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Chapter Two

Vector Calculus

TIME DERIVATIVES OF VECTORS

Suppose a vector A is changing with time; that is, its magnitude and/or direction is varying with 
time. If we choose a fixed coordinate system with basis vectors i and j , then

The time rate of change of A is given by the derivative

2.1 The change Δr; in the position vector r(t) along a path in the x-y plane.

But since we chose a fixed coordinate system (this is not necessary, in general),

 The velocity vector is then
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FLUID KINEMATICS 

 A fluid is either a liquid or a gas. 

 Many of the following examples and derivations will involve liquids, but most of the results 

will apply equally well to gases. 

 One difference between liquids and gases is that it is very difficult to compress a liquid, but 

not so difficult to compress a gas. 

 We will assume that the fluids are compressible. Since a fluid is made up of particles (atoms 

or molecules) with mass, we could apply Newton's laws and study the dynamics of each 

particle. 

 However, because the number of particles is so large, this is impractical.

 Instead, we will concentrate on a "small" volume fixed in space and specify the density ρ 

and the velocity v of the fluid as it passes through this fixed volume in a given time. 

 In order to make the analysis of a fluid feasible, we will make the following approximations:

1.  Steady flow-at any given point (small volume), the velocity of the fluid,v,is constant in time

2. Irrotational flow-the fluid at a point has no net angular velocity. This will be made more 

quantitative. 

3. Non viscous fluid-viscosity is a measure of the friction exerted on a fluid flowing past a 

surface. We will neglect any effects due to viscosity.

For now we consider steady, irrotational, nonviscous flow.
 If the fluid flow is steady, then at each point in space we can assign a unique velocity v 

of the fluid. 

 If we draw a curve representing the path followed by a particle of the fluid, then every 

particle that reaches a point will follow the same curve.

  The curve describing the path taken by any particle passing through a given point is 

called a streamline. Notice that no two streamlines can cross.
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 The velocity is tangent to the curve at any point on the curve.

 Shown in Figure 2.3 is a set of streamlines that form a tubular bundle, called a tube of 

flow. 

 The velocity is always tangent to the streamlines; no fluid will flow through the side of 

the tube of flow. 

 All of the fluid that enters at one end of the tube must exit at the other end. 

 If we consider a thin tube, the velocity can be taken as constant over the area of the 

ends. However, the velocities at the two ends may differ. 

 We will now derive a relationship between the flow into and out of a tube of flow.

                                  

       Fig 2.2  A streamline in a fluid along which a tangent vector represents the velocity of the fluid at a given point.

Figure 2.3 shows a tube of flow whose ends have areas Al and A2 and velocities V1 and V2, 
respectively. In a time Δt, an element of fluid travels

      So we define the mass flux (or flow) at end 1 as

 At end 2 the mass flux is 
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    Fig 2.3 A typical tube of flow. Also shown is a cylinder of fluid whose area is A, and whose length is v1 Δt dt.

If we further restrict our analysis to an incompressible fluid, then ρ = constant, so that

FLUID DYNAMICS

We can describe the motion of a fluid under the influence of pressure differences by using the 
concept of conservation of energy. Then the work done by the resultant force is equal to the 
change in the total mechanical energy of the system. Figure 2.4 shows a pipe through which a 
fluid is flowing subject to different pressures at the two ends, which are at different heights. The 
work done by external pressure P in changing the volume by  ΔV is W = PΔV . 

For small displacements Δx of the fluid,  ΔV = AΔx, where A = area. Then W = PAΔx. For the 
situation shown in Figure 2.4, the total work is given by W = P1AlΔx1 - P2A2Δx2. The total 
mechanical energy is the sum of kinetic and gravitational potential energy, so for a small 
cylinder of fluid of mass m that moves from end 1 to end 2, the change in energy is

Fig 2.4 A pipe through which fluid flows. The four quantities, pressure P, area A, velocity v, and height y, 
can be different at ends 1 and 2.
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The work-energy theorem states that

which can be rearranged to yield

This is equivalent to

 This Equation is called Bernoulli's equation.

We can interpret this in terms of the energy density by realizing that P =pressure = work/volume, 
ρv 2 /2 = kinetic energy/volume,  ρgy = gravitational potential energy/volume. 

The above Equation states that the energy/volume is constant. This is a stronger statement than 
conservation of energy; conservation of energy density must be true at every point, whereas 
conservation of energy is a statement about the whole system.

Example 

Suppose the fluid is at rest.

    Or

FIELDS AND THE GRADIENT 

The potential energy of a force is defined as the negative of the work done by the force. For 
example, if we lift a mass m a height h above the ground, the change in potential energy due to 
gravity is the negative of the work done by gravity. Thus,
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We can think of the potential energy as being a function of the position of the mass (in this case 
its height only) and we can assign a potential energy to each point in space.

