Chapter Two

Vector Calculus

TIME DERIVATIVES OF VECTORS

Suppose a vector A is changing with time; that is, its magnitude and/or direction is varying with
time. If we choose a fixed coordinate system with basis vectors i and j , then

At) = AT + A,)] .

The time rate of change of A is given by the derivative

dA _dA., , di dAy. , dj
B dt’

I+Ax_ +

dr dt dt dr 7 + 4y

“F(t+AD

2.1 The change Ar; in the position vector r(t) along a path in the x-y plane.

But since we chose a fixed coordinate system (this is not necessary, in general),

di/dt = dj/dt =0, so

d_/i_ dAx{+dAy?
dt ~ dt dr

Let A(t) be the position vector 7(t) The velocity vector is then
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3 lr(t + At) - r(t)]

At—»O

t—>0 At

dr
dt’

FLUID KINEMATICS

*

I.
2.

A fluid is either a liquid or a gas.

Many of the following examples and derivations will involve liquids, but most of the results
will apply equally well to gases.

One difference between liquids and gases is that it is very difficult to compress a liquid, but
not so difficult to compress a gas.

We will assume that the fluids are compressible. Since a fluid is made up of particles (atoms
or molecules) with mass, we could apply Newton's laws and study the dynamics of each
particle.

However, because the number of particles is so large, this is impractical.

Instead, we will concentrate on a "small" volume fixed in space and specify the density p
and the velocity v of the fluid as it passes through this fixed volume in a given time.

In order to make the analysis of a fluid feasible, we will make the following approximations:
Steady flow-at any given point (small volume), the velocity of the fluid,v,is constant in time
Irrotational flow-the fluid at a point has no net angular velocity. This will be made more
quantitative.
Non viscous fluid-viscosity is a measure of the friction exerted on a fluid flowing past a

surface. We will neglect any effects due to viscosity.
For now we consider steady, irrotational, nonviscous flow.
¢ If the fluid flow is steady, then at each point in space we can assign a unique velocity v
of the fluid.
¢ If we draw a curve representing the path followed by a particle of the fluid, then every
particle that reaches a point will follow the same curve.

¢ The curve describing the path taken by any particle passing through a given point is

called a streamline. Notice that no two streamlines can cross.
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¢ The velocity is tangent to the curve at any point on the curve.

¢ Shown in Figure 2.3 is a set of streamlines that form a tubular bundle, called a tube of
flow.

¢ The velocity is always tangent to the streamlines; no fluid will flow through the side of
the tube of flow.

¢ All of the fluid that enters at one end of the tube must exit at the other end.

¢ If we consider a thin tube, the velocity can be taken as constant over the area of the
ends. However, the velocities at the two ends may differ.

< We will now derive a relationship between the flow into and out of a tube of flow.

Fig 2.2 A streamline in a fluid along which a tangent vector represents the velocity of the fluid at a given point.

Figure 2.3 shows a tube of flow whose ends have areas A;and A2 and velocities V; and V5,
respectively. In a time At, an element of fluid travels

a distance vAr. Then the mass crossing area A; in time Az is Am; = p1 V),
where V; = A;v| At is the volume of the cylinder with area A; and length v; Az

So we define the mass flux (or flow) at end 1 as

Am1
—A = piAvy. . % = p24ava.
! At end 2 the mass flux is 2*

No fluid can leave through the walls; thus, if we assume there is no creation
or destruction of fluid inside the tube, the mass flux in must equal the mass
flux out, or p1A;v; = paAzva. We can then say that

pAv = constant.
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Fig 2.3 A typical tube of flow. Also shown is a cylinder of fluid whose area is A, and whose length is v, At dt.

