
1

INTERIOR POINT METHODS FOR LINEAR PROGRAMMING

Khachiyan, L.G. (1979) A Polynomial Algorithm in Linear Programming,

Soviet Mathematics Doklady, 20, 191-194.

Karmarkar, N. (1984) A New Polynomial-Time Algorithm for Linear

Programming, Combinatorica, 4, 373-395.

Barnes, E. R. (1986) A variation on Karmarkar's Algorithm for Solving Linear

Programming Problems, Mathematical Programming 36, 174-182.

Vanderbei, R. J., M. S. Meketon, and B. A. Freedman, (1986) A modification of

Karmarkar's Linear Programming Algorithm, Algorithmica, 1, 395-407.

Megiddo, N., (1989) Pathways to the Optimal Set in Linear Programming, in

Progress in Mathematical Programming, N. Meggido (ed.), Springer-Verlag, NY,

131-158.

Monteiro, R. D. C., and I. Adler, (1989) Interior Path Following Primal-Dual

Algorithms, Part I: Linear Programming, Mathematical Programming, 44, 43-66.

Ye, Y. (1991) An O(n3L) Potential Reduction Algorithm for Linear Programming,

Mathematical Programming, 50, 239-258.

Lustig, I., R. E. Marsten, and D. Shanno, (1994) Interior Point Methods:

Computational State of the Art, ORSA Journal on Computing, 6, 1-14.

etc. etc. etc.

2

The basic difference:

VS.

TWO FUNDAMENTAL INSIGHTS:

1. If we are currently close to the “center” of the polytope representing the feasible

region, a logical approach would be to move in the direction of maximum

improvement, i.e., in the direction of steepest descent (assuming minimization).

• •

2. The feasible region can be transformed so that the current solution is close to the

center of the polytope without changing the problem in any essential way.

At each iteration we would like to move along a direction so that (1) there is

improvement, (2) feasibility is maintained, and (3) there is "centrality" (whatever

that means...).

3

Very broadly speaking, Interior Point Methods can be classified into four classes -

however, there are algorithms that borrow ideas from several classes.

Affine-Scaling: These are the simplest methods and use a much simpler "affine

scaling" for the transformation in Insight 2 on the previous page. They work

surprisingly well, but tend to be sensitive to degeneracy and more importantly, lack

proof of polynomial time convergence.

Projective Scaling: Karmarkar's original method falls into this category and the

transformation in Insight 2 is done via a "projective transform." The procedure is

rather elaborate and needs a lot of "extra" work, but this was the approach that

provided the impetus for other interior point methods and has a proven polynomial

time complexity.

Potential Reduction: In this approach, progress toward the optimum is measured

by improvement in the value of a nonlinear "potential" function rather than the

objective itself. The complexity is polynomial time. Karmarkar's method was also

a potential reduction algorithm.

Path Following: These are currently considered the best methods and are based on

a logarithmic "barrier" function that keeps one away from the boundary. The

solutions follow a "central path" (hence the name) and the methods have polynomial

time complexity as well.

4

THE (PRIMAL) AFFINE SCALING ALGORITHM

The simplest Interior Point approach is the Affine Scaling method. The method was

originally proposed by Dikin (Soviet Math. Doklady, 1967) but his work went

largely unnoticed until after Karmarkar's method was published, when it was

independently proposed by Barnes (Math. Prog., 1986) and Vanderbei et al.

(Algorithmica, 1986). It is an efficient yet relatively simple variant of Karmarkar's

general approach, i.e., a sequence of "centering" transforms followed by movement

in a promising direction.

The main advantage of this method is that it uses a much simpler "affine" transform

(rather than Karmarkar's projective transform) in order to center the current point; in

fact, the transform this is merely a simple rescaling. It also does not have any

artificial format requirements (unlike Karmarkar's method which requires initial

reformulation in a very specific format, including the requirement that the optimum

value for the reformulated problem is 0!) .

On the other hand, the disadvantages are that (1) nobody has been able to show that

it converges in polynomial time (in fact, there seems to be evidence that it does not),

and (2) it tends to be sensitive to degeneracy.

The problem solved is the following: Minimize {cTx, st Ax=b, x≥0}.

5

To see how the method works, consider an iteration where we are currently at the

interior point xk (i.e., >0) How do we move from this point so that (1) we remain

feasible, and (2) we also improve the objective?

NOTE: This is a basic (direction finding) procedure that will be used in

several Interior Point Algorithms so it is important to follow closely!!

Note that moving a distance s along some direction d changes the objective from cxk

to c(xk +sd). The direction d* that maximizes the decrease in the objective

[= cxk - c(xk +sd)] is given by the negative of the gradient of cTxk (the direction of

"steepest descent"), and thus d* = -c.

HOWEVER...d* may not be feasible! We may leave the feasible region even for an

infinitesimally small move along the direction d* (in other words, A(xk +sd*)=b is

violated for arbitrarily small values of the step size s. This is shown below:

level sets of cTx

-c
xk•

d*= -P c

Feasible Region Ax=b
x1

x2

x3

6

Given any direction d, to maintain feasibility we want

A(xk +sd) = b for some s>0 ⇒ Axk +sAd = b

⇒ b + sAd = b ⇒ sAd = 0 ⇒ Ad = 0

Thus, to maximize the decrease, we need to solve

Max cxk - c(xk +sd), i.e., Max -cd

st Ad = 0

for the optimal direction d*.

It is easily shown that d* = -[cT- AT(AAT)-1AcT] = -[I-AT(AAT)-1A] cT

Denoting P = [I-AT(AAT)-1A], this implies that d*= -P c

The matrix P is called a projection matrix. Geometrically, this matrix projects the

vector c (the direction of steepest descent) on to the space {d | Ad=0} - also called

the null space of A. This is illustrated in the picture on the previous page.

In practice, we don't explicitly compute [I-AT(AAT)-1A]. Instead, we first solve the

system of linear equations (AAT)w = AcT for the vector w (which is thus equal to

(AAT)-1AcT)and then obtain d* as d* = -[cT- ATw].

NOTE: For a maximization problem, d* = [cT- ATw].

7

While this direction d* is good in the sense of maximizing the rate of improvement,

the actual amount of improvement will depend on how far we can go in this

direction. If xk is close to a "wall" and we can't go to too far, the overall decrease in

cx will be small. Thus we need to be at the "center" (whatever that means...).

The affine scaling method achieves this by (1) re-scaling the variables so that the

current point xk is "moved" to some "central" point yk which is far from the "walls,"

(2) then moving (presumably a good distance) along the projected steepest descent

direction for this re-scaled problem to yk+1, and (3) translating yk+1 back to xk+1 in the

original scale.

QUESTION: How is this scaling done?

ANSWER: By an "affine" scaling!

Consider the following transform that is defined using xk as the reference point:

yj = (xj/xj
k) for j=1,2,...,n

Using matrix notation, if we define Dk = Diag(xk), the transform may be written as

y=Dk
-1x. Note that Dk is a (constant) matrix that rescales any point x = (x1, x2,..., xn)

into the point y=(y1, y2,...,yn). In particular, the current point xk is transformed to the

point yk=e, where e =[1 1 ... 1]T. Note also that the transform is trivial to undo via

xj=yjxj
k, i.e., x=Dky.

8

What does this affine transformation accomplish in terms of "centering?"

Consider the picture below:

y=Dk
-1x

Objective level sets

T−c

-cT d'=-P' Tc

d=-PcT

feasible region

The picture shows how the feasible region (and the current point) are transformed.

Note that (since x=Dky) in terms of the transformed variables, the original problem,

namely {Minimize cx | Ax=b, x≥0} becomes: Minimize {cDky | ADky = b, y≥0). If

we define c =cDk and Pk=ADk this reduces the problem to minimizing c Ty, subject

to Pky=b, y≥0. Also note that the point xk moves to yk=e.

x3

y1x1

y2x2

y3

e

xk

9

QUESTION 1: What does this accomplish?

