example, 

day 1 must come before day 2. So randomisation can-

not be used as an argument to justify the assumption 

that the observations are not related to, or independ-

ent of, each other. The assumption of independence is 

discussed in Section 5.4.1. In such cases a repeated-

measures analysis approach should be used to analyse 

the data, rather than taking each time point or brain 

region separately. One benefit of this approach is that 

if some of the data are missing completely at random, 

then in certain analyses we can use the rest of the 

observations taken on the animal to account for the 

missing data. This is particularly important if the pur-

pose of the experiment is to investigate the effect of a 

treatment over time.

Misinterpretation of the p-value

Often a non-significant p-value is taken as an indica-

tion of no biological effect. However, it should be noted 

that just because the result from the study was not stat-

istically significant, there could still be a real biologic-

ally relevant effect. It could be the case that the stat-

istical test was not sensitive enough to detect the real 

effect. This could occur, for example, if the sample size 

was too small. Consider the analogy of a court case. 

Failure to prove guilt does not guarantee innocence 

(see Section 2.3.1).

Power analysis as an analytical tool

One of the questions raised by many researchers when 

faced with a non-significant statistical result is whether 

or not the statistical test result is reliable. In other 

words, although we have failed to observe a statistic-

ally significant effect, does this imply that there is really 

no biological effect or is it just that we were not able to 

detect the effect? It has been argued that one way to 

investigate this is to consider the statistical power of the 

test (the power to detect a true effect; see Sections 2.3.5 

and 3.7.3). The argument goes that if the test lacks stat-

istical power, then the failure to identify a statistically 

significant effect does not necessarily imply there is not 

a real underlying effect. Unfortunately this argument 

is incorrect (Hoenig and Heisey, 2001). Power analysis 

should only be used to predict the properties of future 

studies and not used to assess the result of the current 

experiment. We shall elaborate on this issue further in 

Section 3.7.3.

Analysing groups with no variability

Occasionally in animal experiments it may be the case 

that all the results obtained from animals within a group 

are the same. This can occur, for example, in a behav-

ioural study where due to ethical constraints there is 

an upper limit on the length of time an animal can be 

tested. If the time-to-event is the response measured, 

then it is possible that all the animals in a group achieve 

this boundary. Hence the group mean has no variabil-

ity. In such cases care has to be taken when carrying out 

an analysis to deal with this properly.

Groups excluded from the analysis

In many experiments a positive control is included in the 

experimental design alongside a control group and sev-

eral treated groups (see Section 3.2.2). When data from 

such experiments are analysed it is common practice 

to exclude the positive control from the dataset prior to 

the analysis. However, as discussed in Section 5.4.3, the 

most reliable statistical analysis involves using all the 

animals. In particular, the variability estimate obtained 

when considering the results from all the animals in 

the experiment will be more accurate and reproducible 

(as more information is used to generate it). If the posi-

tive control is included in the analysis, and a multiple 

comparison procedure is applied to the statistical tests 

(see Section 5.4.8), then the researcher may decide to 

exclude any positive control comparisons from this 

procedure, even if the group is included in the dataset 

that is used to estimate the variance.

Sometimes the variability of the positive control 

group is different from those of the other groups. In 

this case (and we argue only in this case) the researcher 

should remove the positive control group prior to per-

forming the statistical analysis, as otherwise the homo-

geneity of the variance assumption will not hold (see 

Section 5.4.1).
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It may also be the case that a more complicated 

experimental design, such as a row-column, crossover 

or incomplete block design, has been employed (see 

Sections 3.4.9 and 3.4.5, respectively). In such cases the 

design has been specifically constructed to account for 

additional factors and removing one of the treatment 

groups from the dataset will adversely affect the prop-

erties of the design and hence the efficiency of the stat-

istical analysis.

1.3.4  Pitfalls when reporting animal 
experiments

There has been a great deal of attention recently con-

cerning the quality of the reporting of animal experi-

ments; see Rooke et  al. (2011) and Vesterinen et  al. 

(2010) for example. Some of the concerns raised 

involve the non-reporting of information that readers 

may find useful. This includes information that would 

allow them to form their own opinions about the val-

idity of the experimental methodology, the reliability 

of the results generated and the conclusions drawn. 

More generally, there has also been concern expressed 

regarding the overall publication bias in the literature. 

Such issues can, in the long term, cause animals to be 

tested unnecessarily. This can occur if false positive 

results are published and other researchers attempt to 

replicate them in further animal experiments. Failure to 

replicate a false positive published result first time may 

result in additional experiments being carried out to 

try to refine the model and hence achieve the expected 

statistically significant result.

Publication bias

There is now anecdotal evidence for publication bias 

in the literature of animal experiments. The issue has 

been considered by several authors: for example, 

Sena et al. (2010) for in vivo stroke model studies. 

Publication bias can occur for diverse reasons. For 

example, most published research contains positive 

results, with journals less likely to accept papers that 

describe negative findings. Sena et  al. (2010) report 

that in the 512 studies investigated, only 2% reported 

no significant results. This implies that, across all the 

literature, a skewed overall picture will develop. False 

positive results are more likely to get published than 

false negatives, and hence there will be a general over-

estimation of effects in the literature when it is taken 

as a whole. This overestimation will then be repeated 

in narrative and systematic reviews and hence the 

problem will be compounded. It can also be argued 

that false positive results are rarely retracted whereas 

false negative results are rarely identified (and hence 

the literature imbalance corrected). All this is in con-

trast to clinical trials data, which are routinely reported 

regardless of the outcome.

Bennett et  al. (2009) comment that neuroimaging 

studies that employ multiple comparison procedures 

(as part of the statistical analysis) are less likely to 

get published than studies analysed using less strict 

tests. Analyses that do not adjust for multiplicity 

may, all other things being equal, contain more sig-

nificant results, perhaps false positives, than studies 

that use more rigorous techniques. Hence differences 

between the strictness of the statistical tests employed 

could lead to publication bias as false positive results 

are more likely to be published when certain tests 

are used.

Publication bias can also be linked to the statistical 

power of the experiment. Sena et al. (2010) argue that, 

in many animal experiments, the sample size is small 

(for ethical reasons) but this can lead to inconclusive 

experiments that will not get published, even if bio-

logically meaningful effects are observed. Small sam-

ple sizes can also lead to unusual and unreliable results 

(false positives) that will be published even if the study 

itself is underpowered.

Non-reporting of variance

To help the reader form an opinion on the reliabil-

ity of the experimental results, a measure of the vari-

ability of the data should be given. This can usually be 

achieved by including error bars on plots, for example 

the standard error (see Section 5.2.2) or the confidence 

interval (see Section 5.2.2). It can also involve quot-

ing either the standard error or the standard deviation 

(see Section 5.2.2) within the text. Quoting such values 

will allow readers to assess how comparable their own 
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experimental processes are (in terms of reliability) 

and also assess the statistical power of the experiment 

described in the article.

Non-reporting of the sample size

The more animals that are used in an experiment, the 

more reliable the results generated will be. Failure to 

report the number of animals used will make it difficult 

for the reader to judge how reliable the experimental 

results are. If only three animals are used per group 

then the effect observed, however large, could be just a 

chance result in three animals and not a result that will 

be reproducible.

The researcher should also report how many ani-

mals were excluded from the experiment (and why). 

If the sample sizes are uneven across the experimen-

tal groups, then this should be reported alongside the 

initial group sizes. The will allow a reader to judge the 

robustness of the experimental procedures.

Non-reporting of the sample size calculation

Many researchers use the literature as a guideline for 

selecting a suitable sample size. This implies that sam-

ple sizes can become established with little direct evi-

dence to support their use. If authors include infor-

mation about their decision-making process (however 

rigorous) then that will help future researchers decide 

how much weight should be placed on the sample size 

used in the examples reported in the literature. If a 

power analysis was performed to select the sample size 

then this should be reported so as to encourage others 

to use these techniques.

Non-reporting of the randomisation applied

The validity of the results, both in terms of the statistical 

analysis and biases present in the observed results, are 

influenced by the randomisation performed. It is there-

fore important that the researcher describes exactly 

how and when the randomisation was performed. 

This will not only give readers more confidence in the 

reported results, but also aid them when using the ani-

mal model in their own work.

Non-reporting of the blinding

As with the randomisation, it is important that the 

researcher explain the techniques that were employed 

to blind the experiment. This will provide an indica-

tion of the likelihood that results were influenced by 

systematic bias. Such descriptions will also help the 

reader judge how well the experiment was conducted 

(the internal validity) and also the quality of the results 

generated. If blinding is routinely described in the pub-

lished literature, then perhaps more researchers will 

apply more rigorous blinding in their experiments and 

hence improve the reliability of their results.

Non-reporting of the assumptions of the statis-
tical analysis

There are always assumptions that have to be made 

when performing a statistical analysis. While in 

many cases it will be evident that these assumptions 

have been met, sometimes it is not so obvious. The 

researcher should not only discuss which assumptions 

were made, when performing the statistical analysis, 

but also explain how they were assessed and what the 

result of that assessment was.

1.4  So where does statistics fit in?

For many researchers the primary purpose of statistics 

is to assess whether two or more experimental groups 

are significantly different from each other. This involves 

the calculation of p-values and the inclusion of stars 

on a means with standard errors plot (see Section 2.3). 

There is, however, a lot more, in addition to the p-value, 

that the subject of statistics can offer.

To begin with, statistics can help the researcher 

understand the factors that influence the animal model 

and identify underlying relationships between these 

influential factors. Once important factors have been 

identified, then that knowledge will be beneficial when 

planning follow-up experiments.

There are many experimental designs that can be 

used during the experimental process to aid in the 

understanding of how the experimental factors influ-

ence each other. Making the most of these experimental 
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designs (in the statistical analysis) can allow the 

researcher to uncover hidden relationships that may 

otherwise be missed. Such knowledge will improve and 

enhance the designs used in future studies.

The researcher should not ignore the graph-

ical tools available. The use of simple plots, such as 

scatterplots and box-plots, can reveal information 

otherwise missed. For example, categorised scatter-

plots provide a visual assessment of the relationship 

between baseline and post-treatment responses and 

this can help the researcher decide whether or not to 

include baseline information in the statistical ana-

lysis (see Section 5.4.6).

There has been much discussion, and rightly so, 

about the correct sample size to use in a given study. 

This is a question that can be answered by statistical 

analysis. However, we can go further than this and 

look at other types of replication within the study. For 

example:

How many samples should be taken per animal? •	

Should these samples be assessed in duplicate or 

triplicate wells within the 96-well plate?

How many histological slices of the brain should be •	

assessed?

Statistics can help identify an appropriate replication 

of the levels of these factors, as well as the number of 

animals to use.

Thinking in a statistical way can also be beneficial 

when running a study. Standardising how an experi-

ment is conducted should reduce variability in the 

responses. It may sound like common sense but stand-

ardising the time between the stages in the experiment, 

for example the time between dosing and sample 

collection, may help reduce the underlying variability 

of the data.

Finally statistics plays an important role when com-

municating experimental results to the wider scientific 

community. The researcher should report not only 

the statistical methods used, and the assumptions 

made, but also the experimental design employed. 

Information such as sample size, randomisation and 

techniques employed to reduce variability will not only 

allow readers to put the results into context but also 

may allow them to set up the animal model within their 

own laboratories in an efficient way.

1.5  The ARRIVE guidelines

To improve the quality of reporting of animal experi-

ments, a set of guidelines (the ARRIVE guidelines  – 

Animal Research: Reporting In Vivo Experiments) 

has been developed to provide a framework to help 

researchers report their results. The guidelines describe 

20 subjects that should be included in scientific publi-

cations. Journals now routinely ask for this information, 

perhaps in electronic supplementary material.

Some of the subjects covered in the ARRIVE guide-

lines are not of direct relevance to this text, although all 

are useful and have at least an indirect bearing on the 

subject matter presented in this book. In this section we 

shall concentrate on a selection of the guidelines; for 

more details see Kilkenny et al. (2010).

Table  1.1 gives a selection of the items described 

within the ARRIVE guidelines along with links to rele-

vant sections within this text.

Table 1.1. Selected items from the ARRIVE guidelines

ARRIVE guideline Links with this text

Item 6 – Study design
For each experiment, give brief details of the study design, 

including:

a. The number of experimental and control groups.

a. The researcher should consider the number of groups that 

can be accommodated, given the total animals available, 

and the type of control groups required (Section 3.2.2).

b. Any steps taken to minimise the effects of subjective bias 

when allocating animals to treatment (e.g. randomisation 

procedure) and when assessing results (e.g. if done, 

describe who was blinded and when).

b. A valid randomisation should be carried out (Chapter 4) 

and also the experimental design used should  

minimise bias, for example block designs  

(Section 3.4).
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c. The experimental unit (e.g. a single animal, group, or cage 

of animals).

c. A discussion of the experimental unit is given in Section 

3.2.3.

Item 10 – Sample size
a. Specify the total number of animals used in each 

experiment and the number of animals in each 

experimental group.

a. The total number of animals used, and the within-group 

replication, are needed as they give an indication of the 

sensitivity of the statistical tests (Section 5.4.3 – degrees of 

freedom). The within-group replication also influences the 

standard error of the mean, commonly quoted in papers 

(Section 5.2.2).

b. Explain how the number of animals was decided. Provide 

details of any sample size calculation used.

b. The choice of sample size should be based on sound 

scientific reasoning, as described in Section 3.7.3. Use of 

nested designs may help increase understanding of the 

sources of variability and therefore not only identify the 

number of animals required but also the level of within-

animal replication (Section 3.7.4). Use of factorial designs 

may help increase the window of opportunity to observe 

drug effects and this allows sample sizes to be reduced 

(Section 3.5.4).

c. Indicate the number of independent replications of each 

experiment, if relevant.

c. When making multiple statistical tests there is always a risk 

of finding false positive results. One way to guard against 

this is to conduct multiple independent experiments 

(Section 5.4.8). If a positive result was observed in only one 

of several experiments, then the reader should be made 

aware of this as it could indicate a false positive result.

Item 11 – Allocating animals to experimental groups
a. Give full details of how animals were allocated to 

experimental groups, including randomisation or 

matching if done.

a. Some form of randomisation should be used to assign 

animals to groups (Chapter 4), but this can only be carried 

out after an experimental design has been selected, for 

example a block design (Section 3.4). It should also be stated 

if a stratified randomisation (Section 4.2.1) has been used.

b. Describe the order in which the animals in the different 

experimental groups were treated and assessed.

b. It is important for the reader to know the order of testing. 

Testing in a non-random order can lead to unintentional 

systematic bias (Section 4.1.1).

Item 13 – Statistical methods
a. Provide details of the statistical methods used for each 

analysis.

a. A description of the statistical analysis used is essential 

as this allows the reader to assess the sensitivity and 

appropriateness of the analysis performed (Section 1.3.4).

b. Specify the unit of analysis for each dataset (e.g. single 

animal, group of animals, single neuron).

b. A discussion of the observation and experimental units 

are given in Section 3.2.3. Both should be identified by the 

scientist prior to running the experiment.

c. Describe any methods used to assess whether the data met 

the assumptions of the statistical approach.

c. Any statistical analysis will involve certain assumptions. 

A description of any analysis should include information 

about how the assumptions of the analysis were assessed 

(Section 1.3.4) and whether the assumptions were met.

ARRIVE guideline Links with this text

Table 1.1. (cont.)
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Item 15 – Numbers analysed
a. Report the number of animals in each group included 

in each analysis. Report absolute numbers (e.g. 10/20, 

not 50%).

a. When reporting the results of an animal experiment, it is 

recommended to include the number of animals used 

in each group. This gives the reader an indication of the 

sensitivity of the results. In Section 1.3.1 we discuss how 

too many animals can result in oversensitive tests and 

statistically significant results that are not biologically 

relevant.

It is also recommended that researchers report absolute figures 

rather than percentages. The latter can be misleading. For 

example, consider one response changing from 1/1000 to 

2/1000 and a second response changing from 3/10 to 6/10. 

The biologically meaning of these results may be completely 

different even though the percentage changes are the same.

b. If any animals or data were not included in the analysis, 

explain why.

b. If any animals were excluded, an explanation should be 

given as to which method (either statistical or otherwise) 

was used to define exclusion criteria. For example, the 

researcher may use externally studentised residuals (Section 

5.4.1).

Information should also be given about how many animals 

were excluded from the analysis as this will give the reader 

information about the reliability of the methods employed 

and the variability of the response (Section 1.3.4).

Item 16 – Outcomes and estimation
a. Report the results for each analysis carried out, with a 

measure of precision (e.g. standard error or confidence 

interval).

a. Some measure of the variability of the reported results 

should be given, for example standard errors or 95% 

confidence intervals (Sections 5.2.2 and 5.2.2, respectively). 

Statisticians prefer the more flexible confidence intervals, 

although scientists tend to use standard errors, especially on 

plots of the data.

ARRIVE guideline Links with this text

Table 1.1. (cont.)
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Before we describe the experimental designs and stat-

istical analyses that may be of use to the researcher, a 

few fundamental concepts are introduced. While many 

researchers are familiar with these concepts, they are 

the foundation for the arguments that follow and hence 

are considered first.

2.1  Decision-making: the signal-to-  
noise ratio

Arguably the primary role of the statistical analysis of an 

animal experiment is to allow the scientist to draw reli-

able conclusions from the results obtained. Statistics 

provides the decision-maker with a framework for 

achieving this. Importantly it also quantifies the confi-

dence that should be placed in that decision.

Example 2.1:  Plasma glucose level

Consider the following two experiments, designed to assess the 

effect of two treatments A and B, on reducing plasma glucose levels 

in diabetic mice. Treatment A was tested in experiment 1, treatment 

B in experiment 2. Both studies also included a control group to 

allow a test of the treatment effect. The plasma glucose level of the 

two control groups was around 280 mg/dL. The animals dosed with 

treatment A had an average plasma glucose level of 227 mg/dL 

whereas those dosed with treatment B had an average of 185 mg/

dL. Without any further information it appears that treatment B was 

more effective at decreasing plasma glucose level. A scatterplot of 

the four averages are presented in Figure 2.1.

But was this conclusion valid? It is always difficult to compare 

results across experiments, even if the control groups appear to be 

similar. Other effects, unique to each experiment, may be influencing 

the results. We shall comment further on this later, where it will be 

shown that other experimental designs may be more appropriate.

Assume that different researchers carried out the two experi-

ments; a plot of the individual results is presented in Figure 2.2.

We can see now that although there was a bigger effect in the 

experiment involving treatment B (the average for treatment B was 

41 mg/dL lower than treatment A), the results were actually more 

variable in the second experiment. Perhaps the first researcher was 

more experienced and hence generated less variable results, or per-

haps the second batch of animals originated from more litters than 

the first batch. Due to this variability we would be more confident 

in a conclusion that treatment A is significantly better than the con-

trol, as opposed to the conclusion that treatment B was better than 

the control. This is the case even though the effect was biologically 

smaller for treatment A.

Example  2.1 is artificial, but it does highlight an 

important point when making a decision using a stat-

istical analysis. We must take into account not only the 

size of the biological effect (the signal) but also the vari-

ability (the noise) of the effect. To do this we calculate 
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Figure 2.1.  Plot of the four plasma glucose level treatment 

means for Example 2.1.
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the size of the effect relative to the background variabil-

ity. This is known as the signal-to-noise ratio.

The signal-to-noise ratio forms the basis of many of 

the formal statistical tests. The size of the ratio gives an 

indication of the level of confidence we have in the con-

clusions drawn. The larger (numerically) the ratio, the 

more certain we can be that our conclusions are cor-

rect. We will return to this ratio as we progress through 

the book.

There are two ways the researcher can increase the 

signal-to-noise ratio, and hence increase confidence in 

the experimental conclusions:

Increasing the signal: The greater the size of the effect, •	

the greater the signal-to-noise ratio.

Decreasing the noise: The smaller the variability, the •	

greater the signal-to-noise ratio. Hence the key to 

making confident decisions begins with understand-

ing (and then controlling) the sources of variability in 

the study.

There are various techniques that can be used to reduce 

the variability in the experimental results, some of which 

are related to the experimental design. For example, it 

is well known that inbred strains are generally less vari-

able than their outbred equivalents. The researcher can 

also use experimental design (and corresponding stat-

istical analysis) to account for nuisance sources of vari-

ability introduced by practical constraints. For example, 

if the testing procedure was conducted over 2 days, then 

a suitable experimental design can account for any day-

to-day differences that would otherwise have increased 

the variability of the data generated.

As a practical example of these ideas, consider giv-

ing a lecture to an audience of students. The signal in 

this case is the knowledge that you are verbally passing 

on to the students. Now assume there is an alarm (the 

noise) ringing in the background, which is drowning 

out your voice. It does not matter how loud you talk, if 

the alarm is louder than your voice then you will not be 

heard. Similarly, it does not matter how loud the alarm 

is, as long as you can talk louder than the alarm you 

will be heard. There are two ways you can improve the 

chance of getting your message across. You can either 

talk louder (increase the signal) or reduce the volume 

of the alarm (reduce the noise), for example by shutting 

the windows. Of course in real experiments there will 

probably be a number of alarms. The skill is to identify 

which alarm is the loudest and try to turn off that alarm 

first. The largest source of variability in a study may not 

necessarily be the animal-to-animal variability!

As we go through this book we shall see how the use 

of experimental design and statistics can help the sci-

entist increase the signal as well as decrease the noise. 

If this can be achieved then animal numbers may be 

reduced while maintaining the same level of confi-

dence in the experimental results.

In conclusion then, it is worth remembering that it is 

important to focus attention not only on the size of the 

response but on the size of the response compared to 

the underlying variability. The two do not always give the 

same impression! The selection of experimental design, 

in particular the choice of sample size, is critical in align-

ing these two measures of effect. A successfully designed 

experiment will only achieve statistical significance when 

biological relevance is reached, and vice versa.

2.2  Probability distributions

When conducting a statistical analysis we usually need 

to estimate how variable our observations are  – the 

noise in the signal-to-noise ratio. As any researcher 

knows, animals within the same group will behave 

differently. This leads to the noise (or variability) in 

the experiment. As we shall see in Section 2.3, when 
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Figure 2.2.  Plot of the individual plasma glucose levels for 

Example 2.1.
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conducting an analysis we need to consider not only 

the overall size of this noise, but also the pattern (or dis-

tribution) of the responses.

Example 2.2:  Beam breaking assessment

Consider the following experiment conducted to assess the loco-

motor activity of mice in an open field. The animals were placed in 

a testing arena fitted with infrared movement detector beams. The 

number of times each animal broke a detector beam was recorded. 

Figure 2.3 is a graphical illustration of the results from the experi-

ment. The range of responses was between one and nine beam 

breaks (represented along the X-axis), with one animal breaking 

the beam once, another breaking the beam nine times, and six 

animals breaking the beam five times. Each point in Figure  2.3 

corresponds to an individual animal (29 mice were assessed in 

total).

From this plot we can start to see how the responses are distrib-

uted around the central value (five beam breaks). Some animals were 

more active than others, hence a range of responses was observed. 

We can also see a pattern in the distribution of these responses. More 

observations were measured in the middle values (roughly between 

four and six), with fewer observations recorded as the response 

moved away from this range.

2.2.1  The frequency distribution

Figure  2.3 is a simple way of visualising the observed 

responses. Another way of visualising the distribution 

of the responses is to produce a frequency histogram. 

In the frequency histogram the responses are separated 

into a number of bins, where each bin is represented 

as a bar in the histogram. The area of each bar reflects 

the number of responses within that bin. An example 

of a frequency histogram is given in Figure 2.4, where 

each bar corresponds to a distinct number of beam 

breaks. Note in this case that all the bars have an equal 

width (of dimension one) and hence the height of the 

bars reflects the number of animals within each bin. In 

general the response measured may be more continu-

ous, i.e. not only consist of integers, and hence the bins 

would represent ranges of responses.

2.2.2  The density distribution

In Figure 2.4 the Y-axis on the frequency histogram plot 

reflects the number of animals within each bar, and 

hence this axis is labelled as ‘Count’. However, let us 

now rescale the Y-axis in a way that the total area of all 

the bars within the plot equals one. The area of an indi-

vidual bar now reflects the proportion of the 29 animals 

that achieved that number of beam breaks. We call this 

a density histogram (as opposed to a frequency histo-

gram). Figure 2.5 is such a density histogram.
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Figure 2.3.  Scatterplot highlighting the distribution of the 

observed beam breaks.
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Figure 2.4.  Frequency histogram highlighting the 

distribution of the beam breaking response.
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2.2.3  The probability distribution

The height of the bars on the density histogram can be 

approximated by fitting a curve over the top of them. 

An example of such a curve is given in Figure  2.5. As 

the area of the bars added together equals one, so the 

area under the curve (AUC) equals one too. We call 

this curve the distributional curve of the response as it 

describes the distribution of the response.

It is usually the case that the curve fitted over the bars 

is a member of a specific family of curves. Curves in the 

same family are all slightly different from each other but 

share certain characteristics, for example they are bell-

shaped, symmetric around a central maximum and so 

on. The family of curves therefore reflects the under-

lying theoretical distribution of the response. The spe-

cific member of the family, fitted to the histogram plot, 

defines the estimated underlying distribution of the 

response. If the curve represents the estimated distribu-

tion then the bars of the histogram illustrate the distri-

bution of the observations actually recorded. Note the 

curve smooths out the jaggedness present across the 

bars on the histogram, and so represents the expected 

frequencies of the response rather than the observed 

frequencies. Of course to be valid the fitted curve should 

reflect the observed distribution of the responses!

If we can make assumptions about the shape of the 

distribution, by choosing the family of the distribution 

curves, then we can predict the probability (or chance) 

of observing a response within a given range. We sim-

ply work out the percentage of the area under the curve 

that lies within this range. Consider the above density 

curve in isolation (without the histogram bars). The 

AUC of this curve, for a given range of X-axis values, 

represents the probability of observing a response 

within that range. For example the AUC for the whole 

curve (between X-axis values -∞ and +∞) equals 1 (or 

100%). By calculating the AUC we can work out the 

probability of the response lying within a range directly 

from the AUC. Hence the curve defines the probabil-

ity distribution of the response. The probability dis-

tribution is used in many statistical tests to generate, 

for example, p-values and confidence intervals (see 

Section 5.2.2).

Before we describe some of the approaches that can 

be used when analysing data generated from animal 

experiments, we shall consider some of the more com-

monly encountered probability distributions and their 

links to the statistical analyses described in this text.

2.2.4  The normal distribution

Perhaps the most important distribution, and certainly 

one that most readers will have encountered, is the 

Gaussian or normal distribution.

Many biological responses follow this distribution. 

If a response that is normally distributed is measured 

repeatedly, you would expect most of the responses to 

lie close to the centre of the distribution, with fewer and 

fewer observations observed as you move away from 

the centre. In theory you will see an equal number of 

responses above the centre as you see below it, hence 

the distribution will be symmetric around the centre.

Example 2.3:  A normally distributed response

Consider an investigation conducted by an animal supplier to esti-

mate rat body weight at a given age. The supplier weighed 100 

animals from its stock. A distribution of the body weights was illus-

trated using a histogram (see Figure 2.6).

The height of the bars corresponds to the number of rats observed 

in the weight range defined along the X-axis. We can fit a smooth 

distribution curve on the plot to summarise this underlying pattern. 

Figure 2.6 shows a bell-shaped curve (the Gaussian normal curve) 
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Figure 2.5.  Density histogram highlighting the distribution of 

the beam breaking response.
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on the histogram. In this case the curve describes the height of the 

bars well. If the response is normally distributed, then the histogram 

bars will closely follow this smooth curve.

In certain statistical tests it is useful to change the 

scale of the horizontal axis. In the case of the normal 

distribution this transformation results in a distribution 

known as the standard-normal distribution (Figure 2.7). 

The process of changing the scale is known as standard-

ising the response variable.

The transformation that standardises a response 

variable y is given by:

z =
−y µ
σ 	 (2.1)

where z is the standardised response, µ is the mean of 

the distribution (Section 5.2.1) and σ is the standard 

deviation (Section 5.2.2).

We shall make use of the standard-normal distribu-

tion in many of the tests described in Chapter 5.

2.2.5  The chi-squared distribution

Another useful probability distribution that we 

require in many statistical analyses is the chi-squared 

distribution. This distribution is useful because it is the 

basis for some of the more complicated statistical tests.

So far we have considered only one variable (the 

response variable) that is normally distributed. Assume 

it has been standardised using the equation above. If 

we now have several (k) standardised normally distrib-

uted variables z
1
, z

2
, z

3
,…, z

k
, then the variable

x z z z zk= + + +…+1
2

2
2

3
2 2 	 (2.2)

follows the chi-squared distribution with k degrees of 

freedom (see Section 5.4.3 for more details on degrees 

of freedom). Figure  2.8 shows the curve for the chi-

squared distribution with five degrees of freedom.

2.2.6  The t-distribution

Closely linked to the standardised normal and chi-

squared distributions is the t-distribution. This distri-

bution, as the name suggests, is used in the well-known 

t-test (see Section 5.4.2).

If z is a standardised normally distributed vari-

able and x is a chi-squared distributed variable with k 

degrees of freedom, then the variable

t
z

x k
k =

/
	 (2.3)
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Figure 2.6.  Histogram highlighting the distribution of rat 

body weights, with a normal distribution curve.
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Figure 2.7.  The standard-normal distribution.
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is t-distributed with k degrees of freedom.

The t-distribution is similar to the normal distribu-

tion (in shape) but is slightly flatter and has larger tails 

to reflect greater uncertainty in the distribution of the 

response. An example of the distribution curve of a 

t-distribution with three degrees of freedom, along 

with the standard-normal distribution, is given in 

Figure 2.9.

The following result is required by many of the stat-

istical tests described in this book. Assume y
1
, y

2
, …, y

n
 

is a random sample taken from a normal distribution 

with mean µ and variance σ2 (see Section 5.2.2). If the 

sample mean is denoted by y and the sample variance 

by s2 then

t
y

s n
=

−( )

/

µ
2

� (2.4)

is t-distributed with n – 1 degrees of freedom.

2.2.7  The F-distribution

The final distribution we consider is the F-distribution. 

This distribution is required for many of the statistical 

tests described below, for example the tests produced 

within the analysis of variance approaches (see Section 

5.4.3).

If x
1
 and x

2
 are two chi-squared distributed variables 

with k
1
 and k

2
 degrees of freedom, respectively, then the 

variable

F
x k

x k
k k1 2

1

2

1

2
,

/

/
= 	 (2.5)

follows the F-distribution with k
1
 numerator degrees of 

freedom and k
2
 denominator degrees of freedom.

The distribution curves of F-distributions with 5 and 

20 degrees of freedom are presented in Figure 2.10.

2.3  The hypothesis testing procedure

One of the primary roles of statistics in animal experi-

mentation is to aid the researcher in the decision-mak-

ing process. To appreciate some of the implications of 

using formal statistical tests, we need to understand the 

hypothesis testing procedure. This begins at the initial 

planning stage of the experiment with the formation of 

two hypotheses, the null and alternative hypotheses.

2.3.1  The null and alternative hypotheses

The null hypothesis, usually denoted by H
0
, is the 

hypothesis that the experimental effect of interest has 
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Figure 2.8.  The chi-squared distribution with five degrees of 

freedom.
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Figure 2.9.  The t-distribution with three degrees of freedom 

alongside the normal distribution.
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no influence on the response being measured. For 

example, consider a scientist who wishes to investi-

gate the effect of a novel treatment. Assume this can 

be achieved by comparing the mean of the responses 

in the treatment group to the corresponding mean in 

the control group. To begin with the null hypothesis is 

established (either consciously or not) as:

H
0
: The treatment mean is equal to the control mean.

The alternative hypothesis, denoted by H
1
, is that the 

response is influenced by the novel treatment. The 

alternative hypothesis H
1
 can be one of two types. The 

most commonly tested is also the most general. This 

hypothesis states that there is an effect (of treatment), 

but that the direction of that effect can be either posi-

tive or negative. For example:

H
1
: The treatment mean is not equal to the control 

mean.

This leads to a two-sided statistical test as the effect we 

are assessing can be in either direction.

If the scientist knows for certain the direction of the 

effect of interest, then the alternative hypothesis can be 

chosen to reflect this. For example, if the novel treat-

ment is expected to increase the response, then the 

alternative hypothesis would be:

H
1
: The treatment mean is greater than the control 

mean.

This leads to a one-sided statistical test.

In the formal statistical testing procedure we begin 

by assuming H
0
 is true and attempt to disprove it (and 

hence by implication accept that H
1
 is true). We do 

this by collecting sufficient evidence to reject the null 

hypothesis. The reader should be aware that the whole 

process is weighted in favour of the null hypothesis 

being accepted. The scientist has to prove that the null 

hypothesis is not correct.

There are three consequences of the decision-mak-

ing process that should be apparent to the reader:

The statistical decision-making process always •	

favours accepting the null hypothesis as being true. 

To claim the alternative hypothesis is true, a certain 

body of evidence must be acquired.

Just because we cannot disprove the null hypothesis, •	

this does not necessarily imply it is true. It may just 

be that the experiment was not powerful enough to 

disprove the null hypothesis. This can happen, for 

example, if the sample size in the study was not large 

enough.

The alternative hypothesis is the •	 hypothesis the 

researcher wishes to prove. So if the purpose of the 

experiment is to prove that two drugs (A and B) are 

equivalent, then the null hypothesis should be:

H
0
: Drug A has a different effect compared to drug 

B, i.e.

drug A mean ≠ drug B mean.

The alternative hypothesis would be of the form:

H
1
: Drug A has the same effect as drug B, i.e.

drug A mean = drug B mean.

To assess this type of null hypothesis we require 

an equivalence test. This is a different procedure to 

the standard analysis approach used by most animal 

researchers.

From now on we shall focus on the more com-

monly applied hypothesis testing procedure, where the 

researcher is trying to prove an effect has occurred and 

hence the null hypothesis assumes that there is no effect.
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Figure 2.10.  The F-distribution with 5 and 20 degrees of 

freedom.
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2.3.2  The p-value

Once the researcher has decided on suitable hypoth-

eses, the experiment is planned so that the null hypoth-

esis can be assessed. The experiment is then conducted 

according to the plan and the data collected. Under cer-

tain assumptions about the properties of the data gen-

erated, a suitable statistical test is employed to attempt 

to disprove the null hypothesis. This decision usually 

involves assessing the p-values that are calculated as 

part of the statistical analysis.

The p-value is the probability that the experimental 

result will be at least as extreme as the one observed 

when running the experiment if the null hypothesis were 

true. It is the chance of being incorrect if you decide the 

null hypothesis is false.

So, for example, the p-value answers the ques-

tion: ‘What is the chance of achieving the result I have 

observed, or one even more pronounced, if there really 

is no difference between the treatments?’ The p-value 

itself, as observed by Festing et al. (2002, pp. 15–16), is 

often misinterpreted:

A p-value is not the probability that the null hypothesis is true.

The p-value is a rather abstract quantity. One of the 

purposes of this book is to provide scientists with statis-

tical tools, other than the p-value, to give them a greater 

insight into the decision-making process.

2.3.3  The significance level

It is common practice to reject the null hypothesis if the 

p-value is less than a certain value, usually 5% or 0.05. 

If the chance of obtaining a result at least as extreme 

as that observed in the experiment (when the null 

hypothesis is true) is found to be less than 5%, then this 

is sufficiently small for the researcher to reject the null 

hypothesis. In other words, the observed effect is so 

large that it is unlikely that the null hypothesis is cor-

rect. This 5% value is called the significance level and is 

generally denoted by α.

When conducting an experiment we can never 

entirely remove the risk of rejecting the null hypothesis 

when it is true. There is always a chance we will observe 

a large biological effect in our study (by chance) when 

in reality there is no genuine effect. A 5% risk is gener-

ally accepted as being a suitably low risk.

Example 2.4:  Assessing the difference between two 

treatment means

To highlight the link between the significance level and the p-value, 

consider an experiment that consisted of a treatment group and 

a control group, with n = 9 animals per group. Assume that the 

response was normally distributed (see Section 2.2.4).

The following stages (which correspond to the approach used 

to perform an unpaired t-test; see Section 5.4.2) are illustrated in 

Figure 2.11.

We begin the hypothesis testing process by assuming the null •	

hypothesis (that there is no difference between the treatment 

and control group means) is true. Let us also assume that the 

response is normally distributed. We can then determine the 

distribution of the difference between the means under the null 

hypothesis. If the transformation (Eq. (2.4)) described in Section 

2.2.6 is applied to the observed difference (where µ = 0 under the 

null hypothesis) so that

standardised difference
difference=

s n2 /
, � (2.6)
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Figure 2.11.  Calculations involved in performing a 

hypothesis test. The grey shaded areas (light and dark grey in 

each tail of the distribution) correspond to the area under the 

curve that defines the (null hypothesis) rejection region for 

the two-sided test. The two light grey shaded areas correspond 

to the area under the cure that defines the p-value for the 

two-sided test when the observed standardised difference was 

three.
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where s2 is a measure of the sample variance, then the standard-

ised difference will be t-distributed with a bell-shaped distribu-

tion centred on zero, as shown in Figure 2.11.

Assume we are performing a two-sided statistical test.•	

The statistical test can now be carried out in two related ways:

We can first calculate the region of the •	 t-distribution where the 

null hypothesis will be rejected if the difference between the 

means (once standardised) lies within it. This area is known as the 

rejection region and is the four grey shaded areas in Figure 2.11. 

When added together, these correspond to the area under the 

curve equal to the significance level α (usually 5% of the area 

under the curve, with 2.5% in each tail). The X-axis values that 

define the boundaries of the rejection region of the t-distribution, 

in this example -2.3 for the lower rejection region and +2.3 for the 

upper rejection region, are known as the critical values.

Now if we observe a (standardised) difference that is greater •	

or less than the appropriate critical value (i.e. the standardised 

difference is in the rejection region) then we conclude the null 

hypothesis is probably not true. The chance of observing such a 

large or small difference (assuming the true difference between 

the means is zero) is small; hence we conclude that in reality it 

is highly unlikely that the true difference is zero. Hence we reject 

the null hypothesis.

As an alternative statistical analysis strategy, we can take the fol-

lowing approach (which is commonly applied in statistical software 

packages):

For a positive difference we calculate the chance of observing •	

such a result (or one larger) assuming that the null hypothesis 

is true. This can be achieved by considering the area under the 

curve of the appropriate t-distribution, where the observed 

(standardised) difference defines the lower X-axis bound-

ary for the area. Assume a (standardised) difference of 3 was 

observed between the treatment and control means. The chance 

of observing an effect as large as this (assuming the true diffe-

rence is zero) is denoted by the light grey area on the right-hand 

side of the curve in Figure 2.11, which starts at a (standardised) 

difference of 3.

Now as we are performing a two-sided test we want to know •	

the chance of find result as extreme as this, so we also require 

the chance of observing a (standardised) difference less than –3. 

As the t-distribution is symmetric around zero the corresponding 

area under the curve has the same numerical value (it is the 

equivalent area in the opposite tail). This is illustrated by the 

light grey area on the left-hand side of the curve in Figure 2.11, 

where the shaded area ends at the standardised difference 

of -3.

The two light grey areas added together correspond to the •	 p-value 

for the two-sided test. As described above, it is the probability of 

observing a result, or one more extreme, as the one found by run-

ning the experiment if the null hypothesis were true.

If the researcher is testing at the •	 α significance level, then as long 

as the p-value is less than α the null hypothesis is rejected.

It can also be seen from Figure 2.11 that when the observed (stand-

ardised) difference equals the critical value, the p-value will equal 

the significance level α.

2.3.4  Significant stars

Once the analysis has been performed and the p-values 

generated it is common practice to quote stars rather 

than p-values when reporting results. These stars are 

also included on graphs to indicate where the signifi-

cant effects are. Standard practice appears to be:

* p < 0.05 (5%), ** p < 0.01 (1%) and *** p < 0.001 (0.1%).

We do not recommend this practice. Statistical tests 

should not be seen as providing a yes/no decision. The 

p-value is a continuous numerical value that provides 

the scientist with an indication of the level of confi-

dence that can be placed in the conclusion. A p-value of 

0.060 is similar to 0.049 and although the former is ‘not 

significant’. It should be interpreted as giving a simi-

lar conclusion to the latter. As Rosnow and Rosenthal 

(1989) wryly commented:

…surely, God loves the .06 nearly as much as the .05.

2.3.5  Type I and Type II errors

There are two types of error that can be committed 

when following the decision-making process described 

above. These are commonly known as Type I and Type 

II errors.

Type I error

A Type I error occurs if the researcher rejects the 

null hypothesis when in fact it is true (a false positive 

conclusion).

If the significance level is set at 5%, then the null 

hypothesis should be rejected 5% of the time (when the 

null hypothesis is true). This is the probability of com-

mitting a Type I error.

Type II error

A Type II error occurs if the researcher does not reject 

the null hypothesis when it is false (a false negative 

conclusion). When considering the probability of com-

mitting a Type II error (sometimes denoted by β) it is 

more convenient to look at the power of the statistical 

test. The power of a statistical test is given by:
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Statistical power = 1 – β 
  = 1 – probability of committing a Type II error.� (2.7)

The power of the statistical test is the probability of 

rejecting the null hypothesis when it is false. See Section 

3.7.3 for a discussion of some of the implications of stat-

istical power.

Example 2.4 (continued):  Assessing the difference 

between two treatment means

To help understand the concept of statistical power we return to 

Example 2.4 described above.

As in •	 Figure  2.11, we begin the hypothesis testing process by 

assuming the null hypothesis (that there is no difference between 

the treatment and control means) is true. Let us also assume that 

the response is normally distributed. We can then determine the 

distribution of the difference between the means under the null 

hypothesis. Assuming the transformation described in Section 

2.3.3 (Eq. (2.6)) has been applied, then the standardised diffe-

rence will be t-distributed with a bell-shaped distribution centred 

on zero. This is shown as the left-hand curve in Figure 2.12.

We can now calculate the rejection region (the grey shaded areas •	

in Figure 2.12). Once added together these correspond to the pro-

portion of the area under the curve that equals the significance 

level α (usually set at 5%). If we obtain a (standardised) diffe-

rence that is so small or large that it lies within one of these two 

regions, then we assume the null hypothesis is not true (hence 

we reject the null hypothesis and accept the alternative).

Assume the true difference between the treatment and control •	

means was +4 (hence the null hypothesis is not true). This is rep-

resented by the dotted vertical line in Figure 2.12. Given the nor-

mality assumption we can now generate the actual distribution 

of the (standardised) difference. It is not centred on zero but is 

centred on +4 (represented by the bell-shaped curve on the right-

hand side of Figure 2.12).

Remember we reject the null hypothesis if we obtain a (standard-•	

ised) difference that lies in the rejection region. If the null hypoth-

esis is true this equals 5%, but given that the actual distribution is 

centred on +4 we can now calculate the actual chance of obtaining 

a standardised difference in the rejection region. This is the hatched 

area in Figure 2.12 and corresponds to the statistical power.

By considering Figure  2.12 it can be seen that as 

the risk of a making a Type I error reduces (and the 

rejection region is made smaller), so the statistical 

power reduces (and the risk of making a Type II error 

increases). This follows because to decrease the risk of 

a Type I error, the scientist will require more convincing 

evidence of an effect before rejecting the null hypoth-

esis. Unfortunately this also means that genuine effects 

may be missed (by setting more stringent acceptance 

criteria). For example, if the significance level is set at 

1%, i.e. the risk of finding a false positive result is fixed 

at 1%, then a comparison with a corresponding p-value 

of 0.02 is not declared significant. However, the treat-

ment may have had a real effect but it has not been 

declared significant because of the strict significance 

level adopted. Type II errors are also more likely to 

occur when not enough animals are used in the study. 

As we discussed in Section 2.3.3, it is usually the case 

that we set the significance level at 5%.

Now as the curves included in Figure 2.12 are t-dis-

tributions, their shape is influenced by the sample size. 

The larger the sample size the tighter the distribution 

will be about the mean. We can therefore adjust the 

sample size in the study to make sure the power of the 

statistical test is suitably high (or the risk of a Type II 

error suitably low). To increase the statistical power 

(and reduce the Type II error to an acceptable level) 

more animals will be required (see Section 3.7.3).

2.4  Exploratory vs. confirmatory 
experiments

Most experiments can be categorised as either explora-

tory or confirmatory, and the researcher should be 
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Figure 2.12.  The power of a test. The grey shaded areas 

correspond to the rejection region under the null hypothesis 

and the hatched area corresponds to the statistical power if 

the true effect size is four (dotted vertical line).
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aware of the difference between them when conduct-

ing animal experiments. Both involve the hypoth-

esis testing process described above, but in slightly 

different ways.

Experiments may be conducted to generate hypoth-

eses (the exploratory experiments) or to test hypoth-

eses (the confirmatory experiments); see Snedecor and 

Cochran (1989, p. 64) and Festing and Altman (2002). 

While both types of experiment may use the same 

experimental designs, they lead to subtly different stat-

istical analysis approaches. When reporting the results 

of an experiment the researcher should make it clear 

to the reader which type of experiment (and statistical 

analysis) was performed.

When conducting an exploratory experiment, the 

researcher will want to assess many effects, explore 

datasets in different ways and even perform data-trawl-

ing exercises. We should recognise when performing 

this type of statistical analysis that there will probably 

be false positive results generated. We recommend 

that the researcher does not adjust for multiplicity (see 

Section 5.4.8) and simply accept that there is a strong 

chance that some of the results generated will be false 

positives. These analyses provide an insight into the ani-

mal model, and allow the researcher to develop ideas. 

These ideas should be confirmed in an independent 

confirmatory experiment.

A confirmatory study is conducted to test specific 

hypotheses that were developed a priori. When per-

forming a confirmatory study the researcher should, in 

theory, have a good idea which effects will influence the 

outcome of the experiment (i.e. the important blocking 

effects, see Section 3.4.1) and hence be able to construct 

a suitable experimental design. As the effects that need 

to be included in the statistical analysis are known, the 

strategy to conduct the statistical analysis will also have 

been planned in advance and, given an estimate of the 

variability of the response from exploratory experi-

ments, an appropriate sample size selected. The stat-

istical analysis should then only test those hypotheses 

planned in advance (the so-called planned compari-

sons, see Section 5.4.8). If more statistical tests are per-

formed, then the researcher should either make adjust-

ments to the results generated to reduce the increased 

risk of finding false positive results, see Section 5.4.8, or 

accept that these analyses are exploratory.

Example 2.5:  MRI assessment of a transgenic phenotype

An experiment was conducted to compare the volumetric changes 

observed in the brain regions of wildtype and TasTPM transgenic 

mice (Maheswaran et al., 2009). The size of several brain regions 

was measured at four time points using MRI. The difference between 

the volume of the brain regions in the wildtype and transgenic mice 

were assessed.

The researcher hypothesised that if the phenotype did affect the 

brain, then the volume change observed in certain brain regions 

over time would vary between strains. Hence it was planned to 

make comparisons only between the transgenic and wildtype ani-

mals in these brain regions. These comparisons therefore form a 

confirmatory analysis of a priori hypotheses.

However, by using the MRI imaging technique, the researcher 

was able to measure the volume of many brain regions. While not 

part of the hypotheses that were planned in advance, the researcher 

may want to investigate the difference between the strains in these 

other brain regions. The data was collected, so it seems sensible for 

the researcher to see if there were any phenotype effects in this 

part of the dataset. This second analysis could be considered as an 

exploratory analysis. As we shall see in Section 5.4.8, this can lead 

to two subtly different analysis approaches within the parametric 

analysis framework.

If there are significant results in the exploratory analysis, then the 

researcher should perhaps try to verify them in future experiments 

by including these brain regions in the planning stages of a future 

confirmatory experiment.

2.5  The estimation process

Many statisticians do not agree we should use the 

hypothesis testing framework described above when 

making inferences about experimental results. An alter-

native approach, and one that is certainly appealing, is 

the estimation approach.

Rather than try to test to see if the difference between 

two means is significant, we simply aim to estimate the 

size of the means (or the difference between them) and 

produce a range of values that will probably contain 

the true value (to a certain level of probability). This 

approach works particularly well when conducting 

pilot studies where the purpose of the study is not to 

test significant effects but merely to identify (and quan-

tify) effects of interest.
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The estimation process can be used in many scenar-

ios though. For example, rather than produce a p-value 

to test the significance of the difference between the 

treatment and control group means, we estimate the 

size of the difference and a range of plausible values 

that the true difference should lie within. This, it can 

be argued, ties in better with the experimental pro-

cess where experiments are conducted to discover the 

magnitude of an effect, rather than simply testing to see 

if there is a significant difference between the groups. 

The range that the difference lies within has a real bio-

logical meaning whereas a p-value does not.

In this text we shall highlight examples where we can 

use the statistical analysis to define the range of plaus-

ible values (the so-called confidence intervals) as well 

as generate p-values for hypothesis tests.
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3.1  Why design experiments?

It has long been recognised that the use of experi-

mental design is crucial in animal research. By using 

more efficient experimental designs we can maximise 

the amount of information gained, while reducing the 

number of animals required. Even seemingly straight-

forward experiments employ designs that have features 

that may, in certain cases, help reduce the number of 

animals. It is also true that if the scientist spends time 

considering the experimental design, then practical 

problems can be solved systematically. Experimental 

design provides a logical framework that will allow the 

scientist to develop and understand the animal model 

in a more refined way.

Experimental design is also a useful tool for research-

ers who do not feel confident running statistical anal-

yses. As observed by Montgomery (1997, p. 18), if you 

plan the design carefully and correctly, using a little 

common sense, then the analysis will almost certainly 

be relatively straightforward. The validity of the results 

of many statistical tests relies on the underlying experi-

mental design and randomisation.

We shall begin by considering in more detail some of 

the real benefits to be gained when using experimen-

tal designs, from both practical and statistical perspec-

tives. We will then define the fundamental concepts 

that define an experimental design and finally describe 

some commonly applied families of designs.

3.1.1  Practical reasons

Experimental designs can help the scientist man-

age experiments more effectively. For example, the 

block designs described below gives the scientist 

some degree of flexibility when running experiments. 

Experiments can be safely conducted over multiple 

days, using several pieces of equipment or by several 

technicians without affecting the scientific integrity of 

the study.

Experimental designs allow the scientist to inves-

tigate not only factors that may or may not affect the 

outcome of an experiment but also how these factors 

influence or interact with each other. While some of 

these factors may not be of direct interest, aware-

ness of their effect can help improve the research-

er’s understanding of the animal model. The better 

the understanding of the animal model, the easier 

it is to tailor future experiments to answer specific 

questions. This will allow the researcher to achieve 

more reliable results from future studies and hence 

reduce the numbers of animals required (Festing and 

Altman, 2002).

Example 3.1:  Age-dependent effect of nicotine on  

locomotor activity

A study was carried out to assess the age-dependent effects of 

nicotine on locomotor activity in rats (Belluzzi et al., 2004). Early 

adolescent, late adolescent and adult rats were allocated to one of 

four nicotine treatment groups (n = 8 to 12 per group) and assessed 

for 20 minutes in a conditioned place preference trial. The tests 

were performed in four identical place-conditioning chambers. 

While any chamber effects may not be of particular interest, a 

difference in animal behaviour between the four chambers may 

indicate the animal model is being affected by external stimuli. This 

additional information may increase the researchers’ understanding 

of the processes that influence the animals’ response to nicotine. 

It could also aid in the design of future studies when deciding how 

to manage the behavioural tests across multiple place-conditioning 

chambers.

Experimental design
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3.1.2  Statistical reasons: variability,  
the signal and bias

Consider the signal-to-noise ratio discussed in the pre-

vious chapter. If we can increase the signal-to-noise 

ratio, then by implication we can reduce the number 

of animals used while still achieving the same degree 

of statistical precision. Experimental designs can be 

used to increase this ratio by reducing the variability of 

the responses and/or increasing the signal. By includ-

ing factors in the design that account for the nuisance 

sources of variability, we can reduce the noise in the 

signal-to-noise ratio. It is sometimes overlooked, but 

experimental design can also be used to select condi-

tions that increase the size of the signal, again increas-

ing the signal-to-noise ratio. This process will also give 

us a better understanding of the animal model.

Reducing the variability

If we discover that a nuisance effect is increasing the 

variability of the results, then perhaps we can reduce 

the influence of this effect by including a factor in 

the experimental design to account for it. For exam-

ple, suppose it is discovered that there is a difference 

between the experimental results gathered on succes-

sive days. In many behavioural experiments, the results 

on a Monday (following 2 days of relative quiet in the 

animal house) will be different to other test days where 

the animals have been disturbed by general husbandry 

procedures. If we do not take this into account, when 

designing and analysing the study, then the day-to-day 

effects will increase the variability of the responses and 

hence decrease the signal-to-noise ratio. However, we 

can use an experimental design (and appropriate sta-

tistical analysis) to account for this source of variability. 

Such designs are called block designs and are discussed 

in more detail in Section 3.4.

By using more complicated designs, the so-called 

nested designs (see Section 3.7), the scientist can iden-

tify the amount of variability associated with different 

stages in the experimental process. Once the most vari-

able stages have been identified, then the scientist can 

concentrate on improving the reliability of these proc-

esses. The use of nested designs to identify the sources 

of variability is commonly used in manufacturing 

processes, but there is no reason why such designs can-

not be routinely applied in the field of animal research.

Increasing the signal

Experimental designs can also be used to increase the 

signal, or window of opportunity. If we can increase 

this window then this allows the scientist to reduce the 

number of animals used without risking loss of statis-

tical significance. These designs, defined as factorial 

designs, can be used to assess which levels of the con-

trollable factors, such as gender, age and dose, should 

be selected to maximise the window of opportunity. For 

example, a study was conducted to assess an inflam-

matory response in dba vs. balb c strains of mice. This 

experiment allowed the scientist to select the strain that 

was most sensitive so that future experiments would 

have the largest window of opportunity when testing 

novel compounds.

When setting up a new animal model, while it may 

seem a waste of resources to run such pilot studies at 

the start of the experimental process, the long-term 

benefits can easily outweigh the initial costs. These 

designs are discussed in Section 3.5.4.

Reducing bias

Finally a good experimental design should reduce (as 

much as possible) the risk of biasing the comparisons 

of interest. If, for example, the scientist wishes to see if 

a novel drug has had an effect compared to the control, 

then the treatment group mean could be compared to 

the control group mean. But is this comparison a true 

reflection of the effect of the drug? Could the compari-

son be influenced by some other nuisance effect? In the 

worst case scenario, the nuisance effect may be insep-

arable from, or completely confounded with, the effect 

of interest. If this is the case then there is no way of 

knowing what the treatment effect is because any com-

parisons will be biased by the nuisance effect. In such 

cases the experiment is probably ruined and will need 

repeating (assuming the problem has been identified).

The problem with experimental bias, unlike inves-

tigating the size of the signal or the variability of the 

response, is that it is difficult to identify. It is a hidden 
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danger. If an experiment is conducted and the results 

are unusual or unexpected, then it may be the case that 

an unknown nuisance effect is influencing the results.

Example 3.2:  A drug study where treatment effects are 

confounded with age effects

Consider an experiment where the oldest animals are allocated to 

the control group and the youngest animals are allocated to the 

treatment group using a non-random approach. As a result any 

observed treatment effects could be due to the difference in animal 

ages rather than any effect of the drug. The treatment effect is said 

to be confounded with the effect of age and hence we cannot tell 

whether the effect observed is due to treatment or age. Of course 

with the use of a little common sense it is unlikely that such a design 

would be used in practice. But how do we guarantee subtler biasing 

does not occur? For example, assume animals were randomised to 

treatments. It may be the case that most (but not all) of the control 

animals are the older animals. If we are not careful the age effects 

could bias the treatment effects. Perhaps the simplest way to avoid 

such issues is to use an appropriate experimental design, with a 

suitable randomisation.

3.2  What does an experimental  
design involve?

Before we begin to discuss the different types of design 

available to the scientist, a few fundamental concepts 

are introduced. These provide a framework for identify-

ing and constructing the experimental designs that can 

be used in practice. Prior to finalising the study design, 

the scientist should consider the following.

3.2.1  Variables to be recorded

When planning an experiment one of the first things 

the researcher should do is consider the responses 

that will be measured. This can have an impact on the 

experimental design. Consideration should be given to 

how the responses will be reported and also the statis-

tical analysis that will be performed once the data are 

generated.

As well as the responses of interest, the researcher 

should consider other variables that may need record-

ing, such as body weight, cage position in the rack, 

health status, operators, handlers and so on. Such vari-

ables may prove useful when analysing the data and 

drawing conclusions from the experiment. It is best to 

spend time before the start of the experiment consider-

ing these variables and putting plans in place on how 

to capture them.

Types of response

The choice of response to be measured may be an obvi-

ous one. Clearly it has as many practical implications 

as statistical ones. Responses measured must capture 

the biological effects in a meaningful way while impos-

ing the minimal necessary level of harm to the animals. 

We have been involved in many discussions about suit-

able end points to measure. The choice of response is 

perhaps a subject in its own right, varying from ani-

mal model to animal model and is beyond the scope 

of this book. There are, however, a few statistical issues 

that the researcher should consider when deciding on 

which response to measure.

Given the small sample size used in most animal 

experiments, the researcher should aim to gather as 

much information as possible from the experimental 

animals. The type of response measured can influ-

ence this. Responses should also be selected that 

maximise the signal-to-noise ratio, as described in 

Section 2.1.

Responses can be categorised into a number of dif-

ferent types. These include the following.

Continuous responses are measured on a contin-

uous numerical scale. Examples include body weight, 

time-to-event, level of cholesterol in the blood and so 

on. By continuous we imply that they can be measured 

at any numerical value. So for any two individual levels 

of a continuous response, it is always possible to record 

a value in between them. For example, if one animal 

weighs 9 g and another weighs 9.5 g, then it is possible to 

find a third animal that weighs 9.25 g. These responses 

contain the most information and hence require the 

smallest sample size to achieve a sufficiently sensitive 

statistical analysis.

Discrete responses are numerical but can only 

be measured at certain fixed values. The response 

is directional, so an increasing response indicates 

an increasing (or decreasing) effect. For example, if 

the response measured is a count of the number of 
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events, then each observation can only be an integer 

(you cannot have 2.5 counts!). From a pragmatic point 

of view, it may be possible to treat a count response 

as a continuous response. As a rule of thumb, if the 

counts have a range of around 15 or more distinct 

values, then they can be treated as a continuous 

response (Festing et  al., 2002, p.  72). There should 

also be a wide range of counts present in each group. 

It would be difficult to justify the assumption that the 

data was continuous if all the counts in one group 

had the same value! As described in Section 5.4.1, if 

your response is a count response then you may also 

want to consider a square root transformation prior 

to analysis.

Ordinal responses are measured on an increasing 

or decreasing non-numerical scale that can only be 

measured at set values. For example, non-numeric dis-

ease severity scores (mild/moderate/severe) or animal 

behavioural scores (calm/normal/excited). Although 

these responses can only be measured at specific 

values they are at least directional. Moving from one 

category of response to another does have a biological 

meaning. It should be remembered that unlike discrete 

responses, the biological implication of moving from 

one level of the response to the next highest or lowest is 

not the same across all response levels. So, in the above 

example, the biological implication of moving from 

the mild to the moderate condition is not necessarily 

the same as moving from the moderate to the severe 

condition.

Nominal responses are non-numerical responses 

and are similar to ordinal responses. However, unlike 

ordinal responses they do not have an ordering to 

the measurement levels. For example, consider an 

experiment to assess stress following injection. The 

response recorded may consist of the animals’ reac-

tion to the injection procedure. In such cases it may be 

difficult to order the reactions in terms of severity as 

many different type of reaction share a similar stress 

level. Hence the levels of the response do not follow 

a natural order. Such responses contain less informa-

tion than the previous three discussed and the statis-

tical analysis of such responses will therefore require 

more animals.

Binary responses are measured on a scale of only 

two levels. Examples include yes/no or present/absent 

responses. The analysis of such responses involves 

a specific methodology that tends to be less sensi-

tive than other methods. Many more animals will be 

required to achieve statistical significance than would 

be needed if the response had been measured on a con-

tinuous scale.

Example 3.3:  Arthritis score

In a study assessing the effect of novel compounds on the severity 

of arthritis in mice, the severity was measured over time on a scale 

of 0 to 4 for each paw. So the total for each mouse was a score 

between 0 and 16. Even though the response was in reality a dis-

crete response, it was treated as continuous for the purposes of the 

statistical analysis.

Generally it is the case that continuous responses, 

while being information rich, take longer and more 

resource to measure. However, it is worth bearing in 

mind that if you choose a response that is not con-

tinuous then you will probably need more animals per 

group, everything else being equal, to account for the 

reduced information that the response contains.

Table  3.1 contains examples of responses found in 

animal experiments.

Table 3.1. Examples of different types of response

Continuous Discrete Ordinal Nominal Binary

Body weight

Organ weight

Time-to-event

Blood or brain 

concentration

Body temperature

Latency in the water maze

Litter size

Number of correct 

responses

Clinical score

Number of rearings

Arthritis score (scale 

0,1,2,3,4)

Disease state (mild/

moderate/ 

severe)

Dog 

excitability score

Sample appearance

Genotype

Stress type

Dog excitability 

state (fine/

nervous/ excited/ 

uncontrollable)

Strauss tail

(yes/no)

Paw withdrawn from 

hotplate (yes/no)

Disease state (yes/

no)

(present/absent)
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Example 3.4:  Assessing kidney lesions induced by 

p-aminophenol

A study was conducted with rats to assess the effect of a single 

intravenous injection of p-aminophenol hydrochloride on the devel-

opment of kidney lesions (Green et al., 1969). Following injection of 

20, 40 or 60 mg of p-aminophenol hydrochloride, pairs of rats were 

humanely killed at 24, 48 and 96 hours and at 1 and 2 weeks post-

injection and sections of the kidney taken and fixed.

While the original investigation did not include a statistical ana-

lysis of the results, let us assume the researchers planned to perform 

a statistical analysis. The researchers would have to decide upon the 

most appropriate response to measure. The total lesion area of a kid-

ney section (a continuous response) would provide the most infor-

mation, but would also be the most time consuming to measure. An 

alternative response that would be quicker to measure would be to 

count the number of lesions on a cross-sectional area of the kidney 

(perhaps still a continuous response). Simpler still, the researcher 

could classify the kidney lesions in an animal as mild, moderate 

or severe (an ordinal response) or perhaps simply record whether 

there were lesions present or absent (a binary response). Although 

the latter responses would be quick to assess, more animals would 

be required to achieve the same level of statistical sensitivity than 

would be the case for the continuous measures.

Reporting responses

When reporting the results of an animal experiment 

care must be taken to give as much information as 

possible to readers so that they can judge the biolog-

ical relevance. If possible the original data should be 

presented. If you cannot present the actual data, then 

a suitable summary measure should be provided. 

These summary measures should be meaningful and 

reliable.

For example, for continuous data an estimate of the 

reliability of the results should be presented, in the 

form of either a standard deviation (SD) or standard 

error SEM) (see Section 5.2.2), along with a suitable 

summary measure such as the sample mean. For other 

types of response the mean and SD may not be reliable, 

see Section 5.2.4, and the median may be more infor-

mative. For any response it is also helpful to give the 

reader an idea of the sample size used and the number 

of animals present in the final analysed dataset.

It is recommended (ARRIVE guidelines item 15) that 

data are not presented as percentages but as actual 

numbers. This is because it is easy for percentages to 

give a misleading picture or tell a specific story.

Example 3.5:  Novel object recognition paradigm

A series of experiments were conducted to investigate the ability 

of typical and atypical antipsychotics to attenuate the effect of sub-

chronic PCP-induced cognitive deficits in a novel object recognition 

task (Grayson et  al., 2007). On the day of testing the rats were 

shown two identical objects (the familiar objects) for three minutes. 

Rats were then returned to their home cage for a minute while one 

of the familiar objects was replaced with a novel object. Rats were 

then returned to the test box for a further three minutes. If the rats 

remembered the familiar object then they should, in theory, have 

spent more time investigating the novel object.

One of the responses analysed was the discrimination index (DI):

DI = (novel time – familiar time) / (novel time + familiar time) × 

100%,� (3.1)

where novel time is the time the animal spent investigating the 

novel object and familiar time was the time spent investigating the 

familiar object.

Consider an active rat that spent two minutes investigating the 

novel object and one minute investigating the familiar object. The DI 

index for this animal is 33%. Unfortunately the same DI index would 

also be recorded for an animal that was lethargic and spent only two 

seconds investigating the novel object and one second investigating 

the familiar object before falling asleep. The different behaviour of 

these animals is not reflected in the DI index and so care must be 

taken when making conclusions based on this response. The point 

is that a small biological change can show up as large percentage 

change if the numbers that are used to calculate the percentage 

are small. This is true regardless of the biological relevance of the 

responses.

Baseline responses

A decision must be taken prior to starting a study 

whether or not to take any baseline measurements. 

Baseline measurements can be beneficial in the statis-

tical analysis. They can sometimes be used to reduce 

the between-animal variability. If baselines can be 

measured well in advance of the main part of the study, 

then they can also be used when assigning animals to 

treatment groups using a stratified randomisation pro-

cedure (Section 4.2.1).

Baselines can also highlight issues regarding the 

conclusions drawn from the statistical analysis. In 

Example 1.1, discussed above in Section 1, there were 

concerns with the validity of the experimental results 

that would not have been identified if the baseline 

blood cholesterol level measurements had not been 

recorded.
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Recording conditions during the experiment

There are many pieces of information that the animal 

researcher should record and report alongside the 

responses of interest. Some of these will be considered 

beforehand, others during the experiment itself. The 

important principle is to try to collect as much infor-

mation as possible, given the ethical and practical con-

straints, to help reduce animal use.

In most studies many external influences will affect 

the animals’ responses. Some of these will be controlled, 

such as the treatment each animal receives. Some will 

have been predicted in advance and hence designed 

into the study, such as knowing there will be two obser-

vers recording animal behaviour. Others, however, will 

not be expected. It is important, when conducting the 

experiment, to record as many of these external influ-

ences as possible. They can be investigated later on in 

an investigatory analysis of the data and help in the 

design of future studies.

Keeping a record of exactly what happened in a study 

can also be used as a justification for excluding outliers. 

We note at this stage that it is always difficult to exclude 

unusual observations purely on statistical grounds. 

However, if there is a biological explanation, then the 

researcher will have a stronger case for excluding an 

observation that is a genuine outlier. See Section 5.4.1 

for a more detailed discussion of strategies for remov-

ing outliers.

3.2.2  Set of treatments

Once the researcher has selected the variables to 

measure, the next design property to consider is the 

set of treatments. If too many groups are included in 

the design, while keeping the total number of animals 

fixed, then the sample size could be reduced to danger-

ously low levels.

The researcher also has to decide which control 

groups to include in the experimental design. It is worth 

spending time considering this issue as the conclusions 

that can be drawn from the experiment will depend on 

the choice of comparator control. Effectively control 

groups allow us to investigate the effect of a treatment 

by removing any known and/or unknown experimental 

effects when assessing the treatment effects. It is there-

fore important that the control group is treated in 

exactly the same way as the treatment groups, other-

wise biases may be introduced.

It is common practice to quantify the size of the 

treatment effect by comparing the post-treatment 

response with the baseline response. These compari-

sons may appear appealing as they are within-animal 

comparisons; however, they might not reveal the true 

treatment effect. For example, they are not necessar-

ily free of any time-related experimental effects and if 

the response drifts over time then they will be biased. 

It may also be the case that the change from baseline 

response is still influenced by differences between 

the groups at baseline (Karp et  al., 2012); see also 

Section 5.4.6.

Possible controls you may consider including in your 

experiment are:

Negative control

The aim of the negative control is to ensure that an 

unknown variable is not influencing the experimental 

outcome. The use of such a control can help the researcher 

avoid false positives. However, there is an argument that 

it is not always suitable to use negative controls on ethi-

cal grounds, although this is perhaps more of a concern 

in clinical trials than animal experiments.

Vehicle control

Vehicle controls can be used if the compound is given 

in solution. They allow the researcher to assess treat-

ment effects above and beyond any vehicle-related 

effects.

Positive control

Perhaps ethically more acceptable than the negative 

control, the purpose of the positive control is to show 

that the novel treatment is as good as or better than 

the positive control. By considering the results from 

the positive control we can also demonstrate that the 

experiment was successful as it was capable of detecting 

a known effect. If there is a known difference between 
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the positive and negative controls, then we should be 

able to detect it. The positive control can also be used to 

confirm that the effects that you want to model (or have 

manipulated as part of the animal model) are present 

in the experiment.

Consider a situation where:

(i)	 The comparison between the novel compound and 

the vehicle control is non-significant.

(ii)	 The comparison between the positive control and 

vehicle is significant.

From (ii) we conclude that the experiment would be 

capable of detecting a treatment effect if there was one. 

However, from (i) the lack of significance implies that 

the compound did not have an effect. Unfortunately the 

researcher does not always have a ‘gold standard’ posi-

tive control available.

Sham control

Sham controls are useful if you want to mimic the 

experimental procedures, such as surgery, without 

involving test substances. They also allow the researcher 

to separate treatment effects from the effects of the  

surgery.

Comparative control

These are similar to a positive control. The aim of the 

study is to show a new therapy is as good as, or equiv-

alent to, an existing one. Care should be taken when 

running an analysis that involves comparing back to a 

comparative control. Remember that the null hypothe-

sis (in most analyses) is to assume that there is no treat-

ment effect. We then run an experiment to see if we can 

disprove this hypothesis. In comparative studies it may 

be preferable to use a null hypothesis that there is an 

effect with the test compound, and then to try and dis-

prove this by running the study.

Naïve control

Animals in the naïve control group do not receive any 

treatments nor have any procedures carried out on 

them. The naïve control group provides information on 

the underlying animal response within the experimen-

tal protocol.

Example 3.5 (continued):  Novel object recognition 

paradigm

In the study described above, animals received either a vehicle or 

PCP for 7 days followed by a 7-day drug-free period. On the day 

of testing animals were administered either haloperidol, clozapine, 

risperidone or the vehicle 30 minutes prior to testing in the novel 

object recognition paradigm. From a simulated dataset, the aver-

age time rats spent investigating the novel and familiar objects, 

when administered clozapine at 1 and 5 mg/kg, are presented in 

Figure 3.1.

From the plot it can clearly be seen that in the clozapine-treated 

groups (PCP + cloz 1 and PCP + cloz 5) the time spent investigating 

the novel object was greater than the time spent investigating the 

familiar object. Unfortunately there was also some evidence of an 

effect in the PCP (PCP + veh) and vehicle (veh + veh) groups. So the 

effects observed in the clozapine-treated groups could simply be an 

artefact of running the experiment, rather than any specific effect 

of clozapine. Any assessment of the treatment effect, i.e. the diffe-

rence in novel and familiar times in the treatment groups, should 

take into account the difference observed in the vehicle group. It is 

interesting to note that the recognition response discussed above, 

where

DI = (novel time – familiar time) / (novel time + familiar time) × 

100%,� (3.2)

revealed no statistically significant effect of clozapine in this 

experiment.
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Figure 3.1.  Plot of means with within-group standard errors 

for total time spent investigating the novel and familiar 

objects for Example 3.5.
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3.2.3  The experimental unit and the 
observational unit

When planning an experimental design it is impor-

tant to identify the experimental unit and the observa-

tional unit. These ideas are the key to many statistical 

analyses.

An experimental unit for a treatment factor is the 

smallest unit which a level of the treatment can be 

applied to. For most animal studies the animals will be 

the experimental units, as each animal is individually 

treated.

Another example of an experimental unit that can be 

employed in animal experiments is the cage the ani-

mals are housed in. Cages would be the experimental 

units if a treatment was administered to a whole cage 

of animals, perhaps orally in the food. In aquatic stud-

ies the test compounds are usually administered to the 

tanks the fish are housed in. Hence it is the tanks that 

are the experimental units and not the individual fish 

within the tank.

An observational unit is the smallest unit on which 

a response will be measured (Bailey, 2008, p. 8). Again 

this is usually the animals, as we can measure the 

animals’ responses individually. There are, however, 

examples where the animals may not be the obser-

vational units. If several histological slices of a target 

organ are taken, then the slices are the observational 

units even if the animals are the experimental units. In 

experiments where animals are repeatedly measured, 

the observational units correspond to the individual 

measurements but the experimental units may still be 

the animals, depending on the experimental design 

(see Table 3.2).

It is important to consider these two concepts when 

planning an experiment as the treatment effects are 

usually assessed against the experimental unit vari-

ability and not the observational unit variability. So it is 

the replication of the experimental units that are of pri-

mary importance. While not as influential, it is still the 

case that measuring the experimental units (animals) 

repeatedly will be beneficial. In Section 3.7.4 we con-

sider higher-order nested designs. In these designs the 

experimental unit and the observational unit are usu-

ally different.

Example 3.6:  Toxicology experiments

Bailey (2008, p. 128) describes two toxicology experiments where 

the observational units are different but the experimental units 

are the same. The experiments are conducted to assess how rats 

absorb the toxin bromobenzene over time. In each study, the rats 

are exposed to one of three doses of bromobenzene, the vehi-

cle or a negative control and the level of toxin present in each rat 

measured.

In the first experiment nine rats per group were individually 

administered either a dose of bromobenzene or one of the con-

trols. The rats were then humanely killed at three time points, three 

rats per group per time point. Using this approach the level of bro-

mobenzene in the liver of the rats can then be assessed over time.

In the second experiment, rather than employing the invasive 

liver extraction approach, a non-invasive technique was used where 

the bromobenzene was measured in the rats’ urine. In this exper-

iment each rat was measured at all the time points, hence fewer 

animals were required.

In both experiments the rats were dosed individually, hence in 

both scenarios the experimental units were the rats. However, the 

observational units were different in each case. In the first experi-

ment the observational units were the rats, as each animal provides 

one measurement. In the second experiment the observational 

units were the rats at each time point. Each animal therefore pro-

vides three observational units. The number of animals required for 

the second study (to achieve the same level of statistical sensitivity) 

will depend on the relationship between the within-animal variabil-

ity and the between-animal variability. However, the second study 

will probably require fewer animals in total than the first.

3.2.4  Effects and factors

The results obtained from an experiment are influenced 

by a number of effects. These can be effects of interest 

such as treatment effects, which the researcher controls 

and manipulates, or nuisance effects, such as the effect 

of the room the animals are housed in. We begin the 

planning stage of any experiment by considering these 

effects in order to investigate and/or control for them. 

Once effects are identified we need to quantify them sci-

entifically. We do this by constructing experimental fac-

tors that correspond to these effects. The levels of each 

factor represent specific examples of the underlying 

effect. The factors are then used to generate the experi-

mental design that is employed to assess the effects.

For example, if an experiment consists of two drug 

groups with ten animals per group, then we say the 

study has two factors, Treatment (at two levels: drug 

and control) and Animal (at 20 levels: corresponding to 

 

 

 
 

 



Table 3.2. Seven different ways to measure an animal repeatedly

Scenario Description Examples Relationships between factors Experimental unit Type of design Section

1 Animals measured repeatedly: 

levels of the factor that 

defines the repeated 

measurements are shared 

across animals

Animals measured at specific 

time points or at specific brain 

regions

The factor that defines the 

repeated measurements 

is crossed with the 

Animal factor and any 

treatment factors

Animal Repeated 

measures 

design

3.8.1

2 Animals measured repeatedly: 

levels of the factor that 

defines the repeated 

measurements are not 

shared across animals

Multiple trials per animal, blood 

samples assayed in triplicate, 

multiple cells tested from each 

animal

The factor that defines the 

repeated measurements 

is nested within the 

Animal factor – levels 

of the nested factor for 

the first animal are not 

related to the levels for 

the second and so on

Animal Nested 

design

3.7.4

3 Treatments assessed at 

random positions within 

the animal.

Local anaesthetic skin creams 

tested on different positions on 

each animal

All within-animal factors 

crossed

Position within-animal Block design 3.4

4 Two treatments: within-

animal treatment levels 

are assessed at random 

positions within the animal. 

Between-animal treatment 

levels are administered one 

per animal

Three types of implant placed 

within each animal. Movement 

of the implants assessed under 

various systemic treatments

All within-animal factors 

crossed, Animal nested 

within the between-

animal treatment factor

Animal

(for between-animal 

treatments) and

position within-animal

(for within-animal 

treatments)

Split-plot 

design

3.9

5 Animals receive multiple 

treatments over time in 

a different order for each 

animal

Husbandry studies testing several 

housing conditions within-

animal

Animal factor crossed 

with the factor that 

corresponds to the 

test periods and the 

Treatment factor

Combination of the 

animal and test 

period

Crossover 

design

3.4.9

6 Animals receive multiple 

treatments over time in a 

non-random order

Escalating doses (to avoid 

toxicological effects) 

administered within-animal 

over time

Animal factor crossed 

with the factor that 

corresponds to the test 

period/Treatment factor

Combination of the 

animal and test 

period

Dose-

escalation 

design

3.8.2

7 Multiple different responses 

measured for each animal

Many parameters measured on 

each animal (body weight, 

organ weight, …).

– – Any type of 

design

–
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the 20 animals). The researcher aims to assess the effect 

of the treatment and hence constructs the Treatment 

factor to quantify the effect and test it scientifically.

We distinguish between the experimental factors and 

the effects we are attempting to quantify by using a cap-

ital letter for the factor name. So the Treatment factor is 

created to assess the effect of the treatments.

In this book we will consider the experimental factors 

in more detail (Sections 3.5 and 3.8.1). However, at this 

stage we should remember that the experimental fac-

tors are a tool for investigating the underlying effects that 

influence the results of an experiment. If an experiment is 

designed well, then the scientist will have confidence that 

the levels of the experimental factors describe (in some 

sense) the effects that are influencing the responses. In 

such experiments the statistical analysis should be able 

to separate out the important effects. This is not always 

the case in poorly designed experiments.

Defining factor level labels

As a rule, throughout this book we assume that the fac-

tor level labels must be uniquely specified and have a 

practical meaning within the experiment. So for exam-

ple, if an experiment consists of eight animals in total, 

and each animal receives both treatment and control, 

then the levels of the Animal factor are labelled 1 to 8 in 

the treatment group and 1 to 8 in the control group. If 

the eight animals assigned to the control group are dif-

ferent from the eight assigned to the treatment group, 

then the Animal factor has 16 levels, and the labels are 

1 to 8 in the treatment group and 9 to 16 in the control 

group.

This may seem rather counter-intuitive but it does 

help when setting up the analysis within a statistical 

package. Assume that the animals are labelled 1 to 8 in 

both groups, even though the eight animals in the con-

trol group are different from the eight in the treatment 

group. As we shall see later, to carry out the appropri-

ate analysis you would need to tell the statistical pack-

age that there are 16 animals in the study not just the 

same 8 animals assessed twice. While this is not a prob-

lem with many types of design, it can become a prob-

lem in some of the more complicated designs we shall 

consider.

This method of defining factor levels will also help 

the researcher decide which type of design is being 

employed. For example, by considering the factor levels 

within the design it may be identified as nested (Section 

3.7) or repeated measures (Section 3.8.1).

Defining the factors in an experimental design

An experimental design is defined by the experimental 

factors it contains, the nature of these factors and the 

relationships between them.

Factors can be categorised as •	 random or fixed. 

Whether factors are defined as random or fixed will 

influence the statistical analysis and the conclusions 

drawn.

Factors can be either •	 categorical or continuous. Most 

factors considered in this text are categorical factors, 

although some can be considered as either.

The relationship between any pair of factors within •	

the design can be described as either crossed, par-

tially crossed or nested.

Understanding these three simple concepts will allow 

the scientist to make the best use of experimental 

design and also provide strategies for the statistical 

analysis. Before going on to describe the types of exper-

imental designs available, we consider these concepts 

in more detail.

3.2.5  Fixed and random factors

 Experimental factors can be categorised as either fixed 

factors or random factors. Deciding on whether a fac-

tor is random or fixed will depend on the nature of the 

underlying effect and the conclusion that the scientist 

wishes to draw from the study. It may also depend on 

the experimental design and the randomisation used.

Both types of factor can lead to changes in the 

response measured. A biologist would say both can 

cause variability in the data. With fixed factors there are 

fixed differences between the levels of the factor (that we 

may want to test to see if they are significant) whereas 

with random factors the differences are random.

For example, assume a colony of marmosets is 

housed in more than one room in the animal facil-

ity. The researcher believes that the responses of the 
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marmosets may be influenced by the room in which 

they are housed. If marmosets from only two rooms are 

required for a study, then an investigation could be con-

ducted to see if there is an overall difference between 

the two rooms. In this case Room should be categorised 

as a fixed factor at two levels as there may be a fixed 

change in the experimental results obtained from mar-

mosets housed in one room compared to the other. As 

only two rooms are assessed, we cannot generalise any 

conclusions to all rooms in the facility. If, however, the 

study animals are housed in many rooms (rooms that 

are randomly selected from all available in the facility) 

then we may consider Room to be a random factor. We 

can then see how the marmosets’ responses vary from 

room to room (in a random fashion). This conclusion 

can be generalised to all rooms in the facility as it repre-

sents the random room-to-room variability.

In this text we shall reserve the term variability to 

describe the random variability of the response that is 

introduced by the random factors and not the fixed dif-

ferences caused by the fixed factors.

Fixed factors

Fixed factors are usually factors that quantify the effects 

that the researcher is investigating. For example, the 

Treatment factor is always a fixed factor. With fixed fac-

tors we assume that the levels that are present in the 

experimental design consist of all the possible levels of 

the factor. For example, if both sexes are used in a study, 

then Gender will be defined as a fixed factor. It has two 

levels, male and female, both of which are present in 

the design.

When using a fixed factor we assume there may be 

‘fixed’ differences between the factor levels. The pur-

pose of the experiment, if the factor is of interest to the 

researcher, is to estimate these differences and per-

haps perform a suitable statistical test to assess their 

magnitude.

Consider an experiment to test the difference between 

a novel drug and a control. The fixed factor Treatment 

has two levels (drug and control). We assume that these 

are the only two levels possible (and there are, given 

that the purpose of the experiment is to test whether 

the effect of this dose of treatment is different from that 

of the control). We can also say that the two levels of 

the Treatment factor adequately describe the treatment 

effect in this experiment. The researcher believes there 

will be a fixed difference between the animals receiv-

ing the drug and those receiving the control. This diffe-

rence can be assessed by comparing the treatment and 

control group means, using a suitable statistical test.

Other examples of fixed factors include Strain of ani-

mal (wildtype vs. transgenic), Age of animal (2 months 

vs. 4 months vs. 6 months), Time, Diet, Supplier and so 

on. In fact most factors the animal researcher will need 

to consider can be defined as fixed.

Random factors

The most commonly encountered random factor in an 

animal experiment is the Animal factor. With random 

factors we assume that each level of the factor present 

in the experiment was selected (or sampled) at random 

from a population of levels. So when carrying out a sta-

tistical analysis we assume (to some extent) that we 

have taken a random sample of animals from the wider 

population of animals. We also assume that the effect at 

each level of the random factor is the same, apart from 

some random variability. So we assume that two ani-

mals, everything else being equal, should give the same 

results apart from the animal-to-animal variability.

As we have randomly sampled from a wider popu-

lation, then we are justified in projecting the conclu-

sions of the experiment onto the wider population that 

the experimental animals were sampled from. In other 

words, if we see a treatment effect in the animals in our 

experiment (with the results obtained from a small frac-

tion of the total population of that species or strain) then 

we can assume the effect is present in the wider popula-

tion of animals too. Care must be taken when projecting 

outside this population though. If the experiment was 

conducted with male animals, and hence the experi-

mental animals were randomly selected from the pop-

ulation of male animals, then it would be dangerous to 

predict how females will react based on these results.

The goal of many statistical analyses is to compare 

the difference between the levels of the fixed factors 

(the signal) to one or more of the random factors (the 

noise). Sometimes, however, we may simply want to 
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investigate the magnitude of the variability associ-

ated with a random factor. When investigating random 

factors we are therefore interested in the amount of 

variability accounted for by the levels of the random 

factors.

Most animal experiments involve at least one ran-

dom factor, namely the Animal factor, but there may 

be others. Examples of random factors the authors 

have observed in animal experiments include: Section 

(histological sections or slices taken at random from a 

brain), Sample (multiple measurements taken at ran-

dom on an animal) and Assay (each sample from an 

animal being assayed in triplicate wells on a 96-well 

assay plate). The other random factor that the animal 

researcher may encounter is Cage. If animals were 

group housed and dosed in their food, then cages 

are the experimental units and treatments should be 

assessed against the cage-to-cage variability, i.e. Cage 

needs to be defined as a random factor.

Example 3.7:  Mouse selection

Consider the Animal factor, with levels corresponding to the individ-

ual mice. We assume in the analysis that we have randomly selected 

the mice from the population of mice, and that each animal will give 

the same result, apart from the usual animal-to-animal variability. 

If there is any reason why one group of mice should give higher 

results than another, for example we have two observers assess-

ing the animals in the study, then it may be appropriate to try to 

account for this in the analysis. This can be achieved by including an 

additional factor (Observer in this case) in the experimental design 

to account for this effect.

Random or fixed?

Certain factors may be considered as random or fixed, 

depending on the questions the researcher wishes to 

answer.

For example, consider the test arena in a behavioural 

test.

We may say that we have taken a sample of arenas •	

at random from a population of arenas. We assume 

each arena has the same effect on the results, apart 

from some random arena-to-arena variability. If we 

can estimate this variability, then we can predict 

what would happen if we use different arenas in the 

next experiment. We have estimated (in general) how 

variable arenas are.

Alternatively we might assume the Arena factor is a •	

fixed factor. Perhaps there were only three arenas used 

within the experiment. Trying to assess the arena-to-

arena variability using such a small number of arenas 

would result in an unreliable estimate of the over-

all arena-to-arena variability. In this case we calcu-

late the fixed differences between the three arenas in 

the experiment and fit Arena as a fixed factor in the 

analysis.

Defining Arena as a fixed factor in this example allows 

the researcher to investigate differences between the 

arenas in the experiment. Defining Arena as a random 

factor allows the researcher to draw conclusions about 

the variability of test arenas in general. Conclusions 

from this latter analysis will therefore be valid if we 

want to include other arenas, not present in the current 

study, in future experiments.

As well as Arena other factors that could be defined as 

random or fixed include Cage, Room, Operator, Surgeon, 

Test box and so on. In this book we shall assume, unless 

otherwise stated, that these factors are defined as fixed. 

More advanced statistical analyses are possible (and 

which may or may not provide more sensitive tests), 

which assume that these factors are random; however, 

they are beyond the scope of this book. For a description 

of such approaches see Montgomery (1997, pp. 470–91). 

Most analysis packages, by default, assume all factors 

are fixed, although the more powerful packages do have 

the option to declare factors as random.

Interestingly it is worth remembering that all stud-

ies contain both random and fixed factors. The grand 

mean or intercept (the overall average of the responses 

recorded in an experiment) is usually considered to be 

a fixed factor. Experiments also require at least one ran-

dom factor (where the levels of the factor correspond to 

the observational units) to allow us to carry out statis-

tical tests. Designs that contain both fixed and random 

factors are defined as mixed designs. It can be argued 

that all experimental designs are mixed designs.

Example 3.8:  Wheel-running experiment

The following experiment is based loosely on two experiments 

described in Festing et al. (2002, p. 46 and p. 51). An experiment 

was conducted to test the hypothesis that the density of neurones in 

the hippocampus of the mouse brain is affected by exercise. To test 

this hypothesis, 15 male mice and 15 female mice were assigned to 
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one of three groups, each group was then allowed varying degrees 

of exercise. Each group has access to a running wheel for a different 

amount of time:

No running (non-rotating wheel placed in the cage for 30 minutes •	

per 24 hours)

Moderate running (access to a running wheel for 30 minutes per •	

24 hours)

Marathon running (access to a running wheel for 3 hours per 24 •	

hours)

Histological sections were prepared from the hippocampus of each 

mouse and the number of neurones in four microscope slides from 

each animal counted. The mice were the experimental units and the 

microscope slides were the observational units.

In this experiment the fixed factors were Treatment at three lev-

els and Gender at two levels. We assumed there was a fixed diffe-

rence between the three treatments, and that these three levels 

were all the levels required when deciding if there was an effect 

of exercise on neurone density. Similarly Gender was a fixed fac-

tor as we assessed the hypothesis that the neurone density varied 

depending on the gender of the animal.

The other two factors in the design, Animal and Microscope slide, 

were both random factors. Fifteen animals per sex were randomly 

selected from the population of mice, and the four microscopic slides 

were randomly selected from each mouse.

Alternatively if we had assumed the four microscope slides taken 

from each mouse had been one from the front, two from the mid-

dle and one from the back of the hippocampus (rather than four 

selected at random), then we could have defined Section as a fixed 

factor at four levels: front, middle-front, middle-back and back. We 

could then have investigated the effect of exercise on neurone dens-

ity across the hippocampus. This highlights the different hypotheses 

that can be assessed depending on the design used and the factor 

designation.

3.2.6  Categorical factors and continuous 
factors

Most experimental factors described in this text are cat-

egorical. They consist of a number of distinct levels (or 

categories). The scientist is then interested in either the 

fixed differences between the levels of the factor (for 

fixed factors) or how much they randomly vary (for ran-

dom factors). Examples of categorical factors include 

Gender, Treatment, Genotype and Animal.

For some factors though, the levels are numeric. 

For example, if the doses of a compound included 

in an experiment are 0, 3, 5 and 10 mg/kg. We could 

assume that the corresponding Dose factor was at four 

levels (a categorical factor) and we could then test to 

see if there is a significant difference between the 3, 

5 and 10 mg/kg treatments compared to the 0 mg/kg 

control. Alternatively we could assume the Dose factor 

was continuous, i.e. it can take any numerical value. 

We can then estimate the dose-response relationship 

across the range we have observed (0 to 10 mg/kg). This 

way we could predict what the effect of, say, a dose of 

7 mg/kg would be. To do this we need to assume some 

underlying relationship between the response and the 

dose of the compound, for example a straight line. We 

can then use the data generated to estimate the exact 

relationship. We shall expand on this in Sections 3.5.5 

and 3.6 where continuous factors are used for factorial 

designs and dose-response designs, respectively.

Another example of a factor that can either be cat-

egorical or continuous is the baseline body weight of 

the animal. It can be assumed to be a categorical factor 

(levels: low, medium and high) and used as a blocking 

factor in the design and analysis (see Sections 3.4 and 

6.3.3, respectively). We could though assume baseline 

body weight was continuous (and hence assume it is a 

response variable rather than a factor) with levels that 

are the actual baseline body weights. We could then fit 

baseline body weight as a covariate (see Section 5.4.6) 

to help reduce the animal-to-animal variability.

3.2.7  Crossed factors and nested factors

The relationship between any pair of factors within an 

experimental design can be described as either crossed, 

partially crossed or nested. Partial crossing is a special 

case of crossing, so in general we say that factors are 

either crossed or nested with each other. As there are 

only two fundamental types of relationship it should be 

easy to work out which ones are present in your design. 

By understanding these different relationships, and 

how the factors within a given design are related, we 

can make better use of our experimental designs.

As a rule of thumb (and this really is only a rule of 

thumb) random factors tend to be nested within either 

fixed or other random factors, whereas fixed factors 

tend to be crossed with each other.

Nested factors

Nested relationships are present in even the simplest 

designs. Consider the design described above, where 
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Factor

Treatment

Animal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Drug Control

Figure 3.2.  A nested design involving two treatments (levels: drug and control) with eight animals per group.

there are eight animals in the treatment group and eight 

animals in the control group. The design consists of two 

factors, Animal and Treatment. If the eight animals in 

the treatment group are different from the eight ani-

mals in the control group, then we say Animal is nested 

within Treatment. It should be noted that in many cases 

Animal is nested within the Treatment factor(s).

Nested relationships can be easily described using a 

diagram. A simple example is presented in Figure 3.2, 

corresponding to the experiment involving two treat-

ments and eight animals per treatment.

Note that in Figure 3.2 we have labelled the animals 

1 to 16; 1 to 8 in the drug treatment group and 9 to 16 in 

the control group. If we had labelled the animals 1 to 8 

in both groups, then this would imply (using the rule 

described in Section 3.2.4) that there were only eight 

animals in total in the study, with each animal receiv-

ing both drug treatment and the control at some point 

during the experiment.

Crossed factors

Along with the nested relationships between factors, as 

described in the previous section, the second way that 

factors can be related is to each other is when they are 

crossed.

In the example described in the previous section, 

let us now assume that the study consisted of eight 

animals rather than sixteen. Each animal received 

both treatment and control and hence provided 

two experimental units, one per treatment. As each 

animal was associated with both treatments, and 

each treatment was associated with all animals, the 

Treatment factor was crossed with the Animal fac-

tor. Assuming only one observation was taken on 

each animal/treatment combination, i.e. the obser-

vational units were the combinations of the Animal 

and Treatment factors, then the crossed relationship 

between these factors can be represented using a grid 

diagram, as given in Figure  3.3. Each square corres-

ponds to a combination of the levels of the two factors 

present in the design.

As well as all combinations of the levels of the two 

factors being present in the design, if the number of 

observational units at each of the combinations of the 

two factors is equal then the two factors can be said to 

be fully crossed. So in the above example, Animal and 

Treatment were fully crossed as there was one obser-

vational unit at each combination of the Animal and 

Treatment factors.

Animal
1 2 3 4 5 6 7 8

Drug

Control
Treatment

Figure 3.3.  A design involving two crossed factors: Treatment 

(levels: drug and control) and Animal (levels: 1 to 8).

Animal
1 2 3 4 5 6 7 8

Drug

Control
Treatment

Figure 3.4.  A design involving two crossed factors: Treatment 

(levels: drug and control) and Animal (levels: 1 to 8) with one 

missing combination.

 

 

 

  



Figure 3.5.  A design involving two crossed factors: Gender (levels: male and female) and Treatment (levels: no, moderate and marathon running) with two factors nested 

within combinations of these factors: Animal (levels: 1 to 15) and Slide within Animal (levels: 1 to 60).

Treatment

No running Moderate running Marathon running

f - no running f- moderate running f- marathon running
Gender Female

Male
m - no running m - moderate running m - marathon running

Animal 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slide 1 2 3 4 9 10 11 12 17 18 19 20 41 42 43 44 49 50 51 52 57 58 59 60
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Partially crossed factors

In practice the conditions required for two factors to 

be fully crossed may appear to be rather strict. In many 

experiments it will be the case that while there is some 

degree of crossing between two factors, the number of 

observational units is not the same at every combina-

tion of the levels of the two factors. It may also be the 

case that not all combinations of the factor levels are 

present in the design. This could be due to practical 

constraints on the design or simply missing data.

In the above example, assume animal 8 is taken 

out of the experiment after the drug is administered 

but before the control is given. The drug level of the 

Treatment factor occurs with eight levels of the Animal 

factor, but the control level of the Treatment factor only 

occurs at seven levels of the Animal factor. A diagram of 

the design is given in Figure 3.4.

The replication is unequal across the design and 

hence we say that the Animal and Treatment factors 

are partially crossed.