If we further restrict our analysis to an incompressible fluid, then p = constant, so that
Av = flow rate = constant,

FLUID DYNAMICS

We can describe the motion of a fluid under the influence of pressure differences by using the
concept of conservation of energy. Then the work done by the resultant force is equal to the
change in the total mechanical energy of the system. Figure 2.4 shows a pipe through which a
fluid is flowing subject to different pressures at the two ends, which are at different heights. The
work done by external pressure P in changing the volume by AV is W =PAV .

For small displacements Ax of the fluid, AV = AAx, where A = area. Then W = PAAX. For the
situation shown in Figure 2.4, the total work is given by W = P;AjAx; - P,A,Ax,. The total
mechanical energy is the sum of kinetic and gravitational potential energy, so for a small
cylinder of fluid of mass m that moves from end 1 to end 2, the change in energy is

AE = AE, + AU

1L o 1 9
= MV T Smvyt mgys - mgyi.

End

Ay Py,

Iyl APy

X

Fig 2.4 A pipe through which fluid flows. The four quantities, pressure P, area A, velocity v, and height y,
can be different at ends 1 and 2.
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The work-energy theorem states that

1
PiA1Ax ] — PoArAx, = im (V% - v%) +mg(y2 — y1).

For an incompressible fluid, the volume occupied by a constant mass m is
constant. So V) = A;Ax; = Vb, = A;Ax; = m/p. Then

m
(P - Pz); = ~m(v} = vi)+ mg(y2 — y1),

N —

which can be rearranged to yield

1 1
Pi+ 5pvi + pgy1 = P2+ 5pv3 + pgya.

This is equivalent to
1 2
P+ Epv + pgy = constant.
This Equation is called Bernoulli's equation.

We can interpret this in terms of the energy density by realizing that P =pressure = work/volume,
pv 2 /2 = Kkinetic energy/volume, pgy = gravitational potential energy/volume.

The above Equation states that the energy/volume is constant. This is a stronger statement than
conservation of energy; conservation of energy density must be true at every point, whereas
conservation of energy is a statement about the whole system.

Example

Suppose the fluid is at rest.

Then vi = vy = 0, and P + pgy1 = P>+ pgy2,  (y,

Py — Py = —pg(y2 = y1).
This is the result for pressure in a static, incompressible fluid.

FIELDS AND THE GRADIENT

The potential energy of a force is defined as the negative of the work done by the force. For
example, if we lift a mass m a height h above the ground, the change in potential energy due to
gravity is the negative of the work done by gravity. Thus,

h h
W[ ) (@5) = mg | dy = -meh.
Then AU = —W or AU = mgh is the change in gravitational potential energy.
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We can think of the potential energy as being a function of the position of the mass (in this case
its height only) and we can assign a potential energy to each point in space.

A generalization of the previous example is the scalar field. This is a
function that assigns a scalar to every point represented by a position vector
7. The symbol usually used is ¢(¥ ). This is interpreted to mean that for any
position 7, there is a unique scalar quantity given by ¢(¥) = ¢Pp(x, y, z). If
the x-y plane of a rectangular coordinate axis lies on the surface of the earth
and the +z-axis points upward from the surface, the gravitational potential
energy (near the surface) can be represented by a scalar field that is written
with respect to some origin in the x-y plane as

&(F) = ¢(x,y,2) = mgz.

In this case the function ¢ depends only on the z-component of 7.

Suppose we have a physical quantity that can be represented by a scalar field in two dimensions

&) = &(x,¥) and we want to find how it changes when we move an infinitesimal distance from
one point to another. In moving from point 1 to point 2, x and y change by dx and dy,
respectively. Then

(b changes by

do dop
= —Ldx+ —d
d P X y

dy
We can represent the vector for displacement from point 1 to point 2 by ds = dxi + dyj.

