CONCEPTS OF

Programming
Languages

TENTH EDITION

CONCEPTS OF
PROGRAMMING LANGUAGES

TENTH EDITION

This page intentionally left blank

CONCEPTS OF
PROGRAMMING LANGUAGES

TENTH EDITION

ROBERT W. SEBESTA

University of Colorado at Colorado Springs

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President and Editorial Director, ECS:

Marcia Horton
Editor in Chief: Michael Hirsch
Executive Editor: Matt Goldstein
Editorial Assistant: Chelsea Kharakozova
Vice President Marketing: Patrice Jones
Marketing Manager: Yez Alayan
Marketing Coordinator: Kathryn Ferrant
Marketing Assistant: Emma Snider
Vice President and Director of Production:
Vince O’Brien
Managing Editor: Jeff Holcomb

Senior Production Project Manager: Marilyn Lloyd

Manufacturing Manager: Nick Sklitsis

Operations Specialist: Lisa McDowell

Cover Designer: Anthony Gemmellaro

Text Designer: Gillian Hall

Cover Image: Mountain near Pisac, Peru;
Photo by author

Media Editor: Dan Sandin

Full-Service Vendor: Laserwords

Project Management: Gillian Hall

Printer/Binder: Courier Westford

Cover Printer: Lehigh-Phoenix Color

This book was composed in InDesign. Basal font is Janson Text. Display font is I'T'C Franklin Gothic.

Copyright © 2012, 2010, 2008, 2006, 2004 by Pearson Education, Inc., publishing as Addison-Wesley.

All rights reserved. Manufactured in the United States of America. This publication is protected by Copy-
right, and permission should be obtained from the publisher prior to any prohibited reproduction, storage
in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission(s) to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Sebesta, Robert W.
Concepts of programming languages / Robert W. Sebesta.—10th ed.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-13-139531-2 (alk. paper)
1. Programming languages (Electronic computers) 1. Title.
QA76.7.543 2009

005.13—dc22 2008055702

10987654321

PEARSON

ISBN 10: 0-13-139531-9

—
ISBN 13:978-0-13-139531-2

www.pearsonhighered.com

New to the Tenth Edition

¢ Chapter 5: a new section on the let construct in functional pro-
gramming languages was added

* Chapter 6: the section on COBOL’ record operations was removed;
new sections on lists, tuples, and unions in F# were added

* Chapter 8: discussions of Fortran’s Do statement and Ada’s case
statement were removed; descriptions of the control statements in
functional programming languages were moved to this chapter from
Chapter 15

¢ Chapter 9: a new section on closures, a new section on calling sub-
programs indirectly, and a new section on generic functions in F# were
added; the description of Ada’s generic subprograms was removed

* Chapter 11: a new section on Objective-C was added, the chapter
was substantially revised

¢ Chapter 12: a new section on Objective-C was added, five new fig-
ures were added

* Chapter 13: a section on concurrency in functional programming
languages was added; the discussion of Ada’s asynchronous message
passing was removed

* Chapter 14: a section on C# event handling was added

¢ Chapter 15: a new section on F# and a new section on support for
functional programming in primarily imperative languages were added;
discussions of several different constructs in functional programming
languages were moved from Chapter 15 to earlier chapters

Preface

Changes for the Tenth Edition

vi

of Programming Languages remain the same as those of the nine ear-

lier editions. The principal goals are to introduce the main constructs
of contemporary programming languages and to provide the reader with the
tools necessary for the critical evaluation of existing and future programming
languages. A secondary goal is to prepare the reader for the study of com-
piler design, by providing an in-depth discussion of programming language
structures, presenting a formal method of describing syntax and introducing
approaches to lexical and syntatic analysis.

