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Introduction 

A signal is a function representing a 

information about the behavior or nature of the phenomenon.

Mathematically, a signal is represented as a function of an independent

represents time. Thus, a signal is denoted by

1. CLASSIFICATION OF SIGNALS

A. Continuous-Time and Discrete

A signal x(t) is a continuous-time signal if t is a continuous variable. If t is a discrete variable, 

that is, x(t) is defined at discrete times, then x(t) is a discrete

Since a discrete-time signal is defined at discrete times, a discrete

as 

a sequence of numbers, denoted by {x,) or x[n], where n = integer.
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CHAPTER ONE 

                               SIGNALS AND SYSTEMS 

A signal is a function representing a physical quantity or variable, and typically it

information about the behavior or nature of the phenomenon. 

Mathematically, a signal is represented as a function of an independent Variable 

represents time. Thus, a signal is denoted by x (t). 

CLASSIFICATION OF SIGNALS 

Time and Discrete-Time Signals: 

time signal if t is a continuous variable. If t is a discrete variable, 

that is, x(t) is defined at discrete times, then x(t) is a discrete-time signal. 

time signal is defined at discrete times, a discrete-time signal is often identified 

a sequence of numbers, denoted by {x,) or x[n], where n = integer. 

physical quantity or variable, and typically it contains 

 t. usually t 

time signal if t is a continuous variable. If t is a discrete variable, 

time signal is often identified 
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          A discrete-time signal x[n] can be defined in two ways: 

1. We can specify a rule for calculating the nth value of the sequence. For example, 

 

2. We can also explicitly list the values of the sequence. For example, the sequence 

Shown in Fig. l-l(b) can be written as 

 

 

 

 

 

B. Analog and Digital Signals 

 

C. Real and Complex Signals: 
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D. Deterministic and Random Signals: 

Deterministic :  signals are those signals whose values are completely specified for any 

Given time. Thus, a deterministic signal can be modeled by a known function of time I. 

Random signals are those signals that take random values at any given time and must be 

Characterized statistically 

D. Even and Odd Signals: 

 

Examples of even signals 

 

Examples of odd signals 
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Any signal x(t) or x[n] can be expressed as a sum of two signals, one of which is even 

And one of which is odd. That is, 

 

Note that the product of two even signals or of two odd signals is an even signal and 

That the product of an even signal and an odd signal is an odd signal. 

E. Periodic and Non periodic Signals: 

F. A continuous-time signal x ( t ) is said to be periodic with period T if there is a positive 

Nonzero value of T for which 

 

And also  

 

for all t and any integer m. The fundamental period T, of x ( t ) is the smallest positive value of 

T. Any continuous-time signal which is not periodic is called a nonperiodic (or aperiodic ) 

signal. 

Periodic discrete-time signals are defined analogously. A sequence (discrete-time signal) x[n] is 

periodic with period N if there is a positive integer N for which 
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An example of such a sequence is given by: 

 

for all n a Any sequence which is not periodic is called a non periodic (or aperiodic sequenced 

any integer m. 

 

G. Energy and Power Signals: 

Consider v(t) to be the voltage across a resistor R producing a current dt). The instantaneous 

power p( t) per ohm is defined as 

 

For an arbitrary continuous-time signal x(t), the normalized energy content E of x(t) is 

defined as 

 

Similarly, for a discrete-time signal x[n], the normalized energy content E of x[n] is 

defined as 
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the following classes of signals are defined: 

 

Note that a periodic signal is a power signal if its energy content per period is finite, and then the 

average power of this signal need only be calculated over a period. 

 

BASIC CONTINUOUS-TIME SIGNALS 

A. The Unit Step Function: 

The unit step function u(t), also known as the Heaciside unit function, is defined as 

 

Note that it is discontinuous at t = 0 and that the value at 

t = 0 is undefined. Similarly, the shifted unit step function u(t - to) is defined as 
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(a) Unit step function; (b) shifted unit step function 

 

B. The Unit Impulse Function: 

The unit impulse function 6(t), also known as the Dirac delta function, plays a central role in 

system analysis. 

Properties: 

 

 

any continuous-time signal x(t can be expressed as: 
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C. Complex Exponential Signals: 

The complex exponential signal 

 

Using Euler's formula, this signal can be defined as 

 

The fundamental period To of x(t) is given by 

 

Note that x(t) is periodic for any value of wo. 
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Which is called the fundamental angular frequency? 