Then d¢ can be written as the dot product of ds with another vector A defined by

" ¢7 5¢’¢
A= ax " ﬂyj'
So
dp = A-di
&¢¢ i¢ »
_(a—xz c?y ) (dx1+a'yj)
= ¢dx + Zd)

The vector A is called the gradient of the function ¢ and the symbol is A = V.
In three dimensions,

dp- ¢ L9

Ve = dx 5y 62
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It is usual to define the vector operator which is called “del” or “nabla”

0 0 ~ 0
=1 — ] — k — .
v ’6x+16y+ 0z

V called the gradient operator; that is,V operates on whatever scalar function appears to the right
of it and creates a vector function.

¢(F) = ¢(x,y,z) was called a scalar field because it assigns a scalar
quantity to every point in space. If we calculate the gradient of the scalar field,
V¢, we get another quantity, call it A(r) = A(x ¥, ), that assigns a vector

to every point in space. This is called a vector field.
Example 1
Suppose we have a scalar field in two dimensions given by ¢(x, y) = x2— y2.
This assigns a scalar to every point (x, y) in the x-y plane. The gradient of
this function is

Solution
- ob~ Job~
A=V¢»=£i+£i
=2xi—2y].

Y _ 2
Example 2 : Choose the gradient of a scalar fields for flz,y, 2) = xy® —y=.

(a) i+ 2z —2)j—yk, (b)  2zyi+ 2zyj +yk,
(¢c) y’i—zj—vyk, (d)  y*i+ (2zy —2)j —yk.

Example 3 : Find the gradient by using the following scalar fields.

1. U = x?
o o -
= (=3 —7 —k 2 =2
= VU axl + ayJ + pp )x X1
2. U =r?
= x*+y*+ 7
= VU = 3?+£}+—k (X% + y* + z7)
ox oy o
— 2Xi+2yj+2zk = 2vr
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FLUID FLOW AND THE DIVERGENCE

Suppose we choose a small area A in a fluid over which the velocity v is approximately constant.

The flux 1s defined as:
®=pid

where A = /i and 4 is a unit vector perpendicular to the area.

If v varies over the area A, then we define the flux by

<I>=Jp§-dc’z,
A

where da = 7fida and da is the infinitesimal surface area element.

If 74 is parallel to v, then v is perpendicular to the area and Vv ‘A=
vAcos(0) = vA; that is, the flux is a maximum. If 7 is perpendicular to v,

then v - A = 0 and the flux through area A is zero

Fig 2.5 An area A, the direction of which is given by 7, with fluid flowing through it in a direction given
by the direction of v.

We defined the gradient operator by

. ~d ~ 4
V=i—+j—+k—.
l&x Jﬂy dz

If we treat V as an ordinary vector,

IYx | 9y _ 9Y: >
i SRt S ATl £ 45 [N v I S
(é’x * dy * 0z ¥

This is called the divergence of the vector field ¥ = pv. The divergence is
also written div(pv). The order of V and pV in V- (pV) is important. Since V
is an operator, writing the divergence as pv - V leaves V without something on
which to operate and in general gives a result different from V - (pv).
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The above two equations show a relationship between the divergence of the vector field and the
flux:

‘D:r=j€ pv - dA
A

= JVV-(pT/)dV.

This equation is called the divergence theorem and it holds for any vector field F:

§ Frai-|

A v

where A is the surface area enclosing the volume V.
Examples 1: Find the divergence of a vector field.

F(z,y) = 3z% + 2yj

OF
Ox

V-FdvV,

If

OFs
Oy

V- F(x,y)
O 5 O

—_— 2 pr— 2_
&L_(Sx )+ ay( Y) 6x +

Quiz Select the

1
R
Yy

divergence of F'(x,y) = Tix (2 — 3y)7-
Yy

x

g2 (d) —2.

(a) (b) —;—2 +2, (¢

1

Yy
The definition of the divergence may be directly extended to vector
fields defined in three dimensions, F(z,y,z) = F1i + Fsj + Fsk:

oF,

I O,
dx

V'F(ﬂﬂ,y,z)z ay +

oz

CIRCULATION AND THE CURL

The curl of a vector field, F'(x, y, z), in three dimensions may be writ-
ten curl F(x,y,z) =V x F(x,y, z), i.e.:

_ 8F; OF,.. ,0F; OF .. ,0F; OF
T

_ |92 9 9

- dxr Jdy Oz
V2 s Fj

It is obtained by taking the wvector product of the vector operator V
applied to the vector field F'(x,y, z) . The second line is again a formal
shorthand. The curl of a vector field is a vector field.