The tenth edition evolved from the ninth through several different kinds
of changes. To maintain the currency of the material, some of the discussion
of older programming languages has been removed. For example, the descrip-
tion of COBOLs record operations was removed from Chapter 6 and that of
Fortran’s Do statement was removed from Chapter 8. Likewise, the description
of Ada’s generic subprograms was removed from Chapter 9 and the discussion
of Ada’s asynchronous message passing was removed from Chapter 13.

On the other hand, a section on closures, a section on calling subprograms
indirectly, and a section on generic functions in F# were added to Chapter 9;
sections on Objective-C were added to Chapters 11 and 12; a section on con-
currency in functional programming languages was added to Chapter 13; a
section on C# event handling was added to Chapter 14; a section on F# and
a section on support for functional programming in primarily imperative lan-
guages were added to Chapter 15.

In some cases, material has been moved. For example, several different
discussions of constructs in functional programming languages were moved
from Chapter 15 to earlier chapters. Among these were the descriptions of the
control statements in functional programming languages to Chapter 8 and the
lists and list operations of Scheme and ML to Chapter 6. These moves indicate
a significant shift in the philosophy of the book—in a sense, the mainstreaming
of some of the constructs of functional programming languages. In previous
editions, all discussions of functional programming language constructs were
segregated in Chapter 15.

Chapters 11, 12, and 15 were substantially revised, with five figures being
added to Chapter 12.

Finally, numerous minor changes were made to a large number of sections
of the book, primarily to improve clarity.

T he goals, overall structure, and approach of this tenth edition of Concepts

The Vision

Preface vii

"This book describes the fundamental concepts of programming languages by
discussing the design issues of the various language constructs, examining the
design choices for these constructs in some of the most common languages,
and critically comparing design alternatives.

Any serious study of programming languages requires an examination of
some related topics, among which are formal methods of describing the syntax
and semantics of programming languages, which are covered in Chapter 3.
Also, implementation techniques for various language constructs must be con-
sidered: Lexical and syntax analysis are discussed in Chapter 4, and implemen-
tation of subprogram linkage is covered in Chapter 10. Implementation of
some other language constructs is discussed in various other parts of the book.

"The following paragraphs outline the contents of the tenth edition.

Chapter Outlines

Chapter 1 begins with a rationale for studying programming languages. It then
discusses the criteria used for evaluating programming languages and language
constructs. The primary influences on language design, common design trade-
offs, and the basic approaches to implementation are also examined.

Chapter 2 outlines the evolution of most of the important languages dis-
cussed in this book. Although no language is described completely, the origins,
purposes, and contributions of each are discussed. This historical overview is
valuable, because it provides the background necessary to understanding the
practical and theoretical basis for contemporary language design. It also moti-
vates further study of language design and evaluation. In addition, because none
of the remainder of the book depends on Chapter 2, it can be read on its own,
independent of the other chapters.

Chapter 3 describes the primary formal method for describing the syntax
of programming language—BNE. This is followed by a description of attribute
grammars, which describe both the syntax and static semantics of languages.
The difficult task of semantic description is then explored, including brief
introductions to the three most common methods: operational, denotational,
and axiomatic semantics.

Chapter 4 introduces lexical and syntax analysis. This chapter is targeted to
those colleges that no longer require a compiler design course in their curricula.
Like Chapter 2, this chapter stands alone and can be read independently of the
rest of the book.

Chapters 5 through 14 describe in detail the design issues for the primary
constructs of programming languages. In each case, the design choices for several
example languages are presented and evaluated. Specifically, Chapter 5 covers
the many characteristics of variables, Chapter 6 covers data types, and Chapter 7
explains expressions and assignment statements. Chapter 8 describes control

viii

Preface

statements, and Chapters 9 and 10 discuss subprograms and their implementa-
tion. Chapter 11 examines data abstraction facilities. Chapter 12 provides an in-
depth discussion of language features that support object-oriented programming
(inheritance and dynamic method binding), Chapter 13 discusses concurrent
program units, and Chapter 14 is about exception handling, along with a brief
discussion of event handling.