Using Euler's formula the sinusoidal 

Signal expressed as: 

 

Where "Re" denotes "real part of." We also use the notation "Im" to denote "imaginary 

Part of." Then 

 

 

Fig.  Continuous-time sinusoidal signal 

 

BASIC DISCRETE-TIME SIGNALS 

A. The Unit Step Sequence: 
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Similarly, the shifted unit step 

Sequence 

 

 

( a ) Unit step sequence; (b) shifted unit step sequence 

 

 

Similarly, the shifted unit impulse (or sample) sequence 

 

 

 

( a ) Unit impulse (sample) sequence; (6) shifted unit impulse sequence. 

We have: 
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The condition: 

 



12 
 

 

 

  

 

 

 

 

SYSTEMS AND CLASSIFICATION OF SYSTEMS 

 

 

                                

Where T is the operator representing some well-defined rule by which x is transformed into y. 

 

Fig. System with single (a) or multiple input and output signals (b). 
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B. Continuous; Time and Discrete-Time Systems: 

If the input and output signals x and p are continuous-time signals, then the system is called a 

continuous-time system. 

 

 

Fig. (a)  Continuous-time system; (b) discrete-time system. 

 

B. Systems with Memory and without Memory 

A system is said to be memory less if the output at any time depends on only the input at that 

same time. Otherwise, the system is said to have memory. 

 

 

 

on only the present and/or past values of the input, not on its future values. 

A system is called noncausal if it is not causal. Examples of noncausal system are 

 

Note that all memoryless systems are causal, but not vice versa. 

 

D. Linear Systems and Nonlinear Systems: 
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two conditions: 

the system represented by a linear operator T is called a linear system: 

 

The system combined as; 

 

 

 

F. Time-Invariant and Time-Varying Systems: 

A system is called rime-inuariant if a time shift (delay or advance) in the input signal 

causes the same time shift in the output signal. Thus, for a continuous-time system, the 

system is time-invariant if 

 

for any real value of T. For a discrete-time system, the system is time-invariant (or 

shift-invariant) if 

 

For any integer k. 
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G. Linear Time-Invariant Systems 

If the system is linear and also time-invariant, then it is called a linear rime-invariant 

(LTI) system. 

 

H. Stable Systems: 

A system is bounded-input/bounded-output (BIBO) stable if for any bounded input x 

defined by 

 

 

 

 

 

H. Feedback Systems: 

A special class of systems of great importance consists of systems having feedback. In a 

feedback system, the output signal is fed back and added to the input to the system as 

shown 

 

 

Fig.: Feedback system. 

EXERCISES 

(1). A continuous-time signal x ( t ) is shown in Fig. bellow. Sketch and label each of the 

following signals. 
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             Fig 1.  Continuous Time Graph 

(2). A discrete-time signal x [ n ] is shown in Fig 2. Sketch and label each of the 

following signals. 

 

 

                       Fig 2. Discrete Time Graph 

(3).  

 

(4). Determine whether or not each of the following signals is periodic. If a signal is periodic, 

determine its fundamental period. 

A.  
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B. 

 

(5). Determine whether the following signals are energy signals, power signals, or neither 

A.  

 

B,  

 

C.  

 

(6). A continuous-time signal A (t ) is shown in Fig.  Sketch and label each of the 

following signals 

 

 

 

Fig 3. CTSG 

 

(7).  A discrete-time signal x [ n ] is shown in Fig. Sketch and label each of the 

following signals. 
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FIG 4. DTSG 

(8). Evaluate the following integrals: 

A.  

  

B.  

 

(9). Find and sketch the first derivatives of the given signals: 
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Chapter two 

Convolution 

Linear Time-Invariant Systems 

Introduction 

Two most important attributes of systems are linearity and time-invariance. the input-output 

relationship for LTI systems is described in terms of a convolution operation. 

Response of a continuous-time lti system and 

The convolution integral 

 

 

 

 

 

 

In general we have: 

 

D. Convolution Integral: 
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the convolution of two continuous-time signals x ( t ) and h ( t ) 

denoted by  

 

is commonly called the convolution integral. 

Thus, we have the fundamental 

result that the output of any continuous-time LTI system is the convolution of the input x ( t ) 

with the impulse response h ( t ) of the system. 

 

 

Fig .Continuous-time LTl system. 

 

 

E. Convolution Integral Operation: 
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we observe that 

the convolution integral operation involves the following four steps: 

 

 

F. Step Response: 

The step response s(t) of a continuous-time LTI system (represented by T) is defined to 

be the response of the system when the input is 41); that is, 

 

s(t) can be easily determined by 

And  

 

  

Thus, the impulse response h(t) can be determined by differentiating the step response 

s(t). 