ANSWER: If we had used projection matrix P = I - AT(AAT)-1A to project –cT in the

(original) x-space we might not have been able to move too far from xk along the

direction d=-PcT.

However, when we use P'=I - Pk
T(PkPk

T)-1Pk to project -c T in the (transformed)

y-space we will in general be able to move a reasonable distance from yk=e along

the direction d'=-P'c T as shown. This is because of the "re-centering"

accomplished by the affine transform.

QUESTION 2: Having decided to move along -P'c T in the y-space, how far to go?

ANSWER: Assume that we move a distance 1/v (>0). Then the new point yk+1 in

the transformed space is yk+(1/v)d'. But yk is equal to e, so yk+1 = e+(1/v)d'. In the

x-space this point is given by xk+1= Dkyk+1 = Dk(e+(1/v)d')

i.e.,

xk+1 = Dke + (1/v)Dkd' = xk + (1/v)Dkd'.

For this point to be feasible we want each element of xk+1 to be nonnegative, i.e.,























≥























′

′

′









+























=























+

+

+

0

:

:

0

0

:

:
1

:

:

:

:

22

11

2

1

1

1
2

1
1

k
nn

k

k

k
n

k

k

k
n

k

k

xd

xd

xd

v

x

x

x

x

x

x

10

Since each element of xk is strictly positive, we only have to worry about the

negative elements of d'. For all such j (corresponding to which dj' <0), we require

that

1 1
0, . ., 1 0, . ., []k k

j j j j jx d x i e d i e v Abs d
v v

   ′ ′ ′+ ≥ + ≥ ≥   
   

.

Hence, if we choose

v = ||Maximum
0

jd

jdj
′

<′∋

and move a distance 1/v along the direction d', we will remain feasible. Note that

this same step size could have also been derived by requiring that each element of

yk+1 be nonnegative (i.e., 1+(1/v)dj'≥0 for all j)...

In practice, since we always want each element of xk+1 at any iteration to be strictly

positive (so that we can make the transformation y=Dk
-1x), we move a distance

which is which is a little less than (1/v), say α(1/v) where 0<α<1.

11

The algorithm may thus be summarized as follows:

STEP 0: Set the iteration counter k=1, and start with some feasible point x1 with

strictly positive elements. Define a value for α (a value of 0.97 is suggested), and a

small tolerance ε.

STEP 1: Define the diagonal matrix Dk =Diag(xk) and calculate Pk =ADk and c

=cDk. Solve the system (PkPk
T)wk = Pk

Tc for the vector wk.

STEP 2: STOP if some suitable stopping criterion is met (more on this later...)

STEP 3: Compute d' = -[Tc - Pk
Twk] = -Dk[cT-ATwk] (if maximizing d' =[Tc - Pk

Twk]

= Dk[cT-ATwk]). If d'>0, the problem is unbounded; so STOP. Otherwise, identify

the negative component of d' with the largest absolute value and set v equal to this

absolute value. Set k=k+1 and return to Step 1 after computing the new point as

xk+1 = Dk[e+α(1/v)d'] = xk + (α/v)Dkd'

NOTE: It is possible to express the entire algorithm in terms of the original x-

space. To see this note that xk+1 = xk + (α/v)Dkd' = xk - (α/v)Dk[Tc - Pk
Twk]

= xk - (α/v)Dk[I- Pk
T(PkPk

T)-1Pk] Tc

= xk - (α/v)Dk[I- (ADk)T[ADk(ADk)T]-1ADk] (cDk)T

= xk - (α/v)Dk[I- DkAT[ADk
2AT]-1ADk] DkcT

= xk - (α/v)DkQkDkcT

= xk + (α/v)∆x

where Qk=[I- DkAT[ADk
2AT]-1ADk] and ∆x = -DkQkDkcT is called the primal affine-

scaling direction

12

STOPPING CRITERION (Step 2)

Consider the dual of the LP that we solve, namely Maximize {bTw, st ATw≤cT}.

A very elegant result is that under the assumption of nondegeneracy it may be

shown that when in Step 2 we find

wk = (PkPk
T)-1Pk

Tc = [ADk(ADk
T)]-1ADk(cDk)T = [ADk

2AT]-1ADk
2cT,

these values of wk converge to the optimum solution (say w*) to the dual of the LP

that we just defined above!

Now, recall that at the optimum, the primal and dual optimum values must be

identical, i.e., if the vectors x*∈Rn and w*∈Rm define the optimum primal and dual

vectors we must have cx*= bTw* at the optimum. Thus, in Step 2 a stopping criterion

(that is commonly used in practice) is to stop if (1) the vector wk is dual-feasible,

and (2) the duality gap is zero (or "sufficiently" small), i.e., if

(1) ATwk≤cT (this is equivalent to ensuring that sk= cT-ATwk ≥ 0),

(2) cxk - bTwk < ε. (since Axk=b, i.e., bT=(xk)TAT, this is equivalent to ensuring

that cxk - (xk)TATwk = (xk)TcT-(xk)TATwk = (xk)T[cT-ATwk] = (xk)Tsk < ε).

Note that sk is a vector of slack variables for the dual problem. In summary:

At Step 2 we use the current values of xk and wk to compute sk= cT-ATwk and stop if

(1) sk≥0, and (2) (xk)Tsk < ε. In this case xk is primal-optimal and wk is dual-optimal.

It is also interesting to note that the vector sk is nothing but a vector of reduced costs

and (1) and (2) represent the usual optimality conditions!

13

It is also possible to use other stopping criteria.

For example, if there is very little progress being made, i.e., ||xk+1-xk||<ε, or if the

relative improvement in the objective is minimal, i.e., {cxk-cxk+1}÷|cxk|<ε.

It is also worth noting that the {wk} may not converge to the dual optimum if the

problem is degenerate, and in such cases a simpler stopping criterion such as the

ones above might be called for.

The method described is called the Primal Affine Scaling Method. There is also a

Dual Affine Scaling Algorithm. The general principles for this are similar except

that the Dual Algorithm works on the Dual problem namely Maximize {bTw, st

ATw+s=cT, s≥0, w unrestricted}. The iteration procedure is analogous to the Primal

Algorithm (initial interior point, rescaling, moving etc.), except that the work is

done on the dual problem - like the Dual Simplex method it successively increases

the dual objective while maintaining dual feasibility.

Both of these methods are very simple, but in practice, they have been shown to

work very well and are competitive with the best Interior Point methods. Both

methods are globally convergent; unfortunately, there is no proof of polynomial

complexity for either.

Finally, there is also a Primal-Dual Affine Scaling Algorithm that has polynomial

complexity of order O(nL2), but in general, does not seem to perform as well as the

Primal or Dual Affine Scaling methods.

14

EXAMPLE:

Maximize x1+2x2, st x1+x2≤2, -x1+x2≤1, x1, x2≥0,

In the required form, this is

Minimize -x1 -2x2

st x1+x2+x3 =2, -x1+x2+ x4 =1, x1, x2, x3, x4 ≥0.

i.e., Min cx = [-1 -2 0 0]

















4

3

2

1

x
x
x
x

st Ax=b, i.e.,




=






















− 1

2
1011
0111

4

3

2

1

x
x
x
x

, x≥0

Note that the dual is given by {Max 2w1+w2, st w1-w2≤-1, w1+w2≤-2, w1≤0, w2≤0}.

Say we start at x1=[0.1 0.1 1.8 1.0]T with Z=-0.3.

STEP 1: Define D1=

01
01

18
1

.
.

.

















, so that

P1=AD1=
01 01 18 0
01 01 0 1
. . .
. .−







and c =cD1 =[-0.1 -0.2 0 0]

Solving the system (P1P1
T)w1 = P1

Tc for the vector w1 yields

01 01 18 0
01 01 0 1
. . .
. .−







01 01
01 01
18 0
0 1

. .

. .
.

−















w
w

1

2







= 01 01 18 0

01 01 0 1
. . .
. .−







−
−
















01
0 2
0
0

.
. ,

i.e., 326 0
0 102

0 03
0 01

1

2

.
.