The last two chapters (15 and 16) describe two of the most important alterna-
tive programming paradigms: functional programming and logic programming.
However, some of the data structures and control constructs of functional pro-
gramming languages are discussed in Chapters 6 and 8. Chapter 15 presents an
introduction to Scheme, including descriptions of some of its primitive functions,
special forms, and functional forms, as well as some examples of simple func-
tions written in Scheme. Brief introductions to ML, Haskell, and F# are given
to illustrate some different directions in functional language design. Chapter 16
introduces logic programming and the logic programming language, Prolog.

To the Instructor

In the junior-level programming language course at the University of Colorado
at Colorado Springs, the book is used as follows: We typically cover Chapters 1
and 3 in detail, and though students find it interesting and beneficial reading,
Chapter 2 receives little lecture time due to its lack of hard technical content.
Because no material in subsequent chapters depends on Chapter 2, as noted
earlier, it can be skipped entirely, and because we require a course in compiler
design, Chapter 4 is not covered.

Chapters 5 through 9 should be relatively easy for students with extensive
programming experience in C++, Java, or C#. Chapters 10 through 14 are more
challenging and require more detailed lectures.

Chapters 15 and 16 are entirely new to most students at the junior level.
Ideally, language processors for Scheme and Prolog should be available for
students required to learn the material in these chapters. Sufficient material is
included to allow students to dabble with some simple programs.

Undergraduate courses will probably not be able to cover all of the mate-
rial in the last two chapters. Graduate courses, however, should be able to
completely discuss the material in those chapters by skipping over parts of the
early chapters on imperative languages.

Supplemental Materials

The following supplements are available to all readers of this book at www
.pearsonhighered.com/cssupport.

* Asetof lecture note slides. PowerPoint slides are available for each chapter

in the book.

¢ PowerPoint slides containing all the figures in the book.

www.pearsonhighered.com/cssupport
www.pearsonhighered.com/cssupport

Preface ix

A companion Website to the book is available at www.pearsonbighered.com/sebe-
sta. This site contains mini-manuals (approximately 100-page tutorials) on a
handful of languages. These proceed on the assumption that the student knows
how to program in some other language, giving the student enough informa-
tion to complete the chapter materials in each language. Currently the site
includes manuals for C++, C, Java, and Smalltalk.

Solutions to many of the problem sets are available to qualified instruc-
tors in our Instructor Resource Center at www.pearsonhighered.com/irc.
Please contact your school’s Pearson Education representative or visit
www.pearsonhighered.com/irc to register.

Language Processor Availability

Processors for and information about some of the programming languages
discussed in this book can be found at the following Websites:

C, C++, Fortran, and Ada gee.gni.org

Ci# and F# microsoft.com

Java JAva.SUn.com

Haskell haskell.org

Lua www.lua.org

Scheme www.plt-scheme.org/software/drscheme
Perl www.perl.com

Python www.python.org

Ruby www.ruby-lang.org

JavaScript is included in virtually all browsers; PHP is included in virtually all
Web servers.
All this information is also included on the companion Website.

Acknowledgments

The suggestions from outstanding reviewers contributed greatly to this
book’s present form. In alphabetical order, they are:

Matthew Michael Burke

I-ping Chu DePaul University
Teresa Cole Boise State University
Pamela Cutter Kalamazoo College
Amer Diwan University of Colorado
Stephen Edwards Virginia Tech

David E. Goldschmidt
Nigel Gwee Southern University—Baton Rouge

www.pearsonhighered.com/sebesta
www.pearsonhighered.com/sebesta
www.pearsonhighered.com/irc
www.pearsonhighered.com/irc
www.lua.org
www.plt-scheme.org/software/drscheme
www.perl.com
www.python.org
www.ruby-lang.org