Properties of continuous-time LTI systems 

A. Systems with or without Memory   

Since the output y(t) of a memoryless system depends on only the present input x(t), 

then, if the system is also linear and time-invariant, this relationship can only be of the 

From  
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where K is a (gain) constant. Thus, the corresponding impulse response h(f) is simply 

 

 

B. Causality: 

a causal system does not respond to an input event until that 

event actually occurs. Therefore, for a causal continuous-time LTI system, we have 

 

LTI system is expressed as 

 

any signal x(t) is called causal if 

 

and is called anticausal if 

 

when the input x(t) is causal, the output y(t ) of a causal continuous-time LTI system is 

given by 

 

C. Stability: 

The BIBO (bounded-input/bounded-output)stability of an LTI system is readily 

ascertained from its impulse response.  

that a continuous-time LTI system is BIBO stable if its impulse response is absolutely 

integrable, that is, 
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Response of a discrete-time lti system and convolution sum 

A. Impulse Response: 

The impulse response (or unit sample response) h [ n ] of a discrete-time LTI system 

(represented by T) is defined to be the response of the system when the input is 6[n], 

that 

is, 

 

B. Response to an Arbitrary Input: 

the input x [ n ]can be expressed as 

 

Since the system is linear, the response y [n ]of the system to an arbitrary input x [ n 

]can be 

expressed as 

 

 

Since the system is time-invariant, we have 

 

And  

C. Convolution Sum: 

the convolution of two sequences x [ n ] and h [ n ]denoted by 
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Fig. Discrete-time LTI system. 

 

D. Properties of the Convolution Sum: 

The following properties of the convolution sum are analogous to the convolution 

integral properties are 

 

E. Convolution Sum Operation: 

 

operation involves the following four steps: 
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F. Step Response: 

The step response s[n]of a discrete-time LTI system with the impulse response h [ n 

]is 

readily obtained from 

 

And we have 

 

PROPERTIES OF DISCRETE-TIME LTI SYSTEMS 

A. Systems with or without Memory: 

Since the output y[n]of a memoryless system depends on only the present input x 

[ n ]. 

 

where K is a (gain) constant. Thus, the corresponding impulse response is simply 

 

B. Causality: 

Similar to the continuous-time case, the causality condition for a discrete-time 

LTI 

system is 

 

the output of a causal discrete-time 

LTI system is expressed as 

 

 

Alternatively, 
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As in the continuous-time case, we say that any sequence x[n]is called causal if 

 

and is called anticausal if 

 

Then, when the input x[n]is causal, the output y[n]of a causal discrete-time LTI 

system 

is given by 

 

C. Stability: 

a discrete-time LTI system is B I B 0 stable if its 

impulse response is absolutely summable, that is, 

 

 

 

 

 

 

EXERCISES 

(1). 
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(2).  

A. analytical technique 

B. by a graphical method. 

 

       ( a)                                                                                             (b) 

(3).  

(a) 

 

(4).  

(a). by Analythical 

(b). by graphical 

 

(a)                                                                                  (b) 
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(5). 

 

(6). 
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CHAPTER THREE 

FOURIER SERIES AND TRANSFORM ANALYSIS OF SIGNAL AND 

SYSTEMS 

Introduction 

In this chapter and the following one, we shall introduce other transformations known as Fourier 

series and Fourier transform which convert time-domain signals into frequency-domain (or 

spectral) representations. 

Fourier series representation of periodic signals 

a. Periodic Signals: 

In Chap. 1 we defined a continuous-time signal x ( t ) to be periodic if there is a positive 

nonzero value of T for which 
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Two basic examples of periodic signals are the real sinusoidal signal 

 

and the complex exponential signal 

 

a. Complex Exponential Fourier Series Representation: 

 

 

 

 

 

Commonly used for the integration. Setting k = 0 
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Which indicates that co equals the average value of x ( t ) over a period. 

When x(t) is real, it follows that 

 

D. Trigonometric Fourier Series: 

 

 

 

 

we obtain  
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Even and Odd Signals 
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E. Amplitude and Phase Spectra of a Periodic Signal: 

can expressed as 

 

C . Power Content of a Periodic Signal: 

 

 

 

If x ( t ) is represented by the complex exponential Fourier series in 

 

The Fourier transform 

A. From Fourier Series to Fourier Transform: 
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And  

 

 

B. Fourier Transform Pair: 

 

 

 

D. Fourier Spectra: 

The Fourier transform X(w) of x(t) is, in general, complex, and it can be expressed as 
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E. Convergence of Fourier Transforms: 

 

 

F. Connection between the Fourier Transform and the Laplace Transform: 

 

The bilateral Laplace transform of x(t), as defined in 
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Example: 

 

Then find its lap laplace and Fourier transform. 