.

.











= −

−






w
w

so that w1= −
−






0 0092
0 0098
.
.

.

15

STEP 2 : Checking the two stopping criteria

(i) s1= cT-Atw1 =

−
−
















1
2

0
0

-

1 1
1 1
1 0
0 1

−















−
−






0 0092
0 0098
.
.

=

−
−
















10006
19810

0 0092
0 0098

.

.
.
.

--- NOT ≥ 0

(ii) (x1)Ts1 = [0.1 0.1 1.8 1]

−
−
















10006
19810

0 0092
0 0098

.

.
.
.

= -0.2718

STEP 3: The search direction is given by

d' = -[c T- P1
Tw1] = -

−
−
















01
0 2
0
0

.
. +

01 01
01 01
18 0
0 1

. .

. .
.

−















−
−






0 0092
0 0098
.
.

=
−
−

















010006
019810
0 01656
0 00980

.

.
.
.

From the above vector, we compute v=0.0166 so that x2 = x1 + (α/v)D1d'

=

01
01
18
1

.

.
.

















+(0.99/0.0166)

01
01

18
1

.
.

.

















010006
019810
0 01656
0 00980

.

.
.
.

−
−

















=

















414.0
018.0
284.1
698.0

ITERATION 2

STEP 1: Define D2=

















414.0
018.0

284.1
698.0

, so that

P2=AD2= 




− 414.00284.1698.0

0018.0284.1698.0 and c =cD2 =[-0.698 -2.568 0 0]

16

Solving the system (P2P2
T)w2 = P2

Tc for the vector w2 yields






− 414.00284.1698.0

0018.0284.1698.0












 −

414.00
0018.0
284.1284.1
698.0698.0

w
w

1

2







=






− 414.00284.1698.0

0018.0284.1698.0













−
−

0
0
568.2
698.0

,

which yields w1=





−
−

4490.0
5275.1 .

STEP 2 : Checking the two stopping criteria

(iii) s1= cT-Atw1 =

−
−
















1
2

0
0

-

1 1
1 1
1 0
0 1

−




















−
−

4490.0
5275.1 =














−

4490.0
5275.1
0235.0

0785.0

--- NOT ≥ 0

(iv) (x1)Ts1 = [0.698 1.284 0.018 0.414]













−

4490.0
5275.1
0235.0

0785.0

= 0.238

STEP 3: The search direction is given by

d' = -[Tc - P1
Tw1] = -














−
−

0
0
568.2
698.0

+












 −

414.00
0018.0
284.1284.1
698.0698.0






−
−

4490.0
5275.1

















−
−

=

1859.0
0275.0

0302.0
0548.0

From the above vector, we compute v=0.1859 so that x2 = x1 + (α/v)D1d'

=

















414.0
018.0
284.1
698.0

+(0.99/0.1859)

















414.0
018.0

284.1
698.0

















−
−

1859.0
0275.0

0302.0
0548.0

=

















004.0
016.0
490.1
494.0

17

Note that we are approaching the optimum solution,

namely [0.5 1.5 0 0].

The graph below shows the progress made by the algorithm:

x2

2

•
•

1

•
2 x1

NOTE: This version is called the "long-step" affine scaling method. There are

earlier "short-step" versions where the step size uses a different value for v such as

v =||d'|| or v= Maxi|di'|. In general, the long-step version is more popular.

STARTING THE METHOD: To find a strictly positive starting point the easiest

way is to use a Big-M type approach by introducing an artificial variable xn+1 and

solving: Minimize {cx + Mxn+1 st Ax+[b-Ae]xn+1=b, x≥0, xn+1≥0}.

18

Note that the point [x,xn+1] = [e,1] is positive and feasible for this and if M is large

enough, then as long as the original problem has an optimal solution the value of

xn+1 will go to zero at the optimum.

There is also a (more complex) Two-Phase approach to getting started...

19

PATH FOLLOWING ALGORITHMS

This is another major class of Interior Point methods. These methods resemble

affine scaling methods, but use a different objective. Moreover, they tend to offset

some of the computational problems associated with affine scaling and have better

convergence properties. Motivating their development was the drawback with

affine scaling that if one gets too close to the boundary (where some xj=0), then

during a move from xk-1 to xk the method tends slow down. Of course, one could

use a smaller value of the step size (α), but this just increases the no. of iterations.

Most implementations of the affine scaling method need a procedure to take

point xk and move it further inside the feasible region in order to avoid getting

"trapped" by the boundary, while simultaneously ensuring that the objective

function does not increase. For example, one approach is illustrated in the figure

where we move from xk-1 to xk along dk-1, and then in an additional step move along

1kd −ˆ to the point kx̂ in order to move further away from the boundary.

• xk

kd̂ dk-1

• kx̂ • xk-1

isocost lines

20

A more common way to deal with this "boundary" problem is to draw upon an

approach that has been commonly used in nonlinear programming - namely the

barrier function. The idea is to use a penalty for the objective to stay away from the

boundary. The most common approach is the logarithmic barrier function.

Consider the usual primal problem, i.e., {Minimize cx, st Ax=b, x≥0}.

For this problem, at the boundary of the polyhedron, at least one xj=0. To keep

away from the boundary we modify this problem and state it as follows:

LPµ: Minimize Fµ(x) = cx - µ(∑j ln xj),

st Ax=b, x>0

where µ>0 is some scalar "penalty" also called the barrier parameter. Note that

when some xj→0, the second term in the objective -µ(∑j ln xj)→∞; this effectively

keeps xj from getting too close to the boundary.

Consider the following example from Martin's 1999 LP book:

Min -10x1 -9x2

st 7x1 +10x2 + x3 ≤ 6300

3x1 + 5x2 + x4 ≤ 3600

3x1 + 2x2 + x5 ≤ 2124

2x1 + 5x2 + x6 ≤ 2700 All xj≥0.

Consider the current feasible point xk= [1 0.5 6288 3594.5 2120 2695.5]

with objective = -14.5.

21

The feasible region is shown below:

600

400

200

xk
•

100 200 300 400 500 600 700

-200

1.00

0.50 xk •

d

0.50 1.00 1.50 2.00

The negative gradient (direction of maximum improvement) of the objective

function at the point xk is given by -c = [-10 -9 0 0 0 0]T and projecting this on

to the null space {x|Ax=0} to maintain feasibility yields the direction

� = −(�− ��(���)���)�� = [0.67 -0.38 -0.90 -0.12 -1.25 0.55]T.

As shown above very little movement is possible before hitting the boundary!

dk: µ=12

dk: µ=10

dk: µ=6
dk: µ=0

22

In the affine-scaling method, we got around this by rescaling each time so that the

point comes to the center of the transformed region. In the barrier function

approach, consider the negative gradient direction of Fµ(x) = cx - µ(∑j ln xj): at the

point xk this direction is given by -(cT-µDk
-1e), as opposed to –cT with the original

objective. Recall that here Dk= Diag(xk) and e=[1 1 ... 1]T. Thus the feasible

direction obtained by the usual projection on to the null space {x|Ax=0} yields

� = −(�− ��(���)���)(�� − ���
���)

The Table below lists this search direction for several values of µ:

µ � = −(�− ��(���)���)(�� − ���
���)

0 [0.67 -0.38 -0.90 -0.12 -1.25 0.55]T

6 [0.37 -0.11 -1.53 -0.58 -0.91 -0.21]T

10 [0.18 0.07 -1.95 -0.89 -0.68 -0.71]T

12 [0.08 0.16 -2.16 -1.04 -0.56 -0.96]T

These are pictured on the previous page - note that the effect of µ is to "push" the

projected negative gradient away from the boundary of x2≥0: as the value of µ is

increased the effect is to rotate the direction of the projected negative gradient in a

counter-clockwise direction.

Note that problem LPµ is a nonlinear programming problem with a strictly convex

objective: as long as µ>0, it has a unique global optimum with all xj>0.

