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Computational Complexity of Simplex Algorithm

Example!

min  —2""'x; — 2" %, — ... — 2%, — X,
s.t. x <5
dx1 + x, <25
8x1 +4x, +x3 < 125

2 4+ 2" g x, <5
ijOijl,...,n

Simplex method, starting at x = 0, would visit all 2" extreme
points before reaching the optimal solution.

'V. Klee and G.J. Minty, How good is the simplex algorithm?. In O.
Shisha, editor, Inequalities, 11, pp. 159-175, Academic Press, 1971
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min —4x; — 2x — X3
s.t. x <5
dx; +x, <25
8x1 +4xr +x3 < 125

X1, X2, X3 2 0

Iteration | Basic Vectors | Objective function

1 X4, X5, X 0

2 X1, Xs, Xg -20
3 X1, X2, X6 -30
4 X4,X2, X6 -50
5 X4,X2,X3 -75
6 X1,X2,X3 -95
7 X1,X5,X3 -105
8 X4,X5,X3 -125

Simplex Algorithm is not a polynomial time algorithm (number of
computational steps grows as an exponential function of the number
of variables, rather than as a polynomial function)
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Interior Point Methods for Linear Programming

@ Points generated are in the “interior” of the feasible region
@ Based on nonlinear programming techniques
@ Some interior points methods:

o Affine Scaling

e Karmarkar’s Method

We consider the linear program,

min  ¢’x
st. Ax=0»
x>0

where A € R"™*" and rank(A) = m.
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Affine Scaling

Idea:
(1) Use projected steepest descent direction at every iteration

Given a feasible interior point x* at current iteration k.
Ax* =b.x* >0

Let d denote a direction such that x**! = xf 4+ od, of > 0.

Therefore,
AX*"'=b = Ad=0

Projected Steepest Descent Direction
Project the steepest descent direction, —c¢, on the null space ofA}
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Let¢ = —c = p. + q where
@ p. € Null Space(A). . Ap. = 0.
@ g € Row Space(A). ..q =A".

Aé =AATA = X =(AAT) 'Ac

pe = ¢€—¢q
= ¢—A"(AAT) 'Ae
— (I—AT(AAT) 'A)e
= —(I-ATAT) 'A)c
= —Pc

where P denotes the projection matrix.
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Idea:
(2) Position the current point close to the centre of the feasible
region
For example, one possible choice is the point:
1=(1,1,..., 1)
Given a point x* in the interior of the feasible region, define
X* = diag(x").
Define the transformation, y = T(x) = X* 'x.

Sy = X = 1or XiyK = X
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Affine Scaling Algorithm:
@ Start with any interior point x°

@ while (stopping condition is not satisfied at the current
point)

e Transform the current problem into an equivalent problem
in y—space so that the current point is close to the centre
of the feasible region

e Use projected steepest descent direction to take a step in
the y—space without crossing the feasible set boundary

e Map the new point back to the corresponding point in the
Xx—space

endwhile
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Stopping Condition for an Affine Scaling Algorithm

Consider the following primal and dual problems:

Primal Problem (P)

min  ¢’x
s.t. Ax=0»
x>0

Dual Problem (D)

max b'p
s.t. ATu <c

For any primal and dual feasible x and u,

cx>b"p

At optimality,

c'x—b"pn=0

(Weak Duality)

(Strong Duality)

Idea: Use the duality gap, ¢’x — b” 1, to check optimality

Q. How to get wu?
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Consider the primal problem:

min  ¢'x
st. Ax=0»
x>0

Define the Lagrangian function,
Lx, A\ pn)=c"x+ pu"(b—Ax) — N'x

Assumption: x is primal feasible and A > 0
KKT conditions at optimality:

Vel Ap)=0 = ATu+x=c
)\,’Xl':()Vizl,...,n

Defining X = diag(x), the KKT conditions are
X(c—A"Tp)=0.
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Solve the following problem to get p:

min ||Xe — XAT u?
in | ul

o= (AX*AT)'AX%e
Thus, at a given point x*,
Duality Gap = ¢’x* — b" p*

where p* = (AX°AT)1AX*’c and X* = diag(x").

Shirish Shevade Numerical Optimization



Step 1: Equivalent problem formulation to get considerable
improvement in the objective function

Given x*, define X* = diag(x).