It is perhaps more likely that pairs of factors will be 

partially crossed, rather than fully crossed or nested. 

For example, if a study is conducted over 2  days, and 

all treatments are administered unequally on both 

days, then the Day factor is partially crossed with the 

Treatment factor. If two strains or both sexes are used in 

the study, but there is some missing data, then it is usu-

ally the case that these factors will be partially crossed 

with Treatment.

Designs containing nested and crossed factors

For simplicity, when introducing the different types of 

experimental design, it is standard practice to focus on 

the properties that differentiate each type of design. This 

usually involves considering only the crossed or nested 

factors within a design. We shall take this approach in 

the following sections when we introduce each type 

of design in more detail. However, it should be noted 

that in practical situations the researcher will employ 

designs that contain a combination of both crossed 

and nested factors. Hopefully once the reader is famil-

iar with the types of designs described below, then the 

generalisation to more practical yet complex designs 

will be straightforward.

Example 3.8 (continued):  Wheel-running experiment

The relationships between the factors present in this design are a 

combination of crossing and nesting. The factors present in the study 

are Treatment (no running/moderate running/marathon running), 

Gender (male/female), Animal (30 mice were used) and Microscope 

slide (four slides assessed per mouse).

The first two factors, Treatment and Gender, are crossed. All treat-

ments were tested in both males and females. As each animal is 

assigned to only one treatment (and obviously can only be of one 

sex) then the Animal factor is nested within the combination of the 

Treatment and Gender factors.

Each microscope slide is for only one animal; hence Microscope 

slide is nested within Animal. Other nesting relationships also hold 

but follow automatically and hence need not be stated specifi-

cally. For example, as Microscope slide is nested within Animal, and 

Animal is nested within Treatment, then Microscope slide is also 

nested within Treatment.

Drawing such a design is complicated; however, an illustration 

of the design is presented in Figure 3.5. Due to limitations of space 

the diagram shows the full nesting structure for ten male animals: 

6–10 (in the moderate running group) and 11–15 (in the marathon 

running group) but not for the five male animals 1–5 (in the control 

group) or any of the nesting structure in the female groups. Note 

the crossed grid structure at the top of the diagram and the nesting 

structure underneath this grid.

3.2.8  Repeatedly measuring the animal

It is common practice in animal experiments for each 

animal to be measured multiple times. There are 

many ways that we can repeatedly measure an ani-

mal, depending on the treatment allocation to the ani-

mals, the nature of the repeated measurements and the 

randomisation(s) performed. We differentiate between 

seven practical scenarios in this text:

1.	 Measurements taken over time, but at the same 

identifiable time points for all animals. For exam-

ple, day 1 post-dose, day 2 post-dose and so on. 

Similarly measurements may be taken on multiple 

identifiable positions within an animal (such as 

brain regions, left/right-hand side). We define these 

as examples of repeated measures designs (see 

Section 3.8.1).

2.	 Multiple measurements taken from an animal but 

unlike the previous example the repeated levels 

are not the same across the animals. For example, 

blood samples taken from an animal are split into 

triplicate vials and each vial is assayed separately. 
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There are three measurements per animal but 

there is no relationship between the measurements 

across animals. The first assayed vial from one ani-

mal is not related to the first assayed vial from any 

other animal. These are examples of higher-order 

nested designs (see Section 3.7.4).

3.	 Multiple treatments are administered to an ani-

mal at random positions, with one measurement 

taken per treatment per animal. For example, local 

anaesthetic skin creams tested on five ‘random’ 

positions on an animal. This is an example of a 

block design with Animal as a blocking factor (see 

Section 3.4).

4.	 The previous scenario can be generalised to include 

a second treatment administered systemically to 

the animals, with one level of the systemic treat-

ment administered to each animal. As well as this 

between-animal treatment a second within-animal 

treatment is administered to sites randomly within 

the animal. This is an example of a split-plot design 

(see Section 3.9).

5.	 Each animal receives a sequence of treatments 

over time, one treatment per test period. One mea-

surement is taken per animal per test period. The 

sequence of treatments is different for each animal. 

These designs are defined as crossover designs (see 

Section 3.4.9).

6.	 Each animal receives a sequence of treatments 

over time, one treatment per test period. One mea-

surement is taken per animal per test period. The 

sequence of treatments is the same for each ani-

mal and is given in a non-random order (usually 

increasing doses of a compound over time). These 

designs are defined as dose-escalation designs (see 

Section 3.8.2).

7.	 Multiple end points are measured for each animal 

in the same experiment.

Designs based on Scenarios 1 to 6 above can be differ-

entiated from each other by considering:

the relationships between the experimental factors•	

the experimental and observational units•	

the randomisation•	

Each scenario leads to a different type of experimen-

tal design and also a different recommendation for the 

statistical analysis. A summary of the different ways we 

can measure an animal repeatedly is given in Table 3.2. 

The designs given in Table  3.2 are discussed in more 

detail in later sections of this chapter.

3.3  Summary of design types

Experimental designs can be separated into a number 

of distinct classes. In this text we differentiate between 

seven different types of design that are commonly 

encountered by the animal researcher: block, factorial, 

dose-response, nested, split-plot, dose-escalation and 

repeated measures. Each of these types of design can 

help us reduce animal use and refine our experiments 

in different ways. In the remaining sections of this chap-

ter we will introduce each type of design, describe its 

properties in detail and explain how and where these 

designs should be applied. We aim to give many prac-

tical examples of their application to highlight their 

usefulness.

Experimental designs employed in practical situ-

ations are rarely from only one of the classes introduced 

above and can involve characteristics from two or more 

of these designs. We will show how to construct more 

complex designs that contain features from these sim-

pler designs. We begin though by giving the reader an 

overall picture of the classes of experimental designs, 

and how the different classes are related to each other.

3.3.1  Block designs

Block designs form a useful class of designs that can be 

used in nearly every animal experiment. They allow the 

researcher to improve the precision of the experiment 

by reducing the influence of any nuisance effects that 

would otherwise increase the variability of the data. 

The textbook definition of a block design is one where 

the experiment is broken down into a set of mini-

experiments or blocks. Each block contains a subset of 

the experimental units that are more alike, compared 

to the remaining experimental units. A factor can then 

be included in the analysis, with levels corresponding 

to the blocks, which effectively accounts for the differ-

ences between the experimental units from different 

blocks. These differences, if left unaccounted for, would 
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potentially increase the underlying variability of the 

response.

Blocking factors may be generated due to the practi-

calities of the study, such as the need to use two pieces 

of equipment, or perhaps the need to run a study over 

3 days. Other blocking factors may be included in the 

design at the researcher’s discretion, such as blocking 

by body weight. Such decisions will depend on pre-

vious experience, literature evidence and knowledge 

of the kind of effects that may influence the outcome 

and potentially increase the variability. It is also possi-

ble to block by animal, where animals receive different 

sequences of treatments over time. These designs are 

defined as crossover designs.

Blocking factors are usually crossed with the 

Treatment factor(s). They can be defined as random 

factors, but for simplicity within this book they are 

always assumed to be fixed factors.

3.3.2  Factorial designs

Factorial designs are useful when the researcher has 

many different factors that may or may not influence the 

response. We define these as factors of interest. An inves-

tigation is therefore required to assess the effect of these 

factors of interest and how they relate to each other. We 

shall distinguish between two types of factorial design, 

namely the large and small factorial designs. In a fac-

torial design, large or small, all factors of interest are 

crossed with each other, and all are considered fixed.

Large factorial designs are employed when the 

researcher wants to investigate the effect of many 

factors and how they interact with each other. The 

researcher may also want to identify those factors that 

can be ignored as having no significant effect on the 

response. These designs are particularly useful, for 

example, when setting up a new animal model. At this 

stage of the experimental process there may be many 

unanswered questions, such as which level of the fac-

tors give the most variable response. Large factorial 

designs necessarily involve many individual groups 

but, as we shall see, because we are only interested in 

the overall effects, the individual sample sizes can be 

small. In some fields of experimentation, perhaps with 

smaller underlying variability, a sample size of one or 

two per combination is routinely used. However, due 

to the large animal-to-animal variability, it is proba-

bly best not to use such small sample sizes in animal 

research.

Small factorial designs consist of usually no more 

than two or three factors. The purpose of studies that 

are based on these designs is to compare one group 

mean to another, using a suitable statistical test. Hence 

a sufficiently large sample size is required at each com-

bination of the factors.

Both types of design are examples of factorial designs, 

but they are used to answer different questions. The 

small factorial designs are used regularly in practice. 

The large factorial designs are perhaps not utilised as 

much as they could be.

3.3.3  Dose-response designs

Dose-response designs, as the name suggests, are 

employed to allow the researcher to understand the 

effect of increasing the dose of a compound on the 

measured response. These effects can be modelled by 

a simple linear trend, but in practice are more likely to 

involve non-linear relationships. The choice of non-

linear curve to fit to the data can be based on prior the-

oretical knowledge of the underlying biology or can be 

selected once the data has been generated. In this text 

we consider the logistic curve, as there is strong theo-

retical justification for using it. We describe the prin-

ciples that should be followed to construct designs for 

estimating the dose-response relationship using this 

and other types of non-linear models.

3.3.4  Nested designs

Nested designs consist of a number of factors and, as 

the name implies, the relationship between at least 

one pair of factors is nested rather than crossed. In the 

extreme case we have the so-called hierarchical nested 

designs. With these designs all relationships between 

factors are nested and hence no crossed factors are 

allowed.

Factors that are nested within other factors are usu-

ally assumed to be random. When analysing data gen-

erated using nested designs we can investigate the 
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amount of variability due to each of the random fac-

tors. This is important because the amount of variability 

associated with a random factor is linked to the replica-

tion of the levels of the factor that is needed to achieve 

scientifically valid results. In particular we can investi-

gate the sample size (i.e. number of animals) required 

by considering the design as a nested design.

3.3.5  Split-plot designs

Split-plot designs are applied in many areas of research 

(they were originally developed for agricultural trials – 

hence the name) but their use is less common in ani-

mal research. These designs involve two treatment fac-

tors and are required when, for example, all the levels 

of one of the treatments are administered to each ani-

mal (the within-animal treatment factor) but only one 

level of the second treatment is administered to each 

animal (the between-animal treatment factor). These 

designs are seldom used, perhaps because it is unusual 

to administer multiple levels of a treatment simultan-

eously to an animal. If multiple treatment levels are 

administered to an animal, then it is usually carried out 

over time using either a crossover or dose-escalation 

design. Split-plot designs are discussed in Section 3.9.

3.3.6  Repeated measures and dose-escalation 
designs

In Section 3.8 we consider Scenarios 1 and 6 described 

in Table  3.2, the repeated measures design and the 

dose-escalation design. For both of these designs the 

levels of the factor that index the repeatedly measured 

responses (the so-called repeated factor) are:

shared across all animals in the experiment•	

not randomised•	

In repeated measures designs the experimental unit is 

measured at each level of the repeated factor. For exam-

ple, each animal receives one of the treatments and 

then is measured at specific time points. Hence animals 

are the experimental units. The repeated factor is Time 

and all animals should be measured at each level of the 

Time factor, if possible. Also as day 1 must come before 

day 2, so the levels of the repeated Time factor cannot 

be randomly assigned within-animal.

In dose-escalation studies all doses of the compound 

are administered to each animal in an increasing dose 

order. The order is the same (and non-random) for 

each animal so that if toxicological effects are observed 

or safety concerns raised, at one of the doses, then the 

treatment regime can be adjusted or reduced for ethi-

cal reasons. As each dose of compound is assigned to 

one test period (and vice versa) the Dose factor cannot 

be estimated separately from the Test period factor (the 

repeated factor). The animals in each test period are the 

experimental units.

The difference between these two types of design 

is that it is the experimental unit (usually the animal) 

that is measured repeatedly in the repeated measures 

design whereas in the dose-escalation study the exper-

imental units change across the levels of the repeated 

factor (each animal receives the same sequence of mul-

tiple treatments).

3.3.7  Designs applied in practice

The reader may already be thinking of the limitations 

of running an animal study based on only one of the 

above designs. In practice a combination of two or more 

will be required. In Example 3.8 there is a factorial part 

to the design (Treatment and Gender) and a nested 

part to the design (Animal and Microscope slide). In 

Example 3.35, a dietary study involving ducklings, the 

design involved block, factorial and nested compo-

nents. Many of the designs considered in this text could 

involve measuring the animals over time and hence 

can be considered repeated measures designs too.

By making use of each part of the design, the scientist 

can answer different questions. If we consider the fac-

torial part of the design we would be considering ques-

tions such as:

Is there a treatment effect?•	

Does the treatment effect vary between sexes?•	

The nested part of the design can be used to answer dif-

ferent questions:

How many animals do we need in the study?•	

Should we replicate more microscope slides?•	

If we measure more slides can we reduce the number •	

of animals needed without affecting the sensitivity of 

the experiment?
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For a given experiment certain questions will naturally 

be of more interest than others. At this stage though it is 

worth noting we can investigate different aspects of the 

animal model using experimental designs, other than 

simply testing treatment effects. We shall return to con-

sider examples of designs applied in practice at the end 

of this chapter.

3.4  Block designs

Possibly the most important class of designs avail-

able to the animal researcher is the block designs. A 

block design is an experimental design that contains 

at least one blocking factor. Including these factors in 

the design allows the researcher to account for corre-

sponding nuisance sources of variability in the statisti-

cal analysis. This can then help reduce the sample size 

required. From a practical point of view, block designs 

provide the researcher with additional flexibility when 

planning animal experiments. Experiments can also 

be managed more effectively when a block design is 

utilised.

3.4.1  Practical reasons to block

When an experiment is carried out it is often the case 

that conditions cannot be kept constant for the whole 

experiment. For example, two pieces of equipment may 

be employed to test the animals’ responses, several 

operators may be required to ensure the trial is com-

pleted in a reasonable time frame or perhaps the study 

needs to be conducted over 2 or more days.

Blocking, to put it simply, involves dividing the 

experiment into a series of mini-experiments. Each 

mini-experiment should ideally contain all the treat-

ments, but have less replication of each of the treat-

ments than the full design. From a practical point of 

view, by blocking the experiment into a set of mini-

experiments, the scientist can more easily manage the 

study. The easiest way to include blocking factor(s) in 

the experimental design is make sure that all the treat-

ments are administered to at least one experimental 

unit within each block and hence each block can be 

considered an experiment in its own right. Common 

sense suggests that each of the treatments should be 

equally replicated within each of the blocks. In most 

cases such a rule will provide the researcher with an 

efficient, as well as a sensible, design.

A list of possible blocking factors that the authors 

have employed is presented in Table 3.3.

3.4.2  Statistical reasons to block

As discussed above there are many practical benefits 

to employing block designs; however, there are also 

important statistical advantages too.

Variance reduction

By using block designs, or to put it another way, to 

include blocking factors in the experimental design 

and statistical analysis, we aim to reduce the underly-

ing variability in the data collected. This implies we can 

reduce animal numbers while maintaining the scien-

tific integrity of the study.

When we include a blocking factor in an experimen-

tal design we try to make sure that all the experimental 

material (usually animals) and experimental condi-

tions within each block are as similar as possible. We 

then include a factor in the statistical analysis whose 

levels correspond to the individual blocks. The diffe-

rence between experimental units that receive the same 

treatment, but are assigned to different blocks (differ-

ences that would otherwise increase the underlying 

variability), can then be accounted for by including the 

blocking factor in the statistical analysis. For example, 

if we block by animal then the differences between the 

animals, which would usually be included in the under-

lying variability that we test treatments against, can be 

assigned in the statistical analysis to the Animal block-

ing factor. In other words treatments are tested against 

the within-animal variability rather than a combination 

of the within- and between-animal variability.

If there are differences between operators, pieces of 

equipment, days of the week and so on, then this will 

inflate the underlying variability of the response. Using 

a block design and including the blocking factor in the 

analysis will account for this, reduce the variability of 

the response, and hence help reduce the sample size.

 

 

 

 

 

 

 

 



Table 3.3. Examples of blocking factors

Blocking factor Comments

Room In long-term studies, the researcher may be forced to house animals in two or more rooms, for example rabbits in long-term studies to investigate 

the effect of novel compounds on the development of atherosclerosis.

Cage Animals housed in cages that are placed near the door can be more disturbed than those housed away from the door. It may be possible to account 

for this by housing animals on different treatment regimes together within a cage. One should bear in mind though that there is a risk that cross-

contamination may occur if animals with different treatments are housed in the same cage.

Arena Due to practical constraints, such as in fear conditioning experiments, more than one test arena may be employed. This may influence the results, 

perhaps due to the arena position in the room.

Observer Consider a study where the response measured is the length of time that an animal expresses a specific behaviour. Different observers may record 

different times even if they are observing the same animal. If more than one observer is employed in the study, then this observer effect would 

need to be accounted for.

Animal If all or some treatments can be administered to each animal, then we can block by animal using, for example, a crossover design.

Batch Do you have more than one batch of animals, where animals from different batches may have different ages or originate from different suppliers or 

mothers? Would the results be different between batches?

Litter If you have recorded the litter numbers, this can be used in the design to remove any litter effects.

Age/body 

weight

If body weight is thought to be a source of variability, then define three blocks: small, medium and large animals and include the body weight 

blocking factor in the experimental design. This block information can then be used in the analysis to reduce the effect of body weight on the 

variability of the response.

Day of week Studies that are conducted over a number of days may have day-to-day differences that can be accounted for by using a block design. In some 

behavioural trials the results taken on a Monday may be different from those recorded during the rest of the week. This can occur, for example, 

when running the five-choice reaction time test as the animals are left relatively undisturbed over the weekend (Hille et al., 2008).

Phase Due to practical limitations the study may be carried out over a number of phases. A difference between the measurements taken in each of the 

phases could be due to any number of practical effects (Bison et al., 2009).

Time of day Will the time of day influence the results? In which case you should block by time of day (AM/PM) or only carry out experiments in the morning. 

For example, if body weight is your measure of choice, then rat and mice body weights naturally decrease during the day.

Object In experiments such as the novel object recognition paradigm, the choice of novel object (from a pair of objects) could influence the animals’ 

reactions and hence may be suitable for inclusion as a blocking factor.

Object position With cognition studies, such as the novel object recognition paradigm, should the test objects be placed on the left- or right-hand side of the arena?

Batch of test 

compound

Does all of the test substance originate from the same batch?

Order of 

operation

When assessing a novel surgical procedure, it was found that the order of the operations influenced the results. It was hypothesised that there may 

be a learning effect (for novice surgeons).

Plate In gene expression studies, it may be possible to block by the assay plate. Also on 96-well assay plates there may be edge, row or column effects 

across the wells of the plates. These effects could be accounted for by using a block design across the wells.

Rack Are there differences between the racks the animals are housed in? Animals housed in racks nearer to the door may be more disturbed than 

animals housed in racks further away from the door.

Position in rack Animals housed in cages at the top of the racks may have different reactions to those housed towards the bottom (Gore and Stanley, 2005).
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Example 3.9:  Lymphocyte counts in mice

A study was carried out to assess the effect of three novel com-

pounds on lymphocyte counts in mice (Mead et al., 2003, p. 71). 

Given the variability of the lymphocyte counts it was decided to use 

five mice per group. A placebo control group was also included in 

the study, hence 20 mice were required. The researchers also felt 

that animals within the same litter might have similar underlying 

lymphocyte counts. Thus 20 mice were taken from 5 litters, 4 mice 

per litter. The four animals per litter were then randomly assigned 

to one of the four treatments. If the background lymphocyte counts 

were higher in the mice from one of the litters, thus increasing 

the between-animal variability, then this design would allow the 

researchers to account for the litter-to-litter variability in the stat-

istical analysis.

Bias reduction

The second important benefit of blocking is that it 

reduces bias. When we compare treatments with the 

control, for example, we want to be sure that we are 

really assessing the treatment effect. We assume that 

the difference between the treatment group and the 

control group is not influenced (or biased) by one or 

more nuisance effects. Such treatment comparisons 

are said to be unbiased. A block design can help the 

researcher achieve this.

For example, consider a study conducted over 2 days 

to compare the effect of a treatment to a control. If we 

include Day as a blocking factor in the design, then 

common sense tells us we should equally replicate 

the treatments over the 2 days. If we were comparing a 

novel drug to a control, then half the animals on day 1 

would have received the drug and half the vehicle (sim-

ilarly for the allocation on day 2 and so on). This would 

provide the best possible design. The Treatment factor 

is crossed with the Day blocking factor. When assessing 

the effect of the treatment, we can be confident that the 

size of the difference between treatment and control is 

not influenced by any day-to-day differences.

Now consider a different allocation of treatments to 

the animals. If we had unwisely given all the animals 

on day 1 the novel drug and all the animals on day 2 

the control, then the treatment comparison would be 

biased by the day effect. When we make comparisons 

between treatment and control we are also comparing 

the difference between day 1 and day 2. This could bias 

the treatment comparison, especially if the day-to-day 

difference is larger than the treatment effect we are 

interested in. Unfortunately there is no way of separat-

ing the treatment effect from the day effect in this case. 

We say the two factors are completely confounded.

Complete confounding, with all controls tested on 

the same day, is probably the worst case scenario. 

It may be the case that the majority of controls were 

tested on the same day. This could occur, for example, 

if the allocation of animals to days were left to the ran-

domisation. In such cases we still run the risk of bias-

ing our results, especially if we have not identified the 

nuisance effect.

Readers may consider the points raised in this dis-

cussion to be fairly obvious; the real difficulty is iden-

tifying the nuisance effects beforehand and including 

blocking factors in the experimental design and statis-

tical analysis to deal with them. If there are two, three or 

more blocking factors required, then constructing the 

most efficient block design to include all these blocking 

factors becomes more of a challenge.

3.4.3  How to block

It is easy to include one or more blocking factors in an 

experimental design:

Begin by identifying a source of variability within the •	

study that you wish to take into account.

This source of variability is then separated out into a •	

number of distinct levels that quantify the nuisance 

effect. This breakdown is usually easy to define. For 

example, if the study was conducted over 3 days, and 

it was felt that there was going to be day-to-day vari-

ability, then it is sensible to define Day as a blocking 

factor with three levels, namely day 1, 2 and 3. If you 

wish to block by body weight, then there is more flex-

ibility over the number of levels. You could choose 

two levels (low/high body weight) or perhaps three 

levels (low/intermediate/high body weight).

These levels form a new factor to be included in the •	

experimental design and statistical analysis.

The experimental units (usually animals) are assigned •	

to blocks so that each block of experimental units cor-

responds to one of the levels of the blocking factor.

Finally treatments are allocated to the experimental •	

units (animals) within each block.

 

 

 

 

 



Experimental design52

Hopefully all treatments can be equally replicated within 

each block. However, this is not always the case. In some 

situations only a few experimental units are present in 

each block and so only a subset of the treatments can be 

allocated within any given block. If this is the case then 

the choice of design becomes important. There may be 

several competing designs that have the same num-

ber of blocks and the same experimental units within 

each block. However, some designs may be better or 

more efficient than others. Avoiding a formal mathem-

atical definition, the efficiency of a design is a measure 

of the accuracy of the estimates of the treatment com-

parisons that can be generated using the design com-

pared to other designs with the same number of blocks 

and the same experimental units within each block. 

Some designs will provide more reliable estimates than 

others, even though they are the same size. While the 

choice of block design should not influence the estimate 

of the difference between two treatments, the variability 

of these estimates will be lower, all other things being 

equal, if a more efficient design had been used.

There is a simple rule of thumb for assessing the effi-

ciency of a block design without using any mathemat-

ical formulae. Assume a study is conducted to investi-

gate the difference between two treatments, A and B. 

To assess the reliability of the treatment comparisons 

when using the block design, consider how many times 

treatment A occurs in the same block as treatment B. 

The more within-block occurrences, the more efficient 

the design will be for assessing the difference between 

A and B.

Example 3.9 (continued): Lymphocyte counts in mice

We return to the experiment conducted to measure lymphocyte 

counts, as discussed above and consider three scenarios.

Scenario A

The most efficient design will have an equal replication of treat-

ments within each litter. This design provides the most accurate esti-

mates of the pairwise treatment comparisons. These comparisons 

are all estimated equally efficiently because pairs of treatments 

occur equally often (once) within a litter.

Scenario B

Consider what happens if the within-litter treatment replication 

is not equal. As the within-block pairwise treatment occurrences 

become more unequal (within the design), then the efficiency of 

certain treatment comparisons will decrease as the occurrences of 

these treatment pairs within a block decrease.

Scenario C

Taken to the extreme we arrive at design where almost all the con-

trol animals are from a single litter, similarly for the other treat-

ments with the other litters. While not quite possible in this example 

(the sample size is five and the litter size is four), if the sample size 

was four then you could end up with a design where all the controls 

were from the same litter. In this case the treatment effect is con-

founded with the litter effect.

Scenarios A and C correspond to extreme designs, which stand at 

opposite ends of a sliding efficiency scale (with Scenario B some-

where in the middle). Usually we begin by planning a design at 

the most efficient end of the scale and then, due to missing data, 

we end up with a design that is less efficient with unequal pair-

wise treatment occurrences within a block. Obviously the number 

of missing observations will depend on many factors including the 

animal model itself. However, if the researcher starts off with an 

efficient design it would be unlucky if the treatment comparisons 

in the statistical analysis were not unbiased and reliable.

Let us now consider another practical example, 

involving blocking by initial body weight of piglets.

Example 3.10: Anti-microbial medication assessment

Following the cessation of sow’s milk, and the passive immunity it 

provides, weanling pigs are more vulnerable to disease. A study was 

carried out to assess whether spray-dried animal plasma (SDAP) in 

the diet could be used as an alternative to anti-microbial medica-

tion containing colistin sulphate for weanling pigs challenged with 

Escherichia coli K99 (Torrallardona et al., 2003). The study design 

involved four treatment groups consisting of all combinations of 

SDAP (at two levels: 0% and 7%) and colistin sulphate (at two lev-

els: 0 mg/kg and 300 mg/kg). As one of the responses measured 

was the gain in the body weight of the piglets over a set period of 

time, it was felt that the pretreatment animal body weight could be 

an important source of variability in the study.

We consider three possible approaches the researcher could 

take to deal with the variability associated with pretreatment body 

weight. The first two do not involve blocking and hence would prob-

ably result in less sensitive statistical tests. More animals would 

therefore be required to achieve statistical significance in these 

scenarios.

Scenario A

In this scenario, and not one to be recommended, the animals 

are assigned to treatment groups based on body weight. The lar-

gest animals receive the vehicle, the smallest animals receive the  

7% + 300 mg/kg combination treatment and the remaining ani-

mals are assigned to the other two treatment groups. As the animals 

were dosed in mg/kg, this approach does at least require a small 

amount of the compound! Unfortunately if this study is carried out 
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this way then the researcher has no way of knowing whether the 

treatment effect observed is due to the treatment itself or simply 

animal size. The effect of body weight and treatment are said to 

be confounded.

Scenario B

In scenario B animals are randomly assigned to the four treatment 

groups. While this approach is theoretically justified, there is the risk 

that we may end up with an uneven replication of treatments across 

the animal body weights. We could even be unlucky and end up 

with an allocation identical to that used in scenario A.

Scenario C

An alternative (and recommended) approach involves blocking by 

animal body weight.

To begin with we break down the body weights (in this case a con-

tinuous variable) into a number of levels. There is no rule as to how 

many levels the researcher should select in such cases. However, 

the ease of including the blocking factor in the design and analysis 

should be considered. In this case we have 48 pigs in total and so 

we could separate the animals into three blocks of 16 pigs each. The 

three levels of this blocking factor would then be light, medium and 

heavy animals. So all the light animals would be assigned to the 

first block, all the medium-sized pigs to the second block and the 

heaviest animals to the final block. Body weight is now considered a 

fixed factor in the design, at three levels. The 16 animals within each 

block are now assigned to four pens (four animals per pen) taking 

the litter into account. We then equally replicate the four treatments 

within each of these three blocks, randomly assigning the four treat-

ments to four pens within each block. Treatments are administered 

in the diet and so the pens are the experimental units. Each occur-

rence of the vehicle occurs with one replicate of each of the other 

treatments. Hence we know that all treatment comparisons will be 

estimated with equal precision.

The Treatment factor is crossed with the Body weight blocking 

factor while the Pen factor is nested within Block and Treatment. We 

would recommend this approach.

3.4.4  Complete block designs

We now consider the different types of block design. In 

most cases the researcher will be able to use the com-

plete block designs and these designs are described first. 

Complete block designs are the most efficient designs 

available and the easiest to apply in practice.

In a complete block design, all treatments are 

administered to at least one experimental unit within 

each block. Each block can be said to constitute a sin-

gle trial or mini-experiment (Cochran and Cox, 1957, 

p. 106).

Example  3.10, described above, is an example of a 

complete block design. Each of the three blocks con-

sists of four pens, with one pen per block receiving each 

of the four treatments.

Efficiency

Complete block designs provide the scientist with an 

efficient family of designs. As all treatments are pre-

sent in all blocks, then all treatment comparisons can 

be made within a block. This implies that all treatment 

comparisons will be reasonably sensitive, and cer-

tainly more accurate than if comparisons were made 

between blocks (assuming the block-to-block differ-

ences are large). If the replication of the treatments is 

the same within each block, then we also know (using 

the rule of thumb described above) that the variability 

of each of the treatment comparisons will be the same. 

This makes these designs a useful and reliable family of 

designs.

Randomisation

When employing a block design, the randomisation 

required to assign the treatments to the experimen-

tal material is a relatively straightforward procedure. 

Assuming each block consists of a number of animals, 

and animals are the experimental units, then separately 

for each block, the treatments are randomly assigned to 

the animals within that block.

We shall make further comments on the implication 

of this randomisation strategy in Section 4.2.2.

Example 3.11:  Spinal cord injury

It has been suggested that, following an injury to the spine, if the 

axons can traverse the injury site then they may regrow in unscarred 

regions. A study was conducted to assess the benefit of using a poly-

mer scaffold seeded with neural stem cells, see Teng et al. (2002), 

to aid recovery following a spinal cord injury. In the experiment 50 

adult female Sprague Dawley rats underwent surgery to create a 

lesion in their spinal column. The rats were then implanted with 

either a scaffold implanted with neural stem cells or one of three 

controls: a polymer implant without neural stem cells, the stem 

cells only (with no implant) or lesion control (no implant or stem 

cells). The sample sizes across the four groups in the experiment 

were n = 13, 11, 12 and 12 (one died during surgery and another 

was excluded because it showed incomplete paralysis). For this 
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discussion it is assumed that there were 12 animals in each group 

and hence 48 animals were required in total.

It was felt that there was some risk that any refinement in 

the surgical technique during the course of the study could influ-

ence the outcome. While not defined in the original article, let 

us assume that the surgeries were conducted over 3 days. It was 

therefore felt that the results from the animals operated during 

day 3 could be different to those from day 1. To account for this 

effect, the surgeries were performed using a complete block 

design. To begin with the 48 animals were assigned to the three 

surgery days, 16 per day. Within each day the 16 rats were ran-

domly assigned to one of the four treatment groups, four animals 

per treatment per day.

A possible design is given in Table 3.4. Notice the order within 

each day is randomised to avoid surgical bias and so the order within 

day is not controlled in any way. This design allows the scientist to 

remove any day-to-day variability caused by improvements to the 

surgical technique.

All the researcher needs to do now is include the Day blocking 

factor in the statistical analysis (see Section 6.3.3).

Statistical analysis of block designs

The statistical analysis of data generated when using 

block designs is considered in Section 6.3.3. If the 

researcher has blocked the experiment, then an indica-

tor variable should be included in the final dataset that 

contains the levels of the blocking factor. This factor can 

easily be included in all the parametric statistical ana-

lysis described in Section 5.1.2. As discussed in Section 

4.2.2, it is recommended that the researcher exclude 

any interactions between the Treatment and blocking 

factors from the statistical analysis. An example of the 

benefit of including a blocking factor in the statistical 

analysis, in terms of reducing the sample size required, 

is described in Section 3.7.3.

3.4.5  Incomplete block designs

Unfortunately it may be the case that the researcher 

does not have the luxury of being able to assign all the 

treatments within each of the blocks. For example, the 

researcher may wish to include Litter as a blocking fac-

tor in the experimental design. Unfortunately the litters 

were not the same size, hence it was not possible to rep-

licate all treatments equally within each litter. Some lit-

ters had fewer animals than the number of treatments 

within the study, hence only a subset of the treatments 

could be allocated to the animals in these litters.

The choice of which treatments to include within each 

block, and which to leave out, will affect the accuracy of 

Table 3.4. Possible experimental design for the spinal cord injury experiment

Order

Surgery day

1 2 3

1 Implant only Implant only Implant only

2 Implant only Implant + neural stem cells Implant only

3 Neural stem cells only Neural stem cells only Implant only

4 Neural stem cells only Neural stem cells only Implant + neural stem cells

5 Implant + neural stem cells Sham Neural stem cells only

6 Implant + neural stem cells Sham Sham

7 Neural stem cells only Implant only Implant + neural stem cells

8 Implant + neural stem cells Implant only Neural stem cells only

9 Sham Implant + neural stem cells Sham

10 Sham Neural stem cells only Implant + neural stem cells

11 Implant only Sham Sham

12 Implant + neural stem cells Sham Neural stem cells only

13 Implant only Implant only implant + neural stem cells

14 Sham Implant + neural stem cells Sham

15 Sham Implant + neural stem cells Implant only

16 Neural stem cells only Neural stem cells only Neural stem cells only
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the pairwise comparisons. As commented above, the 

more often a pair of treatments occurs within a block 

the more accurate the comparison between them will 

be. In other words, one allocation of treatments to the 

blocks may allow sensitive comparisons of, say, treat-

ment A back to the control but not treatment B back 

to the control. A different allocation of treatments to 

blocks may allow the researcher to test both treatments 

A and B back to the control with equal precision.

The general rule of thumb described above can be 

useful in this situation. When deciding on a design, 

count the number of times the comparisons of interest 

can be made within a block. The higher the number the 

more precise the comparison will be.

Example 3.12:  Assessing the effect of LPS challenge in rats

An experiment was conducted to assess the effect of lipopoly-

saccharide (LPS) challenge on the behavioural, physiological and 

neuroendocrine responses in the rat (Bison et  al., 2009). The 

experiment consisted of a saline control group and six doses of 

LPS: 1, 5, 15, 50, 125 and 250 µg/kg. Responses assessed included 

social interaction, home cage activity, saccharin preference test, 

body temperature, body weight, hormone and cytokine levels. The 

experiment was conducted over two cohorts of animals and it was 

hypothesised that there may be differences between the cohorts 

that would be an additional source of variability. It was therefore 

decided to employ a block design with Cohort as the blocking fac-

tor at two levels. Both cohorts included the saline control group 

but only a subset of the six LPS dose groups were included in each 

block, hence the design was an incomplete block design. As each 

block contained the saline group, the most reliable treatment com-

parisons were the comparisons of the LPS dose groups back to 

saline. By using this design the researchers were able to show 

that LPS significantly reduced body weight, social behaviour, pref-

erence for saccharin and home-cage activity while increasing ACTH 

and serum corticosterone levels, serum interleukins and tumour 

necrosis factor-alpha.

The researcher may be interested in making all pairwise com-

parisons between the treatments. If so then all comparisons should 

be made equally precisely (as is the case with the complete block 

designs). In such cases we require a special type of incomplete 

design, namely the balanced incomplete block design.

3.4.6  Balanced incomplete block design

Efficiency

A balanced incomplete block design (BIBD) is an 

incomplete block design that allows all pairwise treat-

ment comparisons to be made with equal accuracy. 

To achieve this, the design has to have the following 

properties:

equal replication of treatments within the design•	

equal block sizes (not vital, but makes life easier!)•	

every pair of treatments occurs together in the same •	

number of blocks

The third condition is an example of the rule of thumb 

described above.

As can be guessed from these strict conditions, BIBDs 

exist for only certain combinations of the number of 

treatments and size/number of blocks. A description 

of methods that can be used to construct these designs 

is given in Clarke and Kempson (1997, pp. 212–15) and 

an example of the use of a balanced incomplete block 

design is given by Manser et al. (1998) when testing the 

preference of laboratory rats for nest boxes.

Randomisation

As with the complete block designs, the randomisa-

tion of the experimental material to the blocks follows 

a similar process. Separately for each block, the set of 

treatments for that block (as defined by the incomplete 

block design) are randomly assigned to the animals 

within the block.

Statistical analysis

The statistical analysis of data generated when using an 

incomplete block design is considered in Section 6.3.3. 

Assuming the incomplete block design is balanced, or 

nearly balanced, then including a blocking factor in the 

statistical analysis should not cause any difficulties. The 

analysis follows the same procedure required as for the 

analysis of complete block designs.

Example 3.13:  Lamb dietary study

An experiment was carried out to assess the effect that vitamin A 

and a protein dietary supplement have on the weight gain of lambs 

over a 2-month period (Anderson and McLean, 1974, p. 248). There 

were four treatments in the study:

A	 Vitamin A low dose, protein low dose

B	 Vitamin A high dose, protein low dose

C	 Vitamin A low dose, protein high dose

D	 Vitamin A high dose, protein high dose

It was felt that a replication of three lambs per treatment would 

be sufficient, so six pairs of sibling lambs were used in the study. 
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It was expected that the sibling lambs’ responses would be simi-

lar to each other, so it was decided to use a block design for the 

study, with Lamb pair as the blocking factor. There were 12 lambs in 

total, divided into six blocks, where blocks correspond to the pairs 

of lambs. Each treatment was replicated three times, but only two 

treatments could be administered to lambs within each block. The 

final design chosen was a balanced incomplete block design and is 

given in Table 3.5.

Each treatment occurs with each other treatment once within a 

block (sibling lamb pair), hence all treatment comparisons can be 

made equally accurately. By using this design the researcher was 

able to conclude that the protein supplement did influence weight 

gain whereas vitamin A had no effect.

3.4.7  More than one block: the row-column 
block design

In practical situations there may be more than one pos-

sible blocking factor in an experiment. If there are two 

nuisance sources of variability, then we require a block 

design that allows us to account for both sources. Such 

a design is called a row-column block design. The rows 

of the design correspond to one blocking factor; the 

columns of the design correspond to the second block-

ing factor.

Row-column block designs occur in many experi-

ments. For example, assume the researcher ordered 

animals with a wide range of body weights from a sup-

plier. By blocking by body weight, as recommended 

above, any additional variability caused by requesting 

this wide range can be accounted for in the experimen-

tal design and statistical analysis. If the testing phase 

of the experiment is conducted over a single day, the 

researcher may believe that the time of testing may 

influence the results. Hence it may be decided to block 

by time of day as well as body weight. In this case there 

are two blocking factors that need to be included in the 

experimental design. Alternatively there may be two 

pieces of equipment used to conduct the testing, or 

maybe the study was conducted over multiple days. All 

of these effects could be accounted for by including a 

second blocking factor in the experimental design.

Consider animal cages arranged in racks. If multiple 

treatments can be administered to the animals within 

each rack, then the rack of cages forms a row-column 

block design. If the response is influenced by cage 

position in the rack, then it may be worth blocking 

by cage position to account for these effects. Animals 

housed in cages near the door may be more disturbed 

than those housed towards the back of the room. 

Alternatively those housed near the computer ter-

minal in the room may be more disturbed than those 

housed elsewhere. By blocking by the position in the 

rack, we would then be able to take this source of vari-

ability into account.

Efficiency

In situations where the experimental design includes 

multiple blocking factors, constructing the design 

becomes trickier. As a rule of thumb, if the researcher 

can make sure that every treatment is administered 

at every combination of levels of the blocking factors, 

then the design will be an efficient design.

Randomisation

To randomise a row-column block design

1.	 Randomly permute the rows of the design.

2.	 Randomly permute the columns of the design.

3.	 Randomly assign treatments to the animals within 

each row/column combination.

Statistical analysis

The statistical analysis of data generated by row-  

column designs is the same as that for complete block 

designs, as described in Section 6.3.3. The scientist 

should include two indicator variables in the dataset 

containing the levels of the row and column blocking 

factors. As with the analysis of block designs involving 

single blocking factors, we recommend excluding any 

interactions involving the blocking factors in the statis-

tical analysis (see Section 4.2.2).

Table 3.5. Experimental design for Example 3.13

Lamb Sibling lamb pair

1 2 3 4 5 6

First A A A B B C

Second B C D C D D
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Example 3.11 (continued):  Spinal cord injury

In Example 3.11 described above, which investigated the effect of 

scaffolds on spinal cord injury recovery, the researcher decided to 

block by day to remove any day-to-day variability. However, upon 

closer inspection of the randomised block design, it can be seen that 

the implant only treatment will be administered first on each of the 

3 days. In fact the implant only treatment features a disproportion-

ally high number of times in the early surgeries. Perhaps it would 

have been better to block in two directions when constructing the 

block design.

In the following design we have blocked in two directions, day 

(as before) but also order within day. The order of the operations 

was separated into four periods of time (two in the morning and 

two in the afternoon) and each surgical procedure was applied 

once within each period on each day. A possible design is given 

in Table 3.6.

The spread of surgeries within a day is now much more evenly 

spaced. Both blocking factors (Day and Period) can now be 

included in the analysis to reduce the variability caused by time 

effects.

3.4.8  Row-column block designs based on 
Latin squares

Consider the situation described in the previous sec-

tion where there are two nuisance sources of variability. 

Ideally the researcher would like to account for these 

two sources of variability using a row-column block 

design. However, it may not be possible to replicate all 

treatments at each combination of the blocking factors. 

In the extreme case it may be possible to only admin-

ister one treatment at every combination of the levels 

of the two blocking factors. In such situations we can 

make use of Latin squares to construct efficient row-

column block designs.

Formally a Latin square of order t is an arrangement 

of t symbols in a t by t square array in such a way that 

each symbol occurs once in each row and once in each 

column (Bailey, 2008, p. 106).

Examples of Latin squares are:
3 by 3 square

A B C

B C A

C A B

5 by 5 square

A B C D E

B C D E A

C D E A B

D E A B C

E A B C D

If the allocation of treatments across the rows and 

columns of the block design are made using a Latin 

square, then the rows and columns of the Latin square 

Table 3.6. Possible experimental design for Example 3.11

Period Order Surgery day

1 2 3

1 1 Implant + neural stem cells Sham Implant + neural stem cells

1 2 Neural stem cells only Neural stem cells only Neural stem cells only

1 3 Sham Implant + neural stem cells Sham

1 4 Implant only Implant only Implant only

2 5 Implant only Implant only Implant + neural stem cells

2 6 Neural stem cells only Implant + neural stem cells Sham

2 7 Sham Neural stem cells only Implant only

2 8 Implant + neural stem cells Sham Neural stem cells only

3 9 Neural stem cells only Sham Implant + neural stem cells

3 10 Implant + neural stem cells Implant only Sham

3 11 Implant only Implant + neural stem cells Neural stem cells only

3 12 Sham Neural stem cells only Implant only

4 13 Implant + neural stem cells Implant only Implant only

4 14 Sham Implant + neural stem cells Sham

4 15 Neural stem cells only Neural stem cells only Neural stem cells only

4 16 Implant only Sham Implant + neural stem cells
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define the two blocking factors and the t elements of 

the square define the treatments. With these designs 

the effect of the two nuisance sources of variability can 

be removed before the treatments are compared. This 

is because each treatment is administered to one ani-

mal in each row of the design and to one animal in each 

column.

Example 3.14:  Housing conditions

Gore and Stanley (2005) discussed an example where Latin squares 

were employed to allocate five treatments to cages. The experiment 

was conducted to assess four doses of a compound (and control). 

Three racks of cages were required, where each rack contained 25 

cages arranged in five rows and five columns. As part of the stat-

istical analysis the researcher observed that the rack that the mice 

were housed in influenced their water intake and also that the body 

temperature of the mice depended on the row (within the rack) 

that the cages were placed in. This was not a problem in this experi-

ment, as the treatments were assigned to cages using Latin squares. 

These effects could therefore be taken into account in the statistical 

analysis. However, if each treatment had been allocated to a single 

row of cages, then any environmental effects could have biased the 

treatment assessment.

In future trials they advocate using a row-column block design 

based on Latin squares to allocate treatments to cages. This, they 

argue, should remove any bias on the treatment comparisons caused 

by cage position. If the researcher uses more practically appealing 

designs such as:

putting all replicates of a treatment in the same row of cages in •	

each of the three racks

placing all replicates of a treatment in the same rack, perhaps in •	

adjacent cages

then there is a risk of making false positive conclusions due to 

this bias.

Efficiency

Latin squares can be used to construct efficient experi-

mental designs when there are two blocking factors that 

need to be taken into account. These designs have been 

compared to other types of design such as complete 

block designs (see Giesbrecht and Gumpertz, 2004, 

p. 125). It has been shown that they are more efficient 

than the alternatives and hence should be used, where 

possible, as fewer animals are required to achieve simi-

lar levels of statistical sensitivity.

Randomisation

Once a Latin square has been selected (at random from 

a suitable set of Latin squares), then

1.	 The rows of the square are randomised.

2.	 The columns of the square are randomised.

3.	 The treatments are randomly assigned to the treat-

ment labels of the square.

4.	 The animals are randomly assigned to the row/col-

umn combinations of the square.

Statistical analysis

The statistical analysis of data generated from experi-

mental designs based on Latin squares is the same as 

the row-column block design analysis, as described in 

Section 6.3.3. The scientist should include two indica-

tor variables in the dataset, corresponding to the row 

and column blocking effects. Due to the lack of repli-

cation within the experimental design, it will probably 

not be possible to estimate any interactions between 

the blocking and treatment factors.

Example 3.8 (continued):  Wheel-running experiment

We now consider a variation of Example 3.8, as discussed above and 

considered in further detail in Festing et al. (2002, p. 59). The experi-

ment was conducted to investigate whether exercise influenced the 

Table 3.7. Possible experimental design for the learning ability experiment

Time

Body weight

Small Medium-sized Large

09.00–10.00 No running Moderate running Marathon running

11.00–12.00 Marathon running No running Moderate running

14.00–15.00 Moderate running Marathon running No running
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learning ability of mice in a maze. Three treatments were tested: no 

running, moderate running and marathon running. In this example 

nine mice were available. Unfortunately there were two other nuis-

ance sources of variability in the experiment that could affect the 

results. Firstly there may be an effect due to the time of day (caused 

by circadian rhythm) and secondly the body weight of the animals 

may influence the results. Two blocking factors were included in the 

experimental design, Body weight and Time of day. As there were 

nine animals in the study the blocking factors were defined using 

three levels each, with three animals per level of each blocking 

factor. So Body weight has three levels: small, medium sized and 

large, and Time of day has three levels: 9.00–10.00, 11.00–12.00 

and 14.00–15.00.

We can now use a Latin square to define the allocation of animals 

to the experiment. An experimental design that may have been 

employed is given in Table 3.7.

One animal is assigned to each of the nine entries in the square. If 

we now include these two blocking factors in the statistical analysis 

we can take account of the variability caused by the body weight 

and time of day.

3.4.9  Crossover designs

The largest source of variability in any animal experi-

ment is probably going to be the animal-to-animal 

differences. This animal-to-animal variability, as dis-

cussed above, is one of the biggest problems (from a 

statistical point of view) that animal researchers face. 

So why not block by animal at the design stage? If the 

researcher can block by animal, then we can account 

for the animal-to-animal variability in the analysis.

Blocking by animal necessarily involves adminis-

tering multiple treatments to the animals. There are 

two ways that this can be achieved. If multiple treat-

ments can be administered to an animal at the same 

time (for example, skin creams administered locally 

to regions of skin) then we can randomly assign treat-

ments within the animal and use a standard block 

design as described above. This is Scenario 3 in 

Table 3.2. In this section we shall consider the more 

common situation where multiple treatments are 

administered over time to the animal. Such studies 

involve the use of a crossover design (Scenario 5 in 

Table  3.2). A study is defined as a crossover study if 

the subjects, in our case animals, are administered a 

sequence of treatments over several test periods, one 

treatment per test period.

When using these designs it is important to leave suf-

ficient time between test periods, the so-called wash-

out periods, to make sure that one treatment does not 

influence future responses (see Section 3.4.9 for more 

details). If animals are permanently changed by a treat-

ment, then it is not be possible to employ such designs. 

It may also not be possible to use these designs due to 

ethical constraints, especially if the individual proce-

dures are distressing to the animal.

It is worth remembering that this is only a special 

type of block design and hence the ideas described in 

the previous section apply to crossover designs as well 

as to block designs.

The statistical analysis of crossover trials is described 

in Section 6.3.3 and is similar to the analysis of data 

generated from experiments that include blocking. The 

Animal and Time factors are included in the statistical 

analysis as blocking factors to account for these effects. 

Note that while the Animal factor is usually defined as 

a random factor in most analyses described in this text, 

in the analysis of crossover trials the Animal factor can 

be defined as fixed. This does not jeopardise the validity 

of the analysis as all treatments are tested against the 

within-animal variability.

Animals are measured on multiple occasions, either 

once per test period or multiple times within each test 

period, and so this family of designs is an example of an 

experiment involving repeatedly measured responses 

(Scenario 5 in Table  3.2). The experimental units are 

the animals within a test period as different treatments 

are administered to each animal, one per test period. 

The designs are similar to the dose-escalation designs 

(Scenario 6 in Table  3.2) except that with crossover 

designs the sequence of treatments administered is 

usually different for each animal and is, in some sense, 

randomised.

Crossover designs are also different to repeated 

measures designs (see Section 3.8.1) where in the lat-

ter each animal is administered a single treatment and 

then measured repeatedly, i.e. animals are the experi-

mental units. However, repeated measures can be taken 

within each test period of a crossover design. These are 

usually known as repeated measures crossover designs 

(see Section 3.8.1).

 

 



Experimental design60

Complete crossover designs

As we are blocking by animal (and test period), if each 

animal can receive each of the treatments at some 

point during the study then the crossover design will be 

a complete block design (blocking by animal). Hence 

every pairwise treatment comparison will be made 

with the same level of accuracy. Examples can be found 

in Hendenqvist et al. (2001), Bate and Boxall (2008) and 

Miyazaki et al. (2005).

Example 3.15:  Five-choice serial reaction time task

5-HT4 agonists are currently being developed as candidate treat-

ments for Alzheimer’s disease. While the effect of this family of 

compounds on cognition has been demonstrated, no tests had been 

conducted specifically to assess their effects on attention. To investi-

gate this, an experiment was conducted (using the five-choice serial 

reaction time task) to assess the effect of a 5-HT4 partial agonist on 

attentional deficit in rats (see Hille et al., 2008).

Rats were trained over a number of sessions (around 30) to react 

to a visual stimulus. The rear wall of the test chamber contained five 

holes, which could be illuminated from behind. To receive a food 

reward, a rat had to learn to poke its nose into a (randomly) illumi-

nated hole. Each animal was shown 100 visual stimuli in 100 trials 

and, amongst other responses, the total number of correct trials and 

average correct latency was recorded for each animal. Animals were 

tested on either a baseline protocol (days 1 to 4) or a variable stim-

uli (day 5).

It takes a lot of time and effort (on the part of the researcher) 

to train the rats to perform this task, hence they are considered a 

valuable resource. It follows that it would be preferable if the trained 

rats could be treated more than once. Luckily in this experiment the 

treatments had a short-term effect, and so animals could receive a 

sequence of treatments over time. In this example, two doses of 

the 5-HT4 partial agonist (treatments A and B), a nicotine positive 

control (treatment C) and a vehicle were administered to 12 rats 

over 4 weeks. A 2-day wash-out period was included between the 

test periods.

All treatments were administered to each rat, and so the design 

applied was a complete block design with regards to the animals. 

Similarly three rats in each test period received each treatment; 

hence the design was also a complete block design with regards to 

the test periods.

The easiest way to construct the design was to make use of three 

four-by-four Latin squares. This guarantees the design was a com-

plete block design in Animals and Test periods. A design that may 

have been used is given in Table 3.8. This design is based on a set of 

three squares given in Bate and Boxall (2008).

By using this design the researchers were able to show that the 

5-HT4 partial agonist reduced incorrect and perseverative responses 

while the percentage of correct trials and latency during incorrect 

trials were increased.

Incomplete crossover designs

It may not be possible, either ethically or practic-

ally, to administer all treatments to all animals. In 

this case the researcher will need to consider using 

an incomplete crossover design. The exact choice 

of design may require the help of a statistician as 

there has been much research conducted on con-

structing incomplete crossover designs, for example 

Afsarinejad (1983) and Godolphin (2004). However, 

consider the common experimental situation where 

we want to compare all treatments with the control. 

Remembering that we are blocking by animal, and 

the more times a treatment pair occurs together in a 

block the more accurate the pairwise treatment com-

parison will be, then it is sensible to make sure each 

animal receives the control treatment at some point 

during the experiment.

Example 3.16: PCP challenge

Administration of phencyclidine (PCP) produces locomotor hyper-

activity in the rat. It is thought that this provides a behavioural sen-

sitisation model of aspects of schizophrenia. The model is sensitive 

to treatment with antipsychotics (Kalinichev et al., 2009).

Table 3.8. Possible experimental design for Example 3.15*

Test period

Rat

1 2 3 4 5 6 7 8 9 10 11 12

1 veh A B C veh A B C veh A B C

2 A veh C B C B A veh B C veh A

3 B C veh A A veh C B C B A veh

4 C B A veh B C veh A A veh C B

*A = 5-HT4 partial agonist at 0.1 mg/kg, B = 5-HT4 partial agonist at 1 mg/kg, C = nicotine at 0.2 mg/kg.
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Rats were administered PCP (5.0 mg/kg, intraperitoneally) 

twice daily, for 7 days. This makes them permanently hypersensi-

tive to further PCP challenges. On the day of testing the rats were 

given either the test compound or vehicle and baseline locomotor 

activity was recorded. This was followed by the PCP challenge. 

Post-challenge locomotor activity was then recorded for up to 60 

minutes.

Kalinichev et al. (2009) describe three strategies for constructing 

a suitable experimental design for the study.

Strategy 1: One treatment per animal

This is a simple design where each animal receives one and 

only one of the treatments. While such designs have benefits in 

terms of animal welfare, it should be immediately apparent that 

there are some statistical limitations with using such a design. 

Treatments are tested against the between-animal variability. As 

this is usually larger than the within-animal variability, this design 

will require many animals to achieve the desired experimental 

sensitivity. For example, it was found that in a study consisting of 

four treatment groups, an estimated 20 animals per group, or 80 

in total, were required. As the PCP challenge is permanent, and 

compounds wash-out quickly, this experiment is an ideal candi-

date for using a crossover design to assign the treatments to the 

animals.

Strategy 2: Complete crossover design

In the second strategy a complete four-period crossover design was 

proposed, with each animal receiving all four treatments during the 

study. This design produces a major saving in total animal usage, 

reducing the predicted number from 80 down to six. However, there 

are ethical issues with using such a design. Should each animal be 

challenged with PCP four times within a study?

Strategy 3: Incomplete crossover design

As a compromise a third strategy was proposed. This involves using 

an incomplete crossover design where each animal receives only 

two of the four treatments during the experiment. This family of 

designs is discussed in Afsarinejad (1983). As all treatments are not 

administered to all animals, then the treatments cannot be com-

pared within-animal as often as in a complete crossover design. 

This will inevitably lead to an increase in animal numbers. In the 

example described in Kalinichev et al. (2009) a total of 12 animals 

were required, still a substantial saving on the 80 needed for strat-

egy 1. The final design is given in Table 3.9.

In this design all pairwise treatment comparisons were made 

with equal sensitivity. The researcher was able to show, using the 

design described in Strategy 3, that the antipsychotics haloperidol, 

risperidone and quetiapine all reduced hyperactivity in a dose-

dependent manner.

3.4.9.3  The benefits of crossover designs

Crossover designs are some of the most useful 

designs available to the animal researcher. This is 

because:

1.	 Animals are used more than once in an experi-

ment. So the experimental units in such stud-

ies, the unit of material that receives a treatment, 

are not the animals but the animals within a test 

period. Hence we have more experimental units 

per animal. This can allow us to reduce the total 

number of animals significantly. If a three-period 

crossover design is used, each animal receives 

three treatments during the study and the number 

of experimental units will be three times the num-

ber of animals.

2.	 All treatment comparisons can be made within-

animal. This implies that differences between the 

animals will not influence, or bias, the treatment 

comparisons.

3.	 Treatments are tested against the within-animal 

variability. Such comparisons are usually more 

accurate as the within-animal variability is, gener-

ally, smaller than the between-animal variability. 

Hence it follows that when using crossover designs 

we require fewer numbers of animals to achieve the 

same statistical sensitivity.

Table 3.9. Incomplete crossover design for Example 3.16

Test

period

Rats*

1 2 3 4 5 6 7 8 9 10 11 12

1 veh A veh B veh C A B A C B C

2 A veh B veh C veh B A C A C B

*A = low dose, B = intermediate dose and C = high dose of antipsychotic.
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3.4.9.4  The issues with crossover designs

Of course crossover designs are only applicable in cer-

tain experimental situations:

If the treatments have a permanent effect on the ani-•	

mal, or take a long time to wash-out of the animal, then 

they might not be an appropriate choice of design.

Studies based on crossover designs take longer to •	

complete than other types of design. Obviously the 

more test periods the researcher wishes to include in 

the study design, and the longer the wash-out peri-

ods between the test periods, then the longer the 

study will be.

A pitfall when using crossover designs that has •	

received a lot of attention in the statistical literature 

is that of treatment carry-over effects (Jones and 

Kenward, 2003, p. 4). As this is an important issue in 

its own right we shall discuss it in more detail in the 

next section.

Finally there are also ethical issues with using cross-•	

over designs. While we may reduce the overall num-

ber of animals required, each individual animal will 

inevitably receive multiple treatments or go through 

multiple procedures. The scientist must decide 

whether this is an ethically acceptable compromise. 

Such issues are of less importance in studies that do 

not involve animal discomfort, such as some hus-

bandry studies.

Example 3.17:  Nest box preference

Rumble et al. (2005) described a husbandry study to assess which 

type of nest box the common marmoset preferred. Four types of 

nest box were evaluated, the Cin-Bin and three nest boxes made 

from wood, plastic or metal. Marmoset behaviour was recorded 

using video cameras and the total time spent in each nest box over a 

24-hour period was used as a measure of preference. It was felt that 

each marmoset could be assessed in all nest boxes, allowing the 

researcher to make within-animal comparisons between the boxes. 

Hence a four-period crossover design was employed. The design 

itself was a multi-factor crossover design (Bate and Boxall, 2008), 

which allowed the researchers to assess the effect of a second 

effect, in this case the video camera. While the cameras themselves 

were similar, it was felt that one particular camera could cause more 

disturbance than the others and hence this should be taken into 

account in the design. The conclusions from the study were that 

the marmosets prefer wood and plastic nest boxes to those made 

of metal. As expected, the video cameras used did not influence 

marmoset behaviour.

3.4.9.5  Treatment carry-over effects

If the effect of a treatment administered in a test period 

continues into the following test period, and hence 

influences the response of the animal to the treatment 

administered in that test period, then this is defined 

as a first-order treatment carry-over effect. We use the 

terminology ‘first order’ because the effect of a treat-

ment continues into the following test period only. Of 

course higher orders of carry-over are possible but are 

beyond the scope of this book (Jones and Kenward, 

2003, p. 8).

Although not discussed in this book, treatment carry-

over effects can be dealt with at the analysis stage (Jones 

and Kenward, 2003, p. 212). However, we contend that 

it is more appropriate to try to remove these effects at 

the design stage. The researcher should try to include 

wash-out periods of suitable length to make sure that 

each treatment has been completely metabolised by 

the animal before the next treatment is administered. 

Of course this will make the experiment longer, but it is 

worthwhile to ensure that the experimental results are 

not influenced by treatment carry-over effects.

Another useful technique when trying to minimise the 

effects of carry-over is to use a balanced crossover design 

(Williams, 1949). A crossover design is said to be balanced 

for first-order treatment carry-over effects if no treatment 

is immediately preceded by itself, and each treatment is 

immediately preceded by every other treatment equally 

often (Bate and Jones, 2008; Stufken, 1996).

Example 3.18:  Assessing drug transit in  

the gastrointestinal tract

The rate of gastrointestinal transit is known to be influenced by 

physiological conditions, diseases, drugs and food. While not a major 

safety concern, adverse drug side effects, such as diarrhoea, con-

stipation and vomiting, could result in problems such as reduced 

patient compliance and quality of life. As part of the safety assess-

ment of new drugs, the effect of the drug on the rate of gastro-

intestinal transit may need to be investigated. Paracetamol is poorly 

absorbed in the stomach but rapidly absorbed in the duodenum, so 

by measuring the rate of absorption of paracetamol we can model 

gastric emptying. The following example is based loosely on an 

experiment described in Sjödin et al. (2011).

An experiment was carried out in dogs to assess whether it would 

be possible to use pharmacokinetic modelling to quantify the rate 

of gastrointestinal transit in response to two compounds that are  
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known to affect gastric emptying. Two compounds and a control 

were tested in the study:

1.	 vehicle (saline)

2.	 erythromycin (1 mg/kg)

3.	 atropine (0.06 mg/kg)

Dogs received a single dose of a test compound or vehicle as a 

15-minute intravenous infusion. Thirty minutes after the start of the 

infusion, paracetamol (24 mg/kg) was administered into the stom-

ach by a gavage using a rubber tube. The maximum paracetamol 

concentration (C
max

) in the blood was taken as a summary measure 

of the absorption profile.

Six dogs were used in the study and each dog received all com-

pounds over time, one per test period. The sequence of treatments 

may have been defined by a balanced three-period crossover design, 

such as the design given in Table 3.10.

Notice that vehicle precedes erythromycin and atropine twice within 

the design (dogs 1 and 3 for erythromycin; dogs 4 and 5 for atropine).

A wash-out period of at least 3 days between test periods was 

used; however, (in our simulated example) let us assume there was 

some evidence that the effect of erythromycin was carried over into 

the following test period (see Figure 3.6). The results for vehicle and 

atropine were lowest when they were given in the test period after 

administration of erythromycin. This appears to have increased the 

variability of these treatment groups.

The effect could be a treatment carry-over effect, but it could also 

be a chance result. Care must be taken as there are not many rep-

licates of the treatment carry-over effect. The best solution is to 

lengthen the wash-out period and see if this finding is reproducible 

in future studies.

3.5  Factorial design

In this text we make a distinction between two types 

of factorial design, namely small and large. While both 

types of design are members of the family of factor-

ial designs, we make this distinction to highlight their 

different uses. Small factorial designs are applied rou-

tinely by many scientists, large factorial designs, how-

ever, have not been utilised as often and so their ben-

efits might not be so well understood.

Researchers regularly employ small factorial designs 

when two or more categorical factors of interest are 

included in the experimental design, for example Strain 

and Treatment. By defining a factor as categorical we 

imply that it consists of a number of distinct levels. It 

is usually the case that an experiment is carried out to 

investigate differences between the levels of these cat-

egorical factors. When using small factorial designs 

a suitably large sample size is required at each com-

bination of the factor levels to give a powerful enough 

experiment to detect biologically important differences 

between the various factor levels.

Large factorial designs are simply more complex and 

larger examples of small factorial designs. These designs 

consist of many more factors, and hence the number of 

combinations of the levels of the factors can be quite 

large. With large factorial designs we do not necessar-

ily intend to test differences between each level of any 

given factor. Instead the researcher uses these designs 

to investigate the overall effect of, and any interrela-

tionships between, many different factors. This can be 

achieved in a single pilot study. Factors that are found 

to be of no importance can be ignored when planning 

future studies. When using large factorial designs we do 

not need a large sample size at each combination of the 

levels of the factors, as the purpose of the experiment 

is not to compare individual levels of the factors but to 

assess their overall effect. The sample size in large fac-

torial designs can be as little as two per group.

With both the small and large factorial designs, the 

factors of interest are crossed with each other. Many 

designs are said to have a factorial component, which 

implies that the factors in question are crossed with 

each other.

Before discussing the issues specific to small and 

large factorial designs, we shall consider some general 

Table 3.10. Possible experimental design for paracetamol absorption study

Test

period

Dog

1 2 3 4 5 6

1 Vehicle Erythromycin Atropine Vehicle Erythromycin Atropine

2 Erythromycin Atropine Vehicle Atropine Vehicle Erythromycin

3 Atropine Vehicle Erythromycin Erythromycin Atropine Vehicle
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issues. To begin with we consider how to conduct a 

valid randomisation of a factorial design. Next, as most 

factorial designs involve investigating the relationship 

between two or more categorical factors, we discuss 

this general issue. We then go on to consider small fac-

torial designs. Using common sense we develop rules 

for constructing sensible designs. We then apply these 

rules to large factorial designs. Finally we consider the 

special case where the factors are not categorical but 

continuous.

3.5.1  Randomisation

The randomisation employed when using a factorial 

design is straightforward. Once all the combinations 

of the factor levels have been selected, and the repli-

cation at each level combination decided upon, then, 

where possible, the animals are randomly assigned to 

these levels. Only a single randomisation is required, 

unlike the randomisation of block designs where a 

separate randomisation is required for each block. 

As we shall see in Section 4.2.2, this has implications 

for the analysis of the data generated using factorial 

designs.

Note in certain situations it is not possible to assign 

animals randomly to the combinations of the levels of 

all the experimental factors. For example, if the factors 

Strain or Gender are included in the factorial design, 

then animals cannot be randomly assigned to these 

factors. We believe the design can still be considered 

as a factorial design as Gender and Strain are usually 

crossed with the other factors of interest.

3.5.2  Categorical factors and interactions

Categorical factors consist of a number of distinct lev-

els, for example Gender (males and females) or Strain 

(wildtype and transgenic). Factors on a continuous 

numerical scale can also be viewed as categorical. 

For example, Body weight is measured on a contin-

uous numerical scale, but can also be assumed to be 

a categorical factor with, say, three levels (very heavy, 

heavy and light). These categorical factor levels also 

have a natural order, and this may need to be taken into 

account in the statistical analysis.

As a general rule when using a factorial design, we 

try to include as many combinations of the factor levels 

as possible. In fact the best design will almost always 

include all combinations of the levels of the factors. So 

if a study design involves two factors, such as Gender 

and Strain, each at two levels, then there are four com-

binations of the factor levels of the two factors: male 

wildtype, male transgenic, female wildtype and female 

transgenic. The best design will involve all four combin-

ations of the levels of these factors.

In this section we shall assume that the researcher is 

able to include all combinations of the factor levels in 

the experiment. Such designs are called full-factorial 

designs. Designs where some of the combinations 

of the factor levels are intentionally excluded, the so-

called fractional factorial designs, are briefly discussed 

at the end of the section.

All categorical factors of interest in a factorial design 

will be crossed with each other. For the purposes of the 

analysis we usually assume these factors are all fixed 

factors. The scientist is interested in investigating the 

fixed difference between the factor levels and the rela-

tionships, or interactions, between the factors.

Two factors are said to interact with each other if the 

effect of one factor depends on the level of the other 

factor. In other words an interaction is the failure of 

one factor to produce the same effect on the response 
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at difference levels of a second factor. The benefit of 

using factorial designs, when investigating the effect 

of more than one factor, is that they allow the scien-

tist to assess the size of the interactions between the 

factors.

Example 3.19:  Assessing markers of atherosclerosis 

development

A study was conducted to assess whether the serum chemokines JE 

(the murine homologue of the human CCR-2 chemokine monocyte 

chemoattractant protein-1) and KC (the murine homologue of the 

human CXCR-2 chemokine Gro-α) could be used as markers for ath-

erosclerosis development in mice (Parkin et al., 2004). Two strains 

of mice, C3H apoE-/- and C57BL apoE-/-, were used in the study. These 

mice were fed either a normal diet or a diet containing cholesterol 

(the Western diet). After 12 weeks the animals were humanely 

killed and their atherosclerotic lesion area determined by assessing 

Oil-Red O stained aortic sections.

The study design consisted of two categorical factors, Strain and 

Diet. The Strain factor consisted of two levels, C3H apoE-/- and C57BL 

apoE-/-. The diets used in the study were the normal rodent diet and 

the Western diet, and these define the two levels of the Diet factor. 

In total there were four combinations of the factor levels:

1.	 C3H apoE-/- + normal diet

2.	 C3H apoE-/- + Western diet

3.	 C57BL apoE-/- + normal diet

4.	 C57BL apoE-/- + Western diet

The two factors Strain and Diet can relate to (or interact with) each 

other in a number of ways. These are described hypothetically 

below.

No interaction (between the Strain and Diet 
factors)

In this case the difference between the two diets is 

the same regardless of the mouse strain. A plot of the 

observed mean with standard errors when there is no 

interaction between the two factors is presented in 

Figure 3.7.

If there is no interaction between the factors, the 

lines on this plot will be parallel. In this case there is 

an overall effect of diet. The lesions are larger in those 

animals fed the Western diet, regardless of strain. There 

is also an overall effect of strain. Lesions are generally 

larger in the C3H apoE-/- strain compared to the C57BL 

apoE-/- strain. However, the effect of diet is the same 

in both strains. The introduction of the Western diet 

causes a similar increase in lesions in both strains and 

hence there is no interaction between Strain and Diet. 

Alternatively it can be said that the difference between 

the diets is the same regardless which strain of mice 

they are fed to.

If the scientist wishes to compare the overall effect of 

administering a Western diet vs. the normal diet, then 

it is appropriate to average the results from each diet 

across both strains (and hence make a single compari-

son between the diets) rather than making the compari-

son between the diets separately for each strain. This is 

effectively assessing the vertical difference between the 

two lines on the above plot. Why carry out the same test 

twice? This will effectively reduce the sample size by 

half for no obvious benefit!

Moderate interaction

A moderate interaction occurs when the overall effect of 

the first factor is the same regardless of the level of the 

second factor, but the size of that effect may vary with 

the level of the second factor. So, for example, introdu-

cing the Western diet may increase the lesion size in 

both strains of mice, but the size of this increase varies 

depending on the strain (see Figure 3.8).

In this example the effect of the Western diet is more 

pronounced in the C3H apoE-/- strain compared to the 

C57BL apoE-/- strain. While the lines on the interaction 
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Figure 3.7.  Plot of lesion area (µm2) means with standard 

errors for the case where there is no interaction between the 

two factors Strain and Diet.
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plot are not parallel, the slopes of the lines are both 

negative. If we wish to select a strain for use in future 

studies that maximises the effect of the Western diet, 

then this plot indicates that selecting the C3H apoE-/- 

strain should be the most appropriate strategy.

Strong interaction

A third possibility is that the effect of the first factor is 

entirely dependent on the level of the second factor. 

Assume we discover that feeding the Western diet to the 

C3H apoE-/- mice has little effect on the size of the aortic 

lesions, whereas this diet has a much greater effect in 

the C57BL apoE-/- mice. This is an example of a strong 

interaction. Figures  3.9 and 3.10 are graphical repre-

sentations of such interactions. In Figure 3.9 the slope 

of one line is positive whereas the other is negative 

indicating the effect of strain is different and depends 

on which diet is fed to the animals. The Western diet, 

however, always results in bigger lesions than the 

normal diet.

The lines may also cross over, as in Figure  3.10. In 

this case the effect of diet is different, depending on the 

strain. Again the effect of strain depends on which diet 

the animals are fed on.

These findings may be of biological interest in their 

own right. If, however, the purpose of the experimen-

tal was to select a strain that maximises the difference 

between diets, then clearly C57BL apoE-/- would be the 

best strain to use in future studies.

3.5.3  Small factorial designs

Factorial designs, in their simplest form, are often used 

in animal experiments. As mentioned above they are 

employed whenever the researcher has two or more 

factors in the study, each at a number of levels, which 

are to be investigated. In such designs these factors of 

interest will be crossed with each other. Examples of the 

use of such designs are given by Festing et  al. (2001), 

Curtin et al. (2009) and Slotten et al. (2006).

It is usually the case that the purpose of these stud-

ies is to make pairwise comparisons between the com-

binations of the levels of the factors of interest. So the 

researcher will need to consider using a suitably large 

sample size for each combination. The analysis of 

data generated when using small factorial designs is 

discussed in Section 6.3.3. More generally, factorial 
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Figure 3.8.  Plot of means with standard errors for the case 

where there is a moderate interaction between the two factors 

Strain and Diet.
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where there is a strong interaction between the two factors 

Strain and Diet.
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experiments can be analysed using the parametric 

approaches described in Section 5.4.

Example 3.20:  Assessing the effects of autoclaving diets 

on reproduction A

An experiment was conducted to see if autoclaving rodent diets had 

an impact on the reproductive success of mice; see Ford (1977) for 

more details. It was decided to test the effects of autoclaving on 

three different diets (each diet having a different physical structure) 

in two different strains. The factors in the experimental design were 

therefore:

Treatment (levels: autoclaved or not)•	

Diet (levels: pelleted and two expanded rodent diets)•	

Strain (levels: LACA and DBA/1)•	

In total there were 2 × 3 × 2 = 12 combinations of the levels of the 

above factors. All combinations were included in the experiment, 

with two breeding pairs per combination. However, assuming the 

researcher wanted to perform comparisons between the groups 

then (with a sample size n = 2)  the power of the statistical tests 

may have been too low. Even if there were biologically relevant 

differences between the groups (i.e. the null hypothesis was false) 

then the statistical analysis may result in Type II errors (i.e. a failure 

to reject the null hypothesis when it was not true).

If the researcher wanted to make comparisons between the 

means of the 12 factor level combinations, then they may have 

found that to have sufficient statistical power (the probability of 

rejecting the null hypothesis when it is false; see Sections 2.3.5 and 

3.7.3) then they would need around eight animals per group. In this 

case the total number of animals would be 96. In the actual experi-

ment, use was made of the properties of a full-factorial design, and 

this allowed the researchers to employ a sample size of two without 

undermining the scientific validity of the experiment. The results of 

the analysis revealed there was no effect of diet on reproduction 

but mice fed the pelleted diet did consume less food. The auto-

claving increased the intervals between litters and there was also 

evidence of an interaction between autoclaving and diet, with a sig-

nificant reduction in food consumption observed in the autoclaved/

pelleted diet.

In such studies it is advisable to include all combinations of the 

levels of the factors in the design, i.e. to use a full-factorial design. 

It is true that due to practical reasons the researcher will occasion-

ally exclude some of the combinations. This, however, may reduce 

the information gained from the experiment, as can be seen in the 

following example.

Example 3.21:  Antipsychotic activity in the mouse

A study was conducted to investigate which of the mGlu2 and 

mGlu3 receptors mediate the effect of an mGluR2/3 agonist 

(LY379268) in two animal models of antipsychotic activity (phen-

cyclidine and amphetamine-evoked hypersensitivity); see Woolley 

et al. (2008). The strains of mice tested, in separate experiments, 

included C57Bl/6J, mGluR2 knockout and mGluR3 knockout mice. 

We shall consider the experiments involving the C57Bl/6J mice in 

this section.

Mice were administered either the vehicle, phencyclidine (PCP) or 

amphetamine (AMP), where the latter two compounds effectively 

constituted two different animal models. Animals were placed in 

a test arena (for the habituation phase) and their locomotor activ-

ity measured. Following the habituation phase, either LY379268 

(LY) at one of three doses (0.3, 1 or 3 mg/kg) or the vehicle was 

administered. The study consisted of ten treatments, five per ani-

mal model.

Phencyclidine model: vehicle/vehicle, vehicle/PCP, LY0.3/PCP, 

LY1/PCP, LY3/PCP

Amphetamine model: vehicle/vehicle, vehicle/AMP, LY0.3/AMP, 

LY1/AMP and LY3/AMP

The data from the two animal models were analysed separately. 

For each model the design was a factorial design involving two fac-

tors: PCP challenge (or AMP challenge) and Treatment. The two 

designs are illustrated in Figure 3.11.

Note some combinations of the factors are missing (for practical 

reasons), and this has weakened the design from a statistical view-

point (see Section 5.4.3). In the analysis it is not possible to assess 

the interaction between the Treatment factor and the PCP (AMP) 

challenge factor.

The ten distinct treatments could also be considered as the com-

binations of three factors: the Hyperactivity factor (levels: compound 
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Figure 3.10.  Plot of means with standard errors for the case 

where there is a strong interaction between the two factors 

Strain and Diet.
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challenge and vehicle challenge), the LY factor (levels: vehicle, 0.1, 

0.3 and 3 mg/kg) and the Model factor (levels: phencyclidine and 

amphetamine).

There may be genuine reasons why six combinations were 

excluded from the experimental design. However, there are disad-

vantages when employing such a design. By using this incomplete 

design the researchers were not able to assess the interaction 

between the Model factor and the Treatment factor. Also it was 

not possible to make overall comparisons between the means of 

some of the two-way interactions (see Section 6.3.3). However, 

assuming the sample size at each of the factor level combinations 

is suitable, it was possible to make pairwise comparisons between 

the group means of the ten combinations present. The research-

ers were able to show that the mGlu2 but not the mGlu3 receptor 

mediates the actions of the mGluR2/3 agonist, LY379268 in this 

experiment.

Small factorial designs, such as those described 

above, are commonly used in practice. However, in 

the statistical literature the term factorial is usually 

reserved for designs that contain many factors. It is this 

type of factorial design that will be discussed in the next 

section. The reader should be aware that all the ideas 

presented in the next section also apply to the simpler 

case where the scientist wishes to investigate two or 

three factors in the conventional way.

3.5.4  Large factorial designs

While many experimental designs used in animal 

experiments have factorial components, large factor-

ial designs are rarely used in practice. This is despite 

attracting some attention in the literature; see Shaw 

(2004) for example. By defining a design as large we 

imply that the researcher is planning to include many 

factors within the study.

The purpose of the study is not to test hypotheses 

regarding the differences between the factor levels, 

as with the small factorial experiments, but to inves-

tigate whether there is an overall effect of each factor. 

Many designs also allow the scientist to explore the 

interactions between the factors. The statistical ana-

lysis procedure is similar to that required for small 

factorial experiments (see Section 6.3.3). However, 

the purpose of this analysis, and the results that the 

scientist should concentrate on, are different. For 

example, the overall tests of effects should be inves-

tigated and not the pairwise differences between the 

predicted means.

Consider factorial designs where all combinations 

of the levels of the factors are included, the so-called 

full-factorial designs. For example, if there are five fac-

tors, each at two levels, then there are 32 combinations 

of the levels of the five factors. It is easy to see that if 

a conventional number of animals were used at each 

combination of the five factor levels, then the experi-

ment will involve a prohibitively large number of ani-

mals in total. If a sample size of ten per combination 

were used, then 320 animals would be required in 

total! However, the purpose of these experiments is to 

test hypotheses involving the overall effects of the fac-

tors, so only a small number of animals are required at 

each combination of the factor levels.

In other areas of research, where variability is not such 

an issue, then a replication as small as one or two can be 

used. It is the authors’ experience that three animals per 

combination of the factor levels should be enough to 

identify outliers and also ensure that the design involves 

a suitably small number of animals in total.

Strategies when setting up a new animal model

When setting up a new animal model, the scientist 

should aim to maximise the window of opportun-

ity to see a treatment effect (Shaw et  al., 2002). This 

will greatly reduce the total animal usage in the long 

run (see Section 3.7.3). But which level of each of the 

Treatment (LY mg/kg)
Vehicle 0.3 1 3 0.3 1 3

Vehicle
PCP challenge

PCP

Vehicle

AMP

Treatment (LY mg/kg)
Vehicle

AMP challenge

Figure 3.11.  Illustration of the two incomplete factorial designs used to assess antipsychotic activity in the mouse.
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factors should be selected to maximise the window of 

opportunity? Does it make a difference which level is 

selected? For example, do you get a larger response in 

males than in females? If you do then it would be advis-

able to only use males in future studies. If it turns out 

that males and females both give a similar window of 

opportunity, then it may be possible to include both 

sexes in future studies.

In practice there may be many factors that influence 

the outcome of the experiment and hence the size of the 

window of opportunity. There are several strategies that 

can be used to investigate these factors, as described in 

Montgomery (1997, p. 3–5).

Approach 1: The best guess approach
This is a commonly used approach where the scien-

tist starts by selecting a reasonable set of levels for the 

experimental factors. This decision is usually based 

on previous knowledge gained by studying the animal 

model over a period of time. This unquestionably pro-

vides a good guide when setting up a new model. There 

are, however, two problems with this approach. If the 

scientist’s first guess at the levels of the experimental 

factors give unsatisfactory results, then a second guess 

is required. Presumably the scientist originally believed 

this second guess would give worse results than the first 

(otherwise the second would have been tried first!). 

This can lead, in the end, to a waste of resources. The 

second problem occurs when the results from the first 

experiment are acceptable. The scientist might then be 

tempted to stop investigating the animal model further 

and hence miss the chance to identify a better combin-

ation of the levels of the factors that gives a larger win-

dow of opportunity.

Approach 2: One factor at a time approach
This involves running a series of experiments to assess 

the effect of the various factors. Each experiment inves-

tigates how one of the experimental factors influences 

the response. In each experiment all of the other factors 

are held constant by selecting only one of their levels 

to include in the study. The levels of the factor of inter-

est are then varied to see how changing the levels of the 

factor influence the response. Unfortunately, as shall 

see, this approach has serious drawbacks. Not only 

does it imply a non-systematic way of investigating a 

new animal model, but it can result in using far more 

animals and resources than is necessary. The one fac-

tor at a time approach also provides the scientist with 

no information on how the factors influence or interact 

with each other.

Approach 3: Factorial approach
This approach, and it is the one recommended by most 

statisticians, involves using a large factorial design to 

investigate all of the experimental factors systematic-

ally in a single experiment. In such experiments we first 

decide on a number of levels for each of the factors we 

wish to investigate. We then investigate all of the factors 

together by running a study that contains most or all 

combinations of the factor levels. By definition these fac-

tors will be crossed with each other within the design.

Using a factorial design allows the scientist to carry 

out these preliminary investigations in a systematic 

way. Rather than assessing the effect of experimen-

tal factors in a piecemeal fashion, investigations can 

be conducted efficiently in one experiment. Those 

that are deemed important can be included in further 

studies. Those that are shown to be unimportant can 

be ignored, simplifying future designs and experi-

ments. The benefit for the scientist is that by using 

more animals to start with, in a pilot study, the total 

number of animals used in future experiments can be 

reduced.

Example 3.22:  MRI measurements of nasal cavities

A team decided to set up a new animal model for assessing the 

effect of compounds on nasal inflammation in guinea pigs. Animals 

were administered an inflammatory challenge (by inhalation) and 

the change in nasal cavity measured using the MRI scanning tech-

nique. When setting up the model they wanted to investigate pos-

sible factors that may influence the guinea pig responses. These 

factors included:

Age of animals: Should we use older larger animals with larger •	

nasal cavities?

Gender: Can we use both sexes?•	

Strain: Is there a particular strain that is more sensitive than •	

others, leading to a larger window of opportunity?

Dose (of challenge): Does a smaller dose produce a more con-•	

sistent effect?

Time (between challenge and dosing with anti-inflammatory •	

compound): When is the optimum time to get the most consist-

ent results?
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Time (post dosing for testing): When is the optimum time to get •	

the most consistent results?

If we wish to answer each question in turn we would have to conduct 

many studies and hence use large numbers of animals. However, we 

could answer all these questions with just one study using a large 

factorial design.

To investigate the influence each factor has on the response, the 

researcher begins by selecting two levels for each of the six fac-

tors. There are therefore 26 = 64 combinations of the levels of the 

six factors that can be included in the design. If we decide to run 

a full-factorial design with one animal per combination of the fac-

tor levels, then 64 guinea pigs would be required. This may be a 

prohibitively large number of animals. We will consider strategies 

(in the following sections) that may allow the researcher to reduce 

this number.

Graphical representation of large factorial 
designs

Perhaps the easiest way to explore the underlying struc-

ture of a factorial design is to produce a schematic dia-

gram of the design. Factorial designs can be best rep-

resented using a grid-like diagram. These diagrams 

contain nodes corresponding to the combinations of 

the factor levels and edges that define the factor levels. 

The number of animals at each combination of the lev-

els of the factors can also be included in the diagram by 

entering the sample size within each node.

Figure 3.12 shows two-factor, three-factor and four-

factor full-factorial designs. The Gender, Housing type 

and Strain factors are all at two levels whereas the 

Diet factor is at three levels. Each example consists of 

48 mice.

Figure 3.12(i) is a two-way factorial design with 24 

knockout and 24 wildtype mice. For each strain 12 

mice were group housed and 12 were isolated. In the 

design shown in Figure 3.12(ii) along with Strain and 

Housing we now have three diets in the study. The 

study consists of 48 animals as before, with 16 animals 

on each of the three diets, four per combination of 

Strain and Housing. Figure 3.12(iii) illustrates a devel-

opment of the two previous designs. We now have 

included Gender in the experimental design. The four 

animals per combination of Strain, Housing and Diet 

consist of two males and two females. The total num-

ber of animals in this study is still 48 but we can now 

consider all four factors. More importantly we can also 

investigate how the factors influence or interact with 

each other.

Example (i) is a small factorial design. Depending 

on the underlying variability it should allow reliable 

comparisons between the group means to be made 

(as n = 12). Examples (ii) and (iii) are examples of large 

factorial designs as we should only investigate overall 

effects and interactions (as n = 4 and 2 per combination 

respectively). While not shown on these diagrams, the 

sample size for each combination could be entered in 

the grey boxes.

Hidden replication

It was noted above that in large factorial designs we 

could perhaps reduce the number of animals per com-

bination to as little as two or three. While reducing the 

sample size to such small numbers per combination 

may seem dangerous, large factorial designs do benefit 

from the safety net of hidden replication.

Consider case (i) described in the previous section, 

the two-way factorial design with factors Housing and 

Strain, illustrated in Figure  3.12(i). Assume that there 

is no interaction between Strain and Housing, i.e. the 

difference between the grouped and isolated housing 

means is the same for knockout and wildtype mice. 

Figure  3.13 shows the pattern in the results in such 

situations.

As the interaction was not significant, to test the 

overall effect of housing we can compare the over-

all group-housed mean to the overall isolated mean, 

averaging over the two strains. When comparing these 

housing means the effect of each strain will influence 

both housing means equally (see Figure 3.14). In other 

words the effect of strain cancels out when comparing 

housing level means.

This is an example of hidden replication. When 

assessing the overall effect of each factor, we have a lar-

ger sample size than simply the numbers within each 

combination of the factor levels. We achieve this by 

averaging over the other factor(s) in the experimental 

design. The more factors investigated within a factorial 

design, the more hidden replication will be contained 

within the design and hence the more powerful the 

design becomes.
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The following example explores the effect of redu-

cing the sample size at each combination of the factor 

levels.

Example 3.23:  An animal model for testing agents that 

may reduce cancer

Multiple lung tumours can be induced in certain strains of mice 

by exposing them to a carcinogen such as urethane. Animals that 

develop tumours can then be used as a model to test compounds 

that might prevent or reduce the incidence of cancer. In a study 

described by Shaw et al. (2002), a test compound or vehicle was 

administered to mice prior to exposing them to the carcinogen. After 

a period of time the animals were humanely killed and the number 

of lung tumours recorded.

There are many factors that can influence the outcome of such an 

experiment, so to develop the model the researcher decided to use 

a factorial design to investigate these factors. The factors included 

in the design were:

Strain: Two strains of mice were thought to be susceptible (A/J •	

and NIH).

Gender: Is there a difference between the sexes? (Males and •	

females were included in study.)

Diet: Does the diet influence the results? (Two diets were used •	

the RM1 expanded diet and the RM3 pelleted diet.)

Carcinogen: Two carcinogens were tested (urethane and 3-meth-•	

ylcholanthrene (3MC)).

Treatment: Diallyl sulphide or vehicle were used to assess diallyl •	

sulphide.

Housing

Group

Single

Strain

Diet

A

B

C

(ii) 3 factors: Housing, strain and diet

Gender

(iii) 4 factors: Housing, strain, diet and gender

(i) 2 factors: Housing and strain
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A

B

C
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Figure 3.12.  Illustrations of two-, three- and four-factor full-factorial designs involving 48 mice.
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In total there were 32 different combinations of the above factors. 

The researcher included all combinations in the experiment, and 

hence a full-factorial design was employed. It was also decided that 

two animals would be allocated to each of the factor level combin-

ations; hence 64 mice in total were used in the experiment. The 

design is illustrated in Figure 3.15.

For the purposes of this discussion, simulated 

means with standard errors are shown in Figure 3.16. 

We can see from the plot that the difference between 

diallyl sulphide and the vehicle was more pronounced 

when the carcinogen urethane was administered 

to the mice. Also the A/J strain appears to be more 

susceptible than the NIH strain when administered 

urethane. Perhaps only this strain should be used in 

future (with urethane) as this will maximise the win-

dow of opportunity for observing treatment-related 

effects.

One problem with running a full-factorial design 

such as this is that a large number of mice are required. 

Although the researcher was able to investigate five fac-

tors (and eliminate Gender and Diet as being of less 

importance) it is still the case that 64 mice were used. As 

an exercise one of the two mice from each combination 

was randomly selected and excluded from the dataset. 

This results in a dataset containing data from 32 mice, 

one animal per combination of the levels of the five fac-

tors. The statistical analysis was then repeated.

Interestingly the analysis gave almost identical 

results to the analysis performed on the full dataset. 

For example, the observed means with standard errors 

plot is almost identical to the original (see Figure 3.17). 

This is mainly due to the hidden replication within the 

factorial design. In this example we would have arrived 

at the same conclusion if only 32 mice had been used: 

there was no need to use 64.

As mentioned above, in the authors’ experience it 

is probably best not to go below a sample size of three 

animals per combination of the factor levels. However, 

it is interesting to note that it is possible, depending on 

the underlying animal-to-animal variability and the 

hidden replication in the design, to use as few as one 

animal per combination without undermining the 

validity of the conclusions drawn from the analysis.

Fractional factorial designs to reduce animal use

The designs considered so far have been full-factorial 

designs. Every combination of the levels of the factors 

of interest are included in the design and hence the 

factors are fully crossed with each other (assuming an 
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Figure 3.13.  The pattern for Housing by Strain interaction 

means when the two factors do not interact.
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equal number of animals are assigned to each com-

bination of the factor levels). As the number of factors 

increase, then so does the number of combinations 

of the levels of the factors. Given that the animal-to-

animal variability is usually quite high then, as dis-

cussed above, it is unwise to use a sample size of less 

than three per combination. Unfortunately, even when 

using a sample size of three the total number animals 

required (when using a large factorial design) may be 

prohibitively high.

If there is a limit on the number of animals avail-

able, then one way of testing many factors in a 

study is to use a fractional factorial design. In these 

designs only a subset of the levels of the factor com-

binations are included. It should be noted that once 

combinations are omitted from the design, then the 

researcher will lose the ability to test certain hypoth-

eses. For example, it may not be possible to assess the 

highest-order interaction (the interaction involving 

all the factors).

One common design applied in this situation is 

the half-fraction factorial design. With this design 

only half of the combinations of the factor levels 

are included. There is plenty of mathematical the-

ory about choosing the factor level combinations 

(Montgomery, 1997, Chapter  9). While it is outside 

the scope of this book, it is worth noting that the fac-

tor level combinations included in the design will 

have a large impact on the properties of the final 

design. One needs to be careful when constructing 

such designs and make sure they will allow you to 

answer all your questions.

A simple non-mathematical way of visually identify-

ing which combinations of the factor levels to include 

in a half-fractional factorial design is to use the graph-

ical plots described in the previous section. As a rule of 

thumb it is best to try to spread the missing combin-

ations across the design. Figure 3.18 illustrates two half-

fraction factorial designs with three and four factors, 

respectively.

Male
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Figure 3.15.  A four-factor factorial design with factors Treatment, Carcinogen, Gender and Diet for Example 3.23.
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Example 3.24:  Bioavailability testing

Kuentz et al. (2003), case study 3, described the use of a fractional 

factorial design when assessing the biopharmaceutical properties of 

a novel compound. Six factors, each at two levels, were screened: 

Mill, Dose, Excipient, Dosage form, Food and Class of animal. As 

Kuentz et al. (2003) commented, using the ‘one factor at a time’ 

approach to carry out the investigation would require at least 48 

animals. Alternatively the large full-factorial design (for six factors 

at two levels) involved testing 64 combinations of the factors. Given 

a suitable sample size at each combination of the factors this would 

require too many animals, although all interactions between the 

factors could then be assessed. The approach recommended by 

Kuentz et al. (2003) was a special type of fractional factorial design 

called a Plackett–Burman design (Plackett and Burman, 1946). This 

design involved only 12 animals. It should be noted, however, that 

this design does not allow the researcher to assess any interactions 

between the factors. An example of a Plackett–Burman design is 

presented in Figure 3.19.
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Figure 3.16.  Plot of means with SEMs for the levels of the Strain by Carcinogen by Treatment interaction for Example 3.23 – 

dataset with 64 mice.
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Two-stage procedure to reduce animal use

Another strategy to reduce the total number of animals 

required when using a factorial design is to employ a 

two-stage approach. To begin with the researcher runs 

a screening study to investigate all the factors con-

sidered important. The design applied at this stage 

should involve little replication at each combination of 

the factor levels as there are many factors (and hence 

many factor level combinations) in the design. Once 

the researcher has identified the most influential fac-

tors, then a second factorial experiment can be carried 

out investigating only those factors deemed important 

in the first screening study. In this second study, lar-

ger sample sizes are used (as there are fewer combin-

ations of the factor levels present in the design) and the 

aim now is to investigate the interactions between the 

factors.
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Figure 3.17.  Plot of means with SEMs for the levels of the Strain by Carcinogen by Treatment interaction for Example 3.23 – 

reduced dataset of 32 mice.
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Example 3.25: Hypothermia in mice

Hypothermia in mice was observed during a dosing study involving 

a novel compound. The compound was administered, in combin-

ation with an existing drug (drug X), to male mice of a particular 

transgenic strain. In the original dosing study a sample size of six 

mice per group was used.

Following this study it was deemed necessary to identify what 

caused this hypothermia. Was the side effect:

A specific effect of the compound or did other compounds in the •	

same chemical series have similar effects?

Related to the activity of drug X and the exposure of the central •	

nervous system (CNS) to the compound?

Specific to the strain of mouse?•	

Seen in both males and females?•	

A series of experiments was initiated to investigate these questions. 

Two possible strategies were considered.

Strategy A: One factor at a time

It was decided to compare three compounds (with the vehicle) that 

were in the same family as the initial compound. The study would 

involve eight groups in total, the three compounds (and the vehicle) 

with and without drug X.

Assuming the sample size was six mice per group, 48 mice would 

be required. This seemed reasonable as 48 mice could be tested 

in a single day. It was initially planned to carry out the experi-

ment separately in male transgenics, male wildtypes, female 

transgenics and female wildtypes. If this approach was adopted, 

then 192 mice would be required to complete the four separate 

experiments.