Preface

Timothy Henry
Paul M. Jackowitz
Duane J. Jarc

K. N. King

Donald Kraft

Simon H. Lin

Mark Llewellyn
Bruce R. Maxim
Robert McCloskey
Curtis Meadow
Gloria Melara
Frank J. Mitropoulos
Euripides Montagne
Serita Nelesen

Bob Neufeld
Charles Nicholas
Tim R. Norton
Richard M. Osborne
Saverio Perugini
Walter Pharr
Michael Prentice
Amar Raheja
Hossein Saiedian
Stuart C. Shapiro
Neelam Soundarajan
Ryan Stansifer
Nancy Tinkham
Paul Tymann

Cristian Videira Lopes

Sumanth Yenduri
Salih Yurttas

University of Rhode Island

University of Scranton

University of Maryland, University College
Georgia State University

Louisiana State University

California State University—Northridge
University of Central Florida

University of Michigan—Dearborn
University of Scranton

University of Maine

California State University—Northridge
Nova Southeastern University
University of Central Florida

Calvin College

Wichita State University

University of Maryland-Baltimore County
University of Colorado-Colorado Springs
University of Colorado-Denver
University of Dayton

College of Charleston

SUNY Buffalo

California State Polytechnic University—Pomona

University of Kansas

SUNY Buffalo

Obio State University

Florida Institute of Technology
Rowan University

Rochester Institute of Technology
University of California—Irvine
University of Southern Mississippi
Texas A& M University

Numerous other people provided input for the previous editions of
Concepts of Programming Languages at various stages of its development. All
of their comments were useful and greatly appreciated. In alphabetical order,
they are: Vicki Allan, Henry Bauer, Carter Bays, Manuel E. Bermudez, Peter
Brouwer, Margaret Burnett, Paosheng Chang, Liang Cheng, John Crenshaw,
Charles Dana, Barbara Ann Griem, Mary Lou Haag, John V. Harrison, Eileen
Head, Ralph C. Hilzer, Eric Joanis, Leon Jololian, Hikyoo Koh, Jiang B. Liu,
Meiliu Lu, Jon Mauney, Robert McCoard, Dennis L. Mumaugh, Michael G.
Murphy, Andrew Oldroyd, Young Park, Rebecca Parsons, Steve J. Phelps,
Jeftery Popyack, Raghvinder Sangwan, Steven Rapkin, Hamilton Richard,
Tom Sager, Joseph Schell, Sibylle Schupp, Mary Louise Soffa, Neelam
Soundarajan, Ryan Stansifer, Steve Stevenson, Virginia Teller, Yang Wang,
John M. Weiss, Franck Xia, and Salih Yurnas.

Preface xi

Matt Goldstein, editor; Chelsea Kharakozova, editorial assistant; and,
Marilyn Lloyd, senior production manager of Addison-Wesley, and Gillian
Hall of The Aardvark Group Publishing Services, all deserve my gratitude for
their efforts to produce the tenth edition both quickly and carefully.

About the Author

Robert Sebesta is an Associate Professor Emeritus in the Computer Science
Department at the University of Colorado—Colorado Springs. Professor Sebesta
received a BS in applied mathematics from the University of Colorado in Boulder
and MS and PhD degrees in computer science from Pennsylvania State University.
He has taught computer science for more than 38 years. His professional interests
are the design and evaluation of programming languages.

Contents

xii

Chapter 1 Preliminaries 1
1.1 Reasons for Studying Concepts of Programming Languages............... 2
1.2 Programming DOMAINSccueeeeoueeeeeee e e 5
1.3 Language Evaluation CHIEErIa ..coueeeereeeeeeeeeeeee e 7
1.4 Influences on Language DeSIGN ..c..eeeeeeeeeeueeeeeeeeeeeeeeeeeee e, 18
1.5 Language Categories ..o muemoueeeeee oo 21
1.6 Language Design Trade-0FfSccoueeeeeeeeeeeeeeee e, 23
1.7 Implementation MethodS.....c.cooviieeioieeeeie e 23
1.8 Programming ENVIFONMENLScecueeeeeeeeeeeeeeeee e 31
Summary ¢ Review Questions ® Problem Set.....ccooveeiiiiieiiiiiiiiieeiieeeenn. 31