Define a transformation 7 as,

y=T(x)=Xx"x

Therefore,
Xy = xF and yF =1.

Using this transformation,

|
<

min c’x _ min c’'x
st. Ax=b, x>0 st. AXYy=b,y>0
which can written in standard form as
min ¢y
st. Ay=b,y>0

where ¢ = X*¢ and A = AX*.
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Step 2: Find the projected steepest direction and step length at

y* for the problem,
min ¢y
st. Ay=b,y>0

Given x*, y*=X*"'xk =1. )
The projected direction of —¢ on the null space of A is,

-1
d" = —(I — X*A"(AX*°A")  AX")X e

Let o(> 0) denotes the step length.
YU =y ok
= 1+dd“>0

= 9% g

. 1
Let a0y = min —-—¢ and set «
jidi<o &;

Step 3: xk1 = Xxkyk+l
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Affine Scaling Algorithm (to solve an LP in Standard Form)

(1) Input: A,b,c,x°, ¢
(2) Set k:=0.
(3) Xt = diag(x¥)
4) pk = (AXFAT)1AX e
(5) while (c'x* —b"p*) > €
(a) d* = —(I — X*AT(AX*AT) " AXY)Xke

1
(b) of = 9% minj:d;{<0 —
: J
(c) xk+1 :Xk(l + akdk)
(d) Xk+1 — diag(xk+l)
(e) pht! = (AXk+12AT)—1AXk+1ZC
) k:=k+1
endwhile
Output : x* = x*
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Application of Affine Scaling Algorithm to the problem,

min  —3x; — X
St. x1+x <2
X1 S 1
X1, X2 Z 0
o x* =(1,1)"
Iteration xkT [Ea
0 (6,.6) 57

1 (.87, 81) 23
2 [(88,1.00) | .12
3 (90,99) | .1026
4 [(90,1.00) | .1001
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Karmarkar’s Method

Assumptions:

@ The problem is in homogeneous form:

min  ¢’x
st. Ax=0
1'x=1
x>0

@ Optimum objective function value is 0
Idea:

(1) Use projective transformation to move an interior point to
the centre of the feasible region

(2) Move along projected steepest descent direction
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Projective Transformation:
Consider the transformation, 7, defined by,

X x

U

x#0

Remarks:

ox — y (y:(i,...,l)T,lTyzl)
@ Inverse transformation:
x = (17X "x)(xty) = 17x = (17x* 'x)17 (Xty).
For every feasible x, 1'x =1 = 17x 'x = T
1" Xy

Xy
T y)=x= 7=
17 X*ky
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Using the transformation,

_ XYy
17Xy
Txk
min ¢’x min %
s.t. Ax=20 L X7y
pA = st. AXfy =0
1 X = 1 1T _
x=0 y>0

min ¢"X*y

s.t. AXy =0
1y =1
y=0

@ Equivalence based on the assumption: Optimal objective

function value is 0 and 17Xy > 0
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Consider the problem,

min ¢ Xy

s.t. AX'y =0
1y =1
y>0

@ Step 1: Find a projected steepest descent direction in the
y— space ( Projection of —X*c onto the subspace of
{d : AX*d = 0,1'd = 0,d > 0})
Find d by solving
min 1| X*c —d|?

st. AXMd =0,

projecting it onto the null space of 1" and ensure d > 0.
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Consider the problem,

min || X*¢ — d|?

st. AXd=0

1
Ld, p) = Ekac —d|* + p'Ax'd

VeL(d,p)=0 = —(X'¢—d)+XATu=0
= d=X'c—XATp
0= AX‘d = AX"c — AXC ATy = AXFe = AXCA

Projection of —d on the null space of 1”:
1
d" = —(I - r—lllT)(Xkc — XA )
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Karmarkar’s Projective Scaling Algorithm (for
homogeneous Linear Program)

(1) Input: Homogeneous LP, A,c, ¢
(2) Set k:=0, x* = il
(3) X* = diag(x*)
(4) while ¢’x* > ¢
(a) Find the projected steepest descent direction d*
b k1 ll ) dk § = 1
®© =t T 073
(c) xk+l _ T*l(yk+l)
(d) Xk — diag(xk+1)
(e) k:i=k+1
endwhile

Output : x* = x*
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