23

To obtain the optimal solution we define a vector of Lagrange multipliers w∈Rm

(one for each constraint in Ax=b) and the Lagrangian function

Lµ(x,y)=cx - µ(∑j ln xj) - wT(Ax-b)

The Karush-Kuhn-Tucker necessary conditions for optimality require that the

derivative of Lµ with respect to each xj and each wi must be equal to 0 at the

optimum. This yields (m+n) equations in (m+n) unknowns which we solve for

optimal x and w vectors.

∂Lµ/∂w = Ax - b = 0 (w.r.t. w: m equations)

∂Lµ/∂x = c - µD-1e - ATw = 0 (w.r.t. x: n equations)

where D=Diag[x1, x2, ..., xn] as usual.

In fact, if we define {s∈Rn|s =µD-1e}, i.e., (sj=µ/xj), then these reduce to

(1) Ax - b = 0

(2) ATw +s = cT

(3) s=µD-1e, i.e., sjxj=µ for all j

Also note that x>0 (since the objective of LPµ is convex) and thus, s>0 (since µ>0).

These conditions should look familiar; they are the usual LP optimality conditions!

Respectively, (1) is primal feasibility, (2) is dual feasibility and (3) is an

approximation to complementary slackness, which will approach exactness as µ→0.

If these equations were linear then we could just solve the system and linear

programming would be trivial - unfortunately, they are nonlinear and so solving

them is a nontrivial task!

24

Suppose we are solving LPµ for a given µ>0. Then as long as the following barrier

assumptions are satisfied:

a) The set {x∈Rn|Ax=b, x>0} is non-empty

b) The set {(w,s)∈Rm×Rn|ATw+s=cT, z>0} is non-empty

c) The constraint matrix A has rank m.

the system of equations (1), (2), (3) is guaranteed to have a unique solution - say xµ,

wµ, sµ. Here xµ is optimal in LPµ and (wµ, sµ) solves the corresponding dual.

For the exact LP optimality µ should be equal to zero, so the barrier approach will

be to start with some positive value for µ and solve LPµ for successively smaller µ.

FACT: Given the barrier assumptions above, (xµ, wµ, sµ) converges to an

optimal primal-dual solution to the original LP as µ→0.

Since (xµ, wµ, sµ) is unique for each µ this set of minimizers that are generated trace

out a path called the central path or central trajectory.

In particular, the solution to LPµ when µ=∞ is the solution to Minimize -∑j ln xj , st

Ax=b is called the "analytic center" of the feasible region and represents the point

"farthest away" from the boundaries, in the sense of maximizing ∏jxj.

The phrase "path-following" method refers to the fact that these methods follow this

central path. In practice, they don't exactly follow the central path since equation (3)

is only solved approximately at each step - they just stay "close" to the central path.

25

There are three path following methods (primal, dual and primal-dual) and they

differ only in how equations (3) s=µD-1e is written and approximated.

PRIMAL PATH FOLLOWING ALGORITHM

The basic idea here is to use Newton's method which is a procedure for solving a

system of n nonlinear equations in n unknowns, i.e., of the form f1(x)=0, f2(x)=0,...,

fn(x)=0, where x∈Rn. It proceeds by guessing an initial solution - say x0 and refining

the guess xk at each iteration k via a correction step ∆x; thus xk+1 = xk +∆x. The

correction step ∆x is computed by defining a first order Taylor series approximation.

Now recall that the system to be solved for finding the optimum solution to LPµ is

the following, where (1) and (2) are linear while (3) is nonlinear

(1) Ax - b = 0

(2) ATw +s = cT

(3) s=µD-1e, i.e., sj = (µ/xj), i.e, (µ/xj) - sj=0 for all j

Suppose at iteration k we are at xk, wk, sk. In this method, we will always ensure that

(1) and (2) are exactly satisfied at each iteration (i.e., that Axk=b and ATwk +sk = cT).

However, the troublesome (nonlinear) equations (3) are solved only approximately.

Define f(xj, sj) = (µ/xj)- sj. A first order Taylor series approximation for f(xj, sj) yields

f(xj, sj) ≈ f(xj
k, sj

k) + ∇f(xj
k, sj

k)T









−

−
k
jj

k
jj

ss

xx

26

= [(µk/xj
k)- sj

k] + [-µk/(xj
k)2 -1] 









−

−
k
jj

k
jj

ss

xx

= (µk/xj
k)- sj

k - µk[xj/(xj
k)2] + µk/(xj

k) - sj + sj
k

= µk/(xj
k)2[2xj

k - xj] - sj

In other words, equations (3), which were given by

(µ/xj)- sj =0

may be approximated as

µk/(xj
k)2[2xj

k - xj] - sj = 0, i.e, µk/(xj
k)2[2xj

k - xj] = sj

Note that in the above, µk and xj
k are known so that we have a linear approximation

to the original (nonlinear) equation.

Now, suppose we take a step of size ∆x, ∆w, ∆s from xk, wk, sk to get to xk+1, wk+1,

sk+1, i.e. xk +∆x = xk+1, wk+∆w = wk+1 and sk+∆s = sk+1

(thus, xj
k+1-xj

k = ∆xj, wj
k+1-wj

k = ∆wj, sj
k+1-sj

k = ∆sj ...)

We want this new point to satisfy

1. Axk+1 - b = 0

2. ATwk+1 +sk+1 = cT

where sk+1 is defined via sj
k+1 = µk/(xj

k)2[2xj
k - xj

k+1] = µk/(xj
k)2[xj

k-∆xj] for all j.

In vector form we may rewrite sk+1 = µk(Dk
2)-1[xk - ∆x]

where Dk=Diag[x1
k x2

k ... xn
k] as usual.

Thus we are reduced to solving

27

A[xk +∆x] - b = 0, i.e.,

1) A∆x = 0 (since Axk-b=0), and

AT[wk+∆w] +µk(Dk
2)-1[xk - ∆x] = cT, i.e.,

2) µk(Dk
2)-1∆x + AT∆w = cT - ATwk- µk(Dk)-1e

= sk- µk(Dk)-1e (since ATwk +sk = cT)

This is a linear system of m+n equations in m+n unknowns and we may solve for ∆x

and ∆w. If we define the usual Pk=ADk then (after some messy linear algebra!) it

may be shown that

∆w = (PkPk
T)-1Pk[Dksk - µke]

∆x = -
1

κµ
Dk[I -Pk

T(PkPk
T)-1Pk](DkcT-µke)

and since sk+1 = cT - ATwk+1, i.e., sk+∆s = cT - AT(wk+∆w) = sk - AT∆w, we have

∆s = -AT∆w

The above values for ∆x, ∆w, ∆s constitute the Newton direction and the process of

computing these is called a Newton Step. These values allow us to find the next

guess at the solution xk+1, wk+1 and sk+1. At this point we would set k=k+1 and find

another Newton step and continue the process until we converge to an exact solution

to the original (nonlinear) system.

28

With classical barrier function theory, we solve LPµ exactly by finding the exact

solution to the system (1), (2) and (3) through a series of Newton steps as shown

above. At this point, we would then reduce µk to µk+1 and solve a new set of

equations for the next point and so on and the successive optima would converge to

the optimum for the original LP. In other words, each optimum solution to LPµ is a

point on the central trajectory (by definition) and we would move along this path.

In practice, we don't take a series of Newton steps (to actually converge to the

central trajectory) for a given µk before reducing the value to µk+1 at iteration k+1.

Rather, when we solve LPµ with µ=µk we only take one single Newton step and

move along the Newton direction while ensuring that no xj and no sj becomes zero.

We then immediately reduce µk to µk+1 to get a new problem LPµ! In other words

we never solve (1), (2) and (3) exactly for any LPµ - rather we find an approximate

solution in one step and use this as the starting point for the next LPµ.

This procedure continues until at some iteration, µk<ε (some suitably small

tolerance) at which stage xk converges to the optimum solution x* to the original LP.