Solution. 

 

And  

 

 

 

Properties of the continuous-time Fourier transform 
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The frequency response of continuous-time lti systems 

A. Frequency Response: 

the output y ( t ) of a continuous-time LTI system equals the 

convolution of the input x(t) with the impulse response h(t1; that is, 

 

Applying the convolution property 
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We have 

     

The function H ( w) is called the frequency response of the system. 

 

 

 

Consider the complex exponential signal 

 

With Fourier transform of 

 

 

And we have 
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if the input x(t) is periodic with the Fourier series 

 

 

If x ( t ) is not periodic, then 

 

And the corresponding output y(t) can be expressed as 

 

 

 

Then we have 
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Fourier analysis of discrete time signal and systems 

DISCRETE FOURIER SERIES 

 

 

 

 

C. Convergence of Discrete Fourier Series: Since the discrete Fourier series is a finite series, in contrast 

to the continuous-time case, there are no convergence issues with discrete Fourier series. 

D. Properties of Discrete Fourier Series: 

I. Periodicity of Fourier Coefficients: 

 

2. Duality 
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3. Other Properties: 

 

THE FOURIER TRANSFORM 

A. From Discrete Fourier Series to Fourier Transform: 

 

B. Fourier Transform Pair: The function X(R) defined by 

 

 

 

 

 

F. Connection between the Fourier Transform and the z-Transform: 
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The z-transform of x[n], as defined in 

 

Example1: 

 

Find. 

  

Solution: 

First find  

 

 

the Fourier transform of x [ n ] is 
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Note that x [ n ] is absolutely summable. 

PROPERTIES OF THE FOURIER TRANSFORM 
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G. Duality: 

 

 

H 
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H

 

 

 

 

THE FREQUENCY RESPONSE OF DISCRETE-TIME LTI SYSTEMS 

A. Frequency Response: 
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Applying the convolution property 

 

 

 

B. LTI Systems Characterized by Difference Equations: 

 

C. Periodic Nature of the Frequency Response: 

 

 

 

EXERCISES 

(1). Determine the complex exponential Fourier series representation for each of the following 

signals: 
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(b) 

 

(2). Consider the periodic square wave x ( t ) shown in Fig bellow. 

( a ) Determine the complex exponential Fourier series of x ( t ). 

( b ) Determine the trigonometric Fourier series of x ( t). 

 

Fig 1.  

(3). Find the Fourier transform of the signal 

a).  

 

b).  

  

c).  

(4). Using the time convolution theorem find the inverse Fourier transform of  
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5). 

 

Using the Fourier signals: transform, find the output y(t) to each of the following input 

 

(6).  

  

7).  

.  

(8). Determine the discrete Fourier series representation for each of the given sequences: 
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CHAPTER FOUR 

LAPLACE TRANSFORM AND CONTINUOUS-TIME 

LTI SYSTEMS 

Introduction 

the Laplace transform is introduced to represent continuous-time signals in the 

s-domain ( s is a complex variable) 

THE LAPLACE TRANSFORM 

 

for a continuous-time LTI system with impulse response h(t), 

 

A. Definition: 

For a 

general continuous-time signal x(t), the Laplace transform X(s) is defined as 

 

the unilateral (or one-sided) Laplace transform, which is 

defined as 

 

and the signal x(t) and its Laplace transform X(s) are said to form a Laplace transform 

pair denoted as 
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B. The Region of Convergence: 

 

Example 1: 

Consider the signal 

 

Solution: 

the Laplace transform of x(t) is 

 

 

 

C. Properties of the ROC: 
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PROPERTIES OF THE LAPLACE TRANSFORM 
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And  
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THE INVERSE LAPLACE TRANSFORM 

Inversion of the Laplace transform to find the signal x ( t ) from its Laplace transform 

X(s) is called the inverse Laplace transform, symbolically denoted as 

 

A. Inversion Formula: 

 

B. Use of Tables of Laplace Transform Pairs: In the second method for the inversion 

of X(s), we attempt to express X(s) as a sum 

 

C. Partial-Fraction Expansion: If X(s) is a rational function, that is, of the form 

 

Two pole cases(for proper rational function) 

1. Simple Pole Case: If all poles of X(s), that is, all zeros of D(s), are simple (or 

distinct), then X(s) can be written as 
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2. Multiple pole cases 

 

 

THE SYSTEM FUNCTION 

A. The System Function: 

the output y ( t ) of a continuous-time LTI system equals the 

convolution of the input x ( t )with the impulse response h(t);that is, 

 

Applying the convolution property 

 

B. Characterization of LTI Systems: 
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Fig. Impulse response and system function. 