Strategy B: Using a factorial design

All of the above questions can be answered using a four-factor fac-

torial design, the four factors being:
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Strain
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Gender
(ii) 4 factors: Housing, strain, diet and gender -half-fraction factorial
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Figure 3.18.  Three- and four-factor half-fraction factorial designs with factors Housing, Strain, Diet (and Gender).
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Treatment factor at four levels: three compounds (in the same •	

family) and vehicle

Drug factor at two levels: with or without drug X•	

Strain factor at two levels: transgenic and wildtype•	

Gender at two levels: male and female•	

There are 32 combinations of these factors levels and these com-

binations make up the full-factorial design. It was decided to 

assign either one or two mice to each combination of the fac-

tor levels so that three mice were assigned to each compound/

drug/strain combination. The three mice at each combination 

consisted of either two males and one female, or two females 

and one male. An experiment based on this design only required 

48 mice in total and hence could be completed in 1 day. The final 

design is illustrated in Figure 3.20. Note there are an equal num-

ber of mice from each gender in each compound/drug/strain 

combination.

The benefits of Strategy B over A include:

The experiment can be conducted in 1 day, hence day-to-day dif-•	

ferences will not increase the variability or influence the conclu-

sions. Strategy A would take 4 days.

We can make within-day assessments of the Gender and •	

Genotype interactions. We cannot do this for Strategy A as each 

sex/genotype combination would be tested on different days.

The total number of animals used is 48 compared to 192 for •	

strategy A.

The final experiment, using Strategy B, involved:

Day 1: Mice were implanted with a telemetry device to measure 

body temperature (subcutaneous injection).

Day 2: Mice were orally dosed with drug X or the control. Body 

temperature was recorded before and after dosing

Day 3: Mice were orally dosed with compound 1, 2, 3 or the 

vehicle. Body temperature was recorded immediately before 

dosing and every hour for 3 hours after dosing. The mice were 

then humanely killed and blood and brain samples taken for 

analysis of systemic and CNS exposure of the compounds.

The factorial design also allowed the researchers to investigate how 

these four factors interacted with each other. Figure 3.21 was part 

of the statistical analysis. It is an illustration of some of the results 

observed at 3 hours post dose. As there was no effect of strain, the 

means were calculated ignoring the strain of the mice.
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Figure 3.19.  Example of a Plackett–Burman design with six factors and 12 animals for Example 3.24.
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From the results of the study, the side effect seemed larger in 

the females. The experiment also revealed that hypothermia was 

not restricted to the first compound (compound 1), although it was 

strongest in this compound. So it was hypothesised that it was either 

a property of this chemical series or due to inhibition of the target 

gene in general.

To test the second of these hypotheses, a study was planned 

to test compound 1 in a mouse where the target gene had been 

knocked out. If hypothermia was observed then it must be due to 

the compound’s activity on a different substrate.

Data from the previous study was used to maximise the chance of 

demonstrating this effect. The researcher decided to use:

female mice (which showed more of an effect than males)•	

drug X (there was little effect without drug X)•	

compound 1 or vehicle (compound 1 showed the largest effect •	

in females)

both knockout mice and the background strain•	

It can be seen that we are using the results of the first experiment 

to reduce the number of factor level combinations required to be 

tested in the second experiment. We are concentrating the resources 

at the levels of the factors that should give the researcher the best 

possible chance of answering the second question.

Only six female knockout mice were still available from the col-

ony, so the design employed for the second experiment involved 

12 animals in total, six per strain, as illustrated in Figure 3.22. The 

experiment was carried out as described above. Figure 3.23 is one of 

the plots from the analysis of the data generated.

The temperature was reduced in those animals dosed with com-

pound 1, but not those receiving the vehicle. The same effect was 

observed in knockout mice as in the wildtype mice. This suggests 

that the temperature reduction is due to some mechanism other 

than inhibition of the target gene.

The use of the two stage approach allowed the researcher to ini-

tially screen the factors to:

investigate the interactions between the factors•	

identify which factors were important•	
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Figure 3.20.  The four-factor factorial design with factors Strain, Compound, Gender and Drug for Example 3.25.
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identify which levels of the factors give the biggest reduction in •	

temperature

The second experiment was then designed to answer a specific 

question generated by the first experiment. The conclusion from 

these studies was that hypothermia was not due to inhibition of the 

target molecule but was CNS driven. There appeared to be a com-

plex interaction between Compound, Treatment and Gender. All of 

this was achieved with 60 mice, not the 192 originally envisaged.

3.5.5  Factorial designs with continuous factors

In the factorial designs discussed so far, all of the indi-

vidual factors within the design are assumed to be 

categorical. The levels of each of these factors consist 

of a set of distinct values. Sometimes, however, the 

researcher may want to include factors in a design 

with levels measured on a numerical scale. Such fac-

tors are called continuous factors. For example, con-

sider a Litter size factor consisting of three levels: 5, 

6 or 8 mice per litter. We could assume the factor has 

three categorical levels and hence the actual numer-

ical levels (and their ordering) would be ignored when 

constructing the design. We could, however, take the 

numerical levels into account.

Whilst the underlying structure of factorial designs 

with continuous factors is the same as those that con-

sist of categorical factors, these designs can be used 

to answer slightly different questions. With continu-

ous factors we are trying to estimate the influence that 

varying the level of the continuous factors has on the 

response.

Example 3.26:  Carcinogenicity study in strain A/J mice

Nesnow et al. (1998) describe an experiment to assess the binary, 

ternary, quaternary and quinary interactions of a five-component 

mixture of carcinogenic environmental polycyclic aromatic hydrocar-

bons. The five hydrocarbons tested were benzo[a]pyrene, benzo[b]

flouranthene, dibenz[a,h]anthracene, 5-methylchrysene and 

cyclopenta[cd]pyrene.

To investigate these hydrocarbons, and how they relate and 

interact with each other, a full-factorial design was employed. 

The design consisted of five continuous factors, each factor at two 

levels corresponding to a low and high dose of the carcinogen. 

Either 20 or 24 mice were assigned to each combination of the 

levels of the five factors and the number of mice developing a 

lung adenoma was recorded (a discrete response). The experi-

mental design employed, including the results of the experiment, 

are given in Nesnow et al. (1998). The analysis of the data gen-

erated involved estimating a response surface model, including 

interactions between the continuous factors. This statistical model 

predicted, to a significant degree, the observed lung tumorigenic 

responses of the quinary mixtures and suggested that although 

interactions between polycyclic aromatic hydrocarbons do occur, 

they are limited in extent.

Strategies for setting up a new animal model

The strategies that can be used to investigate continu-

ous factors are similar to those described in Section 

3.5.4 for categorical factors. We highlight the differ-

ences with an example.

Example 3.27:  Transgenic model for Alzheimer’s disease

Consider the case where a scientist wants to set up a new trans-

genic mouse model for testing compounds to treat Alzheimer’s 

disease. There are many factors that may influence the animal 

model, for example, the age of transgenic animals at the start of 

the study and when samples are collected after dosing with the 

compound. Initially a series of pilot studies are planned to identify 

a good age for the mice and the time of initial sample collection. 

Hopefully this should provide enough information so that the win-

dow of opportunity for identifying treatment-related effects can 

be maximised.

Let us assume the actual relationship is as follows. There is an 

interaction between Mouse age and Time of sample collection, so 
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Figure 3.23.  Plot of observed means with SEMs for the 

levels of the Treatment by Strain by Time interaction for 

Example 3.25.
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that the maximum size of response can be achieved with 10-month-

old mice and a time of sample collection of around 7.5 hours post-

dose. The relationship between the two factors can perhaps best be 

described using a three-dimensional surface plot (see Figure 3.24). 

The first two dimensions are mouse age and time of sample collec-

tion, and the third dimension is the size of the response. We can 

also represent the data by a two-dimensional contour plot (see 

Figure 3.25).

How can we best uncover this complex relation-

ship while using as few animals as possible? We shall 

describe three approaches for investigating this. The 

first is the one factor at a time approach, similar to the 

one described above, the second uses an inefficient 

factorial design and the third uses a more powerful full-

factorial design.

Approach 1: One factor at a time
This approach is a two-stage procedure. We begin by 

using mice of approximately the same age and vary the 

time of sample collection. This allows us to identify the 

time of sample collection that produces the maximal 
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Figure 3.24.  Three-dimensional surface plot illustrating the effect of the age of the mice and time of sample collection on a 

biomarker for Alzheimer’s disease.
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Figure 3.25.  Two-dimensional contour plot illustrating the 

effect of the age of the mice and time of sample collection on a 

biomarker for Alzheimer’s disease.

Figure 3.26.  Two-dimensional contour plot illustrating the 

effect of the age of the mice and time of sample collection 

on a biomarker of Alzheimer’s disease. White squares 

correspond to stage 1 experiments and black squares to stage 

2 experiments.
effect. Note the conclusion is only valid for mice of the 

same age as those used in this experiment. Having iden-

tified the time of sample collection that gives a maximal 

response, we then move onto the second stage. In stage 

2 we fix the time of sample collection (at the time identi-

fied in stage 1) and vary the age of the transgenic mice.

Let us consider the above example. Assume the 

researcher begins by using mice that are 4  months 

old. The time of sample collection is now varied and 

it is found that the maximal response from the animal 

model is achieved when the sample is taken at approxi-

mately 5 hours (see Figure 3.26).

In stage 2 of the process the time of sample collec-

tion is fixed at 5 hours and the effect of age is assessed 

by testing mice of different ages. From Figure 3.26, with 

the experimental points marked on, we can see that the 

maximal effect is achieved with mice that are 10 months 

old. The maximal effect of the response is concluded to 

be about 175. This testing procedure involved 12 groups 

of mice in total.

Unfortunately for the researcher the factors Age and 

Time interact with each other. The effect of the age of the 

animal varies depending on the time of sample collec-

tion. In other words the true maximum has been missed.

Approach 2: Varying combinations
The second approach involves testing in three stages:

1.	 at several sampling times (in mice of the same age)

2.	 in animals of varying ages (at the same early sam-

pling time point)

3.	 at several combinations of increasing age and 

sampling time

This is perhaps a more appealing approach than 

Approach 1 as it allows the researcher to investigate 

both factors separately. The combinations of the two 

factors are highlighted in Figure 3.27.

Using this approach the conclusion would be to use 

around 10-month-old mice with a time of collection of 

10 hours to achieve a maximal response of magnitude 

around 180. This procedure requires 14 groups, three 

more than the previous approach.

The problem with this approach, while it is better 

than the first approach, is that there are large areas 

of the response surface some distance from the com-

binations of the factors tested in the experiment. The 

further we move from the positions where measure-

ments were taken, the less certain we will be about 
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predicting the shape of the surface. Unfortunately one 

of these areas included the maximal response.

Approach 3: The full-factorial design
The third approach involves using the methodology 

described in Section 3.5.4 to produce a full-factorial 

design with two factors. Each factor will be measured 

at either three or four levels. The more levels that can 

be included, depending on the practical constraints, 

the more accurate the estimation of the interaction 

between the factors will be. A possible design is illus-

trated in Figure 3.28.

The whole surface can now be estimated using this 

approach and we have covered the entire surface area 

with only 12 combinations. The maximum will be suc-

cessfully identified (around 10-month-old mice and a 

sampling point of 7.5 hour post-dose).

A final technique to improve the reliability of the 

results generated would be to ‘tilt’ the design points 

slightly through, say 10°. In this case no mouse age or 

time of collection would be used more than once. We 

shall comment further on this principle in Section 3.6.2.

Drug combination studies

An interesting example of the use of two (or more) con-

tinuous factors in a factorial design setting is drug com-

bination studies. This may be the case if the researcher 

is interested in seeing how two drugs act in combin-

ation. Effectively we are dealing with a situation where 

there are two crossed continuous factors, the dose of 

the first compound and the dose of the second.

Drug combination studies, and making assessments 

of drug synergies, are a subject in their own right and 

beyond the scope of this text. If the reader is interested 

in reading about such studies and how to analyse them, 

then the text of Tallarida (2000) is recommended. We 

shall, however, give an example to highlight some of the 

design implications that should be considered when 

investigating how two drugs interact with each other.

Example 3.28:  Synergism between morphine and 

clonidine

The following example is taken loosely from Tallarida (2000, 

pp. 163–4). An experiment was conducted to assess the synergistic 

effect of two drugs, morphine and clonidine, when given in combin-

ation to mice. Following administration of the drug combination, the 

mice were subjected to a nociceptive stimulus by immersing their 

Figure 3.28.  Two-dimensional contour plot illustrating the 

effect of the age of the mice and time of sample collection on a 

biomarker of Alzheimer’s disease. White squares correspond 

to the experiments.

Figure 3.27.  Two-dimensional contour plot illustrating the 

effect of the age of the mice and time of sample collection on a 

biomarker of Alzheimer’s disease. White squares correspond to 

stage 1 experiments, black squares to stage 2 experiments and 

grey crossed squares to stage 3 experiments.
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Figure 3.29.  Two-dimensional plot of the interaction between 

morphine and clonidine, as described by Tallarida (2000, 

p. 169) for Example 3.28.

Figure 3.30.  Two-dimensional plot of the interaction 

between morphine and clonidine, as described by 

Tallarida (2000, p. 169), including the original points where 

observations were made (black squares) for Example 3.28.

tails in hot water (55°C). The latency of tail withdrawals, with an 

arbitrary cut-off of 20 seconds if animal did not respond, was used 

as an animal model of antinociceptive effects.

Several combinations of the two drugs were administered to 

the mice, where the combinations of the two drugs administered 

were held at three fixed ratios. Figure 3.29 is a prediction of the 

relationship between morphine and clonidine. The results plotted 

are the average of at least ten animals, as given by Tallarida (2000, 

p. 169).

Although the purpose of the experiment was not to 

quantify the surface across all combinations of mor-

phine and clonidine, it can be seen that the cover-

age of the design points is around the main diagonal 

(see Figure 3.30). The researcher has little information 

about the effect of the combination of the drugs in 

both the top left-hand corner and bottom right-hand 

corner of this plot. We suspect it is highly unlikely that 

the effect really gets as high as 900, as predicted by the 

surface.

The purpose of the original experiment was to inves-

tigate the synergistic effect of morphine and clonidine. 

The design recommended by Tallarida is suitable for 

assessing this. However, let us assume the purpose of 

the experiment was to investigate the effect of the two 

compounds, and how they interact with each other. We 

can carry out this investigation using a factorial design 

with all combinations of four doses of morphine and 

four doses of clonidine.

The design is given in Figure  3.31 and the reader 

should note the similarities between this design and 

the full-factorial design discussed in previous sections. 
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Figure 3.31.  A full-factorial design for assessing the 

interaction between clonidine and morphine for 

Example 3.28.
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This design should allow the researcher to predict the 

effect of the combination of the two drugs at all drug 

combinations reliably.

In the example described in the previous section 

we highlighted the benefit that could be gained from 

including more factor levels in the experimental design. 

To achieve this we used the individual brain concentra-

tions in the analysis rather than the nominal dose. We 

could achieve a similar effect in drug synergy studies 

by rotating the design suggested above slightly around 

the centre of the design. The design would now have 16 

doses of each compound (with a sample size of one at 

each concentration) and it can be shown that this leads 

to more accurate estimates of the relationship between 

the two drugs. This design is given in Figure 3.32.

Continuous vs. categorical factors

Sometimes a factor can be treated as either categor-

ical or continuous. For example, assume that Age (of 

the animal) is to be used in the design and analysis. 

This factor could be assumed to be a categorical factor 

with two levels, young and old, say. We can then test 

to see if there is a difference between these two levels, 

or perhaps see if the effect of age interacts with other 

effects in the experiment. These tests could be used 

as an indication of whether the age of the animal was 

influencing the response. We could, however, take the 

actual numerical age of the animal when setting up 

the design. Age would then be treated as a continuous 

factor.

The difference between the way we deal with categor-

ical and continuous factors is in the analysis. With a cat-

egorical factor we test, in some sense, to see if one level 

is different from the other. With continuous factors we 

are more interested in modelling how the response var-

ies as the factor level varies numerically. We can model 

this relationship using a linear relationship or perhaps 

some more complicated curve.

3.5.6  Final thoughts on factorial designs

Regardless of whether factors are defined as categor-

ical or continuous, in both cases the analysis allows the 

researcher to assess how the effects quantified by the 

factors relate or interact with each other. Despite these 

similarities, the previous example highlights the differ-

ent questions that can be answered by assuming the 

factors in a factorial design are continuous. With cat-

egorical factors we can investigate if the levels of each 

factor are different from each other. With continuous 

factors we are more interested in assessing how the 

response varies as we increase or decrease the level 

of the factor. By taking factors to be continuous we are 

effectively smoothing the response surface across the 

levels and this may mitigate the effect of the underlying 

variability in the responses themselves.

If there are more than two continuous factors, then 

estimating the surface becomes more difficult. However, 

there are certain statistical software packages that can 

deal with multiple continuous factors. Such packages 

allow the user to specify a range of responses that are of 

interest and then output which values of the continu-

ous factors are required to satisfy this condition.

As a general rule, to obtain a more reliable estimate 

of the shape or nature of the relationship (between the 

continuous factor and the response) it is recommended 

that the researcher include more levels of the factor in 

the design, even if this implies there will be fewer ani-

mals at each individual level. Of course there are limits 
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Figure 3.32.  A full-factorial design for assessing the 

interaction between clonidine and morphine for 

Example 3.28.

 

 

 

 

 



Dose-response designs 85

to this. We need to be careful that the sample size is 

sufficient to counteract the animal-to-animal variabil-

ity. As mentioned above, as a rule of thumb we suggest 

including at least three animals per combination of the 

factor levels.

3.6  Dose-response designs

All of the designs considered so far in this chapter 

can be broadly described as comparative designs. 

The motivation for running experiments using these 

designs is to:

1.	 Investigate the overall effect of a factor.

2.	 Compare one level of a factor to another.

This corresponds to using experimental design within 

the hypothesis testing framework (Section 2.3). We can, 

however, construct and apply experimental designs 

within the estimation framework too (Section 2.5).

In the previous sections, whenever we have consid-

ered an experiment that involves increasing doses of 

a compound, we have assumed that the Dose factor is 

a categorical factor at a number of distinct levels (cor-

responding to the number of doses of compound in 

the experiment). We can then assess the differences 

between these levels in the statistical analysis. To 

ensure these hypothesis tests are sufficiently sensitive 

we require a suitably large sample size at each dose (see 

Section 3.7.3).

There is, however, an alternative. We could treat the 

Dose factor as a continuous numerical factor and then 

assess the effect on the response as the dose of com-

pound varies. Some argue that this is a more appro-

priate way to investigate the effect of a compound as 

it more closely reflects the underlying biology. The 

effect of a compound will change steadily as the dose 

increases. Just because you only achieve statistical 

significance at 10 mg/kg (and not at 1 mg/kg) does 

not imply that the compound has no effect at 9 mg/

kg. In practice the purpose of most experiments is to 

investigate how the novel compound influences the 

response. Whether a specific dose is (statistically) sig-

nificantly different from the control is of less interest. 

Such hypothesis tests are influenced by other things, 

such as sample size. The dose-response estimation 

approach described here is a creditable alternative to 

hypothesis testing.

Dose-response designs share many similarities with 

factorial designs consisting of continuous factors (see 

Section 3.5.5). However, the designs considered here 

usually consist of only one continuous factor (Dose) 

whereas factorial designs consist of two or more 

crossed factors. The same general principles apply to 

these designs as to the more complex factorial designs.

The purpose of these experiments is to estimate 

the dose-response relationship. This can be achieved 

by modelling the relationship using a linear line, the 

so-called linear regression analysis technique, or by a 

more complex non-linear curve. Commonly employed 

examples of the latter include the weighted and non-

weighted four- and five-parameter logistic curves, or 

more complicated curves such as curves to quantify 

pharmacokinetic relationships. Many other types of 

curve can be used to quantify this type of data; see Slob 

(2002) for more details. In this section we assume the 

relationship can be estimated by fitting a logistic curve, 

although the general principles described apply to fit-

ting any type of curve.

3.6.1  The four- and five-parameter  
logistic curves

When modelling the effect of a compound on a biological 

response, one of the models most commonly used in 

practice is the four-parameter logistic curve (Liao and 

Liu, 2009), sometimes defined as the Hill equation:

Response
Dose

= +
−

+ ( )( )−
D

A D
C B

( )
log ( )1 10 10

	 (3.3)

where A is the maximum, D the minimum, C = log D
50

 

(an estimate of the dose that causes a 50% increase (or 

decrease) in response on the log scale) and B is the 

Hill slope. Note the definition of A and D are inter-

changeable, depending on the sign of the Hill slope 

parameter B.

We can fix any of the four parameters if we so choose. 

Sometimes this is necessary to achieve reliable results, 

especially if the minimum or maximum of the curve are 

not well defined. Even though we have fixed some of 
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the parameters, the convention is still to call the fitted 

curve a four-parameter logistic curve.

This type of analysis is usually performed on the log-

transformed concentration or dose scale as doses are 

usually equally spaced on the log scale. The D
50

 par-

ameter is also usually log normally distributed and so 

modelling the log D
50

 simplifies the statistical analysis. 

An example of a four-parameter logistic curve is given 

in Figure 3.33.

The four-parameter logistic curve fit is symmetric 

around the point of inflection (log D
50

). However, in 

certain cases the biological relationship is not sym-

metric and hence the four-parameter curve fit may 

not be appropriate. One option is to fit a five-param-

eter logistic curve to the data, where the fifth param-

eter (on top of the four in the four-parameter logis-

tic curve) is an asymmetry parameter. The following 

equation, given by Liao and Liu (2009), is recom-

mended as it is still possible to obtain an unbiased 

estimate of log D
50

 (the C parameter) directly from the 

analysis:

Response
Dose

= +
−

+ ( )( )



− −

D
A D

g C B g

( )

/ log ( )1 2 1011 10

�
(3.4)

where g is the asymmetry parameter. If g = 1 then the 

equation simplifies to the four-parameter logistic 

curve described above. An example of such a curve, 

where the asymmetry parameter g = 0.161, is given in 

Figure 3.34.

3.6.2  Experimental design considerations

When constructing a dose-response experimental 

design there are several issues to consider:

It is recommended that the number of doses included •	

in the experiment is at least one more than the num-

ber of parameters to be estimated. So a design with at 

least five doses (and this can include the zero dose) is 

required if the scientist wishes to fit a four-parameter 

logistic curve to the data. Findlay and Dillard (2007) 

also comment that using more than eight doses 

does not improve the reliability of the curve fitting 

process.

The purpose of this type of study is to estimate the •	

dose-response relationship. It is not to compare indi-

vidual treatment groups back to the control. So there 

is no need to have a large sample size at each dose 

to allow for reliable estimates of the group means. In 

fact it turns out that we get a more reliable estimate 
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Figure 3.33.  Example of a decreasing effect, with respect to 

the dose of compound, including a four-parameter logistic 

curve.
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Figure 3.34.  Example of an increasing effect, with respect 

to the dose of compound, including a five-parameter logistic 

curve.
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Figure 3.36.  Plot of the analgesic action of morphine 

sulphate, based on data given by Tallarida (2000, p. 32) with 

an additional random component added to the nominal 

concentrations. Percentage latency vs. simulated brain 

concentration of the compound is shown rather than the 

nominal dose for Example 3.29.of the dose-response relationship if we include more 

doses in the experimental design (with fewer animals 

at each dose if the total number of animals in the 

experiment is fixed).

As with factorial designs with continuous factors, •	

it is recommended to space the doses to be tested 

equally (on the log scale). This will produce an esti-

mate of the dose-response curve that is as reliable as 

possible.

When estimating the four- (or five-) parameter logis-•	

tic curve we require a reliable estimate of both the 

minimum and maximum plateau of the curve. To 

achieve this it is a good idea to have a pair of anchor 

points at either end of the curve. This will allow the 

analysis to estimate the minimum and maximum of 

the curve best (Findlay and Dillard, 2007). It is also 

a good idea to have some doses around the point of 

inflection to estimate log D
50

 and the Hill slope.

3.6.2.1  Increasing the number of doses

As mentioned above, there is some benefit to increas-

ing the number of doses included in a dose-response 

design, perhaps at the expense of the number of ani-

mals administered each dose. The following example, 

based on a study described in Tallarida (2000, p.  31), 

highlights the benefit that can be gained from includ-

ing more doses in the dose-response design.

Example 3.29:  Analgesic action of morphine sulphate

An experiment was conducted to assess the analgesic effect of 

morphine sulphate in rats. Rats were exposed to cold water, as 

a nociceptive stimulus, and the analgesic effect was assessed by 

measuring tail flick latency. There were seven doses and three rats 

were assigned to each. The dose-response relationship was esti-

mated over these doses by fitting a four-parameter logistic curve 

to the data with the maximum of the curve fixed at 100%. The 

three parameters estimated were log D
50

, the Hill slope and the 

curve minimum.

Figure 3.35 is a graphical display of the results using the dose of 

morphine sulphate in the analysis. The data are given by Tallarida 

(2000, p. 32). The estimate of D
50

 was 0.94 (on the log scale) or 

8.53 on the original scale. The standard error of the log D
50

 estimate 

was 0.018.

Now assume that the researcher had been able to measure 

the actual concentration of morphine sulphate in the brain. It 

was hypothesised that these measurements may provide a bet-

ter measure of compound exposure than the dose of morphine 

administered.

To investigate the benefit of using brain concentration (rather 

than nominal dose) in this type of analysis we added a random 
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Figure 3.35.  Plot of the analgesic action of morphine sulphate, 

as given by Tallarida (2000, p. 32), showing percentage latency 

vs. nominal dose of compound for Example 3.29.
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component to the dose variable to simulate actual brain concentra-

tion. It is interesting to note that we now have 21 individual concen-

trations within the experiment, with a sample size of one at each 

concentration, rather than seven doses. Figure 3.36 was obtained 

using the simulated brain concentration of morphine rather than 

morphine dose.

The estimate of D
50

 was still predicted to be 0.94 (on the log 

scale). The standard error of the estimate though fell from 0.018 

to 0.016, an 11% decrease from before. It is interesting (although 

not unexpected, given that there are more distinct concentrations in 

the design) that there has been an improvement in precision when 

reducing the sample size from three to one.

3.6.2.2  Decreasing the number of animals

As mentioned above, if you plan to assume the Dose 

factor is a categorical factor, and then test the various 

doses back to the control, you will require a suitable 

sample size at each of the doses.

However, if you assume the Dose factor is a continu-

ous factor, then the principles of efficient experimental 

design that were introduced for factorial designs (with 

continuous factors) can be applied in this scenario too. 

As discussed above, with factorial designs it is better 

to include more levels of the continuous factors. This 

results in a more reliable assessment of the change in 

the response variable as the experimental conditions 

change. The same is true when there is only a single con-

tinuous factor in the experimental design. It is better to 

include more doses, but with fewer animals per dose. To 

highlight this consider the following, based loosely on an 

example described by Tallarida and Jacob (1979, p. 156).

Example 3.30:  Assessing the effect of a compound on the 

rat fundus strip

An experiment was conducted to assess the effect of serotonin on 

the rat fundus strip. Increasing doses of serotonin were tested in 

the experiment using an experimental design where d = 7 doses of 

serotonin (including the control) and n = 7 animals per dose level. 

A plot of the observed means with within-dose standard errors for 

simulated data is given in Figure 3.37. The four-parameter logistic 

curve can be fitted to the data as in Figure 3.38.

But was it necessary to use 7 × 7 = 49 rats to get a reliable esti-

mate of the dose-response relationship for serotonin? To investigate 

this question we randomly removed rats from each dose group and 

re-estimated D
50

 using the reduced dataset. Table 3.11 summarises 

the effect that randomly removing animals from the dataset has 

on the estimate of D
50

. The top row in the table corresponds to 

the analysis on the full dataset involving 49 rats. The remaining 

rows correspond to using between two and six rats per dose group. 

Table 3.11 is summarised in Figure 3.39.

The experiment involving only 21 rats (seven doses, three ani-

mals per dose) gave a comparable estimate of the serotonin D
50

 

(2.30 × 10–8) to the experiment involving 49 animals (2.50 × 10–8), 

with reasonably similar confidence intervals.
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Figure 3.37.  Plot of observed means with within-dose 

standard errors for Example 3.30. Results were calculated using 

the dataset with seven animals at each of the seven doses.
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Figure 3.38.  Scatterplot of all response vs. dose, including the 

four-parameter dose-response logistic curve for Example 3.30. 

Data includes seven animals at each of seven doses.
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3.6.3  Including the control group

When fitting a logistic curve to assess the dose-response 

relationship, it is standard practice to conduct the ana-

lysis on either the log
10

 or log
e
 dose scale. Doses are 

usually selected to be equally spaced on the log scale 

(for example 0.01, 0.1, 1, 10 mg/kg).

A minor complication with this approach is how to deal 

with the control group. This group will necessarily have a 

zero concentration of compound, and yet log(0) does not 

exist. There are several strategies that can be taken to deal 

with this problem. We shall consider three of the more 

popular and their impact on the experimental design.

Analysing a change from the control response

A seemingly sensible approach is to use a change from 

the control response in the analysis. We calculate the 

mean control response and then divide (or subtract) 

this mean from the remaining data. The curve can then 

have one parameter fixed, either the minimum (at 0) or 

the maximum (at 100% perhaps), depending on the dir-

ection of the curve and the method of normalisation.

Unfortunately if we take this approach then we are 

effectively ignoring the variability in the control group 

when performing the statistical analysis. In effect we 

assume the control group mean is the true control 

group mean. If this were the case then it would jus-

tify subtracting (or dividing) the remaining data by 

this true value. However, the control group is only an 

estimate of the true control group mean and there will 

inevitably be some variability in the control group esti-

mate. The adjustment to the remaining data and the 

subsequent analysis should reflect this.

Using a dual statistical model

There is a solution, applied at the statistical analysis 

stage, which allows the researcher to analyse the ori-

ginal data without having to manipulate the experi-

mental design or response variable. This involves fit-

ting a dual statistical model to the data. The statistical 

model fitted is either:

A combination of the control group mean and the •	

predicted minimum and maximum of the curve 

when the dose level is zero.

The logistic curve if the dose level is greater than zero.•	

Effectively the predicted dose-response relationship, as 

the dose approaches zero (the control), is a weighted 

combination of the minimum and maximum of the 

curve and the control group mean.

This approach has many benefits but can produce 

awkward results if the predicted minimum and max-

imum of the curve are not similar to the control group 

mean due to the variability of the responses. It is also 

an approach that may require the help of a professional 

statistician to implement.

Adding an offset to the dose

It can be argued that we should use all the data to esti-

mate the dose-response relationship. If we add a small 

offset to all the doses, then we can include the control 

group on the log dose scale.

The choice of offset is somewhat arbitrary, but if an 

offset is chosen so that the control group is situated on 

the plateau of the curve, then the choice of offset itself 

does not influence the curve fit or the results from the 

curve fit (at a practical level at least). We recommend 

using this approach.

Example 3.31:  Varying the offset

In the following example the offset value has been varied so that 

the control group responses reside at –2, –4 and –6 on the log dose 

scale. With an offset of –2 the control group is not quite on the plat-

eau of the curve, perhaps the offset was too large. Figure 3.40 and 

Table 3.11.  D
50

 serotonin estimates for Example 3.30 

calculated from datasets with reduced numbers of 

animals

D50 

Lower 95% 
confidence 

interval

Upper 95% 
confidence 

interval

n=7, d=7 2.50 x 10-8 1.27 x 10-8 4.90 x 10-8

n=6, d=7 2.36 x 10-8 1.18 x 10-8 4.70 x 10-8

n=5, d=7 2.54 x 10-8 1.07 x 10-8 5.98 x 10-8

n=4, d=7 2.35 x 10-8 9.49 x 10-9 5.80 x 10-8

n=3 d=7 2.30 x 10-8 8.09 x 10-9 6.53 x 10-8

n=2, d=7 1.48 x 10-8 4.08 x 10-9 5.31 x 10-8
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Table 3.12 illustrate the analysis if an offset of 0.01 is added to the 

levels of the Dose factor.

With an offset of –4 the control group is now on the plateau of the 

curve. The estimate of the log D
50

 and the Hill slope parameter have 

changed slightly, –0.51 vs. –0.49 and –1.14 vs. –1.17, respectively, but 

this is perhaps to be expected as the control group is now situated on 

the plateau of the curve. Figure 3.41 and Table 3.13 illustrate the ana-

lysis if an offset of 0.0001 is added to the levels of the Dose factor.
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Figure 3.39.  Plot of the D
50

 serotonin estimates, with 95% confidence intervals, for Example 3.30 calculated using data with 

between two and seven animals per dose.

−1 0 1 2

20

40

60

80

100

120

Concentration with 0.01 offset (on the Log
10

 scale)

R
es

po
ns

e

Figure 3.40.  Scatterplot of response vs. dose, including the 

four-parameter dose-response logistic curve for Example 3.31, 

where the doses are plotted on the log
10

 scale. Analysis was 

performed using an offset of 0.01 to the levels of the Dose 

factor.

Table 3.12.  Table of the four-parameter estimates for 

Example 3.31 calculated using an offset of 0.01 to the 

Dose factor levels

Estimate Std error t-value p-value 

Parameter 

Max/Min 125.066 3.857  32.42  < 0.001 

Slope -1.215  0.146  -8.33  < 0.001 

logD50 -0.485  0.063  -7.71  < 0.001 

Min/Max 25.216  2.111  11.95  < 0.001 
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Figure 3.41.  Scatterplot of response vs. dose, including the four-

parameter dose-response logistic curve for Example 3.31, where 

the doses are plotted on the log
10

 scale. Analysis performed 

using an offset of 0.0001 to the levels of the Dose factor.

With an offset of –6 the control group is now further along the plat-

eau of the curve (Figure 3.42). It is interesting to note that the log 

D
50

 and Hill slope parameter estimates have not changed between 

the latter two analyses (where the control group was on the plateau 

of the curve in both cases); see Table 3.14. This highlights that the 

choice of offset does not influence the analysis as long as the control 

group resides on the plateau of the curve.

3.7  Nested designs

We now turn our attention to the fourth class of designs 

considered in this book, the nested designs. We define 

a design as nested if, within the experimental design, at 

least one factor is nested within another (Section 3.2.7). 

As mentioned earlier almost all experimental designs 

will contain at least one nested factor. Usually the Animal 

factor is nested within the Treatment factor. One set of 

animals is assigned to the treatment group and another 

set is assigned to the control group. So it is worth remem-

bering that many designs can be defined as being nested. 

Perhaps the reason why the nested terminology is not 

more commonly known is that most statistical analysis 

packages automatically deal with designs with a single 

Table 3.14.  Table of the four-parameter estimates for 

Example 3.31 calculated using an offset of 0.000001 to 

the Dose factor levels

Estimate Std error t-value p-value 

Parameter 

Max/Min 121.838 2.697 45.17 < 0.001 

Slope -1.177 0.123 -9.57 < 0.001 

logD50 -0.493 0.060 -8.16 < 0.001 

Min/Max 25.152 2.114 11.90 < 0.001 
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Figure 3.42.  Scatterplot of all response vs. dose, including 

the four-parameter dose-response logistic curve for 

Example 3.31, where the doses are plotted on the log
10

 scale. 

Analysis performed using an offset of 0.000001 to the levels of 

the Dose factor.

Table 3.13.  Table of the four-parameter estimates for 

Example 3.31, calculated using an offset of 0.0001 to 

the Dose factor levels

Estimate Std error t-value p-value 

Parameter 

Max/Min 121.854 2.705  45.05  < 0.001 

Slope -1.178  0.123  -9.55  < 0.001 

logD50 -0.493  0.060  -8.16  < 0.001 

Min/Max 25.153  2.114  11.90  < 0.001 
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nested factor without requiring any user intervention. 

Hence the scientist need not be aware a nested design 

has been employed to run the statistical analysis.

Example 3.32:  Testing fish-liver oil for vitamin D potency

A study was conducted to test a fish-liver oil additive in chick feed 

for its vitamin D potency (Mead et al., 2003, p. 43). In the study 30 

chicks were used. Each chick was fed a mash diet where 1% of the 

mash was made up of an additive: 20 animals received the fish-liver 

oil additive and as a control ten chicks received a standard cod-liver 

oil additive. The Treatment factor therefore had two levels (fish-liver 

oil additive and control). The chicks were divided into two groups, 

each of which was associated with one level of the Treatment fac-

tor; hence the Chick factor was nested within the Treatment fac-

tor. Animals numbered 1–20 were associated with the fish-liver oil 

additive level of the Treatment factor and animals numbered 21–30 

were associated with the control level.

Chicks were randomly selected from the population of chicks, and 

then randomly assigned to the two treatments. Hence Chick is a 

random factor. It is usually the case that nested factors are random 

factors. We assume there are no systematic differences between the 

chicks (other than the chick-to-chick variability).

An informative way to understand a nested design 

is to visualise it. The design from Example 3.32 is illus-

trated in Figure 3.43.

The important point to make about the diagram, and 

this generalises to designs with more than one nested 

factor, is that the factor labels are unique (see Section 

3.2.4). If two animals were labelled ‘1’ in the above dia-

gram, then this would imply that animal ‘1’ received 

both the control and the treatment at some point during 

the experiment. This idea is really useful when trying to 

identify if a factor is nested within another factor.

In this text we differentiate between two types of 

nested design: the single-order nested design and the 

higher-order nested design, although in reality the 

former is simply a special case of the latter.

3.7.1  Single-order nested design

In many animal experiments the only nested factor is the 

Animal factor, as was the case in Example 3.32. If a single 

measurement is taken on each animal, and each animal 

is assigned randomly to one of the treatment groups, 

then the Animal factor is nested within the Treatment 

factor. The animals are the experimental and observa-

tional units. This is true for one of the simplest designs 

where there are only two treatment groups and each 

animal is allocated to one of them. Such an experiment 

could be analysed using a t-test. It is interesting to note at 

this stage that a nested design is required for one of the 

simplest and most commonly applied statistical tests.

3.7.2  Higher-order nested design

It may be the case that the scientist will be using a design 

where there is more than one nested factor. This can 

occur, for example, if there are multiple observations 

taken on each animal (this corresponds to Scenario 2 in 

Table 3.2). If the animals are measured repeatedly, but 

there is no between-animal structure to these measure-

ments, then the design is a higher-order nested design.

Example 3.4 (continued):  Assessing kidney lesions 

induced by p-aminophenol

Consider Example 3.4, where a histological technique was used to 

assess kidney lesions induced by p-aminophenol. Let us assume 

three sections of each rat’s kidney were assessed and the number 

of lesions recorded. If the three sections were taken at specific posi-

tions for each animal, say the front, middle and back of the kidney, 

then there will be relationships between the sections across animals. 

If (across animals) they were classified as ‘front’, ‘middle’ or ‘back’ 

then the Position factor (at three levels) would be crossed with the 

Animal factor. If, however, the three sections of each rat’s kidney 

were taken at random positions across the kidney then there would 

be no relationship between the first result from the first animal and 

the first result from the second animal. In this case, as there are no 

relationships between the measurements made across animals, we 

say there is no between-animal structure to the measurements. The 

Section factor is therefore nested within the Animal factor.

Nested factors in a design are usually random fac-

tors. When there are multiple random factors in an 

experimental design, it can be useful to identify the 

amount of variability that can be attributed to each of 

these factors. If the amount of variability associated 

with each factor is quantified, then we can investigate 

the effect that changing the replication of the random 

factors has on the sensitivity of the statistical tests.

Replication is essential when performing an experi-

ment for several reasons. To begin with we need rep-

lication of levels of the random factor(s) in order to 

estimate the variability of the responses. Without this 

we would not be able to carry out the formal statis-

tical tests described in Chapter 5. In certain situations, 

where there is more than one random factor present in 

the experimental design, it may be of interest to identify 

 

 

 

 

 

 



Figure 3.43.  Nested design for Example 3.32 involving two treatments (levels: fish-liver oil additive and control) with 20 chicks in the fish-liver oil additive group 

and 10 chicks in the control group.
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which factor is associated with the largest source of vari-

ability. The researcher can then concentrate resources 

on dealing with the variability associated with this fac-

tor. For example, consider an experiment involving a 

number of animals where four samples are taken from 

each animal. If the sample-to-sample variability proves 

to be larger than the animal-to-animal variability, then 

the researcher would be wise to investigate the cause of 

this first (and maybe increase the within-animal repli-

cation) rather than simply increasing animal numbers.

Before we consider these more complex questions 

we shall begin with the simpler case where there is 

only a single nested factor in the experimental design – 

namely the Animal (or more generally the factor whose 

levels correspond to the experimental units). In this 

case we may wish to investigate the replication of this 

factor, in other words how many animals do we need? 

This is perhaps one of the most important questions we 

should ask when designing animal experiments.

3.7.3  Sample size and power

Consider a design where the only nested factor is the 

Animal factor. It is important to consider the replication of 

the levels of the Animal factor to ensure that we use as few 

animals as possible without compromising the scientific 

validity of the study. This is perhaps the most important 

issue surrounding nested factors in animal experiments. 

It should be noted though that the method described in 

this section is the simplest example of the statistical inves-

tigation that can be performed when using higher-order 

nested designs involving multiple random factors.

If we assume that the animal-to-animal source of 

variability is the largest, then it is right to focus on the 

replication of the Animal factor ahead of all others. 

Historically much has been written about the sample 

size calculation and it is generally recognised that sam-

ple sizes should be assessed before running a study. 

There are many software packages available to allow us 

to calculate suitable sample sizes.

Factors that influence sample size

Variability of the responseThe variability of the response 

will influence the sample size. The greater the variabil-

ity, the higher the sample size will be needed to achieve 

a suitable degree of statistical sensitivity. There are per-

haps many factors within the control of the researcher 

that may increase the variability, for example the stress 

level of the animals, amount of handling and day of 

testing. The researcher should always look for ways 

to reduce the underlying variability of the data. For 

example, using a factorial design to investigate a num-

ber of factors in a pilot study will allow the researcher 

to identify which combination of factor levels gives the 

least variable responses. This combination can then be 

employed in future studies to help reduce the variabil-

ity and hence the sample size.

Size of biological effect
The size of effect that is considered to be biologically rele-

vant has a bearing on the sample size. If the researcher 

wants to identify subtle changes in the response, then 

relatively large sample sizes will be needed to achieve 

statistical significance. It may be difficult to decide in 

advance, but it is important to have some idea what 

constitutes a meaningful biological effect. The sample 

size can then be chosen so that only observed effects 

of this size (or greater) should be declared statistically 

significant. While it is not as likely to happen (due to the 

ethical constraints in animal experimentation) it is pos-

sible to use too many animals. If too many animals are 

used then the statistical tests become oversensitive and 

hence treatment effects may be declared statistically 

significant that are too small to be of any biological rele-

vance. In reality though it is more likely that too few ani-

mals will be used rather than too many and hence the 

study will not be sensitive enough to detect meaningful 

biological effects (statistically). Choosing a sample size 

correctly so that biological relevance and statistical sig-

nificance complement each other is vital if the conclu-

sions from the study are to be scientifically valid.

Choice of experimental design
Experimental designs used correctly can help reduce the 

variability of the response. If we employ a suitable experi-

mental design, for example a block design, then we can 

control for nuisance sources of variability. By including 

a blocking factor in the experimental design (and then 

in the statistical analysis) we can reduce the underlying 

variability that we assess the treatment effects against. 

This can allow the researcher to reduce sample size.
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Choice of statistical analysis
An appropriate statistical analysis, which uses all the 

relevant information recorded during the study, can 

help reduce sample size. For example, an analysis 

that includes baseline information as a covariate can 

account for animal differences that would otherwise 

inflate the variability of the response (see Section 

5.4.6).

Significance level (Type I error)
The significance level, sometimes called the Type I 

error rate, is the probability (or chance) of finding a 

false positive result. It is the risk of declaring a result 

significant, and accepting the alternative hypoth-

esis is true, when in fact the null hypothesis is true. 

Whenever we carry out an experiment there is always 

a risk that we may get an unusually positive set of 

results, just by chance. The significance level is the 

probability of this happening. It follows that the more 

certain you want to be that you are not reporting a 

false positive, the more animals you will require (all 

other things being equal). The usual convention is to 

set the risk of a false positive at 5%, although some-

times a 1% level may be selected. In other words we 

are prepared to accept the risk that five out of every 

hundred studies may result in a false positive conclu-

sion. It is not possible to remove the risk of finding a 

false positive completely.

Statistical power
The statistical power of an experiment is the probability 

of rejecting the null hypothesis when it is false. It is the 

probability (or chance) of achieving a statistically sig-

nificant result when conducting a study given that, in 

reality, there is a real effect (something we do not know 

before we begin the study of course!). A description of 

statistical power is given in Section 2.3.5.

The power of a study depends on the sample size. The 

larger the sample size the higher the statistical power 

and hence the greater the chance of identifying a genu-

ine effect. The converse is also true, however. If there is 

a biologically relevant treatment effect but the sample 

size used is too small, say only two animals per group, 

then the chance of declaring the effect statistically sig-

nificant is low. Usually a power of 70–90% is sufficient. 

This implies that if there is a genuine biologically rele-

vant effect, then you have a 70–90% chance of identify-

ing it when you conduct the study.

Before running a study it is always worthwhile investi-

gating the power that the proposed experiment will have. 

If you discover that running a study with 12 animals per 

group gives only a 30% power for detecting a biologically 

relevant effect, and that to achieve 70% power 100 ani-

mals per group are required, then clearly it is not worth 

running the study. In such cases you should either:

Find ways of reducing the variability before running •	

experiments to test hypotheses.

Increase the window of opportunity and hence the •	

size of the biologically relevant effect.

Simply increasing the sample size to achieve the 

desired statistical power may not be the only answer, 

even though it is often the first thing a researcher will 

consider.

Type of response
When a researcher plans a study, one of the issues that 

will need to be considered is the type of response. The 

different types of response include continuous, dis-

crete, ordinal, nominal and binary (see Section 3.2.1). 

As mentioned above, these responses contain differ-

ing amounts of information with continuous responses 

containing the most.

The type of response measured will also dictate the 

type of statistical analysis available to analyse the data. 

It is generally the case that the statistical tests routinely 

used by animal researchers for analysing continuous 

data are more powerful and more flexible than the tests 

employed when analysing binary data. It is also much 

easier to include extra information about the experi-

mental design in the analysis of a continuous response, 

compared to the analysis of a more categorical one. As 

mentioned above this is of particular importance in 

animal experiments where we have almost total con-

trol over the experimental design. If at all possible, it 

is recommended that the scientist measures a con-

tinuous response. This way the sample size can be to 

be kept to a minimum (and the statistical analysis kept 

simple).

It may be the case that measuring a continuous 

response is more labour intensive than measuring a 
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more categorical one. Perhaps we should accept this as 

a necessary compromise, if it achieves a reduction in 

total sample size.

Example 3.33:  Dog socialisation study

A study was carried out to assess the benefits that can be gained 

from providing socialisation and training for laboratory dogs 

(Boxall et  al., 2004). Benefits include the dogs remaining calm 

during experimental procedures, which, it is contended, will lead 

to less variable results (and hence smaller group sizes). Several 

measures were taken including behavioural scores (ordinal meas-

ures) and two continuous responses: average behavioural score 

and heart rate. The animal behaviour score was measured on a 

ten-point numeric scale during several different activities. A score 

of eight was defined as the best score with higher scores indicat-

ing an over-excited dog, and lower scores indicating a nervous and 

timid dog.

The analysis of the data generated involved applying several 

statistical tests, due to the different types of response measured. It 

revealed that the socialisation programme had a significant effect 

on behaviour and welfare.

Care should be taken when comparing the results 

of statistical analyses as an analysis of continuous 

responses will be more powerful than an analysis of 

ordinal responses.

Hypothesis being tested
The hypothesis that is being tested can indirectly 

influence the sample size. Hypotheses that are tested 

can either be two-sided or one-sided (see Section 

2.3.1). As described above, in a two-sided test the 

alternative hypothesis is that there is a difference 

between the two groups, in either direction. In a one-

sided test we assume the difference between the two 

groups can only be in one direction, either negative 

or positive. If we assume that the direction of the 

treatment effect can only be in one direction, then 

in many statistical tests the p-value will be halved. 

Indirectly this implies that we can reduce the sample 

size. This approach is perhaps applied less often than 

it could be.

Uniformity of the animals
This is again linked strongly with the underlying vari-

ability of the response. The more uniform the animals 

are, the smaller the underlying variability of their 

responses will be, and hence the smaller the sample 

size will need to be. It is generally accepted that inbred 

strains are more heterogeneous than outbred strains 

and hence less variable. For a fuller discussion of these 

issues, see Festing et al. (2002, p. 17–26).

Calculating sample sizes

There are many freeware packages available for the sci-

entist who wants to investigate suitable sample sizes. 

Alternatively many of the commercial packages include 

power analysis techniques. A description of the power 

analysis module within InVivoStat is given in Section 

6.8. For a description of some of the power analysis tools 

available if the responses measured are not numerical 

and continuous, see Cohen (1988, Chapters  3–7). In 

this section we will consider the power analysis that 

can be performed when the response is continuous and 

the assumptions of the parametric analysis are satisfied 

(see Section 5.4.1).

The sample size calculation procedure revolves 

around five variables: the power of the study, the Type 

I error rate, the underlying variability, the size of the 

relevant biological effect and the sample size itself. 

When assessing sample size and power we usually 

begin by fixing the Type I error rate at 5%. We then 

select or estimate a value for one of the other vari-

ables (normally the variability) and investigate the 

effect of changing the two remaining variables on the 

sample size.

Size of biological effect
Before starting the study the scientist should have 

some idea of the size of effect that is considered bio-

logically relevant. This can be, for example, an actual 

effect size or a percentage change from control. If the 

scientist is interested in seeing a small change, say a 

5% change from control, then a large sample size will 

be required. If, however, it is decided that the effect 

should be larger than, say 50%, for it to be considered 

biologically relevant, then a smaller sample size will be 

required. By selecting the biologically relevant effect 

size before running a study we can hopefully relate the 

statistical significance of the results obtained to the 

biological relevance. There is no point using too many 

animals, and hence achieving statistical significance, 
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when the size of effect is too small to be of any bio-

logical relevance.

Statistical power
The scientist should try to conduct experiments that 

have a statistical power between 70% and 90%, although 

there is no fixed rule on the choice of these values. This 

power range implies that if the study were carried out 

repeatedly then, for a given biologically relevant effect, 

the experiment would be successful seven to nine 

times out of ten. If the power were 50% there is only 

an evens chance of achieving statistical success when 

running the study. This is the same chance as tossing a 

coin and getting heads. If we discover that the power of 

the study is even smaller, say 20%, then it is probably 

not worth running the study. With such a small chance 

of achieving statistical success (even if there is a real 

biologically relevant effect) then it is probably better 

to try to find ways to reduce the underlying variability 

first.

Variability
An initial estimate of the variability is required for most 

power analysis methodologies. The can be in the form of 

a variance or standard deviation estimate (see Section 

5.2.2). The variability estimate calculated using data from 

a previous study can provide a good starting point, assum-

ing the animal model and experimental procedures are 

the same. This variability estimate may be influenced by 

the experimental design employed. So if an influential 

blocking factor was used in a preliminary study, then this 

will have reduced the variability estimate. If future stud-

ies do not take into account this blocking factor, then the 

estimated sample sizes may be too small.

Other sources of information, such as those found 

in the literature, can provide an estimate of variabil-

ity that the researcher can use before conducting any 

experiments. However, these sources will probably not 

provide a reliable estimate of the variability. It is usually 

better to use data generated from an experiment con-

ducted by the scientist under their own laboratory con-

ditions. Another method that can be applied before any 

data has been collected is the resource equation, pro-

posed by Mead (1988, p. 587) and discussed in Festing 

et al. (2002, p. 79).

Regardless of the method used, it should be remem-

bered that the sample sizes calculated are only a guide 

to the final sample size. This is because the power ana-

lysis is based on an estimate of the underlying variabil-

ity of the response. With animal studies this cannot 

always be a truly reliable estimate due to the small sam-

ple sizes that most studies employ.

The statistical test
We recommend powering the study under the assump-

tion that the statistical analysis applied will be the t-test. 

The primary objective of many statistical analyses is 

comparing group means, so this seems a sensible test 

to consider. The t-test is probably less powerful than 

other tests available to the researcher, and so the power 

analysis will give a conservative sample size. We con-

tend this is better than the alternative where the power 

analysis gives a sample size that is dangerously low. 

There are, however, many software tools now available 

for calculating sample sizes for various types of experi-

mental design (Festing et al., 2002, p. 77).

Example 3.34:  Investigating mutations in transgenic mice

Festing et  al. (2002, p.  55) describe a multi-laboratory study of 

mutations in transgenic mice. The study involved dosing 30 mice 

of a transgenic strain with either a vehicle or one of two doses of 

a mutagen, ten per treatment group. The DNA extracted was sent 

to five laboratories. Each laboratory estimated the number of muta-

tions at a particular genetic locus in samples of DNA from two mice 

from each treatment group.

Table 3.15.  One-way ANOVA table for the analysis of Example 3.34

Sums of squares Degrees of 
freedom  

Mean 
square  F-value p-value 

Dose 152.43 2 76.22 2.80 0.078 

Residuals 734.09 27 27.19 
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Unless accounted for in the design and analysis of the study, any 

differences between the five laboratories could artificially inflate the 

variability of the data generated. The researcher decided to repli-

cate each of the treatments equally within the five laboratories, 

and hence block by laboratory in the statistical analysis to account 

for this.

In this discussion we shall analyse the data with and without the 

Laboratory blocking factor included. This highlights the benefit of 

accounting for differences between laboratories in the experimen-

tal design and then including the blocking factor in the statistical 

analysis.

To begin with the researcher needs to decide on what consti-

tutes a biologically relevant effect. Assume that a 25% increase 

from control is required before the increase is considered biologic-

ally relevant. Assume also the significance level is fixed at 5% and 

the scientist intends to use a two-sided t-test to analyse the data 

generated.

Let us first consider the power analysis performed ignoring the 

Laboratory blocking factor. An estimate of the variability can be 

obtained from an ANOVA table (see Section 5.4.3). The residual 

mean square from the ANOVA table provides an estimate of the var-

iance. The ANOVA table for the experiment, excluding the Laboratory 

blocking factor, is given in Table 3.15.

The variance estimate is 27.19 and hence the standard deviation 

is 27 19 5 21. .=  (see Section 5.2.2). The mean of the vehicle group 

is 9.43. The power analysis module in InVivoStat reveals that a 

sample size of 15 achieves a power of 22%. Part of the output of 

the InVivoStat power analysis module is a power curve (see 

Figure 3.44). This plot shows the relationship between power and 

sample size for a given biologically relevant effect (25% change 

from control in this case).

We repeated the above calculation, but this time including the 

Laboratory blocking factor in the statistical analysis (see Section 

6.3.3). The ANOVA table, with Laboratory included as a blocking fac-

tor, is given in Table 3.16.

By including the Laboratory blocking factor in the analysis the 

underlying variability is reduced. The new estimate of the variance 

is smaller than before. Including the Laboratory blocking factor in 

the analysis reduces the variability from 27.19 to 6.85. The new esti-

mate of the standard deviation is  6 85 1 61. .= .

We now repeat the power analysis using this revised estimate 

of the variability. The result, taking into account the extra source of 

variability due to laboratories, is given in Figure 3.45.

A sample size of 15 gives a power of around 95%. This plot also 

suggests that a sample size of eight should provide sufficient power 

(around 75%). It can clearly be seen that by taking account of the 

experimental design in the statistical analysis, there was an increase 

in power and this will almost certainly allow the scientist to reduce 

the sample size in future studies.

When not to calculate the statistical power

Before we leave this section on calculating sample size 

and power, we highlight an issue with the power analy-

sis methodology that is somewhat overlooked in the 

applied literature, namely the use of post-experiment 

power analysis as an analytical tool. This issue has 

been considered in some detail by Hoenig and Heisey 

(2001).

We do not recommend using the post-experiment 

power analysis methodology when making analytical 

inferences about experimental results. In the power 

analyses described in the previous section, we did not 

assume the observed effect was the true effect. It was 

only an estimate of the true effect. Rather than conduct 

a power analysis using the observed effect, a prede-

termined biologically relevant effect was used and the 

sample size required to achieve statistical significance 

(when an effect of this magnitude occurs) was calcu-

lated. Power analysis methodology should therefore be 

used as a planning tool and not as an analytical device. 

If the reader is interested in understanding the rea-

soning behind this statement, then they should read 

either the following paragraphs or Hoenig and Heisey 

(2001).

The general principle, which may appear to be 

a sensible approach at first sight, is as follows: if a 

hypothesis test is performed and is found to be non-

significant, i.e. we accept the null hypothesis that there 
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Figure 3.44.  Power curve for a 25% change from control for 

Example 3.34 if the laboratory blocking factor is ignored.
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is no effect, then a power analysis is performed to aid 

in the interpretation of the non-significant result. If 

the observed power is low, then the argument follows 

that this shows weak evidence that the null hypothesis 

is true even if the hypothesis test was not significant 

(the p-value was greater than the significance level). In 

other words, we did not see a significant effect (hence 

the null hypothesis is accepted) but as we were not 

likely to find a significant effect (because the power 

was low) this does not imply the null hypothesis is 

necessarily true.

Unfortunately this argument is misleading. 

When performing a power analysis we suggest the 

researcher should identify the biologically rele-

vant effect beforehand. This is a real effect that is 

assumed to be important and is not a data-driven 

observed effect. The power analysis methodology 

described above relies on the assumption that the 

effect size used in the calculation is for a true effect 

and not one that has been estimated (or observed) 

from experimental data.

When performing a power analysis using the 

observed effect (rather than the true effect) the 

observed significance level determines the observed 

power (they are mathematically linked): as one goes up 

the other goes down. So high p-values necessarily cor-

respond to low observed power. If you have calculated 

one of these values you can immediately generate the 

other. Considering both does not add to your under-

standing of the experimental results. Figure 3.46 shows 

this relationship. From the argument described above if 

the power is low, then we would conclude there is weak 

evidence that the null hypothesis is true. But low power 

equates to high p-values, and most researchers accept 

that high p-values indicate the null hypothesis is likely 

to be true!

Figure 3.46 highlights another interesting feature of 

the observed power. When the p-value for the statistical 

test equals 0.05 (i.e., it is just statistically significant 

at the 5% level) then the observed power is only 50%. 

We may consider this power to be uncomfortably low, 

even if we have achieved statistical significance in our 

experiment. But again this is to confuse the observed 

effect with the biologically relevant true effect. The 

power analysis methodology is not being applied cor-

rectly. If we assume that the observed effect is actually 

the true effect, then if we repeat the experiment there 

is a 50% chance of finding a larger effect than the one 

observed in the first experiment and a 50% chance of 

finding a smaller effect (assuming the response is sym-

metrically distributed around the true effect). Now as 

Table 3.16.  Two-way ANOVA table for the analysis of Example 3.34, including Laboratory as a blocking factor

Sums of 
squares  Degrees of freedom Mean 

square  F-value p-value 

Laboratory 576.45 4 144.11 21.03 < 0.001 

Dose 152.43 2 76.22 11.12 < 0.001 

Residuals 157.64 23 6.85 
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Figure 3.45.  Power curve for a 25% change from control for 

Example 3.34 once the Laboratory blocking factor is taken 

into account.
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we have achieved a significance level of 0.05 in the first 

experiment then (for the given variability and sample 

size) in the next experiment there is a 50% chance of 

getting a p-value smaller than 0.05 and a 50% chance of 

getting a p-value larger than 0.05. The power to detect a 

true effect is therefore only 50%. We have a 50% chance 

of achieving a significance result, assuming the effect 

is real.

3.7.4  Higher-order nested designs

It is often the case in animal experiments that treatment 

effects are tested against the animal-to-animal variabil-

ity. Animals are randomly assigned to treatments and 

so we assess the significance of the treatment effect by 

comparing it to the underlying animal-to-animal vari-

ability. With only a few exceptions, the Animal factor 

will be nested within Treatment, Block and any other 

fixed factors within the study. This framework applies 

even if there are within-animal nested random factors 

within the design. So it is probably right that our atten-

tion, when investigating the random factors, should 

focus on the Animal factor. However, there are certain 

situations where more complex nested designs are 

employed. In these situations it is vital that we correctly 

identify the type of design that is being used; otherwise 

the statistical analysis may be invalid. Once identified 

we can generalise the sample size calculations given in 

the previous section to investigate these more complex 

designs.

Identifying nested factors

When a scientist starts to plan an experiment the ques-

tions that need to be answered should be considered. 

This will influence the choice of design. However, there 

will also be practical and/or animal model-based con-

straints that dictate features of the experimental design. 

Such constraints may introduce nested factors and it 

is important that the scientist recognises this by con-

sidering the structure of the experimental design. For 

example, it may be the case that each blood sample 

taken from an animal is assayed in triplicate. If animals 

are allocated to different treatments, then there are 

(at least) two random factors: Animal is nested with 

Treatment and Assay is nested within Animal.

Example 3.35:  Dietary study in white pekin ducklings

A study was conducted to assess the effect of cholecalciferol and 

phosphorus in the regulation of intestinal mucosa phytase in white 

pekin ducklings (Onyango and Adeola, 2011). There were 96 duck-

lings, group housed in six blocks of four cages, four ducklings per 

cage. The allocation to blocks was based on duckling body weight 

(see Section 4.2.1). Four corn-soya bean meal-based mash diets, 

consisting of all combinations of cholecalciferol at 0 μg/kg or 75 μg/

kg and phosphorus at 3.6 g/kg or 7 g/kg were randomly assigned to 

the four cages within each block. As the original authors comment, 

the diets were administered to cages of ducklings, so the cages are 

the experimental units. For the purposes of this discussion we shall 

ignore the blocking factor. This (simplified) experimental design is 

described in Figure 3.47.

Ducklings 1 to 4 were housed in cage 1, ducklings 5 and 8 in cage 

2 and so on. So Duckling is nested within Cage. Now the animals 

housed in cages 1 to 6 were administered the cholecalciferol at 0 

μg/kg + phosphorus at 3.6 g/kg diet whereas the animals in cages 

7 to 12 were given the cholecalciferol at 0 μg/kg + phosphorus at  

7 g/kg diet. Hence Cage is nested within Diet. If we assume that the 

cages were selected at random from a large set of cages, and the 

animals were assigned to the cages (within block) at random, then 

Cage and Duckling will both be random factors.

Note the importance of the factor labels in the above diagram. 

Consider a (rather implausible) study that consisted of only six cages 

with 16 ducklings housed in each cage. If the animals were fed indi-

vidually, where four animals per cage were given each diet, we 

would say that the Cage and Diet factors were crossed. Each level of 

Cage would be associated with all four levels of the Diet factor and 
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Figure 3.46.  Relationship between observed power and 

statistical significance for a significance level of 5%.
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all levels of the Diet factor would be present in each cage (animals 

receiving all diets are housed in each cage). The diagrammatical 

representation of this design is similar to the one above, with the 

major difference being the labelling of the cages. The diagram is 

given in Figure 3.48.

In general if the factor labels are repeated, as the 

levels of the Cage factor are in Figure 3.48, then one of 

the factors is not nested within the other but the two 

factors are crossed with each other. A more appropri-

ate way to visualise the data would be using a 2D dia-

gram as given in Figure  3.49. The top of the diagram 

consists of a 6 by 4 grid made up of all combinations 

of the levels of Cage and Diet. The individual ducklings 

are included underneath this structure to indicate the 

nesting relationship.

As a final comment, if the Cage label in Figure 3.49 

is replaced by ‘Block’ and the grey boxes are used to 

indicate the 24 cages, then the design structure pre-

sented is the same as that employed in the original 

paper.

In practice, the importance of the Cage factor 

depends on the length of the experiment and whether 

or not the cages are the experimental units. If the cages 

are not the experimental units, and the study is a short-

term study, then there probably will not be differences 

between the cages and hence the Cage factor can be 

excluded from the analysis. In other words the cage-to-

cage variability will not be influential and hence can be 

ignored. This will simplify the design and the analysis 

considerably. However, differences between cages may 

become more pronounced in long-term studies and 

hence cannot be ignored so easily. If the cages are the 

experimental units (i.e. treatments are administered 

to cages of animals rather than individual animals) 

chol 0 + phos 3.6 chol 0 + phos 7

1 6 7 12 13 18 19 24

chol 75 + phos 3.6 chol 75 + phos 7

1 4 93 96

Factor

Diet

Cage

Duckling

Figure 3.47.  Nested design for Example 3.35 involving fixed factor Diet and two nested factors Cage and Duckling within Cage. In 

the design there were six cages per diet and four ducklings per cage.
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Figure 3.48.  Nested design involving crossed factors Diet and Cage and nested factor Duckling. In the design there were six cages 

with four ducklings per cage per diet.
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then we argue Cage should be included in the analysis 

regardless of its influence.

Identifying whether the experimental design has 

more than one nested factor is important, especially in 

animal research. Ask yourself, are you taking multiple 

random samples per animal? When this is the case we 

can generalise the question we asked in the previous 

section about sample sizes. Rather than consider the 

number of animals required, we can investigate the 

appropriate number of animals and also samples within 

animals. It may be the case, although not common, that 

increasing the replication of the samples taken from 

each animal will influence the statistical power more 

than simply increasing animal numbers.

Investigating the sources of variability in  
higher-order nested designs

In the following sections we shall describe some of the 

statistical investigations that can be carried out when 

using a higher-order nested design. We aim to do this 

without too much mathematical detail. The inter-

ested reader can find more technical derivations in 

many texts, for example Snedecor and Cochran (1989, 

pp. 237–40) and Montgomery (1997, pp. 506–19). In this 

discussion we shall concentrate on issues pertinent to 

the non-statistician; see also Festing et al. (2002, p. 53).

There are two aspects of the design that we shall 

consider:

The amount of variability (in the observations) that •	

can be attributed to each of the random factors, the 

so-called variance components.

The effect of replication (of the levels of the random •	

factors) on the power of the statistical tests. For this 

we consider the variability of the experimental units, 

which is made up of a combination of the variance 

components.

For example, an experiment was conducted to assess 

the effectiveness of several types of anti-inflammatory 

skin cream, where cream is administered to several 

shaved areas of each animal. How much variability in 

the individual observations is due to animal-to-animal 

differences, and how much is due to the area-to-area 

differences within the animal? Should we apply cream 

to three areas of skin on each animal or four? More 

importantly, can we reduce the total number of animals 

required by testing on multiple areas on each animal 

13 16 29 32 93 96

1 4 17 20 81 84

Cage
1 2 (3,4,5)    6   

Diet

chol 0 + 
phos 3.6

chol 0 +
phos 7 

chol 75 +
phos 3.6 

chol 75 +
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Duckling

Figure 3.49.  Nested design involving crossed factors Diet and Cage and nested factor Duckling. In the design there were six cages 

with four ducklings per cage per diet. If the Cage label is replaced by Block then the structure is that used by Onyango and Adeola 

(2011).
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(assuming there is no additional cost to the animal) 

and yet still assess the treatment effects with sufficient 

statistical power.

In the case where the design involves a single ran-

dom factor (usually Animal), the questions around 

variance components and what replication to use sim-

plifies to performing a sample size and power analysis, 

as described in Section 3.7.3. As we have only one meas-

urement per animal we can only get an overall estimate 

of the (animal-to-animal) variability. We cannot break 

this down into other within-animal sources of variabil-

ity as there is no replication within-animal. However, 

this is not the case in higher-order nested designs. In 

this section we shall develop this power and sample size 

methodology to these types of experimental design.

Variance components: estimating the 
observational unit variability

Let us assume we only have random factors present in a 

higher-order nested design. The methodology described 

here can be generalised to more complex designs that 

also include fixed factors (such as the split-plot designs, 

see Section 3.9) but that is beyond the scope of this text 

(Montgomery, 1997, pp. 519–529).

As any researcher knows, there will always be vari-

ability associated with experimental data. Even though 

all the animals are housed in the same conditions, 

have the same body weight (within a given range) and 

are from the same inbred strain, there will always be 

differences in their responses. There may be many rea-

sons why the results are different, and we call these the 

sources of variability. Some, such as the animal source, 

will probably be more influential than others but all 

contribute to the differences between the observations 

taken. In Section 2.1 we discussed trying to give a lec-

ture when there are a number of alarms making noise 

in the room. These alarms are analogous to the sources 

of variability in an experiment. To get your message 

across in the lecture room, the key is to try to identify 

the loudest alarm and turn it down first. The same is 

true in an experimental setting. We need to iden-

tify which source of variability is the largest, and deal 

with that first. Nested designs provide a framework for 

doing this.

Consider a single-order nested design where there is 

only one random factor, namely Animal, where the ani-

mals are the observational units. The random Animal 

factor is used to quantify the variability associated with 

differences between the animals. The variability could 

be due to the animals, but it could be due to other 

sources, such as measurement variability. As we only 

have one measurement per animal, it is impossible to 

disentangle these other sources of variability as the 

replication within-animal is only one. To estimate the 

magnitude of any within-animal sources of variability 

we need to take multiple samples (holding the other 

factors constant) and quantify the differences (or vari-

ability) within these responses.

Now consider a higher-order nested design where 

we have more than one random factor nested within 

another. As we now have replication within-animal, 

the variability of each individual observation in the 

dataset can be broken down into a set of variance 

components. Each variance component corresponds 

to the proportion of the observational unit variabil-

ity that is associated with that random factor. We can 

perform this breakdown because of the replication 

of the levels of the random factors within the nested 

design.

Variability of the observational units = Sum of the vari-
ance components

There is a mathematical way to calculate estimates of 

the variance components. An interested reader should 

consult Montgomery (1997, pp.  514–15) for details. 

However, conceptually we can derive an estimate for 

the within-animal variability by considering the spread 

of the observations within each animal. If we then aver-

age the within-animal measurements (i.e. generate one 

mean response per animal) then the variability of these 

means will give us a measure of the between-animal 

variability.

Example 3.36:  Pressure applied to assess joint pain

An experiment was conducted to assess the validity of using the 

pressure application measurement (PAM) device to quantify joint 

hypersensitivity in rats (Barton et al. 2007). It was hypothesised 

that readouts from this method would correlate with the estab-

lished weight distribution readout obtained using an incapacitance 

tester and hence be a potential animal model for chronic joint pain 
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Figure 3.50.  Nested design for Example 3.36, involving fixed factor Treatment and nested random factors Animal and Trial.
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in humans. The aim of the study was to determine if PAM was able 

to detect a Freund’s complete adjuvant (FCA)-induced hypersensi-

tivity in the knee joints of rats and compare the results obtained 

using PAM with the weight distribution approach. In the published 

paper several treatments were tested: prednisolone (1, 3 or 10 

mg/kg), morphine (3 mg/kg) and celecoxib (15 mg/kg); however, 

we shall focus on the pilot study, which had two groups, FCA and 

control.

In the original experiment 16 rats were randomly assigned to 

one of two treatment groups, either the control or FCA treatment. 

Hypersensitivity was then assessed over 28 days using both the PAM 

and weight distribution approaches. We shall consider the responses 

measured on day 1; the repeated measures aspects of the experi-

ment will be discussed in Section 3.8.1. On each day post-dose, 

three measurements were taken per animal per method. The design 

is illustrated in Figure 3.50.

The design consisted of several factors, related in a hierarchically 

nested way. These included Treatment, Animal (within Treatment) 

and Trial (within Animal). The two sources of variability were the 

animal-to-animal variability and the trial-to-trial variability.

The procedure used to assess of the sources of variability for 

the PAM response, using InVivoStat, is described in Section 6.14. 

From this analysis it was found that for the PAM response, the 

variance component for animals was 7542 (or 23% of the total 

variability) and for the trials was 25 704 or (77% of the total 

variability).

This implied that much of the variability observed in the indi-

vidual measurements was due to trial-to-trial differences rather 

than animal-to-animal differences. In other words the individual 

animals all behaved (on average) in a similar way, but the multiple 

measurements taken within an animal varied considerably. This is 

an interesting result; the researcher should investigate the cause of 

this variability and try to reduce it in future studies. However, if no 

obvious source is identified, then by taking multiple measurements 

per animal the effect of this variability can be taken into account in 

the statistical analysis.

Predicting the experimental unit variability

In the majority of statistical analyses of animal experi-

ments the aim is to test the size of the effect of inter-

est against the experimental unit variability, i.e. the 

animal-to-animal variability in most experiments. If a 

nested design has been employed then, as discussed 

above in Section 1.3.3, we first need to summarise all 

the within-animal measurements to obtain a single 

summary result per animal (this summary is usually 

the mean). We then compare the size of the effect of 

interest against the variability of these summary meas-

ures (the experimental unit variability), using a suitable 

statistical analysis procedure.

In higher-order nested designs, the variability of 

these summary measures (for example the mean result 

for each animal) is a linear combination of:

1.	 the variance component of the random factor that 

corresponds to the experimental unit (animals in 

this case)

2.	 any random factors that are nested within the factor 

that corresponds to the experimental unit

The exact combination of variance components that 

are added together to produce the variability of the 

experimental units depends on the replication within 

the experimental design. So if we can estimate the indi-

vidual variance components then we can predict the 

variability of the experimental units for any replication 

of the random factors within the nested design.

For example, consider a higher-order nested design 

involving Animal and Assay nested within Animal. 

Assume that the animals are the experimental units 

(i.e. treatments are tested against the animal-to-animal 

variability). Each sample from each animal is assayed 

multiple times. By calculating the variance components 

for Animal and Assay we can assess the effect that vary-

ing the number of animals and the number of assays 

within-animal has on the variability at the Animal level 

of the design. This is important because it is this vari-

ability that the treatments are tested against.

Example 3.37:  Comet assay to assess genotoxicity

The comet assay is a test that assesses the genetic damage caused 

by novel compounds (Smith et al., 2008). To begin with animals are 

assigned to one of the treatment groups. Following treatment, the 

animals are humanely killed and cells are harvested from the target 

organ. These cells are placed on a number of slides, normally three 

slides per animal, with 50 cells per animal tested on each slide. Each 

slide is placed on an electrophoresis plate for 20 minutes before 

electrophoresis (0.7 V/cm, 300 mA) for a further 20 minutes. If the 

cells have suffered genetic damage, then the DNA will unwind from 

the cell causing the cell to appear comet-like. For a general discus-

sion of the design and an analysis of the comet assay, see Wiklund 

and Agurell (2003) and Bright et al. (2011).

Assume that the experiment is conducted using a animals per 

treatment group, s slides per animal and c cells per slide. Also let 

VCa, VCs and VCc correspond to the variance components for Animal, 

Slide and Cell, respectively. It can be shown that the variability at 

each level of the nested design is given by:

Animal-to-animal variability cs VCa
 + c VC

s
 + VC

c
� (3.5)

Slide-to-slide variability c VC
s
 + VC

c

Cell-to-cell variability VC
c
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Notice how the linear combinations of variance components make 

up the variability observed at each level of the nested design. They 

are governed by the replication of the levels of the random factors 

within the design.

The individual animals are the experimental units in the comet 

assay, so the treatment effects will be tested against the animal-

to-animal variability. When investigating the effect of varying the 

replication within the design, it is this level of variability that we 

need to focus on.

Investigating alternative nested designs

If you can estimate the variance components (using 

an existing dataset) then you can assess the effect that 

varying the replication of the random factors will have 

on the experimental unit variability. For example, in 

Example  3.37, if we have an estimate of the variance 

components, then we can use the above formulae to 

predict the magnitude of the animal-to-animal variabil-

ity when c and s are varied. This estimate can then be 

used, in conjunction with the sample size a, to predict 

the statistical power of the tests that would be achieved 

using that replication of the random factors within the 

experimental design

So for a given biologically relevant difference, we can 

answer the following important question:

If I increase the replication of slides within-animal, can I reduce 

the total number of animals I require without compromising the 

statistical power?

While it is possible to investigate many types of design 

in this way, for complex designs involving multiple 

nested and crossed factors it is probably best to con-

sult a professional statistician. For the higher-order 

nested designs described in this section, the scien-

tist may want to attempt such an analysis themselves. 

A way of analysing these designs is available within 

InVivoStat’s nested design analysis module (see 

Section 6.14).

Example 3.36 (continued):  Pressure applied to assess 

joint pain

Returning to Example 3.36, it was decided to investigate the effect 

of varying the number of animals within each group and also the 

number of trials per animal. Currently the design consists of eight 

animals per group with three trials per animal. It was decided to 

investigate the effect of varying the number of animals between six 

and ten while measuring each animal between one and six times.

For the PAM response, it was shown that there was a slight bene-

fit by increasing the number of animals in each treatment group 

(approximately a 5% increase in power). Figure  3.51 shows the 

power curves for increasing the number of animals per group, where 

the number of trials per animal was fixed at three and Figure 3.52 

shows the power curves for increasing the number of trials for each 
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Figure 3.51.  Plot of the power curves for Example 3.36 

when increasing the replication of animals while holding the 

number of trials per animal at three.
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Figure 3.52.  Plot of the power curves for Example 3.36 when 

increasing the replication of trials for each animal while 

holding the number of animals per group at eight.
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animal, where the number of animals per group was fixed at eight. 

Figure 3.52 revealed the benefit of increasing the number of trials 

per animal from three to six. There is approximately a 15% increase 

in power. Just to emphasise this result: we have increased the 

power of the statistical test without increasing the number of ani-

mals required. It also highlights that taking more than one measure-

ment per animal (and averaging the within-animal measurements) 

is beneficial as the power when only one measurement is taken is 

much lower. In our experience this conclusion holds in most experi-

mental situations. Taking more than one measurement per animal 

is usually beneficial.

The power curves in Figure 3.52 assume the number of animals 

within each group is eight. Note the large increase in statistical 

power that can be gained by increasing the number of trials per 

animal from one to three.

In the original paper it was found that by increasing the number 

of trials from three to five per animal per day, there was an improve-

ment in the precision of the PAM method. This was in contrast to 

increasing the number of animals per group from eight to ten, which 

appeared to have little effect; see Barton et  al. (2007) for more 

details. In contrast the weight distribution readout was improved by 

increasing the number of animals per group. Increasing the number 

of trials for each animal had little impact on the statistical power of 

this response as the triplicate measurements taken within each ani-

mal were all numerically similar.

Pseudo-replication

There is one pitfall that the unwary researcher may 

encounter if the correct nesting structure within the 

experimental design is not identified and that is pseudo-

replication (Lazic, 2010). If the researcher does not iden-

tify and/or ignores the nesting structure, then the statis-

tical analysis will be incorrect and the results potentially 

misleading. For a discussion of some of the more prac-

tical aspects of pseudo-replication, see Ruxton and 

Colegrave (2006, pp. 43–9) and Cumming et al. (2007).

Pseudo-replication occurs, more generally, when we 

think we have collected more information, using our 

experimental design, than we actually have. In many 

analyses, see Section 5.4.1, we assume that all the obser-

vations in the dataset are independent of each other. 

So if we analyse a dataset with ten observations, then 

we assume (by independence) that we have ten separ-

ate pieces of information. However, this may not be the 

case in certain practical situations. Failure to satisfy the 

independence condition, or take the non-independence 

into account in the statistical analysis, results in pseudo-

replication and hence incorrect statistical results.

Example 3.38:  Atherosclerosis study

A long-term study was carried out to assess the effect of a novel 

compound on the build-up of atherosclerotic lesions within the 

aorta of rabbits. Such an experiment was discussed in Festing 

et  al. (2002, p.  33). Three drug treatments were administered 

to the rabbits, one drug treatment per rabbit, with four animals 

receiving each treatment. Post mortem, the aorta was removed 

and cut into a number of en face sections. Five of the sections per 

animal were selected and the lesion area in each section mea-

sured, i.e. 60 sections were measured in total. The design con-

sisted of Section nested within Animal and Animal nested within 

Treatment (Figure 3.53).

Assume the results from the 60 individual sections were used in 

the statistical analysis and the researcher ignored the nested struc-

ture of the experimental design. The treatment effects were assessed 

against the variability of the 60 sections using one-way ANOVA (see 

Section 5.4.3). The problem is that one of the assumptions of this stat-

istical analysis is that the observations are independent (see Section 

5.4.1), i.e. there are 60 separate pieces of information available for 

the analysis. Of course in reality the sections measured within each 

animal will be more related than those measured between-animal. 

The 20 measurements taken within each treatment group, using 

this design, were probably less variable than if they had been taken 

from 20 individual animals (one section per animal). This is because 

responses measured within-animal are likely to be more similar than 

responses taken from different animals. Hence if we ignore the nest-

ing structure in the analysis, we may artificially lower the estimate 

of the variability. It is possible that this can result in false positive 

conclusions being drawn from the analysis.

As animals were dosed individually then the animals were the 

experimental units. The drug treatment effects should be assessed 

against the animal-to-animal variability. This implies we should 

begin the analysis by averaging the five observations for each ani-

mal before the statistical analysis begins. The analysis will then be 

made on the 12 average observations, one per animal, and not the 

individual 60 responses. Unfortunately it is almost certain that this 

correct analysis will not give as significant results as the incorrect 

analysis using the 60 observations.

Pseudo-replication and the hypothesis tested
While pseudo-replication can influence the statis-

tical tests, through the variability estimate, it can also 

influence the underlying hypothesis that is being 

tested. If the scientist is not aware of this issue then the 

hypotheses actually tested may be different to the ones 

planned. We describe three related ways that this can 

happen.

No replication of the experimental units  This may 

appear a little extreme, but it may occasionally be the 

case that practical aspects of the experimental process 
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Figure 3.54.  Nested design for Example 3.39 involving fixed factor Treatment and nested random factors Animal (with no 

replication) and Trial.

Factor

Treatment

Animal 1 2 3 4 5 6 7 8 9 10 11 12

Section 1 3 5 11 13 15 21 23 25 31 33 35 41 43 45 51 53 55

Drug A Drug BControl

Figure 3.53.  Nested design for Example 3.38, involving fixed factor Treatment and nested random factors Animal and Section.
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imply that within the nested design the actual replica-

tion of the experimental units is one. This implies the 

hypothesis we are testing may be influenced (or com-

pletely confounded) with other factors.

Example 3.39:  Odour span recognition

Consider a behavioural experiment, where rats are tested using 

the odour span recognition paradigm. The experimental designs 

described within this discussion are loosely based on the work 

of Dudchenko et  al. (2000) although we stress the experimental 

designs we describe are not those used in the original paper.

During an acclimatisation phase, rats are trained to dig for food 

rewards in cups with novel scented sand. On a test day, the rats 

are first shown a cup of unscented sand with a food reward buried 

inside. Once the reward has been found the rat is removed from the 

test arena and a second cup (with a novel scented sand containing 

a food reward) is introduced. The rat is re-introduced and, in the-

ory, if it remembers correctly, will dig for the food reward in the 

cup containing the novel scented sand. If the rat successfully finds 

the food reward, then it is removed from the test arena and a third 

cup with another novel scent is introduced. The test continues until 

the rat digs in a cup it has already investigated. The final response 

recorded is the number of trials successfully completed before the 

rat digs in a cup that it has already investigated. A set of 27 differ-

ent scented sands was prepared in advance for the experiment.

Assume an experiment was conducted to compare two treat-

ments. As the rats used in the experiment proved to be difficult to 

train, the researcher decided to use only two animals, one rat per 

treatment. Each animal was dosed individually and then assessed 

ten times over a period of time, each time with a random sequence 

of novel scents. The 20 observations, ten per animal, were then 

compared. An illustration of the design is given in Figure 3.54.

Clearly the results of this experiment will be mislead-

ing. The hypothesis that the researcher hoped to test 

was that the treatments were different, but the treat-

ment effect is completely confounded with the animal 

effect. Is the treatment effect observed simply due to 

differences between the two animals? When conduct-

ing a statistical test such as this, we assume that we are 

sampling (randomly) from the wider population of rats. 

So any differences we observe experimentally reflect, 

in some sense, the wider population. Clearly this is not 

the case in this experiment. In reality we have answered 

the question: ‘Are these two rats, each on a unique treat-

ment, different?’ We have not answered the wider ques-

tion as to whether the treatments are different.

No replication of the experimental conditions  The 

previous example may seem a little obvious; hopefully 

readers will appreciate the need to increase sample 

sizes beyond one. However, the issue may be more gen-

eral than simply the level of replication of the animals.

Example 3.39 (continued):  Odour span recognition

Assume the researcher now increases the number of rats to ten 

per group. It was also decided that the number of trials per animal 

should be reduced from ten to one. All rats were assessed using the 

same sequence of novel scents. While there is now replication of the 

experimental units, there is only a single replication of the experi-

mental conditions. Only a single series of novel scents was used in 

the experiment (Figure 3.55).

So while the researcher believed the hypothesis: ‘Are the treat-

ments different?’ was being assessed, in fact it was a more restrict-

ive one: ‘Are the treatments different when using this sequence 

of tests?’ In practice, the former (more general) hypothesis is of 

interest and this can be tested if the series of scents is randomly 

generated for each rat. This was the approach taken by Dudchenko 

et al. (2000). Note by randomising the sequence of scents we have 

confounded the effects of Animal and Sequence, so the animal-to-

animal variability that we test the treatments against will be inflated 

by any sequence differences (Figure 3.56). This is the price we pay 

for generalising the hypothesis. Alternatively, if the rats were tested 

multiple times, under different sequences, then we could separate 

the animal-to-animal variability and the sequence-to-sequence vari-

ability and see if the original confounding was a problem.

So in conclusion, replication allows us to answer 

more general questions. If we fail to replicate, and 

pseudo-replicate instead, then we can only answer 

more mundane questions that probably have obvious 

answers. For example, failing to replicate animals in 

the odour experiment left the scientist being able to 

answer the question: ‘Are the two animals different?’ It 

was perhaps not surprising that two animals gave dif-

ferent results (regardless of treatment). In the second 

version of the experiment described in this section it 

was the scent order that was not replicated, so again the 

hypothesis tested was not the one that the researcher 

had originally intended to evaluate. While we should 

randomly select multiple experimental units from a 

wider population, the same is also true of the experi-

mental conditions, if we wish our hypotheses and 

hence conclusions to be valid in general.

Unreliable estimated results due to nesting rela-
tionship  In the previous section we discussed how 

failure to identify the nesting relationships may result 

in an incorrect estimate of the variability being used 
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Figure 3.55.  Nested design for Example 3.39, involving fixed factor Treatment and random factors Animal and Sequence. 

Treatments assessed using the same sequence of novel scents.
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Treatment

Animal and Sequence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Control Treatment

Figure 3.56.  Nested design for Example 3.39, involving fixed factor Treatment and nested random confounded factors Animal, Sequence and Trial.
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Figure 3.57.  Nested design for Example 3.39, involving fixed factor Treatment and nested random factors Animal and Trial.
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in the statistical analysis. This will lead to unreliable 

test results. However, if the nesting relationship is not 

taken into account, then the estimated overall effects 

observed may not be reliable either.

Example 3.39 (continued):  Odour span recognition

Returning to Example 3.39, assume that two rats were assigned to 

each group, with ten trials per animal. An illustration of the design 

is given in Figure 3.57.

Let us also assume that the two animals in the control group 

remembered more scents than those in the treatment group. This 

could be caused by the treatment itself or just natural variation in 

the rat population. If the nested relationships in the experimental 

design had not been identified, then the researcher may have com-

pared the 20 treated results to the 20 control results. If 20 independ-

ently treated results are (on average) lower than 20 control results 

then, depending on the magnitude of the variability, this may be 

seen as clear evidence of an effect. However, in this example there 

are only four truly independent responses (corresponding to the four 

animals). The observed difference between the treatments is based 

on two pairs of observations. The difference is therefore less reliable. 

If another five rats per treatment were tested, giving a more reliable 

picture of the treatment effect on the population of rats, then this 

conclusion may change considerably.

With only two rats per treatment (even if we measured them at 

multiple occasions) we are effectively testing to see if the treatment 

varies between those two rats, and cannot generalise that to the 

wider population with any degree of certainty.

3.8  Repeated measures and  
dose-escalation designs

There are many ways we can repeatedly measure the ani-

mals in an experiment. Table 3.2 summarises seven differ-

ent scenarios that lead to different families of experimen-

tal design. In this section we concentrate on the repeated 

measures designs (Scenario 1 in Table  3.2) and related 

dose-escalation designs (Scenario 6 in Table 3.2). We will 

then go on to consider some more complicated examples 

of repeated measures designs.

3.8.1  Repeated measures designs

The simplest and most common example of a repeated 

measures design involves randomly assigning the ani-

mals to treatments and then measuring them repeat-

edly over time. The experimental design involves three 

factors: Treatment, Animal and Time. Animal is nested 

within Treatment as each animal is assigned to only 

one group. Also Animal and Treatment are crossed 

with Time as each animal, and hence each treatment, 

is measured at multiple time points.

In general, we define a design as being a repeated 

measures design if it consists of:

1.	 A repeated factor that indexes the levels of the 

repeated measurements (for example the Time 

factor).

2.	 An experimental design, such as a block, nested or 

factorial design, that is assessed repeatedly across 

the levels of the repeated factor. We define this as 

the core design. The observational units of the core 

design are measured repeatedly at the levels of the 

repeated factor.

As well as these two properties, we define a repeated 

measures design as being a nested repeated measures 

design if there are also:

3.	 Additional factor(s) nested within the combination 

of the levels of the repeated factor and the factor 

that corresponds to the observational units of the 

core design.

We shall consider these properties in more detail in the 

next sections.

The repeated factor

The repeated factor is the factor that indexes the levels 

of the repeated measurements. Examples of repeated 

factors include: Time (when animals are measured 

over time at specific time points), Brain region (when 

effects are measured in different brain regions) and 

Task (when the animal model involves testing animals 

under a sequence of different conditions, for example 

the attentional set shifting task (Hatcher et al., 2005)).

We usually assume that the repeated factor is a 

fixed categorical factor. It is normally crossed with 

all other experimental factors, including, crucially, 

the factor that corresponds to the experimental units. 

For example, the levels of the repeated factor are 

shared across the animals (all animals are measured 

at the same time points). This differentiates repeated 

measures designs from nested designs, discussed 

in Section 3.7.4. In a nested design the factor that 

indexes the within-animal observations is random 
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and nested within the Animal factor. Animals do not 

share the levels of the factor that indexes the within-

animal measurements.

The levels of the repeated factor are not randomised 

and this differentiates a repeated factor from almost 

all other experimental factors. As the levels cannot be 

randomised (the hippocampus level of the Brain region 

factor cannot be randomly assigned to any other brain 

region, and day 1 must come before day 2)  there will 

be spatial interrelationships between the repeatedly 

measured responses. In the statistical analysis we may 

need to take these interrelationships into account and 

this leads to the repeated measures analysis techniques 

(see Section 5.4.4).

Example 3.40:  Assessing the effect of repeated stress on 

rat body weight

An experiment was conducted to assess the effect of repeated 

stress on rat body weight (see Harris et  al., 1998). Twelve adult 

male Sprague Dawley rats were randomly assigned to two groups 

based on body weight using a stratified randomisation (see Section 

4.2.1). The first group was exposed to a moderate stressor by pla-

cing them in a plastic restraining tube for 3 hours on 3 consecutive 

days. A second non-restrained control group was housed in a shoe-

box cage for 3 hours. Following the 3 days of restraint the animals’ 

body weights were measured daily for 40 days. The repeated factor 

was therefore Day (levels: days 1–40). The experiment revealed that 

stress had a permanent effect on adult rat body weight.

The core experimental design

The core experimental design is the design that is 

assessed repeatedly across the levels of the repeated fac-

tor. Any type of experimental design can be a core design, 

including block, nested, factorial, crossover, dose-esca-

lation and even another repeated measures design.

We define a design as being a repeated measures 

design if the core experimental design is measured 

repeatedly while all factors that define the core design, 

and relationships between the core design factors, 

remain unchanged. Hence the core experimental 

design does not change across the levels of the repeated 

factor. Effectively the core experimental design at the 

first level of the repeated factor is assumed to be the 

same design at all other levels of the repeated factor. 

The repeated factor is therefore crossed with all the fac-

tors that define the core experimental design.

The experimental units of the repeated measures 

design are the same as the experimental units of the 

core design.

Example 3.40 (continued):  Assessing the effect of 

repeated stress on rat body weight

The core experimental design for the experiment was a single-order 

nested design consisting of the factors Stress (levels: restrained and 

control) and Animal nested within Stress. The repeated measures 

design consisted of this core design with the repeated factor Day 

at 40 levels. Animals were the experimental units of both the core 

design and the repeated measures design and the animals on each 

day correspond to the observational units of the repeated measures 

design. The Day factor was taken as a fixed factor and was crossed 

with both Stress and Animal. The data generated were analysed 

using a repeated measures analysis approach to take account of 

spatial interrelationships between the within-animal measure-

ments (see Section 5.4.4). An illustration of the core design and the 

repeated measures design (including only 2 days for clarity) is given 

in Figure 3.58 and contains both nested and crossed relationships.

Nested repeated measures designs

It is sometimes the case that an animal is measured 

multiple times at each level for the repeated factor. For 

example, blood samples are taken repeatedly over time, 

one per day for several days. The repeated factor would 

then be Day. If each of these samples is then assayed 

in triplicate, there will be an additional factor (Sample) 

that is nested within the combinations of the levels of 

Animal and Day. These designs are sometimes known 

as nested repeated measures designs.

As a rule of thumb, in cases where there are nested 

factors such as these it is recommended to average up 

to the experimental units at each level of the repeated 

factor (i.e. calculate the average result for each animal 

on each day) prior to conducting a statistical analysis. 

Once this averaging has been completed we may also 

want to generate suitable summary measures across 

time using these averages (see Section 5.4.4).

Example 3.36 (continued):  Pressure applied to assess 

joint pain

In Example 3.36, described in Section 3.7.4, we focussed on estimat-

ing the sources of variability in the experimental material and inves-

tigating the replication of the random factors. To do this easily we 

only considered the data collected on day 1. However, results were 

taken repeatedly over time on days 1, 21, 24 and 28 post-admin-

istration of the test compound. We could, in a separate analysis to 
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Figure 3.58.  (i) The core design and (ii) the repeated measures design for Example 3.40. The dotted lines join the levels of the core 

design factors that are measured repeatedly across the levels of the repeated Day factor (only two levels are shown for clarity).

 



Control

(i) Core design

1 8 2 ... 7

FCA  

9 1610... 15

Factor

Treatment

Animal

(ii) Repeated measures design

(only two days illustrated for clarity)

1 3 2 22 2423 25 2726 46 4847

Animal 

Trial

Control

1 8 2 ... 7

49 5150 70 7271

FCA  

9 1610... 15

73 7574 94 9695

1610... 159 8 2 ... 71 

FCA  Control

Day

Day 28

Day 1

Treatment

Animal

Trial

Figure 3.59.  (i) The core experimental design and (ii) the nested repeated measures design for Example 3.36. The dotted lines 

join the levels of the core design factors that are measured repeatedly across the levels of the repeated factor.
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that described in Section 3.7.4, investigate the effect of treatments 

over time.

The core design involved Treatment and Animal nested within 

Treatment, where the animals were the experimental and obser-

vational units of the core design. The repeated factor was Day (at 

four levels) and this was crossed with Animal and Treatment (each 

animal was tested on each day).