It may be shown that this set of single steps ensures convergence in polynomial

time. One nice thing about the path following approach is that we have a feasible

primal vector x and a feasible dual vector w available at every iteration - the amount

of infeasibility in (3) measures the "duality gap."

15261

29

COMPARISON TO AFFINE SCALING ALGORITHM

It is interesting to compare the search direction we found at each stage for x with the

direction we got at each iteration of the affine scaling method.

With affine-scaling the search direction- say d - was given by (refer to the NOTE

after Step 3 on page 11):

∆x = d = -[Dk
2-Dk

2AT(ADk
2AT)-1ADk

2] cT

= -Dk[I-DkAT(ADk
2AT)-1ADk] Dk cT

= -Dk[I-Pk(PkPk
T)-1Pk]Dk cT = d (say)

With the primal path following method, we just saw that this search direction - say

dµ - is given by

∆x = dµ = -
κµ

1
Dk[I -Pk

T(PkPk
T)-1Pk](Dk cT-µke)

= -
κµ

1
Dk[I -Pk

T(PkPk
T)-1Pk]Dk cT +

κµ

1
Dk[I -Pk

T(PkPk
T)-1Pk](µke)

=
κµ

1
d + Dk[I -Pk

T(PkPk
T)-1Pk](e)

Thus in the primal path following algorithm, the search direction is the affine

scaling direction, corrected by a factor equal to Dk[I -Pk
T(PkPk

T)-1Pk](e). The latter

may be viewed as a force that pushes a solution away from the boundary; thus it is

also occasionally referred to as a "centering force".

Note that as µk→0 (so that LPµ becomes closer to the original LP), the affine-scaling

search direction dominates the correction term and dµ→d.

30

PRIMAL PATH FOLLOWING: ALGORITHM SPECIFICATION

STEP 0 INITIALIZATION: Start with k=0 and x0, s0 > 0 and w0 such that Ax0=b

and ATw0+s0=cT. Define suitable ε, µ0>0 and α,θ∈(0,1).

STEP 1 NEWTON SEARCH DIRECTION: Define Dk and compute Pk=ADk; then

find the movement directions via

∆w = (PkPk
T)-1Pk[Dksk - µke]

∆x = -
κµ

1
Dk[I -Pk

T(PkPk
T)-1Pk](Dk cT -µke)

∆s = -AT∆w

STEP 2 CALCULATE NEW SOLUTION via

xk+1 = xk+αk
P ∆x,

wk+1= wk+αk
D∆w

sk+1=sk+αk
D∆s

where the step sizes are determined by performing the ratio tests:

αk
P= α[Minj{xj

k/|∆xj|: ∆xj<0}]

αk
D= α[Minj{sj

k/|∆sj|: ∆sj<0}]

STEP 3 TERMINATION CHECK: If cTxk - bTwk ≥ε, update µk+1=θµk. Update k to

k+1 and return to Step 1; otherwise, stop.

31

DUAL PATH FOLLOWING ALGORITHM

This method is based on the same principles that we just saw for the primal path

following method - the difference is that instead of the barrier function being formed

for primal nonnegativity constraints (x≥0), it is formed for the dual nonnegativity

constraints. The dual barrier optimization problem is thus given by

DLPµ: Maximize Gµ(x) = bTw + µ(∑j ln sj),

st ATw+s=cT, s>0

Defining the appropriate Lagrangian and deriving the Karush-Kuhn Tucker leads to

the identical conditions we had earlier, namely

1) Ax - b = 0

2) ATw +s = c

3) s=µD-1e, i.e., sjxj=µ for all j

Once again we will solve the same system, however, in this approach (3) is stated a

little differently. Rather than stating it as (µ/xj) - sj=0 for all j as we did earlier, we

state this as (µ/sj) - xj =0 for all j!

Define f(xj, sj) = (µ/sj)-xj. A first order Taylor series approximation for f(xj, sj) yields

f(xj, sj) ≈ [(µk/sj
k)-xj

k] + [-µk/(sj
k)2 -1] 









−

−
k
jj

k
jj

ss

xx

= (µk/sj
k)- xj

k - µk[xj/(sj
k)2] + µk/(sj

k) - xj + xj
k

= µk/(sj
k)2[2sj

k - sj] - xj

32

In other words, equations (3) which were given by

(µ/sj)- xj =0

may be approximated as

µk/(sj
k)2[2sj

k - sj] = xj

Compare this with what we did with the primal approach!

In vector form we may rewrite xk+1 = µk(Sk
2)-1[sk - ∆s]

where Sk= Diag[s1
k s2

k ... sm
k].

Thus we are reduced to solving

Axk+1 - b = 0, i.e.,

1) µkA(Sk
2)-1[sk - ∆s] - b = 0 (since Axk-b=0), and

AT[wk+∆w] + sk+∆s = c, i.e.,

2) AT∆w +∆s = 0 (since ATwk +sk = c)

Substituting ∆s =-AT∆w from (2) into (1) and simplifying yields

∆w = (ASk
-2AT)-1[

κµ

1
b - ASk

-1e]

∆x = [-Sk
-1 + Sk

-2AT(ASk
-2AT)-1 ASk

-1](Skxk-µke)

∆s = -AT∆w

The method is identical to the primal path following except that it uses the above

Newton search directions in Step 1 at each iteration.

33

PRIMAL-DUAL PATH FOLLOWING ALGORITHM

This method, first proposed by Megiddo and later extended by Kojima et al. is

generally considered the best interior-point method. It is similar to the previous two

methods, BUT this form does not correspond to any clearly defined barrier function!

Consider the Karush-Kuhn Tucker conditions we had in both earlier cases, namely

1) Ax - b = 0

2) ATw +s = cT

3) s=µD-1e, i.e., sjxj=µ for all j

We will solve this system as usual, but now we restate (3) in yet another way.

Recall that for the primal approach we stated this as (µ/xj) - sj=0 for all j, while for

the dual approach we stated this as (µ/sj) - xj =0 for all j.

This time we will state it as µ-xjsj=0

So if as usual, we define f(xj, sj) = µ-xjsj the Taylor series approximation for yields

f(xj, sj) ≈ (µk-xj
ksj

k) + [-sj
k -xj

k] 








−

−
k
jj

k
jj

ss

xx

= µk - xj
ksj

k - sj
kxj + sj

kxj
k - xj

ksj + xj
ksj

k = µk + xj
ksj

k - sj
kxj - xj

ksj

In other words, equations (3) which were given by

µ-sjxj =0

may be approximated as

µk + xj
ksj

k = sj
kxj + xj

ksj = sj
k(xj

k +∆xj)+ xj
k(sj

k +∆sj)

34

i.e., µk - xj
ksj

k = sj
k∆xj+ xj

k∆sj

µke + DkSke k = Sk∆x + Dk∆s

where Sk and Dk are the usual diagonal matrices.

Thus we are reduced to solving

A[xk +∆x] - b = 0, i.e.,

1) A∆x = 0 (since Axk-b=0), and

AT[wk+∆w] + sk+∆s = cT, i.e.,

2) AT∆w +∆s = 0 (since ATwk +sk = cT)

and µke + DkSke k = Sk∆x + Dk∆s which we just derived above for (3)

Using (1) and (2) to eliminate ∆x and ∆x from this, and simplifying yields

∆w = -(ADkSk
-1AT)-1ASk

-1[µe-DkSke]

∆s = -AT∆w

∆x = Sk
-1[(µe-DkSke) - Dk∆s]

Once again, after this the method is identical to the earlier ones except that that it

uses the above Newton search directions in Step 1 at each iteration.

35

KARMARKAR'S ALGORITHM

We will only look at the essential elements of this approach since it has been

replaced with the better methods described earlier:

BASIC STRATEGY

STEP 0: Start with an interior point.

STEP 1: Transform the solution space so that the point is at the "center" of

the (transformed) feasible region.

STEP 2: Move it in the steepest descent direction, stopping "a little" before

hitting the boundary (so that the new point is also in the interior).