Chapter 2 Evolution of the Major Programming Languages 35
2.1 Zuse’s Plankalkil c...ccueeeeeuieieireeeie ettt 38
2.2 PSEUAOCOUES ...ttt ettt ettt ettt ettt et ens 39
2.3 The IBM 704 and FOrtran....ccoveirerieieieieieeieieie e 42
2.4 Functional Programming: LISP......coooiiiooiiiiiieeeee e 47
2.5 The First Step Toward Sophistication: ALGOL 60cceevvvevveeennnnnee. 52
2.6 Computerizing Business Records: COBOL....ccuivvuieeereerieieeereecneenne. 58
2.7 The Beginnings of Timesharing: BASIC ...c.covvouiiiioeieieeieeeeieeeeeeeeans 63
Interview: ALAN COOPER—User Design and Language Design................. 66
2.8 Everything for Everybody: PL/T ..oovoiiiiieiiiieceeeeceeeeeeeee e 68
2.9 Two Early Dynamic Languages: APL and SNOBOL ...cc.covvevevvvenneene. 71
2.10 The Beginnings of Data Abstraction: SIMULA 67 .ecoeveveeeeeeeeennne. 72
2.11 Orthogonal Design: ALGOL 68ueiiieueieieeiee e eeeeee e 73
2.12 Some Early Descendants of the ALGOLSccvvvveveeeeeeeeieeiecreeeeeenne 75

Chapter 3

Chapter 4

Chapter 5

2.13 Programming Based on Logic: Prol0gccoueeeeeeeeeeeeeeeeeeeeeeeeee, 79
2.14 History’s Largest Design Effort: Ada......cccoeeeeeeeeeeeeeeieeieeeeeeeen. 81
2.15 Object-Oriented Programming: Smalltalkc..cooveeeueeeeieioeeiieeenne. 85
2.16 Combining Imperative and Object-Oriented Features: C++................ 88
2.17 An Imperative-Based Object-Oriented Language: Java 91
2.18 SCripting LANGUAGES.....vevveevereeieteeteeeeeee ettt 95
2.19 The Flagship .NET Language: C#ccoeveeveereeeeeieieieeeieereeaeenenes 101
2.20 Markup/Programming Hybrid Languagescccveevevvevveereeuenenne. 104
Summary * Bibliographic Notes ¢ Review Questions ¢ Problem Set
Programming EXEFCISES . .ciuuuniiiiiieeiiiieeetiieeeeiee e et ee e et e e eri e e eaaeeeeaeeeaaannns 106
Describing Syntax and Semantics 113
3.1 INtPOAUCHION. cutitietietieiieit ettt 114
3.2 The General Problem of Describing SYyNtaX......occeeeeeveeeevveeeeveeeennne. 115
3.3 Formal Methods of Describing SYNtaX.....eeeeveeeeeeeeeeeeeeeieeeeeeeeannes 117
3.4 AtriDULE GrAMMALS...eciiieieiecteereete ettt e e 132
HISEOFY NOE e eveetneenieti ettt eiie et e e e et et et e eaieeaie e eaeeaaeenaeenaeenaes 133
35 Describing the Meanings of Programs: Dynamic Semantics............ 139
HISEOFY NOE e eveetneenieti ettt eiie et e e e et et et e eaieeaie e eaeeaaeenaeenaeenaes 154
Summary ¢ Bibliographic Notes ¢ Review Questions ¢ Problem Set........... 161
Lexical and Syntax Analysis 167
4.1 INtrodUCHION..cvi ittt ettt ettt 168
4.2 LeXiCal ANAIYSIS cuveeieeeireeeeeeeeeeeee ettt 169
4.3 The Parsing Problem....cccuee oo 177
4.4 Recursive-Descent Parsing.....c..ccceeeeeeeeeeeeeeeieeeeeeeeeeeeeeee e 181
45 Bottom-Up Parsingccueeeueeeeeeeeeeeeeeeeeeeeeeeee et e 190
Summary ¢ Review Questions ¢ Problem Set ¢ Programming Exercises..... 197
Names, Bindings, and Scopes 203
5.1 INtrOdUCTION. cvii ittt 204
D2 NAMES et 205