As animals were tested three times per day, there was a fur-

ther factor (Trial), which was nested within the combinations of 

the levels of Animal and Day. The observational units in the nested 

repeated measures design were therefore the individual measure-

ments taken on the animals on each day.

An illustration of the core design and the repeated measures 

design are presented in Figure  3.59. Note only two levels of the 

repeated factor are included in the diagram for clarity.

To assess the change in response over time, the three measure-

ments taken per animal per day were first averaged and then a 

repeated measures analysis (see Section 5.4.4) was performed on 

these averages. This analysis revealed that both the pressure appli-

cation measurement and weight distribution approaches detected a 

reversal of hypersensitivity. It was also found that the two readouts 

were highly correlated.

Example 3.37 (continued):  Comet assay to  

assess genotoxicity

In the description of the comet assay (Example 3.37) it was noted 

that the experimental design was a higher-order nested design. 

Cell is nested within Slide, Slide is nested within Animal and 

Animal is nested within Treatment. However, it may be the case 

that cells are taken from multiple organs rather than from just 

one target organ. If cells are taken from multiple organs then 

the design can also be viewed as a nested repeated measures 

design. The core design is a single-order nested design (involv-

ing Treatment and Animal) and the repeated factor is Organ (the 

levels of the Organ factor cannot be randomised). The factors Slide 

and Cell are now nested within the combinations of the levels 

of the Organ and Animal factors. The observational units of the 

core design are the organs from each animal. The observational 

units for the nested repeated measured design are the cells. The 

experimental units are still the animals regardless of the number 

of organs assessed.

In practice we may choose to analyse the data generated from 

each organ separately, the approach favoured by toxicologists, or 

conduct a repeated measures analysis. In either case we first need 

to summarise the individual observations taken on each animal; see 

Bright et al. (2011) for more details.

More complex repeated measures designs

In certain animal experiments some responses are 

measured repeatedly (i.e. over time) whereas others are 

only measured once. For example, in toxicology experi-

ments animal body weight is measured repeatedly over 

time whereas organ weights are only measured once 

at the end of the study. In such cases the experimen-

tal design can be defined in terms of the core design 

itself (for certain responses such as organ weight) and 

as a repeated measures design for others (such as body 

weight). This should highlight to the reader that the term 

‘repeated measures design’ is related to the nature of the 

responses as well as to the experimental design itself.

In this section examples of more complex repeated 

measures designs, where the core design is an example 

of one of the scenarios described in Table 3.2, are dis-

cussed. The first is an example of a double-repeated 

measures design whereas the latter is a crossover 

design has been already discussed in Section 3.4.9. In 

practice it is common to measure the animals repeat-

edly in an animal experiment, regardless of the core 

experimental design used. So it is likely the reader will 

find themselves using these more complex repeated 

measures designs. As long as the structure of the 

experimental design has been identified, this should 

not be a problem.

Example 3.41:  Double-repeated measures design 

involving time

McQuade et al. (1999) described an experiment to assess the effect 

of novel environmental stimuli on central noradrenaline function. 

The experiment involved placing rats in one of three test arenas, 

where each arena presented the animal with different stimuli. The 

three stimuli within the test arenas were dark (10 lx), light (2500 

lx) and light (2500 lx) with an unfamiliar rat where two rats were 

placed in the test arena separated by a clear Perspex barrier. Rats 

were randomly assigned to one of the three arenas and hence the 

Animal factor was nested within the Arena factor. To measure nor-

adrenaline, probes were implanted into both the frontal cortex and 

the lateral hypothalamus. As measurements were taken in both brain 

regions (and the Brain region factor levels could not be randomised 

within animal) the design was therefore a repeated measures design 

with repeated factor Brain region. Additionally, the animals were 

assessed every 20 minutes up to 3 hours after being placed in the 

test arena. Hence there were effectively two repeated factors in this 

experiment, Brain region and Time. If we considered the repeated 

measures design (with Brain region as the repeated factor) as a core 

design, then the Time factor was a second repeated measures fac-

tor. Hence the experimental design was a double repeated measures 

design. The two repeated factors were crossed with each other.

Example 3.42:  Double-repeated measures design  

involving three related end points

Double-repeated measures designs can be employed in many 

experimental situations, even when the animals are not measured 

repeatedly over time. For example, a study was conducted to assess 

the antidepressant efficacy of a synthetic pregnenolone-derivative 
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MAP4343 (Bianchi and Baulieu, 2012). This drug is known to bind to 

MAP-2 in vitro and increase its ability to stimulate tubulin assembly. 

This is deemed important as evidence suggests that the pathogen-

esis of depressive disorders is associated with neuronal abnormal-

ities, including α-tubulin isoforms, in brain microtubule function.

As part of the study rats reared in isolation were randomly 

assigned to six groups, receiving either MAP4343 (10 mg/kg), flu-

oxetine (10 mg/kg) or vehicle, by acute or sub-chronic adminis-

tration. The α-tubulin isoforms (Tyr-Tub, Glu-Tub and Acet-Tub) were 

assessed in three brain regions (the hippocampus, amygdala and 

the prefrontal cortex). Now each isoform could be analysed separ-

ately, and hence the design would be a repeated measure design 

with Brain region as the repeated factor. However, we could alterna-

tively assume that Isoform is also a repeated factor, and hence the 

design is a double-repeated measures design with repeated factors 

Isoform and Brain region.

Example 3.15 (continued):  Five-choice serial reaction 

time task

Consider Example  3.15 described in Section 3.4.9, conducted to 

assess whether a 5-HT4 partial agonist was a candidate treatment 

for Alzheimer’s disease (see Hille et al., 2008). The design involved 

four treatments with each animal receiving all treatments, 1 per 

week over 4 weeks. Animals were tested on a baseline protocol 

over 4 days within each week (Monday to Thursday) and hence this 

can be considered a repeated measures crossover design, where the 

repeated factor was Day (of the week) and the core design was a 

crossover design.

The experimental units are still the animals within a test period as 

effectively the crossover design is measured repeatedly on 4 days. 

Day is therefore crossed with all other factors in the experimen-

tal design. The observational units are the measurements taken on 

each animal on each day. This approach allows the scientist to inves-

tigate changes in response during the working week.

3.8.2  Dose-escalation designs

Dose-escalation designs share many characteristics 

with repeated measures designs. When employing 

a dose-escalation design the animals are measured 

repeatedly over time, with one dose of the compound 

administered in each test period. The doses are admin-

istered in the same (non-random) order for all ani-

mals. Examples of dose-escalation designs are given in 

Brammer (2003) and include the guinea pig papillary 

muscle assay and the isolated lung assay.

However, according to our definition given in Section 

3.8.1, we do not define dose-escalation designs as 

repeated measures designs. The dose of compound 

administered to each animal increases across the test 

periods, hence the levels of the Dose factor vary across 

the levels of the repeated factor. The experimental units 

in these designs are the animals in each test period and 

hence this also varies across the levels of the repeated 

factor. Note also that the Dose factor is completely con-

founded with the (repeated) Test period factor (see 

Brammer, 2003). This is a weakness of these designs 

as it is therefore not possible to separate the effects of 

these two factors.

As the doses of the compound are administered to 

each animal in a non-random order, there will still be 

spatial interrelationships between the responses mea-

sured for each animal. So a repeated measures analysis 

approach (sometimes called a within-animal analysis) 

is still appropriate due to the non-random allocation of 

the levels of the Dose factor (see Section 6.10).

Example 3.43:  Cardiovascular telemetry in monkeys

An experiment was conducted to assess the sensitivity and validity 

of a cardiovascular monkey telemetry model as a predictor of QT 

interval prolongation in humans (Chaves et al., 2006). We shall focus 

on the second study reported in the paper, a pharmacokinetic study. 

Moxifloxacin was administered orally by nasogastric gavage in 0.5% 

methylcellulose at 10, 30, 100 and 175 mg/kg using a dose-esca-

lation design. All four monkeys received all doses of moxifloxacin in 

the same non-random order. Blood samples were taken pre-dose 

and at 0.5, 2, 4, 8 and 24 hours post-dose. The time to achieve max-

imal plasma concentration C
max

 was assessed for each dose in each 

animal. An illustration of the dose-escalation design is presented 

in Figure 3.60 and highlights that the Animal and Dose factors are 

crossed with each other.

The experimental units in this design are the animals in each test 

period. As the order of moxifloxacin dose allocation is non-random 

there will be spatial interrelationships between the results from 

each animal and hence it may be appropriate to use a repeated 

measures analysis approach to analyse C
max

 to account for this. In the 

statistical analysis it was observed that the mean C
max

 values were 

less than dose proportional across the experimental groups.

More complex dose-escalation designs

It is possible for an experimental design to consist of 

both dose-escalation and repeated measures charac-

teristics. We define these designs as repeated measures 

dose-escalation designs. Examples can be found in 

Ingram-Ross et al. (2012) and Aylott et al. (2011).

Example 3.43 (continued):  Cardiovascular telemetry in 

monkeys

We return to Example  3.43 discussed in the previous section. To 

calculate the C
max

 response the animals were measured repeatedly 
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Figure 3.61.  (i) The core design and (ii) the repeated measures dose-escalation design for Example 3.43. The dotted lines join 

the levels of the core design factors that are measured repeatedly across the levels of the repeated factor.
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Figure 3.60.  Dose-escalation design for Example 3.43. All animals receive the same sequence of doses of moxifloxacin 

across the test periods.
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at pre-dose and then at 0.5, 2, 4, 8 and 24 hours post-dose in each 

of the four test periods. The design is therefore a repeated meas-

ures dose-escalation design. The core design is the dose-escalation 

design discussed above. This core design is then measured repeat-

edly over time. The experimental units are still the animals in each 

test period; however, the observational units are now the measure-

ments taken on each animal in each test period at each time point. 

An illustration of the core dose-escalation design and the repeated 

measures dose-escalation design are presented in Figure  3.61 

(where only the 0.5 hour and 24 hour time points are shown for 

clarity).

3.9  Split-plot designs

Split-plot designs (Scenario 4 in Table 3.2) have a long 

history in agricultural field trials but, in our experience, 

are not often employed by animal researchers. If the 

reader is interested in using such designs then more 

general texts, such as Montgomery (1997, pp.  521–6), 

should be consulted.

Traditionally these designs are said to consist of 

whole plots and subplots, where the factor that defines 

the subplot is nested within the factor that defines the 

whole plot. The whole-plot treatments are randomly 

applied to the whole plots and the subplot treatments 

are randomly applied to the subplots within each 

whole plot. In other words these designs involve two 

sets of treatments, and each set is randomly assigned 

to a different unit in the experimental design. There are 

therefore two different types of experimental unit in a 

split-plot design.

3.9.1  Animals as whole plots

Consider a split-plot design that consists of two treat-

ment factors (say A and B). The levels of Treatment A are 

randomly applied to the individual animal, one treat-

ment per animal. In contrast all the levels of Treatment 

B are randomly applied to regions or areas within each 

animal. So the two types of experimental unit in this 

split-plot design are the animals and the regions within 

each animal. The effect of Treatment A is assessed 

against the between-animal variability whereas the 

effect of Treatment B is assessed against the within-ani-

mal variability. The design has both crossed and nested 

factors. For example, Animal is nested within Treatment 

A, but is crossed with Treatment B. Treatment A is also 

crossed with Treatment B.

The analysis of such designs may require the input 

of a statistician as the Animal factor will need to be 

defined as a random factor (most packages by default 

define all factors, other than the factor that corres-

ponds to the observational units, as fixed). The scientist 

should ensure that the effect of Treatment A is tested 

against the between-animal variability whereas the 

effect of Treatment B is tested against the within-ani-

mal variability. It can also be shown that the interaction 

between the two treatments should be assessed against 

the within-animal variability.

There are some similarities between analyses of 

data generated using split-plot and repeated measures 

designs (the latter are discussed in Section 5.4.4). Both 

contain between-animal factor(s) and within-animal 

factor(s), hence both involve assessing factors against 

the appropriate within- or between-animal variability. 

However, we contend that the randomisation of the 

two designs is different. In a repeated measures design 

the levels of the repeated factor (such as Time) cannot 

be randomised whereas in a split-plot design the lev-

els of the within-animal factors are randomised. This 

leads to different analysis strategies: an ANOVA-based 

analysis for split-plot designs and perhaps a repeated 

measures analysis for repeated measures designs (see 

Section 5.4.4).

Example 3.44:  Coated implant assessment in rabbits

A study was performed to assess the effect of four coated implants 

on bone formation in New Zealand white rabbits (Hulshoff et al., 

1996). The four types of coating included in the study were a 

plasma-sprayed Ca-P coating, a heat-treated plasma-sprayed Ca-P 

coating, an amorphous magnetron-sputter coating and a crystalline 

magnetron-sputter coating. Four cylinders (one per coating type) 

were inserted into random positions in the lateral and medial fem-

oral condyles of each of 18 rabbits. The rabbits were then humanely 

killed at three time points (3, 6 and 9 weeks post-surgery) and the 

bone-implant interface evaluated histologically. As all four implants 

were administered to each rabbit, and post-mortem samples were 

taken at various time points, the design employed was a split-plot 

design. The rabbits were the whole plots and the positions within a 

rabbit the subplots. The time points (whole-plot treatments) were 

randomly assigned to the rabbits and the types of implant (subplot 

treatments) were randomly assigned to positions within the rabbit. 

The results of the experiment revealed that the Ca-P coatings and 

the plasma-sprayed Ca-P coatings showed the same bone healing 

process.
 

 

 

 

 



Experimental design120

3.9.2  Animals as subplots

While we envisage that Animal will correspond to the 

whole plots, this need not always be the case, as the fol-

lowing examples show.

Example 3.45:  Developmental rat dietary study

Vitamin A deficiency is known to cause respiratory and mobility prob-

lems in neonate rats. An experiment was conducted to investigate 

whether a moderate deficiency of vitamin A plays a role in regulating 

key skeletal muscle regulatory pathways (Downie et  al., 2005). If 

there were effects observed, then this could be a major health con-

cern as vitamin A deficiency is common in the developing world.

At the start of the study, 60 female Rowlett-hooded Lister rats 

were group housed. Let us assume they were housed in 12 cages, 

five animals per cage. These cages were randomly assigned to 

two groups, six cages per group. The first group were fed a vita-

min A-moderate diet and the second group were fed a vitamin 

A-sufficient diet from weaning till the end of pregnancy. Prior to 

mating the rats were group housed but from mating to gestation 

the rats were singly housed. Rats were killed at various time points 

during and after pregnancy.

As the rats were group housed during the study, five per cage, 

and were killed at five time points post-mating, it would be sens-

ible to kill one animal per cage per time point. The design used 

in this scenario would be a split-plot design. Cages correspond to 

the whole plots and animals correspond to the subplots. The diets 

(whole-plot treatments) were randomly assigned to the cages of 

animals (whole plots) and the time points (subplot treatments) 

were randomly assigned to the animals within each cage (subplot 

treatments).

By running the experiment, the researchers were able to show 

that mothers fed the vitamin A-sufficient diet had reduced retinol 

concentrations and neonates had reduced relative lung weights. 

Neonatal survival was lower in the vitamin A-sufficient group where 

neonates had increased relative heart weights.

Example 3.46:  Environmental study using a split-plot 

design

An example of a split-plot design is described in Morris (1999, p. 67). 

An experiment was conducted to assess the effect of environmen-

tal temperature and dietary nutrition concentration on the egg-laying 

performance of hens. Of particular interest was whether putting more 

energy into the diet would reduce the adverse effect of heat stress. 

Hens were housed individually in six rooms (which were randomly 

assigned to a level of the Temperature factor). The four diets under 

consideration were then randomly assigned to the four hens within 

each room. Hence the rooms and the hens correspond to the two 

experimental units in this split-plot experiment. Temperature and Diet 

were defined as fixed factors and Room and Hen as random factors. 

Room was crossed with Diet but was nested within Temperature. 

Hence the Temperature factor was tested against the between-room 

variability, whereas Diet and the interaction between Temperature 

and Diet were tested against the within-room variability.

3.10  Experimental designs in practice

In this chapter we have considered the types of experi-

mental designs that researchers require when perform-

ing animal experiments. This includes block designs, 

factorial designs, nested designs, etc. Each of the differ-

ent design types has been introduced and their proper-

ties considered.

Although we have described each design type sep-

arately, in practice it is unlikely that an experiment will 

involve only one of these types. The experimental designs 

that are routinely employed may possess characteristics 

from many design types. Once recognised, this allows 

the researcher to design experiments more efficiently, 

perhaps performing different analyses to investigate dif-

ferent aspects of the same experimental design.

In Section 3.8.1 we considered more complex 

repeated measures designs. These involve designs 

where the core design (which is assessed repeatedly 

across the levels of the repeated factor) can be any 

type of design, such as a crossover, factorial or even a 

repeated measures design. Dose-escalation designs 

can also involve repeated measurements, as consid-

ered in Section 3.8.2.

However, in practice we can also combine dif-

ferent design types in non-repeated measures sce-

narios. For example, any experiment based on one 

of the designs considered in this chapter can also be 

blocked. In Example 3.34, an experiment to assess the 

effect of doses of a mutagen in transgenic mice, the 

design was a nested design with Mouse nested within 

Dose. However, the results were sent to five laborator-

ies for testing, so the design was also a block design 

(blocked by Laboratory). Any type of design can also 

have multiple (crossed) factors of interest and hence 

be described as a small factorial design. For example, 

Example 3.17 consisted of a crossover trial conducted 

to assess marmoset preference for different types 

of nest boxes. The actual experiment involved two 

crossed factors of interest (Nest box and Camera) and 

hence was also a factorial design. This was an example 

of the multi-factor crossover designs discussed in Bate 

and Boxall (2008).

For the purposes of illustration, in this chapter we 

simplified the examples given so that only one of the 

characteristics was discussed. This hopefully makes it  
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easier to understand the principles underlying each 

design type. However, considering the multiple fea-

tures of a design can allow the researcher to obtain 

more information from the experiment, as the follow-

ing example shows.

Example 3.10 (continued):  Anti-microbial medication 

assessment

Example 3.10, described in Section 3.4.3, considered an experiment 

to assess whether spray-dried animal plasma (SDAP) in the diet 

could be used as an alternative to anti-microbial medication contain-

ing colistin sulphate in weanling pigs challenged with Escherichia 

coli K99 (Torrallardona et al., 2003).

In this example it was stated that the design employed was a 

block design. However, the design itself was a little more compli-

cated. The actual design involved blocks, factorial treatments, nested 

factors and repeated measures, as described below.

3.10.1  Blocks

The 48 piglets were assigned to three blocks based on 

their pretreatment body weight (blocking factor, lev-

els: light, medium and heavy). The 16 animals in each 

block were then assigned to four pens, taking the litter 

into account, and the four treatments were randomly 

assigned to the four pens in each block. The design 

was therefore a complete block design with pens as the 

experimental units (dietary treatments were admin-

istered to the pen rather than the piglet). Note Litter 

may also have been a second blocking factor in this 

example.

3.10.2  Factorial treatments

The four treatments were actually all combinations of 

two factors: SDAP (levels: 0 and 7%) and colistin sul-

phate (levels: 0 mg/kg and 300 mg/kg). Hence the 

design was a small full-factorial design (see Section 

3.5.3). The researcher could have assessed the differ-

ences between the group means, perhaps making use 

of the hidden replication (see Section 3.5.4). This design 

also allowed the researcher to see how the effects of the 

two factors interacted with each other.

3.10.3  Nested factors

For the growth rate and food intake end points the pens 

were the experimental units, and hence any results 

from the individual piglets within each pen were first 

averaged prior to analysis. However, the design could 

also be described as a nested design. The additional 

Piglet factor was nested within Pen (each animal was 

housed in only one pen). The researcher could therefore 

have considered the replication of the pens (using the 

power analysis technique described in Section 3.7.3) 

or perhaps investigated the interrelationship between 

the replication of piglets and pens (see Section 3.7.4). 

Would it be beneficial to house the piglets two per pen 

(rather than four) while increasing the number of pens 

(the experimental units)? Perhaps the researcher could 

use fewer piglets in future if fewer pigs are housed in 

the pens. In the actual experiment two of the four pigs 

were humanely killed (on days 7 and 14) so that sam-

ples of the small intestine could be taken to measure 

various disease end points over time. Hence the repli-

cation of piglets within pen may have been difficult to 

vary in this example.

3.10.4  Repeated measures

Finally, for some of the experimental end points, as 

discussed above, two animals per pen were humanely 

killed on days 7 and 14. These animals were not cho-

sen at random (the second heaviest in each pen was 

selected on day 7 and the third heaviest on day 14). 

Hence for these end points the design was a repeated 

measures design. Intriguingly, if the animals within 

each pen that were humanely killed at each time point 

had been selected at random from each pen, then the 

design would have been a split-plot design with Time 

as the within-plot (or within-pen) treatment factor and 

SDAP and colistin sulphate as the two between-plot (or 

between-pen) treatment factors.

3.11  A good design should result in…

We have now discussed in detail some of the funda-

mentals of experimental design. Hopefully this will 

provide researchers with a theoretical framework 

when planning experiments. All of the methods dis-

cussed in this section will help the researcher make 

best use of the available resources and hopefully 

reduce animal use.
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In practice many experimental designs consist 

of a combination of the types described above. For 

example, the researcher may want to use a blocked 

crossover design, or a factorial design with multiple 

nested factors. The principles though are the same 

for these more complicated designs as for the simpler 

cases. By seeing the way the designs are related to each 

other (using the ideas described above, such as cross-

ing and nesting) the reader should now see how more 

complex designs can be constructed. We have hope-

fully also given sufficient examples of these more com-

plex designs to show how they can be built up from the 

simpler examples.

Before we go on to consider the analysis of the data 

collected when using these designs, we summarise 

the properties of a good experimental design. A good 

experimental design should result in:

An absence of systematic error: If the design is •	

appropriate, then the researcher should be pro-

tected from the possibility that an unexpected 

or unplanned effect influences the experimental 

results. The design should reduce any treatment 

comparison bias.

A wide range that the conclusions are valid: By includ-•	

ing more levels of a factor in the design, for example 

using males and females rather than just one sex or 

using animals with a wide range of body weights, 

then the conclusions drawn from the study should be 

valid over a wider range of conditions. It may appear 

sensible to use animals from a narrow body weight 

range in a study. This may well reduce the animal-to-

animal variability. However, the conclusions drawn 

from the study may only be valid for the limited body 

weight range included in the study. It may be better 

to use a wider range of body weights, but make sure 

that a body weight factor has been included in the 

design and analysis to account for the extra variabil-

ity this may cause.

Simplicity: Designs should be simple. Complex •	

designs are more likely to be implemented incor-

rectly if conducted by a stressed-out animal techni-

cian working on a Sunday afternoon.

A well-defined analysis strategy: The researcher •	

should be able to investigate data generated from a 

well-designed experiment using a simple statistical 

analysis. If the design is planned properly the analy-

sis should be straightforward to complete and follow 

on from the experimental design.

Reliable estimates of variability: Good designs •	

should allow the researcher to estimate the sources 

of variability. This will help reduce sample sizes by 

allowing the researcher to assess, and hopefully 

reduce, the various sources of variability in the 

study.
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In the previous chapter we gave recommendations 

regarding the randomisation procedures that should be 

performed when employing factorial, block and cross-

over designs. We also considered randomisation when 

differentiating between the various ways that an animal 

can be measured repeatedly. In this chapter we shall 

discuss some of the more general issues associated 

with randomisation and highlight how randomisation 

can influence the statistical analysis.

As a general rule it should be remembered that:

Where possible, the levels of each factor should be •	

randomly assigned to the labels of the experimental 

design. So, for example, if a design is constructed (or 

obtained from a textbook) and the labels within the 

design are given as ‘1’, ‘2’ and ‘3’, then the actual treat-

ments in the experiment (say drug X, drug Y and the 

control) should be randomly assigned to the labels ‘1’, 

‘2’ and ‘3’.

Randomisation should ensure that each animal has •	

an equal chance of being allocated to any of the 

experimental groups.

If a random factor is included in the statistical ana-•	

lysis, then we should always try to select the levels of 

the random factor randomly from a wider popula-

tion of levels. For example, the study animals should 

be randomly selected from a larger population of 

animals. These study animals are then randomly 

assigned to the treatment groups. As we shall see, 

when we draw conclusions from the statistical ana-

lysis of an animal experiment, these conclusions can 

only be generalised to the wider population from 

which the animals were randomly taken. So, for 

example, the conclusions of an animal experiment 

conducted using males will not necessarily general-

ise to females.

Design first and randomise second. Leaving to •	

chance the exact relationship between the factors in 

the design may be the easier option, especially if there 

are many effects that could influence the experimen-

tal results. However, we believe it is best to take into 

account as many effects as possible, by including 

corresponding factors in the experimental design, as 

this usually leads to a simpler analysis, more reliable 

results and more informed decisions.

This chapter, devoted to randomisation, is purposefully 

placed between the experimental design and statis-

tical analysis sections of the book. This is to emphasise 

that randomisation provides a justification (it should 

be stressed not the only justification) for the statistical 

analysis. Randomisation can be seen as a link between 

the experimental design and the statistical analysis.

4.1  Practical reasons to randomise

There are many practical reasons why we should ran-

domise the experimental material in an experiment. 

We describe some of the more important ones.

4.1.1  Bias reduction

Randomisation provides a way of reducing bias in the 

experimental outcomes. It can reduce or remove any 

systematic bias caused by procedural effects and also 

help ensure that the study is blinded, thus further redu-

cing the risk of generating biased results. The effect of 

Randomisation
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randomisation (or lack of) was considered in a review 

of studies that assessed treatment interventions in 

multiple sclerosis (Vesterinen et al., 2010). They found 

that of 1117 publications considered, only 106 reported 

using randomisation techniques. Interestingly, for the 

36 interventions considered in greatest detail, the ran-

domised studies revealed a smaller treatment effect (on 

average a 20.6% change from control) compared to the 

non-randomised studies (41.6% change from control).

Van der Worp et  al. (2010) describe four ways that 

the result of an experiment may become biased, all 

of which can be addressed using a suitable random-

isation. These biases will affect the internal validity of 

the experiment (see Table 4.1). It is recommended that 

the researcher not only consider these four sources of 

bias when planning the experiment, but also describe 

the strategies employed to reduce their influence when 

reporting experiments. We give two examples where a 

lack of randomisation may result in bias that reduces 

the internal validity of the experiment.

Removing unforeseen trends

When comparing treatments in a study, we aim to 

remove the influence of all nuisance effects that could 

bias the treatment comparisons. We do this by includ-

ing blocking factors in the experimental design (such 

as Day of testing) or perhaps placing limits on the range 

of levels of an effect (such as body weight) that may 

influence the results. However, no matter how well we 

achieve this, there is always a risk that certain effects 

(that we cannot control) may influence the responses. 

If we conduct a randomisation then, as mentioned by 

Festing et  al. (2002, p.  35), we can assume that these 

nuisance effects (in theory) influence all treatment 

groups equally. Randomisation will therefore reduce 

or minimise the bias caused by these nuisance effects 

and hence we can assume treatment comparisons are 

unbiased.

In practice it may be the case that a scientist did not 

identify a potential source of bias when planning an 

experiment but may perceive its effect once the experi-

ment has started. For example, if an experiment takes a 

whole working day to complete, it may be the case that 

a trend over time was observed that would then need 

to be taken into account. If the animals were randomly 

assigned to the order of testing during the day, or better 

still blocked by time of day, then the scientist may be 

able to account for the trend over time in the statistical 

analysis (or at least investigate it further). This would 

not be possible if, for example, all the control animals 

had been tested first during the morning.

Humans are systematic

While we think we are behaving in a random fashion, 

sadly it is well known that the human mind works sys-

tematically. For example, when assigning animals 

Table 4.1. Four types of bias affecting internal validity

Type of bias Comment Example

Selection bias Bias caused by a non-random allocation of animals to 

treatment groups.

Do we try to avoid allocating the less 

healthy animals to the high-dose group?

Performance bias Bias caused by differences, however subtle, in levels of 

husbandry care given to animals across treatment 

groups.

Are sick animals in the control group given 

the benefit of the doubt and kept alive 

longer than animals in the high-dose 

group?

Detection bias Bias caused when the researcher assessing the effect 

of the treatment knows which treatment the animal 

received.

When assessing animal behaviour, it is 

human nature to want to see a positive 

effect in your experiment.

Attrition

bias

Bias caused by unequal occurrence and handling of 

deviations from the protocol.

If many animals are excluded from the 

high-dose group, should we take this 

into account?
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to groups, we may feel that we are performing a ran-

dom allocation, but chances are we have introduced 

some underlying trends to the experimental material. 

‘Randomly’ selecting animals from a cage is not ran-

dom if the largest, slowest or easiest to catch animals 

are selected first. This may influence the results of the 

experiment. In practice it is best to leave the random-

isation to either a computer or some other suitably 

independent mechanical device.

Consider the case of a lottery where punters are 

allowed to select their lottery numbers. While it is pos-

sible to select numbers at random, using a random 

pick, many people still use non-random strategies. 

For example, selecting numbers based on birthdays 

(implies that numbers greater than 31 will not be 

picked as often) or choosing to spread the selection 

across the card. How many other people are using the 

same approach? If there are other people using your 

strategy, then you are more likely to have to share any 

winnings with them because the set of numbers you are 

all selecting from is reduced.

So randomisation may help you keep the entire jack-

pot, assuming you do win. Unfortunately randomisa-

tion does not make you any more likely to choose the 

correct numbers.

4.1.2  Blinding

There appears to be growing evidence that the import-

ance of blinding has been overlooked, or at least under-

reported, in the animal research literature. Blinding is a 

crucial part of the experimental process and methods of 

blinding should be reported alongside the experimen-

tal results (see Kilkenny et al., 2009). Randomisation is 

a useful tool to aid in the blinding of an experiment.

There are many ways that an animal experiment 

should be blinded. The treatment allocation should be 

blinded to the researcher administering the treatment 

and/or conducting any other interventions such as 

surgery or training. Technicians and/or veterinarians 

performing routine husbandry activities or making 

decisions about animal welfare should also be blinded 

to treatment allocation as such information may bias, 

however subtly, their decision-making process. Finally 

the researcher assessing the outcome of the experiment 

should be blinded to the treatment allocation to avoid 

any research priorities influencing the results.

Rooke et  al. (2011) reviewed 207 articles in peer-

reviewed journals that describe animal experiments 

conducted to assess treatments for Parkinson’s disease. 

They found that only 38 reported a blinded assessment 

of the outcome of the experiment. Intriguingly the 

authors found that treatment-related improvements 

in the neurobehavioural score (NBS) were smaller in 

blinded studies compared to the non-blinded stud-

ies (on average, 0.85 NBS vs. 1.18 NBS, respectively). 

Vesterinen et  al. (2010) reported in a review of 1117 

publications that only 178 described the assessment of 

the outcome of the experiment as being blinded. In the 

36 interventions considered in greater detail, there was 

also an increase in observed efficacy in the studies that 

did not report blinding compared to those that did (on 

average an increase from the control of 41% vs. 29.8%, 

respectively). Both papers concluded that if the techni-

cians involved in husbandry and the researchers that 

performed the treatment administration and assessed 

the outcome of the experiment were not blinded to the 

treatment allocation, then this probably had an impact 

on the size of the observed treatment effects.

When carrying out an experiment, it is difficult for a 

researcher to remain completely objective. This is par-

ticularly the case when the measurements taken are 

subjective. If possible some degree of blinding is useful 

to remove the risk of bias, and randomisation provides 

a tool for doing this.

If the researcher is trying to publish results, it is import-

ant to be fair and be seen to be fair. We argue that details 

of the randomisation employed should be given as part 

of the methods section in any journal submission. It will 

give the referee and reader alike more confidence that 

the results presented are unlikely to be influenced, how-

ever subtly, by the researcher’s preconceptions or other 

unforeseen factors; see Macleod et  al. (2009) and the 

ARRIVE guidelines (Kilkenny et al. 2010).

4.2  Statistical reasons to randomise

As well as the practical reasons described above, there 

are also important statistical reasons why we should 
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randomise the experimental material. We shall describe 

some of them in this section.

4.2.1  Estimating the variability

When carrying out many statistical analyses, we com-

pare the size of the factors of interest against a suitable 

estimate of the variability. If randomisation reduces the 

risk that unforeseen effects have biased the estimate of 

the factors of interest, then randomisation also implies 

that the estimate of the variability will be free of these 

effects. This is important if the results of the statistical 

analysis are to be reliable. However, using an appro-

priate randomisation can also increase the underlying 

variability of the data. This need not be a major prob-

lem, as long as an appropriate statistical analysis is 

used to analyse the data generated. We highlight this 

with an example.

Example 4.1: Stratified randomisation based on  

body weight

Assume the researcher needs to assign 15 animals to three treat-

ment groups, five animals per group. There is a concern that larger 

animals will give higher responses. The effect of body weight could 

therefore:

1.	 increase the variability of the response

2.	 bias any treatment comparisons if the animals in the control 

group were, on average, heavier than those in the treatment 

groups

So, how should the animals be allocated to the treatment groups? 

We consider two scenarios.

Scenario 1

We could simply randomly assign the 15 animals to the three treat-

ment groups. However, in doing this we run the risk that the lar-

gest animals will be assigned to the control group. It turns out 

there is approximately a 0.03% chance of the randomisation gen-

erating this allocation. If the researcher were unlucky enough to 

make such an allocation, then any treatment comparisons could 

be biased by the effect of body weight. In practice it is more likely 

that there will be a small difference between the group mean 

body weights and this may lead to a subtler bias caused by body 

weight differences.

Scenario 2

An alternative way to allocate animals to treatments is to block 

by body weight  – the stratified randomisation. We first split the 

animals into five blocks, three animals per block, based on body 

weight. The largest three animals are assigned to block 1, the 

next largest three animals to block 2 and so on. We now randomly 

assign, separately for each block, the three treatments to the three 

animals within each block. We could then include the blocking fac-

tor in the analysis to account for any variability caused by differ-

ences in body weight.

It should be noted that while this approach reduces the overall 

bias to the group means caused by body weight differences (the 

average group body weights should now be similar) it may increase 

the variability of the data collected. The randomisation has guaran-

teed that each experimental group contains animals from a wide 

range of body weights (one from the largest three, one from the 

next largest three and so on). So we have artificially increased the 

range of body weights within each treatment group. The range of 

body weights within each group is now larger than what we would 

have expected to see if a completely random allocation had been 

made. Now assuming there is a relationship between the response 

and the body weight, then the stratified randomisation has not only 

artificially increased the range of the body weights within each 

group but also the range of the responses within each group, i.e. it 

has increased the variability. This could result in less sensitive statis-

tical tests if the variability associated with the blocking factor is not 

accounted for in the statistical analysis.

So a stratified randomisation can increase the variability of 

the data, as well as reducing the bias. In this example we should 

account for this extra variability by either fitting body weight as a 

blocking factor in the analysis (see Section 6.3.3) or as a covariate 

(see Section 5.4.6). Either way the statistical analysis can remove 

the additional variability introduced by using a stratified randomisa-

tion. This is a good example where using the recommended experi-

mental design does not necessarily guarantee that the most reliable 

results will be generated. The most accurate results are obtained by 

using an appropriate experimental design, a suitable randomisation 

and then a powerful statistical analysis.

4.2.2  Deciding upon the statistical  
analysis strategy

In certain situations the researcher may be confronted 

with more than one statistical analysis strategy. For 

example, a decision must be made about which fac-

tors and factor interactions to include in the statistical 

analysis. Which options should be chosen? It may not 

always be appropriate, but by considering the experi-

mental design and randomisation the researcher can 

usually identify an analysis approach that is both the-

oretically valid and justifiable to a wider audience. 

While some may feel that the randomisation is not 

the most important part of the process, it does pro-

vide a useful aid in deciding which terms to include 

in the statistical analysis and which to exclude. 

Randomisation does not provide the answer, but it can 

provide an answer.
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Including factor interactions

Consider the following two designs, both involving 

nine animals. The first is a full-factorial design with 

two factors, A and B, each at three levels. The second 

is a complete block design consisting of three blocks, 

with three treatments (a, b and c) randomly assigned to 

the three animals within each block. It can be seen, see 

Figure 4.1, that the two designs are structurally identi-

cal. In both cases the two factors (A and B for the factor-

ial design, Treatment and Block for the block design) 

are fully crossed with each other. The designs are drawn 

in a non-randomised order.

While being structurally identical, the two designs 

serve markedly different purposes. When using the 

factorial design we are interested in the effects of both 

factors A and B and whether there is an interaction 

between them. In other words does the effect of factor 

A vary depending on the level of factor B? In contrast 

when using the block design, the researcher is only 

interested in the effect of the Treatment factor. The 

second (Block) factor is simply a tool to account for 

the variability that can be associated with the levels of 

the blocking factor. In a blocked experiment we usually 

assume there is no interaction between the treatment 

and blocking factors, i.e. the effect of the treatment is 

the same within each of the blocks. If there is an effect 

due to the blocking factor, then we assume this effect 

influences all responses measured within each block 

equally.

In the statistical analysis of the experiment employ-

ing the factorial design we fit an interaction between 

the two factors A and B (see Section 3.5.2). However, in 

the blocked experiment we do not normally include the 

Treatment by Block interaction. So what is the justifi-

cation for two structurally identical designs being ana-

lysed differently? One answer is the randomisation. In 

the blocked experiment animals are assigned to blocks 

(usually non-randomly) and then, separately for each 

block, the treatments are randomly allocated to the ani-

mals within that block. In the factorial experiment the 

combinations of both treatment factors (that define the 

interaction) are randomly assigned to the animals. The 

latter randomisation provides a justification for includ-

ing the interaction between factors A and B in the stat-

istical analysis whereas the former randomisation 

implies we should exclude the Treatment by Block 

interaction.

There are exceptions to using the randomisation to 

justify the statistical analysis. For example, if the two 

crossed factors that define the factorial design were 

Gender and Treatment, then it would not be possible 

to randomise the combinations of the Gender and 

Treatment factors to the animals. However, in such 

experiments we may still want to test to see if the treat-

ment effect varies between males and females (i.e. to 

investigate the interaction). Such tests can be per-

formed, but their justification will not be based on the 

randomisation.

If the researcher believes there may be an interaction 

between the Treatment factor and the Block factor, then 

a factorial-type randomisation should be employed, 

where possible, as described above. When deciding 

whether the design is factorial or block, the following 

should be considered:

What is the reason for including the additional factor •	

in the experimental design? Is it a factor of interest or 

does it account for a nuisance effect?

Is there a risk that the factors will interact with each •	

other? What does this imply when making conclu-

sions from the data? For example, if observed, is there 

a reason why a treatment effect is present in one room 

but not in another or is it a false positive result?

What randomisation will be applied?•	

It may be the case that the researcher is actually employ-

ing a factorial design, and hence the interaction can be 

assessed if necessary.

Full-factorial design

1 1

1 1

1

1

1 1 1

Factor A

Factor
B

Complete block design

a b

a b

c

c

a b c

Treatment

a
1

a
2

a
3

b
1

b
2

b
3

a b c

I

II

III

Block

Figure 4.1.  A comparison of a two-way full-factorial design 

and a complete block design. The number 1’s within the boxes 

in the full-factorial design imply there is one animal at each 

combination of the two factors. The a, b and c labels within the 

complete block design correspond to the three treatments levels 

(one per animal within block) written in a non-random order.
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Including blocking factors

From Example 4.1 we can see that animals were assigned 

to blocks based on their body weight. Animals (within 

each block) were then randomly assigned to the treat-

ments. This randomisation implies that we can assess 

the treatment effects against the between-animal vari-

ability. However, there is no randomisation justification 

for testing the blocking. As animals were systematically 

assigned to blocks, rather than randomly assigned to 

them, we cannot use randomisation as a justification 

for testing the significance of the blocking factor. We 

argue that important blocking factors (factors that were 

deemed necessary when planning the experimental 

design) should be included in the analysis regardless of 

their calculated significance in a statistical analysis.

Example 4.1 (continued):  Stratified randomisation based 

on body weight

Returning to Example 4.1, the randomisation implied that a block-

ing factor should be included in the analysis to deal with the add-

itional source of variability introduced by the stratified randomisa-

tion process. As the three animals within each block were randomly 

assigned to the three treatments, so we should include the blocking 

factor in the analysis. However, we only test the statistical signifi-

cance of the treatment factor.

4.2.3  Repeatedly measured responses

In Table 3.2 we describe seven different ways that the 

researcher can repeatedly measure an animal. These 

scenarios involve six types of experimental design. 

There are several different ways that we can differentiate 

between the scenarios, but perhaps the most important 

of these is the randomisation procedure applied. It is 

important the researcher understands not only what is 

being randomised but also the implications of the ran-

domisation applied. This can affect:

the type of experimental design•	

the statistical model that can be fitted when using the •	

experimental design

the statistical analysis approaches that can be applied •	

when analysing the data generated

In Table  4.2 we summarise the different randomisa-

tions that are applied when the animals are repeatedly 

measured using one of the seven scenarios discussed 

in Section 3.2.8.

Repeated factors and randomised factors

With repeated measures designs (scenario 1, Table 4.2) 

we cannot randomise the levels of the factor that 

indexes the repeated measurements (the repeated fac-

tor). This lack of randomisation is in contrast to almost 

all other experimental factors, where some random-

isation can be applied. Even factors such as Gender or 

Strain involve some degree of randomisation (animals 

within each strain or sex are randomly selected from a 

larger population of animals).

Randomisation allows the researcher to assume 

that observations are independent of each other (see 

Section 5.4.1). The lack of randomisation of the levels of 

the repeated factor implies we cannot assume that the 

within-animal results are independent. If possible we 

should take these spatial interrelationships (or correla-

tions) into account in the statistical analysis. One way 

to achieve this is to perform a repeated measures ana-

lysis, as described in Section 5.4.4.

Example 4.2:  Random allocation of  

treatments within-animal

The antidepressant bupropion is now prescribed for smoking ces-

sation. A study was conducted to assess the hypothesis that bupro-

pion’s nicotine antagonist action contributes to its antidepressant 

effects (Shoaib et al., 2003). Rats were trained to discriminate nico-

tine from saline, in a two-lever discrimination chamber, under a 

schedule of food reinforcement. In a randomised sequence of tests, 

the rats were dosed with either bupropion (1, 3 or 10 mg/kg, i.p.) 

or saline 30 min before injection of nicotine (0.025, 0.05, 0.1 or 0.2 

mg/kg, s.c.). The percentage of nicotine-appropriate lever choices 

was analysed to assess the effect of bupropion on the nicotine-

discriminative stimulus.

As the three doses of bupropion and saline were administered 

to each animal, the data could be analysed using a repeated 

measures analysis approach (see Section 5.4.4). This was the 

approach taken in the original paper. Alternatively, as the doses 

were administered in a random order, it could be assumed that 

there were no spatial interrelationships between the within-ani-

mal observations. Effectively the design was a block design with 

Rat as a blocking factor. This factor accounted for the between-rat 

variability and hence the treatment comparisons were within-

animal tests.

Block and dose-escalation designs

The block designs (where Animal is a blocking factor) 

and dose-escalation designs (Sections 3.4 and 3.8.2, 
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respectively) share many similar properties. They both 

involve administering multiple treatments to each ani-

mal. One of the differences between these scenarios is 

the randomisation applied. When using a block design 

we randomise the treatments within each animal sep-

arately and hence can assume the results generated 

within-animal are not spatially interrelated. In the 

dose-escalation designs, the treatments are adminis-

tered in the same non-random order and hence results 

within-animal will be spatially interrelated. As we shall 

see in the next chapter, the techniques we recommend 

the researcher use to analyse data generated using 

these two designs are different and reflect the random-

isation applied.

Crossover and dose-escalation designs

The crossover and dose-escalation designs (Sections 

3.4.9 and 3.8.2, respectively) share many similar prop-

erties. They both involve repeatedly measuring the 

animals over a number of test periods, one treatment 

per test period. With crossover designs animals receive 

different sequences of treatments over time and hence 

multiple treatments are administered within each test 

period. The sequences are usually selected in advance 

and, when taken together, have certain beneficial 

properties (see Section 3.4.9). The animals are ran-

domly allocated to the treatment sequences and the 

treatments are randomly assigned to the labels of the 

Table 4.2. Seven different ways to measure an animal repeatedly – randomisation

Case Description Type of design Randomisation

1 Animals measured repeatedly 

and repeated factor levels 

shared across animals

Repeated measures design Randomisation of the levels of the repeated 

factor not possible – hence relationships exist 

between the within-animal measurements. 

Treatments randomised to Animals

2 Animal measured repeatedly 

but there is no relationship 

between factor levels across 

animals

Nested design In theory the levels of the random within-animal 

factor(s) are randomly selected from the 

wider population of levels

3 Treatments assessed at random 

positions for the animal

Block design Treatments randomly assigned to positions 

in the animal – so we can assume that 

within-animal responses are not spatially 

interrelated

4 Two treatments: within-animal 

treatment levels assessed at 

random positions within the 

animal and between-animal 

treatment levels administered 

one per animal

Split-plot design Between-animal treatments randomly assigned 

to animals and within-animal treatments 

randomly assigned to positions for the animal

5 Animals receive multiple 

treatments over time in a 

different order for each animal

Crossover design Treatments are administered to animals in a 

pseudo-random order, hence we can assume 

results within-animal are not spatially 

interrelated

6 Animals receive multiple 

treatments over time in a non-

random order

Dose-escalation design Treatments are administered to animals in 

a non-random order, hence we should 

assume results within-animal are spatially 

interrelated

7 Multiple different responses 

measured on each animal

Any type of design –
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crossover design. In a dose-escalation design all ani-

mals receive the same sequence of treatments, nor-

mally in a non-random dose-related order. So although 

these two designs are structurally similar, they involve 

different randomisation strategies.

The benefit of the crossover design is that it allows 

the researcher to separate treatment effects from any 

test period effects (as different treatments are adminis-

tered in each test period the factors Treatment and Test 

period are crossed with each other). However, if there 

are safety concerns about possible side effects associ-

ated with the higher doses of the compound, then it 

may be preferable to confound the treatment and test 

period effects rather than risk harming the animals and 

having multiple drop-outs.

The strategy for analysing data generated using these 

two designs will be different. The two randomisation 

strategies are different and it can be argued that these 

differences should be reflected in the statistical ana-

lysis. As the doses are administered to the animals in a 

non-random order (in the dose-escalation design), so 

there will be spatial interrelationships (or correlations) 

between the within-animal measurements. These can 

be accounted for in the analysis using a repeated meas-

ures analysis approach (see Section 6.10). This is not 

the case for the crossover designs where there is some 

degree of randomisation that, it can be argued, implies 

we can assume results within-animal are not spatially 

interrelated. This assumption simplifies the approach 

for the analysis of crossover studies to that of an experi-

ment involving two blocking factors (Animal and Test 

period); see Section 6.3.3.

Including interactions involving  
the repeated factor

As discussed above, the lack of randomisation of the 

levels of a repeated factor implies that the responses 

(usually within-animal) will be interrelated, and so 

in certain circumstances it is recommended that a 

repeated measures analysis approach is used to account 

for these interrelationships (see Section 5.4.4). It is 

also recommended that all interactions involving the 

repeated factor are included in the analysis, so we can 

then investigate how the factors change over the levels 

of the repeated factor. We do not require a randomisa-

tion-based justification for including these interactions 

in the statistical model because we are using a repeated 

measures analysis approach to analyse the data (which 

will account for any interdependencies). Of course 

such a decision on which interactions to include is also 

down to the researcher’s discretion.

4.3  What to randomise

In general we advise the scientist to design first and 

randomise second. It is always best to remove the 

influence of nuisance effects by designing them into a 

study rather than leaving it to chance. Once a design is 

selected, you should then randomise where you can. 

Examples of randomisations are listed below.

4.3.1  Factor labels

While it may seem unnecessary, you should always 

randomise the experimental factor levels to the factor 

labels of the experimental design. So if an experimental 

design taken from a textbook is defined using the labels 

A, B, C and D, then the actual treatments (vehicle, low 

dose, mid dose and high dose) should be randomly 

allocated to these design labels. If you repeat an experi-

ment and assign the vehicle group to label A both times, 

then you risk potentially biasing any conclusions drawn 

across both studies.

4.3.2  Animals to experimental groups

This is the standard randomisation most scientists usu-

ally perform. Be careful though, as noted by Macleod 

et al. (2009) picking animals ‘at random’ from a cage is 

unlikely to provide adequate randomisation.

4.3.3  Animals to cages

Animals should be randomly assigned to the cages and 

systematic patterns can occur if they are assigned in a 

non-random fashion. Consider the situation where ani-

mals newly arrived from the supplier are assigned to 

cages in the testing facility. The animal technician picks 
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up the less active animals first and hence all the inactive 

animals end up in the first few cages. If treatments are 

assigned to cages in a systematic way, then it is possible 

that all the inactive animals receive the same treatment. 

This could bias the treatment assessment, especially if 

locomotor activity is one of the end points of the study.

4.3.4  Treatments to cages

We have already seen that position of a cage in a room 

or rack may influence the experimental outcome (Gore 

and Stanley, 2005). Randomising treatments to cages 

across the racks would reduce the risk of bias, although 

using a row-column block design may be preferable 

(remember: design first, randomise second).

4.3.5  Order of testing

Randomising the order of testing should reduce the risk 

of trends across time influencing the results of the experi-

ment. It should also help in the blinding of the study.

4.4  How to randomise

We now describe some methods that the researcher 

may employ to carry out a valid randomisation. While 

in practice a computer will probably be the safest 

option, there are some more traditional methods that 

can also be employed.

4.4.1  Mechanical methods

A straightforward way to carry out a randomisation is 

the ‘balls out of a bag’ method. This technique is often 

applied in public allocations, for example draws for cup 

competitions and national lotteries.

4.4.2  Computer software

Computer software can provide a quick and easy way 

of randomising experimental material. We present a 

simple yet flexible approach using Microsoft Excel. This 

approach can easily be generalised to more compli-

cated experimental situations.

Example 4.3:  A simple randomisation

Assume the researcher wants to randomise 15 animals to three 

treatments (A, B and C), five animals per treatment using Excel. The 

process consists of five stages:

1.	 To begin with the experiment should be written out in a non-

random order, with animal ID in column A and treatment group 

in column B (see Figure 4.2).

2.	 In the next column (in cell C2 in this case) we use Excel’s random 

number generator to create a random number between 0 and 1 

(see Figure 4.2). The formula required is:

= RAND()

3.	 Drag the formula in C2 down to fill the remaining cells C3 to C16. 

This creates a list of 15 random numbers between 0 and 1.

4.	 Highlight the treatment column (column B) and the column con-

taining the random numbers (column C).

Figure 4.2.  Excel screenshot for randomising 15 animals to 

three treatment groups, including the first RAND() command 

required to perform the randomisation.
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5.	 Use the Data → Sort command in Excel to sort column B (contain-

ing the treatment labels) by column C (containing the random 

numbers).

We have now randomised the treatment labels of the design to the 

animals (Figure 4.3). Animal 1 will receive treatment A, Animal 2 

treatment C and so on.

Note that the random numbers are regenerated by Excel when-

ever a change is made to the spreadsheet. So the entries in column 

C will have now changed. If you want to preserve the original ran-

dom numbers, then copy and paste the random numbers:

Copy → Paste Special → As Numbers

before carrying out Stage 5.

With a little thought this approach (using the ‘= RAND()’ function 

in Excel) can be applied to more complicated randomisations, such 

as the randomisation of block designs.

Figure 4.3.  Screenshot of the randomised design in Microsoft 

Excel.
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5.1  Introduction

For the remainder of this text we shall consider the sta-

tistical analysis of (hopefully) well-designed animal 

experiments. If a suitable experimental design has been 

employed then the statistical analysis should be rela-

tively straightforward. It should be as concise as possi-

ble while making best use of all available information. 

We argue that to achieve this, the experimental design 

should direct the statistical analysis.

By this stage of the experimental process the 

researcher should have:

identified all effects that may increase the variability •	

of the data and attempted to account for them in the 

experimental design

selected a suitable sample size•	

measured a response that contains as much informa-•	

tion as possible

attempted to ensure that other nuisance effects have •	

not biased the experimental results

With these criteria satisfied the analysis should be 

straightforward and hopefully give reliable and mean-

ingful conclusions.

Before we describe in more detail some of the analy-

ses available when analysing data generated from ani-

mal experiments, there are a number of general issues 

worth considering.

Use the experimental design to direct the 
analysis

As stated above, in animal experiments we have the 

luxury of having almost complete control over the 

experimental design. We should make the most of this 

in the statistical analysis. As we have seen in the previous 

chapter, difficult decisions regarding the analysis strategy 

can be solved, or at least a justifiable solution found, by 

recourse to the experimental design and randomisation 

(for example, see Section 4.2.3 for decisions on repeated 

measures status and Section 4.2.2 for model selection).

Get a feel for your data: make use of graphs

Before beginning any more formal statistical analysis it 

is highly recommended that the researcher investigate 

the data graphically using, for example, scatterplots or 

case profiles plots. These can highlight issues with the 

data that numerical analysis may not necessarily reveal, 

such as outliers, non-normality or the identification of 

a suitable summary measure of a repeatedly measured 

response.

Try to use parametric analyses

Many analyses can be carried out using a parametric 

approach (see Section 5.4). This family of tests, known 

as the general linear model family (or GLM for short) 

includes ANOVA, ANCOVA and t-tests. These tests allow 

you to make best use of the experimental design in the 

analysis since blocking factors, covariates and factor 

interactions can be included in the statistical model. 

Most packages now offer GLM analysis as an option. So 

why make life difficult for yourself? Rather than learn 

how to use multiple commands in your statistical pack-

age of choice it may be possible to use the general linear 

model command only.

Statistical analysis
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134 Statistical analysis

Don’t rely on p-values!

Finally do not rely on the p-values generated from a 

statistical analysis. Try to use the statistical techniques 

described in this chapter to get a better understanding 

of your data.

5.1.1  InVivoStat

Throughout this chapter we will generate results using 

the InVivoStat statistical software package (Clark et al., 

2012). This is a powerful package based on the R statis-

tical language (R Development Core Team, 2012) and 

is designed specifically for animal researchers. It can 

be downloaded from www.invivostat.co.uk and is free 

to use. With the development of InVivoStat, research-

ers who do not have access to professional statistical 

support or commercially available statistical soft-

ware can carry out complicated statistical analysis. A 

comparison of InVivoStat with other commonly used 

packages is described in Clark et  al. (2012). Results 

from InVivoStat are presented throughout this chap-

ter. Tutorials on how to obtain these results are given 

in Chapter 6.

5.1.2  A recommended five-stage parametric 
analysis procedure

Before we discuss in detail some of the methods for 

analysing data generated in animal experiments, we 

introduce a five-stage statistical analysis procedure that 

is easy to carry out and, in many cases, will generate 

reliable results. A professional statistician may be able 

to carry out a more powerful statistical analysis, but this 

text is aimed at the non-statistician who wishes to carry 

out reliable statistical analyses routinely.

If an experiment is well designed, including the 

choice of a suitable continuous response to measure, 

then the parametric analysis approach described here 

should be the researcher’s first choice for the analysis. 

This approach includes t-tests, ANOVA and ANCOVA; 

see Sections 5.4.2, 5.4.3 and 5.4.6, respectively, for more 

details. This strategy can also be applied to experiments 

involving repeated factors, using a parametric repeated 

measures analysis approach (see Section 5.4.4).

Stage 1: Graphical plots of the data

Any statistical analysis should start with a graphical 

investigation of the data, preferably using the responses 

actually measured and not any derived responses. Such 

plots can reveal outliers and give the scientist a feel for 

the collected data. Plots should be categorised by the 

levels of the experimental factors, where possible.

Stage 2: Check the assumptions

Several assumptions are made when carrying out a 

parametric analysis. We assume the responses are 

continuous, independent and the residuals are nor-

mally distributed. We also assume that the variability 

of the response is similar among animals given differ-

ent treatment regimes although prior transformation 

may be required to meet this assumption (the homo-

geneity of variance assumption). We shall consider 

each of these in more detail in Section 5.4.1. At this 

stage we note that the researcher should always check 

the assumptions before looking at the results of the 

analysis.

Stage 3: Tests of overall effects

The tests of the overall effects obtained, for example, an 

ANOVA table, are the gateway into the statistical ana-

lysis. They provide information on the statistical signifi-

cance of the experimental factors and highlight how the 

factors interact with each other.

Stage 4: Predicted means

It is always worth reviewing, either in a table or a plot, 

the predicted means obtained as a consequence of fit-

ting the statistical model to the data. The most com-

mon example is the least square (predicted) means. 

The predicted means can be more reliable than the 

observed means, which are obtained by calculating 

the arithmetic group averages. This is because the 

predicted means are adjusted for all the other terms 

included in the statistical model (such as blocking 

factors and covariates) whereas the observed means 

are not.
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Stage 5: Comparisons between the 
predicted means

It is common practice in the statistical analysis of ani-

mal experiments to make comparisons between indi-

vidual group means using a multiple comparison pro-

cedure (see Section 5.4.8). It could be argued that this 

is the primary purpose of many statistical analyses, 

although statisticians may prefer other ways of drawing 

conclusions. The subject of multiple comparison proce-

dures is, however, a controversial one. There are nearly 

as many methods as there are statisticians! In this text 

we shall use the experimental design as our guide when 

navigating through this area.

Whichever multiple comparison procedure is used, 

when making comparisons between treatment groups, 

we should also make adjustments for underlying differ-

ences in, say, covariates like initial body weight. If com-

parisons are made using the least square (predicted) 

means, then the researcher can be surer that the analy-

sis reflects the true differences between the treatments.

Example 5.1: Elevated plus maze

An experiment was conducted to assess the non-cognitive behaviour 

of a transgenic mouse strain. The strain was thought to be a possible 

animal model for Alzheimer’s disease. To assess the suitability of 

the model, an experiment was conducted using an elevated plus 

maze (or X-maze). The X-maze had two open arms and two enclosed 

arms. Animals were placed in the centre of the maze and the total 

time spent investigating the open arms was recorded as a meas-

ure of anxiety. In the experiment, 2-, 5- and 10-month-old male 

wildtype and transgenic mice were tested, with ten mice per strain 

at each time point. In the following discussion, simulated data have 

been used.

Stage 1: Graphical plot

A scatterplot of the data revealed no obvious outliers (Figure 5.1). 

The variability (or spread) of the data in each group appeared to be 

similar across all groups (see Section 5.4.1).

Stage 2: Checking assumptions

A plot of the residuals from the statistical model, given in Figure 5.2, 

revealed the assumption of homogeneity of the variance was satis-

fied (as commented for stage 1 above, there was no obvious diffe-

rence in the variability of the individual groups). See Section 5.4.1 

for a more detailed description of this plot.

Stage 3: Tests of overall effects

The tests of overall effects, in this case presented in a two-way 

ANOVA table (Table 5.1), revealed significant overall effects of Strain 

and Age (p < 0.001) but more interestingly the effect of Strain varied 

with Age (p = 0.003). See Section 5.4.3 for more details.

Stage 4: Least square (predicted) means

A plot of the least square (predicted) means from the statistical 

analysis showed that the difference between the strains was largest 

in the 10-month-old mice (Figure 5.3).
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Figure 5.1.  Scatterplot of the data for Example 5.1.
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Figure 5.2.  Scatterplot of the data for Example 5.1.
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Stage 5: Comparison of the least square (predicted) means

Finally the planned comparisons of the predicted means (Table 5.2) 

revealed a significant difference between the strains at 2 and 

10  months (p = 0.014 and p < 0.001, respectively) but not at 

5 months (p = 0.815). See Section 5.4.8 for more details on multiple 

comparison procedures.

5.2  Summary statistics

In this section we shall consider some statistical tools for 

summarising data, the so-called summary statistics. This 

includes the measures of location (mean and median) 

and the measures of spread (variance, standard deviation 

and interquartile range). It is always worth generating 

these measures as they provide useful information about 

the data. However, they may not necessarily reflect the 

results of the statistical (model-based) analysis. In many 

cases the mathematical methods that generate the sum-

mary statistics are different to the approaches used 

within the statistical analyses described later in this 

chapter. Summary statistics also (tacitly) make different 

assumptions about the characteristics of the responses. 

The parametric summary statistics assume the data are 

continuous and normally distributed, perhaps following 

a suitable transformation (see Section 5.4.1). The non-

parametric summary statistics assume the data are con-

tinuous and uniformly distributed (see Section 5.5.1).

Example 5.2:  Control group example

Consider the following set of responses from a control group. We 

shall use these data in the following discussion.

2.3, 4.3, 6.5, 3.2, 7.3, 4.4, 3.4, 5.6, 3.1, 2.6.

5.2.1  Parametric measures of location

Perhaps the simplest parametric measure of location is 

the mean of the data. There are, however, several differ-

ent types of mean and the methods used to calculate 

them are different for each one. We shall consider here 

the true mean, the sample mean, the observed mean, 

the predicted mean and the geometric mean.

The true mean and the sample mean

The true mean is, as the name suggests, the true aver-

age value of the response. We try to obtain an accurate 

estimate of the true mean by running the experiment. 

The true mean is a hypothetical measure that is the 

mean response of the whole population and is gener-

ally impossible to identify with 100% certainty.

Table 5.1.  ANOVA table for Example 5.1

Sums of squares Degrees of freedom Mean square F-value p-value 

Age 11636.65 2 5818.32 34.12 < 0.001 

Strain 3672.23 1 3672.23 21.54 < 0.001 

Age:Strain 2166.94 2 1083.47 6.35 0.003 

Residuals 9207.65 54 170.51 
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Figure 5.3.  Plot of the least square (predicted) means of the 

combinations of strain and age for Example 5.1.
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So, for example, we may be interested in the body 

weight of a transgenic strain of mice at 6 weeks of age 

in a certain year. To discover the true mean we would 

have to measure every animal born in that year when 

they were 6 weeks old.

Instead of identifying the true mean we take a 

(random) sample of animals from the wider popu-

lation and use the mean of the sample (the sam-

ple mean) to give us an estimate of the true mean. 

The purpose of running an experiment is to gather 

enough information so that we obtain a sufficiently 

accurate estimate of the true mean. It follows that 

the more animals that are sampled to calculate the 

sample mean, the more reliable it will be (as an esti-

mate of the true mean).

The observed mean

The most commonly quoted sample mean, and per-

haps the simplest to calculate, is the observed mean. 

This is simply an average of the data. Add together the 

responses and divide by the group size:

x
n

x x x xOM
i

ni i
= + + + +

1
1 2 3( ... ), 	 (5.1)

where xOMi
 is the ith group observed mean, ni is the ith 

group size and x x xni1 2, ,...,  are the ni observations in the 

ith group.

Example 5.2 (continued): Control group example

The mean for the control group was estimated as:

(1/10) × (2.3  + 4.3  + 6.5  + 3.2  + 7.3  + 4.4  + 3.4  + 5.6  + 3.1  + 2.6) 

= 4.27.

Such calculations can easily be carried out using a hand-held calcula-

tor. These are the means usually plotted in the means with standard 

errors plot (Section 5.3.5).

One of the drawbacks of the observed mean is that 

it does not necessarily take into account the influence 

of any additional factors that may be present in the 

experimental design. The observed mean may there-

fore not be an accurate estimate of the true mean. A 

more reliable estimate can be calculated by taking 

these other factors into account (as we shall do in 

the statistical analysis). In a worst case scenario the 

observed means may contradict the results of the stat-

istical analysis.

Example 3.13 (continued): Lamb dietary study

Consider Example 3.13 discussed in Section 3.4.6. The experimen-

tal design employed in the study was a balanced incomplete block 

design with all treatment pairs occurring once within the blocks (sib-

ling lamb pairs). We will now analyse some simulated responses 

from the experiment (see Table 5.3).

Assume that the sibling lamb pair 1 gave higher results than the 

other pairs; as a result the observed means for treatments A and 

B will be higher than the observed means for treatment C and D. 

This is not a treatment effect; it is simply due to the overall dif-

ferences between the sibling lamb pairs and the incomplete block 

design used.

The observed mean for treatment A is the average of the three 

observations from sibling lamb pairs 1, 2 and 3. It is not adjusted 

for differences between the sibling lamb pairs. Hence a comparison 

between the observed means of treatment A and treatment C will 

not be a true reflection of the treatment difference, it will be biased 

by differences between the lamb pairs.

The observed mean for:

treatment A = (1/3) × (15.4 + 7.2 + 2.1) = 8.23

and

treatment C = (1/3) × (11.1 + 6.6 + 6.3) = 8.00.

The predicted mean

The predicted means are the sample means predicted 

by the statistical model that is fitted to the data. As the 

Table 5.2.  Table of planned comparisons between the strains at each time point for Example 5.1

Difference Lower 95% CI Upper 95% CI Std error p-value  

Comparison 

02 wildtype vs. 02 transgenic -14.785 -26.492 -3.077  5.840  0.014  

05 wildtype vs. 05 transgenic -1.376  -13.084 10.332  5.840  0.815  

10 wildtype vs. 10 transgenic -30.779 -42.487 -19.071 5.840  < 0.001 
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name suggests they will take into account all the effects 

included in the statistical analysis and hence are more 

reliable in complex situations. For example, in Section 

5.4 the means discussed are predicted means as they 

take into account the additional effects included in the 

statistical analysis.

In many simple situations, for example where there 

is only a single factor of interest in the experiment, 

the predicted means will be the same as the observed 

means. However, as the experimental design and statis-

tical analysis become more complex, with the addition 

of covariates or blocking factors (see Sections 5.4.6 and 

3.4, respectively), the observed and predicted means 

will diverge. In such cases it is the predicted means that 

provide more reliable estimates of the true means.

Example 3.13 (continued): Lamb dietary study

The analysis of the data (assuming we included Sibling lamb pair as 

a blocking factor in the analysis) is adjusted for the fact that treat-

ments C and D were not administered to sibling lamb pair 1. The 

predicted means for A and B were slightly lower than would be 

expected (compared to C and D) if the sibling lamb pair effects were 

ignored. This is because treatments A and B were present in sibling 

lamb pair 1 (which we know gave higher results). The predicted 

means took this into account as they were calculated using an analy-

sis that fitted Treatment as a fixed factor and Sibling lamb pair as 

a blocking factor. The observed and predicted means are given in 

Table 5.4.

Note the decrease in the treatment A and B means and the 

increase in the treatment C and D means (going from the observed 

mean to the predicted mean). This is because treatments A and 

B were allocated to the sibling lamb pairs that, on average, gave 

higher results whereas treatments C and D were allocated to those 

pairs that gave lower results. The predicted means adjusted for 

these sibling lamb pair effects and hence gave a more reliable esti-

mate of the true treatment effects.

The geometric mean

There is one other type of sample mean that the animal 

researcher should be aware of, namely the geometric 

mean. These means are useful if there is a suspicion 

that the data are log-normally distributed (see Section 

5.4.1).

The observed geometric mean for the ith group,xOGMi
, 

can be calculated in a similar way to the observed mean 

using the formula:

x x x xOGM n
n

i i
i= × × ×( ... ) .( / )

1 2
1 	 (5.2)

Example 5.2 (continued): Control group example

The observed geometric mean for the control group was 

estimated as:

(2.3 × 4.3 × 6.5 × 3.2 × 7.3 × 4.4 × 3.4 × 5.6 × 3.1 × 2.6)(1/10) = 3.99.

We can also calculate a predicted geometric mean. If the data has 

been log-transformed prior to analysis (see Section 5.4.1), then the 

analysis is performed on the log scale and any predicted means 

generated within the analysis will also be on the log scale. To cal-

culate the predicted geometric means we simply back-transform 

the predicted means onto the original scale. So if the data were 

transformed using the log10 transformation, then the ith predicted 

geometric mean xPGMi
is calculated using the formula:

xPGMi
xPMi= 10 , 	 (5.3)

where xPMi  
is the ith predicted mean on the log10 scale.

Note the observed geometric means (and the predicted geomet-

ric means) are usually numerically lower than the observed means 

as they are less influenced by high values.

Table 5.3. Experimental design and simulated results for Example 3.13

Lamb Sibling lamb pair

1 2 3 4 5 6

First A (15.4) A (7.2) A (2.1) B (4.5) B (4.1) C (6.3)

Second B (19.5) C (11.1) D (8.2) C (6.6) D (8.2) D (8.4)

Table 5.4. Observed and predicted means for 

Example 3.13

Mean Treatment

A B C D

Observed 8.23 9.37 8.00 8.27

Predicted 4.94 7.94 9.44 11.54
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5.2.2  Parametric measures of spread

Variance

The variance is a measure of the variability of the popu-

lation. As with the mean there is a true variance (usually 

denoted by σ2) and a sample variance (s2). The sample 

variance is obtained from assessing the variability of a 

random sample taken from the wider population.

There are several ways to calculate an estimate of 

the variance. For example, the sample variance si
2 of a 

group i can be calculated using the formula:

s
n

x x x x x xi
i

OM OM ni OMi i i

2
1

2
2

2 2
1

1
=

−
− + − + + − ( ) ( ) ... ( ) ,

� (5.4)

where xOMi
 is the observed mean of the ith group, and 

x x xni1 2, ,...,  are the ni observations in the ith group.

Example 5.2 (continued): Control group example

The sample variance of the control group was calculated as:

(1/9) × [(2.3 – 4.27)2 + (4.3 – 4.27)2 + (6.5 – 4.27)2 + … + (2.6 – 

4.27)2] = 2.88.

Unfortunately the estimate of the individual variances (the si
2 ’s) may 

not be reliable. It was noted above that to get a more reliable esti-

mate of the true mean we usually need to increase the sample size. 

The same is true of the estimate of variability. Each of the si
2 ’s is 

calculated from only a subset of the total number of animals in the 

study. The most reliable (and reproducible) estimate of the variabil-

ity is obtained using all the available animals. This estimate can be 

found in, for example, the residual mean square entry in the ANOVA 

table (see Section 5.4.3).

The residual mean square entry in the ANOVA table 

is a statistical model-based estimate of the variability 

that uses results from all animals. The estimate is, in 

some sense, a weighted average of the individual si
2 ’s. 

This estimate is only a reliable estimate of the true vari-

ance if the variability is similar across all groups – and 

this leads to the assumption of the homogeneity of the 

variance of the parametric analyses, as discussed in 

Section 5.4.1.

Standard deviation

The standard deviation is the square root of the vari-

ance. It is a measure of the spread of the responses on 

the original scale. The sample standard deviation (s) is 

given by:

s s= 2 . 	 (5.5)

Example 5.2 (continued): Control group example

The sample standard deviation of the control group was 

calculated as:

s = =2 88 1 70. . .

Standard error of the mean

The standard error of the mean (SEM) is a measure of 

the variability (or reliability) of the estimate of the sam-

ple mean. The reliability of the sample mean estimate 

will depend on the variability of the responses but also 

the number of observations (sample size) used to esti-

mate the sample mean. The more observations used to 

calculate the sample mean, the more reliable that esti-

mate will be.

When calculating the SEM it is common practice to 

use a within-group estimate of the variability, i.e. for the 

ith group mean:

SEM
s

n
i

i

i

=
2

, 	 (5.6)

where ni is the ith group sample size and si is an esti-

mate of the standard deviation of the observations in 

the ith group.

Example 5.2 (continued): Control group example

The estimate of the standard error of the mean of the control group 

mean was calculated as:

SEMcontrol = =2 88
10

0 54
.

. .

It is this estimate of the SEM that is commonly used, 

along with the observed mean, in the popular means 

with SEM plot (see Section 5.3.5). It can be argued that 

this within-group estimate of the variability is an appro-

priate estimate of the standard error of the observed 

mean as both the variance estimate and the observed 

mean are calculated separately for each experimental 

group.
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Confidence intervals

Confidence intervals provide a useful range of values 

within which the parameter of interest would be 

expected to lie. For a sample mean:

lower 1   confidence interval– % ,/ ,α α( ) = − −x t
s

n
n2 1

2

	
�

(5.7)

and

upper 1   confidence interval– % ,/ ,α α( ) = + −x t
s

n
n2 1

2

	

� (5.8)

where α is the significance level (see Section 2.3.3), s2 

is the sample variance and t nα/ ,2 1−  is the critical value of 

the t-distribution with parameters α/2 and n – 1.

As it is standard convention to test at the 5% signifi-

cance level, i.e. p-values less than 0.05 (5%) are declared 

statistically significant (Section 2.3.3), so the confidence 

interval usually quoted is the 95% confidence interval. 

These confidence intervals are also related to the p-val-

ues generated as part of the statistical analysis. If we cal-

culate the difference between two group means and gen-

erate a 95% confidence interval around the difference, 

then the associated two-sided p-value will be significant 

as long as the confidence interval does not contain zero. 

If one of the 95% confidence limits lies exactly on zero, 

then the two sided p-value will be equal to 0.05.

The estimate of variability (s2) in the above calcu-

lation is usually the overall estimate of variability (for 

example, the residual mean square in the ANOVA table). 

Confidence intervals are therefore normally presented 

around the predicted means from the statistical analysis.

Example 5.2 (continued): Control group example

The 95% confidence interval of the mean of the control group was 

estimated as:

lower 95  confidence interval % . .
.

. ,= − =×4 3 2 26
2 88
10

3 06

upper 95  confidence interval % . .
.

. .= + =×4 3 2 26
2 88
10

5 48

As a rule of thumb the confidence interval is a range of 

values that contains the true mean. However, a more 

accurate definition of the confidence interval is that it is 

the range of values such that if the study is repeated mul-

tiple times, and multiple confidence intervals are pro-

duced, then the true mean will be contained within 100 

× (1 – α)% of these confidence intervals. So for example, 

if a study was repeated 100 times, then 95 of the 100 

confidence intervals for the predicted control group 

mean would contain the true control group mean.

Coefficient of variation

The coefficient of variation represents the unexplained 

variability in the sample mean as a percentage of the 

sample mean, i.e.:

coefficient of variation of a sample mean = ×
s

x
100%, 	

�
(5.9)

where x  is a sample mean and s is an estimate of the 

standard deviation.

This number can be a useful measure of the spread 

of the responses when the variation in the response 

increases in proportion to an increase in the size of the 

response.

Example 5.2 (continued): Control group example

The coefficient of variation of the mean of the control group was 

estimated as:

1.70 / 4.27 × 100% = 40%.

5.2.3  Non-parametric measures of location

There are several measures of location that make fewer 

assumptions about the response characteristics than 

those discussed so far. We shall concentrate on one that 

is most commonly quoted in animal research, namely 

the median.

If the observations are arranged in increasing order, 

then the median is the middle observation. If the num-

ber of observations is odd, then there will be a unique 

middle observation. If the number of observations is 

even, then the median is usually defined as the average 

of the middle two observations.

Example 5.2 (continued): Control group example

As there are ten observations in the control group, the median of 

the control group is estimated at the average of the fifth and sixth 

largest observations:
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(3.4 + 4.3) / 2 = 3.85.

The median can be a useful summary measure, for example, when 

the responses measured are not continuous (see Section 5.4.1) or 

not normally distributed (see Section 5.4.1). In this case a mean 

may not be an appropriate measure to summarise the location of 

the responses. For example, these two statements are both correct, 

although the second is perhaps more reliable:

An average dog has less than four legs.•	

A median dog has four legs.•	

The first statement is true because, sadly, more dogs have less than 

four legs than have more than four. However, the second statement 

is perhaps the more informative. This is mainly because a dog can 

have 0, 1, 2, 3 or 4 legs and hence the number of legs observed is 

neither a continuous nor normally distributed response.

5.2.4  Non-parametric measures of spread

Alongside the median, there are measures of spread 

that do not make so many assumptions about the 

response characteristics. Assume that the observations 

are arranged in increasing order. The lower quartile 

(Q1) is defined as the response such that one-quarter of 

the observations are below Q1. The upper quartile (Q3) 

is the value such that one-quarter of the observations 

are greater than Q3. The distance between Q1 and Q3 is 

known as the interquartile range. Q2 corresponds to the 

median, as discussed in Section 5.2.3.

Example 5.2 (continued): Control group example

As there are ten observations in the control group, the Q1 of the 

control group corresponds to the third largest observation and Q3 

corresponds to the eighth largest:

Q1: 3.1 = third largest observation,

Q3: 5.6 = eighth largest observation.

5.3  Graphical tools

5.3.1  Scatterplots

When you begin the analysis of a dataset, we recommend 

you start by producing a scatterplot of the data. This plot 

provides a useful visual overview of the data and from 

it you can start to get a feel for your data. In its simplest 

form the scatterplot is merely a scatter of points in two 

directions (defined by the X-axis and the Y-axis). There 

are, however, many versions of the scatterplot, varying in 

complexity, which can be useful. We consider two differ-

ent types that serve slightly different purposes.

In the first type of scatterplot the X-axis corresponds 

to a categorical factor and the Y-axis to the response. 

Each point on the graph corresponds to an individual 

observation in the dataset. For example, in Figure  5.4 

the treatment factor has three levels (A, B and C) and 

the response ranges from about 2 to 5.

This plot allows us to get a feel for the size of the 

experimental effects, the spread (or variability) of the 

data (across all groups) and can also highlight any 

unusual observations. In the above plot there appears 

to be an unusually high response in treatment group A. 

We shall return to this plot in later sections, where it will 

be shown how it can help the researcher make certain 

decisions about the statistical analysis, for example, by 

considering transformations (Section 5.4.1) and out-

liers (Section 5.4.1).

In the second type of scatterplot both the X-axis and 

Y-axis correspond to responses measured on the ani-

mal. These plots allow us to investigate the relation-

ship between responses. In Figure 5.5 the response was 

measured at baseline and post-dose and this plot allows 

us to assess whether there is a relationship between 

them, i.e. if an animal is a high responder at baseline 

will it also be a high responder post-dose?

In many cases it is sensible to categorise such 

plots by a factor of interest. We can then investigate 

the within-group relationships between the two 

responses. This is particularly useful if the Y-axis cor-

responds to the response and the X-axis corresponds 

to a covariate (see Section 5.4.6). In Figure  5.5 we 

have ignored the Treatment factor. In the experiment 

the animals were administered one of three treat-

ments and this may influence their responses. Such 

information may be important. Figure  5.6 includes 

this information.

The non-categorised plot revealed some evidence of 

an overall relationship between baseline and post-dose 

responses. By categorising the plot by the Treatment 

factor we can see that there appears to be a relationship 

within each of the three treatment groups. The possible 

outlier in treatment group A (identified in the initial 

scatterplot) may have occurred because the animal 

has high responses before (as well as after) treatment. 

While this animal merits further investigation, it may 

not necessarily be an outlier if baseline information is 
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used in the analysis (see also Example 5.17 in Section 

5.4.6).

As the next example shows it can be dangerous to 

ignore the treatment factor categorisation when inves-

tigating the relationship between two responses.

Example 5.3:  MRI quantification of the thymus

An experiment was conducted to see whether MRI could be used 

to assess glucocorticosteroid-related changes in thymus volume 

(Brooks et al., 2005). This technique, the authors argued, provided 

many advantages over existing methods. It was non-invasive and 

allowed disease progression to be monitored over time within-ani-

mal. Animals were administered either a vehicle or increasing doses 

of the anti-inflammatory dexamethasone. The thymus volume was 

assessed pre- and post-treatment using the MRI technique. To vali-

date the approach the wet weight of the thymus was also measured 

post mortem.

A scatterplot of the resulting data, ignoring the treatment effects, 

was used to assess the overall relationship between the MRI and 

wet weight measures. This plot revealed there was evidence of an 

overall relationship between the two measurement techniques. 

To investigate this relationship further, the within-group relation-

ships were also assessed. If the within-group relationships were 

also strong, then this would be further evidence of a relationship 

between the two measurement techniques. If the within-group 

relationships were not strong, then it could be argued that the two 

measurement techniques were therefore not really related. Perhaps 

dexamethasone, acting independently on the thymus volume and 

wet weight, was causing the apparent strong overall relationship 

between them.

For example, consider the uncategorised scatterplot given in 

Figure 5.7 for some simulated data. There is strong evidence of an 

overall relationship. It is possible, however, that this relationship is 

caused by dexamethasone. It could be the case that there is no 

underlying relationship between the two responses but dexameth-

asone increases both thymus volume and wet weight (by different 

mechanisms). In other words, is the treatment effect causing the 

apparent correlation between the measures rather than there being 

an underlying relationship between them? If the same plot is cate-

gorised by treatment (and hence displays the within-group relation-

ships) then the relationship is not quite so convincing (Figure 5.8). 

Of course, fewer observations are used to define the within-group 

relationships in Figure 5.8, hence it could be argued that these pre-

dicted lines are unreliable estimates of the true relationships.

5.3.2  Box-plots

Box-plots provide a useful way to summarise the data, 

particularly the within-group spread of the responses. 

There are many ways to construct a box-plot, but the 

conventional way avoids certain tacit parametric 

assumptions that we shall describe below in Section 

5.4.1. A box-plot is a series of boxes, one per group 

with lines (or whiskers) above and below the box. The 

following pieces of information can be displayed on a 

conventional box-plot:
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Figure 5.4.  Scatterplot of the responses from an experiment 

involving three treatments.
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Figure 5.5.  Scatterplot of the data assessing the relationship 

between the response and baseline variables including the 

best-fit linear line.
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Median – see •	 Section 5.2.3. Displayed as a dot within 

the boxes.

Interquartile range  – see •	 Section 5.2.4. Displayed 

using boxes around the medians. The Q1 quartile 

defines the lower end of the boxes, the Q3 quartile 

defines the upper end of the boxes.

Outlier range  – usually a function of the size of the •	

box. Displayed as the two whiskers above and below 

the boxes.

Individual outliers  – any observations that are out-•	

side the range of the whiskers are displayed as indi-

vidual points on the plot.

An example of a box-plot involving three experimental 

groups is given in Figure 5.9. Note the unusual observa-

tion in treatment group A.

In many software packages it is possible to redefine 

these plotting options. For example, the central dot 

within the boxes can be the observed mean rather than 

the median and the size of the boxes can be defined 

using the within-group variability rather than the inter-

quartile range. However, if the scientist wants to pro-

duce a plot based on means and variances, certain 

assumptions about the nature of the response will be 

required. For example, the responses need to be con-

tinuous (see Section 5.4.1). We believe that one of the 

strengths of the box-plot (in its more conventional for-

mat) is that it is a plot of the data that does not rely on 

any parametric assumptions.

While it is usual to display possible outliers on box-

plots we do not recommend using this approach to 

decide if an observation is an outlier; see Section 

5.4.1 for more details. In the conventional box-plot, 

the method for defining an observation as an outlier 

is based on the within-group spread of the responses. 

These individual spreads can be unreliable if the group 

sizes are small.

5.3.3  Histograms

Histograms are a useful graphical tool for illustrating 

the distribution of the data. The X-axis corresponds to 

the response (and is usually broken up into a number 

of intervals) and the Y-axis corresponds to a measure 

of the frequency of the response. The plot is then made 

up of a series of bars, where the area of each bar is pro-

portional to the number of responses observed within 

that interval. An example of a histogram is given in 

Figure 5.10.
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Figure 5.6.  Scatterplot of the data assessing the relationship 

between the response and baseline variables including the 

best-fit linear line, categorised by treatment.
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Figure 5.7.  Scatterplot of the overall relationship between 

thymus volume and thymus wet weight, with best-fit linear line 

for Example 5.3.
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One assumption sometimes made when analysing 

experimental data is that the data are normally distrib-

uted (see Section 2.2.4). This implies the distribution of 

the data follows a bell-shaped or Gaussian curve. The 

estimated normal curve can be superimposed on the 

histogram to give the scientist an idea of how normally 

distributed the response is. The bell-shaped curve is 

symmetrical about the central point, which indicates 

the location of the mean of the data. The shape of the 

curve gives an indication of the variability. The flatter 

the curve the more variable the data. In Figure  5.11 a 

normal curve has been superimposed on top of the 

density histogram.
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Figure 5.8.  Scatterplot of the within-group relationships 

between thymus volume and thymus wet weight, with best-fit 

linear lines for Example 5.3.
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Figure 5.9.  Box-plot of a response categorised by three 

treatment groups, including a possible outlier.
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Figure 5.10.  Density histogram of a response.
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Figure 5.11.  Density histogram of a response, including a 

normal distribution curve.
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5.3.4  Categorised case profiles plot

If the response is measured repeatedly across the levels 

of a repeated factor, then the researcher should con-

sider generating a categorised case profiles plot, an 

example of which is given in Figure 5.12.

A categorised case profiles plot is separated into a series 

of subplots, one per experimental group. For each subplot 

the Y-axis corresponds to the response and the X-axis 

corresponds to the levels of the repeated factor (usually 

time). The results for each animal are plotted in the rele-

vant subplot, in a similar fashion to the scatterplot, except 

that the results for each animal are connected by a line. 

This gives an illustration of how each animal’s response 

changes across the levels of the repeated factor.

These plots are useful for identifying the following.
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Figure 5.12.  Categorised case profiles plot, categorised by a factor at three levels A, B and C.
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Experimental group effects

The plot gives an overall view of the dataset. By compar-

ing the profiles visually the researcher can start to iden-

tify any differences between the experimental groups.

Individual animal outliers

The plot allows the researcher to identify an animal that 

does not follow the overall group profile. In Figure 5.13 

there appears to be one animal in group A with an 

unusual profile. When considering each time point 

separately none of the individual observations for this 

animal appears suspicious; however, the trend in the 

responses for this animal is in the opposite direction 

to the other group A animals. This may be worth inves-

tigating. By considering each of the time points sepa-

rately we could have missed the unusual behaviour of 

this animal.

Individual observation outliers

While the profile of an individual animal follows the 

same general pattern as the rest of the group, there may 

be an individual measurement during the time course 

that is unusual. In the example in Figure 5.14 none of 

the individual responses in group A appears unusual, if 

each of the time points is considered separately; how-

ever, one of the animals in group A does appear to have 

a response at 3 hours that does not follow the overall 

trend for that group. If the 3-hour data were considered 

in isolation, this observation would not be considered 

an outlier as it is within the range of observations of 

the group A animals. In this case it may be better to 

remove the observation or replace it with the average of 

the neighbouring within-animal responses. This latter 

approach is, effectively, smoothing the data.

Choosing a suitable summary measure

If we can identify a summary measure that summarises 

the responses for each animal, then this will greatly sim-

plify the statistical analysis. We describe some suitable 

measures in Section 5.4.4 and also discuss the benefits 

of using such a strategy in the statistical analysis.

For example, consider the example given in 

Figure 5.15 where there is no obvious trend across time. 

The average response per animal is perhaps a suitable 

summary measure that captures all the information 

recorded for each animal.

5.3.5  Means with SEMs plot

The observed means with standard errors plot (or 

means with SEMs plot for short) is perhaps the most 

popular plot produced by animal researchers. These 

plots are an established visual language that allows 

results to be communicated to others. They consist of a 

series of bars anchored at zero, where the height of the 

bars corresponds to the observed means (see Section 

5.2.1) and the error bars on the plot correspond to the 

standard error of the means. SEMs are usually calcu-

lated using within-group estimates of the variability 

(see Section 5.2.2). An example of a means with SEMs 

plot, as produced by InVivoStat, is given in Figure 5.16.

Problems with the means with SEMs plot

While these plots are undeniably useful, they do have 

certain drawbacks that need to be recognised when-

ever they are produced. In this section we assume that 

the standard approach has been used to produce the 

means with SEMs plot, i.e. the means are observed 

means and the error bars are generated using the 

within-group variability estimates. Some of the criti-

cisms described below can be avoided if the predicted 

means are included in the diagram and the variability 

estimate used to generate the standard errors is the 

single value calculated as part of the statistical analysis. 

However, this approach is not often taken by either 

scientists or statistical software packages and hence it 

would have to be carried out manually.

Reliability of the SEMs
If the sample size is small (n = 3, for example) then the 

standard errors may not be reliable. Each standard 

error relies on the estimate of the within-group vari-

ability. So if there are only three animals in a group, 

then these variability estimates will probably be unre-

liable. Cumming et al. (2007) suggest that in such cases 
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it may be more appropriate to produce a scatterplot of 

the data rather than the means with SEMs plot.

SEMs depend on the sample size
The standard error is not only dependent on the 

within-group variability but also the sample size. So 

two error bars (on the same plot) are only comparable, 

in some sense, if the sample sizes are approximately 

the same. The group with the largest sample size 

may appear to be less variable than the others sim-

ply because of the larger sample size. To avoid con-

fusion the researcher should clearly state the sample 

sizes on the plot, especially if the sample sizes vary 

between the groups.
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Figure 5.13.  Categorised case profiles plot, categorised by a factor at three levels A, B and C, with an unusual profile for an animal 

in group A.
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No mathematical link between the means with SEMs 
plot and the statistical analysis
In many cases the plot is not linked (mathematic-

ally) to the statistical analysis and hence the plot 

can contradict the results of the statistical analysis. 

Consider the ANOVA-based analysis approaches, 

discussed in Section 5.4.3. One of the assumptions of 

many of these analyses, as we shall see, is that the vari-

ability of the responses is the same across all groups. 

Now in the means with SEMs plot the variability is 

calculated separately for each group. While this has 

certain benefits, it does imply that when carrying out 

the ANOVA analysis we make assumptions that are 

not reflected on the means with SEMs plot. This can 
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Figure 5.14.  Categorised case profiles plot, categorised by a factor at three levels A, B and C, with an unusual result for one 

animal in group A at 3 hours. 
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lead to contradictions! The authors have been asked 

many times:

Why was that comparison not statistically significant? It looks 

as if it should be.

As an example consider Figure 5.17. The statistical ana-

lysis revealed a non-significant difference between the 

lowest dose of the compound and the control (using 

a one-way ANOVA followed by planned comparisons, 

see Section 5.4.8). Perhaps the sample size was too 

low and the tests underpowered (Section 3.7.3). A vis-

ual inspection of the means with SEMs plot suggested 

that the comparison should be significant. However, as 

the statistical tests were based on the pooled estimate 
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Figure 5.15.  Categorised case profiles plot that suggests an average response for each animal may be a suitable summary 

measure to analyse.
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of variability (pooled across all groups) then due to the 

higher variability in the intermediate and high dose 

groups, it can be argued that the pooled estimate of the 

variability is overestimating the variability in the con-

trol and low dose groups. As the variability was slightly 

lower in the control and low dose group, compared 

to the variability in the other groups, the comparison 

appears significant on the means with SEMs plot when 

the statistical test was not significant.

In practice there may be biological reasons why these 

treatment groups are less variable than the others, or 

it may just be due to the random sample taken in this 

experiment and it does not represent a real effect. Out 

of interest we used the pooled estimate of variability 

(from the one-way ANOVA analysis) when calculat-

ing the SEMs on the above plot. In this plot the lack of 

significance in the control vs. low dose comparison is 

more apparent (Figure 5.18).

Non-applicability in more complex statistical models
When performing the statistical analysis, it may be the 

case that the variability of the data can be reduced by 

accounting for other nuisance effects in the statistical 

analysis. For example, if we can include a blocking fac-

tor in the analysis, then this will reduce the underly-

ing variability. The (within-group) variance estimates 

used to calculate the SEMs do not take into account the 

reduction in the underlying variability achieved by fit-

ting the blocking factor.

Consider an example where the experimental design 

for the study consists of a treatment factor and an 

influential blocking factor. The means with SEMs plot 

appears to show that there is not a significant treatment 

effect at the lowest dose (Figure 5.19).

However, if we plot the treatment means separately 

for each block (i.e. we take into account the reduction in 

variability achieved by including the blocking factor in 

the analysis) then the error bars become much tighter 

and the significant treatment effects are revealed. This 

plot is given in Figure 5.20.

Multiple sources of variability
Consider the case where there is more than one source 

of variability in the experiment, for example when 

using repeated measures or split-plot designs. In such 

cases the level of variability that the experimental fac-

tors are tested against will vary depending on the factor. 

The means with SEMs plot does not reflect this.

For example, consider an experiment involving 

repeatedly measured responses. Each animal receives 

only one treatment and is then measured repeatedly 

over time. Comparisons between treatment groups (at a 

given time point) will be assessed against the between-
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Figure 5.16.  Observed means with standard errors plot.
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Figure 5.17.  Observed means with standard errors plot 

where the variability varies across the four treatment groups.
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animal variability, whereas comparisons made to inves-

tigate the change over time (within a treatment group) 

will be assessed against the within-animal variability. As 

the within-animal variability is usually smaller than the 

between-animal variability, the latter comparisons are 

more sensitive than the former. Nieuwenhuis et al. (2011) 

comment that the error bars on a means with SEMs plot 

should reflect the variability of the differences that are 

being tested. This is not apparent from the orthodox 

means with SEMs plot; see also Cumming et al. (2007).

In the following example, involving a repeated meas-

ures design, there was no evidence of a significant diffe-

rence between the treatment and control groups at 1 

hour (p = 0.364), but the change in the control group 

means between 1 and 2 hours was statistically signifi-

cant (p = 0.042). This is not obvious from an examin-

ation of the error bars on the means with SEMs plot 

(Figure 5.21) and is due to the latter comparison being 

assessed against the much smaller within-animal vari-

ability, which is not shown on the plot.

Benefits of the means with SEMs plot

Given the issues highlighted above should we stop 

using this plot? Perhaps. However, there are two ben-

efits that should be considered when using these plots 

that perhaps do endorse their use.
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Figure 5.18.  Observed means with standard errors plot using 

the pooled estimate of the variability to calculate the standard 

errors.
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Figure 5.19.  Observed means with standard errors plot from 

an experiment involving a blocking factor. The standard errors 

were calculated without taking into account the blocking 

factor.

A B

Block

R
es

po
ns

e

(1) Control
(2) Low
(3) Intermediate
(4) High

0

2

4

6

8

10

12

Figure 5.20.  Observed means with standard errors plot 

from an experiment involving a blocking factor Means and 

standard errors were calculated at each level of the blocking 

factor.
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Universal graphical language
Plots of means with SEMs are a well-established visual 

way for scientists to communicate results. If the pur-

pose of a graph is to summarise the results of an experi-

ment so that others can draw their own conclusion 

about the study findings, then this plot provides a use-

ful tool for doing so. It should be remembered that for 

simple experimental designs involving a single experi-

mental factor, with equal sample sizes, the error bars 

plotted on the graph are a reasonable representation of 

the pooled variability estimate used in the analysis.

Assessing the equal variance ANOVA assumption
As stated above, the error bars plotted are calculated 

separately for each group and this does have one advan-

tage. By considering the size of the error bars, the sci-

entist can get a feel for the validity of the assumption, 

required for the ANOVA analysis, that the variability 

is the same across all groups. If the error bars get big-

ger as the means get bigger then this may indicate that 

the response variable should be transformed prior to 

analysis (see Section 5.4.1). Note this approach only 

works if the sample size is approximately the same for 

all groups and there is no other factor, such as a block-

ing factor, present in the experimental design. If either 

of these conditions is not satisfied, then care must be 

taken when drawing conclusions using the plot. There 

is another plot that can be used that does not suffer 

from these constraints, as we shall see in Section 5.4.5. 

However, the means with SEMs plot does at least high-

light that there may be a problem with the homogen-

eity of variance assumption.