Suppose we have a physical quantity that can be represented by a scalar field in two dimensions  
 and we want to find how it changes when we move an infinitesimal distance from 

one point to another. In moving from point 1 to point 2, x and y change by dx and dy, 
respectively. Then

 

We can represent the vector for displacement from point 1 to point 2 by ds = dxi + dyj. 

Then dф can be written as the dot product of ds with another vector A defined by

                                          So
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∇ called the gradient operator; that is,∇ operates on whatever scalar function appears to the right 
of it and creates a vector function. 

Example 1

Solution

Example 2 : Choose the gradient of a scalar fields for 

Example 3 : Find the gradient by using the following scalar fields.



8 | P a g e

FLUID FLOW AND THE DIVERGENCE

Suppose we choose a small area A in a fluid over which the velocity v is approximately constant.

The flux is defined as:                        

           

If v varies over the area A, then we define the flux by

Fig 2.5 An area A, the direction of which is given by ñ, with fluid flowing through it in a direction given 
by the direction of v.

We defined the gradient operator by
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The above two equations show a relationship between the divergence of the vector field and the 
flux:

This equation is called the divergence theorem and it holds for any vector field F:

where A is the surface area enclosing the volume V.
Examples 1: Find the divergence of a vector field.     If

 

CIRCULATION AND THE CURL



10 | P a g e

For example 

Example 1

Let as see the curls in different coordinate systems. A line integral is defined as the integral of a 
function along a given path or curve. An example of a physical quantity that is defined in terms 
of a line integral is the work done by a force in moving an object along a particular path in space. 
This is given by

below.
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CONSERVATIVE FORCES AND THE LAPLACIAN

Not all forces have a corresponding potential energy. For example, frictional forces cannot be 
represented by potential energies. Thus, we would like to have a method for determining whether 
a potential energy can be defined for a particular force.

A force that can be represented by a potential energy is called a conservative force. There are 
several equivalent definitions for conservative forces; three are given here.
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By comparing the above two equations,

Definition 2 follows from definition 1 in a straightforward way by realizing that

Definition 3 is a convenient method for determining whether a force is conservative.Which is,
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 Laplacian:
Recall that gradU of any scalar field U is a vector field. Recall also that we can compute the 
divergence of any vector field. So we can certainly compute div(gradU ), even if we don’t know 
what it means yet.

 (             (The scalar field U (r) is the Potential Function)
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ELECTRIC AND MAGNETIC FIELDS

Perhaps the most important application of vector calculus in physics is in electromagnetism. In 
this section we examine electric and magnetic fields and how they are described in terms of 
vector and scalar fields. 

ELECTRIC FIELDS 

The electric field produced at the point r by a point charge q at the point r' is given in SI units by:

Fig 2.6 Coordinate system for specifying the positions of the charge q and thpoint P.

Even though nothing is "flowing," the electric field lines can be compared to the streamlines of fluid flow. 
In particular, we can define the electric field flux through an area in analogy with the mass flux in fluid 
flow. Thus, if E is constant over an area A, then the electric flux is given by
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From this definition, for a closed surface A, if the flux is nonzero, the number of lines going into the 
volume enclosed by the A is different from the number of lines coming out of the volume. Since electric 
field lines originate from positive charge and terminate on negative charge, a net flux through a closed 
surface is possible only if there is a net charge inside the volume. The precise relationship is given by 
Gauss' law:

We can use the divergence theorem

and if we write

where V is the volume enclosed by A, we get

Since this equation is true for any volume V, the integrands must be equal, and

From the maxwell’s equation 

and 

  Or     This equation is called Poisson's equation. 
If ρ = 0 in the region of interest, the above equation reduces to Laplace's equation for V,

MAGNETIC FIELDS

The magnetic flux is defined as
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Note that,

so the net flux through a closed surface A is zero.

                       

By combining the two equations:

This equation states that the curl of the magnetic field at a point equals µ0 times the current 
density at that point.

VECTOR CALCULUS EXPRESSIONS AND IDENTITIES

This section presents expressions for the vector operators in three coordinate systems. In 
addition, several useful vector identities are listed.
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CARTESIAN COORDINATES

   

Fig 2.7 Coordinates and infinitesimal volume element in the cartesian (rectangular)
              

CYLINDRICAL COORDINATES: 

Relation to cartesian coordinates:

  

Fig 2.8 Coordinates and infinitesimal volume element in the cylindrical coordinate system
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SPHERICAL COORDINATES

Relation to cartesian coordinates:

   

Fig 2.9 Coordinates and infinitesimal volume element in the spherical coordinate system.
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VECTOR IDENTITIES

…………………..END……………..
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Exercise 