STEP 3: Transform the space once again so that this new point is at the center

of the transformed polytope.

STEP 4: Keep repeating Steps 2 and 3 until an optimum is obtained with the

desired accuracy.

BASIC QUESTION 1: How do we transform the space so that a point goes to the

center?

ANSWER: By means of a Projective Transform.

BASIC QUESTION 2: How do we find the direction that maximizes the

improvement?

36

ANSWER: By a simple projection of a vector on to an affine space.

Karmarkar's Projective Transform

Consider the projective transform

0),...,,(

}1:{

:T

21

1

1

1

A

>=

=∈=Ω

Ω→

∑
+

=

+
+

+

n

n

k
k

nn

nn

aaaA

xR

R

x

The transform TA is defined as


















+

=

∑
+

=

1,,...,,

1

1
T

2

2

1

1
1

1

A
k

k
n

k k

k a

x

a

x

a

x

a

x

Note that

1. 






+++
=

1

1
,...,

1

1
,

1

1
)A(TA

nnn
("Centering")

2.),...,,(
1

),,...,,(T 2211
1

121
1-

A nn
n

nn xaxaxa
x

xxxx
+

+ =

3. If 1then),(T
1

1
A == ∑

+

=

n

k
kyxy

37

Also, note that points are mapped to points, line segments are mapped to line

segments, and convex sets are mapped to convex sets.

TA

D (2/5,8/5)

B (0,0)

A (1,4)
C

(0,2)

E (2,0) X

Y

Z

X

A
(1/3,1/3,1/3)

E
(2/3,0,1/3)

B (0,0,1)

(0,1/3,2/3)
C

(2/9,2/9,5/9)

D

(1/3,1/3,1/3)
A

E
(2/3,0,1/3)

D (2/9,2/9,5/9)

(0,1/3,2/3)
C

B

Y

38

DEFINITION 1: A simplex in n-dimensions is the convex hull of a set of (n+1)

noncoplanar points (i.e., points not all on the same hyperplane in Rn).

Examples are shown below for n=1,2,3:

• •

• • •

• • • •

n=1 n=2 n=3

DEFINITION 2: The n-dimensional unit simplex Ωn is the set of x ∈ Rn which

satisfy 1
1

1

=∑
+

=

n

k
kx , and xk≥0 for all k.

Ωn is the convex hull of the (n+1) points .

1

:

0

0

...,,

0

:

1

0

,

0

:

0

1























































Thus, TA transforms the positive orthant nR+ into a simplex in n dimensions (e.g.,

R2 is transformed into a 2-dimensional simplex).

However, notice that with this transform (in R2) the "points" (0,∞) and (∞,0)

are transformed to the points (0,1,0) and (1,0,0). Furthermore, we are moving from

2 to 3 dimensions. In general, even though the simplex is in n dimensions, we have

n+1 variables.

Instead, ...

39

...suppose our original feasible region was itself restricted to lie within a unit

simplex of dimension (n-1), as opposed to lying within nR+ . In other words we have

the additional restriction that 1
1

1

=∑
+

=

n

k
kx . Then we can apply a similar centering

transform which is simpler and has the same properties as TA above; as given by


















=Ω→Ω

∑
=

−−

k

k
n

k k

k

nn

a

x

a

x

a

x

a

x
,...,,

1
T,:T

2

2

1

1

1

A
11

A

We now no longer mess around with infinity and we remain in the same

dimension as the original problem.

If we define

1. D=Diag(a1, a2, ..., an) ∈ Rn×n, and

2. eT = [1 1 1 ... 1] ∈ Rn,

then the above transform may be rewritten as

xDe

xD
x

1

1

A)(T
−

−

=
T

40

Y Y

TS

R' P'

P S'
R S

Z Q X Z Q' X

P=(3/4, 1/4, 0)

Q=(1/3, 0, 2/3)

R=(0, 1/7, 6/7)

S=(3/10, 1/10, 3/5)

P'=TS(A)=(1/2, 1/2, 0)

Q'=TS(B)=(1/2, 0, 1/2)

R'=TS(C)=(0, 1/2, 1/2)

S'=TS(S)=(1/3, 1/3, 1/3)

Note that

1. TS(S) = (1/n, 1/n, ... 1/n) (centering)

2. TS(y) =
Dye

Dy
T

(inversion)

In summary...

• Given a unit simplex Ωn-1 and a point A lying in it, TA transforms this into

another unit simplex with the point A being mapped to the point A' at the

"center" of the transformed simplex.

• Furthermore, there is a unique image of every point x in the original simplex

given by a corresponding point y=TA(x) in the transformed simplex, and a

unique image of every point y in the transformed simplex given by a

41

corresponding point x=TA
-1(y) in the original simplex. This is the essence of the

projective transform...

STANDARD FORM REQUIRED FOR KARMARKAR'S METHOD

Before moving on to Basic Question 2, we state the following standard format in

which every problem should be stated before being solved by Karmarkar's method:

PROGRAM P

Minimize cTx

st Ax = 0

eTx = 1

xT ≥ 0

where A is m×n and has rank m, n≥2, c and x are vectors of n elements each, and 0

is a column vector of m zeroes.

Additionally, the following should also hold:

A1) The point x0 = [1/n, 1/n, ..., 1/n] is feasible in P

A2) The optimal objective value of P is zero.

QUESTION: How do we convert a general LP of the form {Min cTx | Ax=b, x≥0}

into this restrictive format ???

ANSWER: Actually, quite easily!

42

Refer to the Appendix for an example on this...

43

ON TO BASIC QUESTION 2...

Having accomplished the transformation, how do we then move at each iteration?

Program P was {Min cTx | Ax=0, eTx=1, x≥0}.

Recall that
xDe

xD
xTy

1
k

1
k

x k −

−

==
T

)(&
yDe

yD
yTx

k

k
x k T

== −)(1

Thus P may be rewritten in terms of the transformed variables as

{Min 0,1,| ≥== yye0yAD
yDe

yDc
k

k

k T

T

T

}.

However, we know from (A2) that the optimal value of this problem is 0. Then

since eTDky is always positive, we may minimize cDky as opposed to the nonlinear

objective above. Thus, if we define

kDcc TT = , Pk= 







Te

ADk
, b= 









1

0

the problem reduces to

{Min c Ty | Pky=b, y≥0}.

Suppose we are currently at the (feasible) point yk. Just as in the affine scaling

method we compute the projection matrix P = [I-Pk
T(Pk Pk

T)-1Pk], and use the

direction d*= -P c which uses P to project the direction of steepest descent on to the

feasible region. Again, in practice, we don't explicitly compute [I-Pk
T(Pk Pk

T)-1Pk].

Instead, we first solve the system of linear equations (Pk Pk
T)w = Pk c for the vector

w (= (Pk Pk
T)-1Pk c)and then obtain d* as d* = -[c - Pk

Tw].

44

BACK TO BASIC QUESTION 2...

Knowing the direction of movement, how far to move ???

Suppose that (by using kx
T) the current point yk is at the center of the unit simplex

eTy =1. Let us construct an n-dimensional "ball" B (a circle within a triangle in 2

dimensions, a sphere within a triangular polyhedron in 3 dimensions, etc.) with its

center at yk, with a radius r such that B is exactly inscribed within the unit simplex.

It may be shown that the radius of this ball is given by r = 1/)1(−nn .

Note now that as long as we move a distance less than r from the center, we are

guaranteed to stay within the unit simplex. Now, recall that the region determined

by Pky=b is the intersection of the region ADky=0 with the unit simplex eTy =1. In

other words, Pky=b is entirely within the simplex. Thus moving a distance less than

r from the center yk ensures that we always stay within the feasible region Pky=b.

We thus choose our new point yk+1 = yk + (αr)
*

*

d

d
where 0<α<1 and this ensures

that xk+1=)(1
1

1kyT k
+−

+y
is in the interior of the original problem.

Putting this all together and summarizing the algorithm we have:

45

KARMARKAR'S INTERIOR POINT METHOD (one version...)