5.4  Parametric analysis

Once the data has been visually assessed the researcher 

should have a feel for the experimental results. Attention 

can now turn to performing a more formal statistical 

analysis. In this chapter we shall concentrate on para-

metric statistical analysis techniques.

Parametric analysis is an approach that relies on 

the assumption that the distribution of the responses 

we are measuring, once any fixed factors have been 

taken into account, follows a certain probability distri-

bution. We then make statistical inferences about the 

parameters that define this distribution. For example, 

we may assume the response we are measuring is nor-

mally distributed (a distribution defined by the sample 

means and sample variance). Under this assumption 

we can then assess the differences between the sample 

means by comparing the size of these differences to the 

sample variance. We need not confine ourselves to the 

normal distribution though. For example, later in this 

chapter other parametric tests are considered that rely 

on the assumption that the responses are chi-squared 

distributed.

As well as making distributional assumptions, when 

performing a parametric analysis, we may also need to 

assume:

the responses are numeric and continuous•	

the variability is the same across all groups (homoge-•	

neity of variance)

the observations are independent•	

there are no outlying observations unduly influenc-•	

ing the results

the effects behave in an additive way•	

The parametric family of statistical tests we consider 

in this section can take into account the experimen-

tal design employed and hence provides a flexible and 

powerful set of tools for analysing data. We argue that, 
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Figure 5.21.  Observed means with standard errors plot from 

a repeated measures experiment.
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where possible, the researcher should always aim to use 

a parametric test. These tests include the following.

t-test This test is appropriate if you have a single fac-

tor at two levels (for example you wish to compare a 

treatment and control). We do not recommend using 

the t-test in more complex situations.

One-way ANOVA This test should be used if your 

experiment consists of a single factor at more than 

two levels (for example three doses of a test com-

pound and control). The ANOVA table provides an 

overall test to see if the experimental factor means are 

different. If you want to make pairwise comparisons 

between the individual factor means then you need to 

use post hoc tests, multiple comparison procedures or 

planned comparisons. Note that all of these tests (the 

overall test and any pairwise tests) use an estimate of 

the variability derived from all of the data. This esti-

mate is a more reliable and reproducible estimate of 

the variability because all of the data have been used 

to calculate it.

Two and higher-order ANOVA If the experiment 

was conducted using a factorial design, then the 

two- and higher-order ANOVA approaches allow the 

researcher to investigate these multiple factors of inter-

est. The ANOVA table contains not only overall tests 

of the factors but also assessments of how the factors 

interact with each other. For example, the experiment 

may consist of testing several treatments on two strains 

of mice. Using a two-way ANOVA approach allows the 

researcher to assess not only the overall differences 

between the treatment and strain means, but also to 

investigate if the effects of the treatments vary between 

strains. As with the one-way ANOVA, pairwise compar-

isons between the predicted means can still be made 

using post hoc tests, multiple comparison procedures 

or planned comparisons.

Repeated measures analysis In many animal exper-

iments the response of an animal to a stimulus is mea-

sured repeatedly, perhaps over time. In the analysis of 

these experiments we introduce a repeated factor into 

the analysis to assess how the response changes. As 

measurements recorded on the same animal are likely 

to be more related than those recorded on different 

animals, due to the lack of randomisation, we need to 

take these spatial interrelationships into account in the 

analysis. This can be achieved using repeated measures 

analysis techniques.

5.4.1  Parametric assumptions

Before we consider the parametric tests in detail, we 

shall look at some of the assumptions that are made 

when running these analyses. It should be remembered 

that these assumptions should hold, or at least be rea-

sonably well satisfied, for the test results to be valid. 

When they do hold the parametric analysis is a (statisti-

cally) powerful analysis tool.

Numeric and continuous responses

There is a tacit assumption, made when carrying out 

a parametric analysis, that the response measured is 

numeric and continuous. As discussed above these 

responses should be the first choice for any animal 

researcher as they contain the most information (and 

hence will allow animal numbers to be reduced).

As well as being numeric and continuous, the 

response should not be bounded above or below and 

hence it should be possible to measure a response at 

any numerical value (positive or negative). Of course 

in practice many responses are bounded below by 

zero. An animal cannot have a negative body weight, 

although body weight change can be negative. It is also 

not uncommon for responses to be bounded above too. 

There may be a physical limit to the size an animal can 

grow to, and so any larger values are biologically impos-

sible. There may also be practical constraints that prod-

uce an upper boundary. For example, in an experiment 

to assess the analgesic effect of a compound using the 

hotplate animal model, the response is bounded below 

by zero (a physical constraint) and above by 30 seconds 

(an ethical constraint). We discuss a strategy for analys-

ing data with such limits in Section 5.5.3.

Sometimes this assumption can be relaxed. Discrete 

responses (Section 3.2.1) are numeric but not neces-

sarily continuous. For example, the response meas-

ured could be a count response, such as the number 

of rearings observed in a 5-minute time period. Such 

responses, while not necessarily being continuous, 

may behave in a quasi-continuous way if the number 
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of counts recorded is relatively high and the range of 

counts sufficiently large. Count responses are (in the-

ory) not bounded above; however, other types of dis-

crete response are bounded. For example, in an animal 

model of arthritis each paw of the animal is given the 

clinical score of 0, 1, 2, 3 or 4. This gives the animal a 

maximum score of 16 (summing over all four paws).

So when should we be concerned that our data are 

not numeric and continuous? In practice it is diffi-

cult to define a formal rule. Almost all responses are 

bounded and so in theory few responses would pass if 

we strictly adhered to satisfying this assumption. It is 

our belief that:

If the response is bounded, then as long as these •	

boundaries are not attained by the majority of the ani-

mals within each experimental group, the researcher 

can proceed using a parametric analysis. If all the 

responses in a group (such as a positive control) are 

recorded at a boundary, then this group should be 

removed from the analysis. We contend this is one of 

the few justifications for removing a group from the 

analysis.

For count and ordinal data, as long as there is a rea-•	

sonably large range of responses observed within 

each group, and all the observations in a group do not 

consist of only one or two distinct values, then we feel 

we can assume the data are continuous.

In both of these cases a degree of common sense is 

required. If you feel that the data cannot be considered 

continuous, or you are worried about making assump-

tions that may not hold, then you should consider taking 

an alternative approach, such as performing a non-par-

ametric test, a test of proportions or a survival analysis 

(see Sections 5.5.1, 5.5.2 and 5.5.3, respectively).

Normally distributed residuals

When we carry out most statistical analyses, we fit a stat-

istical model to the data. This may involve, for example, 

simply calculating experimental group means, or esti-

mating the non-linear relationship between response 

and the dose of the novel compound. Once a statistical 

model has been fitted to the data, for each observation 

in the dataset we can calculate a predicted value. This 

is the value that the statistical model predicts the indi-

vidual observation should be. It can be a group mean 

or a specific point on the prediction curve. While there 

will be a spread of responses within each experimen-

tal group, the average or mean value is the value that 

we predict all the observations in that group should 

be. Of course in practice some observations will be 

observed above the predicted value and some below. 

The residual for an observation is a measure of the dis-

tance the observation is from the predicted value. So for 

the ith observation in the dataset:

observationi = predictedi + residuali.	 (5.10)

When we perform a parametric analysis we assume 

that the residuals from the statistical analysis (and not 

the responses) are normally distributed. By saying nor-

mally distributed we imply that the distribution of the 

residuals follows a normal or bell-shaped curve (see 

Section 2.2.4). The majority of the residuals will cluster 

around the mean (zero in this case) but there will always 

be some high and some low residuals – these define the 

tails of the distribution. The easiest way to appreciate 

the distribution of the residuals is to plot a histogram of 

them. We can then superimpose a normal curve on the 

histogram to summarise the distribution.

To highlight that it is the residuals that need to be 

considered for normality and not the responses them-

selves, consider the following example.

Example 5.4:  A simple drug study with non-normal 

residuals

A study was set up to test the effect of a novel compound. The 

experimental design consisted of two treatment groups (treatment 

and control) and it was decided in advance to measure a continu-

ous numerical response. A histogram of the response, given in 

Figure 5.22, illustrated that the responses were not normally distrib-

uted; the distribution of the response appeared to have two peaks.

However, once the treatment effect was taken into account 

(which we achieved by fitting a statistical model to the data involv-

ing two groups) then the responses within each group did appear 

to be normally distributed. In Figure 5.23 we have categorised the 

histogram by treatment group. Note the heights of the bars are dif-

ferent in Figures 5.22 and 5.23 due to the differences in the number 

of bars included in the plots.

There are various ways to check the assump-

tion that the residuals are normally distributed. To 

begin with there are several formal statistical tests, 

such as the Shapiro–Wilk (Shapiro and Wilk, 1965) 

and Kolmogorov–Smirnov tests (Kolmogorov, 1933; 

Smirnov, 1939). However, it can be argued that these  
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tests are not powerful at detecting non-normality, espe-

cially if the sample sizes are small (as they invariably 

are in animal experiments). A second, and we believe 

more reliable approach, is to produce a normal prob-

ability plot of the residuals.

Normal probability plot
To produce a normal probability plot, the n residuals 

(corresponding to the n observations in the dataset) 

are ranked from the smallest to the largest. For each 

residual Ri (1 ≤ i ≤ n) we then calculate the correspond-

ing percentage point Pi from the standard-normal dis-

tribution. There are several ways to calculate the Pi’s, for 

example:

P
i

n
ni =

−( )
+( ) ≤

3 8

1 4
0

/

/
,if 1 	 (5.11)

P
i

n
ni =

−( ) >
1 3

0
/

,if 1 	 (5.12)

where n is the total number of observations.

The Pi’s are then plotted (on the X-axis) against the 

residuals (on the Y-axis). Effectively we are compar-

ing the spread of the actual residuals against what 

they should be if normally distributed. If the residuals 

are normally distributed, then all the points on the 

plot should lie along a straight line. If the residuals are 

not normally distributed, then they will deviate from 

this line.

In the first of the following normal probability plots 

(Figure 5.24), the points do not lie on the line indicat-

ing that the residuals are not normally distributed. In 

the second plot (Figure 5.25), however, the points more 

closely follow the line, indicating the residuals are nor-

mally distributed.

In practice certain types of response may not be 

normally distributed (and hence the residuals are 

not normally distributed either). For example, some 

continuous responses may be log-normally distrib-

uted (where the distribution is not a symmetrical bell-

shaped curve but asymmetrical with a longer right-

hand tail). We shall consider this situation later on in 

this section.

In conclusion it is worth noting that the parametric 

tests are fairly robust against some degree of departure 

from normality (Montgomery, 1997, p. 81). So perhaps 

in practice this is an assumption that we can afford to 

relax. As long as the points in the normal probability 

plot lie reasonably close to the straight line, then we 

should be justified in proceeding with the parametric 

analysis.
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Figure 5.22.  Histogram of the responses measured for 

Example 5.4.
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Figure 5.23.  Histogram of the responses measured for 

Example 5.4, categorised by treatment group.
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Homogeneity of variance

One of the key assumptions we make when perform-

ing most parametric analyses is the homogeneity of 

variance assumption. If the homogeneity of variance 

assumption holds then the variability of the response 

is not related to the size of the response. This implies 

that within-group variability is the same for all groups 

and is not dependent on the size of the group means. 

In the authors’ experience of biological experiments, 

this assumption may not hold and hence it should be 

checked prior to looking at the results of the parametric 

analysis.

It is often the case with biological responses that the 

variability increases as the response increases. Perhaps 

the response we are measuring increases exponentially, 

for example bacterial cell count. It may also be the case 

that there is a physical constraint on the response. For 

example, if the response cannot be negative then as 

the response measured approaches zero the variabil-

ity tends to decrease. In both cases the homogeneity of 

variance assumption may not hold.

There are several statistical tests that can be used 

to assess the homogeneity of variance assumption. 

These include the Brown–Forsythe test (Brown and 

Forsythe, 1974), Levene’s test (Levene, 1960) and 

Bartlett’s test (Bartlett, 1937). The latter is suitable 

when there is only one experimental factor in the 

experimental design. However, care should be taken 

when using Bartlett’s test as it is sensitive to non-nor-

mally distributed data.

We do not recommend using any of these tests to 

assess the homogeneity of variance assumption. For 

small sample sizes (as is invariably so in animal experi-

ments) the power of these tests to identify heteroge-

neous variability is limited. Additionally, when these 

statistical tests suggest that the homogeneity of variance 

assumption does not hold, they do not offer a solution. 

It should also be noted that outliers can influence the 

results of these tests, especially when the sample size is 

small. As Box (1953) famously noted:

To make a preliminary test on variances is rather like putting 

to sea in a rowing boat to find out whether conditions are suffi-

ciently calm for an ocean liner to leave port!

An alternative approach to these statistical tests is 

to use a predicted vs. residuals plot to assess the homo-

geneity of variance assumption. We recommend the 

researcher consider this plot before looking at the 

results of the analysis.
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Figure 5.24.  Normal probability plot showing the residuals 

are not normally distributed. The individual points do not 

follow the dotted line.
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Figure 5.25.  Normal probability plot showing the residuals 

are normally distributed. The individual points follow the 

dotted line reasonably well.
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Predicted vs. residuals plot
As described above, each observation in a dataset can 

be broken down into two parts, the predicted part and 

the residual part. For the ith observation in the dataset,

observationi = predictedi + residuali.	 (5.13)

If the assumption of homogeneity of variance holds, 

then no matter how numerically large the observa-

tions (and hence the predicted values) are, the residu-

als should all be approximately the same size. In other 

words, the spread of observations in a group with a high 

mean should be the same as the spread of observations 

in a group with a low mean.

To test the homogeneity of variance assumption we 

produce a scatterplot of the data where:

The •	 Y-axis corresponds to the residuals from the 

analysis.

The •	 X-axis corresponds to the predicted values from 

the analysis.

Each observation in the dataset corresponds to one •	

point on the scatterplot.

A typical example is given in Figure 5.26. The experiment 

involves three treatment groups; hence the predictions 

from the statistical model consist of three means, one 

per group. The lowest group mean is 0.5, the middle 

group mean is about 1.4 and the highest is 2.6. Hence 

the X-axis on the plot can only take three distinct values 

(corresponding to the three group means). The Y-axis 

corresponds to the residuals and has a range between 

+2 and –2 in this case.

Notice on this plot that the spread of the responses 

on the Y-axis is the same for each X-axis value. This 

implies the size of the residuals (Y-axis spread) is the 

same for each treatment group (distinct X-axis value). 

In general, assuming the assumption of homogeneity of 

variance holds, then the size of the residuals (or spread 

of the individual points in the vertical direction) should 

be the same for all the predicted values.

As mentioned above, usually in biological experi-

ments the homogeneity of variance assumption 

does not hold because the variability increases as the 

response increases. Therefore, as the predicted values 

increase so the sizes of the residuals increase. If this is 

the case then you will observe a ‘fanning effect’ in the 

predicted vs. residuals plot.

Example 5.5:  An experiment where the response needs 

transforming

The predicted vs. residuals plot given in Figure 5.27 was obtained 

as part of the analysis of a biological response. The plot displays the 

classic ‘fanning effect’.

As mentioned above it should be possible in such cases to stabil-

ise the variance by transforming the data. By transforming the data 

we imply that all of the observations are transformed onto a new 

scale. For example, if the data are log-transformed then for the ith 

observation:

transformed observationi = log10 (observationi), 

  for i = 1, …, n.� (5.14)

Common transformations include:

Log transformation Useful for log-normally distributed data 

(where the within-group variability increases with the group mean) 

or when the response measured increases exponentially (such as 

bacterial cell counts). This is perhaps the most common transform-

ation applied to biological data. It can be performed on either the 

log10 or loge scale. Log10 is favoured by researchers as certain types of 

response are often quoted on this scale. Statisticians tend to prefer 

loge as it has some useful mathematical properties.

In the authors’ experience many responses often 

require log-transforming, for example gene expres-

sion data, cytokine responses and triglyceride levels in 

blood plasma. Also a response that is bounded below 

by zero may need transforming if one or more of the 
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Figure 5.26.  Predicted vs. residuals plot for an experiment 

involving three groups. 
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experimental groups reduces the response so that the 

group means are close to zero. These groups often tend 

to be less variable due to the responses being close to the 

lower boundary and log-transforming may be required.

Example 5.5 (continued): An experiment where the 

response needs transforming

The analysis of the response above revealed a fanning effect in the 

predicted vs. residuals plot. Once the data was log-transformed this 

fanning effect was removed (Figure 5.28).

One of the disadvantages of the log transformation is 

that a zero response cannot be transformed (log(0) does 

not exist). So if you have zeros in the response being 

analysed, you will need to add a small offset onto all of 

the responses to avoid losing these data points. There 

is no correct value to use as an offset, but 10% of the 

lowest non-zero observation is a good starting point. 

In practice the offset chosen should not be too small 

because otherwise the zero responses (once trans-

formed) will become unusually low results on the log 

scale and will look like outliers. These will show up on 

the predicted vs. residuals plot as points with unusually 

low Y-axis values.

We comment more on outliers below, but it is 

worth noting that an unusually large observation 

(with a correspondingly large residual) that appears 

to be an outlier on the original scale may not be an 

outlier on the transformed scale. For example, if the 

response is log normally distributed then this obser-

vation may appear acceptable on the log scale. The 

response appears to be an outlier (on the original 

scale) simply because the variability is higher for the 

larger observations. An example of this can be seen 

in Example  5.5 where the largest observation in the 

dataset no longer appears to be an outlier when the 

responses are transformed onto the log scale (see 

Figure 5.28).

Alternatively you may find that an observation 

close to zero, which looks acceptable on the original 

scale, is an outlier on the log scale (see Example  5.7, 

Figure 5.32). Decisions on outliers should only be made 

after the transformation has been selected!

Square root transformation This transformation is 

not as strong as the log transformation and so can be 

used if the log transformation produces a fanning effect 

on the predicted vs. residuals plot that is the opposite of 

that observed in Figure 5.27.

Example 5.5 (continued): An experiment where the 

response needs transforming

The predicted vs. residuals plot for Example 5.5 following a square 

root transformation is given in Figure  5.29. We can see that the 

5 10 15 20 25 30

−2

−1

0

1

2

3

4

5

Predicted vs. residuals plot

Predicted values

E
xt

er
na

lly
 s

tu
de

nt
is

ed
 r

es
id

ua
ls

Figure 5.27.  Predicted vs. residuals plot for Example 5.5, 

where the variability of the responses increases with the size 

of the response. The predicted vs. residuals plot displays a 

fanning effect.
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Figure 5.28.  Predicted vs. residuals plot for Example 5.5 

(following a log transformation), with no evidence of a fanning 

effect.
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square root transformation has reduced the fanning effect seen 

in the predicted vs. residuals plot of the untransformed response 

(Figure  5.27), but it has not completely stabilised the variabil-

ity across the groups. In this example the log transformation 

(Figure 5.28) is the most appropriate transformation to apply.

From a pragmatic point of view, square root trans-

formations are useful if there are zeros in the dataset. 

There is no need to add an offset to the response as 

sqrt(0) = 0. If there is little to choose between the fan-

ning effect observed in the predicted vs. residuals plot 

for the square root and log transformations, and there 

are zero responses, then the square root transformation 

may be preferable as it does not require an offset to be 

applied.

There is also theoretical justification for using the 

square root transformation if the response meas-

ured is a count response. It can be shown that the 

transformation

transformed response = √(count response + 3/8)	 (5.15)

can be expected to satisfy both the homogeneity of 

variance assumption and the normality assumption 

discussed in the previous section.

Arcsine transformation For proportion responses 

(that are bounded above by 1 and below by 0), then the 

arcsine transformation may be appropriate:

transformed response = arcsine(√p)	 (5.16)

where 0 < p < 1, p being the proportion response.

With responses bounded above and below there is a 

tendency for the variability of the response to decrease 

as it approaches these boundaries. The arcsine trans-

formation increases the variability of the responses 

at the boundaries and decreases the variability of the 

responses in the middle of the range.

More generally any response that is bounded above 

and below can be transformed using the arcsine trans-

formation. Of course they need to be normalised so that 

all responses lie between 0 and 1. An example of the 

use of an arcsine transformation can be found in the 

analysis of an attentional set shifting task experiment 

(Hatcher et al., 2005). In this case one of the responses 

analysed was the proportion of the maximum number 

of trials performed (by one of the animals) within the 

experiment.

Independence of the responses

When carrying out a parametric analysis we assume 

that the responses are independent. So each response 

(and the procedures that were involved in generating 

that response) does not influence any other response 

in the dataset, once the experimental factors have been 

accounted for.

It can be argued that one of the purposes of the ran-

domisation is to provide the scientist with a way of justi-

fying the assumption that the responses are independ-

ent. If a suitable randomisation has been performed, 

as part of the experimental process, then this should 

remove the relationships between the responses that 

will not be accounted for by the experimental fac-

tors and hence we can assume the observations are 

independent.

It should be noted that the levels of the repeated 

factor in a repeated measures design (time points or 

brain regions, for example) cannot be randomised. This 

implies that the repeated measurements taken within 

an animal will probably not be independent of each 

other. This leads to the repeated measures analysis 

approach where we account for the interrelationships 

between observations taken on each animal within the 

statistical analysis.
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Figure 5.29.  Predicted vs. residuals plot for Example 5.5, 

where the variability of the responses increases with the size of 

the response (following a square root transformation).
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Removal of outliers

While not strictly one of the assumptions of the para-

metric analysis, the presence of outliers may influence 

our decision to accept or reject the assumptions dis-

cussed above. So it is a good idea to see if any observa-

tions are possible outliers, and hence can be removed 

from the analysis, during the assessment of the para-

metric analysis assumptions.

An observation considered to be an outlier may be a 

genuinely unusual response, but it may also be identi-

fied because incorrect assumptions are made about the 

distribution of the responses. As we shall see below, it 

is possible that the responses are not normally distrib-

uted and hence observations that appear to be outliers 

(under the assumption that the responses are normally 

distributed) are not unusual when other distributional 

assumptions are considered.

There is no single rule that can be used to identify 

outliers, and even the definition of an outlier itself is a 

contentious one. Such decisions must come down to 

personal belief, type of response and the choice of stat-

istical procedure. In this section we shall describe some 

of the statistical procedures that can be used when 

deciding whether an observation is an outlier or not. 

We emphasise, however, that this discussion should 

only be taken as a guide.

Use scatterplots to identify outliers
The scatterplot, described in Section 5.3.1, should be 

used as an initial tool for identifying possible outliers. 

This plot has the advantage that it allows the scientist 

to look at the distribution of the responses across the 

whole dataset when deciding on outliers.

Example 5.6:  A drug study with an unusual observation

Consider the following example consisting of three treatment groups 

and a control. A scatterplot of the response data (Figure  5.30) 

reveals a possible high outlier in the intermediate dose group. But 

is this observation an outlier? While it may look unusually high (for 

that group) it does lie within the range of the responses observed in 

the high dose group. Perhaps it was an animal that responded well 

to the treatment? Crucially though if we look at the spread of data in 

the other three groups, we see that the spread in the intermediate 

dose group (including the suspicious observation) is not unusual. 

The observation looks unusual because the distribution of the obser-

vations within that group is not uniform. Perhaps if we repeated the 

experiment we would have measured responses in the gap between 

the ‘outlier’ and the rest of the intermediate dose group data. So in 

conclusion we would not exclude this observation.

Biological vs. statistical outliers
Some scientists feel that a biological (rather than sta-

tistical) argument is the only way to really justify the 

removal of an outlier from a dataset. For example, the 

animal was losing weight when the testing began or just 

looked unwell during the experiment. This would be a 

valid reason for excluding the subject’s responses as 

they may have been influenced by other uncontrollable 

factors. If this is the case then it is a strong justification 

for exclusion.

Of course to be able to exclude observations using 

this approach detailed records of the conditions of the 

experiment must be kept to identify outliers after the 

data has been collected and assessed. However, even 

if there are no biological reasons to explain why an 

observation is unusual, we argue it is perhaps too strict 

a rule to always include it in the analysis. For example, 

the biological reason that would identify why the obser-

vation was unusual may not have been recorded. If the 

results of the statistical analysis are heavily influenced 

by an unusual observation, then we feel it should be 
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Figure 5.30.  Scatterplot of the responses for Example 5.6 

involving three treated groups and a control group.
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excluded, or at least an analysis performed with and 

then without the observation present in the dataset.

The 2SD rule
Perhaps the most commonly employed rule to detect 

outliers is the two standard deviation rule (2SD). For 

each experimental group we first calculate the observed 

mean and the within-group standard deviation. If any 

observation is further than two standard deviations 

from the observed mean then it is declared an outlier. 

Effectively this approach involves looking at the residu-

als for each observation and rejecting observations that 

have residuals that are too large.

Although commonly applied, this approach can be 

problematic for several reasons:

Assumptions regarding the response Firstly it 

assumes the data are continuous and normally dis-

tributed. If they are not, and a non-parametric analysis 

is used to analyse the data, then the 2SD rule should 

not be applied. In these situations perhaps the median 

should be used rather than the observed mean when 

calculating the ‘residual’ for an observation. Also some 

function of the range of the data rather than the stan-

dard deviation should be used to quantify the spread of 

the data (because the standard deviation is not a mean-

ingful measure of the variability in such cases).

Transformations The 2SD rule should also not be 

applied if the response was transformed prior to ana-

lysis. An assessment of outliers should be made on 

the transformed scale and not the original scale. This 

is particularly true of log transformations where, as we 

have seen above, unusually high responses that appear 

to be outliers on the original scale are not outliers on 

the log scale.

Chance of finding an outlier It should be remem-

bered that if the responses are normally distributed, 

then we would expect about 4.6% of the observations 

to lie beyond the 2SD boundaries. These are not out-

liers, they are just the observations we would expect to 

see in the tails of a normally distributed response. So 

by applying this rule we risk excluding valid data. If we 

apply the rule at the 3SD boundary, then only 0.3% of 

the observations from a normally distributed response 

would fall outside the boundary. Perhaps the 2SD 

boundary should therefore be seen as a warning limit 

and the 3SD as the action limit, as is the case in statis-

tical process control.

Example 5.7:  Outlier on the log scale

Consider the following experiment involving two doses of a com-

pound and a vehicle. Let us assume the response being measured 

is known to be log-normally distributed. A scatterplot of the data on 

the original scale reveals a possible outlier in the 10 mg/kg dose 

group (Figure 5.31).

However, is this a true outlier, or is it an artefact of the response 

being log-normally distributed?

A plot of the data on the log scale, see Figure 5.32, reveals that it 

is the lowest observation in the vehicle group, which is an unusual 

observation. The high response in the 10 mg/kg dose group is not 

an outlier. This result is high due to the increased variability of the 

larger responses. If the statistical analysis, perhaps using a one-

way ANOVA, was performed on the log-transformed data, then it 

is the low observation in the vehicle group that would need to be 

removed.

Applicability of the variance estimate Finally (and 

perhaps most importantly) remember that most of the 

parametric analyses uses a pooled estimate of the vari-

ability, pooled over all groups. The 2SD test for outliers 

relies on the within-group estimates of variability and 
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Figure 5.31.  Scatterplot of the responses for Example 5.7, 

a drug study involving two treated groups and a control 

group. The response appears to be log-normally distributed 

(the variability increases with the size of the response). 

Note the unusually high observation in the 10 mg/kg treated 

group.
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hence is not applicable if these parametric analyses are 

used. As many parametric analyses pool the variability 

estimate across all groups, we should do the same when 

making an outlier assessment.

Example 5.6 (continued): A drug study with an unusual 

observation

Returning to Example 5.6, the group mean for the intermediate dose 

group was 5.62, the standard deviation for the group was 0.85 and 

hence the upper boundary for defining outliers (2SD) is 7.32. The 

unusually high observation was 7.79 and hence would be declared 

an outlier using the 2SD approach. We feel this is incorrect and is 

simply an artefact of the fact that the intermediate dose group hap-

pened to be slightly less variable than the other treatment groups in 

this experiment. If we repeated the experiment would we get a sim-

ilar pattern in the within-group variability? If we think the variability 

of the response is different for each treatment group, then perhaps 

the parametric analysis is not an appropriate choice.

This also highlights one of the problems with animal experiments. 

When the sample sizes are small, the within-group variability esti-

mates are never reliable and so should not be used when deciding 

on outliers.

The standardised and studentised residuals
 As mentioned above, the 2SD rule is effectively a test 

based on the size of the residuals, after having adjusted 

them for the within-group variability. Given that the 

within-group variability estimates may be unreliable, 

an alternative approach is to use the pooled estimate 

of variability from the parametric analysis. Hopefully 

this pooled estimate of variability will be a more reli-

able (and reproducible) estimate of variability than the 

individual within-group estimates. This is because, as 

discussed above, all of the data are used to calculate the 

single pooled estimate. It is this general approach that 

is taken when calculating the standardised and studen-

tised residuals.

The standardised residuals can be calculated by 

dividing the residuals by the pooled standard devia-

tion. For observation i we calculate:

Standardised residual
residual

Residual
i

i

MS
= 	 (5.17)

where MSResidual is the pooled estimate of variability (see 

Section 5.4.3).

Any observation with a corresponding standardised 

residual that is greater than two may be considered 

an outlier. This is a similar approach to that applied in 

the 2SD rule described above, except that in the 2SD 

approach the separate within-group estimates of vari-

ability were used rather than the more reliable pooled 

estimate of variability.

It can be shown that the predicted variability of 

each residual varies depending on the observation 

(Montgomery, 1997, p.  564). It turns out that some 

observations are more influential on the predicted (stat-

istical) model than others. These observations will have 

smaller residuals than others because the model will be 

‘pulled’ closer to them. We measure this by calculating 

the leverage (h) of each observation. It follows that we 

should take the leverage into account when making the 

adjustment to the residuals. These are the so-called stu-

dentised residuals. For observation i we calculate:

Studentised residual
residual

Residual

i
i

iMS h
=

−( )1
	 (5.18)

where MSResidual is the pooled estimate of variabil-

ity (see Section 5.4.3) and hi is the leverage of the ith 

observation.

Many authors recommend using the studentised 

residuals, rather than the standardised residuals, when 

making outlier assessments. Unfortunately an outlier 
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Figure 5.32.  Scatterplot of the responses on the log10 scale for 

Example 5.7, involving two treated groups and a control group. 

Note the unusually low observation in the vehicle group.
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may artificially inflate the pooled estimate of variability 

(the MSE) and hence make the outlier assessment unre-

liable. This can be avoided, to some extent, by using 

externally studentised residuals.

When calculating the studentised residual for obser-

vation i, instead of dividing by the pooled estimate of 

variability (generated from the whole dataset) we cal-

culate the pooled estimate of variability using a dataset 

where the ith observation has been excluded. If the ith 

observation is an outlier then the pooled estimate of 

variability will be artificially increased by including it. 

By removing the ith observation before calculating the 

pooled estimate of variability, then this issue is avoided. 

This method is known as the deletion method by some 

authors. For observation i we calculate:

Externally studentised residual
residual

Residual

i
i

MS
=

−−[ ]1 1 hi( )
	

�

(5.19)

where MS[Residual-i] is the pooled estimate of variability 

from the dataset excluding observation i and hi is the 

leverage of the ith observation.

It is recommended that the decision to exclude out-

liers should be carried out once and not iteratively, 

using a new variability estimate at each stage. Once 

outliers have been removed then the variability esti-

mate will be reduced, hence other observations that 

were initially acceptable may now appear to be outliers 

(when compared to the new reduced variability esti-

mate). This could be a vicious circle if the scientist is not 

careful. The variability estimate may become artificially 

reduced if too many observations are removed.

We recommend using externally studentised residu-

als when trying to identify outliers. Our approach is as 

follows:

If the externally studentised residual for an obser-•	

vation lies outside the range +/-2, then it could be 

an outlier. The scientist must decide whether to 

exclude it.

If the externally studentised residual for an observa-•	

tion lies outside the range +/-3, then the scientist can 

be justified in removing it from the analysis.

A convenient way to carry out this test for outliers is 

to use the predicted vs. residuals plot. Rather than 

plot the residuals themselves on the Y-axis we plot 

the externally studentised residuals. For example, 

InVivoStat produces a predicted vs. externally studen-

tised residuals plot by default for the single measure 

parametric analysis. The plot also includes dotted lines 

to help the scientist apply the outlier detection rules 

described here.

Example 5.5 (continued): An experiment where the 

response needs transforming

Returning to Example 5.5, assume a one-way ANOVA approach was 

used to analyse the data. The predicted vs. residuals plot, produced 

using InVivoStat, is given in Figure 5.33.

There is some evidence of an outlier in the top dose group, but 

as there is a fanning effect in the predicted vs. residuals plot we 

should consider transforming the data before making any final deci-

sions about outliers. Log-transforming the response prior to analysis 

appears to remove the fanning effect and stabilises the variance in 

the higher dose groups. The suspicious observation has an externally 

studentised residual that is less than two (on the log scale) and 

hence is not considered an outlier (Figure 5.34).

Additivity

When carrying out many parametric analyses we 

assume that the effects in the statistical model influ-

ence the response in an additive way. The effect of the 

factors present in the statistical model can be added 

together in a linear fashion (hence the terminology ‘lin-

ear model’).
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Figure 5.33.  Predicted vs. residuals plot from the analysis of 

Example 5.5.
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For example, consider an experimental design that 

consisted of a single treatment factor (Drug) corre-

sponding to different levels of the test compound. 

Measurements were taken over 2  days and hence a 

blocking factor Day at two levels was included in the 

experimental design to account for any day-to-day dif-

ferences. Assume the results were higher on day 2 than 

on day 1. A statistical model that could be fitted to the 

data was:

response = overall mean + drug effect + block effect 
  + random error.	 (5.20)

We assumed that there was a fixed difference between 

the results on day 1 and day 2 and that this difference 

was the same regardless of the size of the response. 

We effectively accounted for this by adding on a fixed 

quantity to the results taken on day 2.

If we thought that the difference between the day 1 

and day 2 results depended on the size of the response, 

i.e. the effect of day 1 was a percentage of the overall 

response, then it may have been better to analyse the 

data using a multiplicative statistical model instead. 

The multiplicative statistical model can be written as:

response = overall mean × drug effect 
  × block effect × random error.	 (5.21)

It is worth noting that such a model can be analysed 

using an additive approach if the response was log-

transformed. This follows because:

log(response) = log(overall mean) + log(drug effect) 
  + log(block effect) + log(random error). � (5.22)

5.4.2  The t-test

The t-test is one of the simplest parametric analyses to 

perform. As a test it requires little introduction, as it is 

perhaps the most popular of all statistical tests. Beware 

though: it is often applied in situations where other 

tests are more appropriate.

There are two types of t-test, the unpaired t-test and 

the paired t-test. We shall consider each separately. A 

description of how to perform the unpaired and paired 

t-tests using InVivoStat are given in Sections 6.9 and 

6.10, respectively.

The unpaired t-test

The unpaired t-test, also known as Student’s t-test, is 

applicable when the experiment consists of only two 

experimental groups and each animal is allocated to 

one of the groups. No other effects are thought to influ-

ence the response significantly. We can either say that 

the experimental design consists of two groups or alter-

natively that it involves one factor at two levels.

The assumptions made when carrying out the t-test 

are the standard parametric ones described in Section 

5.4.1:

The animals in the study are, in some sense, repre-•	

sentative of the wider population of animals. They 

are randomly selected from that wider population. 

In animal experiments it is common practice to 

restrict the animal population to reduce the ani-

mal-to-animal variability. This can be achieved by 

using a transgenic strain or limiting the body weight 

range of the animals in the study. Remember, as 

discussed in Section 3.11, if the body weight range 

used in the experiment is narrow then the conclu-

sions of the study are only valid over that narrow 

range.

Each animal is selected independently and the •	

observations generated should not be influenced by, 
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Figure 5.34.  Predicted vs. residuals plot from the analysis of 

Example 5.5 following a log10 transformation of the response.
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or related to, any other observation. Choosing one 

animal from the population should not influence the 

chance of choosing any other.

The variability of the two groups is the same, •	

although this assumption can be relaxed if required 

(see Section 6.9 for details on how to perform Welch’s 

t-test for unequal variances).

The data should be normally distributed, although •	

this condition can also be relaxed. In practice it is dif-

ficult to prove or disprove this assumption if the sam-

ple size is small.

Animals are assigned to the two groups at random.•	

If these assumptions hold, and the animals are ran-

domly allocated to the two groups, then the scientist can 

use the t-test to assess whether the difference between 

the two predicted means is statistically significant.

These experiments can be defined in terms of the 

experimental design characteristics described in 

Section 3.2:

The experimental design consists of two factors: •	

Group (a factor at two levels, perhaps treatment 

and control) and Animal (each animal is randomly 

assigned to one of the two groups).

Animal is nested within Group, and hence the experi-•	

mental design is a nested design (Section 3.7).

Animal is a random factor and Group is a fixed factor.•	

Individual animals are the experimental units and •	

usually also the observational units.

The Animal random factor corresponds to the vari-•	

ability (or noise) term we assess the size of the diffe-

rence between the predicted means against.

The •	 t-statistic is an example of a signal-to-noise 

ratio. The signal is the difference between the two 

group means and the noise is the animal-to-animal 

variability.

Data generated from experiments based on this 

design can be analysed within InVivoStat using the 

single measure parametric analysis module (which 

assumes equal variance between the two groups) or 

the unpaired t-test module (where the equal variances 

assumption can be relaxed); see Sections 6.3 and 6.9, 

respectively.

When using an unpaired t-test we begin by assuming 

that there is no difference between the two group means. 

This is the null hypothesis. We then try to disprove 

the null hypothesis (and hence accept the alternative 

hypothesis) by collecting experimental data.

To test the alternative hypothesis we calculate the 

t-value, which is a signal-to-noise ratio:

t
x

n n

x

s

i
-value =

( )−

+( )
2

2
1 21 1/ /

� (5.23)

where x1 and x2 are the group 1 and group 2 means, n1 

and n2 are the group 1 and group 2 sample sizes and s2 

is the sample variance.

Note in the above definition of a t-test the vari-

ance estimate s2 is the variance estimated using the 

responses from those two groups only. In later sections 

we shall consider similar tests for comparing two group 

means where the variability estimate used is the pooled 

estimate across all the groups in the experiment. We do 

not define such tests as t-tests but rather as planned 

comparisons or the least significant difference test (see 

Section 5.4.8). We do this to differentiate between the 

relatively unreliable multiple t-tests, which use var-

iance estimates calculated from animals in only two 

groups, and the more reliable planned comparisons, 

which use the more stable variance estimate calculated 

using data from all animals in the experiment.

It can be shown that the t-value is t-distributed with 

n1 + n2 – 2 degrees of freedom. Once we have calculated 

the t-value, we can calculate the probability of observ-

ing a t-value as large (or larger) than the one we have 

observed assuming, in reality, there is no difference 

between the two groups. We do this by calculating the 

area under the t-distribution curve (see Section 2.3.3) 

that lies beyond the calculated t-value. This calculated 

area corresponds to the p-value (for a one-sided test) or 

half the p-value (for a two-sided test).

Remember, the p-value is the probability (or chance) 

of observing a difference between the two groups at 

least as extreme as that measured, when in reality there 

is no difference between the two groups. The p-value is 

not the probability that there is no difference between 

the two groups! It is the risk of declaring a false posi-

tive (the probability of concluding there is a difference 

between the groups when in reality there is none). 

Usually we accept there is a significant difference 

between the groups if the p-value is less than 0.05 (or 
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5%). In other words, we are prepared to accept a 5% risk 

of finding a false positive. When we obtain a p-value as 

small as this we conclude that the evidence suggests 

the null hypothesis is probably not true.

Example 5.8:  A study involving two groups

Consider an experiment that was carried out to compare a novel 

treatment to a vehicle. In total, 20 animals were available for the 

experiment and the scientist randomly assigned ten to each of 

the two treatment arms of the study. The design is illustrated in 

Figure 5.35.

The analysis was carried out using the unpaired t-test mod-

ule in InVivoStat (see Section 6.9). A scatterplot of the data, see 

Figure 5.36, revealed some evidence of a treatment effect.

The unpaired t-test confirms this (Table 5.5). The p-value for the 

equal variance unpaired t-test is 0.016, indicating that there is a 

1.6% chance of measuring a difference as large as the one observed 

if, in reality, there is no difference between the treatment and 

control.

When not to use an unpaired t-test

As has been mentioned above, the t-test is a popular 

test. This is perhaps because the analysis procedure is 

fairly transparent and the calculations can be carried 

out by hand if necessary. We should remember, how-

ever, that the t-test is not the most powerful statistical 

test available if:

There is only one fixed factor but it has more than two •	

levels. A t-test is only really appropriate if the exper-

imental design consists of a single fixed factor at two 

levels. If the factor you are assessing has more than 

two levels, for example if you have multiple doses of 

the test compound then, as mentioned above, there 

are other more appropriate tests. If multiple t-tests 

are used to compare pairs of groups separately then:

1.	 The individual tests are based on less accurate 

estimates of the variability. These variability esti-

mates are calculated using data from only two 

groups of animals rather than all animals. Other 

more reliable estimates are available, which use 

all the data from all the animals.

2.	 This approach cannot be so easily justified by 

the randomisation (assuming animals were ran-

domised across all groups simultaneously).

There are more than two factors of interest. The •	 t-test 

is only appropriate if there is a single fixed factor in 

the experimental design. In many studies, however, 

there are multiple fixed factors in the design. For 

example, as well as testing the effect of a test com-

pound you may have both males and female animals 

in the study (Gender factor) or perhaps wildtype and 

transgenic animals (Strain factor). In these situations 

it may be of interest to investigate how the two factors 

relate (or interact) with each other, i.e. is there a big-

ger treatment effect in males than in females? These 

questions can be best answered using ANOVA tech-

niques, as discussed below in Section 5.4.3, and not 

using multiple t-tests.

There are other blocking factors in the experimental •	

design. For practical reasons you may have to intro-

duce other blocking factors into the experimental 

design. Perhaps you have to carry out the experiment 

over multiple days. This is not necessarily a problem 

so long as you plan the experiment properly (using 

a block design) and then include the blocking factor 

in the analysis. It is difficult to analyse such data cor-

rectly using t-tests.

Other information about the animals is recorded. •	

When running the statistical analysis you should aim 

to make the best use of all the available information 

collected during the experiment. Have you recorded 

pretreatment body weight? Have you been given the 

age of the animals? Have you taken baselines meas-

urements of your response? There may be many add-

itional pieces of information that could be used in the 

statistical analysis. However, it is difficult to use this 

information efficiently if you limit yourself to only 

using t-tests to analyse your data.

The animals are measured repeatedly. If you have •	

measured each animal repeatedly using a repeated 

measures design, then the individual observations 

taken on each animal will not be independent of 

each other. In these cases there are specific analysis 

techniques that can efficiently quantify the changes 

in response across the levels of the repeated fac-

tor, deal with the spatial interrelationships between 

responses measured within-animal and account for 

any missing data (see Section 5.4.4).

We contend that most animal experiments will pos-

sess one or more of the above properties. If this is so 

then the t-test is not the most appropriate test to use. 

It may of course be the case that once all other analysis 
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Figure 5.35.  Nested design for Example 5.8.
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options have been explored the researcher may decide 

to use a t-test. For example, if a preliminary investiga-

tion was carried out to assess whether the responses 

recorded at baseline could be used in the statistical ana-

lysis. While this information was collected, the inves-

tigation revealed that it was not worthwhile including 

it in the final analysis. Before resorting to the t-test the 

researcher should always attempt to use other, more 

powerful, techniques. In the next few sections we shall 

discuss some of the analyses that are more appropriate 

in the scenarios described above.

The paired t-test

As has been discussed in the previous section there 

are two types of t-test. When using the unpaired t-test 

the size of the difference between the two groups is 

assessed against the between-animal variability. In 

practice this is usually the largest source of variabil-

ity in any animal experiment. One way to reduce the 

variability that the groups are assessed against is to 

test both experimental conditions in all animals. This 

allows the difference between the two predicted means 

to be assessed against the within-animal variability. 

As this source of variability is usually smaller than the 

between-animal variability, such comparisons should 

be more sensitive. We use the terminology ‘paired 

t-test’ as we can pair up the observations from the two 

groups, one pair per animal.

This experiment can also be defined in terms of 

the experimental design characteristics described in 

Section 3.2:

The experimental design consists of two factors: •	

Group (the within-animal factor  – a factor at two 

levels, perhaps treatment and control) and Animal 

(each animal receives both treatments).

Animal is crossed with Group (in the unpaired •	 t-test 

Animal is nested within Group).

As Animal is crossed with Group we may think we •	

can investigate the interaction between Animal and 

Group. However, each animal is associated with each 

group only once, so there is no replication of the 

combinations of animals and groups. The interaction 

therefore cannot be separated from the underlying 

within-animal variability.

Group is a fixed factor; Animal can be fitted as a ran-•	

dom or fixed factor. There are some advantages to fit-

ting it as a random factor, especially if some animals 

are allocated to only one of the groups or there is 

some data missing.

The •	 t-statistic that is generated when performing 

the paired t-test is an example of a signal-to-noise 

ratio, as discussed in Section 2.1. The signal is the 

difference between the two means, the noise is the 

within-animal variability.

To perform a paired t-test by hand we first calculate 

the difference between the two results for each ani-

mal. We then compare the average size of these differ-

ences to zero. If the average difference is significantly 

greater or less than zero, then this indicates a difference 

between the two groups. Note that as we are analysing 
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Figure 5.36.  Scatterplot of the data for Example 5.8.

Table 5.5.  Unpaired t-test result for Example 5.8

t-statistic Degrees of freedom p-value 

Equal variance unpaired t-test -2.649 18  0.016  
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the differences between the within-animal responses, 

rather than the responses themselves, any animal-to-

animal differences are removed from the dataset (by 

the subtraction process) prior to analysis. The ana-

lysis is therefore performed using the within-animal 

variability.

The paired t-test can be performed easily within most 

statistical packages. The difficulty is recognising the 

pairing in the data beforehand!

Randomisation and the paired t-test

In general, the purpose of the paired t-test is to assess 

the size of difference between the two predicted means 

against the within-animal variability. There are at least 

three different analysis strategies that can be employed 

to do this, depending on the randomisation performed. 

Although the methods are different, in most scenarios 

they will give the same numerical results.

When randomising the experimental material we 

have to:

1.	 Randomly select the animals from the population of 

animals (as for the unpaired t-test).

We can then either:

2a.	Separately for each animal, randomise the order the 

two groups are allocated to the animal.

2b.	Allocate the two groups to each animal in a non-

random order.

In practice it does not really matter which randomisa-

tion approach is taken; however, it can be argued that 

these two scenarios do lead to different designs.

If randomisation 2a is applied within the experi-

mental process, then the design could be defined as a 

block design (blocked by animal) and corresponds to 

Scenario 3 in Table 3.2. The data can then be analysed 

using the ANOVA techniques (including Animal as a 

blocking factor) as described in Section 6.3.3.

If randomisation 2b is applied then the experimental 

design is comparable with the dose-escalation designs 

defined in Section 3.8.2 and corresponds to Scenario 6 

in Table 3.2. In this case there are only two levels of the 

within-animal Group factor (where the Group factor 

does not necessarily correspond to the dose of a com-

pound). Crucially in both the dose-escalation designs 

and the designs considered in this section the levels of 

the within-animal factor are not randomised. In this 

scenario a repeated measures analysis approach (see 

Section 5.4.4) can be used to analyse the data.

Regardless which randomisation is applied, in prac-

tice the data can be analysed using either a paired 

t-test, an ANOVA with Animal as a blocking factor or 

a repeated measures approach. It can be shown that 

the results will be the same (in most cases) because 

there are only two levels of the within-animal factor. 

Differences may occur if there are any missing data 

in the dataset, in which case the repeated measures 

approach may be preferable. This approach is able to 

recover the information from animals that have only 

one of the two responses present. The repeated meas-

ures approach also generalises to cases where there are 

more than two levels of the within-subject factor. It is 

this approach that is implemented within the paired 

t-test module in InVivoStat.

5.4.3  Analysis of variance (ANOVA)

In this section we consider the parametric analysis of 

data generated using designs with two or more factors 

at two or more levels. This is known as the analysis of 

variance, or ANOVA, approach and was first developed 

by R. A. Fisher in the early part of the twentieth cen-

tury. Data generated using block, factorial and cross-

over designs can be successfully analysed using this 

approach. We shall consider experiments where each 

response is measured once per animal, as opposed to 

the repeatedly measured responses that are described 

in Section 5.4.4.

The ANOVA approach can be used to analyse data-

sets generated by many different animal experiments. 

This type of analysis includes the t-test but also gener-

alises to include the analysis of experiments involving 

multiple factors of interest. This section describes the 

analysis process that generates the global overall tests 

of significance in the ANOVA table. It should be read 

in conjunction with later sections that describe other 

aspects of ANOVA-based analyses. For example, the 

parametric assumptions we make when performing an 

ANOVA analysis (Section 5.4.3) and the local pairwise 

comparisons of the predicted means that can be made 

post-ANOVA (Section 5.4.8). A description of how to 

perform an analysis of variance using InVivoStat is 

given in Section 6.3.
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We shall begin by generalising the situation described 

in the previous section and consider experiments where 

the factor of interest has more than two levels. We shall 

then go on to consider the case where there are more 

than two factors of interest included in the experimen-

tal design.

One-way ANOVA

One-way ANOVA is a way of assessing the overall effect 

of the factor of interest by quantifying, in some sense, 

the amount of variability in the data that can be attrib-

uted to that factor. We use the terminology one-way 

ANOVA as there is a single factor of interest present in 

the experimental design.

This analysis involves, amongst other things, the for-

mation of the one-way ANOVA table. This table con-

tains an overall test of whether the levels of the factor 

of interest are different. This test does not take into 

account any structure that the levels of the factor may 

have. For example, assume the experimental design 

consists of a treatment factor that has four levels: con-

trol, low, intermediate and high dose of a novel treat-

ment. The ANOVA table contains a test of whether 

the four levels of the Treatment factor are different 

from each other. It does not take into account that one 

level of the Treatment factor is a control and that the 

researcher wants to compare each of the three treat-

ments back to the control. We comment further on this 

later; however, we note at this stage that care should be 

taken if the overall test in the ANOVA table is used to 

decide whether or not specific pairwise tests between 

the means (that were planned in advance) can be made. 

This is sometimes defined as the gateway ANOVA test 

procedure (see Section 5.4.8).

Many statistical textbooks provide mathematical der-

ivations of the analysis of variance, for example Clarke 

and Kempson (1997, pp. 32–8). The interested reader is 

invited to read such texts. In this section we shall avoid 

repeating such descriptions in favour of a more graph-

ical explanation.

Example 5.9:  A study involving three treatment groups 

and a control

Consider the following dataset involving three doses of a test com-

pound and a control. A scatterplot of the data reveals evidence 

of a treatment effect. We shall focus our attention on the largest 

observation in the control group (the observation highlighted in 

Figure 5.37).

Why was the response of this animal approximately 11.5? Can we 

use a statistical model to predict why it was so high?

To begin with, and perhaps trivially, this animal’s response will 

depend on many factors that influence all the responses obtained 

in the experiment. These include the type of response, the scale of 

measurement, the species of animal, the animal model itself and 

so on… We can capture the effect of all of these by calculating the 

overall average, or grand mean of the data. This grand mean (which 

equals 9.1) accounts for a lot of the variability in the data and to 

some extent explains why the response we have highlighted equals 

11.5. The grand mean is added to the scatterplot as a dotted line and 

the distance between the selected observation and the grand mean 

is highlighted by an arrow (Figure 5.38).

But this is not the whole story. The highlighted observation (11.5) 

is higher than the overall average (9.1). This could be just chance, 

but it could also be related to the treatment that the animal received. 

Looking at the scatterplot is appears that all of the animals in the con-

trol group gave higher results than animals in the treatment groups. 

So this is an extra piece of information that can help to explain why 

the highlighted observation is 11.5. The control group mean equals 

10.6. So the animal’s response of 11.5 can be partly explained by 

the overall average of the data, but can also be explained by the 

treatment effect. Our new prediction for that observation (10.6) is 

obtained by including the Treatment factor in the statistical model 

and is closer to the animal’s response than was achieved by simply 

using the overall average of the data (9.1). The predicted means 

are added to the scatterplot as dotted lines (Figure 5.39). Note the 

distance that the highlighted observation is from the new predicted 

value is now smaller, as denoted by the dotted arrow.

Our new prediction, in this case the control group mean (10.6), 

is still a little way from the observed response (11.5); however, 
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Figure 5.37.  Scatterplot of the data from Example 5.9.
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without any other information this is the best that we can do. The 

bit that is left over (11.5 – 10.6 = 0.9) is called the residual for that 

response, as defined above in Section 5.4.1.

The bigger the residuals, the more spread the individual 

responses are around the predicted mean and hence the more var-

iable the observed data. Obviously we want to reduce the residuals 

where possible by fitting the most appropriate statistical model to 

the data.

We can use these ideas to construct the ANOVA table. The one-

way ANOVA table for this example is given in Table 5.6.

The one-way ANOVA table consists of two rows: the first corres-

ponds to the Treatment factor (the signal) and the second corres-

ponds to the residuals, or variability, of the data (the noise). The first 

column in the ANOVA table simply defines the source of variability, 

either treatment or residual in this case.

Sums of squares
To quantify the size of the treatment effect we consider 

the distance the Treatment factor predicted means are 

from the overall average of the data, i.e. for treatment i 

we calculate:

d xi i= − µ, 	 (5.24)

where xi is the treatment i group mean and μ is the 

grand mean. The further the treatment means are from 

the grand mean of the data the bigger the treatment 

effect is. So if we add up all these distances, one per 

treatment group, we will get an overall measure of the 

size of the treatment effect. These individual treatment 

effects are illustrated with four arrows (Figure 5.40).

Inevitably some of the treatment means are above 

the grand mean and some are below, hence some of the 

distances will be positive and some negative. They will, 

in many cases, add up to zero. In this example the sum 

of the differences is:

1.44 + 0.39 – 0.70 – 1.13 = 0.

So the sum of the differences is of little use to us. One 

way around this mathematically is to square the calcu-

lated distances (i.e. making them all positive) before 

adding them together.

(1.44)2 + (0.39)2 + (–0.70)2 + (–1.13)2 = 3.99.

Effectively we are summing the squares, or calculating 

the sums of squares, and this forms the second column 

in the ANOVA table (once multiplied by the sample size 

9, because there are effectively nine predicted results 

per group – one for each observation).

We can also add up the squared distances of the indi-

vidual observations from their associated predicted 

means. This number is called the residual sums of 

squares. These values are highlighted in Table 5.7.

Degrees of freedom
The next column in the table is called degrees of freedom 

(df); see Table 5.8. There are many ways to describe this 

term. We prefer to consider it as the number of separate 

pieces of information available to estimate each effect.

Consider a Treatment factor at four levels (control, 

low, intermediate and high). We can compare the fol-

lowing treatments:

(i)	 control vs. low

(ii)	 control vs. intermediate

(iii)	 control vs. high

To make these comparisons, in the statistical analysis, 

we start off with the corresponding null hypotheses:

(i)

(ii)

(iii)

low control

control

high

intermediate

x x

x x

x

− =
− =

−

0

0

xcontrol = 0,

	 (5.25)
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Figure 5.38.  Scatterplot of the data from Example 5.9, 

including the grand mean of the data as a dotted line. The 

distance between the highlighted observation and the grand 

mean is illustrated with a dotted arrow.
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which we try to disprove using an appropriate 

statistical test.

Now any other comparison between the groups can 

be written down as a combination of these three group 

mean comparisons. So, for example, the low vs. high 

treatment comparison can be assessed using a linear 

combination of comparisons (i) and (iii). It can be writ-

ten as (i) – (iii):

x x x x x xlow low control high controlhigh− = − − − = −( ) ( ) .(i) (iii) 	
�

(5.26)

The maximum number of separate, or independent, 

comparisons that can be made is three (note there 

are many ways of finding three). Once you have found 

three, then any other comparison will be a combination 

of these three. Hence there are three degrees of free-

dom for the Treatment factor corresponding to the 

three independent comparisons that represent three 

independent pieces of information.

In practice degrees of freedom for a factor can easily 

be calculated. It is one less than the total number of lev-

els of that factor in the experimental design.

If we think of degrees of freedom as pieces of infor-

mation then calculating the residual degrees of freedom 

(the degrees of freedom for the term used to estimate the 

variability of the data) is straightforward too. If the data-

set has 36 observations, then by running the study we 

have collected 36 separate pieces of information (assum-

ing the observations are independent, as discussed in 

Section 5.4.1). We need one piece of information to esti-

mate the grand mean of the data, and (in this case) three 
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Figure 5.39.  Scatterplot of the data from Example 5.9. The 

plot includes the grand mean of the data as a dotted line, the 

individual group means as solid lines and the distance of the 

highlighted observation from the statistical model prediction 

as an arrow.
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Figure 5.40.  Scatterplot of the data from Example 5.9. The 

plot includes the grand mean of the data as a dotted line, the 

individual treatment means as solid lines and the distance of 

the treatment means from the grand mean as arrows.

Table 5.6.  One-way ANOVA table for Example 5.9

Sums of squares Degrees of freedom Mean square F-value p-value 

Treatment 35.92 3 11.97 92.96 < 0.001 

Residuals 4.12 32 0.13 
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degrees of freedom to estimate the differences between 

the levels of the Treatment factor. The remainder 36 – 1 – 

3 = 32 is the number of pieces of information available to 

estimate the underlying variability of the data, this is the 

so-called residual degrees of freedom.

Mean squares
Returning to the sums of squares, the observant reader 

will have noticed that as the number of factor levels 

increases so does the sums of squares for that fac-

tor. As all squared distances (between the predicted 

group means and the overall average of the data) are 

positive, the sums of squares will always increase as 

the number of groups increase. So to get a true picture 

of the importance of the factor, we require a measure 

that is not influenced by the number of factor levels. 

To achieve this we divide the sums of squares by the 

degrees of freedom to effectively produce an average 

squared distance, the so-called mean square. The mean 

square column is highlighted in Table 5.9.

We do this for both the Treatment factor (MSTreatment) 

and the residual (MSResidual). In this case:

MSTreatment = 35.92 / 3 = 11.97

and

MSResidual = 4.12 / 32 = 0.13.

F-values  We are now in a position to test the signifi-

cance of the Treatment factor. MSTreatment is a measure of 

the size of the effect or the signal. MSResidual is a measure 

of the background variability or noise.

So we calculate the signal-to-noise ratio, as discussed 

in Section 2.1, by dividing one by the other. This value is 

highlighted in Table 5.10. This is called the F-value. It is 

a generalisation of the t-value (used in the t-test) but is 

still simply a signal-to-noise ratio. If the factor of interest 

only has two levels, then the F-value is also a t-value.

p-values  Finally (given the variability of the data and 

the sample size) we can use the statistical package to 

calculate the probability of observing a pattern in the 

treatment means as extreme (or more extreme) than 

that measured in the study given that in reality there 

was no treatment effect (Table 5.11).

The F-value is F-distributed with 3 and 32 degrees of 

freedom. This follows because (as discussed in Section 

2.2.7):

1.	 Assuming the residuals are normally distributed, 

then the sums of squares in the ANOVA table are 

chi-squared distributed.

2.	 The ratio of two chi-squared distributed variables is 

F-distributed. Hence the Treatment sums of squares 

divided by residual sums of squares (adjusted for 

the Treatment and residual degrees of freedom) is 

F-distributed.

Once the F-value has been calculated we can use the 

assumption that it is F-distributed to calculate the 

probability of observing an F-value as large (or larger) 

than the one observed, assuming there is no difference 

between the treatments. This is achieved by calculating 

the area under the curve (of the F-distribution) for the 

region beyond the calculated F-value. This number is 

the p-value.

Table 5.7.  ANOVA table for Example 5.9; sums of squares column highlighted

Sums of squares Degrees of freedom Mean square F-value p-value 

Treatment 35.92 3 11.97 92.96 < 0.001 

Residuals 4.12 32 0.13 

Table 5.8.  ANOVA table for Example 5.9; degrees of freedom column highlighted

Sums of squares Degrees of freedom Mean square F-value p-value 

Treatment 35.92 3 11.97 92.96 < 0.001 

Residuals 4.12 32 0.13 
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The p-value is dependent on the size of the F-value 

but also the Treatment and residual degrees of freedom. 

If you do quote ANOVA table p-values, then it is advis-

able to include the degrees of freedom. For example, 

you should state:

The Treatment Factor was significant (F(3,32) = 11.97, p < 0.001).

In the following sections we shall present more com-

plicated examples of the ANOVA table; however, the 

underlying principles are the same regardless of how 

large and complicated the ANOVA table is.

Including the positive control

An issue often faced by the researcher is which experi-

mental groups to include in the statistical analysis. 

For example, if the experimental design includes a 

positive control group should this group be included 

in the statistical analysis when the primary purpose 

of the analysis is to compare the treatment groups 

back to the vehicle? This question can be answered by 

considering the quality of the variability estimate. As 

discussed, above a more reliable estimate is obtained 

if all the animals’ responses are used to estimate the 

variability. The statistical power of the experiment 

may also be improved as the residual degrees of free-

dom will be higher if the positive control is included 

in the experiment.

We do not recommend this rule be strictly adhered 

to, however. If the variability of the positive control 

group is significantly different from the other treat-

ment groups (which can often be the case), then it is 

advisable to remove the positive control group from the 

dataset prior to the statistical analysis. This ensures that 

the overall variability estimate reflects the variability of 

the control and treatment groups and the homogeneity 

of variance assumption holds (see Section 5.4.1).

Example 5.10:  Anti-diabetic effects of epigallocatechin 

gallate

An experiment was conducted to assess the effect of epigallocate-

chin gallate (EGCG), a catechin found in green tea, on type 2 dia-

betes in rodents (Wolfram et al., 2006). The experiment consisted of 

five groups, with db/db mice randomly allocated to each group. The 

treatments were administered in the diet and included 2.5, 5.0 or 

10.0 g/kg of EGCG in the diet (n = 9), a placebo control (n = 9) and 

a positive control of thiazolidinedione rosiglitazone at 72 mg/kg of 

diet (n = 5). After 5 weeks of treatment the animals were fasted and 

an oral glucose tolerance test performed. In this test, the animals 

Table 5.9.  ANOVA table for Example 5.9; mean square column highlighted

Sums of squares Degrees of freedom Mean square F-value p-value 

Treatment 35.92 3 11.97 92.96 < 0.001 

Residuals 4.12 32 0.13 

Table 5.10.  ANOVA table for Example 5.9; F-value highlighted

Sums of squares Degrees of freedom Mean square F-value p-value 

Treatment 35.92 3 11.97 92.96 < 0.001 

Residuals 4.12 32 0.13 

Table 5.11.  ANOVA table for Example 5.9; p-value highlighted

Sums of squares Degrees of freedom Mean square F-value p-value 

Treatment 35.92 3 11.97 92.96 < 0.001 

Residuals 4.12 32 0.13 
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were administered 1 g/kg of glucose orally and their blood glucose 

concentration measured over the following 3 hours. We shall con-

centrate on the area under the curve summary measure of the time 

course (see Section 5.4.4).

An observed means with SEMs plot, for a simulated AUC summary 

measure of the blood glucose concentration, is given in Figure 5.41. 

The data were analysed using a one-way ANOVA approach. The 

ANOVA table is given in Table 5.12.

As there were five treatments, the Treatment factor had four 

degrees of freedom. There were 4 × 9 + 5 = 41 observations in total, 

hence there were 41 – 1 – 4 = 36 residual degrees of freedom.

The size of the treatment effect (quantified by MSTreatment) was 

1825.00 and the size of the animal-to-animal variability (MSResidual) 

was 49.43. The signal-to-noise ratio was 1825.00 / 49.43 = 36.92. 

This was a large ratio and hence the associated p-value was highly 

significant (p < 0.001), indicating that the null hypothesis was 

almost certainly not true. Hence we conclude there was an overall 

difference between the five treatments.

Table 5.12 shows 36 degrees of freedom were used to estimate 

the variability of the response. If, however, the positive control group 

is removed from the dataset prior to analysis, this figure decreases 

to 36 – 1 – 3 = 32. While not a concern in this example, such a reduc-

tion in the residual degrees of freedom could affect the statistical 

power of the analysis and result in a less reliable estimate of the 

variability of the response.

From the method described in the original paper all groups were 

included in the statistical analysis. The data was analysed using a 

one-way ANOVA approach followed by Dunnett’s test (see Section 

5.4.8). We shall return to this example in Section 5.4.8.

Two-way ANOVA

Whilst one-way ANOVA is a simple generalisation of 

the t-test, we need not confine ourselves to experiments 

consisting of a single factor of interest. In fact we can 

have any number of factors of interest, at any number of 

levels, and still use an ANOVA approach to analyse the 

data. In this section we shall concentrate on the case 

where there are two factors of interest in the experi-

mental design. Both factors are crossed with each other 

and the experimental design used is a full-factorial 

design. Such experiments are analysed using the two-

way ANOVA approach. It should be noted, however, 

that the ideas discussed here could easily be general-

ised to experiments with more than two factors.

One of the main differences between one-way and 

two-way ANOVA is the presence of the interaction 

between the two factors. This interaction is a measure 

of how the effect of the first factor varies depending 

on the level of the second factor. One of the benefits of 

using the two-way (and higher-order) ANOVA approach 

is that we can test the significance of the interaction 

(Nieuwenhuis et al., 2011).

For example, consider an experiment carried out 

to test the effect of a novel compound in male and 

female rats. We could analyse the data from the two 

genders separately using a one-way ANOVA approach. 

Alternatively, we could analyse all the data together, 

with two factors Gender and Treatment in the statistical 

model. We could then include the Gender:Treatment 

interaction to see if the effect of treatment varies 

depending on the sex of the animals. Perhaps the 

treatment effect is more pronounced in males than in 

females.

Example 5.9 (continued): A study involving three  

treatment groups and a control

Returning to Example 5.9, we have seen that fitting the Treatment 

factor alone (along with the overall average of the data) explained 

most of the variability in the data. However, some of the residuals 

were still relatively large, as presented in Figure 5.39.

Let us assume that both male and female mice were used in 

the experiment. Half of the animals in each group were males 

and half were females. We can then include a second factor in the 

statistical model (Gender) to account for any differences between 

the sexes.
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Figure 5.41.  Plot of observed means with SEMs for 

Example 5.10.
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First we fit the Treatment factor as given above. We then calcu-

late, separately for each treatment group, the mean of the male 

animals and the mean of the female animals. These are the new 

predicted means from the statistical model.

We can easily see from the scatterplot given in Figure 5.42 that 

the males gave consistently lower results than the females. If we 

omit the Gender factor from the statistical model, then this gender 

effect will inflate the between-animal variability. Hence fitting the 

Gender factor in the analysis should reduce the size of the individ-

ual residuals.

The observation we have discussed above is a female animal. 

By taking the Gender factor into account in the statistical model, 

the new predicted value for this response is 11.0. This is not too far 

away from the actual response (11.5). The predicted value is cer-

tainly closer to the actual value than was the case when the Gender 

factor was omitted from the statistical model (11.0 is closer to 11.5 

than 10.6 was).

The two-way ANOVA table, given in Table 5.13, follows a similar 

structure to that described above for the one-way ANOVA. We now 

include extra rows in the table for the overall effect of Gender and 

also the Gender by Treatment interaction.

The calculations follow in the same way as described above. The 

degrees of freedom for the interaction are calculated by multiplying 

together the degrees of freedom for the constituent factors (3 × 1 = 

3 in this case).

We can see from the table that, as expected, there is a statistically 

significant overall difference between the levels of both Treatment 

and Gender. However, the interaction is not significant. This implies 

the size of the treatment effect is the same regardless of the sex of 

the animal. Another way to think of this result (as can be seen easily 

in Figure 5.42) is that the difference between the males and females 

is the same regardless of the treatment they receive.

It is also worth noting that MSResidual, which was 0.13 in the one-

way ANOVA table, is now 0.04. So fitting the second factor has 

reduced the underlying variability of the data considerably.

Example 5.11:  Assessing strain effects

Consider the following experiment, discussed in Shaw et al. (2002), 

which used data taken from a larger experiment described in Festing 

et al. (2001). The experiment was carried out to assess the effect 

of chloramphenicol (2500 mg/kg) on the white blood cell count in 

various strains of mice. Two different strains of mice (CD-1 and CBA) 

were given either chloramphenicol or a vehicle by gavage and their 

coded white blood cells counted.

The experimental design consists of two factors, Strain and 

Treatment, and hence the data generated from the experiment 

(the data here is simulated, see Figure  5.43) can be analysed 

using two-way ANOVA. The two-way ANOVA table provides a use-

ful test to see if the effect of chloramphenicol varies between 

the strains.

From a table of the individual group means (Table  5.14) it 

can immediately be seen that the effect of chloramphenicol was 

greater in the CBA strain than in the CD-1 strain, but was this effect 

statistically significant? The two-way ANOVA table, see Table 5.15, 

confirms that the interaction between Strain and Treatment was 

significant (F(1,28) = 9.15, p = 0.005). In this case it would be unwise 

to investigate the overall effect of treatment, because the effect 

differs depending on the strain of the animal. In fact statisticians 

argue that the overall tests in two-way ANOVA are meaningless in 

the presence of a significant interaction. If the interaction is signif-

icant you should stop there and not go on and consider the indi-

vidual factor tests.

Table 5.12.  ANOVA table for Example 5.10

Sums of squares Degrees of freedom Mean square F-value p-value 

Treatment 7300.01 4 1825.00 36.92 < 0.001 

Residuals 1779.56 36 49.43 
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Figure 5.42.  Scatterplot of the data from Example 5.9, 

categorised by gender. The plot includes the grand mean of 

the data as a dotted line, the overall individual group means 

as solid lines, the treatment group means for each sex as 

dotted lines and the distance of the highlighted observation 

from the predicted mean highlighted with an arrow.
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Two-way vs. one-way ANOVA

There are many similarities between the one-way and 

two-way ANOVA approaches. In fact it can be shown 

that many of the results from two-way ANOVA can be 

obtained using one-way ANOVA. To perform one-way 

ANOVA (if the experimental design consists of two 

experimental factors), all we need to do is manually 

generate a new factor whose levels are the combin-

ations of the two original factors. We then analyse the 

data using this new combined’factor using a one-way 

ANOVA approach.

Example 5.11 (continued): Assessing strain effects

Consider Example 5.11 again. Let us now manually combine the fac-

tors Strain and Treatment to create a new Group factor. If we include 

this new factor in the analysis, instead of Treatment and Strain, we 

can analyse the data using a one-way ANOVA approach rather than 

the two-way ANOVA approach described above. In this case we pro-

duce the one-way ANOVA table given in Table 5.16.

The single degrees of freedom for the two factors and their inter-

action (in the two-way ANOVA table) have now been combined into 

a single source of variability with three degrees of freedom. Crucially 

though the residuals row is the same for both one- and two-way 

ANOVA tables (MSResidual = 0.90). Any statistical tests, such as the 

pairwise tests, that rely on this variance estimate will therefore be 

the same.

This raises the obvious question, why bother with the two-way 

ANOVA approach? There are two main reasons:

Firstly, two-way ANOVA provides a statistical test of the inter-

action between the two factors; one-way ANOVA does not. One-

way ANOVA provides a test to see if the individual group means are 

different from each other. If the one-way ANOVA test is significant, 

then this could be because only one of the factors has an effect or 

the interaction between the factors is significant. We cannot sep-

arate out these effects by looking at the one-way ANOVA table. 

Two-way ANOVA can provide more information on what is causing a 

statistically significant test result.

If the interaction is not significant then the scientist can test to 

see if the levels of the factors are significantly different overall. This 

Table 5.13.  Two-way ANOVA table for Example 5.9

Sums of squares Degrees of freedom Mean square F-value p-value 

Gender 3.07 1 3.07 83.79 < 0.001 

Treatment 36.75 3 12.25 334.90 < 0.001 

Gender:Treatment 0.03 3 0.01 0.29 0.831 

Residuals 1.02 28 0.04 

Table 5.14.  Table of the treatment by strain means 

from Example 5.11

Mean Lower 95% CI Upper 95% CI

Level 

chloramphenicol CBA 1.299 0.613 1.985 

chloramphenicol  CD-1 4.406 3.720 5.092 

vehicle CBA 3.522 2.836 4.207 

vehicle CD-1 4.603 3.917 5.288 
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Figure 5.43.  Plot of the observed means of the combinations 

of the Treatment and Strain factors, with SEMs, from 

Example 5.11.
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can be a more powerful test if there is no interaction between the 

factors and is an example of the hidden replication described in 

Section 3.5.4.

Example 5.9 (continued): A study involving three treat-

ment groups and a control

Consider Example 5.9, where Gender and Treatment were two fac-

tors included in the experimental design. The Gender by Treatment 

interaction was not significant, see Table  5.13, implying that the 

effect of treatment is the same regardless of the gender of the 

animal. So why not compare the treatment effects back to control 

across both sexes together, rather than carrying out (effectively) the 

same test twice (once for each sex). The latter approach is never a 

good idea. For example, see Section 5.4.8 for issues of multiple com-

parisons. The overall comparison is also likely to be more sensitive 

as the sample size, and hence the statistical power, is greater.

It seems sensible, looking at Table 5.13 and Figures 5.44 and 5.45, 

to compare the levels of the treatment factor back to the control 

ignoring the Gender factor (i.e. combining the two sexes). To per-

form this analysis you should remove the interaction from the stat-

istical model and only fit the two factors, again using a two-way 

ANOVA approach. It is (in this case) still worth including the Gender 

factor in the statistical model as females appear to, on average, be 

giving higher results than males. If you do remove the Gender fac-

tor as well as the interaction, then you will increase the between-

animal variability. This analysis will allow you to compare the effects 

of the treatments averaged over the sexes while still accounting for 

the influence of gender on the between-animal variability.

Dealing with missing factor combinations

It may be the case that there are two or more factors 

of interest in the experiment, but not all combinations 

of the levels of the factors are included in the experi-

mental design, i.e. the design is not a full-factorial 

design. Factor combinations are usually omitted from 

a design for practical and ethical reasons (for example, 

see Murphy et al., 2003) although other more system-

atic design-based reasons are possible, such as those 

described in Section 3.5.4. The following discussion 

does not apply to designs such as the large fractional 

factorial designs, where the researcher has purpose-

fully designed the experiment with missing combin-

ations of the levels of the factors. Such designs would 

require a decision about which interactions to include 

in the statistical model as not all can be estimated.

While there are many practical arguments for omit-

ting certain combinations of the factor levels from the 

experimental design, the researcher should be careful 

as it will weaken the overall power of the experimental 

design. The analysis options are also reduced as we may 

not benefit from the hidden replication that would have 

been present in a full-factorial experimental design 

(see Section 3.5.4).

When analysing data generated using designs with 

missing combinations of the levels of the factors, 

some care must be taken. To begin with the missing 

combinations will reduce the number of degrees of 

freedom, especially for the rows in the ANOVA table 

corresponding to the factor interactions. As a general 

rule each missing combination of the levels of two fac-

tors will reduce the degrees of freedom of the associ-

ated two-way interaction by one. Also, depending on 

how the statistical package carries out the analysis, 

there may be a reduction in the degrees of freedom 

Table 5.15.  Two-way ANOVA table for Example 5.11

Sums of squares Degrees of freedom Mean square F-value p-value 

Strain 35.08 1 35.08 39.11 < 0.001 

Treatment 11.71 1 11.71 13.06 0.001 

Strain:Treatment 8.21 1 8.21 9.15 0.005 

Residuals 25.11 28 0.90 

Table 5.16.  One-way ANOVA table for Example 5.11

Sums of squares Degrees of freedom Mean square F-value p-value 

Group 55.00 3 18.33 20.44 < 0.001 

Residuals 25.11 28 0.90 
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associated with the factors. In extreme cases, this can 

reduce the degrees of freedom to zero. In such cases 

it is not possible to test for the effect. As a rule of 

thumb if the degrees of freedom in the ANOVA table 

are less than expected (and it is always advisable to 

check them) then a possible cause of this reduction is 

a missing combination of the levels of two or more of 

the factors.

Example 3.21 (continued): Antipsychotic activity in 

the mouse

Consider Example  3.21 described in Section 3.5.3. The study was 

conducted to investigate which of the mGlu2 and mGlu3 receptors 

mediate the effect of an mGluR2/3 agonist (Woolley et al., 2008). 

Animals (C57Bl/6J mice) were placed in a test arena and the loco-

motor activity measured. Prior to being placed in the arena for a 

habituation phase, the mice were administered either phencyclidine 

(PCP) or amphetamine (AMP) to produce what are effectively two 

different animal models. We shall consider the PCP challenge model 

in this section.

The test compound LY379268 (LY) was administered at one of 

three doses: 0.3, 1 or 3 mg/kg. There were five treatments in the 

study labelled as vehicle/vehicle, vehicle/PCP, LY0.3/PCP, LY1/PCP 

and LY3/PCP.

The design can be seen to be a factorial design involving two fac-

tors: PCP challenge (levels: vehicle and PCP) and Treatment (levels: 

0, 0.3, 1 and 3 mg/kg). The design can be illustrated using a two-

dimensional figure (Figure 5.46).

The degrees of freedom for PCP challenge and Treatment 

should be one and three respectively, as the PCP challenge factor 

has two levels and the Treatment factor has four. The interaction 

between PCP challenge and Treatment should therefore have 1 

× 3 = 3 degrees of freedom. However, because there are three 

missing combinations of the levels of the two factors in the design 

this term has zero degrees of freedom and hence is omitted from 

the analysis. The ANOVA table (for some artificially generated 

data) created using the above experimental design is given in 

Table 5.17.

In the previous section we described the similarities between 

the one-way and two-way ANOVA tables. A similar approach can 

be applied here to address any complications caused by missing fac-

tor level combinations. To begin with the levels of the two factors 

are combined together to create a new factor (called Group) at five 

levels, where the levels are: veh/veh, veh/PCP, LY0.3/PCP, LY1/PCP 

and LY3/PCP. We can then we can carry out one-way ANOVA on the 

new Group factor (see Table 5.18) and make comparisons between 

the levels of this new factor to investigate the effects of the two 

original factors (see Section 5.4.3).
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Figure 5.44.  Plot of the treatment by gender observed means, 

with standard errors, from Example 5.9.
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Figure 5.45.  Plot of the overall treatment observed means, 

with standard errors, from Example 5.9.
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Figure 5.46.  The incomplete factorial design for 

Example 3.21 involving two factors, PCP challenge (at two 

levels) and Treatment (at four levels).
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5.4.4  Repeated measures analysis

In many experiments it is possible to measure the ani-

mals repeatedly, usually over time. This is important as 

we gain more information from each individual animal 

than would have been the case if we had only taken a 

single observation. Of course this benefit needs to be 

offset against the cost to the animal of taking repeated 

observations. As we shall see in this section, analysing 

responses that are repeatedly measured has its own 

challenges and pitfalls.

In Table  3.2 (Section 3.2.8) we described seven dif-

ferent scenarios that involved repeatedly measuring 

the animals. These scenarios can be subdivided into 

those that involve some level of within-animal ran-

domisation and those that do not. If a within-animal 

randomisation can be performed, then the methods 

described above in Section 5.4.3 can be used to ana-

lyse the generated data. The randomisation allows the 

researcher to assume that there are no spatial inter-

relationships between the within-animal responses. 

However, if there are no within-animal randomisations 

applied, then there may be spatial interrelationships 

between the within-animal responses that will need to 

be accounted for in the statistical analysis. We summar-

ise the types of analysis that can be applied to the seven 

scenarios in Table 5.19.

In this section we shall focus on Scenarios 1 and 

6 (repeated measures designs and dose-escalation 

designs). We shall describe two analysis strategies, 

although the researcher may prefer to use an alterna-

tive approach, depending on the experimental design 

employed and the hypotheses that are being assessed.

Categorised case profiles plot

As with any response, before making a decision about 

how to conduct the statistical analysis it is worth plot-

ting the data. We can do this using a categorised case 

profiles plot, as described in Section 5.3.4.

The categorised case profiles plot is made up of a 

series of subplots, one per experimental group. Within 

each of the subplots, the Y-axis corresponds to the 

response and the X-axis corresponds to the repeated 

factor. The responses for each animal are then plotted 

as points within the appropriate subplot, with a line 

joining the repeated measurements for each animal.

As discussed in Section 5.3.4, there are several rea-

sons why producing this plot is a useful first stage of any 

repeated measures analysis:

It gives the researcher a useful overview of the whole •	

dataset as an animal’s responses can be tracked 

across the levels of the repeated factor. As we shall 

see in the following section, if we decide to analyse 

the data using a summary measure then we can use 

this plot to see if the chosen measure is a meaningful 

summary of each animal’s responses.

The plot provides a useful way to identify outliers. An •	

example of such a plot is given in Figure 5.47, consist-

ing of a response measured over 4 weeks. Note the 

Table 5.17.  Two-way ANOVA table for Example 3.21

Sums of squares Degrees of freedom Mean square F-value  p-value 

PCP challenge 15276.63 1 15276.63 1848.91 < 0.001 

Treatment 4337.67 3 1445.89 174.99 < 0.001 

Residuals 123.94 15 8.26 

Table 5.18.  One-way ANOVA table for Example 3.21

Sums of squares Degrees of freedom Mean square F-value p-value 

Group 19614.30 4 4903.58 593.47 < 0.001 

Residuals 123.94 15 8.26 

 

 

 

 

 

 



Table 5.19. Seven different ways to measure an animal repeatedly – statistical analysis

Case Description Type of design Randomisation Statistical analysis

1 Animals measured repeatedly and 

repeated factor levels shared 

across animals

Repeated measures 

design

Randomisation of levels of the repeated factor not 

possible – hence relationships exist between 

the within-animal measurements. Treatments 

randomised to Animals

Repeated measures ANOVA or 

repeated measures mixed model

2 Animal measured repeatedly but 

there is no relationship between 

factor levels across animals

Nested design In theory the levels of the random within-animal 

factor(s) are randomly selected from the wider 

population of levels

Average up to the Animal level prior to 

ANOVA analysis and/or investigate 

the replication of the random 

factors

3 Treatments assessed at random 

positions within the animal

Block design Treatments randomly assigned to positions in the 

animal – so we can assume that within-animal 

responses are not spatially related

Two-way ANOVA with blocking factor 

Animal. Animal can be a random or 

fixed factor

4 Two treatments: within-animal 

treatment levels assessed at 

random positions within the 

animal and between-animal 

treatment levels administered 

one per animal

Split-plot design Between-animal treatments randomly assigned 

to animals and within-animal treatments 

randomly assigned to positions within the 

animal

Mixed-model approach or mixed 

effects ANOVA – Animal must be 

assumed to be a random factor 

to allow for within- and between-

animal testing

5 Animals receive multiple treatments 

over time in a different order for 

each animal

Crossover design Treatments are administered to animals in a 

pseudo-random order, hence we can assume 

results within-animal are not spatially related

Three-way ANOVA with factors 

Treatment, Animal and Test period

6 Animals receive multiple treatments 

over time in a non-random order

Dose-escalation 

design

Treatments are administered to animals in a non-

random order, hence we must assume results 

within-animal are spatially related

Repeated measures ANOVA or 

repeated measures mixed model 

with Dose as the repeated factor

7 Multiple different responses 

measured for each animal

Any type of design – –
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Figure 5.47.  Categorised case profiles plot involving three treatment groups, with all animals measured at four time points (weeks 

1, 2, 3 and 4). Note the unusual observation during week 2 in the 30 mg/kg treatment group.

unusual response in week 2 for one of the animals in 

the 30 mg/kg treated group.

Analysis of summary measures

Once the categorised case profiles plot has been gen-

erated, the scientist should then consider if a suitable 

summary measure can be found that encapsulates 

the information recorded for each animal. Examples 

include averaging all the animals’ responses to prod-

uce a single average measure per animal or calculating 

the area under the curve for the responses from each 

animal (this is effectively a weighted average of the 

animal’s responses). The latter could, in certain cir-

cumstances, be a measure of drug exposure. The aim 

of a summary measure is to preserve as much of the 
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information as possible that was gained by measuring 

the animal repeatedly.

The choice of summary measure will be influenced 

by the pattern of the animal’s responses and also by 

the hypotheses that are being tested. The process (of 

considering if there is a suitable summary measure) 

is itself useful as it makes the scientist think about the 

questions that should be addressed by the statistical 

analysis.

One major benefit of using a summary measure, 

which should not be overlooked, is that it can lead to a 

much simpler analysis. A summary measure could be 

analysed using the ANOVA-based approach described 

in the previous section. This is usually more straight-

forward and involves making fewer assumptions than 

is the case when conducting a repeated measures 

analysis.

Using summary measures can also help avoid com-

plications associated with the characteristics of the 

response. For example, assume that the individual 

responses are categorical and hence the assumptions 

of the parametric analysis do not hold. While there are 

specialist repeated measures analysis techniques that 

can be employed to analyse this type of response, if the 

scientist can use a suitable summary measure of the cat-

egorical response then this is likely to be more continu-

ous and hence the analysis should be more straightfor-

ward. Even if the response is continuous, there are still 

certain assumptions that must be made when carrying 

out a repeated measures analysis, for example spher-

icity (see Section 5.4.4).

However, there are disadvantages when using 

summary measures and these should be weighed 

up against the benefits. To begin with the choice of 

summary measure will have an impact on the con-

clusions drawn from the statistical analysis. So care 

must be taken to choose a summary measure that is a 

meaningful summary of the animal profiles, but also 

answer the hypotheses that the researcher wishes to 

assess.

If there is a suitable summary measure, it should be 

remembered that this measure might not be on the 

same scale as the original response. For example, if the 

rate of decrease is used as a summary measure then it 

is not on the same scale as the original response. An 

overall average, however, is on the same scale. This may 

influence the researcher’s decision on which summary 

measure to use.

Examples of summary measures

As mentioned above the choice of summary measure 

should be governed by the profile of responses (i.e. over 

time) as well as the hypotheses begin assessed. This 

section gives examples of summary measures and their 

associated profiles.

Mean
In the example presented in Figure 5.48 each animal’s 

response does not appear to vary over time, apart from 

random fluctuations, perhaps caused by the measure-

ment-to-measurement variability. In this case a mean 

of each animal’s responses should be a reasonable 

summary measure to analyse. The mean is on the same 

scale as the original data and hence has a biologically 

relevant meaning. If there is a reasonably small number 

of missing observations, then this can be accounted for 

within the averaging process.

Area under the curve (AUC)
In Figure  5.49 the response profiles show a distinct 

curvature over time. A mean could still be taken over 

the time course, but this would not summarise the 

response profile as well as it did in the previous example. 

Perhaps a better way to summarise these profiles is to 

use the area under the curve (AUC). The AUC summary 

measure is effectively a weighted average of the indi-

vidual responses, as opposed to the unweighted mean 

described above. It is not on the same scale as the ori-

ginal data, unless the AUC is divided through by time, 

but can be still be useful. For example, if the researcher 

wishes to investigate drug exposure, then the AUC pro-

vides a useful measure of this.

There are several ways to calculate the AUC. Methods 

include the trapezium rule and Simpson’s rule. 

Definitions and examples of these rules can be found 

in any good textbook on numerical integration; see for 

example Burden and Faires (2011, pp. 194–5).

The trapezium rule, which is an approximation to the 

true AUC, is defined as:
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where N is the number of time intervals, xi is the ith 

time point and yi is the response at the ith time point 

(0 ≤ i ≤ N).

Simpson’s rule, for the case when the time intervals 

are equal (of size h) and N is even, can be written as:

AUC ≈ + + + + + + +[ ]− − −
h

y y y y y y yN N N N
3

4 2 4 2 40 1 2 3 2 1... . 	
�

(5.28)

Although Simpson’s rule may perform better than the 

trapezium rule under certain circumstances, and vice 
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Figure 5.48.  Categorised case profiles plot that indicates a mean response for each animal may be a suitable summary measure 

to analyse.
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versa, for practical purposes both rules provide a suffi-

ciently accurate estimate of the AUC for each animal.

Time to maximum response (Tmax)
It may be the case that an animal’s time to maximum 

response is a suitable summary measure to investigate 

(Figure  5.50). If the effect of drug absorption varies 

between animals, then the researcher will not be able 

to control when the maximal response occurs. In such 

cases there will be an increase in variability of the data 

measured at each time point (caused by the different 

drug absorption rates). This will undermine the stat-

istical power of any statistical comparisons made at a 

given time point.
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Figure 5.49.  Categorised case profiles plot that indicates an area under the curve response for each animal may be a suitable 

summary measure to analyse.
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Maximal effect (Cmax)
Linked to Tmax is the maximal response for an indi-

vidual animal. The decision on whether to consider 

Cmax or Tmax will probably be governed by biological 

considerations.

Slope
It may be the case that it is not the actual responses 

that are of interest but the rate at which the responses 

change over time. For example, consider a behavioural 

test such as the Morris water maze, with data given in 

Figure  5.51. Animals are tested repeatedly over time 

and interest focuses on the decrease in time to com-

plete the task. This gives an indication of an animal’s 

learning ability. If this decrease occurs in a linear fash-

ion, then perhaps the slope of the best-fit (or regres-

sion) line for each animal is a suitable summary meas-

ure that describes the animal’s learning ability.
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Figure 5.50.  Categorised case profiles plot that indicates time to maximum response (Tmax) for each animal may be a suitable 

summary measure to analyse.
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Half-life
It may be the case that the researcher is interested in 

the rate of change over time. Perhaps the change fol-

lows an exponential increase or decrease. In such 

cases an exponential curve can be fitted to each ani-

mal’s responses. The half-life for each animal could 

then be used as a summary measure. Examples include 

bacterial cell counts (which grow exponentially) and 

responses that are known to need log-transforming 

prior to analysis to stabilise the variance. An example is 

given in Figure 5.52.

X50 of a response
The calculation of the X50 is usually carried out in 

experiments that do not involve repeated measures 

(see Section 3.6.1). However, if the animal has been 
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Figure 5.51.  Categorised case profiles plot that indicates that the slope of the linear best-fit for each animal may be a suitable 

summary measure to analyse.
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measured at a number of different concentrations or 

doses of compound, then it may be possible to cal-

culate an X50 for each animal. Examples include the 

IC50 (half maximal inhibitory concentration), EC50 

(half maximal effective concentration), T50 (time to 

50% response) and ED50 (median effective dose). 

Regardless of the choice of summary statistic, we fit 

a logistic curve separately to each animal’s responses 

(see Section 3.6.1). An example of such a response is 

given in Figure 5.53.

X50 of a summary response
Related to the previous example, it may be the case 

that animals are measured repeatedly over time 

within each of a number of test periods. For example, 

we may employ a repeated measures dose-escalation 
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Figure 5.52.  Categorised case profiles plot that indicates that the half-life in the increase in response for each animal may be a 

suitable summary measure to analyse.
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design, as described in Section 3.8.2. In such cases we 

could begin by calculating a summary statistic, per-

haps an AUC, for each animal’s responses in each test 

period. These AUC summary measures may increase 

or decrease across increasing doses of the test com-

pound. In such cases we could then try to fit a logis-

tic curve to the summary responses for each animal 

(across increasing doses) and hence obtain a single 

summary measure for each animal in the form of 

an ED50.

Example 5.12:  Measuring pain using the von Frey hairs

TRPA1 is a member of the transient receptor potential family of ion 

channels and is thought to have a role in sensing painful cold and 

irritating chemicals (Kwan et al., 2006). To test the in vivo roles of 

TRPA1, a strain of mice with inactive TRPA1 was tested using von 

Frey hairs. In the model, the paw of the animal is pressed with a 
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Figure 5.53.  Categorised case profiles plot that indicates that the T50 for each animal may be a suitable summary measure to 

analyse.
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number of hairs of varying widths (ten times per animal per hair). 

Each hair exerts a different pressure on the paw. The response is a 

binary response, either yes or no, depending on whether the paw is 

withdrawn or not. Usually a number of hairs of different widths are 

applied to each animal’s paw until a consistent 100% withdrawal 

rate is achieved.

This type of response, a binary repeatedly measured response, 

can be difficult to analyse. Ideally we would like to take into account 

the properties of the design, i.e. that each animal is measured 

repeatedly at different hair widths. This is not easy though as all 

animals will not necessarily be tested using hairs of the same width. 

This has the potential to leave gaps in the dataset.

Although not used in the original analysis, one method to analyse 

this type of data is to use a summary X50 measure. Defining 1 as a 

paw withdraw and 0 as no paw withdraw, we can fit a logistic curve 

to the binary repeated measures data for each animal to estimate 

the width of hair that would result in a 50% chance that the animal 

will withdraw its paw. For example, Figure 5.54 illustrates the data 

for an animal tested using 15 hairs.

The curve was fitted using InVivoStat’s dose-response analysis 

module, with the curve maximum fixed at 1 and the curve min-

imum fixed at 0. The estimate of X50, back-transformed onto the 

original scale, is given in Table 5.20. Once the X50 has been calcu-

lated for each animal, then the analysis can be carried out on the X50 

responses using, for example, an ANOVA technique.

It should be noted that this method will work if there is no sep-

aration in the responses for each animal. The response for an ani-

mal is defined as being separated if the animal does not withdraw 

its paw at all for the first few hairs but then removes its paw all 

ten times for the next width (and all others after that). In other 

words the hair widths can be separated into two distinct sets of 

all responders and non-responders. In such a situation it is impos-

sible to estimate where the X50 lies, except that it is somewhere 

between the two hair widths at the responder/non-responder 

interface.

Repeated measures analysis

In certain situations the researcher may not be able to 

find a suitable summary measure to use in the statisti-

cal analysis. Since the animals’ responses were mea-

sured repeatedly, it may be of interest to know how 

the experimental groups change across the levels of 

the repeated factor. For example, does the difference 

between the treatment group and the control group 

vary over time?

As mentioned above, care must be taken when 

analysing repeated measures data in this way. The 

researcher should resist the temptation to include the 

repeated factor simply as an additional experimental 

factor in, say, a multi-way ANOVA analysis. This will 

lead to erroneous results and possibly false positive 

conclusions because the assumption of independence 

(see Section 5.4.1) does not hold in this case.

Two commonly applied techniques for performing a 

repeated measures analysis are the repeated measures 

ANOVA-based approach and the repeated measures 

mixed-model approach. Although the ANOVA-based 

approach is widely available in the statistical packages 

commonly used by animal researchers, we argue that 

it is the mixed-model approach that is more suitable 

for the analysis of animal experiments; see Brammer 

(2003), Clarke et al. (2012) and Smith (2012).

The ANOVA-based approach uses the least squares 

technique described in Section 5.4.3 to break down 

the variability into sources corresponding to the terms 

in the statistical model. The mixed-model approach 

uses the restricted maximum likelihood (REML) to 

estimate the amount of information that can be attrib-

uted to each term in the statistical model. In this sec-

tion we shall highlight some of the benefits of using 

the mixed-model approach to analyse data generated 

using repeated measures designs. A description of how 

to perform a repeated measures mixed-model analysis 

using InVivoStat is given in Section 6.4.
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Figure 5.54.  An animal’s 10 (binary) responses at 15 different 

Von-Frey hairs, from Example 5.12. Multiple responses are 

overlaid and hence only a single point is visible when the 

same response is repeatedly observed at a given hair width.
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Repeated measures analyses
When performing a repeated measures analysis we 

need to test the factors against the correct source of 

variability. There are two sources of variability in these 

experiments, the between-animal variability and the 

within-animal variability. The levels of the treatments, 

in a repeated measured design, are applied to animals 

(animals are the experimental units) so these treat-

ments are tested against the between-animal variability. 