N.B. V x F is sometimes called the rotation of F and written rot F'.
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For example

- aF dF
VXxF), = —=2-—.
( ) = = 2y

Example 1
The curl of F(x,y, z) = 32t + 227 — zk is:

0 0 0
322 22 —x
L 9(—=x) 9(22),. ,0(—=x) 9(3z?)
_(8y_8z)z(8x_é?z)
— (0-2)i—(—1-0)j+(0—0)k
— 2i+4j.

Let as see the curls in different coordinate systems. A line integral is defined as the integral of a
function along a given path or curve. An example of a physical quantity that is defined in terms
of a line integral is the work done by a force in moving an object along a particular path in space.
This is given by

where | ¢ means the integral is along the curve C. So

W= J (Fy dx + F, dy + F, dz).
C

Given F = xyi- yzf, find the work along paths Cy and C2 shown in Figure phe]ow.

y
C, (1.1)
< SR

1=
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For curve Cy: Along part a, x = 0 and dx = 0, so

1
1
W, =J (—yhdy = -,
0

and along partb, y = 1 and dy = 0, so

! 1
W, =J xdx = -.
b= 3
Thus, W, = £.

For curve Cy: y = x° (a parabola), so x and y are not independent.
Replace y by x2? and dy by 2xdx:

1
We, =J (x3dx —2x°dx) = —i.
0 12

CONSERVATIVE FORCES AND THE LAPLACIAN

Not all forces have a corresponding potential energy. For example, frictional forces cannot be
represented by potential energies. Thus, we would like to have a method for determining whether
a potential energy can be defined for a particular force.

A force that can be represented by a potential energy is called a conservative force. There are
several equivalent definitions for conservative forces; three are given here.

1. For a conservative force, the work done by the force along a path from
point A to point B is independent of the path.

2. The work done by a conservative force around a closed path is zero.

3. A force F is conservative if VX F = 0.

Definition 1 is equivalent to the statement that the potential energy is a
function only of the end points of a path. This implies that the infinitesimal

change in potential energy, dU, must be an exact differential. By definition,
if dU is an exact differential, we have

B
J dU = U(B) — U(A).
A

Given the infinitesimal change
dU = F - dF = F(x, y)dx + Fy(x, y)dy,
dU will be an exact differential if

OF; _ 9F,

Ay dx
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To show this, we use the fact that for a function U(x, y), the total differential

18
oU aU

By comparing the above two equations,

oU U
Fx(x,y) = E and Fy(x,y) = W

Definition 2 follows from definition 1 in a straightforward way by realizing that

- B-v A-v
JF-dF=J F-dF+J Fdi
C A B

where A and B are two points on the closed curve C. Since, from definition 1,

A_. B‘
J F-sz—J F.dr,
B A

Jﬁ-d?=0.
C

Definition 3 is a convenient method for determining whether a force is conservative.Which is,

Example
The gravitational force between masses mi and m, separated by a distance
r = Jx2+ y? + z2% is given by Newton’s law of gravity:

miyma
r3

F=G F

7
K—.
r3

To show that this is a conservative force, we evaluate the curl of F:

[ j k

> 7] 17 d
VXF =| — — —
ax ay dz

Kx/r* Ky/r* Kz/r?

3 L " ~
3 i(zy —yz)+ jzx — xz) + k(xy — yx)
= (),
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Quiz Which of the following is the curl of F(x,y,2) = 2t +yj + zk?

(a) 2e —29+2k, (b) ze+yj+zk, (c) O,

Laplacian:

(d) 2+3+k.