STEP 0: Using the appropriate change of variables, restate the original problem so

that it conforms to the format of Program P: {Min cx | Ax=0, eTx=1, x≥0} where x

= (1/n 1/n ... 1/n) is feasible and the optimum value is zero.

Define (1) a value for α (a value of [(n-1)/3n] is suggested), and (2) a small

tolerance ε=2-L, where L is a large positive integer such as the input length (which is

the number of bits required to store all the problem data). In practice, we may

choose some lower bound on this number; or even more practically, some

"sufficiently small" value for ε.

Set k=0, and xk = (1/n 1/n ... 1/n) -- the initial solution.

STEP 1: STOP if cxk ≤ ε. Else go to Step 2.

STEP 2: Define the diagonal matrix Dk=Diag(xk) and use TA to transform the

problem so that yk = kx
T (xk) is at the center of transformed region, i.e., yk = (1/n

1/n ... 1/n). Compute kDcc TT = , Pk= 







Te

ADk
, b= 









1

0
and r = 1/)1(−nn .

STEP 3: Solve the system (Pk Pk
T)w = Pk c for the vector w and compute

d = -[c - Pk
Tw]. Compute yk+1 = yk + (αr)

d

d
.

STEP 4: Obtain xk+1=)(1
1

1kyT k
+−

+y
=

1T

1

+

+

k
k

k
k

yDe

yD
; set k=k+1 and return to Step 1.

46

EXAMPLE: Min Z = x1 +2x2 - x3

st x1 + x2 + x3 = 1

x1 - x3 = 0, x1, x2, x3 ≥ 0.

The feasible region for this problem is shown below.

(The optimum solution is x* = [0.5 0 0.5] with Z*=0)

Step 0 is not required since this problem is already in the proper format.

Start with x0=[1/3 1/3 1/3].

feasible region

optimum solution

x1-x3=0

x3

x1

x2

x1+x2+x3=1
-c

c

d

x0

47

ITERATION 0

STEP 1: |cTx0| = 0.667 > ε, so continue

STEP 2: D0 =












3/100
03/10
003/1

0Dcc TT = = [1/3 2/3 -1/3]

P0 = 





Te

AD0 =




 −

111
3/103/1 b =






1
0

STEP 3: (P0P0
T)w=P0 c ⇒







30
09/2 w =







3/2
9/2 ⇒ w=







9/2
1 .

Then d = -(c -P0
Tw) =












−=

























−
−













−
−

2
4
2

9
1

9/1
9/2
9/5

3/1
3/2
3/1

.

and () ==
9/24||||

d

d

d














−

6/1
6/2
6/1

. Therefore

y1 = y0 + αr











=

3/1
3/1
3/1

|||| d

d
+ (2/9)*(1/√6)















−
6/1
6/2
6/1

=












37037.0
25926.0
37037.0

.

STEP 4: x1 =)(1 1

y
yT 1

− = ()











=




















=

37037.0
25926.0
37037.0

3/1

1

37037.0
25926.0
37037.0

3
1

1
0

T

1
0

yDe

yD

48

ITERATION 1

STEP 1: |cTx1| = 0.52 > ε, so continue

STEP 2: D1 =












37037.000
025926.00
0037037.0

1Dcc TT = = [0.37037 0.51852 0.37037]

P1 = 





Te

AD1 =




 −

111
37037.0037037.0 b =






1
0

STEP 3: (P1P1
T)w=P1 c ⇒







30
027435.0 w =







51852.0
27435.0 ⇒ w=







17284.0
1 .

Then d = -(c -P1
Tw) =












−=

























−
−













−
−

17284.0
34568.0
17284.0

19753.0
17284.0
54321.0

37037.0
51852.0
37037.0

.

and ==
42337.0||||

d

d

d












−

40825.0
81650.0
40825.0

. Therefore

y2 = y1 + αr











=

3/1
3/1
3/1

|||| d

d
+ (2/9)*(1/√6)












−

40825.0
81650.0
40825.0

=












37037.0
25926.0
37037.0

.

STEP 4: x2 =)(21
2 yT

y

− =











=




















=

4016.0
1968.0
4016.0

34156.0

1

13717.0
06722.0
13717.0

1
0

T

1
0

yDe

yD
.

49

ITERATION 2

STEP 1: |cTx2| = 0.3936 > ε, so continue

STEP 2: D2 =












4016.000
01968.00
004016.0

2Dcc TT = = [0.4016 0.1968 0.4016]

P2 = 





Te

AD2 =




 −

111
4016.004016.0 b =






1
0

STEP 3: (P2P2
T)w=P2 c ⇒







30
03226.0 w =







3936.0
3226.0 ⇒ w=







1312.0
1 .

Then d = -(c -P2
Tw) =












−=

























−
−













−
−

1312.0
2624.0
1312.0

2704.0
1312.0
5328.0

4016.0
3936.0
4016.0

.

and ==
32137.0||||

d

d

d












−

40825.0
81650.0
40825.0

. Therefore

y3 = y2 + αr











=

3/1
3/1
3/1

|||| d

d
+ (2/9)*(1/√6)












−

40825.0
81650.0
40825.0

=












37037.0
25926.0
37037.0

.

STEP 4: x3 =)(31
3 yT

y

− = ()











=




















=

4268.0
1464.0
4268.0

3485.0

1

14874.0
05102.0
14874.0

3
1

3
2

T

3
2

yDe

yD

50

Note that we are (very slowly !) converging to the optimum solution

x*= [0.5 0 0.5]...

51

IMPLEMENTATION

There are a number of issues that arise with respect to the implementation of interior

point methods. These include the following:

1) How do we find a strictly positive primal-dual feasible point for path

following methods?

2) How do we handle simple bounds on variables?

3) How about sensitivity analysis?

4) Since we never actually hit the boundary with these methods, how do we

move from the point at which the method terminates to the actual optimum

(which of course, is an extreme point on the boundary...)?

5) What are computational efficiencies that can be derived?

Although all of these questions have been explored at length, we will examine only

the last two questions here

PURIFICATION

Question 4 relates to the fact that we never actually reach the optimum (although

we can get arbitrarily close...) since we always remain in the interior with all the

methods we have seen. In a "purification" or "crossover" scheme we start with the

final iterate from the method and find an exact extreme point solution with an

objective value that is at least as good as the one at the last iterate.

52

In fact, since convergence becomes slower as we get close to the optimum and one

iteration of an interior point method typically takes much more effort than one of the

simplex algorithm, one approach suggested is to use purification to find an extreme

when we are getting close to the optimum, and then switch over to the simplex

method to chug through the last few extreme points and get to the optimal one!

Recall that at each extreme point there are at least as many linearly

independent, binding constraints as the number of decision variables. Thus, we

need to find a point where there are at least n linearly independent binding

constraints (out of the m+n original constraints in the problem: m functional plus n

nonnegativity) and the objective is at least as good as that at the current point.

Suppose we have p<n binding constraints at xk. Then by the definition of linear

independence, there exists a vector d≠0 in the null space of the binding constraints.

That is, suppose g1, g2,..., gp are binding where p<n, then we find a solution z to the

system of equations g1=0, g2=0,..., gp=0. If cTz <0 then we move from xk along the

direction d=z; else we move along d=-z. The distance α moved to the new point xk+1

is such that further movement is blocked by some other constraint becoming binding

- this is bound to happen as long as the problem is bounded. At the new point xk+1

we have cTxk+1 =cT(x +αd)≤cTx (since cTd is always nonpositive by the way we

have chosen d). Repeating this process, we eventually get to a basic feasible

solution x* with cTx* ≤cTxk.

53

COMPUTATIONAL ISSUES
An interesting feature of interior point methods is that the number of iteration

required to solve an LP is relatively insensitive to the size of a problem and for

larger problems, is usually much smaller than with the simplex method. However,

the time required for one iteration is dependent on the problem size, and with larger

problems is usually much more than the time for a simplex iteration. Thus the

efficiency of these methods will depend heavily on how efficiently we can

implement each iteration.