The repeated factor and any interactions involving the 

repeated factor are assessed against the within-animal 

variability. Note that we include interactions involving 

the repeated factor (despite the lack of randomisation 

of the levels of the repeated factor) because we have 

taken account of the spatial interrelationships between 

the repeatedly measured responses within the analysis. 

We do not therefore need to make the assumption that 

the observations are independent (using a randomisa-

tion-based argument).

For the mixed-model approach we can generate an 

ANOVA-like table that provides the researcher with 

overall tests of the significance of the fixed factors. The 

tests in the table are either within-animal or between-

animal, depending on the effect being tested.

Example 5.13:  Chronic stress model of depression in rats

An experiment was conducted to assess whether administration 

of nicotine to rats reverses anhedonic-like responses and cogni-

tive impairment in the chronic mild stress (CMS) model of depres-

sion (Andreasen et  al., 2011). Following exposure to CMS, male 

Wistar rats were administered the vehicle, nicotine (0.4 mg/kg/

day), sertraline (5 mg/kg/day) or a combination of nicotine and 

sertraline. Animals were then assessed weekly using the sucrose 

preference test, with week 3 taken as a measure of stress prior 

to treatment and the average of the responses for weeks 8 and 9 

providing a measure of the treatment effect. The design employed 

was a repeated measures design with a three-factor full-factorial 

core design, see Section 3.7.3, consisting of three between-animal 

factors: Nicotine (levels: nicotine or vehicle), Sertraline (levels: 

sertraline or vehicle) and Stress (levels: stress or non-stress), and 

repeated factor Week (levels: week 3 and 9). A baseline response 

was also measured and this was included in the analysis as a cov-

ariate (see Section 5.4.6).

The experiment revealed that the effect of nicotine in the CMS 

model was similar to the antidepressant drug sertraline. There was 

also some evidence that nicotine alleviated CMS-induced cognitive 

disturbance. Table 5.21 is a summary table containing the tests of 

the overall effects for Example 5.13.

Using this table we can perform (within-animal) tests of the inter-

actions between the three treatment factors and time. These are 

tests to see if the differences between the treatments vary over 

time. They should be considered first. The interactions are assessed 

against the within-animal variability.

For the within-animal variability, the within-animal degrees of 

freedom corresponds to the degrees of freedom that we test the 

within-animal treatments against. It is the denominator of the 

degrees of freedom for the within-animal tests:

dfwithin = No. of animals × (No. of repeated levels  – 1)  – df (for all 

within-animal terms).� (5.29)

To appreciate Eq. (5.29), consider the following derivation.

The number of separate comparisons we can make within an 

individual animal is, using the arguments given in previous sec-

tions, one less than the number of levels of the repeated factor. The 

total number of comparisons we can make within all the animals 

is therefore:

No. of animals × (No. of repeated levels – 1).� (5.30)

To calculate the within-animal degrees of freedom we take the 

number of levels of the repeated factor (minus one) multiplied by 

the number of animals and then subtract the degrees of freedom 

required to estimate the within-animal terms. In Example 5.13 we 

have 104 animals in total, two levels of the repeated factor and nine 

degrees of freedom for the within-animal terms, hence:

dfwithin = 104 × (2 – 1) – 9 = 95.

It is also relatively easy to check that the degrees of freedom for 

the between-animal test(s) (dfbetween) in Table 5.21 are correct. For 

the between-animal variability, the denominator of the degrees of 

freedom for the between-animal tests is:

dfbetween = No. of animals – 1 – df (for all between-animal terms).	

� (5.31)

So we take the number of animals, subtract 1 (for the overall mean) 

and then subtract the number of degrees of freedom required to 

Table 5.20.  Table of the X50 estimate, with 95% confidence intervals, for one animal’s 

responses to the von Frey hairs from Example 5.12

ED50 Lower 95% CI Upper 95% CI 

Estimate 0.681 0.461 1.005 
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estimate the between-animal terms. In Example 5.13 we have 104 

animals in total and two treatments, hence

dfbetween = 104 – 1 – 8 = 95.

The mixed-model approach vs. the ANOVA-based 
approach

In this section we shall describe some of the advantages 

of using a mixed-model approach to analysing repeated 

measures data, compared to the ANOVA-based alter-

native. A discussion of this subject is given by Smith 

(2012).

The variance–covariance structure
We have already discussed the variance of a response: 

it is a measure of how spread out the results are. In an 

analysis of repeated measures data, however, we also 

need to consider the covariances. These are a measure 

of the degree to which pairs of responses change or vary 

together (co-vary).

Note that the covariance between pairs of responses 

is related to their correlation. To obtain the correlation 

between two responses we divide the covariance by 

a measure of the variability (Snedecor and Cochran, 

1989, p. 182). For responses X and Y

correlation
covariance

( , )
( , )

X Y
X Y

X Y

=
σ σ

	 (5.32)

where σX  and σY  are the standard deviations of X and Y, 

respectively. So correlation is a (dimensionless) ratio of 

the covariance compared to the variance, on a scale –1 

to +1.

The variances and covariances can be summa-

rised in a single grid-like structure or (matrix) called 

the variance–covariance matrix. Assume there are n 

observations in the dataset. We construct an n by n grid 

such that:

The main diagonal elements correspond to the •	 n var-

iance estimates for each of the n observations.

The off-diagonal elements correspond to the cov-•	

ariances. So the (i,j) = (j,i) entry is the covariance 

between the ith and jth observations, i.e.

In the previous section when performing the ANOVA-

based analysis we assumed that:

The variance was the same for all groups (and there-•	

fore all observations); hence the entries on the main 

Table 5.21. Table of the tests of overall effects for Example 5.13

Source Numerator of degrees of 

freedom

Denominator of degrees  

of freedom

Comment

Baseline 1 95 Tested against 

between-animal 

variability

Stress 1 95

Nicotine 1 95

Sertraline 1 95

Stress*Nicotine 1 95

Stress*Sertraline 1 95

Nicotine*Sertraline 1

Stress*Nicotine*Sertraline 1 95

Week 1 95 Tested against 

within-animal 

variability

Week*Baseline 1 95

Week*Stress 1 95

Week*Nicotine 1 95

Week*Sertraline 1 95

Week*Stress*Nicotine 1 95

Week*Stress*Sertraline 1 95

Week*Nicotine*Sertraline 1 95

Week*Stress*Nicotine*Sertraline 1 95
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diagonal of the variance–covariance structure are all 

the same (we usually denote this value by s2, the sam-

ple variance).

The observations were independent; hence the •	

covariance between pairs of individual observations 

is equal to zero.

This leads to a simplified variance–covariance matrix of 

the form:

However, we cannot assume this simplified variance–

covariance structure is true when analysing repeated 

measures data. As discussed above, the levels of the 

repeated factor cannot be randomised: day 1 must come 

before day 2. With almost all other factors of interest 

considered in this text some degree of randomisation 

can be performed when allocating the experimental 

units to the levels of these factors. We can then assume 

that this randomisation has, in some sense, removed any 

interrelationships (or covariances) between the obser-

vations. In the analysis of repeated measures data the 

lack of randomisation should be taken into account if 

the results of the analysis are to be meaningful. This can 

be achieved using a repeated measures mixed-model 

analysis approach. When using this analysis approach 

we can account for the relationships between responses 

measured on the same animal by estimating the vari-

ance–covariance structure. In particular we can decide 

which general structure to use when we model the vari-

ance–covariance matrix. This involves considering:

1.	 Variance structure: Some of these structures allow 

the variability of the responses to be different at 

each level of the repeated factor, thus relaxing the 

homogeneity of variance assumption.

2.	 Between-animal covariance structure: If the ani-

mals are selected at random, we assume that pairs 

of observations from different animals are inde-

pendent. Hence many of the off-diagonal entries 

in the variance–covariance matrix are assumed to 

equal zero.

3.	 Within-animal covariance structure: Pairs of obser-

vations within-animal will be related, and so the 

covariances between the within-animal observa-

tions will be non-zero.

There are many general variance–covariance structures 

available to model the within-animal spatial relation-

ships, these include:

Autoregressive When using this structure we 

assume the variability is the same at all time points. 

We also assume the strength of the covariance between 

responses measured across time is dependent on the 

distance between them. The size of the covariance 

between two observations at time points i and j is cal-

culated using the formulae:

s i j2ρ| | ,− 	 (5.33)

where ρ is the autoregressive parameter (which lies 

between 0 and 1) and s2 is the sample variance. When 

using this structure the time points should be equally 

spaced for the results of the analysis to be meaningful, 

although this condition can be relaxed in certain statis-

tical software packages.

Compound symmetric With the compound symmet-

ric covariance structure we assume that the variability of 

the responses is the same at all time points and also that 

the relationship (or covariance) between the results is the 

same for all pairs of time points regardless how far apart 

they are. With compound symmetry we only have to esti-

mate the common variance (common across all time 

points) and the common covariance. This is a real benefit 

Observation 1 2 3 … n

1 variance(1) covariance(2,1) covariance(3,1) … covariance(n,1)

2 covariance(1,2) variance(2) covariance(3,2) … covariance(n,2)

3 covariance(1,3) covariance(2,3) variance(3) … covariance(n,3)

… … … … … …

n covariance(1,n) covariance(2,n) covariance(3,n) … variance(n)

Observation 1 2 3 … n

1 s2 0 0 … 0

2 0 s2 0 … 0

3 0 0 s2 … 0

… … … … … …

n 0 0 0 … s2
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in experiments with small sample sizes, where not much 

information is collected and hence where it is difficult to 

estimate the variance–covariance matrix with any degree 

of precision. However, certain assumptions are made, 

notably the assumption of sphericity discussed below.

Unstructured An alternative structure, where the 

researcher does not have to make the assumption of 

sphericity, is the unstructured covariance structure. 

With this structure the strengths of the covariances 

are allowed to vary for any pair of repeated measures. 

Additionally the variability of the responses is allowed 

to vary across the levels of the repeated factor. This 

can be useful if the responses are cell counts that are 

measured in several brain regions and the data are ana-

lysed using a repeated measures mixed-model analysis 

approach, with repeated factor Brain region. It is con-

ceivable that the cell counts will be more variable in 

the larger brain regions, and this should be taken into 

account in the analysis.

There are, however, problems with this approach, 

mainly because there are many variance and covariance 

parameters to estimate. If there are r repeated measures 

per animal, then there are (r  – 1) × (r  – 2)  covariance 

parameters and r variance parameters to estimate. This 

is a lot of parameters to estimate, especially if the num-

ber of animals is small and the number of time points 

relatively large. Unfortunately in many animal experi-

ments this approach may produce unreliable results; 

see Skene and Kenward (2010) for a discussion and 

alternative approaches.

One of the benefits of using a mixed-model approach 

to analyse repeated measures data is that it allows the 

researcher to choose the way the variances and the 

spatial interrelationships are (statistically) modelled. 

Many variance–covariance structures, other than those 

described here, are available. However, it should be 

remembered that the more complex the variance–cov-

ariance structure, the more parameters will need to be 

estimated. If the study consists of only a small number 

of animals per group, then the parameters that define 

the variance–covariance structure may not be esti-

mated with any reasonable degree of precision.

Missing data
One of the other main benefits of using the repeated 

measures mixed-model approach, as opposed to the 

ANOVA-based approach, is that the mixed-model deals 

with missing data (in most situations) more satisfac-

torily. With the alternative ANOVA-based methods it is 

often the case that if an animal is missing a response 

at one time point, then that animal is excluded from 

the analysis. This can be a major problem if the sample 

sizes are small. This is not the case in the mixed-model 

approach.

Sphericity
It was mentioned above that certain additional assump-

tions are made when conducting a repeated measures 

analysis as well as the usual parametric assumptions. 

When we perform a repeated measures ANOVA-based 

analysis one of the additional assumptions that we 

make is sphericity. Sphericity is the assumption that the 

variances of the estimates of the differences between 

the experimental groups are the same regardless which 

pair of groups is being compared (Field, 1998).

There is a test of sphericity, see Mauchly (1940), 

although this test is not generally recommended. For 

example, this test fails to detect departures from spher-

icity if the sample sizes are small, as is often the case in 

animal experiments. So using this test in animal experi-

ments is not advised as you may never identify that the 

sphericity assumption does not hold. Several meth-

ods have been proposed to correct the results of the 

repeated measures ANOVA-based analysis if the spher-

icity assumption has been violated. These include the 

Greenhouse–Geisser, Huydt–Feldt and Wilkes–Lambda 

adjustments. In practice most approaches generate 

similar conclusions, although the Greenhouse–Geisser 

adjustment is perhaps the most popular.

Using a mixed-model approach to analyse repeated 

measures data allows the researcher to avoid making 

the sphericity assumption by using, for example, the 

autoregressive or unstructured covariance structures 

described above. These covariance structures allow the 

covariances to be different and hence do not assume 

sphericity.

Example 5.14:  Investigating non-cognitive behaviours

It is well know that Alzheimer’s disease is characterised by progres-

sive impairment, with neuropsychiatric symptoms such as anomalous 

motor behaviour and anxiety. The APP/PS1 transgenic strain of mice 

has been shown to display increased beta-amyloid deposition and 

hence provides a model for Alzheimer’s disease. A study was conducted 
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to investigate the non-cognitive behaviours of these mice using the 

elevated maze (Pugh et al., 2007). Male and female transgenic and 

wildtype mice were tested when 2, 5 and 10 months old. In the experi-

mental design the two factors Genotype and Gender were fully crossed 

with each other and hence the design used was a repeated measures 

factorial design. We shall consider the percentage time spent in the 

open arm of the elevated maze (a measure of anxiety).

The categorised case profiles plot (generated using simulated 

data) reveals that the profiles of the percentage time spent in the 

open arm of the maze vary depending on the gender and genotype 

of the animal (see Figure 5.55).

There was no obvious summary measure available, and the 

researcher was interested in comparing the strains at each time 

point, hence a repeated measures analysis was required. A plot of 

the observed means (Figure 5.56) revealed some evidence of strain 

and gender differences over time. Note that in the observed means 

with SEMs plot, the error bars correspond to the between-animal 

variability (which was calculated separately for each observed 
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Figure 5.55.  Categorised case profiles plot of the percentage time spent in the open arm of an elevated maze, from Example 5.14. 

Animals were assessed at 2, 5 and 10 months.
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mean). If the researcher wished to investigate the effects over time, 

then these trends could be assessed against the within-animal vari-

ability. The within-animal variability is likely to be smaller than the 

between-animal variability shown on the observed means with 

SEMs plot.

A repeated measures mixed-model analysis was performed on 

the simulated data (see Table 5.22). The tests of the overall effects 

were calculated using the repeated measures parametric analysis 

module within InVivoStat.

Table  5.22 shares many similarities with the ANOVA tables 

described above. The terms Genotype, Gender and the 

Genotype:Gender interaction are tested against the between-ani-

mal variability (with 42 degrees of freedom). There is evidence that 

the effect of genotype varies with gender (F(1,42) = 6.99, p = 0.011). 

Overall the transgenic animals appear to spend more time in the 

open arm of the maze than their wildtype littermates, (F(1,42) = 

43.34, p < 0.001), although the researcher should be careful when 

drawing conclusions from the test of a main effect in the presence 

of a significant interaction.

Terms involving the repeated factor (Month) are tested against 

the within-animal variability (with 84 degrees of freedom). All the 

tests are significant, for example the Gender:Genotype:Month three-

way interaction (F(2,84) = 12.76, p < 0.001) indicates that the profiles 

of the four groups in the study change over time. By considering 

Figure 5.56, or a plot of the predicted means generated as part of 

the statistical analysis (not shown), it can be seen that the per-

centage time spent in the open arm seems to increase at 5 months 

and then decrease at 10 months, with the exception of the female 

wildtype group.

Advantages and disadvantages of the repeated 
measures analysis

The advantages of the repeated measures analysis 

include:

It provides the researcher with powerful and inform-•	

ative tests.

It allows the researcher to answer specific questions •	

such as: ‘Does the treatment effect vary over time?’

It allows for an overall test of the significance of the •	

between-animal factor(s), where appropriate.

It allows for an overall test of the significance of the •	

repeated factor.

There are, however, some disadvantages which should 

be considered:

Too many time points (we believe greater than around •	

15)  can lead to oversensitive statistical tests. When 

many measurements are taken within each animal, 

the chances are they will be highly related. This is 

analogous to the issue of pseudo-replication dis-

cussed in Section 3.7.4. For example, in Example 3.40 

(Section 3.8.1) it is not recommended to include 

the data from the 40 days in the repeated measures 

analysis. We suggest averaging pairs of responses to 

obtain 20 averages per animal prior to carrying out 

any statistical tests.

Small sample sizes and many repeated measurements •	

can lead to an unreliable analysis. If the sample sizes 

are small then we cannot estimate the spatial inter-

relationships of the within-animal responses (the 

covariance structure) with any degree of reliability.

It leads to more complicated analyses.•	

As more •	 p-values are generated, the risk of finding 

false positives increases (see Section 5.4.8).

We may have to assume sphericity, although this •	

disadvantage can be avoided by using the repeated 

measures mixed-model approach.

5.4.5  Predicted means from the parametric 
analysis

Let us assume the researcher has carried out the statis-

tical analysis using either a t-test, ANOVA or repeated 

measures mixed-model analysis. So far in this sec-

tion we have only considered the overall tests of the 

experimental factors that are produced when running 

these analyses. However, in the analysis of animal 
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Figure 5.56.  Column plot of the observed means with SEMs 

for the percentage time spent in the open arms of the elevated 

maze, from Example 5.14. Animals were assessed at 2, 5 and 

10 months.
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experiments it is common practice to compare individ-

ual group means in order to investigate the experimen-

tal factors further. While there are several ways to do 

this, a good starting point is to consider the predicted 

means generated as part of the statistical analysis, the 

so-called least square (predicted) means.

Least square (predicted) means

The method for calculating the least square (predicted) 

means is different from that of computing the observed 

means. It shares similarities with the method for gen-

erating the sums of squares described in Section 5.4.3. 

We shall describe the principle of the method with an 

example.

Example 5.9 (continued): A study involving three treat-

ment groups and a control

Consider Example  5.9 as discussed in the ANOVA derivation (see 

Section 5.4.3). To calculate the predicted means consider the residu-

als from the statistical analysis. Consider an observation i, where:

residuali = observedi – predictedi.

Each predicted mean is computed in such a way that the residuals 

(or the distances of the individual observations from their predicted 

means) are minimised (see Figure 5.57).

For each treatment group we therefore need a single summary 

measure of the residuals that can be minimised to obtain the pre-

dicted mean. Summing the residuals may appear to be a sensible 

summary measure, but some of the residuals will be positive and 

some will be negative, so a simple average of the residuals is not 

suitable. We use the method described above for constructing the 

ANOVA table and first square the residuals before summing them. 

This is why we use the terminology ‘least square (predicted) means’ 

as we are minimising the sum of the squares of the residuals. This 

approach is analogous to how we calculated the residual sums of 

squares in the ANOVA table.

Variability of the least square (predicted) means

As mentioned above it is usually the case that scien-

tists report observed means alongside measures of 

Table 5.22.  Table of tests of overall effects from the repeated measures analysis, 

Example 5.14

Num. df Den. df F-value p-value 

Gender 1 42 0.04 0.834 

Genotype 1 42 43.34 < 0.001 

Month 2 84 17.93 < 0.001 

Gender:Genotype 1 42 6.99 0.011 

Gender:Month 2 84 4.38 0.015 

Genotype:Month 2 84 19.29 < 0.001 

Gender:Genotype:Month 2 84 12.76 < 0.001 
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Figure 5.57.  Scatterplot of the data from Example 5.9. The 

plot includes the grand mean of the data as a dotted line, the 

individual group means as solid lines and the distance of the 

highlighted observation from the least square (predicted) 

mean as an arrow.
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the within-group variability. For example, the means 

plotted in the means with SEMs plot are the observed 

means and the standard errors are calculated using the 

within-group variability estimates. Predicted means 

are usually presented with the estimate of variability 

generated within the statistical analysis. As discussed 

in Section 5.2.2 this is, in some sense, a weighted aver-

age variability estimate, averaged over all experimental 

groups. In particular, we usually generate confidence 

intervals around the predicted means using this single 

variability estimate.

In practice the most commonly reported confidence 

interval is the 95% confidence interval. It should be 

noted that the 95% confidence interval is (assuming 

the within-group variability is roughly the same for 

all groups) approximately twice as large as the corre-

sponding standard error. So if you generate a graph-

ical plot of the predicted means with 95% confidence 

intervals, then make sure that your audience is aware 

that the error bars are confidence intervals and not the 

more familiar standard errors… it will make your data 

look more variable than it really is!

Example 5.15:  A single factor experiment

The following example highlights how the size of the confidence 

intervals of the predicted means (from a one-way ANOVA analysis) 

compares to the standard errors in the observed means with SEMs 

plot. The predicted means with 95% confidence intervals are given 

in Figure 5.58 and the observed means with SEMs plot is given in 

Figure 5.59. It can be seen that, as the sample sizes are the same 

across the three groups, the three 95% confidence intervals will be 

the same size. All three intervals use the same overall estimate of 

variability to generate them. The means with SEMs plot, however, 

employs the individual within-group variability estimates to gen-

erate the standard errors and in this case the within-group vari-

ability changes across groups. Note that most of the parametric 

tests described previously rely on the assumption that the variabil-

ity is the same across groups and hence the means with SEMs plot 

does not represent the variability estimate used in the statistical 

analysis.

Geometric means and confidence intervals

One other benefit of using confidence intervals rather 

than standard errors is that they need not be symmet-

rical around the mean. This flexibility is useful if the 

data has been log-transformed prior to the analysis to 

stabilise the variance. If you want to produce a means 

with SEMs plot in this scenario, then you may want to 

consider plotting the geometric means (see Section 

5.2.1) with corresponding geometric standard errors 

(see Section 6.11.3).

Assume that the statistical analysis (including the 

calculation of the predicted means and the confidence 

intervals) has been carried out on the log-transformed 
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Figure 5.58.  Plot of the least square (predicted) means with 

95% confidence intervals, for Example 5.15.
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Figure 5.59.  Plot of the observed means with standard errors, 

for Example 5.15.
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scale. Once the predicted means and confidence inter-

vals have been calculated (on the log scale), then they 

can be back-transformed onto the original scale. These 

means are sometimes called the back-transformed 

geometric means, although they are still examples of 

predicted means.

Example 5.15 (continued): A single factor experiment

Returning to Example 5.15, it was decided that the data required a 

log transformation to stabilise the variance. The researcher decided 

to back-transform the predicted means onto the original scale before 

plotting them. The plot of back-transformed geometric means, with 

95% confidence intervals, is presented in Figure 5.60.

From the plot we can see that:

The variability increases with the size of response.•	

There is more variability (or uncertainly) above the predicted •	

mean than there is below it. The response was log-normally dis-

tributed and so the variability increases as the response increases. 

To reflect this, the confidence intervals are larger above the mean 

than below.

While the first point is also addressed by the observed means with 

SEMs plot, the second is not. The standard error of the observed 

mean is, by definition, symmetrical about the mean. To avoid this, 

the observed means with SEMs plot would need to be produced on 

a log scale.

Reliability of the predicted means

When there are other factors present in the experimen-

tal design, the predicted means are more reliable than 

the observed means as they adjust for the effect of these 

additional factors. We end this section with an example 

of the use of predicted means to highlight this.

Example 5.16:  A fertility study

An investigation was conducted to assess the effect of an intra-

uterine injection of prostaglandin antagonists on mouse fertility. A 

series of experiments, see Biggers et al. (1981), was conducted to 

assess the effect of four prostaglandin antagonists, 7-oxa-13-pros-

tynoic acid, 18,18,20-trimethylprostaglandin E-2, indomethacin and 

meclofenamic acid. The compounds were tested by injecting them 

into the uterine horn. Post-injection the number of embryo implant-

ation sites was recorded. We shall focus on the experiment involving 

18,18,20-trimethylprostaglandin E-2.

As each animal has two independent uterine horns it was pos-

sible to administer two different treatments (either different doses 

of 18,18,20-trimethylprostaglandin E-2, a saline control or a vehicle 

control) to each animal, one per uterine horn. Two treatments were 

given to each animal, where the allocation was made using a bal-

anced incomplete block design with Animal as the blocking fac-

tor. This allowed efficient within-animal treatment comparisons to 

be made.
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Figure 5.60.  Plot of the back-transformed geometric means with 95% confidence intervals, for an experiment involving a 

treatment factor at three levels (control, treatment A and treatment B).
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The 18,18,20- trimethylprostaglandin E-2 treatment (at four 

doses, Groups 3, 4, 5 and 6) and two controls (Groups 1 and 2) were 

administered to 30 mice over two experiments. The randomisation 

performed was as follows:

Treatment pairs were randomly assigned to animals using two •	

replicates of a balanced incomplete block design.

The treatments within each pair were randomly assigned to the •	

left or right uterine horns within each animal.

In this discussion we shall analyse some simulated data, using a 

one-way ANOVA with Animal as a blocking factor. This is different to 

the approach described by Biggers et al. (1981).

From an initial look at the data, it appeared to be the case that 

some animals had, on average, more implantation sites than others. 

This could, in part, have been due to treatment effects (as each ani-

mal did not receive all treatments) or it could have been caused by 

background biological variation. Following the ANOVA analysis a plot 

of the predicted means of the Animal factor, which took into account 

treatment effects, was generated. This plot revealed that there was 

some evidence of differences between the 30 mice (Figure 5.61).

Two plots of the treatment group means highlighted the diffe-

rence between the observed and predicted means (Figures 5.62 and 

5.63). The observed means with SEMs plot revealed the treatment 

effect, but it also hinted at a difference between the two control 

groups (treatments 1 and 2).

The plot of the predicted means following the ANOVA analysis 

takes into account that some animals appeared to have fewer 

implantation sites regardless of the treatments they received. 

This plot revealed that there was actually a much smoother dose-

response relationship and also that there was no difference between 

the two control groups.

As the confidence intervals were the same for all groups, this 

plot also highlighted that the same variability estimate was used 

to calculate each confidence interval. Assuming that the variability 

estimate was the same for all groups, this overall estimate of vari-

ability was perhaps more reliable than the individual within-group 

variance estimates. Of course the assumption that the variance was 

the same across all groups may be suspect and perhaps needed 

further investigation.

5.4.6  Analysis of covariance (ANCOVA)

There is one other type of parametric analysis tech-

nique that the researcher may find useful and that is the 

analysis of covariance or ANCOVA. We believe this type 

of analysis can be used to analyse many experiments. 

A description of how to perform the analysis of covari-

ance using InVivoStat is given in Section 6.3.

Throughout this book we have tried, using both 

experimental design and statistical analysis, to reduce 

the variability (or noise) that we test the experimental 

hypotheses against. We achieve this by using all the 

available information to construct the experimental 

design and direct the statistical analysis. Covariates 

provide a further way to reduce the variability by 

allowing the researcher to make use of any additional 
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Figure 5.61.  Plot of the predicted means for the individual 

animals with 95% confidence intervals for Example 5.16.
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Figure 5.62.  Plot of the observed means with standard errors 

of the treatment groups for Example 5.16.
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information that has been recorded during the experi-

ment. In particular, background information on the 

animals can be used to reduce the between-animal 

variability and hence improve the sensitivity of the stat-

istical tests and/or reduce sample sizes.

In practice the researcher will have plenty of infor-

mation about the animals in the study (such as body 

weight, age and perhaps baseline measures of the 

response) and it is important that this information is 

used in the statistical analysis. Some information, such 

as animal body weight, is routinely measured for hus-

bandry purposes. Therefore it could be argued that we 

are always in a position to make use of covariates in the 

statistical analysis of animal experiments.

What is a covariate?

A covariate is a continuous numerical variable cor-

responding to a characteristic of the animal. It should 

not be confused with the covariance between pairs of 

responses, as described in Section 5.4.4.

These variables are preferably measured before 

the animal undergoes any experimental procedures, 

although this is not always be the case. The purpose of 

the covariate is to capture some background properties 

of the animal that may influence the post-manipulation 

responses.

Possible candidates for covariates include:

animal age•	

initial body weight•	

baseline measure of the response•	

litter size.•	

time between sample collection and analysis•	

order of experimental procedures (to quantify any •	

learning or procedural effects)

Assume that there is a strong relationship between 

the response (to a treatment say) and some measured 

baseline characteristic of the animal. Due to this rela-

tionship, animals with a high baseline level tend to 

have a high post-treatment response. Therefore some 

of the variability observed in each experimental group 

post-treatment can be explained by the differences 

already present at baseline. For example, in an experi-

ment to measure the effect of a novel compound on 

locomotor activity, it was hypothesised that animals 

within a group that were more active at the start of the 

study would be likely to be the more active animals 

(within that group) at the end of the study, regardless 

of the treatment they received. Some of the variabil-

ity observed within each group at the end of the study 

can therefore be explained by considering the base-

line level of activity. The within-group variability is not 

entirely experimentally induced; some of it was present 

before the experiment started. We include the base-

line locomotor activity as a covariate in the analysis to 

account for the variability in the response, which can 

be explained by considering the background behav-

iour of the animals.

Covariates vs. linear predictors
When performing an ANCOVA analysis certain 

assumptions are made, alongside the usual paramet-

ric ones. These assumptions are considered in detail in 

Section 5.4.6. For example, we assume that the covari-

ate is independent of, or not influenced by, the experi-

mental factors. The covariate is a statistical device to 

reduce the underlying variability of the responses; it 

should not influence the predictions obtained when 
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Figure 5.63.  Plot of the predicted means with 95% 

confidence intervals of the treatment groups for Example 5.16.
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fitting the statistical model. There are other ana-

lyses, mathematically related to ANCOVA, where 

the researcher will want to adjust the model predic-

tions for continuous variables that are influenced by 

the experimental factors. Such variables are known 

as linear predictors and the analysis is often defined 

as regression analysis. We shall discuss this analysis 

briefly in Section 5.4.7.

Best-fit lines and predicted lines

When performing an analysis of covariance we con-

sider the relationship between the response of inter-

est and the covariate. We assume this relationship is 

linear and hence fit straight lines to the data, one per 

experimental group. There are two types of lines that 

are described in this section and they are generated by 

different procedures. We define them as best-fit lines 

and predicted lines.

Best-fit lines
The best-fit lines are analogous to the observed means 

described in Section 5.2.1 and are calculated sep-

arately, and independently, for each experimental 

group. Best-fit lines are constructed using the least 

squares principle described in Section 5.4.5. Each 

line is generated such that the distances between the 

observations and the best-fit line are minimised. This 

is performed separately for each experimental group 

and hence the lines are independent of each other. 

Best-fit lines provide an insight into the underlying 

relationships within the dataset and are not depend-

ent on the statistical model fitted to the data as part 

of the ANCOVA analysis. These lines are produced on 

the categorised scatterplots, as described in the next 

section.

Predicted lines
We also consider a second type of line, the predicted 

line (see Section 5.4.6). These lines are analogous to the 

predicted means in an ANOVA analysis. They are gen-

erated by fitting a statistical model to the data as part 

of the ANCOVA analysis. The predicted lines, one per 

experimental group, are usually parallel to each other, 

as discussed in Section 5.4.6.

Categorised scatterplot

Perhaps the easiest way to investigate candidate covari-

ates is to plot them using a categorised scatterplot. The 

Y-axis on the plot corresponds to the response being 

analysed and the X-axis corresponds to the covariate. 

The pair of results per animal is then plotted on a scat-

terplot. It is also recommended that the scatterplot be 

categorised by the experimental groups (using different 

colours or symbols). The best-fit line for each experi-

mental group is also included on the plot to highlight 

the linear relationship between the response and the 

covariate

Example 5.17:  Effect of PFOS on cynomolgus monkey body 

weight

An experiment was conducted to investigate the toxicological risks 

associated with repeated exposure of perfluorooctanesulfonate 

potassium salt (PFOS) in monkeys (Seacat et al., 2002). Such com-

pounds are poorly eliminated and hence pose a possible risk to 

human health. The experiment consisted of both male and female 

monkeys receiving either the control or one of three doses of PFOS. 

Either four or six monkeys per sex were randomly assigned to each 

of the four treatment groups at the start of the study. We shall con-

centrate on the male monkeys in this discussion.

Many parameters were measured but we shall focus on the body 

weight measurement taken at the end of the dosing period (day 

184 after commencement of the treatment phase). There were sev-

eral candidates for use as a covariate in the analysis; we shall focus 

on a baseline measure of body weight and the age of the monkey 

at the start of the study.

A scatterplot of some simulated body weights at day 184 vs. 

treatment group is given in Figure  5.64. This plot revealed some 

evidence of an effect of treatment; however, given the between-

animal variability of the response the effect was not deemed to be 

biologically significant.

A one-way ANOVA analysis revealed the difference between the 

four groups was not statistically significant (F(3,20) = 1.71, p = 0.198). 

However, we have not made use of all the information collected 

during the experiment. The researchers also recorded baseline body 

weights and the monkeys’ ages. As juvenile animals usually all grow 

at approximately the same rate, baseline body weight is an obvi-

ous candidate for inclusion as a covariate in the statistical analysis. 

Animals that were lighter pretreatment remain so post-treatment. 

Therefore some of the spread of body weights (within each group) 

can be accounted for by the baseline levels. Alternatively perhaps 

the age of the monkeys could be used as a covariate. However, 

given the narrow age range of animals employed in the study, age 

is perhaps less likely to be related to the body weight at day 184.

Categorised scatterplots of the body weight at day 184 vs. the 

two candidate covariates are given in Figures 5.65 and 5.66.
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There appears to be a strong positive relationship between body 

weight at day 184 and the baseline body weight. The relationship 

between body weight at day 184 and the age of the animal at the 

start of the study is less strong. This implies that the baseline body 

weight will be a more influential covariate and hence will account 

for more of the between-animal variability.

Returning to the original scatterplot of the data, consider the 

observations marked a and b in the control group (Figure  5.67). 

Without any further information all we can say is that the diffe-

rence between animal a and b’s body weight at day 184 is due to 

the between-animal variation. However, let us consider using the 

baseline body weight information. It turns out that animal a was 

heavy at the start of the study (compared to the other animals in 

the control group) whereas animal b was lighter than the other 

animals (see Table 5.23). In other words we can explain the diffe-

rence between these two animals’ body weights at day 184: it is 

not just due to the post-treatment between-animal variability. We 

know why animal a had a much higher body weight at day 184 

than animal b: it was because animal a was a larger animal before 

the study started.

Including baseline body weight in the analysis as a covariate 

will greatly reduce the post-treatment between-animal variability 

because most of the variability was present at the baseline (it was 

not due to the experimental procedure) and hence can be accounted 

for by fitting baseline body weight as a covariate in the analysis. 

Once the covariate is included in the statistical model, the overall 

test of the treatment effect is now significant (F(3,19) = 4.80, p < 

0.001).

Predictions from ANCOVA

When conducting an ANCOVA analysis, it should be 

noted that the predictions from the analysis are not 

group means (as they would be for t-tests, ANOVA or 

mixed-model analyses). The predictions from the stat-

istical model are now lines, defined as the predicted 

lines, which model the linear relationship between the 
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Figure 5.64.  Scatterplot of monkey body weight at day 184 

from Example 5.17.
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Figure 5.65.  Categorised scatterplot of monkey body weight 

(following 184 days of treatment with PFOS or the control) vs. 

monkey age from Example 5.17.
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Figure 5.66.  Categorised scatterplot of monkey body weight 

(following 184 days of treatment with PFOS or the control) vs. 

body weight at day 0 from Example 5.17.
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response and the covariate. There is one predicted line 

per group and, as commented above, the predicted 

lines are usually parallel.

Example 5.17 (continued): Effect of PFOS on cynomolgus 

monkey body weight

To begin with, consider the analysis of body weight at day 184 with-

out including the covariate (using a one-way ANOVA analysis). It is 

straightforward to identify the predictions from the statistical ana-

lysis; they are simply the group means. Concentrating on the control 

group, the day 184 control group mean was 3.73 and this is the 

predicted value for all control group animals. The residual (the part 

of the response unaccounted for after fitting the statistical model) 

for animal a is therefore given by:

observationa – predicteda = residuala� (5.34)

4.13 – 3.73 = 0.40 (kg)

and for animal b is:

3.45 – 3.73 = –0.28 (kg).

When we fit a covariate in the analysis it is not the group means that 

are the predictions from the statistical analysis but the predicted 

lines. In Example 5.17, with pre-dose body weight fitted as a covari-

ate in the statistical analysis, it can be shown that the predicted line 

for the control group is given by:

Prediction = 0.020 + 1.054 × body weight at day 0.

For each observation in the dataset the residual will be the distance 

(vertically) between the observation and the predicted line. For 

animal a this can be calculated using the above equation and the 

entries in Table 5.23:

observationa – predicteda = residuala� (5.35)

4.13 – [0.020 + 1.054 × 3.72] = 0.19 (kg)

and for animal b it is

3.45 – [0.020 + 1.054 × 3.27] = –0.02 (kg).

These calculations are illustrated in Figure 5.68.

It can be seen that the arrows on Figure 5.68 (which highlight 

the residuals for animals a and b) are much smaller when baseline 

body weight is included in the statistical analysis as a covariate. This 

improves the sensitivity of the analysis and as a result will allow 

the researcher to reduce the sample size in future. The property will 

usually hold as long as there is a strong relationship between the 

response and the covariate.

Predicted group means

As stated above when a covariate is included in the 

analysis, predictions from the analysis are predicted 

lines rather than predicted group means. Of course in 

practice most scientists do not want to report predicted 

lines and then make comparisons between the pre-

dicted lines. It is therefore standard practice to report 

the value of the predicted lines at the overall average 

of the covariate. It is these means that are presented 

by statistical packages as the predicted means from 

the ANCOVA analysis. When we make comparisons 

between the experimental groups in an ANCOVA ana-

lysis, it is these means (i.e. the value of the predicted 

lines at the average covariate) that are compared.
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Figure 5.67.  Scatterplot of the monkey body weight 

(following 184 days of treatment with PFOS or the control) 

from Example 5.17, with two animals in the control group 

highlighted.

Table 5.23. Table of body weights for animals a and b 

at days 0 and 184 from Example 5.17

Animal Body weight at day 

0 (kg)

Body weight at 

day 184 (kg)

a 3.72 4.13

b 3.27 3.45

Control group mean 3.53 3.73
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Example 5.17 (continued): Effect of PFOS on cynomolgus 

monkey body weight

Returning to Example 5.17, first we calculate the average baseline 

body weight of all the animals in the study. This value turns out to 

be 3.54 kg. The predicted means from the ANCOVA analysis can now 

be identified as the values of the predicted lines at the average 

body weight (see Figure 5.69). So for the control group the predicted 

mean is 3.75 kg and for the high dose is 3.40 kg. If we then perform 

a pairwise comparison to see if these two experimental groups are 

different, we are effectively comparing the means at the average 

of the covariate.

Assumptions for ANCOVA

While there are undoubted benefits from includ-

ing a suitable covariate in the statistical analysis, the 

researcher must be careful. There are three assump-

tions, as well as the usual parametric assumptions, that 

we make when fitting a covariate. These assumptions 

are partly due to features of the ANCOVA approach 

described above. If they do not hold then the conclu-

sions drawn from the analysis of covariance may be 

invalid or at least compromised.

Is it worth fitting the covariate?
When the researcher identifies a possible covariate, a 

decision must be made whether to include the covariate 

in the statistical analysis. While not strictly an ANCOVA 

assumption, when fitting a covariate the researcher is 

tacitly assuming there is an underlying relationship 
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Figure 5.69.  Categorised scatterplot of day 184 vs. day 0 body 

weight, from Example 5.17 (following 184 days of treatment 

with PFOS or control), with average day 0 body weight 

highlighted by a vertical line.
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Figure 5.68.  Scatterplot of monkey body weight, from 

Example 5.17 (following 184 days of treatment with PFOS 

or the control) and categorised scatterplot of day 184 vs. 

day 0 body weight, with two animals in the control group 

highlighted on both plots. On the right-hand figure, the 

dotted lines correspond to the best-fit lines and the solid line 

corresponds to the predicted line for the control group.
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(or correlation) between the response and the covari-

ate. As mentioned above, the relationship between the 

response and the covariate should be approximately 

linear and the slope of the predicted lines should not 

be close to zero.

Experimental group by covariate interaction
When performing the analysis of covariance, one of the 

assumptions made is that the underlying linear rela-

tionship between the response and the covariate is the 

same for each group, i.e. there is not group by covari-

ate interaction and hence the best-fit lines are approxi-

mately parallel.

As discussed above, the predicted means, and any 

comparisons between the predicted means, are calcu-

lated at the average value of the covariate. In theory if 

the relationships between the response and the cov-

ariate are approximately the same for all experimental 

groups, i.e. the best-fit lines on the categorised scatter-

plot are all roughly parallel, then the level of the covari-

ate at which we make these comparisons is irrelevant in 

the sense that the differences between the experimen-

tal groups are maintained at all values of the covariate 

(Figure 5.70). So in the analysis we force the predicted 

lines to be parallel. This is only sensible if the best-fit 

lines are also roughly parallel.

Example 5.17 (continued): Effect of PFOS on cynomolgus 

monkey body weight

In Figure 5.70 the predicted lines for the control and 0.75 mg/kg 

PFOS group are included. As the best-fit lines are approximately par-

allel it can be seen that the parallel predicted lines are similar to 

the best-fit lines and hence the size of the difference between the 

two groups is independent of the level of the covariate at which the 

comparison is made.

In the statistical analysis we assume there is no interaction 

between the experimental groups and the covariate, and hence the 

predicted lines are parallel. This is not the case for the best-fit lines 

on the categorised scatterplot, which are allowed to vary depending 

on the within-group relationships. The categorised scatterplot there-

fore provides a useful way to assess the assumption that there is 

no interaction between the experimental groups and the covariate. 

If the best-fit lines on the plot are not parallel (which occurs when 

there is an interaction between the experimental factor(s) and the 

covariate) then the assumption that the predicted lines are parallel 

may not be valid.

Example 5.18:  Significant interaction between Treatment 

factor and covariate

In this example, see Figure 5.71, there is an interaction between the 

covariate and the Treatment factor. Clearly the lines are not parallel 
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Figure 5.70.  Categorised scatterplot of day 184 vs. day 

0 bodyweight, from Example 5.17 (following 184 days of 

treatment with PFOS or control), with comparison between 

the PFOS 0.75 mg/kg treated group and the control group 

highlighted.
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Figure 5.71.  Scatterplot of a response vs. covariate from 

Example 5.18, where there is a significant interaction 

between the covariate and the Treatment factor (the best-fit 

lines are not parallel).
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and the relationship between the response and covariate varies 

depending on the treatment. This in itself may be an interesting 

finding. The treatment is having an effect on the response/covari-

ate relationship and the size of the treatment effect appears to vary 

depending on the level of the covariate.

If we include the covariate in the analysis, then we force the two 

predicted lines to be parallel (and hence they will be almost hori-

zontal). The predicted means will be similar (the average covariate 

is 0.88 kg). Hence we would conclude that there is no significant 

difference between the two treatments (F(1,16) = 1.14, p = 0.301). 

Clearly this is slightly misleading in this case.

Covariate is not influenced by the experimental 
factors
The third assumption, as mentioned above, we make 

when fitting a covariate is that it is not influenced by 

the experimental factor(s). If this assumption does 

not hold then the predicted means (and the difference 

between the predicted means) will be influenced by 

the covariate. Remember the predicted means are cal-

culated at the average value of the covariate. If there 

are no experimental effects on the covariate, then this 

is a reasonable approach to take. However, as we shall 

see in Example 5.19, if there is an experimental effect 

on the covariate, then the predictions from the analysis 

may not reflect the observed data.

Remember, we fit the covariate purely as a tool to 

reduce the variability. Including it in the statistical 

analysis should not influence the estimates of the 

experimental group means. As long as there are no sig-

nificant experimental effects on the covariate then this 

will be the case. In general the assumption of no experi-

mental effect on the covariate will usually hold, or can 

be assumed to hold, if the covariate is measured before 

and experimental manipulation occurs.

Example 5.19:  Gender effect on the baseline body weight 

covariate

Consider an experiment involving both males and female Wistar 

rats. Figure  5.72 is a scatterplot of the terminal body weight 

data recorded when the rats were 12 weeks old. This revealed 

(as expected) that the males were significantly heavier than 

the females. The males weighed on average 298 g whereas the 

females weighed 211 g.

Assume body weight was also recorded at the beginning of the 

experiment (when the rats were 8 weeks old) revealing that the 

males were heavier than the females at the start of the study. 

Consider the categorised scatterplot of the terminal vs. baseline 

body weights, see Figure 5.73, which includes the parallel predicted 

lines.

While the males were significantly bigger than the females at 

the end of the study, they were also larger at the start. As discussed 

above, in the analysis of covariance the predicted means are made 

at the average level of the covariate, averaged over males and 

females. This overall average body weight at the start of the study 

was 172 g. If we now look at the categorised scatterplot we see an 

interesting finding. The females predicted terminal body weight is 
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Figure 5.72.  Scatterplot of terminal animal body weights 

from Example 5.19, categorised by the gender of the animals.
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Figure 5.73.  Scatterplot of terminal vs. baseline animal body 

weights from Example 5.19, categorised by the gender of the 

animals and including the predicted lines from ANCOVA.
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higher than the males! Males have a predicted mean of 225 g and 

females have a predicted means of 284 g (see Figure 5.74).

Clearly the conclusion from the analysis of covari-

ance is misleading, but the problem is not the analysis 

of covariance itself. Unfortunately the assumption of no 

experimental effects on the covariate (sex effects in this 

case) does not hold. Effectively the analysis is predict-

ing what the terminal body weight of a male or female 

Wistar rat would be given that the animals had an initial 

body weight equal to the overall average baseline body 

weight, even though it is unlikely that such an animal of 

either sex exists.

It is also apparent from Figure 5.74 that we have pre-

dicted means that are outside the ranges of the original 

data. This will increase the variability of these predicted 

means. The further away from the data that we make 

a prediction, the less certain we are of the accuracy of 

that prediction.

Strategy for when the independence assumption 
does not hold

In the previous section we described the assumptions 

that are made when performing an ANCOVA analysis, 

in particular that the covariate is independent or not 

influenced by the experimental factors. When this 

assumption does not hold then the covariate, which in 

theory should only be a device to reduce the variabil-

ity, will influence the predictions from the statistical 

model.

While the assumption of independence will usually 

hold if the covariate is measured pretreatment, there 

are examples where this is not the case. For example, 

consider the case where baseline activity is used as a 

covariate in the statistical analysis of a locomotor activ-

ity response. If the experiment consists of wildtype and 

knockout mice, where the gene knockout is known to 

influence activity, then there may be a difference at 

baseline between the strains. Although this difference 

is expected, it does imply the independence assump-

tion underpinning the ANCOVA does not hold.

We can avoid breaking this assumption by first per-

forming an adjustment to the covariate that removes 

any treatment-related effects on the covariate (Milliken 

and Johnson, 2002, pp. 543–52). Effectively we remove 

any experimental group related effects from the covari-

ate before performing the ANCOVA analysis.

Example 5.19 (continued): Gender effect on the baseline 

body weight covariate

Returning to Example 5.19, it was observed that the covariate was 

not independent of the experimental groups. In particular there was, 

as expected, a gender effect on the baseline body weight. It was 

shown above that this affected the reliability of the results of the 

statistical analysis.

This problem could have been avoided by first subtracting the 

covariate group means from the individual covariate responses. We 

first subtract the average male baseline body weight from all the 

individual male baseline body weights. We repeat the process for 

the females. These new adjusted baseline body weights, which are 

centred on zero for both sexes, are plotted in Figure 5.75.

The predicted means from ANCOVA using this adjusted baseline 

body weight covariate are now much more sensible (298 g for 

males and 211 g for females). The standard errors of the predicted 

mean for the males in these three analyses are:

8.7, in the ANOVA analysis ignoring baseline information•	

18.9, in the analysis using the baseline body weight as a •	

covariate

5.5, in the analysis using the adjusted baseline body weight as •	

a covariate

This reduction in variability, between the two ANCOVA analyses, is 

because in the latter analysis the predicted mean was calculated at 

zero, the midpoint point within the range of the (adjusted) baseline 

body weight data, whereas in the unadjusted baseline body weight 

ANCOVA analysis the predicted mean was calculated at a point out-

side the range of the male baseline body weight data. This could 

help reduce the sample sizes in future studies.
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Figure 5.74.  Scatterplot of terminal vs. baseline animal body 

weights from Example 5.19, categorised by the gender of the 

animals, with the predicted means from ANCOVA illustrated.
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Some authors recommend always doing this adjust-

ment to a covariate before fitting it in the statistical 

model as it removes all the (however subtle) experi-

mental related effects from the covariate. This also 

implies that the covariate will not influence the diffe-

rence between predicted means and the predicted 

means themselves will be within the spread of the data 

and hence be estimated more efficiently. This strategy 

is certainly recommended in Example  5.19, as there 

does appear to be a big reduction in the between-ani-

mal variability that can be achieved by fitting baseline 

body weight as a covariate.

We end this discussion of the analysis of covariance 

with two special cases that could involve the use of 

covariates.

ANCOVA and stratified randomisation

As discussed above in Section 4.2.1, a stratified ran-

domisation will increase the between-animal variability 

of the data. Assume animals are assigned to treatment 

groups using the baseline responses to stratify the ran-

domisation. Let us also assume that as the researcher 

is using baseline information to stratify the randomisa-

tion there is a strong relationship between the pre- and 

post-treatment responses. Now, as described in Section 

4.2.1, this randomisation will effectively force the 

spread of baselines (within each group) to be as large as 

possible. If there is a strong relationship between pre- 

and post-treatment responses, then forcing the range at 

baseline to be artificially high will have a similar effect 

on the post-treatment responses. In other words, it will 

increase the variability of the post-treatment responses, 

compared to the variability resulting from a completely 

random allocation.

If animals were randomised to the experimental 

groups using a baseline stratified randomisation (which 

we would recommend) then the researcher should also 

include the baseline in the analysis as a covariate (or 

alternatively as a blocking factor) to remove the add-

itional variability introduced when using the stratifica-

tion process.

Change from baseline responses

When baseline measures of a response are recorded, it 

seems to be common practice in the analysis of animal 

experiments to first calculate a change from the baseline 

response. This can either be the percentage change from 

baseline or the actual change from baseline. The ana-

lysis of the change from baseline then proceeds using 

the techniques described in Sections 5.4.3 and 5.4.4.

This analysis technique is popular because there are 

several perceived benefits:

It is assumed that by calculating the change from •	

baseline we will, in some sense, reduce the animal-

to-animal variability by normalising the response.

If there is an overall difference between the groups •	

at baseline then that difference may bias the experi-

mental group comparisons. By calculating the change 

from the baseline response, then this bias will be 

reduced or eliminated.

Unfortunately this approach is only valid in certain spe-

cial cases. In many cases the adjustment can be mis-

leading and can actually increase the between-animal 

variability of the analysed response. An alternative 

approach, which as we shall see is more widely applic-

able and avoids these problems, is to analyse the ori-

ginal response and include the baseline measure in the 

analysis as a covariate.
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Figure 5.75.  Scatterplot of terminal animal body weight vs. 

adjusted baseline body weight from Example 5.19, categorised 

by the gender of the animals, with the least square (predicted) 

means from ANCOVA illustrated.
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Between-animal variability
As mentioned above, it is often assumed that normalis-

ing the response using baseline measures will reduce 

the between-animal variability. However, this is not 

always the case. The baseline measure will also have an 

associated variability just as the response does. If you 

calculate the ratio:

Ratio = Response / Baseline × 100%	 (5.36)

or the actual difference between them:

Actual difference = Response – Baseline	 (5.37)

then the variability of the change from the baseline 

response will involve both the variability of the response 

and the variability of the baseline measure.

This increase in the variability of the change from 

the baseline response, caused by including the base-

line variability, must be balanced against the reduc-

tion in the between-animal variability achieved by the 

normalisation process itself. However, if the response 

variability is small, compared to the baseline variabil-

ity, then the derived change from the baseline response 

may be more variable than the original response. In the 

authors’ experience it tends to be the case that statis-

tical significance is less pronounced when analysing a 

change from the baseline response, compared to a suit-

able analysis of the original response.

Instead of analysing the change from the baseline 

response, the baseline information should be used as 

a covariate in the analysis. Using this approach we can 

reduce the between-animal variability, as described 

above, without introducing the baseline variability 

into the analysis. In other words, the variability in the 

analysis of covariance is still just the variability of the 

response. The covariate does not directly increase the 

variability of the response analysed.

Example 5.3 (continued): MRI quantification of the thymus

In Example 5.3 we discussed an experiment to assess the ability of 

magnetic resonance imaging (MRI) to measure the volume of the 

thymus accurately in mice compared to a more established histo-

logical technique (Brooks et al., 2005). In the study mice received 

either the vehicle or one of three doses of dexamethasone, a com-

pound known to reduce the size of the thymus. Mice were imaged 

1 week prior to dosing and 2  days after dosing. The categorised 

case profiles plot (Figure 5.76) gives an indication of the responses 

observed.

Both the post-treatment thymus volume and the percentage 

change in thymus volume were analysed. Interestingly the effect of 

the treatment on the percentage change response was less significant 

than it was when analysing the post-treatment volume. The reason 

for this can be seen by considering Figure 5.76. While the post-treat-

ment measures were tight, in particular in the animals that received 

dexamethasone, the baseline measures were much more variable. 

Dexamethasone has a strong effect on the thymus, but there is a 

physical limit to the reduction in size that can be achieved. So while 

the spread of the baselines represents the natural between-animal 

variability, the spread of the post-dose responses highlights the phys-

ical limitation of the model, i.e. all thymus volumes in the dexameth-

asone-treated groups were reduced to approximately the same size.

When we analysed the percentage change from the baseline 

response all the variability of the baseline measurements was intro-

duced into the variability of the percentage change response. This 

was not the case when the post-treatment responses were analysed 

without any baseline adjustment.

In our opinion the reader should heed this warning. Never carry 

out a change from baseline analysis without first plotting the data 

to see if it is appropriate. In this example if we had not plotted the 

data first then we may have analysed the more variable percent-

age change response, thus missing a potentially significant post-

treatment effect.

Biasing the results when there is no real relationship
There is a second pitfall if the researcher fails to plot 

the data when analysing a change from the baseline 

response. Consider the situation where there is no 

underlying relationship between the baseline and the 

response. Perhaps the baseline measurements were 

taken too far in advance of the treatment phase, or 

maybe the variability in the assay is such that the rela-

tionship is not apparent.

Now, assuming that there is no relationship, if we 

had carried out an analysis of the change from the 

baseline response, we would artificially reduce the size 

of the response for those animals that happened to 

have a large baseline relative to the others. Conversely 

we would artificially increase (relatively) the response 

for those animals with small baselines. This can lead to 

misleading results and conclusions.

When fitting a covariate the researcher should first 

consider a categorised scatterplot of the response vs. 

the covariate. This will immediately reveal if there is 

a relationship between them. More importantly, the 

adjustment made by the covariate depends on the 

strength of the response vs. covariate relationship. So 

in situations where the relationship between baseline 
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and the response is weak, then the adjustment made by 

fitting the covariate will be negligible.

Varying the relationship between post-manipulation 
and baseline responses
Let us assume that we want to remove any baseline 

differences that may bias the treatment comparisons 

using a change from baseline response. For the change 

from baseline to be free of baseline effects, then the 

relationship between the baselines and the treatment 

responses must satisfy certain properties. If these prop-

erties are not satisfied, then unfortunately we may 

not completely remove the bias caused by baseline 

differences.
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Figure 5.76.  Categorised case profiles plot of the MRI measured thymus volume in mice, categorised by four treatment groups for 

Example 5.3.
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Example 5.17 (continued): Effect of PFOS on cynomolgus 

monkey body weight

Consider Example  5.17 described above, where there was a sig-

nificant positive relationship between day 184 and baseline body 

weight responses. A plot illustrating the overall relationship between 

the two body weight responses is given in Figure 5.77.

Due to this underlying relationship between baseline and day 184 

body weights, it appears that normalising the body weight using 

either the actual change from baseline or the percentage change 

from baseline will reduce the between-animal variability and 

remove the influence of (however subtle) baseline differences from 

the analysis.

Let us assume there is a linear relationship between the post-

treatment and the baseline responses, i.e.

Response = a × Baseline + b,� (5.38)

for some constants a and b. This is the standard equation for a line:

y = ax + b.� (5.39)

Now the percentage change from the baseline can be written as:

(Response / Baseline) × 100% = ([a × Baseline + b] / Baseline) 

  × 100% = (a + b / Baseline) × 100%.� (5.40)

So the percentage change from the baseline is only free of baseline 

effects if b = 0, i.e. the predicted line passes through the origin.

For the actual change from the baseline we have:

Response – Baseline = [a × Baseline + b] – Baseline = (a – 1) 

  × Baseline + b.� (5.41)

The actual change from the baseline response is only free 

of the influence of the baseline if a = 1, i.e. there is a one-to-

one relationship between the post-dose responses and baseline 

responses.

Unless these conditions hold, then the actual (or percentage) 

change from the baseline will still be influenced by differences 

at the baseline. Fitting the baseline as a covariate overcomes this 

limitation. The covariate simply estimates the actual relationship 

between the baseline and post-treatment responses and makes an 

adjustment based on the strength of the relationship. It does not 

require b = 0 or a = 1.

Example 5.20:  Dog telemetry studies

In dog telemetry studies, see Aylott et al. (2011), dogs are fitted 

with a telemetric device in a surgical procedure. Following a suit-

able period of time to allow the dogs to recover, test compounds 

can be assessed. Heart rate, blood pressure and parameters derived 

from an electrocardiogram (ECG) trace are measured at baseline and 

then continuously for up to 48 hours post-dose of the compound. 

During this period the animal may be active, resting or sleeping. 

Hence the relationship between baseline and post-dose responses 

will vary over time due to the animals’ level of activity. An analysis 

of the actual change from baseline, which requires a one-to-one 

relationship at all time points that is free of baseline effects, will 

clearly be misleading at certain time points, for example when the 

dogs are asleep.

In practice we believe the safest option is to always use the cov-

ariate approach rather than a change from the baseline approach:

It is more general, coping with any relationship between •	

the response and baseline regardless of the strength of the 

relationship.

It does not adversely increase the variability of the response •	

being analysed.

It does not require the relationship to be one-to-one, or alter-•	

natively that the predicted relationship must be go through the 

origin.

5.4.7  Regression analysis

In the previous section a continuous numerical vari-

able was included in the statistical analysis as a device 

to reduce the underlying variability. These numerical 

variables, defined as covariates, were not influenced by 

the experimental factors. As long as this condition held, 

then their inclusion in the statistical analysis did not 

influence the predicted means from the analysis.

In Example 5.19 the covariate was influenced by the 

experimental groups and therefore the predicted means 

from the analysis were also affected. This led to errone-

ous conclusions. Sometimes, however, we require this 
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Figure 5.77.  Scatterplot of the overall relationship between 

monkey body weight (following 184 days of treatment 

with PFOS or the control) and baseline body weight from 

Example 5.17.
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adjustment, for example in the analysis of organ weight 

data in safety assessment studies (Shirley, 1977).

When we know the numerical variable is not inde-

pendent of the treatment, but we want to adjust for 

the effect it has on the response, then we say that the 

numerical variable is a linear predictor rather than a 

covariate. The purpose of including it in the statistical 

analysis is not only to reduce the variability but also 

to provide an adjustment to the predicted means. This 

analysis approach is commonly known as regression 

analysis, rather than analysis of covariance, although 

the mathematical derivation is the same.

Example 5.21:  Organ weight assessment in toxicology 

studies

When assessing the effect of a test compound on, say liver weight, 

we would want to first remove any apparent treatment effect on 

liver weight that was actually caused by an effect due to the over-

all body weight of the animal (Shirley, 1977). For example, if the 

test compound has a side effect that makes the test animals lose 

their appetite, then they may consume smaller quantities of food 

compared to the control animals. This will reduce their overall body 

weight (and hence also the liver weight) of the animals treated with 

the compound compared to the control animals. So the reduction in 

liver weight may be simply due to a reduction in body weight and 

not related to any specific toxicological effect on the liver. When we 

look at the effect of the test compound on the liver we would want 

to first remove any effect caused by overall changes in body weight. 

This can be achieved by fitting terminal body weight as a linear pre-

dictor. The predicted means will then be adjusted for any differences 

in terminal body weight, as described in Example 5.19.

We argue that we are not fitting terminal body weight as a covari-

ate in this analysis. The role of terminal body weight is not merely 

to reduce the between-animal variability. It is also fitted as a linear 

predictor and is included in the analysis to adjust the predicted liver 

weight means for any (treatment-related) terminal body weight 

differences.

5.4.8  Multiple comparison procedures

While ANOVA and ANCOVA tables contain the overall 

tests of significance, and the predicted means with con-

fidence intervals provide an illustration of the results 

of the statistical analysis, the researcher will probably 

want to compare the individual experimental group 

means. The approaches that can be employed include 

post hoc tests, planned comparisons and multiple com-

parison procedures. As this part of the statistical ana-

lysis can be of primary importance when analysing data 

generated in animal experiments, these tests attract 

more attention in this field than in many other scien-

tific disciplines. Unfortunately for the researcher, this 

area of statistics is a controversial one. Statisticians are 

not in general agreement about which approaches are 

the most appropriate to use.

In this section we shall discuss some of the issues sur-

rounding multiple comparison procedures. When mak-

ing our recommendations we assume the researcher 

has carried out a well-designed experiment and has 

decided in advance which comparisons are of interest. 

The analysis will therefore not involve a data-trawling 

exercise, where many tests are performed and only the 

significant ones reported.

The risk of finding false positives and false 
negatives

Let us assume an experiment has been conducted 

involving a treatment group and a control group. If the 

two group means are compared using a t-test, and the 

test is performed at the significance level α (usually 

fixed at 5%), then effectively the researcher is accept-

ing a 5% risk that a rejection of the null hypothesis is a 

false positive (the Type I error rate, see Section 2.3.5). 

In other words, if the conclusion is that the treatment 

appears to have had an effect, then there is a 5% chance 

that this conclusion is incorrect.

Family-wise error rate (FWE)
In most experiments the researcher will make more 

than one comparison between the experimental groups. 

This set of tests is defined by many authors as the family 

of tests (for example, Ludbrook, 1998). Unfortunately as 

the number of comparisons made increases, and hence 

the size of the family of tests increases, the risk of find-

ing a false positive result also increases. This is known 

as the family-wise error rate (FWE). It is the chance, or 

probability, of making at least one false positive conclu-

sion within the family of tests.

To control the family-wise error rate (i.e. maintain 

the significance level at the nominal level α regardless 

of the number of comparisons made) we can employ 

a multiple comparison procedure, which should help 

reduce the risk of finding false positive results. There 
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are many such procedures available, some are stricter 

(and hence offer more protection against making false 

positives) than others. The general principle is that for 

a result to be statistically significant, the result should, 

in some sense, be more pronounced. This way the 

researcher is, in theory, less likely to declare results sig-

nificant that are, in reality, just due to chance.

Alongside the risk of finding a false positive result 

(the Type I error), we also need to consider the risk of 

finding a false negative result, the Type II error (see 

Section 2.3.5). Now if β denotes the statistical power of 

the test, then

Type II error = 1 – β.	 (5.42)

In Section 2.3.5 it was noted that as the chance of find-

ing a false positive conclusion decreases, so the chance 

of finding a false negative increases (and the statistical 

power decreases). Hence some of the multiple com-

parison procedures may be considered more power-

ful than others, in that you are more likely to declare a 

true positive result, but these tests do not provide such 

strong protection against the false positive risk. The 

researcher should bear this in mind when considering 

other scientists’ results and the procedures they used 

to generate them.

False discovery rate (FDR)
From the above description it should be apparent that 

if you wish to control the risk of getting an individual 

false positive result (and control the FWE), then as 

the number of comparisons increases so does the size 

of effect required to achieve statistical significance. 

While in many situations the comparisons (which are 

planned in advance) are relatively small in number, in 

some animal experiments many comparisons are per-

formed. Examples include neuroimaging, where thou-

sands of voxels are compared (see Bennett et al., 2009) 

or the analysis of microarray data. If you are making a 

large number of comparisons then any multiple com-

parison adjustment can become so large that there 

is little chance of finding any statistically significant 

results.

An alternative, and seemingly sensible approach, 

is to try to control the proportion of false positives at 

a set level (α) rather than to try to make sure there are 

no individual false positive results. This is known as 

controlling the false discovery rate (FDR). It should be 

noted that approaches aimed at controlling the FDR 

are less strict than those that control the FWE. Some 

false positives are allowed: it is only the proportion 

that is controlled. They are therefore more powerful as 

a result. When using such tools the researcher is more 

likely to achieve statistical significance, although some 

of the results may be false positives.

It should be noted that p-values generated using 

procedures that control the FDR have a subtly differ-

ent meaning to those calculated as part of the FWE 

procedures. As discussed above in Section 2.3.2, the 

latter represents the probability of observing a result 

as or more extreme than the one found by running 

the experiment if the null hypothesis were true (and 

hence we compare them against α). When performing 

a procedure that controls the FDR we accept there will 

be false positive results, hence these p-values do not 

represent the same risk.

In situations where many comparisons are made, 

procedures that control the FDR may be preferable to 

those that control the FWE as otherwise true positive 

results can be missed (Bennett et al., 2009).

Guarding against risks
Many procedures are available; however, the choice of 

a multiple comparison procedure will depend on the 

level of risk (of getting a false positive or false negative 

result) that the scientist is prepared to take. Some pro-

cedures guard against the risk more than others and are 

therefore less powerful. The scientist needs to be aware 

of the risk level when carrying out an analysis so that 

false positive results can be identified when conducting 

future confirmatory experiments. The choice of proced-

ure should be made in advance (based on an accept-

able level of risk) and not by a post hoc data-trawling 

exercise that involves looking at many different proce-

dures to find the one that gives the desired results!

The choice of multiple comparison procedure will 

also depend on the context in which the results are to 

be employed (see Section 2.4), that is whether the ana-

lysis is being performed as:

an exploratory analysis, where the scientist is explor-•	

ing ideas or generating hypotheses
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a confirmatory analysis, where the scientist is try-•	

ing to prove a hypothesis or arrive at a definitive 

conclusion

In many cases the analysis will be between these 

extremes. It may be the case that there are several rea-

douts that lead to decisions based on the balance of evi-

dence. In an exploratory analysis, unprotected tests (least 

significant difference tests or planned comparisons, as 

discussed below) may be employed. These tests should 

be used alongside estimates of the size of the effects with 

confidence intervals. In a confirmatory analysis, the sci-

entist may require a fully-fledged multiple comparison 

procedure to reduce the risk of finding false positives.

In this section we shall also consider statistical tools 

for dealing with the risk of finding false positives: mul-

tiple comparison procedures are only one of a number 

of techniques available. In practice there are many non-

statistical safeguards that help the scientist avoid mak-

ing false positive conclusions. These include:

Experiments may be repeated to confirm a signifi-•	

cant result.

The novel compound may be assessed in several •	

different animal models (note this is the biological 

model as opposed to the statistical model).

Knowledge about the size of the biologically relevant •	

effect and the background variability of the response 

may be used when assessing the effectiveness of a 

novel compound.

These practical safeguards are as important as the mul-

tiple comparison procedures described in this section 

and hence should always be considered alongside any 

statistical techniques.

Choosing the family of tests

The first problem that should already be apparent to the 

reader is the somewhat arbitrary choice of the family of 

tests (Miller, 1981, pp. 31–5). As stated above the larger 

the number of tests being made, the larger the family 

of tests, hence the risk of finding a false positive result 

is higher and therefore the greater the adjustment for 

multiplicity needs to be. So the size of the family of 

tests influences the impact of the multiple compari-

son procedure, but what defines the family of tests? It 

could be:

An individual comparison. The family of tests is of •	

size one and hence no multiple comparison adjust-

ment is necessary.

The set of comparisons made on an end point in an •	

experiment. If an experiment consists of four treat-

ments, each compared to the control, then the family 

of tests is of size four per end point analysed.

All comparisons made in an experiment. Assume •	

that there are three end points measured in an 

experiment. If there are four comparisons made at 

each end point, then the total number of compari-

sons made is 4 × 3 = 12. This is the size of the family 

of tests.

All the comparisons made on a treatment. Assuming •	

a treatment is tested in several different experiments 

before a decision is made on its efficacy, should we 

adjust for all the comparisons made during the devel-

opment of the treatment?

All the comparisons you have ever generated.•	

Clearly the last two are not sensible choices, but this 

does highlight the problem when defining the family of 

tests, as Miller (1981, p.  35) comments: ‘There are no 

hard-and-fast rules for where the family lines should 

be drawn.’ Ludbrook (1998) suggests that: ‘A family of 

hypotheses is all those actually tested on the results of a 

single experiment.’ This should be a sensible choice in 

many scenarios.

In practice we suspect most researchers would be 

more comfortable with using the second of our options 

above, but this is a somewhat arbitrary decision and 

could impact on the conclusions drawn from the stat-

istical analysis. Even if the researcher decides to follow 

this strategy to define the family of tests, there may still 

be practical pitfalls when employing a multiple com-

parison procedure in the statistical analysis. We high-

light this with two different examples.

Example 2.5 (continued): MRI assessment of a transgenic 

phenotype

Consider the experiment described in Section 2.4 to compare the 

volumetric changes observed in the brain regions of wildtype and 

TasTPM transgenic mice (Maheswaran et al., 2009). The size of sev-

eral brain regions was measured at four time points using MRI. The 

differences between the volume of the brain regions in the wildtype 

and transgenic mice were assessed. We assume that the family of 

tests defined by the researcher was the total number of comparisons 

made in the statistical analysis of the experiment.
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Now in reality only a couple of brain regions were of direct inter-

est. However, using a MRI technique allowed the researcher to 

measure the volume of many more brain regions. This led to a para-

dox. If volume measurements from many brain regions were taken, 

and an assessment made of the effect of strain in each of these 

brain regions, then the family of tests (and hence the false positive 

risk) would be larger than would have been the case if only a few 

brain regions had been assessed in the same experiment. Hence the 

influence of the multiple comparison procedure needs to be greater 

to control the increased false positive risk when more brain regions 

are assessed. In other words the researcher will be penalised for 

assessing more of the (available) information.

It is conceivable that the strain effects in the regions of interest 

will be statistically significant if we make a multiple comparison 

adjustment for the family of tests only involving comparisons in the 

brain regions of interest. However, if we make comparisons across 

all available brain regions, and then perform a multiple comparison 

procedure adjustment for this much larger family of tests, then we 

may find that none of the results are statistically significant.

So should we only make the comparisons of interest, even though 

we have the ability to collect and assess additional information? 

Clearly it seems absurd to avoid assessing possibly useful informa-

tion from the experimental animals (which is readily available) sim-

ply because it may compromise the statistical analysis. One solution 

to this dilemma is to make one adjustment for the comparisons that 

are of interest, i.e. the comparisons deemed important before run-

ning the study. This would be a confirmatory analysis (see Section 

2.4). A second less stringent multiple comparison procedure can 

then be applied to the wider exploratory analysis where false posi-

tives are perhaps more likely to occur because the hypotheses to 

test were not planned in advance and the analysis is effectively a 

data-trawling exercise. If there are significant results in the explora-

tory analysis, then the scientist should perhaps try to verify these 

results in future independent experiments as they could be false 

positives.

Example 5.10 (continued): Anti-diabetic effects of  

epigallocatechin gallate

In Example  2.5 the researcher has to decide whether the family 

of tests involves multiple end points (where each brain region is 

classed as an end point). However, it may be the case that there are 

choices to be made within a single end point.

Consider the experiment described above to assess the effect of 

epigallocatechin gallate (EGCG), a catechin found in green tea, on 

type 2 diabetes in rodents (Wolfram et al., 2006). The experiment 

consisted of five groups, including 2.5, 5.0 or 10.0 g/kg of EGCG 

in the diet (n = 9), a placebo control (n = 9) and a positive con-

trol pf thiazolidinedione rosiglitazone at 72 mg/kg of diet (n = 5). 

The positive control was included to show the experimental pro-

cedure worked. As a comparison it could be argued that it has a 

different status in the analysis to the treatment comparisons back to 

the control. Fewer animals may have been allocated to the positive 

control as it was not of direct interest. In particular though, should 

we include this comparison in the family of tests? When applying a 

multiple comparison procedure adjustment (to the treatment com-

parisons as they are of primary interest) should we also adjust for an 

additional comparison involving the positive control, hence reducing 

the power of the treatment comparisons? We would suggest that as 

this comparison has a different purpose to the treatment compari-

sons there is no need to include it in the family of tests.

Unadjusted tests

Before we consider a selection of the many multiple 

comparison procedures available to the researcher we 

shall describe the tests that do not make any adjust-

ment for multiplicity; these include multiple t-tests, 

least significant difference (LSD) tests and planned 

comparisons. Of the three tests discussed in this sec-

tion the LSD tests and planned comparisons will in 

many cases give the same individual p-values; however, 

the process involved in generating them is philosophic-

ally different.

Multiple t-tests
The simplest method that could be used to perform 

pairwise comparisons between experimental groups is 

to carry out many individual t-tests. By this we imply the 

researcher separates the data from the two groups to be 

compared. The data from these two groups is then ana-

lysed using a t-test. While this approach is commonly 

applied in practice there are a number of reasons why it 

is not recommended; see Elashoff (1981) for example. 

This approach can increase the false positive risk.

When using the multiple t-tests approach the estimate 

of the between-animal variability, which the difference 

between the group means is assessed against, may be 

unreliable. Remember the t-test uses a signal-to-noise 

ratio. To produce a reliable test result we need an accur-

ate estimate of both the group means and the under-

lying variability of those means. If we want a more reli-

able estimate of the group means, then most researchers 

appreciate that this can be achieved by increasing the 

sample size. The same is true of the variance estimate. 

In the multiple t-test approach the between-animal 

variance estimate is calculated using the animals from 

only two of the experimental groups. Why use only two 

groups of animals to estimate the between-animal vari-

ability when more groups, and hence more animals, are 
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available? By isolating two groups from the full dataset, 

and calculating the variability based on those two groups 

only, we get a less reliable estimate of the variability. The 

variance estimate obtained could be artificially small 

(and lead to an increase risk of finding a false positive) 

or artificially high (and lead to an increased risk of find-

ing a false negative).

As the variability estimate is different for each 

t-test, then the results of the multiple t-tests will not 

be directly comparable. It is possible that the largest 

observed difference between the two group means 

is not as statistically significant as the smallest diffe-

rence. This is clearly an odd result that would be hard 

to justify in practice (and may indicate the homogen-

eity of variance assumption does not hold). If we can 

make the assumption that the variability is the same 

across all experimental groups, perhaps using a trans-

formation of the data, then we should use this single 

estimate of variability for all comparisons between the 

group means. This single estimate is calculated using 

more information and hence will be more reliable. This 

can be observed by considering the degrees of freedom. 

The residual degrees of freedom, for example gener-

ated in the ANOVA table (see Section 5.4.3), are usu-

ally greater than the residual degrees of freedom for the 

individual t-tests.

Example 5.22:  A drug comparison trial

Consider the following example consisting of two treatment groups 

and a control group. There were four animals per treatment group 

and it was planned in advance to compare each treatment group 

back to the control. A plot of the observed means with SEMs is given 

in Figure 5.78.

Let us assume that the two treatments were compared back to the 

control using two separate t-tests. It turns out that treatment A was 

significantly different from the control (p = 0.047) whereas treat-

ment B was not (p = 0.060), even though the difference between 

treatment B and the control was greater than the corresponding 

difference between treatment A and control.

There are several reasons why the conclusions of this analysis are 

unsound. It appears, perhaps just by chance, that the treatment A 

responses are less variable than either the control or treatment B 

responses. So when we computed the individual t-tests, the vari-

ability estimate used in the treatment A vs. control comparison 

was smaller than the variance estimate used in the treatment B 

vs. control comparison. Given that there were only four animals per 

group, a more reliable estimate of the underlying variability of the 

response could have been obtained by considering all animals, for 

example using a one-way ANOVA approach to provide a single more 

reliable estimate of the between-animal variability.

Of course it may be the case that the responses from one of the 

treatment groups are genuinely less variable than the others. This 

can happen, for example, when the responses from the control 

group are less variable than those in the treated groups. Perhaps dif-

ferent animals respond differently to the treatment, whereas they 

react to the control in the same way. In such cases an ANOVA-based 

analysis may not be appropriate (the single variance estimate is not 

reliable) and in such cases the responses should be transformed to 

homogenise the variances across groups. If it is not possible to find 

a suitable transformation then the researcher should consider using 

the non-parametric tests rather than resort to individual t-tests (see 

Section 5.5.1).

The remaining approaches described in this section use all of the 

data to estimate the variability of the response. This implies that the 

statistical tests are using a more reliable and reproducible estimate 

of the variability and hence the test results are more reliable than 

those generated using the multiple t-tests approach.

Least significant difference test
The least significant difference (LSD) test is similar to 

performing multiple t-tests. All possible pairwise com-

parisons between the group means are made in (we 

would argue) a data-trawling exercise. The crucial diffe-

rence between this approach and using multiple t-tests 

is that the LSD test uses the same variability estimate 

for all individual tests. It is (in some sense) the variabil-

ity estimate averaged over all groups and can be found, 
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Figure 5.78.  Plot of the observed treatment means with 

standard errors, for Example 5.22.
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for example, in the ANOVA table (the MSResidual term). 

For each pair of means, calculate:

t
y y

s
n n

i j xi j

i j

=
−

+

≤ ≠ ≤
( )

( / / )

,
2

1 1

for 1 	 (5.43)

where yi  is the ith group mean with sample size ni, y j  

is the jth group mean with sample size nj, s2 is the esti-

mated variance (the MSResidual) term and x is the num-

ber of experimental groups. The value t is compared to 

a t-distribution with the residual term’s degrees of free-

dom, as for a t-test.

In theory the results from the LSD test will be more 

reliable than doing multiple t-tests as they use the same 

overall estimate of variability. However, it should be 

stressed that if you do need to compare everything to 

everything in a data-trawling exercise, then there is still 

a risk of finding false positive results. The LSD test offers 

no direct protection against this risk.

Example 5.22 (continued): A drug comparison trial

Returning to Example 5.22, let us assume that the LSD test had been 

used to compare the treatment groups. Using this analysis approach, 

treatment B was (statistically) significantly different from the con-

trol (p = 0.037) whereas treatment A was not (p = 0.057). This, we 

argue, is a more reliable result. Both these LSD tests used the same 

estimate of variability, but because the effect observed for treat-

ment B was larger than that observed for treatment A, it is sensible 

that the treatment B vs. control p-value was smaller. A plot of the 

predicted means with 95% confidence intervals, which also uses the 

single estimate of the variability, is given in Figure 5.79. The final 

comparison, treatment A vs. treatment B, was not significant (p = 

0.799).

Planned comparisons
When a researcher reports that an LSD test was per-

formed, we believe this should imply all pairwise com-

parisons have been made in a data-trawling exercise. 

In animal experiments we believe this procedure is 

rarely applied. Usually the hypotheses of interest have 

been decided in advance and the experimental groups 

chosen accordingly. In Example 5.22 it is likely that the 

comparisons of interest are treatment A vs. control and 

treatment B vs. control. The third comparison (treat-

ment A vs. treatment B) is of less interest. We feel this 

analysis strategy is much more closely aligned to gen-

eral practice in animal research. The decision about 

which comparisons to make is usually taken well in 

advance of performing the analysis and the experimen-

tal design will reflect this.

If the researcher only considers those compari-

sons that were planned in advance, then these tests 

are known as planned comparisons (Snedecor and 

Cochran, 1989, pp. 226–8). Planned comparisons are a 

strategy for only carrying out the comparisons that are of 

interest. The tests are not data driven. They are a much 

more controlled way of conducting a statistical analysis 

and as a result, we argue, will guard against making false 

positives conclusions. As stated by Armitage et al. (2002, 

p. 227): ‘When comparisons are made which flow natur-

ally from the plan of the experiment or survey, the usual 

t test [unadjusted test] is appropriate.’ If the researcher 

states that planned comparisons (as opposed to LSD 

tests) have been used then this implies the analysis was 

not a data-trawling exercise but a controlled process. We 

believe that many analyses defined as being LSD tests in 

the literature are actually planned comparisons because 

only the comparisons of interest are ever considered.

Implementation of LSD tests and planned 
comparisons
We stated above that the p-values generated from 

LSD tests and planned comparisons are the same in 

most cases: it is the underlying philosophy behind 
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Figure 5.79.  Plot of the predicted treatment means with 95% 

confidence intervals, for Example 5.22.
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the tests that is different. However, in some statistical 

packages the two tests are calculated using different 

approaches and this can result in different p-values 

being generated.

In some statistical packages if the LSD test (or any 

other post hoc test) is selected, then the means that are 

compared are the observed means and not the least 

square (predicted) means from the analysis. In other 

words any blocking factors and/or covariates will be 

ignored when calculating the means. Curiously the 

variance estimate used in the LSD test is usually the 

residual mean square entry in the ANOVA or ANCOVA 

table and hence the variance estimate is adjusted for 

these effects.

The planned comparisons are always performed 

on the least square (predicted) means and take into 

account any covariate and/or blocking factor. If you are 

in any doubt about this, then it is always safest to use 

the planned comparisons option in the statistical soft-

ware package, rather than risk using the LSD test.

Within InVivoStat’s single measure parametric 

analysis module, planned comparisons can be pro-

duced by selecting the unadjusted (LSD) test. This 

will generate all possible pairwise comparisons on 

the least square (predicted) means rather than on the 

observed means. Generating all pairwise tests in this 

fashion is similar to the LSD approach except we per-

form the tests on the least square (predicted) means. 

In practice it is assumed that users of InVivoStat are 

not interested in all of the p-values generated but will 

select only those planned a priori. Other statistical 

software packages may require the user to enter the 

planned comparisons manually. This allows much 

more complicated and versatile comparisons to be 

made (other than pairwise tests involving one group 

versus another).

Stepwise multiple comparison procedures that 
control the FDR

The methods described so far do not offer direct control 

over the risk of finding false positive results. In this sec-

tion a procedure is described that controls the false dis-

covery rate. While not commonly applied in practice, 

controlling the FDR is perhaps more aligned with the 

process that researchers follow.

The Benjamini–Hochberg procedure
Benjamini and Hochberg (1995) developed a proced-

ure that controls the proportion of false positive results 

rather than trying to ensure there are no individual false 

positive results. It can be applied when many compari-

sons are made and involves applying an adjustment to 

the unadjusted p-values. The following shows how to 

compute the adjustment to the p-values by hand:

1.	 Calculate the unadjusted p-values, either using the 

LSD or planned comparison approaches. Assume c 

p-values have been generated.

2.	 Rank the p-values in order of significance, smallest 

first. Label them p1, …, pc.

3.	 Multiply the ith p-value by c / i as highlighted in 

Table 5.24, where

p’i = [c / i] × pi.	 (5.44)

4.	 Working up the table, starting with the largest 

p-value, as soon as an adjusted p-value is less than 

α then:

a)	 The corresponding comparison (and all com-

parisons with smaller adjusted p-values) is 

declared significant.

b)	 All comparisons corresponding to larger  

p-values are declared non-significant.

Example 5.23:  Multiple comparison adjustment

Assume an analysis has been carried out on experimental data and 

the p-values for the planned comparisons are 0.001, 0.009, 0.019, 

0.020 and 0.250. Using the Benjamini–Hochberg procedure (testing 

at the significance level α = 0.05 or 5%):

The largest p-value p5 is non-significant: (5 / 5)  × 0.250  = 

0.250 > 0.05

Table 5.24. Table of the adjustments to the p-values 

that are made when applying the Benjamini–Hochberg 

procedure

Unadjusted p-value Adjusted p-value†

p1 p ′1 = [c / 1] × p1

p2 p ′2 = [c / 2] × p2

… …

p(c – 1) p ′(c – 1) = [c / (c – 1)] × p(c – 1)

pc p ′c = [c / c] × pc

†To preserve the monotonicity of the p-values, if p′(i + 1) < p′i 
then replace p ′(i + 1) with p ′i (1 ≤ i ≤ c – 1).
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The second largest p-value p4 is significant: (5 / 4)  × 0.020  = 

0.025 < 0.05

Therefore the comparisons corresponding to the p-values p1, p2 and 

p3 are also declared significant.

Simultaneous multiple comparison procedures 
that control the FWE

Following on from Section 5.4.8, two sets of approaches 

are now described that can be used to control the fam-

ily-wise error rate. The first set involves simultaneously 

adjusting all the comparisons. The second set involves 

making the adjustments in a stepwise fashion, work-

ing through the set of comparisons and only stopping 

when significance (or non-significance, depending on 

the procedure) is reached. To begin with we shall con-

sider the simultaneous comparison procedures as they 

are commonly applied in practice.

The Bonferroni procedure
The Bonferroni multiple comparison procedure 

(Bonferroni, 1936) is a well-known procedure that 

is straightforward to perform. It is often applied, we 

argue, in many cases unnecessarily. The procedure 

can be considered to be strict, especially when many 

comparisons are made, and hence the chance of find-

ing a true positive result (the statistical power) of 

this procedure is lower than for other multiple com-

parison procedures. For a discussion of some of the 

misuses of the Bonferroni procedure, see Nakagawa 

(2004).

Assume that the researcher wishes to make c com-

parisons and this is the size of the family of tests that 

needs adjusting for. The hypotheses of interest are then 

assessed using a modified significance criteria. If the 

test is to be performed at the significance level α then 

rather than declaring a comparison significant if the 

p-value is less than or equal to α, the result is declared 

significant if:

p-value ≤ α / c.	 (5.45)

Alternatively (and equivalently) the unadjusted p-value 

can be multiplied by c and then compared against α 

directly, i.e.

[p-value] × c ≤ [α / c] × c = α.	 (5.46)

It is common practice, when using computer pro-

grams to carry out multiple comparison procedures, 

to perform adjustments to the p-values (and compare 

these against α) rather than assess the unadjusted 

p-values against a reduced significance level. Although 

the latter approach is used to describe some of the pro-

cedures in this chapter, when comparing the results of 

the different procedures we shall employ the former 

approach.

For example, if ten comparisons are assessed at the 

5% significance level, then the p-values have to be 

smaller than:

α / 10 = 0.05 / 10 = 0.005

to be declared statistically significant. This is quite a 

strict criterion for animal experiments, where (ethically 

acceptable) small sample sizes will inevitably reduce 

the statistical power. Making ten comparisons in an 

experiment may seem to be an unusually large number; 

however, this can easily be achieved if the responses are 

measured at multiple time points in a study.

Although by definition the Bonferroni procedure may 

be quite strict, in practice the situation is often worse. 

Many statistical software packages, when calculating 

the Bonferroni adjusted p-values, also assume that the 

researcher wants to compare everything to everything. 

This is usually more comparisons than are of interest. 

So not only is the Bonferroni adjustment unduly strict, 

but many software packages adjust for more compari-

sons (or a larger family of tests) than is really necessary. 

For this reason we would urge the reader to be careful 

if a statistical software package is used to perform the 

Bonferroni procedure.

The Dunn–Šidák procedure
The Dunn–Šidák procedure (Šidák, 1967) is similar to 

the Bonferroni procedure; however, the significance 

level we test against is not α / c but

1 1
1− −( )α /

.
c

	 (5.47)

The Dunn–Šidák procedure is an improvement on the 

Bonferroni procedure as the value we test against is 

slightly larger than the equivalent Bonferroni value. 

However, it still has the same drawbacks as the 
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Table 5.25. Table of the values that p-values are tested against for the LSD, Bonferroni and 

Dunn–Šidák procedures, with a significance level of 0.05, for various sizes of families of tests

Size of family of tests LSD Bonferroni Dunn–Šidák

1 0.0500 0.0500 0.0500

2 0.0500 0.0250 0.0253

3 0.0500 0.0167 0.0170

4 0.0500 0.0125 0.0127

5 0.0500 0.0100 0.0102

6 0.0500 0.0083 0.0085

7 0.0500 0.0071 0.0073

8 0.0500 0.0063 0.0064

9 0.0500 0.0056 0.0057

10 0.0500 0.0050 0.0051

15 0.0500 0.0033 0.0034

20 0.0500 0.0025 0.0026

Bonferroni procedure described above. More import-

antly it also requires the individual tests to be inde-

pendent of each other. By independent we imply that 

the tests, and hence the p-values, are not related to 

each other. There could be a lack of independence if 

the researcher makes comparisons (on data gener-

ated from the same animals) at several time points 

in a repeated measures analysis. As observations 

measured on each animal are related, the compari-

sons based on these observations, and hence the 

corresponding p-values, will also be related. For 

example, let us assume the researcher had recorded 

the heart rate of resting animals (in treatment and 

control groups) every second for 60 seconds. Within 

the repeated measures analysis the two groups are 

compared at each time point, i.e. 60 comparisons 

are made. It should be obvious that these tests will 

probably be highly related. If each animal’s heart 

rate was constant across the minute, then effectively 

the researcher has measured the same heart rate 60 

times per animal and has not recorded 60 independ-

ent pieces of information. The analysis should reflect 

this. If one p-value is significant, chances are all the 

others will be too.

Table  5.25 contains the critical values that the 

p-values are assessed against when using the LSD, 

Bonferroni and the Dunn–Šidák procedures with a sig-

nificance level of 0.05.

The Tukey HSD procedure
Tukey (1953) proposed a multiple comparison proced-

ure that aims to keep the risk of finding a false positive, 

at a user-defined significance level, when all possible 

pairwise comparisons are made. It is therefore an 

appropriate procedure to use if you are going on a data-

trawling exercise and want to compare everything to 

everything, i.e. the family of tests is of size c = x × (x – 1), 

where x is the number of experimental groups. If, how-

ever, you only wish to make a few selected comparisons, 

then this procedure will be overly strict and hence there 

is a risk of making false negative conclusions in the stat-

istical analysis.

The researcher should also be aware, when mak-

ing all pairwise comparisons, that the corresponding 

p-values will not be independent of each other. For 

example, consider an experiment that consists of three 

treatment groups, A, B and C, and the researcher wants 

to compare A vs. B, A vs. C and B vs. C. The last com-

parison is a linear combination of the first two, and 

hence the three comparisons are not independent of 

each other.

The Tukey HSD procedure is based on the studen-

tised range statistic, which is used to identify the crit-

ical value beyond which all pairwise comparisons are 

declared significant (Toothaker, 1993, p.  60). For each 

pair of means we begin by calculating the t-values, as 

described for the LSD test. These t-values are compared 
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to the α level critical value of the studentised range dis-

tribution for x means (as opposed to the critical values 

of a t-distribution with the residual degrees of freedom, 

as was the case in the LSD test). Tables of these crit-

ical values are available in many statistical textbooks, 

although in practice statistical software will perform all 

the necessary calculations.

This test is an exact test, which turns out to be some-

what conservative if the sample sizes are unequal or 

when there are covariates present. By conservative we 

imply that if the user decides to accept a 5% risk of find-

ing a false positive, then the actual risk of finding a false 

positive (using this procedure) will be less than 5%. 

While this may appear beneficial it does imply that the 

statistical power of the analysis is compromised.

The Tukey–Kramer procedure
The Tukey–Kramer procedure (Kramer, 1956) is simi-

lar to the Tukey HSD procedure described above, but 

includes an adjustment to account for unequal sample 

sizes.

The Scheffé procedure
The Scheffé multiple comparison procedure (Scheffé, 

1953) adjusts for not only all pairwise comparisons, but 

also more complicated comparisons involving linear 

combinations of the group means. With this method 

the risk of finding a false positive for any possible com-

parison is held at the significance level α. Because the 

Scheffé procedure deals with a more general situation 

than just pairwise comparisons between group means, 

it is stricter than the other techniques. In our experi-

ence an animal researcher usually wants to make pair-

wise comparisons between the group means, so this 

procedure is not recommended.

The Dunnett procedure
Comparing all the treatment groups back to a control 

group is perhaps the most common set of comparisons 

that are made when analysing data from animal experi-

ments. Dunnett (1955, 1964) considered this situation 

and the procedure he proposed is a popular choice 

amongst researchers.

The Dunnett procedure is a modification of the 

t-test. The null hypothesis (that there is no difference 

between the treatment group and the control group) is 

rejected if the difference between the treatment group 

mean and the control group mean is greater than a 

number that is a function of a critical value (calculated 

using the multivariate normal distribution) and the 

variability of the data. To begin with the t-values are 

calculated (for the comparisons involving the control 

group), as described for the LSD test. These t-values 

are compared to dα(x  – 1, f), the critical value based 

on x – 1 (the number of treatment groups) and f (the 

residual degrees of freedom) for the Dunnett proced-

ure. As with the Tukey HSD procedure the dα(x  – 1, 

f) values are tabulated in many statistical textbooks, 

although in practice statistical software will perform 

all the necessary calculations.

While the Dunnett procedure is undoubtedly a use-

ful procedure there are some issues that should be con-

sidered before using this procedure. The procedure 

was designed for comparing x – 1 unrelated indepen-

dent groups back to a single (control) group (Miller, 

1981, p.  76). So if you have x  – 1 different treatments, 

then you can use the Dunnett procedure to compare all 

treatment groups back to the control group. Increasing 

doses of a single compound are related to each other 

and so care must be taken when using the Dunnett pro-

cedure in this situation.

The researcher should also be aware that the Dunnett 

procedure should only be used if the experimental 

design consists of a single factor, Treatment say, and 

all treatments are compared to the control. Hence 

the family of tests is of size x – 1. The procedure is not 

applicable if a factorial design is employed. If there are 

two crossed factors (for example Treatment at x levels 

and Strain at two levels) in the experimental design, 

then there will be more than one control group to com-

pare to (in this case a wildtype control group and a 

transgenic control group). One approach you should 

not take is to carry out the Dunnett procedure twice, 

once per strain. In this case the two multiple compari-

son adjustments assume the family of tests is of size 

x – 1. We feel this family is half the true size as you are 

comparing all groups back to the control for both the 

transgenics and the wildtypes. If you do want to adjust 

for multiplicity, then you should adjust for all the 2 × 

(x – 1) comparisons.
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Example 5.22 (continued) – A drug comparison trial

We return to the drug trial considered above, which consisted of 

two treatment groups and a control. We now consider the adjusted 

p-values obtained using some of the simultaneous multiple com-

parison procedures discussed in this section (see Table 5.26).