Recall that gradU of any scalar field U is a vector field. Recall also that we can compute the
divergence of any vector field. So we can certainly compute div(gradU ), even if we don’t know

what it means yet.

We have just shown that F is a conservative field if

VxV¢ =0 for any scalar field ¢. Thus, if
VX F = 0, F can be written as the gradient of a scalar field ¢. This will be
the potential energy field; more precisely,

( F=-vu, (The scalar field U (r) is the Potential Function)

where U is a scalar field and the minus sign is conventional.

If F is a conservative field, then

V.F = -V.(VU).
In rectangular coordinates,

059 LR O N\OU L 59U U
ox ]8y dz J\ 9x J ay dz

#U+ﬁv+¥U

axr  ayr 9z

V2U,

V- (VU) =

where V? is called the Laplacian. Then we have

VU = -V-F.

If there are no sinks or sources of F ,then V F = 0,

ViU = 0.

This is called Laplace’s equation,
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ELECTRIC AND MAGNETIC FIELDS

Perhaps the most important application of vector calculus in physics is in electromagnetism. In
this section we examine electric and magnetic fields and how they are described in terms of
vector and scalar fields.

ELECTRIC FIELDS

The electric field produced at the point r by a point charge q at the point t' is given in SI units by:

x

Fig 2.6 Coordinate system for specifying the positions of the charge q and thpoint P.

For a continuous distribution of charge represented by the charge density p(7'),

L[ 0P

)

Even though nothing is "flowing," the electric field lines can be compared to the streamlines of fluid flow.
In particular, we can define the electric field flux through an area in analogy with the mass flux in fluid
flow. Thus, if E is constant over an area A, then the electric flux is given by

Oy =E-A.

If E is not constant over the total area, we generalize the definition to

¢E=j1;~-d,zi.
A
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From this definition, for a closed surface A, if the flux is nonzero, the number of lines going into the
volume enclosed by the A is different from the number of lines coming out of the volume. Since electric
field lines originate from positive charge and terminate on negative charge, a net flux through a closed
surface is possible only if there is a net charge inside the volume. The precise relationship is given by
Gauss' law:

- - 1
oF) =j§ E-dA = —g,
A €0

where g, is the net charge inside the volume enclosed by A.
We can use the divergence theorem

J VEdVZﬂg E-d:‘i:i%m
v A €0

and if we write
din = f p(F)dV.,
1%

where V is the volume enclosed by A, we get

JV-EdV=J L o#yav
v v €0
Since this equation is true for any volume V, the integrands must be equal, and
V-E = p(7)/eo.
From the maxwell’s equation
VXE =0. and We know that VX VV = 0 for any scalar field V; then,

since VX E = 0, we can write

E = -Vv,

where the minus sign is conventional. V is called the electric scalar potential.

VE=Levicw o Wepla | |
€0 Or This equation is called Poisson's equation.

If p = 0 in the region of interest, the above equation reduces to Laplace's equation for V,
Vv = 0.
MAGNETIC FIELDS

The magnetic field produced at a point 7 due to a current density is given by
the Biot-Savart law:

56) = @J JEY X (F - ')

'
4qr |; _F1|3 dv’

where J (7") is the current density, or current/area.
The magnetic flux is defined as
®p =B-A,

or in the case where B varies over A,

®B=J§-d‘i‘ 15|Page
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Note that, V-B =0.
From the divergence theorem,

jﬂ é-d}izj V-BdV =0,
A v

so the net flux through a closed surface A is zero.