In all interior point methods, the bulk of the work at each iteration is in

solving a system of linear equations. Typically these equations take the form

(AD)(AD)Tw=ADc, i.e., (AD2AT)w = r (ϯ)

where w is a direction vector that we are solving for, r is some modified right-hand-

side vector, and D2 is a diagonal matrix that changes from one iteration to the next.

By some accounts, this step of forming the matrix AD2AT and solving the resulting

system takes almost 90% of the computational time.

This system is common to all interior point methods; specific definitions of D

and r may vary from one to the other. For example, in Karmarkar's original method

this is embodied in Step 3 (refer to page 45); in the primal affine scaling algorithm

(refer to page 11) it is in Step 1, and in the path-following approach (refer to page

30) it is in Step 1.

54

The reason why barrier type methods (derived from nonlinear programming)

could not compete with the simplex algorithm is that the numerical linear algebra

for symmetric, positive-definite matrices (such as AD2AT) was fully developed only

in the last fifteen years or so - mainly for applications involving large finite-element

models. Karmarkar's method spurred a renewed interest in non-traditional

algorithms and the developments in numerical computing have been incorporated

into powerful new interior point algorithms. Even now, the choice of correct

parameter values and pre-processing the problem data (including such simple things

as a reordering of the rows of A) can have a tremendous influence on problem

solution times.

There are three competitive approaches to solving the system (ϯ):

(1) Q-R factorization of DAT ,

(2) Cholesky factorization of AD2AT , and

(3) the use of a conjugate gradient algorithm with preconditioning.

We will briefly examine each, although the Cholesky factorization seems to be the

most popular approach.

In Q-R factorization, the matrix DAT is expressed as QR where Q is an n×n

orthonormal matrix (i.e., QQT =I) and R is an upper triangular matrix. Thus (ϯ)

becomes [(QR)TQR]w = (RTR)w = r. This is solved by solving two triangular

55

systems; first RTy=r for y via forward substitution, and then Rw=y for w via back

substitution.

The conjugate gradient method is a nonlinear programming algorithm, with the

number of iterations depending on the number of distinct eigenvalues that AD2AT

possesses - this number can be reduced by a so-called "preconditioning" procedure.

Cholesky factorization is a numerically stable procedure which has been very well

developed and is probably the most popular approach to solving (ϯ). Suppose we

denote the matrix AD2AT by M. Then it can be shown that M is symmetric and

positive definite (zTMz>0 for z≠0) square matrix of order m×m. Such matrices may

be factorized in the form

M = LLT

where L is an m ×m lower triangular matrix known as the Cholesky factor of matrix

M. If we could compute L efficiently, then our system (ϯ) reduces to solving

(LLT)w=r. Thus we could first solve Ly=r via forward substitution for y, and then

solve LTw=y for w via back substitution.

QUESTION: How do we find the Cholesky factor L?

Consider the (i,j)th element of M - say mij. We know that this is the inner product of

the ith row of L and the jth column of LT. But the latter is the jth row of L. Thus

mij =∑
=

m

k

jkikll
1

.

56

However, L is lower triangular so that lik (or ljk) = 0 if i<k (or j<k).

Thus mij =∑
=

p

k

jkikll
1

where p=Min(i,j) (1)

m11 = l11l11, m12 = l11l21, ... , m1m = l11lm1,

m21 = l21l11, m22 = l21l21+l22l22, m23 = l21l31+l22l32, etc.

m31 = l31l11, m32 = l31l21+l32l22, m3 = l31l31+l32l32+l33l33, etc.

First, note that

mii = (li1)2+ (li2)2+ ... + (lii)2 (2)

Therefore, for Column 1 of L, we see that

l11 =(m11)0.5

Next, note that mi1 =li1lii. Thus, knowing lii, we may then find

li1 =mi1/l11 for i=2,...,m.

Thus Column 1 of L is easily computed.

Next, since Column 1 is fully determined, we now know li1 for i=1,...,n

Thus for Columns j=2,3,...,m we may first use (2) to compute

ljj = ∑
−

=

−
1

1

2
j

k

jkjj lm

and then use (1) to compute

57

lij =
jj

j

k

jkikij

l

llm













−∑

−

=

1

1

Thus this is a strategy where the columns of L are computed one at a time.

However, a different strategy of row-wise computation can also be used. Another

option is the use of vector-processing or parallel computing. Yet another approach

is the use of recursive functions. The important point here is that for a serious

implementation, one should study the capabilities of the hardware and software to

be used and try and select the most effective computational procedure for finding

the Cholesky factor.

Another area of research is the development of block Cholesky factorization

schemes where the matrix M is partitioned into a total of p2 blocks, each of

order r (where m=pr) as follows:

M =

11 12 1p

21

p1 pp

M M M

M . :

. :
:

M M

 
 
 
 
 
 
 
 

The Cholesky factor can accordingly be partitioned as

L =

11

21

p1 pp

L 0 0

L . :

. :
:

L L

 
 
 
 
 
 
 
 

58

Since M=LLT, relationships very similar to the ones for the regular factorization can

be obtained with sub-matrices taking the place of individual entries. Thus Cholesky

factors for the individual submatrices can be evaluated using the method described

earlier, and then these can be put together to form the overall Cholesky factor for M.

Again, this is an active research area.

SPARSE CHOLESKY FACTORIZATION: One of the most important points to

note with Cholesky factorization is that it is of tremendous computational advantage

to obtain relatively sparse factors, i.e., L should have as few non-zeros as possible in

the lower triangular area. This reduces the time required to compute L. Furthermore,

recall that we solve (LLT)w=r by solving Ly=r via forward substitution for y, and

LTw=y via back substitution for w; fewer non-zeros in L will speed this up. L can

be kept from becoming too dense by a suitable re-ordering of the rows and columns

of M. This of course doesn't change anything fundamental, since it is just

equivalent to reordering the equations and the variables.

As an example consider the following example from the book by George and Liu:

M =
















160002
0625.0005.0
00302
0005.01
25.0214

has L =
















−−−
−−

−

13211
05.05.025.025.0
00111
0005.05.0
00002

Thus a relatively sparse matrix M has a very dense factor L with all 15 lower

triangular entries being ≠ 0. On the other hand, suppose we first reorder the rows

and then the columns of M to get

59

















25.0214
0005.01
00302
0625.0005.0

160002

and then
















4125.02
15.0000
20300
5.000625.00

200016

.

All we have done is changed the numbering of the equations and variables.

However this M has a Cholesky factor L given by

L =
















129.041.115.1632.05.0
0707.0000
0073.100
000791.00
00002

which is clearly much more sparse than the

factor on the previous page (with 9 as opposed to 15 non-zero entries)!

Thus reordering schemes applied to M maintain sparse Cholesky factors by

minimizing the "fill-in" in L. This too is a well-researched area with several

efficient heuristics (the problem of minimizing the non-zeros in L is NP-complete).

Marsten et al. (Interfaces 20:4, 1990) give an example of a large problem, where the

number of nonzeros in L is reduced from 39,674 (61% dense) to 3,252 (5% dense)

by the "minimum-degree row reordering" heuristic.

SYMBOLIC CHOLESKY FACTORIZATION

Recall that the matrix M=ADAT is different each time the system is solved, since D

changes each time. Thus if were reordering the rows of M to reduce fill-in, it would

seem like a tedious task to do this each time! Fortunately, it turns out that even

though D (and hence M) changes at each iteration, the pattern of non-zeros in the

Cholesky factor (i.e., their positions) remains unchanged. Thus we first choose D=I

60

and take AAT and factorize it in the most efficient way possible by a re-ordering

scheme. If we now memorize the positions of the non-zeros in this factor, then at all

subsequent iterations, the factors computed will have the non-zeros appearing at the

same positions. Thus we need only find their numerical values. This initial

factorization is thus referred to as a symbolic Cholesky factorization.