It is interesting to note that the only statistically significant result 

at the 5% level (treatment B vs. control) was obtained using the 

unadjusted LSD test, although the Dunnett procedure revealed some 

evidence of an effect. The researcher would need to decide if this 

was a true effect or really a false positive result by considering, for 

example, the size of the observed effect. It also highlights how the 

p-values contain more information and should not simply be used as 

a tool to decide on significance/non-significance.

Stepwise multiple comparison procedures based 
on group differences that control the FWE

As an alternative to the simultaneous adjustment pro-

cedures described so far, there are several methods 

available that make adjustments in a stepwise fashion. 

It can be argued that there is an improvement in statis-

tical power if a stepwise approach is applied (Shaffer, 

1995), although these methods are not universally 

accepted within the statistical community. We begin by 

describing two popular methods, the Newman–Keuls 

and Duncan procedures. These approaches are based 

on comparing the size of the difference between the 

group means to test dependent critical values.

The Newman–Keuls procedure
To begin this section two methods are considered, 

the Newman-Keuls procedure and Duncan’s multiple 

comparison procedure. We discuss them because there 

are theoretical concerns with these methods that the 

reader should be aware of. In particular it is well known 

that neither approach controls the risk of finding a false 

positive (Ludbrook, 1998).

The Newman–Keuls procedure was first devised by 

Newman (1939) and then popularised by Keuls (1952). 

The procedure involves comparing the size of the diffe-

rence between two means against a set of least signifi-

cant ranges. Essentially the treatments are grouped 

together into sets of means such that the treatment 

means within each set are not statistically significantly 

different from each other.

Assume there are x experimental groups to be com-

pared. The groups are numbered T1, T2, …, Tx such that

T1 ≤ T2 ≤ … ≤ Tx.

The process begins by calculating the x – 1 least signifi-

cant ranges R2, R3, …, Rx where

R r p f s n p xp = ( ) ≤ ≤( )α , , ,2  2 	 (5.48)

where n is the sample size,r p fα ,( ) is the upper α per-

centage point of the studentised range for groups of 

p means with f error degrees of freedom and s2 is the 

estimated variance (the MSResidual). For unequal sample 

sizes we replace n with the harmonic mean nh where:

n
x

n
h

i
i

a=
( )

−
∑ 1

1

/
, 	 (5.49)

where ni is the ith group sample size.

The procedure is performed in a sequential manner:

The difference between •	 Tx and T1 is compared 

against Rx.

The difference between •	 Tx and T2 is compared against 

Rx – 1.

The procedure continues until:

The difference between •	 Tx and Tx  – 1 is compared 

against R2.

Table 5.26. Table of the p-values (unadjusted and adjusted) for the LSD, Bonferroni, 

Tukey and Dunnett procedures

Comparison LSD Bonferroni Tukey HSD Dunnett

Treatment A vs. control 0.057 0.170 0.127 0.099

Treatment B vs. control 0.037 0.110 0.085 0.065

Treatment B vs. treatment A 0.799 1.000 0.963 –
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The process is then repeated but starting with:

The difference between •	 Tx  – 1 and T1, which is com-

pared against Rx – 1.

The process continues until all x(x  – 1)  / 2 pairwise 

comparisons have been made, i.e. when

The difference between •	 T2 and T1 is compared 

against R2.

If the observed difference between the means is larger 

than the corresponding least significant range then we 

conclude that the two means are significantly different 

from each other. To avoid contradictions, no difference 

between a pair of means is considered significant if the 

two means involved lie between two other means that 

were not declared significantly different.

The Newman–Keuls procedure is popular amongst 

researchers, as it is a powerful technique. The process 

also appears to be a sensible approach as it is aligned 

with the purpose of running many statistical analyses. 

The researcher may want to know which sets of treat-

ments are different rather than identifying which pairs 

of treatments are statistically significantly different 

from each other. Many statisticians, however, do not 

recommend this procedure because it does not control 

the risk of finding a false positive conclusion (Holland 

and Copenhaver, 1988). If you want to reduce the risk of 

finding false positive results (and hence decide to use 

a multiple comparison procedure) then you should at 

least employ a method that controls the risk of finding a 

false positive conclusion.

Duncan’s multiple range procedure
Duncan’s multiple range procedure (Duncan, 1955) is 

a modification of the Newman–Keuls procedure. The 

procedure is almost identical to the above method, 

except that the least significant ranges (the Ri’s defined 

above) are calculated using increasing levels of the false 

positive risk. The risk of finding a false positive result is 

given by

1 1
1− −( ) −α c
. 	 (5.50)

This procedure will produce a larger set of significant 

results (including true and false positives) than the 

Newman–Keuls procedure but there is an increased 

risk of finding a false positive (Curran-Everett, 2000). 

Duncan’s multiple range procedure may give the most 

significant results of all the multiple comparison pro-

cedures, but it is dangerous to use this procedure as 

it does not offer the protection that most of the other 

multiple comparison procedures provide.

Stepwise-based multiple comparison procedures 
based on p-values that control the FWE

The methods described in the previous section control 

the family-wise error rate by making a simultaneous 

adjustment across all comparisons. However, stepwise 

approaches provide powerful alternatives that control 

the family-wise error rate and hence are procedures 

that the researcher should consider using.

The Holm procedure
The Holm procedure (Holm, 1979) is a simple proced-

ure to apply as it involves making adjustments to the 

unadjusted LSD/planned comparison p-values. The 

calculations involved can be performed on a calculator. 

This procedure focuses attention on those comparisons 

that are of interest to the researcher and not all possible 

pairwise tests. The following description shows how to 

compute the adjusted p-values by hand in a series of 

stages:

1.	 Calculate the unadjusted p-values, either using the 

LSD or planned comparison approaches. Assume c 

p-values have been generated.

2.	 Rank the p-values in order of significance, smallest 

first. Label them p1, …, pc.

3.	 Multiply the ith p-value by (c – i + 1) as highlighted 

in Table 5.27, where

p′i = (c – i + 1) × pi.	 (5.51)

4.	 Working down the table, starting with the smallest 

unadjusted p-value, as soon as an adjusted p-value 

is greater than α then:

a)	 The corresponding comparison (and any 

comparisons with larger adjusted p-values) is 

declared non-significant.

b)	 Any comparisons corresponding to smaller 

adjusted p-values are declared significant.

It can be seen that this approach is similar to the Bonferroni 

approach, but whereas in the Bonferroni approach the 

adjustment to the p-values involves multiplying them all 
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by c, in this procedure the p-values are multiplied by a 

sliding scale of levels between 1 and c.

Example 5.23 (continued): Multiple comparison 

adjustment

Assume an analysis has been carried out on experimental data and 

the p-values for the planned comparisons are 0.001, 0.009, 0.019, 

0.020 and 0.250.

Using the Holm procedure (testing at the significance level α = 

0.05 or 5%):

The smallest p-value p1 is significant: 0.001 × 5 = 0.005 < 0.05

The second smallest p-value p2 is significant: 0.009 × 4  = 

0.036 < 0.05

The third smallest p-value p3 is non-significant: 0.019 × 3  = 

0.057 > 0.05

Therefore the comparison corresponding to the larger p-values, p4 

and p5, are also declared non-significant.

The Hochberg procedure
The Hochberg procedure (Hochberg, 1988) is more 

powerful than the Holm procedure when the com-

parisons tested can be assumed to be independent of 

each other (see Section 5.4.1). This procedure, which 

involves making a similar adjustment to the unadjusted 

p-values as is applied in the Holm procedure, can also 

be easily carried out by hand:

1.	 Perform stages 1–3 as above for the Holm procedure.

2.	 Working up the table, starting with the largest 

p-value, as soon as an adjusted p-value is less than 

α then:

a.	 Declare the corresponding comparison (and all 

comparisons with smaller adjusted p-values) 

significant.

b.	 Any comparisons corresponding to larger 

adjusted p-values are declared non-significant.

Example 5.23 (continued): Multiple comparison 

adjustment

Assume an analysis has been carried out on experimental data and 

the p-values for the planned comparisons are 0.001, 0.009, 0.019, 

0.020 and 0.250.

Using the Hochberg procedure (testing at the significance level α 

= 0.05 or 5%):

The largest p-value p5 is non-significant: 1 × 0.250 = 0.250 > 0.05

The second largest p-value p4 is significant: 2 × 0.020 = 0.040 < 0.05

Therefore the comparisons corresponding to the p-values, p1, p2 and 

p3, are also declared significant.

Note that when using the Holm procedure only p1 and p2 were 

declared statistically significant. This highlights the additional power 

of the Hochberg procedure.

The Hommel procedure
The Hommel procedure is a stepwise procedure that is 

more powerful than either Holm or Hochberg (Blakesley 

et al., 2009). The disadvantage of this procedure is that it is 

not as easy to perform the calculations as it is for the other 

two. Using the Hommel procedure, we reject all hypoth-

eses whose p-values are less than or equal to α / j, where:

j i c p k i k ic i k= ∈ …{ } > = …− +( )max  for  1{ , , : / , , , }.1 α 	(5.51)

We shall omit any further details as in practice such 

calculations can easily by performed by a computer 

package. A more detailed description is given in 

Hommel (1988).

The Benjamini–Hochberg procedure
Before we end this section we shall briefly return to the 

Benjamini–Hochberg procedure discussed in Section 

5.4.8. While this procedure controls the FDR, rather 

than the FWE, in principle it is similar to the Holm 

and Hochberg procedures. All three involve applying 

adjustments to the p-values, as defined in Tables 5.24 

and 5.27. These adjusted p-values are then compared 

to the significance level α.

Conclusion
Table  5.28 summarises the properties of the Holm, 

Hochberg and Hommel stepwise multiple comparison 

procedures.

Table 5.27. Table of the adjustments to the  

p-values that are made when applying the 

Holm and Hochberg procedures

Unadjusted p-value Adjusted p-value†

p1 p′1 = (c) × p1

p2 p′2 = (c – 1) × p2

… …

p(c – 1) p′(c – 1) = (2) × p(c – 1)

pc p′c = (1) × pc

†To preserve the monotonicity of the p-values, if p′(i + 1) 

< p′i then replace p′(i + 1) with p′i (1 ≤ i ≤ c – 1).
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Example 5.22 (continued): A drug comparison trial

Returning to the drug trial considered above consisting of two 

treatment groups and a control group. We now consider the results 

obtained using the some of the stepwise multiple comparison pro-

cedures discussed in this section (see Table  5.29). In this simple 

case, all three multiple comparison procedures gave similar results.

The gateway ANOVA approach

A related procedure that deserves special attention is 

the so-called gateway ANOVA approach (Holson et al., 

2008). This procedure, which results in protected tests, 

has a long history and is popular amongst research-

ers. However, it should only ever be seen as a rule of 

thumb.

The general principle of the gateway ANOVA 

approach is that to make any comparisons between 

the experimental group means, the overall test in the 

ANOVA table has to be significant. The argument is that 

if the overall test in the ANOVA table is non-significant, 

then it is more likely that any statistically significant 

pairwise comparisons are false positives. The approach 

was suggested by the eminent statistician R. A. Fisher 

and hence any test that is only carried out condi-

tional on the overall ANOVA test is called a Fisher’s 

protected test.

This strategy has been shown (through simulation) to 

be a useful tool in reducing the false positive risk in cer-

tain special cases. In general, however, there are many 

situations where this approach is not valid. We argue 

that most if not all animal experiments fall into one of 

these situations! As Hsu (1996, p. 177) comments:

Not only does performing a test of homogeneity [gateway test] 

first not guarantee the probability of an incorrect assertion to be 

less than α … it might guarantee this probability to be (condi-

tionally) greater than α if multiple comparison results are only 

reported when the test of homogeneity rejects [i.e. the gateway 

test is significant].

The following scenarios imply the gateway ANOVA 

approach should not be relied upon.

Type of test used
The gateway ANOVA approach was developed under 

the assumption that the researcher wants to make all 

pairwise comparisons between the groups using mul-

tiple t-tests or the LSD test. However, unless the experi-

mental design involves only two or three independ-

ent groups, it can be shown that the gateway ANOVA 

Table 5.29. Table of p-values (unadjusted and 

adjusted) for the LSD, Holm, Hochberg and Hommel 

procedures

Comparison LSD Holm Hochberg Hommel

Treatment A 

vs. control

0.057 0.113 0.113 0.113

Treatment B 

vs. control

0.037 0.110 0.110 0.085

Treatment 

B vs. 

treatment A

0.799 0.799 0.799 0.799

Table 5.28. Table of the properties of the Holm, Hochberg and Hommel procedures

Multiple comparison procedure Property When to use†

Holm More powerful than Bonferroni when 

controlling the FWE

When comparisons are not 

independent and calculations to 

be performed by hand

Hochberg More powerful than Holm but assumes 

independence of comparisons

When comparisons are independent 

and calculations to be performed 

by hand

Hommel Most powerful technique considered in this 

section to control the Type I error rate

When the researcher has access to 

packages able to perform the 

required calculations

†To control the false discovery rate, rather than the family-wise error rate, use the Benjamini–Hochberg procedure.

 

 

 

 

 

 

 

 



Parametric analysis 227

approach is not strong enough to guard against finding 

false positives.

There is also no need to apply Fisher’s protection 

to any of the multiple comparison procedures listed 

above (Holson et  al., 2008). These procedures, such 

as Dunnett, Hommel and Hochberg, are designed to 

reduce the risk of finding false positives. In other words 

there is no need to apply more than one safeguard 

against false positives in a single analysis. This can ser-

iously reduce the power of the experiment.

Treatment structure
The overall tests in the ANOVA table are global tests. 

They should not be confused with local inferences 

involving specific group mean comparisons. When the 

gateway ANOVA approach is used it is tacitly assumed 

that the experimental groups have no structure. By that 

we imply all groups have equal status in the experiment. 

The researcher can then make any number of compari-

sons (perhaps all pairwise comparisons) between the 

group means. In this scenario using a gateway ANOVA 

approach is meaningful as the overall test in the ANOVA 

table also treats all groups equally. However, even in 

this scenario, as mentioned above, once there are more 

than three groups the approach is no longer reliable.

In many experiments the treatments do have a struc-

ture. You may have a control group that has a different 

status in the experiment to the treated groups because 

you plan to compare all treatments back to the con-

trol (and you do not plan to compare the treatments 

to each other). If you have more than one factor in the 

experimental design, then there will be a structure to 

the group means. You probably would not want to com-

pare the wildtype treated group to the transgenic con-

trol group, for example. The ANOVA table tests do not 

take this complex experimental structure into account. 

ANOVA is purely a test to see if the individual means are 

different from each other.

In certain circumstances a positive control may have 

been included in the experiment, which again has a dif-

ferent status in the experimental design to the treatment 

groups. Such control groups allow the researcher to 

check whether the experimental procedure has worked. 

In theory, if the experimental procedures were success-

ful there should be a significant difference between the 

control and the positive control. In such cases it is the 

significance of the comparison between the positive 

control and the control that should be used to decide 

if the treatment comparisons can be made rather than 

the overall ANOVA table test. Perhaps the test of the 

positive control effect should be performed regardless 

of the significance of the overall ANOVA test.

Example 5.24:  Assessing the effect of pyroglutamylated 

RFamide peptide 43

A study was conducted to assess the effect of pyroglutamylated 

RFamide peptide 43 (QRFP43) on the stimulation of the hypotha-

lamic-pituitary-gonadal axis (Patel et  al., 2008). ICV-cannulated 

rats (n = 9 to 14) were injected with QRFP43 at doses of 0.3, 1 or 

3 nmol, saline or neuropeptide Y (NPY) at 3 nmol (the positive con-

trol). Several parameters were measured; we shall focus on the food 

intake measured over the first hour post-injection.

While the data analysed here has been simulated, the pattern 

observed in the means, as given in Figure 5.80, is similar to that 

presented in the original paper. From this plot it is clear that there is 

a significant difference between the saline and NPY groups.

If the positive control (NPY) group is included in 

the statistical analysis, then it is almost certain that 

the overall test of the treatment effects in the one-way 

ANOVA table will be significant. If the positive control 

is excluded from the one-way ANOVA analysis, then the 

overall treatment effect may not be significant. So if the 

overall treatment test in the ANOVA table is used as a 

(1) Saline (2) 0.3 nmol (3) 1 nmol (4) 3 nmol (5) NPY
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Figure 5.80.  Plot of the observed treatment means with 

standard errors, from Example 5.24.
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gateway test, then the researcher could be in a position 

where comparisons of the doses of QRFP43 to saline 

can only be made if the positive control is included in 

the experimental design and statistical analysis. Clearly 

this is a strange position to be in.
The real problem here is that the overall treatment test in the 

ANOVA table does not take into account the structure of the treat-

ments. In this example we have a positive and saline control, which 

have a different status in the experiment to the QRFP43-treated 

groups. The overall test in the ANOVA table does not take this into 

account whereas the pairwise tests do.

All pairwise tests
As discussed above, in most animal experiments there is 

a distinct structure to the treatments and the researcher 

knows in advance exactly which comparisons to make. 

This is rarely all possible comparisons. Remember 

using the gateway ANOVA approach tacitly implies that 

you want to compare everything to everything.

The overall test within the ANOVA table can be seen as 

an average treatment effect assessment. So if you have 

many treatments, most of which have the same effect, 

then the overall ANOVA test may not be significant even 

though there are significant differences between some 

of the treatments. These significant effects have effect-

ively been lost because most of the treatments are not 

different from each other. This begins to be a problem 

when the number of groups is greater than three and 

gets worse as the number increases.

Example 5.25:  Dose-response assessment

An experiment was conducted to assess the effect of increasing the 

doses of a test compound on animals. The experiment consisted 

of four increasing doses of a compound and a vehicle. Now there 

is a distinct structure to these treatments, not only can they be 

separated into two types, the control group and the treated groups, 

but they are also ordered on the dose scale. The researcher knows 

in advance exactly which pairwise comparisons need to be made, 

i.e. comparisons of each treatment group back to the control group. 

Perhaps the overall dose related trend will also be assessed.

To begin with the data was plotted (see Figure  5.81). We can 

see from the plot that there is some evidence of a decrease in the 

response as the dose of the compound increases. It may not be large 

but the trend appears consistent across the doses. We can deduce 

this because we know there is an ordering to the treatment groups.

Now let us assume we decided (unwisely) to use the gateway 

ANOVA approach to guard against false positives. It turns out that 

the overall test of the treatment effect in the ANOVA table is not 

significant at the 5% level (F(4,35) = 2.31, p = 0.068). In this case 

we would not make any pairwise comparisons between the treated 

groups and the control group.

Is this a sensible approach? Perhaps. However, remember the 

overall test in the ANOVA table was a global test and did not use all 

the available information. We know that:

a)	 There is a structure to the treatments (i.e. they were on an 

increasing dose scale).

b)	 We only planned to make certain pairwise tests (treatment 

groups vs. control group).

If we ignored the gateway ANOVA result, as we argue we should 

have done in this case, then we would have found significant differ-

ences between treatments and the control. Using planned compari-

sons we achieved significance at the highest two doses (p = 0.021 

and p = 0.010, respectively). Even using the Hommel procedure, 

which is designed to reduce the false positive risk, we still achieved 

significance at the top dose (p = 0.040). Was it a real effect or a false 

positive? Obviously this would have depended on the biological rele-

vance of the decrease, but given that there was a decreasing trend 

across all doses we may have concluded that the effect observed 

was real. Hopefully this conclusion would have been verified in a 

follow-up experiment, perhaps involving higher doses.

In conclusion then, the gateway ANOVA approach has certain limi-

tations and should be used carefully. While it is certainly worthwhile 

looking at the ANOVA table, to make overall assessments of the 

experimental effects, it should not stop you making the individual 

(and presumably planned) comparisons on the individual experi-

mental group means. We recommend you should report the results 

of the overall ANOVA table tests, perhaps as a footnote.

Multiple comparison procedures in statistical 
software packages

As mentioned above, when carrying out most of the 

multiple comparison procedures, many packages 

assume you want to make all pairwise comparisons 
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Figure 5.81.  Scatterplot of the data from Example 5.25.
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between the group means. The packages then adjust 

for a family of tests of this size. So if you have x treat-

ments, the multiple comparison procedures in most 

packages will adjust for all x × (x – 1) pairwise compari-

sons. We believe that in many animal experiments the 

researcher does not want to make all possible pairwise 

comparisons, hence the default multiple comparison 

adjustment made by the computer package will be 

unduly strict. Such automated multiple comparison 

procedures should be avoided, unless all pairwise com-

parisons are required.

The researcher should also confirm whether the soft-

ware package is making comparisons on the observed 

means or the least square (predicted) means. In many 

packages the multiple comparison procedures are per-

formed on the observed means and do not take into 

account any covariates or blocking factors present in 

the experimental design.

Multiple comparison procedures available within 

the InVivoStat analysis modules include:

Single measure parametric analysis module: •	

Unadjusted (LSD/planned comparisons), Benjamini–

Hochberg, Bonferroni, Dunnett, Hochberg, Holm, 

Hommel and Tukey (see Section 6.3)

Repeated measures parametric analysis mod-•	

ule: Unadjusted (LSD/planned comparisons) (see 

Section 6.4)

Non-parametric module: Unadjusted (Wilcoxon), •	

Behrens–Fisher’s and Steel’s (see Section 6.6)

With the exception of the unadjusted procedures, 

InVivoStat adjusts for all possible pairwise comparisons 

in these modules. To allow more control over the family 

of tests to adjust for, i.e. if you only want to adjust for a 

few comparisons, the user also has the option of using 

the p-value adjustment module, see Section 6.5, where 

only the p-values of interest are adjusted for. The pro-

cedures available in this module include Benjamini–

Hochberg, Bonferroni, Hochberg, Holm and Hommel.

Recommendations

Given all the procedures described in this section (and 

this list is by no means exhaustive), which procedure 

should be used? To some extent this depends on the 

level of risk of finding a false positive that the researcher 

is prepared to take and also whether the analysis 

performed is exploratory or confirmatory. There are, 

however, a few general rules that can be followed. We 

stress these are only our opinions and are not univer-

sally accepted by all statisticians.

False discovery rate
We believe if you are concerned about finding false 

positive results, then you should consider using a pro-

cedure that controls the false discovery rate. Such pro-

cedures, such as Benjamini–Hochberg, are statistically 

powerful, if less stringent, than those that control the 

family-wise error rate.

Family-wise error rate
All pairwise comparisons If you do plan to compare 

everything to everything in a data-trawling exercise, 

then you should use a procedure such as the Tukey 

HSD procedure (if the sample size is the same across 

all groups) or Tukey–Kramer procedure (if the sample 

sizes are different).

All-to-one comparisons If your experimental design 

has only one (Treatment) factor and you plan to com-

pare all treatments back to one (the control) then the 

Dunnett procedure can be used.

Planned comparisons If you are only carrying out 

certain pre-planned comparisons in a controlled fash-

ion then you can use the unprotected planned com-

parisons. If you do want to be certain that you do not 

have false positive results then we recommend manu-

ally adjusting these p-values using either:

Hochberg: If you do not have access to a computer to •	

carry out the computations and the comparisons are 

independent.

Holm: If you do not have access to a computer to •	

carry out the computations and the comparisons are 

not independent.

Hommel: If you do have access to a computer to •	

carry out the computations, but only if you can 

define the set of comparisons to include in the fam-

ily of tests.

5.5  Other useful analyses

To end this chapter on statistical analysis we shall con-

sider some additional statistical tests that may be of 
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use to the animal researcher. These tests are applicable 

in specific situations and should be employed when 

the assumptions of the parametric tests described in 

Section 5.4.1 do not hold. These tests include the non-

parametric tests, the tests of proportions and survival 

analysis.

5.5.1  Non-parametric analyses

All of the analyses considered so far in this text can be 

described as parametric. The parametric tests provide 

the researcher with a flexible, powerful and easy-to-use 

family of statistical tests. We also argue that crucially 

(in the analysis of animal experiments) the paramet-

ric tests allow the experimental design employed (i.e. 

block designs) and also any additional information col-

lected (i.e. covariates) to be accounted for in the statis-

tical analysis.

As discussed above we make certain assumptions 

when carrying out a parametric analysis. Occasionally 

these assumptions do not hold and alternatives are 

required. In this section we shall consider some of 

the non-parametric tests. These tests require fewer 

assumptions to be made than the parametric equiva-

lents, and hence they provide an alternative analysis 

strategy in certain situations. If the assumptions of the 

parametric analysis do not hold then these tests can be 

more powerful than the parametric equivalents. It can 

also be shown that for certain tests, for example the 

Mann–Whitney test discussed below, they have similar 

levels of statistical power as the parametric equivalents, 

even when the parametric assumptions hold.

When to use a non-parametric test

There are several situations where the researcher should 

consider using a non-parametric test. We discuss some 

of the more common cases.

The homogeneity of variance assumption does 
not hold
One of the assumptions of the parametric analysis is 

that the variability is approximately the same across 

all groups. If this assumption does not hold then the 

researcher should first try to transform the response 

variable, perhaps using a log or square root transform-

ation. Hopefully this will stabilise the variance across 

the groups. However, in certain situations none of the 

transformations resolve this problem. For example, it 

may be the case that the variability of the response is 

not related to the size of the response. A scatterplot of 

such a response is given in Figure 5.82.

In this example the treatment groups with the largest 

within-group variability (B and D) do not have the largest 

mean response. So neither a log nor square root trans-

formation will homogenise the variability across the 

four treatment groups. In this situation the researcher 

should consider using a non-parametric test.

The responses are not continuous and/or the residu-
als are not normally distributed
When we carry out a parametric analysis we assume 

that the data are continuous and therefore the residu-

als are normally distributed. There are, however, occa-

sions where it is not possible to measure a continu-

ous response. For example, the researcher may have 

to measure a discrete response (see Section 3.2.1) 

and hence the data generated are not continuous. If a 
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Figure 5.82.  Scatterplot of the responses from an experiment 

involving four treatments, A, B, C and D, where the variability 

in treatment groups B and D are greater than in treatment 

groups A and C.
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parametric approach is applied to this non-continu-

ous response then the residuals may not be normally 

distributed.

If a count response is measured, and the set of counts 

observed consists of many distinct values, then for the 

purposes of the analysis it could be assumed to be con-

tinuous. The response can then be analysed using a 

parametric analysis approach. If the counts recorded 

consist of only three or four distinct values, then clearly 

this is not continuous.

Whether the distribution of the residuals breaks 

the normality assumption depends on the number of 

different responses observed and the range of these 

responses. If the response has an observable range of 

0 to 100 counts, but only the values 0, 1, 99 and 100 

were recorded, then clearly it should not be assumed 

to be continuous with normally distributed residuals. 

However, if there were many different counts observed 

between 0 and 100, then the researcher may feel the 

response can be assumed to be continuous and hence 

proceed with a parametric analysis (assuming the other 

parametric assumptions hold).

There are no fixed rules on whether a response can 

be assumed to be continuous or not. Given that there 

will always be a calibration limit on the measuring 

device used in the experiment, it could be argued that 

no response is truly continuous! As a rule of thumb 

(and this really is only a rule of thumb) we believe that 

if the response variable contains at least eight different 

values, with a reasonable spread of responses (within 

each group) across these eight values, then it can be 

assumed to be continuous. If in doubt the researcher 

should contact a statistician for advice as alternative 

techniques may be available.

Clearly responses that are binary can never be 

assumed to be continuous and in fact should be ana-

lysed using more specialised tests, such as those dis-

cussed in Section 5.5.2.

The responses are constrained
The assumption that the residuals are normally dis-

tributed implies that the responses can be measured 

at any numerical value: in theory the range should be 

unbounded above and below. In practice there will 

be practical, physical and ethical constraints on the 

response that may compromise this assumption. For 

example, many responses are bounded below by zero.

If the researcher feels that practical constraints are 

influencing the behaviour of the response, i.e. if many 

responses lie on a boundary and hence have near-zero 

variability, then a non-parametric test may be more 

appropriate.

Example 5.26:  Hotplate pain model

An experiment was conducted to assess the effect of an analgesic in 

the hotplate pain model. Following treatment an animal’s paw was 

placed on a hotplate (at 55oC) and the time to withdraw the paw 

was recorded. For ethical reasons the maximum amount of time 

that an animal’s paw can be left on the hotplate is 30 seconds – this 

prevents any tissue damage. If an animal does not withdraw its paw 

after 30 seconds have elapsed, then the animal is removed from the 

hotplate and a censored observation of 30 seconds recorded.

If the dataset contains many responses that are censored, then 

it may be better for the researcher to use non-parametric tests to 

analyse the data. There are limits though, even with non-parametric 

tests, as certain assumptions are still made in such analyses. If all 

the results are censored for one of the experimental groups, then 

this group should be removed from the dataset prior to statistical 

analysis. This situation can occur, for example, if a positive control 

or high dose of a compound is included in the experiment and the 

treatment effect is so strong that all animals achieve the ethical 

limit. Alternatively, the survival analysis technique, described in 

Section 5.5.3, could be applied.

Non-parametric tests

In general non-parametric tests are performed on the 

ranked data. The responses are ranked in order of size, 

where the largest observation is given rank 1. This rank-

ing is carried out ignoring the experimental design. An 

example of ranking is given in Table 5.30.

The majority of the non-parametric tests are carried 

out on the ranks rather than the original responses. As 

the response data are ignored, and the ranking used in 

the analysis instead, it can be seen that information will 

be lost when performing non-parametric tests.

Apart from relaxing some of the parametric assump-

tions, the ranking technique also implies that the results 

of the statistical analysis are less likely to be influenced 

by any outliers. For example, the largest observation 

in the dataset may appear to be an outlier on the ori-

ginal scale, but it is given rank 1 regardless of the actual 

numerical value. In other words the observation will be 

given the same rank regardless of how extreme it is.

 

 

 

 

 



Statistical analysis232

Table 5.30. Ranking applied when 

performing a non-parametric test

Treatment Response Rank

Drug 0.963 1

Drug 0.948 2

Drug 0.862 3

Drug 0.852 6

Drug 0.776 8

Drug 0.616 12

Drug 0.554 13

Drug 0.546 14

Drug 0.539 15

Drug 0.35 22

Drug 0.297 23

Drug 0.249 24

Drug 0.112 27

Vehicle 0.859 4

Vehicle 0.853 5

Vehicle 0.845 7

Vehicle 0.712 9

Vehicle 0.675 10

Vehicle 0.655 11

Vehicle 0.488 16

Vehicle 0.449 17

Vehicle 0.444 18

Vehicle 0.429 19

Vehicle 0.405 20

Vehicle 0.395 21

Vehicle 0.207 25

Vehicle 0.158 26

Vehicle 0.083 28

Table 5.31 lists some parametric tests and the equiva-

lent non-parametric tests.

For more details of the calculations involved in per-

forming these tests, see Armitage et al. (2002, pp. 272–

89). A description of how to carry out some of these tests 

within InVivoStat’s non-parametric analysis module is 

given in Section 6.6.

The Mann–Whitney test
As an example of the calculations involved when 

performing one of the statistical analyses given in 

Table  5.31, we shall consider the Mann–Whitney test. 

To perform this test we first add together the ranks of 

the observations in each of the two groups (the Ri’s) and 

then calculate
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where Ri is the sum of the ranks of the ith group and ni is 

the sample size of the ith group. To perform the Mann–

Whitney test, the minimum of U1 and U2 (defined as U) 

is compared to significance tables that can be found in 

many statistical textbooks. Alternatively, for large sam-

ple sizes (greater than about 20), we can compute

z
U

n n

n n n n
=

−

+ +

1 2

1 2 1 2

2
1

12
( )

, 	 (5.54)

which is approximately normally distributed and can 

hence be assessed against the critical values of the nor-

mal distribution.

The principle of the Mann–Whitney test is that the 

smaller U is, the greater the difference between the 

sum of the ranks of the two groups. This implies that it 

is more likely that there is an overall shift in the distri-

bution of the observations between the two groups and 

hence there is a significant treatment effect.

The Mann–Whitney test is the non-parametric equiva-

lent of the unpaired t-test. It can be shown (Lehmann, 

1999, p. 176) that if the normality assumption holds then 

the statistical power of the Mann–Whitney test is about 

95% of that of the t-test. If the normality assumption 

Table 5.31. Table of parametric and equivalent non-

parametric tests

Parametric test Non-parametric test

Unpaired t-test Wilcoxon rank sum test (also 

known as) Mann–Whitney test

Paired t-test Wilcoxon matched pairs test

One-way ANOVA Kruskal–Wallis test

One-way ANOVA 

with blocks

Friedman’s test

Dunnett Steel’s

LSD test Behrens–Fisher-type tests
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does not hold then this non-parametric test is consid-

erably more powerful than the t-test.

5.5.2  Testing the difference between 
proportions

In certain situations the researcher may not be able 

to measure a continuous response. Perhaps the 

only response that can be measured, given the ani-

mal model, is nominal, ordinal or binary. With these 

responses, the animals within each experimental 

group can be divided into a number of categories, each 

category corresponding to one of the finite levels of the 

response.

Example 5.27:  Assessment of laparoscopic techniques in 

the treatment of malignant abdominal disease

In the late 1990s it was postulated that wound metastases were 

created when laparoscopic techniques were used to resect tumours. 

A study, involving the injection of a tumour cell line in rats, was 

conducted to assess this (Mathew et  al., 1996). As part of the 

experiment rats (n = 12 per group) were given an injection in the 

left flank abdominal musculature with a suspension of mammary 

adenocarcinoma tumour cells, causing a tumour to develop in the 

lateral abdominal wall. After 7 days, the animals underwent either a 

laparoscopy or laparotomy followed by tumour resection. Following 

a further 7 days, the animal were killed and their wound metasta-

ses assessed. Table 5.32 summarises the results of this experiment, 

where the response was either presence or absence of microscopic 

metastases.

It can be seen from the table that the type of surgery had a signifi-

cant effect on wound metastases. In such cases, where the response 

is a binary measure, parametric approaches cannot be applied and 

the non-parametric techniques discussed in the previous section 

may not provide reliable results either. The researcher may want 

to investigate whether the proportion of animals with microscopic 

metastases varied between the two surgical groups.

Analysis procedure

In this section we shall describe two tests that can be 

used to analyse binary, nominal or ordinal responses, 

the chi-squared test and Fisher’s exact test. The ana-

lysis procedure involves testing to see if the propor-

tion of animals in each of the response categories var-

ies depending on the experimental group. With these 

tests, we are investigating the proportion of animals 

within each category and not the total number. So, for 

example, if there were twice as many animals allocated 

to the control group compared with the treated groups, 

then (assuming there were no treatment-related effects) 

we would expect to see twice as many animals in the 

control group with a specific response compared to the 

treated group.

The process begins, as described in Section 2.3.1, by 

formulating the null and alternative hypotheses:

H0:The chance (or probability) of an animal being 

associated with any given response category is the 

same regardless which experimental group they 

are allocated to.

H1:The chance (or probability) of an animal being 

associated with any given response category varies 

depending on which experimental group they are 

allocated to.

Both the chi-squared test and Fisher’s exact test effect-

ively ask the question: ‘Given the observed pattern of 

responses across the experimental groups, what is the 

chance of seeing this pattern of results, or a pattern 

even more extreme, when in reality there is no experi-

mental group-related effect for the response?’

If, for each group, the number of animals observed 

within each response category is greater than five, then 

the researcher should consider using the chi-squared 

test. If in one of the response categories the number of 

animals is less than five, as is often the case in animal 

experiments, then Fisher’s exact test is usually the pre-

ferred test. This latter test makes fewer assumptions, 

but is more computationally intensive to perform. 

We shall describe both tests in the following sections. 

Descriptions of how to perform the chi-squared test 

Table 5.32. Table of the responses from Example 5.27. 

Animals were categorised depending on whether 

wound metastases were observed or not

Response type

Surgery type

Laparoscopy Laparotomy

Microscopic metastases 

present

10 2

Microscopic metastases 

absent

2 10
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and Fisher’s exact tests using InVivoStat are given in 

Section 6.12.

Chi-squared test

For each combination of response category and experi-

mental group we work out the number of animals we 

would expect to see in each combination (assuming 

the null hypothesis is true) given the total number of 

animals:

a)	 in each experimental group

b)	 within each response category, summed across all 

experimental groups

We then compare these calculated values to the values 

actually observed in the experiment. If the expected 

results (under the null hypothesis) and the observed 

results are approximately the same, then we can con-

clude the null hypothesis is true. If the expected and 

observed results are sufficiently different, then we con-

clude the null hypothesis is not true, and hence the 

alternative hypothesis is accepted.

Example 5.28:  Congenital Cytomegalovirus

Congenital Cytomegalovirus (CMV) infection during pregnancy is 

known to cause long-term new-born morbidity, mental retardation 

and sensorineural hearing loss. A study was conducted to assess 

whether the antiviral agent cyclic cidofovir could prevent trans-

mission of CMV infection from mother to offspring (Schleiss et al., 

2006).

Guinea pigs (n = 5 in the saline control group and n = 4 in the 

cyclic cidofovir treatment group) were challenged with the guinea 

pig CMV prior to mating and then given either the placebo or the 

treatment during pregnancy. The numbers of dam and premature 

pup deaths were assessed (from a total of n = 20 pups in the saline 

control group and n = 21 in the cyclic cidofovir treatment group). In 

the placebo group, one dam and four pup deaths were observed 

whereas in the treatment group there were none (see Table 5.33).

As death was a binary response (guinea pigs were either alive 

or dead) it was felt that a chi-squared test could be used to assess 

the treatment effect. Given the small number of animals (n = 0) in 

one of the response/treatment group combinations this test is per-

haps not ideal (and Fisher’s exact test is more reliable) but for the 

purposes of this discussion we shall continue.

The test begins by calculating the row totals (25 placebo ani-

mals and 25 treated animals) and the column totals (45 alive and 

5 dead). Given these row and column totals we then calculate the 

expected number of animals in each category under the assumption 

that there is no treatment-related effect. The (i,j)th entry in this 

table is given by:

Exp cted total
Row total Column total

Total number o
e i j

i j
, =

×
f animals

. 	 (5.55)

For example, the expected number of living placebo animals was 

25 × 45/50 = 22.5. The expected totals, along with the row and col-

umn totals, are presented in Table 5.34.

We then work out how far the observed responses are from the 

expected responses. We do this using the following approach:

(a)	 Calculate the differences between the observed and expected 

results.

(b)	 Square the individual differences calculated in (a) (squaring 

makes all differences positive).

(c)	 For each squared difference, divide through by the expected 

value.

(d)	 Add up the ratios calculated in (c).

In this case we calculate:

( . )
.

( . )
.

( . )
.

( . )
.

.
20 22 5

22 5
5 2 5

2 5
25 22 5

22 5
0 2 5

2 5
5 56

2 2 2 2− + − + − + − = .

This number is the test statistic and from this we can work out the 

probability of getting a result as extreme (or more extreme) than 

the one observed if the null hypothesis of no treatment effect is 

true. To do this we assume that the test statistic is approximately 

chi-squared distributed. We can then predict how likely it is that we 

can observe such a large test statistic, or one larger, if there was in 

reality no treatment-related effect.

The assumption that the test statistic is approximately chi-squared 

distributed has been shown to be reliable when there is large num-

ber in both the row and column totals and also for each group/

response combination. When there are fewer than five animals in 

one of the contingency table combinations then this assumption 

may not hold.

For the case where there are only two experimental groups and 

the response is binary, it can be shown that the test statistic is not 

quite chi-squared distributed. A commonly applied technique to 

adjust the test statistic in this situation is Yates’ continuity correc-

tion. To apply this correction we reduce the difference between the 

observed and expected responses by ½ prior to squaring. So we add 

½ onto the negative differences and subtract ½ from the positive 

differences:

Table 5.33. Mortality results from 

Example 5.28. Guinea pigs (numbers of 

dams and pups are added together) were 

categorised into one of two categories

Alive Dead

Placebo 20 5

Treatment 25 0
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In this case p = 0.059, i.e. there is a 5.9% chance of observing these 

results, or something more extreme, if there was, in reality, no real 

difference between the groups. In this case we would therefore con-

clude the null hypothesis was true and that there was no difference 

between the groups. However, given that the sample size in one of 

the groups was less than five, perhaps Fisher’s exact test would give 

a more reliable result.

Fisher’s exact test

With Fisher’s exact test we calculate all possible out-

comes of the experiment that would have resulted in 

the row/column totals given in the contingency table. 

We can do this because each animal’s response can 

only be one of a distinct set of values and so there is a 

finite number of experimental outcomes. For each of 

these experimental outcomes we calculate the prob-

ability of it occurring, assuming the null hypothesis is 

true. By using this technique we can determine exactly 

what is the probability of observing the set of experi-

mental results we obtained or something more extreme 

under the assumption that the null hypothesis is true 

and there is no experimental group related effect.

In practice the number of possible experimental 

outcomes that will need to be assessed becomes large 

as the total number of animals increases. So in larger 

experiments this approach may not be computationally 

feasible. However, given the power of modern comput-

ers, it should be possible to use Fisher’s exact test in 

many animal experiments.

Example 5.28 (continued): Congenital Cytomegalovirus

As the number of deaths in the treated group was less than five, it 

can be argued that the Fisher’s exact test is a more appropriate test 

to use than the chi-squared test. To perform this test we begin by 

calculating, given the row and column totals, the probability (under 

the null hypothesis) of achieving the observed 20/5/25/0 split. This 

is given by the hypergeometric probability function:

Probability = ( )
×( )

× × ×
× × ×

R

N

R C C1 2 1 2

11 12 21 22

! ! ! !

! a ! a ! a ! a !
	 (5.56)

where Ri is the ith row total, Cj is the jth column total, N is the 

total number of animals in the experiment and aij is the number of 

animals in the ith row and jth column. The ! symbol is the factorial 

symbol, where x! = x × (x – 1) × (x – 2) × … × 2 × 1 and 0! = 1. So 

3! = 3 × 2 × 1 = 6.

For the observed result we calculate:

Probability of observing  the 20/5/25/0 

split
    

=
× ×25 25! ! 45 5

50 20 5 25 0
0 025 2 5

! !

! ! ! ! !
. . %.

  

        
  or 

×
× × × ×

=( )
( )

This is only one of the possible experimental outcomes though. 

As each animal must be present in one of the four categories (as 

a result of the random allocation process and the response to the 

treatment) we can work out the probability of every possible split of 

the 50 animals that would result in the observed row/column totals 

under the null hypothesis. So we can start with the 21/4/24/1 split, 

then the 22/3/23/2 split and so on. For each unique combination 

(and there are obviously many of them) we work out the probability 

of achieving such a result using the above formula.

Now Fisher’s exact test result is the chance of observing (under 

the null hypothesis of no experimental group effect) a split in the 50 

animals that is as extreme or more extreme than the one that was 

actually observed. A more extreme split will have a probability that 

is smaller than the one we calculated for the observed split (2.5% 

in this case). So we add up all the individual probabilities that are 

as small (or smaller) than the one we calculated for the observed 

split. This sum corresponds to the Fisher’s exact test p-value result. 

It is exact because we have considered all possible experimental 

outcomes to arrive at this conclusion.

The p-value is the chance (or probability) of achieving the 

observed result (or one more extreme) if the null hypothesis of no 

experimental group effect is true. As long as the resulting p-value is 

less than or equal to 0.05 (or 5%) we can claim that the null hypoth-

esis is not true. In other words if the p-value is less than 0.05, and 

the null hypothesis is true, then there is only a 5% chance of getting 

such an extreme result. We can conclude this chance is too small and 

hence the alternative hypothesis is accepted.

In this case the p-value was 0.050, to three decimal places, so 

there was evidence of a difference at the 5% level.

5.5.3  Survival analysis

In this final section we shall describe another type 

of analysis that the researcher may require when 

Table 5.34. Expected responses from Example 5.28. 

Guinea pigs were categorised into one of two 

categories

Alive Dead Column totals

Placebo 22.5 2.5 25

Treatment 22.5 2.5 25

Row totals 45 5 50

 

 

 

 

 

 

 

 



Statistical analysis236

assessing data generated from animal experiments, 

namely survival analysis. We shall give a brief introduc-

tion of this analysis technique and some of its applica-

tions. A fuller account is available in Kleinbaum and 

Klein (2005, Chapters 1 and 2). A description of how to 

perform a survival analysis using InVivoStat is given in 

Section 6.15.

Consider an experimental situation where the 

response of interest is the time to an event. The event 

can be an animal responding to a stimulus, for example 

the tail flick test in pain research or the time to paw 

withdrawal in the hotplate pain model. Alternatively it 

could be the time of death, for example in a carcinogen-

icity study (Semela et al., 2007). There are two complica-

tions when analysing time-to-event data that imply we 

should not use the parametric tests to analyse the data.

Responses may be censored

For certain animals we may not be able to measure the 

actual response time or the time of death. For example, 

in the tail flick test there will be an ethical limit on the 

length of time that the animal can be tested. Some ani-

mals will not respond within the time limit and hence 

it is impossible to know the animals’ true response 

times. In carcinogenicity studies the experiment is 

conducted for a fixed period of time (usually up to 

2 years) and hence we do not know when animals that 

were alive at the end of the study would have died if 

the study had continued. In such long-term studies 

animals may die of non-treatment-related causes (the 

so-called accidental deaths). We do not know exactly 

when the animal would have died (due to the treat-

ment regime) only that it would have been greater 

than the time of its accidental death. We need to take 

this into account when assessing treatment-related 

survival time. In these cases we say that the observa-

tion is censored as we do not know the actual response 

time. All we do know is that it is greater than a certain 

value.

In animal studies the time limit is usually a value 

imposed by the study protocol, and hence will be the 

same value for all animals in the experiment. In gen-

eral this need not be the case. In clinical trials, for 

example, the limit may vary as patients can drop out of 

an experiment (and become a censored observation) at 

any time during the trial.

Responses may be skewed

In certain situations the responses may be skewed and 

hence the residuals will not be normally distributed. 

For example, if there is an ethical limit on the response, 

and many animals achieve the limit, then the data will 

be right-skewed. In the extreme case all the responses 

in an experimental group are censored. This can occur 

if an experiment includes a positive control, and all ani-

mals achieve the boundary due to the treatment having 

a large effect.

Both of these issues, the censored responses and the 

skewed distribution of the observed responses, imply 

that we should not use the standard methods already 

described above to analyse the data. An alternative 

approach is to use survival analysis techniques.

Example 5.29:  Caecal ligation model of sepsis

A well-established model of sepsis is the caecal ligation and punc-

ture model in rodents. The model involves ligating the caecum and 

puncturing the exposed caecal pouch in two places. The punctured 

caecal pouch is then squeezed to allow faecal material to enter the 

peritoneal cavity. Unfortunately there can be significant variability 

in the mortality associated with this model and so a study was con-

ducted to evaluate the influence of length of the caecum ligation 

as a determinant of mortality (Singleton and Wischmeyer, 2003). 

The study consisted of six groups, with the level of ligation ranging 

between 5% and 35% of the caecum. The animals were monitored 

for 4 days after surgery. In the study the mortality ranged from all 

animals in the group with a 35% ligated caecum compared to none 

in the group with a 5% ligated caecum. The experimental results 

revealed a clear effect related to percentage ligation on mortality. 

However, as the data were censored and the residuals were not nor-

mally distributed a parametric analysis approach could not be used 

to analyse the data.

The survival function

Rather than estimate the experimental group means 

and test to see if one mean is different from another, 

we calculate the survival function. One definition of 

the survival function S(t) is that it is the probability, or 

chance, that an animal will survive beyond time t. We 

can assume the decrease over time in the probability of 

surviving can be modelled using either:
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A curve (in a similar way to the dose-response meth-•	

odology discussed in Section 3.6.1). Examples include 

the exponential or Weibull curves.

The Kaplan–Meier non-parametric approach.•	

The latter seems to be a more reliable approach when 

the group sizes are small.

To calculate this survival function we begin by div-

iding the time course into a series of time bins, in this 

case days post-treatment. Let us assume we want to cal-

culate the probability of an animal in group 1 surviving 

the first day. This is simply:

S
n j

n
( ) ,1 1 1

1

=
−( )

	 (5.57)

where n1 is the number of animals in that group alive 

at the start of the study and j1 is the number that died 

during day 1.

Now, assuming there are no censored (or accidental) 

deaths on day 1, the probability of an animal not dying 

during day 2 will be:

n j j

n j

n j

n
1 1 2

1 1

2 2

2

−[ ]−( )
−[ ] =

−( )
, 	 (5.58)

where n j n1 1 2− =  is the number of animals alive at the 

beginning of the second day and j2 the number of ani-

mals that died during the second day. However, this is 

not the probability of an animal in group 1 surviving the 

first two days. An animal must first survive day 1 before 

it can survive day 2. The chance of an animal surviv-

ing day 2 (given that it has also survived day 1) can be 

calculated by multiplying together the probability of it 

surviving day 1 and the probability of it surviving day 

2, i.e.

S
n j

n

jn

n
( ) .2 1 1

1

2 2

2

=
−( ) −

×
( )

	 (5.59)

In general then, to calculate the probability of an ani-

mal in a given group surviving time interval t, we need 

to calculate

S t
n j

ni

t
i i

i

i

( ) =
−( )









=
∏

1

δ

	 (5.60)

where ni is the number of animals alive in that group at 

the start of time interval i, ji is the number in that group 

that died during interval i and δi = 0 if there were no 

deaths in that group in interval i and 1 otherwise. ∏  is 

used to denote that we calculate a separate value of the 

term in square brackets for each time period from 1 up 

to t and then multiply them together, i.e.

S t
n j

n

n j

n

n j

n
t t

t
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

δt
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� (5.61)

The purpose of δi is that if there are no deaths in that 

group in interval i, then the ith term does not contribute 

to the survival function (as x0 = 1). Note also that the ni’s 

will need to be reduced by any accidental deaths that 

occurred in that group during the previous interval.

Once we have calculated the Kaplan–Meier survival 

function separately for each group at each time point 

we can plot the results on a Kaplan–Meier survival 

plot. This gives a visual indication of the results of the 

experiment.

Example 5.29 (continued): Caecal ligation model of sepsis

The Kaplan–Meier survival plot for Example  5.29 is given in 

Figure 5.83.

Comparing groups

While it is useful to generate the survival function, we 

also may want to know whether the rates of survival 

vary between the experimental groups. This assessment 

of group differences can be performed using a log-rank 

test. We shall describe the log-rank test for the simpler 

case where there are only two groups. The derivation, 

in particular of the variance estimate, is more complex 

when there are more than two groups and requires 

estimating the covariances between the groups (see 

Kleinbaum and Klein, 2005, p. 94). In general, however, 

the approach described here can be generalised to 

more than two groups and software packages will rou-

tinely perform the calculations.

The null hypothesis for the log-rank test is that there 

are no differences in the survival function for each of 

the groups. In other words the animals have the same 
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chance of dying or responding in a given time interval 

regardless of which group they are allocated to.

For each time interval, as defined above, we calculate 

the observed and estimated number of responders in a 

similar fashion to that described in Section 5.5.2 for the 

test of proportions. Table 5.35 summarises the interval 

i results from an experiment involving two groups. For 

interval i we calculate the expected number of respond-

ers Eij in group j, where:

E
R

n
E

R

n

C C
i

i i

i
i

i i

i
1

1 1
2

2 2= =
× ×

and . 	 (5.62)

We also require an estimate of the variance Vi at 

interval i. This can be estimated using the formula:

V
R R

n n

C C
i

i i i i

i i

= ( )
−( )

× × ×1 2 1 2

2 1
. 	 (5.63)

If we add up the Ei1’s, Ei2’s and Vi’s across all time inter-

vals then we obtain an estimate for the expected total 

number of responders in each group (assuming the 

null hypothesis is true) and an estimate for the total 

variance (E1, E2 and V, respectively). For the test we 

also require the total number of observed responders in 

each group (O1 and O2, respectively).

We now calculate the log-rank statistic:

χ2 1 1
2

=
O E

V

−( )
,	 (5.64)

which is chi-squared distributed with one degree of 

freedom. Note if there are G groups in the experiment, 

then this test will involve a chi-squared test with G – 1 

degrees of freedom.

Example 5.29 (continued): Caecal ligation model of sepsis

The data was analysed using the log-rank test described above and 

it was discovered that there was a significant difference between 

the six group (χ2 = 37.34, with five degrees of freedom, p < 0.001). 

This is perhaps as expected, given the observed decrease in survival 

rates as the percentage ligation increases.
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Figure 5.83.  Kaplan–Meier survival plot for Example 5.29, 

the caecal ligation model of sepsis.

Table 5.35. Expected responses for an example involving 

two factors categorised in one of two categories at 

interval i

Observed results at interval i

Responder Non-responder Total

Group 1 ai bi Ri1

Group 2 ci di Ri2

Total Ci1 Ci2 ni
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InVivoStat is a free-to-use statistical software pack-

age developed specifically for animal researchers. It 

consists of a series of modules, which produce graph-

ical plots, summary statistics and statistical analyses. 

In this chapter we shall discuss how to use InVivoStat, 

describe the individual modules and consider some of 

the technical details of the analyses.

6.1  Getting started

InVivoStat can be downloaded from the website: www.

invivostat.co.uk. Once installed it can be accessed via 

the Windows start menu.

6.1.1  Data import

Data can be imported into InVivoStat from Excel (using 

the xls or xlsx file formats) or from a text editor using the 

csv (comma delimited) format. It is recommended that 

the final dataset is first created in Excel, including all 

data manipulations, before importing into InVivoStat. 

If the Excel file contains multiple worksheets, then 

the user is prompted to select one of the worksheets 

to import into InVivoStat. Multiple datasets can be 

opened within InVivoStat but they must be imported 

individually.

Datasets cannot contain commas in either the var-

iable names or within the body of the data. Variable 

names cannot also contain the symbols: ~ (tilde), + 

(plus) or * (asterisk), as these characters are used inter-

nally within InVivoStat. Users will not be able to import 

datasets that include these characters.

The majority of analyses can be performed using 

the two data formats described in this section. There 

are also a couple of specialised data formats required 

for certain modules within InVivoStat, but these are 

described in the appropriate section. Regardless of the 

format required a few general principles apply to all 

datasets:

The results of each response measured during the •	

experiment should be arranged in a single column of 

the dataset.

Variable names should be entered in the first row of •	

the dataset (in Excel).

Missing data should be left as empty cells (in Excel).•	

No text should be placed in numerical response col-•	

umns (other than the title in the first row). If any text 

is included then InVivoStat will assume the column 

contains only non-numeric data.

Single measure format

If each animal is assessed once only for each of the 

responses, then the dataset should be arranged in the 

single measures format. Several different responses can 

be measured but each one is placed in a separate col-

umn. Each row of the dataset corresponds to the obser-

vations from one animal. Other variables are included 

in the dataset to define, for example, the treatment 

factor(s), blocking factors and any covariates. Table 6.1 

contains the first 14 rows of such a dataset. The dataset 

involves two responses (touch and body weight, meas-

ured pre- and post-treatment), strain and gender of the 

animal and the treatment that it receives. There is also a 

blocking factor at two levels.

Analysis using InVivoStat
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240 Analysis using InVivoStat

Repeated measures format

If a response is measured repeatedly for each animal, 

for example observations are taken over time, then the 

dataset must be arranged in a slightly different format to 

that described above. In this format the measurements 

recorded for each response are still placed in a single col-

umn and so each animal is represented in multiple rows 

of the dataset. Two additional variables must be included 

in the dataset to identify the levels of the repeated factor 

and also the levels of the Animal factor that each obser-

vation corresponds to. Other variables, corresponding to 

the treatment factor(s), blocking factors and covariates 

can also be included as extra columns in the dataset. 

These datasets are described as long and thin. Table 6.2 

contains the first 14 rows of a dataset where each row 

corresponds to an individual animal at a time point. The 

Table 6.1. Table of the first 14 rows of a dataset in single measure format

Animal Strain Treatment Gender Block

Body weight

pretreatment

Body weight

post-treatment Touch response

1 Transgenic 0 mg/kg Male I 0.85 0.81 2

2 Transgenic 0 mg/kg Male I 0.69 0.98 2.5

3 Transgenic 0 mg/kg Male I 0.38 0.10 3

4 Transgenic 0 mg/kg Male I 0.19 0.97 3.5

5 Transgenic 1 mg/kg Male I 0.84 0.84 6

6 Transgenic 1 mg/kg Male I 0.78 0.71 5.5

7 Transgenic 1 mg/kg Male I 0.41 0.99 8

8 Transgenic 1 mg/kg Male I 0.50 0.44 8.5

9 Transgenic 5 mg/kg Male II 0.72 0.30 7.5

10 Transgenic 5 mg/kg Male II 0.16 0.52 6

11 Transgenic 5 mg/kg Male II 0.26 0.17 9

12 Transgenic 5 mg/kg Male II 0.69 0.99 8.5

13 Transgenic 0 mg/kg Female I 1.02 0.42 9

14 Transgenic 0 mg/kg Female I 1.71 0.73 6.5

… … … … … … … …

Table 6.2. Table of the first 14 rows of a dataset in 

repeated measures format

Animal Treatment Day Response

1 A 1 1.53

1 A 2 1.09

1 A 3 1.07

1 A 4 1.81

2 A 1 1.04

2 A 2 1.51

2 A 3 1.25

2 A 4 1.44

3 A 1 1.08

3 A 2 1.68

3 A 3 1.58

3 A 4 1.27

4 B 1 2.48

4 B 2 2.61

… … … …

Figure 6.1.  Screenshot of the input screen of InVivoStat.
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dataset involves one response (measured on each of the 

4 days), the treatment that the animal receives along with 

the Animal and Day variables.

6.1.2  Importing a dataset into InVivoStat: 
Excel import

The dataset can be loaded from the file menu (see 

Figure 6.1):

File → Load Dataset

The Excel file is selected, using standard Windows 

methodology. If the file has multiple worksheets, then 

the user is prompted to select one of the worksheets to 

import (see Figure 6.2).

6.1.3  Importing a dataset into InVivoStat:  
text file import

A csv version of the dataset can be opened directly in 

InVivoStat from the file menu:

File → Load Dataset

The user should then navigate to the csv file using 

standard Windows methodology.

6.1.4  Data management

It is recommended that any data manipulations are 

performed in Excel prior to importing the data into 

InVivoStat. However, there are a few operations that 

can be carried out within InVivoStat itself. Clicking on 

a column header (variable name) will sort the dataset 

by that variable.

The dataset can be edited within InVivoStat if the 

‘Allow Editing of Data’ option has been selected prior to 

opening the dataset. This option is available within the 

options window:

Statistics → Options → Allow Editing of Data

Individual observations can be deleted from the 

dataset by highlighting the cell and pressing delete 

on the keyboard. Individual observations can also be 

edited if required. Note that any edits to the data must 

be completed and finalised (by clicking off the active 

cell in the dataset) before running the analysis.

The user can also include a copy of the data, as ana-

lysed by InVivoStat, in the output. This can be selected 

within the options window:

Statistics → Options → Output Data with Results

6.1.5  Running an analysis

Once the dataset has been imported into InVivoStat, 

the user begins an analysis by opening the module 

of choice. The modules can be accessed by selecting 

the appropriate option from the statistics drop-down 

menu. Each module window contains two tabs.

Settings

On this tab the user selects all the options required to 

conduct the analysis. This includes the dataset to use 

in the analysis, the variable selection and the choice of 

analysis results.

Results

Once the options have been selected the user moves to 

the results tab. The analysis process begins with mod-

ule-specific data checks. If any of these checks reveal 

Figure 6.2.  Screenshot of the Excel input screen of InVivoStat 

when there are multiple sheets in the Excel file.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Analysis using InVivoStat242

issues with the dataset, then warning or error messages 

are produced. If no messages are generated then the 

results tab is displayed with the results of the analysis, 

including a description of the analysis and any content-

specific references. If selected, the output also includes 

a copy of the data.

6.1.6  Warning and error messages

When running an analysis, InVivoStat performs a ser-

ies of checks on the dataset prior to analysis. These can 

be categorised as error messages or warning messages, 

depending on the severity of the problem. Error mes-

sages are differentiated from warning messages by a 

red cross. An example of an error message is given in 

Figure 6.3.

If an error message is displayed, the analysis will not 

proceed. The user must return to the dataset and make 

changes where necessary, as described in the error 

message.

Warning messages are for information only and are 

identified by a yellow triangle. They may highlight the 

need for user intervention, but in most cases they merely 

identify a possible issue within the dataset. The user can 

proceed with the analysis following a warning message. 

An example of a warning message is given in Figure 6.4.

6.1.7  Log file

Once the analysis has been completed, the user can 

view the log file, which contains additional information 

about the analysis. The log is available by clicking on 

the ‘View Log’ button next to the report URL on the top 

right-hand side of the results window. The log should 

also be reviewed if the analysis results have not been 

generated as expected and the output is incomplete 

(i.e. no references are included at the end of the output). 

Viewing the log may give the user valuable information 

to help explain why InVivoStat did not complete the 

requested analysis.

6.1.8  Exporting results

Once the results have been generated then they can be 

exported in a number of formats. All results can be cut 

and pasted into other packages by either right clicking 

on the plots (then select copy) or highlighting the text or 

tables and right clicking. To paste a plot into another soft-

ware program, remember to use the ‘paste special’ com-

mand and paste as a bitmap. An output file is stored as a 

html file on the user’s computer. The location of this file is 

shown at the top of the output window (see Figure 6.5).

Clicking on the save icon (see Figure 6.5) allows the 

user to save the output in a number of different for-

mats including html, mht and text. We recommend 

using mht as this will save text, tables and figures 

together in a single file. Once created, an mht file can 

be opened directly in Microsoft Word. This method 

preserves all output formatting. Once open, individ-

ual results and figures can then be cut and pasted into 

other software using standard Microsoft Windows 

methodology.

6.2  Summary statistics module

The summary statistics module in InVivoStat is available 

from the statistics drop-down menu entitled ‘Summary 

Statistics’. The interface is shown in Figure 6.6.

The summary statistics module allows the user to 

generate summary statistics of the numerical variables 

Figure 6.3.  Screenshot of an InVivoStat error message.

Figure 6.4.  Screenshot of an example of an InVivoStat 

warning message.

 

 

 

 

 

 

 

 

 

 



Summary statistics module 243

within the dataset, as described in Section 5.2. Multiple 

variables can be selected and the summary statistics 

can be broken down by up to four different categorisa-

tion factors.

6.2.1  Analysis procedure

The analysis procedure is illustrated in Figure 6.7.

Input selection

1.	 Dataset selection: The analysis begins by select-

ing a dataset from the drop-down list of available 

imported datasets.

2.	 Response(s) selection: Multiple responses can 

be selected by dragging and dropping from the 

‘Available variables’ list into the ‘Responses’ box.

3.	 Response transformation: The user can transform 

the response variables using the log10, loge, square 

root or arcsine functions.

4.	 Categorisation factor(s) selection: Up to four fac-

tors (with either numeric or categorical factor lev-

els) can be selected for categorising the results by. 

Simply drag and drop the factors from the ‘Available 

variables’ list into the ‘Categorisation factor’ boxes.

Output selection

5.	 The user should select the output options by high-

lighting the required summary statistics. The default 

Save icon

Location of output files

Figure 6.5.  Screenshot of InVivoStat highlighting the location of an output file.

Figure 6.6.  Screenshot of the InVivoStat summary statistics 

module interface.

 

 

 

 

 

 

 

 



Analysis using InVivoStat244

confidence interval around the mean can also be 

changed from 95%.

6.2.2  Worked example

In the following example various summary statistics 

for Response 1 were calculated. The summary statistics 

were categorised by two factors, Treatment and Strain. 

The summary statistics were calculated separately for 

each combination of the two factors (see Table  6.3) 

and also overall, ignoring the categorisation factor (see 

Table 6.4).

6.3  Single measure parametric analysis 
module

The single measure parametric analysis module in 

InVivoStat is available from the statistics drop-down 

menu. The interface is shown in Figure  6.8. The single 

measure parametric analysis module performs many of 

the parametric tests described in Section 5.4 including 

the ANOVA, ANCOVA and t-tests. This module allows the 

user to fit multiple treatment factors, blocking factors and 

a single covariate. Interactions involving the treatment 

factors are included in the statistical analysis whereas 

interactions involving the blocking factors are not.

6.3.1  Analysis procedure

The analysis procedure is illustrated in Figure 6.9.

Stage 1

Stage 2 Stage 3

Stage 4 Stage 5

Figure 6.7.  Screenshot illustrating the five-stage process for 

the InVivoStat summary statistics module.

Table 6.3.  Summary statistics for Response 1 categorised by Treatment and Strain

Mean N Std dev Std error Lower 95% CI Upper 95% CI

Categorisation Factor levels 

0 mg/kg transgenic 1.0454 8  0.6353 0.2246 0.5143 1.5765 

0 mg/kg wildtype 1.0770 8  0.5966 0.2109 0.5783 1.5758 

1 mg/kg transgenic 1.1371 8  0.6058 0.2142 0.6306 1.6436 

1 mg/kg wildtype 1.0738 8  0.6597 0.2332 0.5223 1.6253 

5 mg/kg transgenic 0.9811 8  0.6355 0.2247 0.4498 1.5123 

5 mg/kg wildtype 1.0789 8  0.6874 0.2430 0.5042 1.6536 

Table 6.4.  Overall summary statistics, ignoring the categorisation factor(s), for Response 1

Mean N Std dev Std error Lower 95% CI Upper 95% CI

Response 1 1.0655 48  0.6044 0.0872 0.8900 1.2411 
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Input selection

1.	 Dataset selection: The analysis begins by select-

ing a dataset from the drop-down list of available 

imported datasets.

2.	 Variable selection: Once the dataset has been 

selected, the user can select the variables for analysis 

by dragging and dropping them from the ‘Available 

variables’ list into the ‘Response’, ‘Treatments (fac-

torial)’, ‘Other design (blocks)’ and ‘Covariate’ 

boxes.

3.	 Response transformation: Once selected, the user 

can apply a transformation to the response: log10, 

loge, square root, rank or arcsine. If a covariate has 

been selected, this will be transformed using the 

same transformation as the response, although this 

can changed manually if required.

4.	 Primary factor selection: If a covariate is selected, 

then the user can select the primary factor. This fac-

tor is used to categorise the scatterplot produced as 

part of the output (see Section 6.3.2). The primary 

factor should ideally be one of the factors of interest.

Output selection

5.	 ANOVA table: This option produces overall tests of the 

significance of the factors, interactions and covariates 

present in the statistical model (see Section 5.4.3).

6.	 Predicted vs. residuals plot: This plot allows 

the user to check the homogeneity of variance 

assumption of the parametric analysis (see 

Section 5.4.1).

7.	 Normal probability plot: This plot allows the user to 

check the normality assumption of the parametric 

analysis (see Section 5.4.1).

8.	 Significance level: The user can also choose the sig-

nificance level for the tests, the default being 0.05 

or 5%.

9.	 Selected effect: This is the effect that the user is 

interested in investigating further.

10.  Least square (predicted) means: InVivoStat pro-

duces a plot of the predicted means of the term 

in the statistical analysis that corresponds to the 

selected effect. These predicted means take into 

account terms included in the statistical analysis, 

such as the covariate (see Section 5.4.5).

11.	 All pairwise comparisons: This option produces 

all pairwise comparisons between the least square 

(predicted) means of the term corresponding to the 

selected effect. The user has the option of adjust-

ing the p-values for multiple comparisons. Options 

include Holm, Hochberg, Hommel, Benjamini–

Hochberg, Tukey and Bonferroni (see Section 

5.4.8).

12.	 Comparisons back to control: This option pro-

duces all-to-one comparisons between the least 

square (predicted) means of the term correspond-

ing to the selected effect. The user should select the 

group (to compare all other groups to) from the 

drop-down list. This option is only available if a fac-

tor is selected as the selected effect. The user has 

the option of adjusting the p-values for multiple 

comparisons. Options include Holm, Hochberg, 

Hommel, Benjamini–Hochberg, Dunnett and 

Bonferroni.

Output details

1.	 Response and covariate: InVivoStat identifies the 

response being analysed and also the covariate (if 

one is selected). This section also describes any 

transformations that have been applied.

Figure 6.8.  Screenshot of the InVivoStat single measure 

parametric analysis module interface.
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2.	 Scatterplot of the data: InVivoStat produces a scat-

terplot of the data. The X-axis corresponds to the 

levels of either the single treatment factor or the 

highest-order interaction between the treatment 

factors and the Y-axis corresponds to the response.

3.	 Categorised scatterplot of the data (ANCOVA only): 

When fitting a covariate in the statistical analysis, 

certain assumptions are made (see Section 5.4.6). 

This plot allows the user to assess these assump-

tions. Given below the plot is a description of the 

assumptions and also advice on how the plot should 

be used to assess them.

4.	 ANOVA/ANCOVA table: The ANOVA/ANCOVA table 

contains tests of the overall effects. InVivoStat uses the 

type II sums of squares in the statistical model fitting 

process (Armitage et al., 2002, pp. 355–6). Any statis-

tically significant results are shown below the table.

5.	 Diagnostic plots: If requested, InVivoStat produces 

the predicted vs. residuals plot and the normal 

probability plot. The residuals presented on the pre-

dicted vs. residuals plot are the externally studen-

tised residuals (see Section 5.4.1).

6.	 Plot of the least square (predicted) means: 

InVivoStat produces a plot and table of the least 

square (predicted) means from the analysis with 

confidence intervals.

7.	 All pairwise tests: InVivoStat produces a table of all 

pairwise comparisons between the levels of the factor 

or interaction corresponding to the selected effect. As 

well as the size of the difference between the means, 

and associated confidence intervals, InVivoStat also 

provides p-values to test the statistical significance of 

the differences. These p-values are either unadjusted 

for multiplicity or presented with a multiple com-

parison adjustment (see Section 5.4.8).

8.	 All-to-one comparisons: InVivoStat produces a 

table of all-to-one pairwise comparisons between 

the levels of the factor or interaction corresponding 

to the selected effect. As well as the size of the diffe-

rence between the means, and associated confi-

dence intervals, InVivoStat provides p-values either 

unadjusted for multiplicity or with a multiple com-

parison adjustment (see Section 5.4.8).

9.	 References: Finally, references for the methods 

applied in the analysis are given.

6.3.2  Worked example

A behavioural experiment was conducted that con-

sisted of three factors of interest: Strain, Gender and 

Treatment. Baseline responses were also measured 

and it was decided to investigate if these measurements 

Stage 1

Stage 2

Stage 5

Stage 3

Stage 6

Stage 4

Stage 7

Stage 8

Stage 9

Stage 10

Stage 11

Stage 12

Figure 6.9.  Screenshot illustrating the 12-stage process for the InVivoStat single measure parametric analysis module.
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could be used as a covariate to reduce the between-ani-

mal variability. The data was analysed using the single 

measure parametric analysis module.

The scatterplot of the original data, see Figure  6.10, 

highlighted the clear difference between the responses 

from the male and female animals. Given the underlying 

variability of the responses (which appear to be similar 

across all experimental groups), there did not appear to 

be any obvious outliers. If, however, the within-group 

standard deviations were used to identify outliers, per-

haps using the rule that any observation beyond two 

standard deviations is deemed to be an outlier, then the 

two low observations in the female transgenic 0 mg/kg 

and 1 mg/kg groups would have been declared outliers. 

We argue these results are probably not outliers, given 

the variability observed in the other groups.

The categorised scatterplot, with best-fit lines (see 

Section 5.4.6), highlighted that there was no strong 

relationship between the response and baseline 

measurements (Figure  6.11). This indicated it may 

be unwise to include the baseline measurement as a 

covariate in the statistical analysis. For the purposes 

of this illustration, however, we shall proceed with the 

ANCOVA analysis rather than reanalyse the data with-

out the covariate.

Table 6.5 is the three-way ANCOVA table. The base-

line covariate was not significant (F(1,35) = 0.03, p = 0.873). 

There was, however, a significant overall difference 

between males and females (F(1,35) = 120.37, p < 0.001). 

None of the other terms were statistically significant.

The predicted vs. residuals plot (see Figure  6.12) 

highlighted that there was no need to transform the 
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Figure 6.10.  Scatterplot of the responses, categorised by the 

three-way interaction between Strain, Gender and Treatment.
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Figure 6.11.  Categorised scatterplot of the Response 

vs. Baseline covariate, categorised by the primary factor 

(Treatment).
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Figure 6.12.  Externally studentised residuals vs. the 

predicted values from the statistical model.
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data. The sizes of the residuals for the groups with the 

lower predicted responses (with a mean around 0.5) 

were similar to those groups with the higher predicted 

responses (with a mean around 1.6).

As the researcher wished to compare the treat-

ments to control separately for each Gender/Strain 

combination, the ‘All pairwise comparisons’ option 

was selected. Table  6.6 contains selected results of 

interest from the table of all pairwise comparisons of 

the levels of the Gender:Strain:Treatment three-way 

interaction.

The table of all pairwise comparisons revealed that none 

of the treatment group means were significantly different 

from control. If the user wished to adjust these p-values for 

multiplicity (see Section 5.4.8), then all p-values of interest 

should be extracted from this table and the p-value adjust-

ment module employed to make an adjustment for multi-

plicity based on the correct number of comparisons.

Table 6.5.  Three-way ANCOVA table

Sums of Squares Degrees of 
Freedom  Mean Square F-value  p-value 

Baseline 0.00 1 0.00 0.03 0.873 

Gender 12.62 1 12.62 120.37 < 0.001 

Strain 0.01 1 0.01 0.05 0.822 

Treatment 0.04 2 0.02 0.21 0.809 

Gender:Strain 0.01 1 0.01 0.07 0.799 

Gender:Treatment 0.06 2 0.03 0.27 0.763 

Strain:Treatment 0.05 2 0.03 0.25 0.783 

Gender:Strain:Treatment 0.04 2 0.02 0.21 0.812 

Residuals 3.67 35 0.10 

Table 6.6.  Three-way ANCOVA table

Difference Lower 95% 
CI  

Upper 95% 
CI  Std error p-value 

Comparison 

female transgenic 1 mg/kg vs. female transgenic 0 mg/kg 0.085  -0.389  0.559  0.233  0.718  

female transgenic 5 mg/kg vs. female transgenic 0 mg/kg -0.051  -0.523  0.421  0.232  0.828  

female wildtype 1 mg/kg vs. female wildtype 0 mg/kg 0.090  -0.384  0.563  0.233  0.703  

female wildtype 5 mg/kg vs. female wildtype 0 mg/kg 0.161  -0.310  0.631  0.232  0.492  

male transgenic 1 mg/kg vs. male transgenic 0 mg/kg 0.106  -0.359  0.571  0.229  0.647  

male transgenic 5 mg/kg vs. male transgenic 0 mg/kg -0.076  -0.547  0.395  0.232  0.745  

male wildtype 1 mg/kg vs. male wildtype 0 mg/kg -0.087  -0.557  0.384  0.232  0.710  

male wildtype 5 mg/kg vs. male wildtype 0 mg/kg -0.155  -0.620  0.309  0.229  0.502  
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6.3.3  Technical details

In this section we consider some of the technical 

details of the single measure parametric analysis mod-

ule. In particular we describe how to use this module 

to analyse data generated when employing some of the 

experimental designs defined in Chapter 3.

Analysis of large factorial experiments

A factorial experiment is defined as an experiment con-

ducted to assess two or more crossed factors of interest 

(see Section 3.5). As discussed above, such experiments 

allow the researcher to investigate the interactions 

between factors.

In Section 3.5 we differentiated between small and 

large factorial designs. Large factorial designs usually 

consist of many factors and therefore inevitably involve 

many combinations of the levels of the individual fac-

tors. To keep experiments manageable (and ethically 

justifiable) the sample size at each combination of 

the factor levels has to be small. The purpose of these 

experiments is to investigate the overall effect of the fac-

tors (and their interactions) rather than make pairwise 

comparisons between the predicted means. The sample 

size at each of the combinations of the factor levels is not 

sufficiently large to make meaningful pairwise compari-

sons between the predicted means. So the set of results 

from the analysis of such experiments should include 

an ANOVA/ANCOVA table, diagnostic plots and a plot 

or table of the least square (predicted) means. It is not 

recommended that the researcher make any planned 

comparisons when using large factorial designs.

Analysis of small factorial experiments

In practice many of the factorial experiments carried 

out will employ small factorial designs. These designs 

involve fewer factors, perhaps two or three at most, 

with a suitably large sample size at each combination 

of the levels of the factors so that pairwise compari-

sons between the means are sufficiently powered (see 

Section 3.5.3).

Care must be taken when making planned compari-

sons between the levels of the factors in the statistical 

analysis. You should not compare levels of a factor if 

a higher-order interaction involving that factor is stat-

istically significant. For example, consider a two-way 

factorial experiment involving factors Gender and 

Treatment where the Gender by Treatment interaction 

is statistically significant. This implies that the effect of 

the treatment varies depending on the sex of the ani-

mal. So it would be misleading to compare the levels 

of the Treatment factor ignoring gender. The treatment 

comparisons should be made separately for each sex.

In general you should only compare the levels of a 

factor if all interactions involving that factor are not 

statistically significant, in which case it can be argued 

that the non-significant interaction(s) should be 

removed from the statistical model. InVivoStat uses this 

approach when carrying out an analysis of data gener-

ated from small factorial experiments.

InVivoStat always produces the ANOVA table includ-•	

ing all factors of interest and all interactions involving 

these factors. This allows the user to investigate the 

significance of all the terms in the analysis including 

the higher-order interactions. We define this as the 

full statistical model.

If the user selects the highest-order interaction as the •	

selected effect, then InVivoStat uses the full statistical 

model when making the planned pairwise compari-

sons between the levels of this interaction.

If the user selects one of the factors of interest as •	

the selected effect, then InVivoStat uses a reduced 

statistical model when calculating the least square 

(predicted) means and pairwise comparisons. This 

reduced statistical model will include all the factors 

but will not include any of the interactions involving 

the selected effect.

For analyses involving more than two treatment fac-•	

tors of interest, if the user selects a selected effect that 

is an interaction but not the highest-order interaction, 

then InVivoStat uses a reduced statistical model when 

calculating the least square (predicted) means and 

pairwise comparisons, where any higher-order inter-

actions involving the selected effect are excluded.

For example, consider an experimental design with 

two crossed factors (Treatment and Strain). The data 

generated were analysed in InVivoStat using a two-

way ANOVA approach where Treatment, Strain and 
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the Treatment by Strain interaction were included 

in the statistical analysis. If the researcher selected 

the Treatment factor as the selected effect, then the 

Treatment by Strain interaction would have been 

removed from the statistical model prior to making the 

pairwise comparisons of the levels of the Treatment 

factor.

This approach helps the researcher to avoid the 

situation where, for example, the levels of a factor are 

compared in the presence of a statistically significant 

two-way interaction in the statistical model. If the 

two-way interaction is significant, then the levels of 

the two-way interaction should be compared rather 

than the levels of a factor in the presence of the inter-

action. The latter comparisons may be misleading for 

the reasons highlighted above.

Example 6.1:  Assessing the effect of maternal separation

An experiment was conducted to assess the long-term effect of 

maternal separation on behavioural and neuroendocrine indices 

(Slotten et al., 2006). Male and female rat pups were assigned to 

either a treatment group (which underwent maternal separation for 

3 hours on postnatal days 3–15) or a non-handled control group. For 

simplicity we shall consider only the female pups in this discussion. 

Various tests were performed on the animals over time, but we shall 

focus on the measurement of plasma corticosterone levels. Animals 

in each treatment arm were either restrained for 20 minutes prior 

to being humanely killed, or killed immediately upon removal from 

the home cage. There were therefore two factors in the experiment: 

Treatment (levels: maternal separation and non-handling) and 

Restraint (levels: no restraint and restraint). The full-factorial design 

used is illustrated in Figure 6.13.

The full statistical model for the analysis included:

Factors:    Treatment, Restraint

Two-way    interaction: Treatment:Gender

If the user chose the two-way interaction as the selected effect, •	

then the full statistical model would be used to calculate the 

planned comparisons.

If the user selected one of the factors as the selected effect (for •	

example Treatment), then the reduced statistical model used to 

make the planned comparisons would have included:

Factors:  Treatment, Restraint

When the statistical model used in the analysis (to compute the 

planned comparisons) is not the full statistical model, a warning 

is included in the analysis log. For example, if the user decided to 

investigate the effect of the treatment then the Treatment factor 

should be chosen as the selected effect. This would have generated 

the following message in the log:

You have selected to plot/compare levels of a main factor in the 

presence of a higher-order interaction(s). This should only be carried 

out if the higher-order interaction(s) are not statistically significant. 

In the following we have removed these interaction(s) from the 

model prior to making the comparisons. The actual model fitted is 

Response ~ Restraint + Selected effect

Note that in this case the selected effect was Treatment and hence

Response ~ Restraint + Selected effect

corresponded to

Response ~ Restraint + Treatment.

The ‘~’ notation is used by the statistical language R when the term 

on the left-hand side of an equation is the variable being analysed 

and the term(s) on the right-hand side corresponds to the factors, 

interactions and any covariates in the statistical model.

Analysis of experiments involving blocking 
factors

The statistical analysis of data generated from experi-

ments employing block designs, or more generally 

experiments where the researcher wishes to include a 

blocking factor in the analysis, can easily be carried out 

within the single measure parametric analysis module.

Recall that the purpose of including a blocking fac-

tor in an analysis is simply to reduce the underlying 

(unaccounted for) variability (see Section 3.4.2). We 

achieve this by removing the variability that can be 

explained by the levels of the blocking factor. So if an 

experiment was conducted over 2  days, and all the 

results on day 2 were higher than on day 1, then this 

extra variability could be removed by fitting Day as a 

blocking factor in the analysis.

Two things should be apparent to the reader from the 

above statement:

Non-
handling

Maternal
separation

Treatment

Restraint

No-restraint

Restraint

Figure 6.13.  Full-factorial experimental design used in 

Example 6.1.
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We do not want to conduct a test to see if the levels of •	

the blocking factor are significantly different. It does 

not matter if there is a significant difference between 

day 1 and day 2: all that matters is that we account for 

the day-to-day variability in the analysis.

We do not expect the treatment effect to be dif-•	

ferent within each block. So the results may all be 

higher on day 2, but this increase will affect all ani-

mals (regardless of the treatment they receive). In 

other words we assume there are no interaction(s) 

between the treatment factor(s) and the blocking 

factor(s).

Recall the randomisation recommended for a block 

design. We randomise treatments to the animals sep-

arately for each block. By considering this randomisa-

tion it can be shown that, referring to the two bullets 

above:

There is no randomisation-based justification for •	

testing whether the levels of the blocking factor are 

significantly different from each other.

There is no randomisation-based justification for •	

including any interactions involving the blocking fac-

tors in the statistical analysis.

InVivoStat does not provide the user with the ability to 

assess the pairwise differences between the means of 

the levels of the blocking factor(s). Nor does it include 

any interactions involving the blocking factor(s) in the 

statistical analysis.

When using the single measures parametric analysis 

module, selecting a blocking factor involves simply 

dragging and dropping the relevant variable from the 

‘Available variables’ list into the ‘Other design (blocks)’ 

box (see Figure  6.14). Other options are the same as 

above in the analysis of factorial experiments.

Figure 6.14.  Screenshot highlighting the inclusion of a blocking factor in the statistical analysis.
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Analysis of crossover trials

In a crossover trial each animal receives two or more 

of the treatments over time and hence is measured 

repeatedly over time. Assuming only one observa-

tion is taken per animal per test period, then the data 

can be analysed using the single measure paramet-

ric analysis module. As long as the animals are ran-

domly assigned to the treatment sequences, and the 

treatments themselves are randomly assigned to the 

treatment labels of the design, then we can assume 

independence between the observations measured 

for each animal. Effectively, as discussed in Section 

3.4.9, a crossover design is a special case of a two-way 

block design.

In the dataset the user will need to include a vari-

able indicating which test period the measurement was 

taken in and a second variable indicating the animal 

that the response was taken from (along with variables 

defining any treatment factors and so on). The dataset 

for a crossover trial will contain one row per animal per 

test period. As discussed in Section 3.4.9, this combin-

ation corresponds to the experimental units in a cross-

over trial. The dataset will also contain variables defin-

ing which animal the response corresponds to (Animal 

factor) and which test period the measurement was 

taken in (Test period factor). These factors should be 

dragged and dropped into the ‘Other design (blocking)’ 

box in the single measure parametric analysis inter-

face. This implies that the Animal factor will be defined 

as a fixed factor in the analysis of crossover trials. It is 

possible in other statistical packages to define Animal 

as a random factor, but the benefits are minimal espe-

cially if each animal receives all treatments during the 

experiment.

Figure 6.15.  Screenshot highlighting the options required for the analysis of a crossover trial using InVivoStat.
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Figure  6.15 illustrates the options required when 

analysing a crossover trial. The selection implies that 

no interactions involving either Animal or Test period 

will be included in the statistical analysis. This agrees 

with the general analysis procedure described in many 

textbooks, for example Jones and Kenward (2003, 

pp. 205–8).

Analysis of designs with missing factor 
combinations

The single measure parametric analysis module will 

not allow the user to analyse data if there are any miss-

ing combinations of the levels of the factors of inter-

est. Instead a warning message is given highlighting 

the problem. This issue can occur if the experimental 

design is not of full-factorial type. There are two pos-

sible solutions:

As described above, manually combine two factors •	

together and use this new combined factor in the 

analysis instead of the two original factors.

Move one of the treatment factors into the ‘Other •	

design (blocks)’ box. This has the effect of omitting 

the interaction between the two factors from the ana-

lysis. However, you can then only compare the lev-

els of the single treatment factor within InVivoStat. 

If you are interested in the levels of the interaction 

itself, then this approach will not allow you to make 

any pairwise tests between the levels of the inter-

action. In this case the first option is perhaps more 

appropriate.

6.4  Repeated measures parametric analysis 
module

The repeated measures parametric analysis module in 

InVivoStat is available from the statistics drop-down 

menu entitled ‘Repeated Measures Parametric Analysis’. 

The interface is shown in Figure 6.16.

The repeated measures parametric analysis module 

performs a repeated measures mixed-model analysis. 

The module allows the user to fit multiple treatment 

factors, blocking factors and a single covariate. All inter-

actions involving the treatment factors are included in 

the statistical analysis whereas interactions involving 

the blocking factors are not.

6.4.1  Analysis procedure

The analysis procedure is illustrated in Figure 6.17.

Input selection

1.	 Dataset selection: The analysis begins by select-

ing a dataset from the drop-down list of available 

imported datasets.

2.	 Variable selection: Once the dataset has been 

opened, the user can select the variables to include 

in the analysis by dragging and dropping them from 

the ‘Available variables’ list into the ‘Response’, 

‘Treatments (factorial)’, ‘Other design (blocks)’, 

‘Covariate’, ‘Repeated factor’ and ‘Subject fac-

tor’ boxes. The subject factor (usually Animal), a 

repeated factor and at least one treatment factor 

must be selected before the analysis can proceed.

3.	 Response transformation: Once selected, the user 

has the option of applying a transformation to 

the response: log10, loge, square root, rank or arc-

sine. If a covariate has been selected, this will be 

transformed using the same transformation as the 

response, although this can be changed manually if 

required.

4.	 Primary factor selection: If a covariate is selected, 

then the user has the option of selecting the pri-

mary factor. This factor is used to categorise the 

scatterplot produced as part of the output. The pri-

mary factor should ideally be one of the factors of 

interest.

5.	 Covariance structure: Finally the user can select a 

covariance structure to quantify the spatial inter-

relationships between the within-animal obser-

vations (see Section 5.4.4). The default option is 

the compound symmetric structure (all observa-

tions within-animal are equally correlated). Other 

options include autoregressive (recommended if 

the repeated factor is Time and the time points are 

equally spaced) or unstructured (recommended if 

the sample sizes are not too small). These options 

can be selected from the drop-down list.
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Output selection

6.	 Overall tests of model effects: This option produces 

overall tests of the significance of the factors, inter-

actions and covariates present in the statistical 

model.

7.	 Predicted vs. residuals plot: This plot allows the user 

to check the homogeneity of the variance assump-

tion of the parametric analysis where appropriate 

(see Section 5.4.1).

8.	 Normal probability plot: This plot allows the user to 

check the normality assumption of the parametric 

analysis (see Section 5.4.1).

9.	 Least square (predicted) means: The repeated 

measures parametric analysis module produces a 

plot of the least square (predicted) means (with 

confidence intervals) of either the treatment 

factor across the levels of the repeated factor (if 

only a single between-animal factor is included 

in the analysis) or the highest-order interaction 

across the levels of the repeated factor (if mul-

tiple between-animal factors are included in the 

analysis).

10.	 Significance level: The user can also choose the sig-

nificance level for the tests, the default being 0.05 

or 5%.

Figure 6.16.  Screenshot of the InVivoStat repeated measures parametric analysis module interface.
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11.	 Selected effect: This is the effect the user wishes to 

investigate further.

12.	 All pairwise comparisons within repeated factor 

levels: This option produces all pairwise com-

parisons (within each level of the repeated factor) 

between the least square (predicted) means of the 

term corresponding to the selected effect.

13.	 All pairwise comparisons: If the user wishes to 

assess how the individual factor levels change 

across the levels of the repeated factor, then the ‘All 

pairwise comparisons’ option should be selected. 

This option can potentially produce many pair-

wise tests, so only those comparisons planned in 

advance should be considered.

Output details

1.	 Response, covariance structure and covariate: 

InVivoStat identifies the response being analysed, 

the covariance structure used and also the covari-

ate (if one is selected). This section also describes 

any transformations that have been applied to the 

response and covariate.

2.	 Categorised case profile of the data: InVivoStat 

produces a categorised case profile of the data (see 

Section 5.3.4). The plot is categorised by either the 

treatment factor (if only a single between-animal 

factor is included in the analysis) or the levels of 

the highest-order treatment interaction (if multiple 

between-animal treatment factors are included in 

the statistical analysis).

3.	 Categorised scatterplot of the data: When fitting a 

covariate in a statistical analysis, certain assump-

tions are made (see Section 5.4.6). This plot allows 

the user to assess these assumptions. Given below 

the plot is a list of the assumptions and also advice 

on how the plot can be used to assess them. The 

scatterplot is categorised by the levels of the pri-

mary factor at each level of the repeated factor.

4.	 Overall tests of statistical model effects table: The 

ANOVA-style table contains overall tests of the 

significance of the terms present in the statis-

tical model. Any statistically significant results are 

described below the table.

5.	 Diagnostic plots: If requested InVivoStat produces 

the predicted vs. residuals plot and the normal 

Stage 1

Stage 2

Stage 6

Stage 3

Stage 7

Stage 4

Stage 8

Stage 9

Stage 10

Stage 11

Stage 12

Stage 13

Stage 5

Figure 6.17.  Screenshot illustrating the 13-stage process for the InVivoStat repeated measures parametric analysis module.
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probability plot. The residuals on the predicted 

vs. residuals plot are the standardised residuals as 

these provide a test for outliers (see Section 5.4.1). 

Any observation with a residual greater (or less 

than) three could be considered an outlier. Care 

should be taken though when using this plot as the 

within-animal variability is used in the calculation 

to standardise the residuals.

6.	 Plot of the least square (predicted) means: 

InVivoStat produces a plot and table of the pre-

dicted means of either the treatment factor at 

each level of the repeated factor (if only a single 

between-animal factor is included in the analysis) 

or the highest-order interaction at each level of the 

repeated factor (if multiple between-animal factors 

are included in the analysis). Also included on the 

plot are confidence intervals around the predicted 

means, calculated using the between-animal 

variability.

7.	 Pairwise comparisons on the least square (pre-

dicted) means: InVivoStat produces a table of all 

pairwise comparisons between the levels of the 

term corresponding to the selected effect. This can 

be performed either at each level of the repeated 

factor or across the levels of the repeated factor. As 

well as the size of the difference between the means, 

and confidence intervals, InVivoStat also provides 

p-values to assess the significance of these differ-

ences. A list of statistically significant comparisons 

is given below the table.

8.	 References: Finally, references for the methods 

applied in the analysis are given.

6.4.2  Worked example

Consider an experiment where animals were adminis-

tered one of three treatments (factor Treatment, levels: 

A, B and C). The response of each animal to the treat-

ment was then measured once per day for 4 days (factor 

Day, levels: 1, 2, 3 and 4). The data were analysed using 

the repeated measures parametric analysis module. As 

the time points were equally spaced, it was assumed 

that the within-animal covariance structure was 

autoregressive. The options selected are highlighted in 

Figure 6.18.

Categorised case profiles plot

A categorised case profiles plot revealed a large treat-

ment effect (Figure  6.19). It also revealed that each 

animal’s response to treatment was stable over time. 

Perhaps a one-way ANOVA on the mean summary 

measure (the average of each animal’s responses over 

the 4 days) could have been analysed instead.

Table 6.7 lists the tests of the overall effects. There was 

a significant effect of Treatment (F(2,6) = 448.9, p < 0.001) 

but no overall effect of Day (F(3,18) = 0.42, p = 0.742) or 

any evidence that the effect of the treatment varied over 

time (F(6,18) = 1.35, p = 0.287).

Using the approach described in Section 5.4.4, the 

Treatment factor was tested against the between-ani-

mal variability (denominator of the degrees of freedom 

is 6) whereas the Day factor and the Treatment by Day 

interaction were tested against the within-animal vari-

ability (denominator of the degrees of freedom is 18). 

We can see this by considering the total number of ani-

mals and days:

Between-animal df No. of animals

mean Treatment

=

=
– –

– –

df df

9 1 2

.=

= ×

6

Within-animal df No. of animals

No. of time points–

– –

– – –

.

1

9 4 1 3 6

18

( )

( )= ×
=

df dfDay Treatment:Day

The predicted vs. residuals plot indicated there was 

no need to transform the data (see Figure  6.20). The 

variability appears similar across the range of the pre-

dicted values. The pairwise tests between treatments 

are given in Table  6.8. The tests revealed significant 

differences between the treatment means at all time 

points.

6.4.3  Technical details

Repeated measures analyses are carried out in 

InVivoStat using a mixed-model implementation within 

the nlme package in R (Pinheiro et al., 2008). With this 
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analysis approach the researcher can take account of 

the spatial interrelationships between responses meas-

ured on the same animal. It should be noted that this is 

not the only way to analyse such data; see Crowder and 

Hand (1990) for other methods and software options 

available.

InVivoStat does not offer any multiple comparison 

adjustment procedures in the repeated measures para-

metric analysis module. This is for two reasons:

Within a repeated measures analysis, if an automated •	

procedure is used to calculate the adjusted p-values, 

then the family of tests that are adjusted for is likely 

to be larger than is required. For example, it is highly 

unlikely that a comparison between the control 

group on day 1 and a treated group on day 7 will be 

of practical interest. Unless the researcher can define 

specifically which comparisons are of interest, then 

an automated procedure will adjust for all possible 

pairwise comparisons. This implies that the multiple 

comparison adjustment will be larger than it needs 

to be.

As the observations measured within-animal are •	

related, so will be the p-values for the group mean 

comparisons. This lack of independence in the tests 

may not be taken into account by an automated mul-

tiple comparison procedure.

Figure 6.18.  Screenshot of the options required for the repeated measures worked example.
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Figure 6.19.  Categorised case profiles plot for the repeated measures worked example.