Since V - B = 0 and since V- (V x F) =0 for any vector field F
B can be written as the curl of a vector field, usually called A:

B = VxA. Ais the magnetic vector potential.
Ampere’s law relates the line integral of B around a closed loop C to the
current passing through the area A bounded by the loop

jé Bdi = polyn.
C

Thus, the circulation of B around a closed loop equals_po times the current
passing through the loop. This is useful for calculating B in highly symmetric
situations, and in that sense is the magnetic analog of Gauss’ law. We can apply

Stokes’ theorem to obtain a differential version

#: B-dl = [ (Vv x B)- dA.
c A
By combining the two equations:

- -

Mol = M«OLJ -dA,
I (Vxé)'dj = [.Lof J - dA.
A A
Since this must be true for any area A, the integrands must be equal, and
VXB = ptof .

This equation states that the curl of the magnetic field at a point equals p, times the current
density at that point.

We can summarize the four basic results derived for static E and B fields:
VXE=0 VXB = pgl.
These are Maxwell’s equations for static fields.

VECTOR CALCULUS EXPRESSIONS AND IDENTITIES

This section presents expressions for the vector operators in three coordinate systems. In
addition, several useful vector identities are listed.
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CARTESIAN COORDINATES

Line element: di = dx i + dyj+dzk
Volume element dV = dxdydz

»

Fig 2.7 Coordinates and infinitesimal volume element in the cartesian (rectangular)

Gradient: af » df » O »
Vf = =i+>=j+=
f = 3 i+ a'fy + 8zk
Divergence: VA= dAx | dAy | dA,
ax ay 9z
Curl: VA= &_g{_{lf_l_ .
dy dz
Laplacian: 2 2

= 9x? ay? 6z2

CYLINDRICAL COORDINATES:

Relation to cartesian coordinates:

x = rcos@
y = rsiné
=2

Line element: di = dr# +rd68 + dz 2
Volume element dV = rdrd6dz

]

x

Fig 2.8 Coordinates and infinitesimal volume element in the cylindrical coordinate system
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Gradient: af 5 1 af » f
vi= ar r 309 *

Divergence: - 19 lé'Aa dA,

Vid = L A+ L o
Curl: = [10A;, dAg dA, A, ], 1[@ dA, |,

Vxa= [FEF”T??]H[& —ar]9+?[5?("‘49)_aa]z
Laplacian: vy o L &f L1 18%f  3f

Cor 8r "or r2 62 " 372

SPHERICAL COORDINATES

Relation to cartesian coordinates:

x = rsinfcos¢
y = rsinfsin¢d
z = rcosé

Line element: di = dr# +rd08 + rsin@dp ¢
Volume element gy = r2sin@dr d6 de

rd@

dg

rsin@

x

Fig 2.9 Coordinates and infinitesimal volume element in the spherical coordinate system.

Gradient: a . 1 é’f 1 o -
V=57 736% T renoag?
Divergence: . 19 1 1 JA
Vs Loy L2 744
A r2 &r(r ) 980(31 649) + rsin d¢
Curl:
s_ 1 dAg 1[ 1 04, 4 A 1 JA
V - ?‘Sil’lBI: (SIHGAQS) d’] +;[m 5¢ 0"!’( ¢)]9+ [ ( AB)_ r](b
Laplacian: 2
S Y, A TS S A W W
r2or\ or r2 sin @ 00 98] r2sin? g d¢?
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VECTOR IDENTITIES

VA-B)=Ax(VxB)+Bx(VxA)+(A-V)B+(B-V)A
V-(fA) = f(V-A)+A- (V)

V- (AxB)=B-(VxA)—A-(VxB)

V x (fA) = £(V x A)— A x (V)
Vx(AxB)=(B-V)A-(A-V)B+A(V-B)-B(V-4)
V- (Vx4 =0

VX (V) =0

Vx(VxA)=V(V-A) - V24

O N &N U AW
e e e e e e e e
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Exercise

1. Calculate the divergence of the vector fields
(a) FF=zi+yj, (b) F=y’i+wxyjg,

2. Calculate the curl of the following vector fields F'(z, v, z)

(a) F=xt—yj+ zk, (b) F=1y3i+zyj — zk,

i ok
() F= TL+Y)+2
N RN

20| Page