 

 

3. Stability: 

a continuous-time LTI system is B I B 0 stable if and only if 

 

Systems Interconnection: 
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Fig. Two systems in cascade. ( a )Time-domain representation; ( b )s-domain representation 

A.  Definitions:unilaTERAL LAPLACE TRANSFORM 

 

The unilateral (or one-sided) Laplace transform X,(s) of a signal x(t) is defined as 

 

 

 

B. Basic Properties: 

 

 

Transform Circuits: 

Signal Sources: 
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EXERCISES 

(1). Find the Laplace transform of the following x(t ). 

 

b).  
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2).  

  

b). 

 

3).  
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CHAPTER FIVE 

THE Z-TRANSFORM AND DISCRETE-TIME 

LTI SYSTEMS 

Introduction 

The z-transform is introduced to represent discrete-time signals (or sequences) in the z-domain ( 

z is a 

complex variable). And The properties of the z-transform closely parallel those of the Laplace 

transform. 

THE Z-TRANSFORM for a discrete-time LTI system with impulse response h[n], the 

output y[n] of the system to the complex exponential input of the form  

 

 

A. Definition: 

the z-transform of h[n]. For a general 

discrete-time signal x[n], the z-transform X ( z ) is defined as 

 

The variable z is generally complex-valued and is expressed in polar form as 
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the unilateral (or one-sided) z-transform, which is defined as 

 

 

B. The Region of Convergence: 

the range of values of the complex variable z 

for which the z-transform converges is called the region of convergence (ROC). 

 

Example 1. Consider the sequence 

 

 

Solution 

the z-transform of x [ n ]is 

 

 

Alternatively, by multiplying the numerator and denominator 
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C. Properties of the ROC: 

 

the ROC of X ( z ) depends on the nature of x [ n ] . The properties of the ROC are summarized 

below. We assume that X ( Z )is a rational function of z. 

 

 

 

z-TRANSFORMS OF SOME COMMON SEQUENCES 
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PROPERTIES OF THE 2-TRANSFORM 
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THE INVERSE Z-TRANSFORM 

 

 

A. Inversion Formula: As in the case of the Laplace transform, there is a formal expression 

for the inverse z-transform in terms of an integration in the z-plane; that is, 
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B. Use of Tables of z-Transform Pairs: In the second method for the inversion of X(z), we 

attempt to express X(z) as a sum 

 

C. Power Series Expansion: 

 

D. Partial-Fraction Expansion: 

 

 

 

Thus for rn > n, the complete partial-fraction 
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The system function of discrete-time LTI systems 

A. The System Function: 

 

Applying the convolution property 

 

 

 

Fig. Impulse response and system function. 
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B. Characterization of Discrete-Time LTI Systems: 

Many properties of discrete-time LTI systems can be closely associated with the 

characteristics of H(z) in the z-plane and in particular with the pole locations and the 

ROC. 

 

1. Causality: For a causal discrete-time LTI system, we have 

 

 

 

2. Stability: 

a discrete-time LTI system is BIB0 stable if and only if 
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EXERCISES 

(1).  

 

 

(2).  

.  

(3). Find the z-transform X(z) and sketch the pole-zero plot with the ROC for each of the given 

sequences: 

 

4). 
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5). 

 

6). Using the power series expansion technique and partial-fraction expansion, find the inverse z-

transform of the expression X( z): 

 

 

7). Using the z-transform find the system function where x [ n ] and h [ n ]are given by 

a. 

 

b. Find the system function H ( z ) and its impulse response h(n) shown in fig bellow. 
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8). 
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Assignments (25%) 

(1). Consider the system shown in Fig bellow.  

( a ) Find the system function H ( z ) .(2.s pts) 

( b ) Find the difference equation relating the output y [ n ] and input x [ n ] .(2.s pts) 

 

 

 

(2). 2.5 pts 
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(3). 

 

a).  by Analytical method(3 pt) 

b). by graphical method (3 pt) 

(4). Determine whether or not each of the following signals is periodic. If a signal is periodic, 

determine its fundamental period.(6 pts) 

 

a).  

 

b).  

 

(5). Find the inverse Laplace transform of the expression  X(s);(2.s pts) 

 

(6).  

 (3 pts). 