Table 6.7.  Tests of overall effects

Num. df Den. df F-value p-value 

Treatment 2 6 448.90 < 0.001 

Day 3 18 0.42 0.742 

Treatment:Day 6 18 1.35 0.287 
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For a given selected effect, InVivoStat will make all pair-

wise comparisons between the levels of the term cor-

responding to the selected effect. The default option is 

only to make these comparisons within each level of 

the repeated factor, although there is an option to make 

comparisons across the levels of the repeated factor by 

generating all possible pairwise tests.

We recommend either:

Use the unadjusted •	 p-values themselves, as produced 

within the repeated measures parametric analysis 

module, but only use those that are of interest – the 

so-called planned comparisons.

Adjust the •	 p-values generated using the p-value 

adjustment module in InVivoStat (see Section 6.5).

6.5  p-value adjustment module

Within InVivoStat, the p-value adjustment module 

allows the researcher to apply a multiple comparison 

procedure to a set of unadjusted p-values. Available 

procedures include Holm, Hochberg, Hommel and 

Benjamini–Hochberg.

To begin with the researcher generates the unadjusted 

p-values using one of the other InVivoStat modules 

1.5 2.0 2.5 3.0 3.5 4.0 4.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Predicted vs. residuals plot

Predicted values

S
ta

nd
ar

di
se

d 
re

si
du

al
s

Figure 6.20.  Predicted vs. residuals plot for the repeated 

measures worked example.

Table 6.8.  Pairwise comparisons within the levels of the repeated factor

Difference Lower 95% CI Upper 95% CI Std error p-value  

Comparison 

1 : B vs. A 1.209 0.745 1.674 0.221 < 0.001 

1 : C vs. A 3.377 2.913 3.841 0.221 < 0.001 

2 : B vs. A 1.026 0.562 1.491 0.221 < 0.001 

2 : C vs. A 2.975 2.511 3.440 0.221 < 0.001 

3 : B vs. A 1.259 0.795 1.724 0.221 < 0.001 

3 : C vs. A 2.867 2.402 3.331 0.221 < 0.001 

4 : B vs. A 0.743 0.279 1.208 0.221 0.003 

4 : C vs. A 2.663 2.199 3.128 0.221 < 0.001 

1 : C vs. B 2.168 1.703 2.632 0.221 < 0.001 

2 : C vs. B 1.949 1.485 2.413 0.221 < 0.001 

3 : C vs. B 1.607 1.143 2.072 0.221 < 0.001 

4 : C vs. B 1.920 1.455 2.384 0.221 < 0.001 
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or perhaps another statistical software package. The 

p-values from this family of tests (see Section 5.4.8) are 

then adjusted using the procedure of choice. The size 

of the adjustment depends on the procedure selected 

and also the number of tests. The module therefore pro-

vides a flexible way of performing a multiple compari-

son procedure as it makes the requested adjustment 

based on the correct family of tests. Hence unlike other 

automated implementations it is not overly conserva-

tive as it does not adjust for too many comparisons. The 

interface is shown in Figure 6.21.

6.5.1  Analysis procedure

The analysis procedure is illustrated in Figure 6.22.

Input selection

1.	 Entering the p-values: The p-values are entered 

in the input box (comma separated and without 

spaces). The user can enter p-values of the form 

<0.001 and <0.0001 where necessary.

Output selection

2.	 Defining the procedure: The user then selects a pro-

cedure from the drop-down list.

3.	 Significance level: The user can also choose the sig-

nificance level, the default being 0.05 or 5%.

Output details

The output contains a table of the adjusted and 

unadjusted p-values. If the user enters a p-value of 

the form <0.001 then the p-value adjustment mod-

ule assumes the true p-value is 0.0009. This will give 

a slightly conservative adjusted p-value. A warning is 

given in the output to highlight that this approach has 

been taken.

6.5.2  Worked example

Consider an example where the researcher has calcu-

lated the unadjusted p-values as:

0.072, 0.211, <0.001 and 0.049

using the single measure parametric analysis module. 

It was decided that an adjustment to these p-values 

was required (to avoid making false positive conclu-

sions) and the Hochberg procedure (at the 5% signif-

icance level) was selected. The family of tests to adjust 

for is therefore of size four. The results are given in 

Table 6.9.

The unadjusted p-value <0.001 was statistically sig-

nificant at the 5% level, using the Hochberg procedure. 

However, consider the p-value of 0.049. Without adjust-

ment this p-value was declared significant at the 5% 

level as p < 0.05. However, following adjustment it was 

not significant. Perhaps this was originally a false pos-

itive result.

Notice that the adjusted p-values for the second and 

third most significant comparisons are the same value. 

This is because when applying the Hochberg proced-

ure, described in Section 5.4.8:

′ = × =p2 0 072 2 0 144. .

and

′ = × =p3 0 049 3 0 147. . .

Now clearly it is not sensible for the adjusted p-values 

to be in a different order (by size) to the unadjusted 

p-values. When this occurs it is common convention 

that both adjusted p-values are given the same numer-

ical value (to preserve the original order).

Figure 6.21.  Screenshot of the InVivoStat p-value adjustment 

module interface.
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6.6  Non-parametric analysis module

The non-parametric analysis module in InVivoStat is 

available from the statistics drop-down menu entitled 

‘Non-Parametric Analysis’. The interface is given in 

Figure 6.23.

The non-parametric analysis module performs the 

Kruskal–Wallis test, the Mann–Whitney test (also known 

as Wilcoxon rank sum test), Steel’s all comparisons back 

to one test and the Behrens–Fisher all pairwise tests.

6.6.1  Analysis procedure

The analysis procedure is illustrated in Figure 6.24.

Input selection

1.	 Dataset selection: The analysis begins by select-

ing a dataset from the drop-down list of available 

imported datasets.

2.	 Response and treatment variable selection: The 

response variable and the treatment factor are then 

selected from the ‘Available variables’ list by drag-

ging and dropping the relevant variables into the 

‘Response’ and ‘Treatment’ boxes.

Output selection

3.	 Overall comparison: This option produces an over-

all test of the differences between the treatment 

factor levels. This is either a Mann–Whitney test, if 

Stage 1

Stage 2

Stage 3

Figure 6.22.  Screenshot illustrating the three-stage process for the InVivoStat p-value adjustment module.

Table 6.9.  Unadjusted and adjusted p-values for the 

Hochberg procedure within the p-value adjustment 

module

Unadjusted p-value Adjusted p-value

1 <0.001 0.004 

2 0.049 0.144 

3 0.072 0.144 

4 0.211 0.211 

Figure 6.23.  Screenshot of the InVivoStat non-parametric 

analysis module interface.
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there are only two levels of the treatment factor, or a 

Kruskal–Wallis test otherwise.

4.	 All treatment comparisons: If this option is selected, 

then InVivoStat calculates the Behrens–Fisher 

all pairwise tests along with all pairwise Mann–

Whitney tests.

5.	 Comparisons back to control: If selected, InVivoStat 

performs Steel’s all comparisons back to one test. 

The user is required to select the control group from 

a drop-down list.

6.	 Significance level: The user can also choose the sig-

nificance level for the tests, the default being 0.05 

or 5%.

Output details

1.	 Summary statistics: InVivoStat produces a table of 

summary statistics including the median, the inter-

quartile range (Q1 and Q3), the minimum observa-

tion and the maximum observation. Each row of the 

table corresponds to one of the levels of the treat-

ment factor.

2.	 Box-plot: InVivoStat produces a box-plot of the 

data, as described in Section 5.3.2, categorised by 

the treatment factor.

3.	 Overall or pairwise tests: Depending on the option 

selected, a table of test results is generated. This is 

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Figure 6.24.  Screenshot illustrating the six-stage process for the InVivoStat non-parametric analysis module.

Table 6.10.  Summary statistics generated by the non-parametric 

analysis module within InVivoStat

Minimum Q1  Median  Q3  Maximum 

Group 

A 43.000 48.000 53.500 59.500 65.000 

B 34.000 39.500 55.000 70.500 76.000 

C 3.000 45.000 92.500 277.000 456.000 

D 45.000 60.500 155.000 384.000 534.000 
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a Kruskal–Wallis or Mann–Whitney test (depending 

on the number of levels of the treatment factor), the 

Behrens–Fisher all pairwise tests and all pairwise 

Mann–Whitney tests or Steel’s all comparisons back 

to one test.

4.	 Conclusions: A summary of the conclusions of the 

analysis is given, at the selected significance level.

5.	 Description of analysis: A description of the ana-

lysis is presented.

6.	 References: Finally, references for the methods 

applied in the analysis are given.

6.6.2  Worked example

Consider an experiment involving four treatments (fac-
tor Treatment: levels A, B, C and D) administered to 
four animals per treatment. Due to concerns about the 
variability of the response, it was decided to analyse the 
data using the non-parametric analysis module.

Summary data

The output from InVivoStat begins with a table of sum-

mary measures, giving an indication of the range of 

responses within each group. This includes the mid-

dle observation (the median), the minimum and max-

imum observation within each group and also the 

range containing the middle 50% of the data (Q1 to Q3); 

see Table 6.10.

Box-plot

The values in Table 6.10 are illustrated using a box-plot 

(see Figure  6.25). The box-plot reveals the response 

variability is higher in treatment groups C and D.

Overall test

On selecting the Kruskal–Wallis overall comparison 

option, InVivoStat calculates the Kruskal–Wallis overall 

test of treatment effects. This test reveals that the over-

all difference between the treatments was not statistic-

ally significant (p = 0.298); see Table 6.11. Perhaps this 

was because the test lacked statistical power due to the 

small sample size. Performing a parametric analysis, 

perhaps following a log transformation of the response 

variable, may have been a more sensitive test.

All pairwise comparisons

We could also make pairwise comparisons between 

the treatment groups (Mann–Whitney tests) by select-

ing the ‘All treatment comparisons’ option. As expected 

none of the comparisons were statistically significant (p 

≥ 0.189); see Table 6.12.

6.7  Graphics module

The graphics module allows the user to produce means 

with SEMs plots, scatterplots, box-plots, histograms 

and case profiles plots, as described in Section 5.3. The 

interface is shown in Figure 6.26.

6.7.1  Analysis procedure

The analysis procedure is illustrated in Figure 6.27.
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Figure 6.25.  Box-plot generated using the InVivoStat non-

parametric analysis module.

Table 6.11.  Table of the overall test (Kruskal–Wallis 

test) to compare the treatment groups

Test statistic Degrees of freedom p-value 

Result 3.68 3 0.298 
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Input selection

1.	 Dataset selection: The analysis begins by select-

ing a dataset from the drop-down list of available 

imported datasets.

2.	 Variable selection: Graphs are produced by drag-

ging and dropping variables from the ‘Available 

variables’ list into the ‘X-axis variable’ box, the 

‘Response variable’ box, and up to two categorisa-

tion factors into the categorisation factor boxes.

3.	 Response transformation: Once selected, the user 

can apply a transformation to the response: log10, 

loge, square root, rank or arcsine. If the X-axis var-

iable is also numeric, then a transformation can be 

applied (independently) to this variable.

4.	 Categorisation format: If categorisation factors 

are selected, then the categorised plots can be dis-

played separately or overlaid (with or without a 

legend).

Output selection

5.	 The user selects the plots to be produced. Some 

example plots, and the options required to produce 

them, are given below.

6.7.2  Example plots

Figures  6.28 to 6.34 illustrate some of the plots that 

can be created by the graphics module, alongside the 

options required to generate them.

6.8  Power analysis module

The power analysis module in InVivoStat is available 

from the statistics drop-down menu entitled ‘Power 

Analysis’. This module allows the user to perform 

power and sample size calculations to identify how 

many animals are required in future experiments, as 

described in Section 3.7.3. The interface is given in 

Figure 6.35.

6.8.1  Analysis procedure

Input selection

1.	 Estimating the mean and variance: To perform a 

power analysis an estimate of the mean and vari-

ance of the response is required. There are two ways 

this information can be entered into the power ana-

lysis module. The user can manually enter a control 

mean value and an estimate of the variability (the 

‘Supplied values’), or let InVivoStat calculate them 

directly from a dataset (the ‘Dataset values’).

Table 6.12.  All pairwise comparison tests (Mann–

Whitney tests) to compare the treatment groups

Gp 1 vs.  Gp 2 p-value 

Comparison 

1 A vs. B 1.000 

2 A vs. C 0.312 

3 A vs. D 0.194 

4 B vs. C 0.312 

5 B vs. D 0.189 

6 C vs. D 0.885 

Figure  6.26.  Screenshot of the InVivoStat graphics module 

interface.
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Supplied values
If the ‘Supplied values’ option is selected, then the user 

can enter an estimate of the mean and variance calcu-

lated using another module within InVivoStat or per-

haps from another software package (Figure 6.36).

For example, if an ANOVA analysis has been per-

formed (using the single measure parametric analysis 

module) then:

sample variance Residual
Residual

Residual

= =MS
SS

DF
, 	 (6.1)

and

sample standard deviation sample variance= . 	 (6.2)

The user could also use other software, such as Excel, to 

calculate the sample standard deviation and the sam-

ple variance. If required, a control group mean (calcu-

lated outside the power analysis module) can also be 

entered at this stage.

Dataset values
The user can also let InVivoStat calculate the mean 

and variance of a response variable. Once the dataset 

has been loaded into InVivoStat, then the ‘Use vari-

ables from the dataset’ option should be selected. The 

response variable is selected by dragging and dropping 

into the ‘Response’ box. The user can select a single 

treatment factor by dragging and dropping the single 

factor into the ‘Treatment factor’ box (see Figure 6.37).

The user can select a control group from the drop-

down list of treatment factor levels. This is required if 

the biological differences considered are percentage 

changes from the control group mean.

2.	 Selecting the significance level: The user can also 

choose the significance level for the tests, the default 

being 0.05 or 5%.

Output selection

3.	 Plot settings – expected changes: The user will have 

to decide if the power calculation is performed for 

a percentage change from control (the ‘Percent’ 

option) or an actual change from control (the 

‘Absolute’ option). In each case multiple differ-

ences can be entered, each difference separated by 

a comma.

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Figure 6.27.  Screenshot illustrating the five-stage process for the InVivoStat graphics module.
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To select percentage changes, the user must also 

specify either a control group mean (Supplied 

values) or a control group (Dataset values).

4.	 Plot settings  – plotting range: The user has vari-

ous options concerning the ranges of parameters 

investigated. Power calculations can be performed 

for a range of sample sizes (recommended). The 

default is 6 to 15, although other values may be 

selected. Alternatively InVivoStat can calculate the 

range of sample sizes (for the user-defined expected 

changes) that achieve a desired power. This option 

can be useful if the purpose of the analysis is to find 

out how many animals would be required to achieve 

a target power, given the variability of the data and a 

certain biologically relevant effect.

5.	 Graph title: The user can select a title for the power 

curve plot.

Output details

1.	 Power curve plot: InVivoStat produces a plot of the 

power curves, as defined by the user, using the vari-

ability estimate.

2.	 Selected results: InVivoStat produces a text version 

of selected results from the power analysis.
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Figure 6.29.  Examples of categorised observed means with 

SEMs plots produced by InVivoStat. (a) Response variable: 

Length (numerical); X-axis variable: Drug (categorical); First 

category factor: Day (categorical); Category graph option: 

Overlaid; Plot type: SEM plot; Plot options: Column plot. (b) 

Response variable: Length (numerical); X-axis variable: Drug 

(categorical); First category factor: Day (categorical); Category 

graph option: Separate; Plot type: SEM plot; Plot options: 

Column plot. (c) Response variable: Length (numerical); 

X-axis variable: Drug (categorical); First category factor: Day 

(categorical); Category graph option: Overlaid; Plot type: SEM 

plot; Plot options: Line plot.
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Figure 6.28.  Examples of observed means with SEMs plots 

produced by InVivoStat. (a) Response variable: Length 

(numerical); X-axis variable: Drug (categorical); Plot type: 

SEM plot; Plot options: Column plot. (b) Response variable: 

Length (numerical); X-axis variable: Drug (categorical); Plot 

type: SEM plot; Plot options: Line plot.
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Figure 6.29.  (cont.)

3.	 Definitions: This module also provides some infor-

mation about the statistical terminology used within 

the power analysis module.

4.	 References: Finally, references for the methods 

applied in the analysis are given.

6.8.2  Worked example

Assume an experiment was conducted using ten 

animals per group. The sample mean of the control 

group was estimated at 12.4 and the variance esti-

mate of the responses was estimated at 3.32. The 

researcher wished to assess the sample size for future 

experiments. The size of the biologically relevant 

effect was thought to be around a 20% to 40% change 

from the control. The options required are presented 

in Figure 6.38.

The InVivoStat power analysis module was used to 

assess the sample sizes for 20%, 30% and 40% changes 

from control. The output from the module revealed 
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Figure 6.30.  Examples of scatterplots produced by 

InVivoStat. (a) Response variable: Length (numerical); X-axis 

variable: Age (numerical); Plot type: Scatterplot; Plot options: 

Linear fit. (b) Response variable: Length (numerical); X-axis 

variable: Drug (categorical); Plot type: Scatterplot.

Figure 6.29.  (cont.)

that for a 40% change from control, given ten animals 

per group, the power of the study was around 80%. The 

power curve plot produced using these options is given 

in Figure 6.39.

If it was decided that a 20% change from control was 

biologically relevant, then the power of the study was 

low (< 50%), even with a sample size greater than 15 

animals per group. This indicated that the researcher 

should try to find ways to reduce the variability, perhaps 

by using a blocking factor in the experimental design 

and analysis. If the variability cannot be reduced then 

the sample size would need to be increased, perhaps to 

unacceptably large numbers. The researcher could also 

try to increase the window of opportunity using a large 

factorial design or ultimately choose a different animal 

model.

6.9  Unpaired t-test analysis module

The unpaired t-test analysis module within InVivoStat 

is a tool for performing the unpaired t-test under the 

assumption of equal or unequal variances across the 

two groups. It is available within the additional analyses 
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sub-menu of the statistics drop-down menu. The inter-

face is given in Figure 6.40.

6.9.1  Analysis procedure

The analysis procedure is illustrated in Figure 6.41.
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Input selection

1.	 Dataset selection: The analysis begins by select-

ing a dataset from the drop-down list of available 

imported datasets.

2.	 Response and treatment variable selection: The 

response variable is dragged and dropped from the 

‘Available variables’ list onto the ‘Response’ box and 

the treatment factor variable onto the ‘Treatment’ 

box. The treatment factor must consist of two 

levels.

3.	 Response transformation: Once selected, the user 

has the option of applying a transformation to the 

response: log10, loge, square root, rank or arcsine. 

Note if the variability is different between the two 

groups then we can perform the analysis under the 

assumption of unequal between-group variances, 

rather than perform a transformation.

Output selection

4.	 Equal variance case: If this option is selected, the 

unpaired t-test is performed using a single pooled 

estimate of the variability.

5.	 Unequal variance case: If this option is selected, the 

unpaired t-test is performed under the assumption 

that the variability is different across the two groups. 

This test is known as Welch’s t-test.

6.	 Predicted vs. residuals plot: This plot allows the user 

to check the homogeneity of variance assumption 

of the parametric analysis (applicable if equal vari-

ances are assumed).

7.	 Normal probability plot: This plot allows the user to 

check the normality assumption of the parametric 

t-test analysis.

8.	 Significance: The user can also choose the signifi-

cance level for the test, the default being 0.05 or 5%.

Output details

1.	 Response: This text contains information about the 

response selected for analysis.

2.	 Scatterplot of the data: This plot of the data allows 

the user to see if there are any outliers in the 

dataset.

3.	 Unpaired t-test assuming equal variances: If 

selected, this table contains the results of the 

unpaired t-test (assuming equal variances). Also 
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Figure 6.31.  Examples of categorised scatterplots produced 

by InVivoStat. (a) Response variable: Length (numerical); 

X-axis variable: Age (numerical); First category factor: Drug; 

Category graph option: Overlaid; Plot type: Scatterplot; Plot 

options: Linear fit. (b) Response variable: Length (numerical); 

X-axis variable: Drug (categorical); First category factor: Day; 

Category graph option: Overlaid; Plot type: Scatterplot. (c) 

Response variable: Length (numerical); X-axis variable: Drug 

(categorical); First category factor: Day; Category graph option: 

Separate; Plot type: Scatterplot.
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given is a table of the least square (predicted) means 

with confidence intervals.

4.	 Unpaired t-test assuming unequal variances: 

If selected, this table contains the results of the 

unpaired t-test (assuming unequal variances). Also 

given is a table of the least square (predicted) means 

with confidence intervals.

5.	 Diagnostic plots: If requested InVivoStat produces 

the predicted vs. residuals plot and the normal prob-

ability plot. The residuals plotted on the predicted vs. 

residuals plot are the externally studentised residuals 

as these can provide a test for outliers. Any observa-

tion with an externally studentised residual greater 

(or less than) three could be considered an outlier.
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Figure 6.31.  (cont.)
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6.	 References: Finally, references for the methods 

applied in the analysis are given.

6.9.2  Worked example

Consider an experiment that involved a treatment 

(factor Treatment, levels: A and B) with 12 animals 

per group. Each animal was administered either treat-

ment A or B. A scatterplot of the data revealed a clear 

treatment effect; the variability appeared to be similar 

across the two groups (see Figure 6.42).

The unpaired t-test assuming equal variances 

revealed a significant treatment effect (see Table 6.13). 

As the spread of responses was similar across the two 

treatment groups, the results of Welch’s t-test, assuming 

unequal variances, were similar to the test performed 

assuming equal variances (see Table 6.14).

6.10  Paired t-test/within-subject analysis 
module

The paired t-test/within-subject analysis module in 

InVivoStat is a tool for performing paired t-tests and, 

more generally, within-subject analyses where more 

than two treatments are administered to each of the 

animals. It is available within the additional analyses 

sub-menu of the statistics drop-down menu. It fits 

models that consist of a single repeated factor and 

optionally other design (blocking) factors and a sin-

gle covariate. This module can be used to analyse data 

generated using dose-escalation designs (see Section 

3.8.2). Note if the experimental design also includes 

between-animal factors of interest, then the repeated 

measures parametric analysis module should be used 

instead.

This module performs a paired t-test when the 

repeated (treatment) factor consists of two levels. For 

the case where the number of levels of the repeated 

(treatment) factor is greater than two, the mod-

ule performs a within-subject repeated measures 

analysis. In both cases InVivoStat uses a repeated 

measures mixed-model analysis approach. If any 
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Figure 6.32.  Examples of case profiles plot produced by 

InVivoStat. (a) Response variable: Length (numerical); 

X-axis variable: Day (continuous); Plot type: Case profiles 

plot; Case ID factor: Animal. (b) Response variable: Length 

(numerical); X-axis variable: Day (continuous); First category 

factor: Drug; Category graph option: Overlaid; Plot type: Case 

profiles plot; Plot options: Display legend deselected; Case 

ID factor: Animal. (c) Response variable: Length (numerical); 

X-axis variable: Day (continuous); First category factor: Drug; 

Category graph option: Separate; Plot type: Case profiles plot; 

Case ID factor: Animal.
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Figure 6.32.  (cont.)

individual animal is missing an observation, then 

the remaining observation(s) for that animal will be 

included in the analysis. The interface is shown in 

Figure 6.43.

6.10.1  Analysis procedure

The analysis procedure is illustrated in Figure 6.44.

Input selection

1.	 Dataset selection: The analysis begins by select-

ing a dataset from the drop-down list of available 

imported datasets.

2.	 Response, treatment and subject variables: The user 

can select the variables to include in the analysis by 

dragging and dropping them from the ‘Available 
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variables’ list into the ‘Response’, ‘Treatment factor’, 

‘Other design (blocks)’, ‘Covariate’ and ‘Subject fac-

tor’ boxes.

3.	 Response transformation: Once selected, the user 

has the option of applying a transformation to the 

response: log10, loge, square root, rank or arcsine. If 

selected the covariate will be transformed using the 

same transformation as the response, although this 

can be changed manually if required.

4.	 Covariance structure: Finally the user can select 

a covariance structure to account for the spa-

tial interrelationships between the within-subject 

observations. The default option is the compound 

symmetric structure (all observations within-sub-

ject are equally correlated). Other options include 

autoregressive (recommended if the repeated fac-

tor is time-related and the time points are equally 

spaced) or unstructured (recommended if the sam-

ple sizes are not too small).

Output selection

5.	 Overall tests of statistical model effects: This option 

produces overall tests of the significance of the 

terms present in the statistical model.

6.	 Predicted vs. residuals plot: This plot allows the user 

to check the homogeneity of variance assumption 

of the parametric analysis, when required.

7.	 Normal probability plot: This plot allows the user to 

check the normality assumption of the parametric 

analysis.

8.	 Least square (predicted) means: The module pro-

duces a plot of the least square (predicted) means 

(with confidence intervals) of the levels of the 

repeated factor.

9.	 Significance level: The user can also choose the sig-

nificance level for the tests, the default being 0.05 

or 5%.

Output details

1.	 Response, covariance structure and covariate: 

InVivoStat identifies the response being analysed, 

the covariance structure used and also the covari-

ate (if one is selected). This section also describes 

any transformations that have been applied.

2.	 Case profiles plot of the data: InVivoStat produces a 

case profiles plot of the data (see the graphics mod-

ule in Section 6.7).

3.	 Categorised scatterplot of the data: When fit-

ting a covariate in a statistical analysis, certain 
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Figure 6.33.  Examples of box-plots produced by InVivoStat. (a) 

Response variable: Length (numerical); X-axis variable: Drug 

(categorical); Plot type: Box-plot. (b) Response variable: Length 

(numerical); X-axis variable: Drug (categorical); First category 

factor: Day (categorical); Category graph option: Overlaid; 

Plot type: Box-plot. (c) Response variable: Length (numerical); 

X-axis variable: Drug (categorical); First category factor: Day 

(categorical); Category graph option: Separate; Plot type: Box-plot.
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assumptions are made. This plot allows the user to 

assess these assumptions. A list of the assumptions 

is shown below the plot and also advice on how the 

plot should be used to assess them.

4.	 Overall tests table: The ANOVA-style table contains 

overall tests of the significance of the repeated fac-

tor and the covariate, if selected. Below the table 

any statistically significant results are described.

5.	 Diagnostic plots: If requested InVivoStat produces 

the predicted vs. residuals plot and the normal 

probability plot. The residuals plotted on the pre-

dicted vs. residuals plot are the standardised resid-

uals as these can provide a test for outliers. Any 

observation with a standardised residual greater (or 

less than) three could be considered an outlier.

6.	 Plot of the least square (predicted) means: 

InVivoStat produces a plot and table of the pre-

dicted means of the repeated factor. Also included 

on the plot are confidence intervals around the 

predicted means.
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Figure 6.33.  (cont.)
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7.	 Pairwise comparisons on the least square (pre-

dicted) means: InVivoStat produces a table of all 

pairwise comparisons of the predicted means of the 

repeated factor. As well as the size of the difference 

between the means and the confidence intervals, 

InVivoStat also provides p-values to assess the sig-

nificance of these differences. A list of statistically 

significant comparisons is given below the table.

8.	 References: Finally, references for the methods 

applied in the analysis are given.

6.10.2  Worked example

Consider an experiment where animals were adminis-

tered three treatments (factor Treatment, levels: A, B and 

C) in a non-random order. The data were analysed using 

the paired t-test/within-subject analysis module. A case 

profiles plot (Figure  6.45) revealed little evidence of a 

treatment effect, although there appeared to be two sub-

populations in the data that could mask any real effect.

There was no overall treatment effect (F(2,16) = 0.28, p 

= 0.762); see Table 6.15. The predicted vs. residuals plot 

indicated there was some evidence of a need to trans-

form the data (Figure 6.46). However, for the purposes 

of illustration we shall not consider this further. None of 

the pairwise comparisons were statistically significant, 

although investigating the cause of the two sub-popu-

lations may be of more interest than testing the differ-

ences between the three treatments (see Table 6.16).

6.11  Dose-response analysis module

The dose-response analysis module in InVivoStat is 

available from the statistics drop-down menu enti-

tled ‘Dose-Response Analysis’. This module allows the 

user to fit four-parameter logistic curves to the data, 

as described in Section 3.6.1. It also has additional 

functionality for the analysis of data generated from 

quantitative research assays. Finally other non-linear 

curves can be fitted using the ‘User defined equation’ 

option. The interface is given in Figure 6.47.

6.11.1  Technical details on curve fitting

When modelling the dose-response relationship using 

a non-linear curve, the researcher must first select the 

type of curve to fit to the data. For example, the type of 

curve could be logistic, exponential or quadratic. The 

choice should reflect either:
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Figure 6.34.  Examples of histograms produced by 

InVivoStat. (a) Response variable: Length (numerical); Plot 

type: Histogram; Plot options: Normal distribution fit. (b) 

Response variable: Length (numerical); First category factor: 

Drug (categorical); Category graph option: Overlaid; Plot 

type: Histogram. (c) Response variable: Length (numerical); 

First category factor: Drug (categorical); Category graph 

option: Separate; Plot type: Histogram; Plot options: Normal 

distribution fit.
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Figure 6.34.  (cont.)

The relationship observed in the data. This can be •	

obtained from a scatterplot of the data.

The theoretical relationship based on known bio-•	

logical mechanisms. For example, if we know the 

responses increase exponentially as we increase the 

dose of the compound, then it is sensible to try to fit 

an exponential curve to the data.

Once the type of curve has been selected, then the actual 

curve fitted to the data will depend on the numerical 

value of the parameters that define the curve. For 

example, you may decide to fit a four-parameter logistic 

curve to your data, but the actual curve will depend on 

the numerical values of the four parameters that define 

the curve.

The dose-response analysis module uses the nls algo-

rithm in R to determine the non-linear (weighted) least 

squares estimates of the parameters that define the 

fitted curve. The non-linear (weighted) least squares 



Dose-response analysis module 277

algorithm works iteratively to generate a solution. The 

process involves a series of stages:

1.	 To begin with the type of non-linear curve to fit to 

the data has to be selected by the user.

2.	 Once the type has been selected, a curve is super-

imposed on the data using a set of arbitrary start 

values for the parameters that define the curve. The 

start values can either be generated automatically 

by InVivoStat or chosen by the user.

3.	 The nls algorithm will then search for a new set of 

parameters that define a curve that is a better fit to 

the data (i.e. the residuals from the model fit are 

smaller). Usually the algorithm goes through a ser-

ies of stages (iteratively) slowly improving the fit of 

the curve to the data until no improvements are pos-

sible. InVivoStat uses the Gauss–Newton algorithm 

to search intelligently for curves that are a better fit 

to the data.

6.11.2  Fitting logistic curves to data

The dose-response analysis module can be used to fit 

logistic curves to data that have been generated, for 

example, using a dose-response design (as described 

in Section 3.6.1). The logistic equation employed by 

InVivoStat is:

Response = +
−( )

+ ( )( )−
D

A D
Dose C B

1 10 10log ( )

	 (6.3)

where A is the maximum, D is the minimum, C = log 

D50 (an estimate of the dose that causes a 50% increase 

(or decrease) in response on the log scale) and B is the 

Hill slope. Note the definition of A and D are inter-

changeable, depending on the sign of the Hill slope 

parameter B.

Within the dose-response analysis module the user 

has several options when fitting a logistic curve:

Select the start values Sometimes the algorithm 

does not converge or converges to an obviously incor-

rect solution (when using the default start values). 

For example, if the underlying relationship between 

response and dose is masked by the response variabil-

ity or if the type of curve chosen is not an appropriate 

one. The user can select a set of start values so that the 

initial curve is already a good fit to the data.

Fix some of the parameters Sometimes the user 

may wish to fix some of the parameters. In particular, 

the minimum and/or the maximum of the curve can 

sometimes be fixed due to practical constraints.

Choose an offset for the dose axis As discussed 

above in Section 3.6.3, it is not possible to include a 

zero (control) group if the doses are transformed onto 

the log scale. By default InVivoStat will add a small off-

set onto the individual doses to allow the zero (control) 

dose to be included in the analysis. This default offset 

is either:

(lowest non-zero dose)/10    (for analyses on the log10 scale)

(lowest non-zero dose)/e    (for analyses on the loge scale)

If the user wishes to apply a different offset, then this 

should be carried out prior to importing the dataset 

into InVivoStat. Once imported this offset will need to 

be defined within the dose-response analysis module 

so that the correct back-transformed D50 estimates can 

be calculated.

6.11.3  Analysis of quantitative assays

The dose-response analysis module can be used to 

analyse results generated from quantitative assays 

Figure 6.35.  Screenshot of the InVivoStat power analysis 

module interface.
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where the underlying response/concentration rela-

tionship is logistic. The analysis involves a series of 

stages:

Standard curve calibration

The analysis begins by estimating the standard curve 

using responses generated from known concentrations 

Stage 3

Stage 4

Stage 5

Stage 1

Stage 2

Figure 6.37.  Screenshot illustrating the input options for the InVivoStat power analysis module when the module is required to 

calculate the mean and variance estimates from a dataset. The user selects the response variable.

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Figure 6.36.  Screenshot illustrating the input options for the InVivoStat power analysis module when the user enters a mean and 

standard deviation manually. The significance level is set at the default (5%).
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of the analyte. In the dose-response analysis module 

it is assumed that the standard curve is an example of 

a logistic curve. This stage of the process follows the 

approach discussed in the previous section.

Quality controls

Quality control (QC) samples may also be included in 

the assay to assess the reliability of the standard curve. 

They are independent samples of known nominal con-

centration and are not used to calibrate the standard 

curve. QC responses (usually assessed in triplicate at 

each known concentration) are individually back-cal-

culated onto the standard curve and then the triplicates 

for each concentration are averaged (on the log scale). 

These mean QC estimates (on the log scale) are then 

back-transformed onto the original scale to allow com-

parison between the nominal and the predicted QC 

concentrations.

It is also standard practice to use predefined assay-

dependent acceptance criteria, based on the summary 

statistics of the estimated QC concentrations, to decide 

if the assay is fit for purpose. Some of these calculations 

can be performed within the dose-response analysis 

module. Acceptance criteria calculated by InVivoStat 

include the percentage relative error:

%RE    

Predicted concentration Nominal concentration

= ×

(
100

– )
Nominal concentration

 	(6.4)

and the percentage coefficient of variation:

%CV  
  PSD 

Predicted concentration
=

×100
	 (6.5)

where PSD = 10 10 10 12 2 2µ × −s s( )  is the standard 

deviation of the predicted concentration mean (also 

Figure 6.38.  Options required by the InVivoStat power 

analysis module with sample mean 12.4, standard deviation 

3.23 with power curves for 20%, 30% and 40% change from 

control.
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Figure 6.39.  Power curves created by the InVivoStat power 

analysis module with sample mean 12.4, standard deviation 

3.23 with power curves for 20%, 30% and 40% change from 

control.

Figure 6.40.  Screenshot of the InVivoStat unpaired t-test 

analysis module interface.
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known as the geometric standard deviation), µ is the 

estimate of the predicted concentration on the log 

scale and s2 is the associated variance estimate also on 

the log scale.

Unknown sample assessment

Assuming the assay passes the acceptance criteria on 

the QC samples, the unknown sample results are back-

calculated onto the standard curve to estimate the con-

centration of the unknown samples.

6.11.4  Analysis procedure

The analysis procedure is illustrated in Figure  6.48. 

Stages 1 to 5, 8 and 9 are required when fitting a logistic 

curve to data. Stages 6 and 7 are required when analys-

ing quantitative assays.

Table 6.13.  Unpaired t-test (assuming equal variance)

t-statistic Degrees of Freedom p-value 

Equal variance unpaired t-test -10.124 22  < 0.001 

Table 6.14.  Unpaired t-test (assuming unequal variance)

t-statistic Degrees of Freedom p-value 

Unequal variance unpaired t-test -10.124 21.90  < 0.001 

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Stage 8

Figure 6.41.  Screenshot illustrating the eight-stage process for the InVivoStat unpaired t-test analysis module.
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Figure 6.42.  Scatterplot of the data, produced by the 

InVivoStat unpaired t-test analysis module.
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Input dataset

The dataset consists of variables that define the response 

and the corresponding dose or concentration. In quan-

titative assays these correspond to the response and the 

known concentration of the standards. There may also 

be variables in the dataset containing the unknown sam-

ple responses, the QC responses and the corresponding 

QC concentrations. An example is given in Table 6.17.

Input selection

1.	 Dataset selection: The analysis begins by select-

ing a dataset from the drop-down list of available 

imported datasets.

2.	 Selecting the response and dose/concentration 

variables: The user selects the response and dose/

concentration variables by dragging and dropping 

variables from the ‘Available variables’ list into the 

relevant boxes.

3.	 Response transformation: Once selected, the user 

has the option of applying a transformation to the 

response variable: log10, loge, square root, rank or 

arcsine.

4.	 Dose scale: Doses and concentrations are usu-

ally selected so that they are equally spaced on an 

increasing logarithmic scale, for example 0.01, 0.1, 1 

and 10 mg/kg. The user can select the log scale that 

will be used to transform the dose variable (either 

log10 or loge) by selecting the correct ‘Dose scale’ 

option.

5.	 Defining the offset: As discussed in Section 3.6.3, 

InVivoStat adds an offset onto all the dose variable 

values prior to log transformation to allow the zero 

(control) group to be included on the log dose scale. 

However, if the user wishes to apply a different off-

set to the dose variable, then this should be added 

to the dose variable prior to importing the dataset 

into InVivoStat. The offset must then be defined in 

the ‘Offset’ box to: (1) inform InVivoStat that an off-

set has already been added and the addition of the 

default offset is not required and (2) allow InVivoStat 

to back-calculate the X50 estimate onto the original 

scale correctly.

6.	 Selecting the quality controls: The user can select 

QCs to assess the reliability of the estimate of 

the standard curve. The QC response and QC 

concentration variables are selected by drag-

ging and dropping into the relevant boxes. Both 

a QC response and QC concentration variable 

are required for the QC assessment to proceed. 

Any user-defined transformation applied to the 

response variable will also be applied to the QC 

response variable. It is also assumed that any off-

set that has been manually added to the concen-

tration variable has also been applied to the QC 

concentration variable.

7.	 Selecting the unknown samples: The variable con-

taining the unknown samples (that need to be back-

calculated onto the standard curve) can be selected 

by dragging and dropping the variable into the 

‘Samples’ box. Any transformation applied to the 

response variable will also be applied to the vari-

able containing the unknown samples.

8.	 Fixing the logistic curve parameters: The user has the 

option to fix some of the parameters (by populating 

the ‘Fix coeff. at’ boxes). This allows greater flexibil-

ity in the choice of logistic curve that can be fitted to 

the data. It is common practice to fix the plateaux of 

Figure 6.43.  Screenshot of the InVivoStat paired t-test/

within-subject analysis module interface.

Table 6.15.  Overall test between the three treatment 

means

Num. df Den. df F-value p-value 

Treatment 2 16 0.28 0.762 
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Table 6.16.  All pairwise comparisons, without adjustment for multiplicity

Difference Lower 
95% CI  

Upper 
95% CI  Std error p-value  

Comparison 

B vs. A -0.066 -0.345 0.212  0.131  0.620  

C vs. A -0.095 -0.374 0.183  0.131  0.479  

C vs. B -0.029 -0.307 0.250  0.131  0.830  
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Figure 6.46.  Predicted vs. residuals plot produced by the 

paired t-test/within-subject analysis module.
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Figure 6.44.  Screenshot illustrating the nine-stage process for the InVivoStat paired t-test/within-subject analysis module.
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Figure 6.45.  Case profiles plot produced by the paired t-test/

within-subject analysis module.
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the curve, for example the minimum plateau is fixed 

at 0% and/or the maximum plateau is fixed at 100%.

9.	 Selecting the start values: As discussed above the 

non-linear (weighted) least squares algorithm 

requires a set of start values for the parameters for 

the iteration process. The default choice of start 

values for the unknown parameters (calculated 

within the module) should be sufficient for the pro-

cess to fit a curve to the data, especially if the analysis 

involves calibrating a standard curve. However, in 

certain cases the user may need to use specific start 

values by populating the ‘Start value’ boxes with 

start values that are close to the final parameters.

Output details

The output from the module may include:

1.	 A description of the analysis performed.

2.	 A scatterplot of the response variable vs. the dose/

concentration variable.

3.	 A scatterplot of the response variable vs. the dose/

concentration variable, including the fitted curve. 

Also included on the plot are any QC samples.

4.	 A table of curve parameter estimates.

5.	 A table of the back-transformed X50 estimate along 

with 95% confidence intervals.

6.	 A table of the back-calculated QC samples with %RE 

and %CV acceptance criteria.

7.	 A table of the predicted back-calculated unknown 

sample concentrations.

6.11.5  Worked example: a biological assay

An assay was conducted to estimate the amount of 

compound absorbed into the rat bloodstream. A stand-

ard curve for the assay was composed using known 

standards and this curve was used to back-calculate the 

concentration of the compound in the unknown sam-

ples collected from the rat.

Responses were measured in triplicate at five con-

centrations of the standard (0.001, 0.01, 0.1, 1 and 10 

mg/kg) and control (0 mg/kg). Using these responses 

a standard curve for the assay was estimated. Three 

quality control samples (with a known concentration 

of 0.01, 0.03 and 0.08 mg/kg), each assayed in tripli-

cate, were tested to assess the reliability of the stand-

ard curve. The acceptance criteria were set at 20% for 

both the %RE and %CV (in other words the estimated 

%RE and %CV need to be less than 20% for the assay to 

be deemed valid). Also included in the dataset were a 

number of unknown samples.

A scatterplot of the data, including the predicted 

standard curve, revealed a reasonable fit to the data 

(see Figure 6.49). The QC samples, however, appeared 

to question the validity of the standard curve. For 

example, the 0.01 mg/kg QC had a relative error of 

30.13% and a coefficient of variation of 12.90%. The 

first of these values was greater than 20%, and hence 

the assay failed the predefined acceptance criteria. The 

other QC samples are even more questionable with a 

%RE of 72% and 41% (see Table 6.18).

If the QC samples had passed the predefined 

acceptance criteria then the researcher could have 

considered the back-calculated unknown sample con-

centrations (see Table  6.19). Note some of the back-

calculated concentrations were not computed. They 

are denoted by ‘NaN’. This was because they were out-

side the estimated minimum/maximum range of the 

standard curve.

Figure 6.47.  Screenshot of the InVivoStat dose-response 

analysis module interface.
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6.11.6  User-defined equation option

Rather than fit a logistic curve to the data, the user has 

the option of entering a different equation in the ‘User 

defined equation’ boxes (see Figure 6.50). The equation 

should be entered in the form:

y = f(x)	 (6.6)

Every unknown parameter in the equation has to have 

a corresponding start parameter. This is entered in the 

‘Start values for parameters’ box and should be entered 

as a comma separated list of the form:

A = 1,B = 1,C = 1

The user must also define the response (Y-axis) vari-

able and the X-axis variable by dragging and dropping 

variables into the relevant boxes.

The output includes a table of unknown parameter 

estimates (that define the user-defined non-linear 

curve) and a plot of the observations with the predicted 

curve fitted to the data. If InVivoStat fails to generate 

any output then this may be because:

The start values for the unknown parameters are not •	

sufficiently close to the true curve parameter esti-

mates. Try different start values.

The type of curve selected by the user does not explain •	

the relationship between the response and the X-axis 

variable. Perhaps an alternative type of curve is more 
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Figure 6.49.  Scatterplot of the response vs. concentration (on 

the log10 scale) for the standards and the QC samples with the 

best-fit logistic curve.
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Figure 6.48.  Screenshot illustrating the nine-stage process when using the InVivoStat dose-response analysis module.
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appropriate. Use the graphics module to produce a 

scatterplot of the data to investigate which type of 

non-linear curve is appropriate.

6.12  Chi-squared test and Fisher’s exact 
test module

The chi-squared test and Fisher’s exact test module 

within InVivoStat is a tool for analysing proportions, 

as discussed in Section 5.5.2. It is available within the 

additional analyses sub-menu of the statistics drop-

down menu. This module performs a one-sided chi-

squared test and a one- or two-sided Fisher’s exact test. 

The interface is given in Figure 6.51.

6.12.1  Analysis procedure

Input dataset

The dataset for this module can be created in the format 

of a contingency table, where the individual animals 

Table 6.18.  Summary statistics of the quality controls

True QC 
mean 

Back-calculated 
QC mean 

Std dev of back-
calculated QC 

mean 

No. of back-
calculated QCs

Relative 
error (%) 

Coefficient of 
variation (%) 

0.008  0.010  0.001  3  30.13  12.90  

0.032  0.055  0.036  3  72.41  66.60  

0.079  0.047  0.007  3  -41.10 15.99  

Table 6.17. Dataset in the format required for the analysis of a quantitative assay using the dose-response analysis 

module

Standard response Standard concentration Unknown sample response QC response QC concentration

0.99 0 2.14 8.25 0.08

0.71 0 6.82 7.41 0.08

1.25 0 4.01 8.11 0.08

1.60 0.001 2.63 6.40 0.03

0.44 0.001 6.27 9.10 0.03

1.25 0.001 7.25 8.30 0.03

3.54 0.01 9.75 4.31 0.01

3.42 0.01 2.88 4.56 0.01

5.29 0.01 10.24 3.61 0.01

7.70 0.1 0.47

8.88 0.1 0.28

10.20 0.1

9.93 1

8.41 1

10.66 1

10.09 10

8.68 10

10.49 10
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are grouped into categories. An example is given in 

Table  6.20. In this experiment there were ten animals 

per group. The condition of each animal was defined 

as mild, moderate or severe, depending on the disease 

severity. Alternatively the dataset for this experiment 

can consist of one row per animal (see Table 6.21). Note 

this format requires the inclusion of a ‘Count’ variable 

consisting of all ones. Either format can be analysed 

by the InVivoStat chi-squared test and Fisher’s exact 

test module. The analysis procedure is illustrated in 

Figure 6.52.

Input selection

1.	 Dataset selection: The analysis begins by select-

ing a dataset from the drop-down list of available 

imported datasets.

2.	 Variable selection: The (count) response variable is 

dragged and dropped from the ‘Available variables’ 

list onto the ‘Response (counts)’ box. The two vari-

ables that define the experimental groups and the 

response categories are then dragged and dropped 

onto the ‘First factor’ and ‘Second factor’ boxes 

(it is not important which variable is assigned to 

which box).

Output selection

The user has several choices for the analysis.

3.	 Chi-squared test: Select this option to perform the 

chi-squared test of association.

4.	 Fisher’s exact test: Select this option to perform the 

Fisher’s exact test of association.

5.	 Hypothesis: This option allows the user to per-

form either a one-sided or two-sided Fisher’s exact 

test when the response consists of two categories 

and there are only two experimental groups in the 

experimental design.

Table 6.20. Contingency table for an experiment 

involving two treatments where the animals were 

categorised by the severity of their condition

Treatment Condition Count

Vehicle Mild 5

Vehicle Moderate 3

Vehicle Severe 2

Drug Mild 2

Drug Moderate 4

Drug Severe 4

Table 6.19.  Back-calculated unknown samples

Sample response Back-calculated response 

Sample ID 

1 2.1418  0.004  

2 6.8183  0.028  

3 4.0096 0.010  

4 2.6323  0.005  

5 6.2721  0.022  

6 7.2454  0.033  

7 9.7476 NaN  

8 2.8806 0.006  

9 10.2398 NaN  

10 0.4717 NaN  

11 0.2760 NaN  

Figure 6.50.  Screenshot of the options required for the 

user-defined equation within the InVivoStat dose-response 

analysis module.
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6.	 Significance: The user can also choose the sig-

nificance level for the tests, the default being 0.05 

or 5%.

Output details

1.	 Response: This text contains information about the 

response variable and the variables used to categor-

ise the responses.

2.	 Contingency table of counts: This table contains a 

summary of the observed counts, categorised by the 

two variables that define the experimental groups 

and response categories.

3.	 Table of expected counts: This table contains the 

counts that you would expect to see, given the row 

and column totals in the table, if the null hypothesis 

of no association between the response categories 

and the experimental groups is true.

4.	 Chi-squared test: If selected, this table contains the 

chi-squared test result.

5.	 Fisher’s exact test: If selected, this table contains the 

Fisher’s exact test result.

6.	 References: Finally, references for the methods 

applied in the analysis are given.

6.12.2  Worked example

Consider the experiment described above that involved 

a Treatment factor (factor Treatment, levels: drug and 

vehicle) with ten animals per group. For each animal 

the disease state was defined as being mild, moder-

ate or severe. The total number of animals in each 

category is given in the contingency table of counts 

(Table 6.22).

Under the assumption that there were no treatment-

related effects, and given the total number of animals in 

each of the three categories (7, 7 and 6 for mild, mod-

erate and severe, respectively) you would expect to see 

3.5 animals in each treatment group classified as mild, 

3.5 in each group classified as moderate and 3 in each 

Table 6.21. Individual animal data for an experiment involving two treatments where 

the animals were categorised by the severity of their condition

Treatment (individual) Condition (individual) Count (individual) Animal

Vehicle Mild 1 1

Vehicle Mild 1 2

Vehicle Mild 1 3

Vehicle Mild 1 4

Vehicle Mild 1 5

Vehicle Moderate 1 6

Vehicle Moderate 1 7

Vehicle Moderate 1 8

Vehicle Severe 1 9

Vehicle Severe 1 10

Drug Mild 1 11

Drug Mild 1 12

Drug Moderate 1 13

Drug Moderate 1 14

Drug Moderate 1 15

Drug Moderate 1 16

Drug Severe 1 17

Drug Severe 1 18

Drug Severe 1 19

Drug Severe 1 20
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group classified as severe. This is displayed in the table 

of expected results (Table 6.23).

The chi-squared test compares the expected results 

to the observed results, as described in Section 5.5.2. 

This test was not significant at the 5% significance level 

(χ(2) = 2.1, p = 0.351), see Table 6.24, indicating that the 

proportion of animals in each of the disease states was 

similar across the drug-treated and control groups.

However, as the numbers of animals in some of the 

categories were less than five, the above chi-squared 

test is not a reliable test. The preferred test in this situ-

ation is Fisher’s exact test. The two-sided Fisher’s exact 

test (Table  6.25) was not statistically significant (p = 

0.536), confirming that there were no treatment-related 

effects in this experiment.

6.13  R-runner module

InVivoStat is based on the free-to-use R language (R 

Development Core Team, 2012). If the user has existing 

programs written in R, then these can be run within the 

R-runner module. This allows access to functionality 

available within R that is not implemented within 

the InVivoStat core modules. The interface is given in 

Figure 6.53.

User-defined R programs can be written in the R 

script window, or existing code loaded into InVivoStat 

using the ‘Load’ button (and similarly R programs can 

be saved using the ‘Save’ button). Information about 

how to use this module, and how to set up the output 

so that it is displayed in the results tab, are given within 

the default R script window.

The benefits of using the R-runner module to run 

existing R code is that the output is available in HTML 

format, programs can be shared (and run) by others 

who may not be familiar with R and also that vari-

ables need not be hard coded but can be dragged and 

dropped into the variable boxes, thus allowing more 

flexibility when programming in R.

6.14  Nested design analysis module

The nested design analysis module is a power analysis 

tool that allows the user to assess the effect of varying 

the levels of replication of the multiple random factors 

within a higher-order nested design. It is an imple-

mentation of the methods described in Section 3.7.4.

The nested design analysis module assumes that 

treatments (or other fixed factors of interest) will be 

tested against the between-animal variability. This 

is the random factor at the top of the nested design’s 

hierarchical structure (Random factor 1 on the inter-

face, see Figure 6.54). In the power analyses conducted 

within this module it is this source of variability that is 

used as the variance estimate.

The user can enter any number of fixed factors but 

can only enter up to four nested random factors. If there 

are more than four nested random factors in the experi-

mental design, then the results should be averaged up 

to the fourth-level random factor. Experimental designs 

that involve crossed random factors, rather than sim-

ply nested random factors, are beyond the scope of this 

module. The interface is given in Figure 6.54.

For each random factor the user can investigate the 

effect of varying the replication of the levels of the nested 

random factors on the statistical power of the statistical 

Figure 6.51.  Screenshot of the InVivoStat chi-squared test 

and Fisher’s exact test module interface.

Table 6.22.  Contingency table of counts

mild moderate severe

drug 2 4 4 

vehicle 5 3 2 
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tests. To achieve this, the replication of the levels of each 

of the nested random factors within the levels of the fac-

tor that nests it needs to be defined. For example, if there 

are eight animals per group and three samples per ani-

mal then the user may wish to investigate changing the 

number of samples per animal from the original three to 

two or four. It is these numbers (three and four) that are 

entered into the nested design analysis module and not 

the total number of samples in the experiment.

6.14.1  Analysis procedure

Setting up the dataset

The dataset required by the nested design analysis 

module needs to be created in a specific format. The 

responses are written down for a single variable within 

the dataset  alongside a variable for each of the fixed 

and random factors.

The random factor variables should be set up so 

that each level of a random factor in the dataset has a 

unique practical meaning. So if, for each of the random 

factors, two rows in the dataset are assigned the same 

factor label, then the corresponding responses share 

the same level of the random factor in the experiment 

itself.

Example 3.36 (continued): Pressure applied to assess 

joint pain

Consider Example 3.36, a study that consists of two treatments (fac-

tor Treatment, levels: control and FCA), eight rats per treatment 

group (factor Animal, levels: 1 to 16)  and three trials per animal 

(factor Trial, levels: 1 to 48). We assume that the first trial for animal 

Table 6.23.  Expected results

mild moderate severe Column totals 

drug 3.50 3.50 3.00 10 

vehicle 3.50 3.50 3.00 10 

Row totals 7 7 6 20 

Table 6.25.  Fisher’s exact test result

p-value 

Result 0.536 

Table 6.24.  Chi-squared test result

Test statistic Degrees of freedom p-value 

Result 2.10 2 0.351 

Stage 3

Stage 5

Stage 4

Stage 6

Stage 1

Stage 2

Figure 6.52.  Screenshot illustrating the six-stage process for the InVivoStat chi-squared test and Fisher’s exact test module.
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2 is not related in any way to the first trial in animal 1, so it is num-

bered trial 4 (the first three trials are for animal 1). The first 15 rows 

of the dataset are given in Table 6.26.

In the dataset required for this module, there should be a variable 

within the dataset that indexes the individual observations (Trial in 

this case). It is numbered 1 up to n, where n is the total number 

of observations measured. The analysis procedure is illustrated in 

Figure 6.55.

Input selection

1.	 Dataset selection: The analysis begins by select-

ing a dataset from the drop-down list of available 

imported datasets.

2.	 Variable selection: The user selects (by dragging and 

dropping) the response into the ‘Response’ box, the 

fixed factors into the ‘Treatment (factorial)’ box 

and the random factors into the ‘Random factor’ 

boxes. Be careful when defining the random factors 

as the order that the random factors are added to 

the ‘Random factor’ boxes is important. Within the 

nested design analysis module interface ‘Random 

factor 1’ is the random factor that resides at the top 

of the hierarchical nested design structure, the ran-

dom factor below this is ‘Random factor 2’ and so 

on. In many cases it follows that the Animal random 

factor will be defined as Random factor 1.

  The user can also select blocking factors and a cov-

ariate to include in the statistical model.

3.	 Response transformation: Once selected, the user 

has the option of applying a transformation to the 

response: log10, loge, square root, rank or arcsine. If 

selected the covariate will be transformed using the 

same transformation as the response, although this 

can be manually changed if required.

Figure 6.53.  Screenshot of the InVivoStat R-runner module interface.
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4.	 Significance level: The user can also choose the sig-

nificance level for the tests, the default being 0.05 

or 5%.

Output selection

5.	 Replication of random factors: The user can now 

investigate varying the replication of the levels of 

the random factors by entering (using a comma 

separated list) a series of integers corresponding 

to different levels of replication of the nested ran-

dom factors. As mentioned above, these numbers 

correspond to the level of replication of the fac-

tor within each level of the factor that nests it. It 

is recommended that values are selected that are 

close to the replication actually used in the actual 

experiment.

Output details

InVivoStat will now calculate an estimate of the 

between-animal variability for experimental designs 

based on the replication of the levels of the random 

factors defined by the user; see Section 3.7.4 for more 

details. For each random factor we vary the replication 

of the levels of the factor while keeping the replication 

of the other random factors at a level that is equal to the 

average replication in the original design (rounded to a 

whole number). For each level of replication (i.e. each 

proposed experimental design) a new estimate of the 

between-animal variability is calculated. InVivoStat 

then produces a separate power curve corresponding 

to each of these experimental designs.

The power curve plots produced are different 

from those created in the power analysis module 

Table 6.27. Example of the first ten rows of the dataset 

required for the survival analysis module.

Group Day Censor

Control 4 0

Control 4 0

Control 4 0

Control 4 0

Control 4 0

Control 4 0

Control 4 0

Treatment 2 1

Treatment 3 1

Treatment 4 0

… … …

Table 6.26. First 15 rows of a dataset showing how to 

label the levels of the factors of a nested design

Response Treatment Animal Trial

6.19 Control 1 1

5.44 Control 1 2

4.06 Control 1 3

4.19 Control 2 4

22.98 Control 2 5

18.02 Control 2 6

15.26 Control 3 7

25.43 Control 3 8

21.39 Control 3 9

16.32 Control 4 10

13.12 Control 4 11

22.08 Control 4 12

19.67 FCA 5 13

38.94 FCA 5 14

23.02 FCA 5 15

… … … …

Figure 6.54.  Screenshot of the InVivoStat nested design 

analysis module interface.
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described above, although they do share many simi-

larities. For example, in both modules the Y-axis 

corresponds to the statistical power. The X-axis in 

the nested design analysis module plots correspond 

to the size of effect (rather than sample size, as is 

the case in the plots generated by the power ana-

lysis module) and the different lines on the graph 

correspond to different designs, i.e. different lev-

els of replication of the random factors. The X-axis 

range selected by InVivoStat is not necessarily a bio-

logically meaningful range of effects. The range is 

merely selected to highlight the differences between 

the statistical powers of the various experimental 

designs. The purpose of the power curve plots in the 

nested design analysis module is to allow the user to 

compare the competing designs, rather than make 

any decisions about the power of individual treat-

ment comparisons.

The output includes:

Stage 3

Stage 4

Stage 5

Stage 1

Stage 2

Figure 6.55.  Screenshot illustrating the five-stage process for the InVivoStat nested design analysis module.

Figure 6.56.  Screenshot of the options required by the 

InVivoStat nested design analysis module for Example 3.36.

Figure 6.57.  Screenshot of the InVivoStat survival analysis 

module interface.

 

 

 



Nested design analysis module 293

1.	 Response variable: InVivoStat identifies the 

response being analysed and also the covari-

ate (if one is selected). This section also describes 

any transformations that have been applied to the 

response.

2.	 Table of estimated variance components: This table 

contains the estimated variance components of the 

random factors (see Section 3.7.4). These estimates 

are used when assessing the effect of varying the 

replication of the levels of the random factors in the 

experimental design.

3.	 Table of average replication in the original design: 

When assessing the effect of varying the replication 

of the random factors in the experimental design, the 

replication of the other factors are held constant at 

the average level. This table informs the user at what 

replication level the other factors will be held at.

4.	 Power curve plot of the original design: The nested 

design analysis module provides the user with a 

graphical display of the power of an experimental 

design where the replications of the levels of the 

random factors are as defined in the previous table. 

This power curve will effectively be an approximate 

power curve of the original design.

5.	 Power curve plots for alternative designs: The mod-

ule now provides a series of graphical plots of the 

power curves. These plots are defined by the differ-

ent replications of the levels of the random factors, 

as defined by the user.

6.14.2  Worked example

Consider Example 3.36 described above. In the analysis 

Treatment was the only fixed factor, Animal was Random 

Records n  Start size Events Median Lower 95% CI Upper 95% CI

Group 

05% ligation 10 10 10 0 

10% ligation 10 10 10 1 

20% ligation 10 10 10 4 2 

25% ligation 10 10 10 8 2 1 2 

30% ligation 10 10 10 9 2 1 3 

35% ligation 10 10 10 10 2 1 2 

N  Observed Expected (O-E)^2/E (O-E)^2/V Chi-sq p-value 

Group 

05% ligation 10 0 6.70 6.70 10.92 37.34 < 0.001 

10% ligation 10 1 6.25 4.41 7.02 

20% ligation 10 4 5.94 0.63 0.99 

25% ligation 10 8 4.27 3.27 4.93 

30% ligation 10 9 4.77 3.75 5.71 

35% ligation 10 10 4.08 8.61 13.18 

Table 6.29.  Log-rank test results

Table 6.28.  Summary results
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factor 1 and Trial was Random factor 2. The replication of 

the random factors investigated was 6 to 10 (for Animal) 

and 1 to 6 (for Trial within Animal). These options are 

presented in Figure  6.56. The output from this ana-

lysis, including the power curve plots produced and the 

conclusions drawn from the analysis, are discussed in 

Section 3.7.4.

6.15  Survival analysis module

The survival analysis module within InVivoStat is a tool 

for analysing censored data. As discussed in Section 

5.5.3, censored data occurs when an animal’s actual 

response cannot be measured but it is known to be 

beyond a certain censored value. For example, in the 

hotplate test there is a 30-second limit to how long an 

animal’s paw can be placed on the hotplate. If an ani-

mal does not withdraw its paw within this time then the 

test is discontinued and the response recorded is the 

censored value of 30 seconds.

The survival analysis module is available within 

the additional analyses sub-menu of the statistics 

drop-down menu. This module produces a plot of the 

Kaplan–Meier survival curves and performs a log-rank 

test to compare the experimental groups. The interface 

is given in Figure 6.57.

6.15.1  Analysis procedure

Input dataset

This module requires a dataset that consists of three vari-

ables. This includes the response variable to be analysed 

(usually time to event or time of censored observation), 

a variable identifying the experimental group and a cen-

sorship variable. The censorship variable contains either 

0 or 1 values, where 0 corresponds to a censored obser-

vation. Each experimental unit (usually animal) is one 

row of the dataset. An example is given in Table  6.27, 

where censorship occurred on days 2 and 3 in the treat-

ment group. The analysis procedure is illustrated in 

Figure 6.58.

Input selection

1.	 Dataset selection: The analysis begins by select-

ing a dataset from the drop-down list of available 

imported datasets.

2.	 Variable selection: The response variable is dragged 

and dropped from the ‘Available variables’ list 

onto the ‘Response variable’ box. The variable that 

defines the experimental groups is dragged and 

dropped onto the ‘Grouping variable’ box and the 

censorship variable is dragged and dropped onto 

the ‘Censorship variable’ box.

Stage 3

Stage 5

Stage 4
Stage 6

Stage 1

Stage 2

Figure 6.58.  Screenshot illustrating the six-stage process when using the InVivoStat survival analysis module.
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Output selection

The user has several choices for the analysis.

3.	 Summary results: Select this option to generate 

summary statistics of the dataset, including the total 

number of records, the start size of each group, the 

number of recorded events (that are not censored), 

the median response and a 95% confidence interval 

around the median.

4.	 Survival plot: This option produces the Kaplan–

Meier survival plot.

5.	 Compare survival curves: This option allows the 

user to perform a log-rank test to compare the sur-

vival rates across groups.

6.	 Significance: The user can also choose the sig-

nificance level for the tests, the default being 0.05 

or 5%.

Output details

1.	 Response: This text contains information about the 

response, grouping and censorship variables.

2.	 Summary results: If selected, this table contains a 

summary of the results, categorised by the grouping 

variable.

3.	 Comparing survival curves: If selected, this table 

contains the results of the log-rank test.

4.	 Kaplan–Meier survival plot: If selected, the Kaplan–

Meier survival plot is produced.

5.	 References: Finally, references for the methods 

applied in the analysis are given.

6.15.2  Worked example

Consider Example  5.29, described in Section 5.5.3, 

consisting of six treatment groups (corresponding to 

between 5% and 35% ligation) with ten animals per 

group. The summary results are given in Table  6.28. 

There were ten animals in each group at the start of 

the study and the number of deaths per group ranged 

between zero and ten in an apparently dose-related 

way. It was only possible to calculate confidence inter-

vals for some of the treatment group due to the sparsity 

of data.

The log-rank test results are presented in Table 6.29. 

The chi-squared test statistic (37.34) and the associ-

ated p-value (p < 0.001) indicate there is almost cer-

tainly a difference in survival rates across the groups. 

The Kaplan–Meier survival plot for this analysis is pre-

sented above in Section 5.5.3.
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In this text we have aimed to show the reader how the 

use of experimental design and statistics can help the 

researcher gather the most information from each ani-

mal experiment while using as few animals as possible. 

Returning to the statement of Russell and Burch (1959, 

p. 111):

Every time any particle of statistical method is properly used, 

fewer animals are employed than would otherwise have been 

necessary.

We hope that this text has convinced the reader that 

there is much merit in this statement.

The book has been aimed at any researcher perform-

ing animal experiments. Some of the subject matter 

can be applied by scientists without the help of a pro-

fessional statistician. We have also used this platform to 

introduce the reader to some of the more complicated 

examples of experimental design and statistical analy-

sis, examples of which are commonly found in real-

life experiments. Hopefully we have given a flavour of 

these methods and encouraged the reader to either try 

them out for themselves or seek professional help to get 

started. Remember, as explained in Gaines Das (2004), 

sometimes it is the collaboration between the biologist 

and the statistician at all stages of the experimental pro-

cess that leads to a successful experiment.

The emphasis in the text has been experimental 

designs. We feel that the scientist can, using rules based 

on common sense, construct complicated yet useful 

experimental designs without resorting to the mathe-

matical theory underpinning the designs. Once a design 

is selected then the choice of statistical analysis should 

be relatively straightforward and has, in our experience, 

led to reliable conclusions being drawn.

If the reader applies the principles outlined in this 

text during their research, then it should be possible 

to achieve valid scientific results while using as few 

animals as possible. We end this book with a few 

summary thoughts that the researcher should always 

consider.

7.1  Experimental design

1.	 Don’t ignore the variability at the expense of the 

signal.

2.	 Use blocking factors to reduce the variability and 

remove bias from the signal.

3.	 Use factorial designs to gain a better understanding 

of how the experimental factors are interrelated.

4.	 Make sure you use enough animals to obtain reli-

able results. There is no point running experiments 

that generate tests that do not have sufficient statis-

tical power to reject the null hypothesis.

5.	 Be aware of pseudo-replication.

6.	 Choose continuous responses where possible.

7.	 Always perform a power analysis to confirm appro-

priate sample sizes in future studies.

8.	 Use nested designs to identify suitable within-ani-

mal replication.

9.	 Identify the experimental units.

10.  Consider using dose-escalation techniques rather 

than testing doses of compounds relative to the 

control.

Conclusion

7
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7.2  Randomisation

11.	 Use blinding and randomisation to avoid all forms 

of bias.

7.3  Statistical analysis

12.	 Limit the standard t-test to situations where it is 

valid, i.e. a single treatment group against a con-

trol, and not when multiple treatments are being 

compared or other factors are likely to be import-

ant, e.g. sex of animal or initial body weight.

13.	 Graph the data, preferably the raw data.

14.	 Use estimation procedures (the difference between 

treatments and confidence intervals) rather than 

relying on hypothesis tests and p-values.

15.	 Transform the data if necessary to satisfy the 

assumptions of the analysis.

16.	 Use all of the information recorded for the animals 

using covariates or linear predictors.

17.	 If the levels of a factor are not involved in the ran-

domisation (for example Time in a repeated meas-

ures or Dose in a dose-escalation design) then use 

repeated measures techniques to analyse the data.

7.4  Reporting results

18.	 When reporting results always say how many non-

significant results were found.

19.	 Always report an estimate of the variability along-

side the results.

20.	 Have the confidence always to question the design 

and analysis strategies used by your peers.

There will always be concerns about the conclusions 

drawn from animal experiments. With sample sizes 

limited by ethical considerations, biological variabil-

ity and questions about the applicability of the animal 

models to human disease, there are many challenges. 

However, the choice of a good experimental design and 

statistical analysis can improve the power of the experi-

ment to detect the important differences. Good experi-

mental design and an appropriate statistical analysis 

technique can, if applied correctly, improve the quality 

of animal research.
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Term Definition

A priori Relating to prior knowledge

Arithmetic mean for group i x x x ni i n i ii1 2+ +…+( )   /

Continuous distribution Data presented as numbers that can take any numerical value, i.e. body weight, time to event

Correlation Measure of the linear relationship between two variables

Covariance A measure of the degree to which two variables vary together

Covariate A measure of a feature of the subject, e.g. body weight, which may explain some of the variability 

in the post-treatment results and is unaffected by the treatment being applied in the 

experiment. Usually a pretreatment measure

Degrees of freedom A measure of the number of independent pieces of information available to estimate the 

parameters in the statistical analysis, usually the number of factor levels minus 1

Factor A variable controlled by the researcher that can be used to quantify a source of variability in the 

experiment. For example, the Treatment factor is a variable that is part of the experimental 

design and quantifies the treatment effects

False negative When the null hypothesis is rejected when it should not be but the effect is not genuine, i.e. p < 0.05

False positive When the null hypothesis is not rejected when it should be when there is a genuine effect, i.e. p > 0.05

FDR False discovery rate – the chance of making at least one false positive conclusion in a statistical 

analysis

F-value The test used in the ANOVA table. It is a signal-to-noise ratio, that is the size of the effect vs. 

underlying variability

FWE Family-wise error rate – the proportion of false positives in a statistical analysis

Geometric mean for group i x x xi i n i

n

i

i

1 2

1
× ×…×( ) /

Homogeneity of variance We assume the variability is the same in all experimental groups (ANOVA uses an average 

variability)

Independence One experimental observation should not be influenced, or related to, any other

Level The set of levels a factor can take. For example control, low, medium, high dose are levels of the 

Treatment factor

Linear predictor A measure taken on each animal, e.g. terminal body weight, which is related in a linear fashion 

to the experimental response. Unlike covariates, linear predictors may be influenced by the 

treatments. It may be of interest to see how the linear predictors are related, or correlated, with 

the response using a regression analysis

Mean Sum of a series of values divided by the number of values measured

Median The middle or central value of a set of values

Mixed-model A statistical analysis approach that contains both fixed and random factors. Used in the analysis of 

complex analyses and repeated measures analyses

Glossary
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Term Definition

Mode Most frequently occurring value of a set of values

Multiple comparison 

procedure

A process that involves an adjustment, usually applied to p-values and confidence intervals, to 

maintain a specified risk of finding a false positive result

ni Sample size for the ith group

Noise Variation in a sample

Non-parametric Statistics that do not rely on certain assumptions about the distribution of the measurements (for 

example the assumption that the data are normally distributed)

Normal distribution 

(Gaussian)

Hypothetical frequency distribution with special characteristics (bell shaped, symmetrical and 

with a central tendency)

Normally distributed The distribution of the residuals of the measurements (if plotted as a histogram say) follows a 

normal or Gaussian (bell-shaped) curve

One-way ANOVA ANalysis Of VAriance. Used when you have only one factor in the experiment

Parametric When the measured responses from a population are assumed to fit to a normal distribution

Parametric test Statistical test that relies on the assumption that the population of animal responses are normally 

distributed

Population Set of potential animals that we wish to make predictions about

Post hoc Examining the data after the experiment has finished

p-value Probability of obtaining a result at least as extreme as a given data point, assuming the null 

hypothesis is true

Random sample A sample chosen by an unpredictable method to ensure that every member of the population has 

an equal chance of being selected

Residual The observed value minus the predicted value

Response A quantity measured by the researcher that reflects an animal’s response to the experimental 

intervention. Responses can be continuous, discrete, ordinal, nominal or binary

Sphericity One of the assumptions that can be made when performing a repeated measures analysis. It is the 

assumption that the variances of the differences between pairs of treatment group means are 

the same

Standard deviation (SD) A measure of the variation of the observations from their predicted means:

SD = √Variance

Standard error of the mean 

(SEM)

The standard deviation of the ith sample mean:

SEM = √Variance / ni

Statistical significance A result that is unlikely to have occurred by chance

Transformation Mathematical operation required before the statistical analysis if the data are not normally 

distributed or the within-group variances are different. A log or square root transformation of 

the response is most common

t-test The t-test assesses whether two group means are statistically different from each other. This test is 

appropriate whenever you have a study with only two groups

Two-way ANOVA Used when you have two factors and wish to investigate how they interact with each other

Type I error False positive determination – rejecting the null hypothesis when the null hypothesis is actually true

Type II error False negative determination – failing to reject the null hypothesis when the alternate hypothesis 

is actually true

Variable A column of the dataset corresponding to a single experimental design factor or a set of 

measurements

Variance A measure of the underlying variability of the response, once all known factors have been 

accounted for. Variance equals the standard deviation squared

x1i, …, xni n responses for the ith group
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2SD rule, see outliers

3-dimension surface plot, 80

3Rs, Replacement, Reduction and Refinement, 1

reduction, 1, 49, 65, 96, 98, 204

acceptance criteria, see dose-response analysis

actual change from baseline, 209–10, 211–12

additivity, see parametric assumptions

age effects, 7, 30, 32, 79–82, 84, 202–3, see also effects

all pairwise tests, 219, 221–2, 229, 245, 246, 255, 

see also multiple comparison procedure

alternative hypothesis, 24, 96, 165, 233–4, 

see also hypothesis

analysis of covariance, 200–12, see also parametric 

analysis

assumptions, 205–8

best-fit lines, 202, 206, 247

covariate interaction, 206–7

predicted lines, 202, 203–5

analysis of variance, 98, 134, 152, 169–70, 227–8

one-way ANOVA, 153, 170–1, 177, 179

two-way ANOVA, 153, 175, 177–8

ANCOVA, see analysis of covariance

animal effect, 109, see also effect

Animal factor, 39, 40–1, 43, 59, 91, 92, 94, 100, 103, 119, 

252, see also factor

animal model, 1, 4, 6, 9, 28, 30, 47,  

68–70, 79–82

ANOVA, see analysis of variance

a-priori hypothesis, see hypotheses

arcsine transformation, see transformation

area under the curve, see summary measure

ARRIVE guidelines, 15

Index 
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assays, 11, 45, 105, 275–6, 277–80, 283

quality control (QC), 279–80, 281

AUC, see area under the curve

autoregressive covariance structure, see repeated 

measures mixed-model approach

balanced incomplete block design (BIBD), 55–6, 137, 

199–200, see also block design

Bartlett’s test, 156

baseline response, 2–3, 34, 42, 141, 201, 202–3, 

208–12, 246

behavioural tests, 12, 30, 41, 186

Behrens-Fisher all pairwise tests, 261–3

Benjamini-Hochberg procedure, 219–20, 225, 245, 259, 

see also multiple comparison procedure

best guess approach, 69

between-animal variability, see variability

bias, 1, 6, 9, 31–2, 51, 58, 123–4, 210–11

attrition bias, 124

detection bias, 9

performance bias, 124

publication bias, 13

selection bias, 9

systematic bias, 14, 123

binary response, see response

biological effects, 7, 12, 18, 25, 32, 94, 96, 

see also effects

biologically relevant effect, 7, 12, 95, 96–7, 98, 

see also power analysis

blinding, 8–9, 10, 14, 123, 125

block design, 30, 46–7, 49–52, 54, 127, 128, 250–1

block by animal, 47, 49, 59, 128, 169, 199–200

blocking factor, 47, 49–51, 53, 54, 55–7, 94, 98, 124, 

126, 128, 150, 166, 250–1

randomisation (of block designs), 53, 55, 56, 58, 

128–9, 251

bodyweight, 21, 42, 51, 52–3, 56, 59, 100, 113, 122, 126, 

128, 164, 202, 205, 207–9, 212, 213

Bonferroni procedure, 220, 245, see also multiple 

comparison procedure

boundary, 12, 153, 154, 158, 231, 236

box-plot, 142–3, 262

brain region, 11, 28, 112–13, 116–17, 194, 215–16, 

see also effects and repeated measures analysis

Brown-Forsythe test, 156

cage, 9, 37, 41, 56, 100–2, 120, 125, 130–1, 

see also effects

carry-over effect, see cross-over trial

categorical factor, see factor

categorised case profiles plot, 145–6, 180–2, 195, 

210, 256

categorised scatterplot, 202, 206, 210, 246, 247, 

255, 273

censored data, see survival analysis

change from baseline, see actual and percentage 

change from baseline

chi-squared distribution, see distribution

chi-squared test, 233, 234–5, 238, 285–8

coefficient of variation, 140, 279, 283

comparative control, 36

comparisons back to control, 54–5, 60, 216, 245, 262

complete block design, 53–4, see also block design

compound symmetric covariance structure, 

see repeated measures mixed-model analysis

confidence interval, 140, 198–9, 200, 244, 246, 254, 256, 

270, 273, 283, 295

confirmatory analysis, 27–8, 215, 216

confounding, 6, 31, 51, 53, 109

constraints, 12, 19, 45, 82, 100, 153, 231

contingency table, 234, 285, 287

continuous factor, see factor

continuous response, see response

control group, 6, 35, 89–91, 222–3

correlation, 3, 128, 130, 142, 192

count response, see response

covariance, 192, 237

covariance structure, 192–4, 196, 253, 273, 

see also repeated measures mixed-model 

approach

covariate, 201–9, 244, 246–8, 253, 271, see also analysis 

of covariance

critical value, 26, 140, 221–2, 232

crossed factors, 43–5, 47, 51, 63, 82, 112–13, 116, 120, 

127, 249

cross-over design, 8, 46, 59–63, 117, 120, 129, 

see also block design

balanced cross-over design, 62–3

complete cross-over design, 60, 61

incomplete cross-over design, 60–1

multi-factor cross-over design, 62, 120
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randomisation (of cross-over designs), 59, 129–30

repeated measures cross-over design, 59, 117

cross-over trial, 59, 252–3

carry-over effect, 62–3

data trawling, 10, 28

day effects, 5, 12, 19, 30, 45, 47, 51, 54, 113, 164, 241, 

250, see also effects

degrees of freedom, 22–3, 165, 171–3, 175, 176, 178, 191

density distribution, see distribution

diagnostic plot, 246, 255, 270, 274, see also predicted 

vs. residual plot and normal probability plot

discrete response, see response

distribution, 143, 152, 160

chi-squared distribution, 22, 234, 238

density distribution, 20

F-distribution, 23, 173

frequency distribution, 20

log-normal distribution, 86, 138, 155, 157–8

normal distribution, 21–2, 154, 155

probability distribution, 19–20, 21

skewed distribution, 236

standard-normal distribution, 22, 155

t-distribution, 22–3, 25–6, 140, 165, 218

distributional curve, 21

dose-escalation design, 46, 48, 117, 128–30, 271

repeated measures dose-escalation design, 

117–19, 189

dose-response analysis, 85–6, 275–80

acceptance criteria, 279–80, 283

adding an offset to the doses, 89–91, 277, 281

change from control response, 89

dual statistical model, 89

Gauss-Newton algorithm, 277

dose-response design, 47, 85, 86–8

anchor point, 87

dose-response relationship, 42, 87, 89, 275, 

see also logistic curve

double-repeated measures design, 116–17, 

see also repeated measures design

drug combination study, 82–4

drug discovery study, 10

drug synergies, 82, see also drug combination study

Duncan’s multiple range procedure, 224, 

see also multiple comparison procedure

Dunnett procedure, 222–3, 245, see also multiple 

comparison procedure

Dunn-Šidák procedure, 220–1, see also multiple 

comparison procedure

effects, 37–9

effects of interest, 28, 37, see also effects and factors (of 

interest)

efficiency (of block designs), 52, 53, 55, 56, 58

error bars, 146–52, 195, 198, see also means with 

standard errors plot

estimation approach, 28–9, 85

ethical constraints, 5, 12, 59, 62, 94, 231

experimental unit, 37, 41, 46, 48, 61, 105, 107–9, 113, 

117, 119

exploratory analysis, 27–8, 214, 216

exponential curve, 156, 187, 237, 275, see also non-

linear relationship

external validity, 9

Externally Studentised residuals, 162–3, 246, 270, 

see also outliers

factor, 37–45

between-animal factor, 46, 119, 191, 254, 271

categorical factor, 42, 63, 64, 84

continuous factor, 42, 79, 82, 84–5, 88

factor of interest, 7, 40, 47, 66, 127, 249

within-animal factor, 46, 119, 168, 169

factor level, 39, 45, 64, 69, 73, 130, 178

factor label, 92, 100–1, 130

factorial design, 6, 47, 64, 127

hidden replication, 70–2, 178

incomplete factorial design, 68

large factorial design, 47, 63–4, 68–72, 249

randomisation (of factorial designs), 64, 127

small factorial design, 47, 63, 66–8, 249–50

false discovery rate, 214, 229, see also multiplicity

false negative, 26, 213, 217

false positive, 10, 13, 26, 95, 165, 213–15, 227

false replication, 11, see also independence

family of tests, 213, 215, see also multiple comparison 

procedure

family-wise error rate, 213–14, 229, see also multiplicity

F-distribution, see distribution

FDR, see false discovery rate
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Fisher’s exact test, 233–4, 235, 285–8

Fisher’s protected test, 226, see also multiple 

comparison procedure

fixed factor, 39–40, 41–2, 64, see also factor

fractional factorial design, 73–4, 178,  

see also factorial design

frequency distribution, see distribution

frequency histogram, 20

full statistical model, 249–50

full-factorial design, 64, 67, 68, 82, see also factorial 

design

fully crossed, 43, 127, 195, see also crossed factors

F-value, 173

FWE, see family-wise error rate

gateway ANOVA, 170, 226–8, see also multiple 

comparison procedure

General Linear Model, 133, see also parametric analysis

geometric mean, see mean

geometric standard deviation, 280

geometric standard error, 198, see also geometric 

standard deviation

GLM, see General Linear Model

global test, 169, 227, 228, see also gateway ANOVA

grand mean, 41, 170

Greenhouse-Geisser adjustment, see repeated 

measures ANOVA-based approach

half-life, see summary measure

Hill equation, 85, see also logistic curve

histogram, 20–1, 143–4, 154, 263

Hochberg procedure, 225, 229, 245, 259, 

see also multiple comparison procedure

Holm procedure, 224–5, 229, 245, 259, see also multiple 

comparison procedure

Hommel procedure, 225, 229, 245, 259, 

see also multiple comparison procedure

homogeneity of variance, see parametric assumptions

housing effects, 39–40, 56, 58, see also effects

husbandry activities, 31, 62, 125

Huydt-Feldt adjustment, see repeated measures 

ANOVA-based approach

hypothesis, 23, 96, 107

hypothesis testing framework, 28, 85, see also null 

hypothesis and alternative hypothesis

inbred strain, 19, 96

incomplete block design, 54–5, see also block design

independence, 12, 107, 128, 159, see also parametric 

assumptions

indicator variable, 54, 56, 58

interaction, 64–5, 68, 75, 78, 127, 130, 175, 177–8, 

249–50, 253

moderate interaction, 65–6

no interaction, 65, 70

strong interaction, 66

intercept, 41

internal validity, 8–9, 14, 124

interquartile range, 141, 143, 262

isogenic strain, 5

Kaplan-Meier survival function, see survival analysis

Kaplan-Meier survival plot, see survival analysis

Kolmogorov-Smirnov test, 154

Kruskal-Wallis test, 261, 262

Latin square, 57–9, 60

Latin square block design, 57–9

Least Significant Difference (LSD) test, 215, 217–19

least square (predicted) means, 134–6, 197–8, 219, 245, 

254, 270, 273

Levene’s test, 156

leverage, 162–3

linear model, 133, 163, see also General Linear Model 

and parametric analysis

linear predictor, 201–2, 213

linear regression, 85, 201–2, 212–13

linear trend, 47

litter, 51, 52, 121, see also experimental unit

log transformation, see transformation

logistic curve, 47, 85–6, 89, 187–90, 277

assymetry parameter, 86

D50, 86, 88, 188, 277

five-parameter logistic curve, 86

four-parameter logistic curve, 85, 87–8, 275

log-normal distribution, see distribution

log-rank test, see survival analysis

lower boundary, 158, see also boundary

lower quartile, 141, 143, see also interquartile range

LSD test, see Least Significant Difference  

(LSD) test
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Mann-Whitney test, 232–3, 261, 263

maximal effect (Cmax), see summary measure

mean 

geometric mean, 138, 198–9

observed mean, 134, 137, 143, 146, 161, 219

predicted mean, 134, 137–8, 196–8, 199–200, 204, 

207–9, see also least square (predicted) means

sample mean, 137, 139, 140

true mean, 136–7, 140

mean squares, 173

means with standard errors plot, 146–52, 175, 195, 

198, 263

measures of location, 136–8, 140–1

measures of spread, 139–41

median, 140–1, 143, 161, 262, 295

Microsoft Excel, 131–2, 239

Microsoft Word, 242

missing data, 12, 52, 169, 183, 194

missing completely at random, 12

mixed design, 41

modelling (statistical), 3, 79, 84, 89, 133, 134, 154, 163, 

249–50, 275

multiple comparison procedure, 10, 135, 213–29, 

259–60

multiple t-tests, 165, 216–17, see also multiple 

comparison procedure

multiplicity, 13, 28, 215, 246

naive control, 36

negative control, 35

nested design, 11, 47–8, 91–4, 109, 288–94

higher order nested design, 46, 92–4, 100–7

single order nested design, 92, 103, 113, 116

nested factors, 42–3, 45, 91, 94, 100–2, 113, 121

nesting structure, 45, 107, see also nested design

Newman-Keuls procedure, 223–4, see also multiple 

comparison procedure

noise, 18–19, 31, 168, 171

nominal dose, 84, 87

nominal response, see response

non-linear relationship, 47, 85, 154, 275–7

non-parametric, 140–1, 230–5, 237, 261–3

non-random, 9, 11, 46, 117, 125, 129, 130

non-significance, 12, 98, 226, 249

normal distribution, see distribution

normal probability plot, 155, 245, 254, 269, 273, 

see also diagnostic plot

normalising, 2, 209, 212

normally distributed residuals, see parametric 

assumptions

nuisance effects, 6, 19, 31–2, 37, 51, 124, see also effects

null hypothesis, 23–4, 26–7, 36, 95, 98–9, 165, 213, 233, 

237, see also hypothesis

numerical response, see response

observational unit, 37, 41–2, 43–5, 103, 112, 116

observed effects, 25, 94, 98–100, 223, see also effects

observed mean, see mean

observed means with standard errors plot, see means 

with standard errors plot

OFAT approach, see one factor at a time approach

offset, 89–91, 158, 277, 281, see also log transformation 

and dose-response analysis

one factor at a time approach, 69, 74, 76, 80

one-sided statistical test, 24, 96, 165, 285

operators, 32, 49, see also effects

order of testing, 124, 131, see also effects

ordinal response, see response

outbred strain, 19, 96

outliers, 11, 35, 143, 146, 158, 160–3

2SD rule, 161–2

overall tests of effects, 68, 153, 170, 245, 254, 

see also global test

over-sensitive statistical test, 7, 17, 94, 196

paired t-test, 168–9, 275

pairwise comparisons, 54–5, 216–19, 221–3, 245, 255

parametric analysis, 152–3, 244, 253

parametric assumptions, 153–64

additivity, 163–4

homogeneity of variance, 12, 139, 156–9, 217

independence, 107, 159, 166

normally distributed residuals, 154–5

partially crossed, 45

percentage change from baseline, 209, 210, 212

physical constraint, 153, 156, 231

pilot study, 28, 31, 63, see also factorial design

Plackett-Burman design, 74

planned comparisons, 165, 218–19, 229, 249–50, 

see also multiple comparison procedure
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pooled estimate of variability, 149–50, 161–3

population, 40, 109–12, 139, 164

positive control, 35–6, 174–5, 227–8

post-experiment power analysis, 98–100, 

see also power analysis

post-hoc tests, 153, 214

power analysis, 12, 96–100, 264–8, 288–94

power curve, 98, 107, 291–4

practical constraints, 19, 45, 153, 231

precision, 46, 53, 55, 88, 194

predicted mean, see mean

predicted vs. residuals plot, 157, 163, 246, 255, 270, 

274, see also diagnostic plot

preliminary investigation, 69, 168

probability distribution, see distribution

procedural effects, 123, 201, see also effects

proportion response, see response

pseudo-replication, 11, 107–12, see also nested design

publication bias, see bias

p-value, 12, 25, 26, 134, 165, 173–4, 214, 219–20, 

224–5, 235

quality control, see assays

R statistical language, 134, 288

racks, 6, 56, 58, 131

random factor, 39–42, 48, 92–4, 102–3, 105–6, 288–94

random numbers, 131–2

random sample, 23, 40, 102, 139, 150

randomisation, 9, 14, 53, 55, 56, 58, 64, 123–32, 159, 

169, 180, 193, 209, 251

rank transformation, see transformation

reduced statistical model, 249, 250

regression analysis, see linear regression

rejection region, 26, 27

relative error (%RE), 279

REML, see Restricted Maximum Likelihood

repeated measures analysis, 11–12, 117, 130, 180–2, 

190–2, 194, 196

subject factor, 169, 253

repeated measures ANOVA-based approach, 190, 194

Greenhouse-Geisser adjustment, 194

Huydt-Feldt adjustment, 194

Wilkes-Lambda adjustment, 194

repeated measures design, 48, 112–13, 116, 128

core design, 112, 113–16, 119

nested repeated measures design, 112, 113–16

repeated factor, 48, 112–13, 128, 130, 190–2

repeated measures format, 240

repeated measures mixed-model approach, 190, 

192–4, 253

autoregressive covariance structure, 193, 256

compound symmetric covariance structure, 193, 

253, 273

unstructured covariance structure, 194

repeatedly measured response, 48, 59, 113, 128, 191

reporting, 1, 13–14, 15, 34, 124

reproducibility, 5, 139, 153, 162

Residual degrees of freedom, 172–4, 217

Residual mean square, 139, 140, 219

Residual sums of squares, 171, 173

residuals, 154–5, 156–9, 162–3, 171, 230–1, 

see also predicted vs. residuals plot

Resource equation, 97, see also power analysis

response 

binary response, 33–4, 189–90, 234

continuous response, 32, 33, 95–6, 153–4

count response, 33, 153–4, 159

discrete response, 32–3, 79, 153

nominal response, 33

numerical response, 8, 32, 154, 201, 212–13

ordinal response, 33

proportion response, 159, 233–5

severity score, 33

response surface model, 79, 81–2, 84, see also factorial 

design

Restricted Maximum Likelihood, 190

room effects, 6, 37, 39–40, see also effects

row-column block design, 56–9, see also block design

safety assessment, 10, 62, 213

sample mean, see mean

sample size, 5, 7, 14, 27, 63, 70, 88, 94–8, 147, 264

scatterplot, 2, 141–2, 160, 202–3

Scheffé procedure, 222, see also multiple comparison 

procedure

screening study, 75

Selected effect, 245, 249–50

SEM, see standard error of the mean

severity scores, see response
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sham control, 36

Shapiro-Wilk test, 154

signal, 18–19, 31, 165, 168

signal to noise ratio, 19, 31, 32, 173

significance level, 25–7, 95, 213, 220

Simpson’s rule, 183–5, see also area under the curve

simultaneous multiple comparison procedures, 220–3

single measure format, 239

skewed distribution, see distribution

slope, see summary measure

sources of variability, 5, 31, 49, 56, 57, 103, 150, 191

spatial inter-relationships, 113, 117, 128–9, 180, 193–4, 

253, 273, see also repeated measures analysis

sphericity, 194, see also repeated measures analysis

split-plot design, 46, 48, 119–20

sub-plot, 119, 120

sub-plot treatment, 119

whole-plot, 119–20

whole-plot treatment, 119

square root transformation, see transformation

standard curve, 278–9, 283, see also assays

standard deviation, 139, 161, 162, 265, 279

standard error of the mean, 139, 146–7

Standardised residual, 162, 256, 274, see also residuals

standardised response, 22–3, 25–6, 27

standard-normal distribution, see distribution

stars, 26

statistical model, 3, 89, 130, 133, 134, 154, 163–4, 178, 

249–50

statistical power, 7, 12, 13, 26–7, 95, 97, 98–100, 174, 

214, 223, see also power analysis

statistically significant, 7, 12, 94, 95, 214, 216, 226, 249

Steel’s test, 261–3

strain, 5, 40, 45, 69, 128, 164

Student’s t-test, see unpaired t-test

Studentised residuals, 162–3, see also residuals and 

Externally Studentised residuals

summary measure, 105, 146, 182–90

area under the curve, 183–5

half-life, 187

maximal effect (Cmax), 63, 117, 186

slope, 186

time to maximum response (Tmax), 185

X50, 187–90

summary statistics, 136, 242–4

sums of squares, 171, 173, 246

survival analysis, 235–8, 294–5

censored data, 236, 294

Kaplan-Meier survival function, 237

Kaplan-Meier survival plot, 237, 294

log-rank test, 237–8, 294

survival function, 236–8

synergistic effect, 82

systematic bias, see bias

t-distribution, see distribution

test equipment effects, 5, 6, 30, 49, 56, see also effects

test of proportions, 233–5, 285

Yates’ Continuity Correction, 234

test period, 46, 48, 59, 62, 117, 129–30, 252

time to event, 12, 32, 236, 294

transformation 

arcsine, 159

log, 138, 157–8, 161, 164, 198–9

rank, 231–2

square root, 33, 158–9

transgenic strain, 64

Trapezium rule, 183–4

trend over time, 124, 131, 146

true effect, 12, 24, 26–7, 28, 98–100

true mean, see mean

t-test, 10, 133, 164–9, 216–17, see also unpaired t-test 

and paired t-test

Tukey HSD procedure, 221–2, 229, see also multiple 

comparison procedure

Tukey-Kramer procedure, 222, see also multiple 

comparison procedure

t-value, 165, 173

two-sided statistical test, 24, 26, 96, 140, 285

Type I error, 26, 95, 96, see also false positive

Type II error, 26–7, 67, 214, see also false negative

Type II sums of squares, 246

unbiased, 6, 51, 124

under-powered, 13, 149, see also power analysis

uniformity (of the animals), 96

unpaired t-test, 25, 164–8, 268–71

unstructured covariance structure, see repeated 

measures mixed-model approach

upper boundary, 153, 162

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Index314

upper quartile, 141, see also interquartile range

variability 

between-animal variability, 37, 103, 119, 128, 

191, 210

within-animal variability, 37, 49, 59, 61, 103, 119, 

151, 168, 191, 196

variables, 32, 202, 212, 239–41

variance, 13–14, 49–51, 97, 139, 161, 165, 192, 193, 

216–17

sample variance, 23, 139, 265

true variance, 139

variance components, 102–6, 293, see also nested 

design

variance-covariance matrix, 192–4

vehicle control, 35

wash-out period, 59, 62, 63, see also cross-over trial

Welch’s t-test, 165, 269, 271

whisker, 142–3

Wilcoxon Rank Sum test, 261

Wilkes-Lambda adjustment, see repeated measures 

ANOVA-based approach

window of opportunity, 31, 68–9, see also factorial 

design

within-animal analysis, 117, 191, 271–5

within-animal measurements, 103, 105, 107, 113, 130

within-animal variability, see variability
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