HISEOFY NOTE «enereneneeeeneneeeeneneneeseneneeseseneesasenenseseseneesesenensesensnsnsenenensnns 205

xiv

Contents

Chapter 6

5.3 Variables cueeiieiiiececeeee e 207
5.4 The Concept of BindiNG ...ccueeeeeeeveeeeeeeeeeeeeeeeeeeee e e eee e 209
o8 T e o -SRI TR 218
5.6 Scope and LIifEtiMe ...cecvveeieereirieeeeceeeee et 229
5.7 Referencing ENVIrONMENtSccveiveveeiiiieeeeeeeeeee e 230
5.8 Named ConStantS........ccoeieieierieieieieeeeeeeet e 232
Summary * Review Questions ® Problem Set ¢ Programming Exercises..... 234
Data Types 243
6.1 INtrodUCHION. . cueitieeiecte ettt 244
6.2 Primitive Data TYPES ...eevvieeeereeerieteeeeeeeecteeeteeeeeeeeeeeseseeeaeeaeeaes 246
6.3 Character String TYPES ..cecueeeieeeeeeeieeeeee et eeee e 250

HISEOFY NOLE 4 euenrnserenetaseneeeeseneneeeeneneneeneneneeseseneasesenenseseseneasasenensenenenes 251
6.4 User-Defined Ordinal TYPES ..ecveeeveeeeeeeeeeeeeeeeeeeeeeeeeeeeee et eaee e 255
0.5 APTAY TYPES e 259

HISEOFY NOLE +ueueretitetetttenet et et eteseaerseenenenenesasesesesasnsnsnenanenesesasasnsnnns 260

HISEOFY NOLE 4 evenrnterenereseneeeseneneeeeneneneeseneneeseseneesesenenseseseneasasenensenenenes 261
6.6 ASSOCIALIVE AFTAYS..ecieeeeieeeie ettt 272

Interview: ROBERTO IERUSALIMSCHY —Lua....ccccovvvvvveeneeennn. 274
0.7 RECOI TYPES . cuviereeieteeeeeeeteeeee e e et e e e eaeereeeneeeneens 276
6.8 TUPIE TYPES ettt ettt ettt 280
6.9 LISt TYPES weeeeiieeieti ettt ettt ettt ettt ettt 281
6.10 UNIONTYPES ettt ettt 284
6.11 Pointer and Reference TYPES .uveeveeereeeeeeeeeeeereeeee e 289

HISEOFY NOLE 4 eueneseneneeeaseneeeseneneaeenenensenenenenseseneesesenensesesenensesenensenenenes 293
6.12 TYPE CRECKING e e 302
0.13 StrONG TYPING ettt 303
6.14 Type EQUIVAIENCE ..oiviieeee et 304
6.15 Theory and Data TYPES ..cocuveeieueeeeeeie et 308

Summary * Bibliographic Notes ¢ Review Questions ¢ Problem Set
Programming EXEICISES ..uuiiuniiiieie e e e e e e aaaas 310

Contents XV

Chapter 7 Expressions and Assignment Statements 317
7.1 INtrOdUCHION..ctiitiictieiecticete ettt ettt 318

7.2 Arithmetic EXPreSSIONS ...ccveeveereerreerreireesteeeeereeieeereeeseeseeneesseeneens 318

7.3 0verloaded OPEratorscceeeceeeeeeeereeeeeeeeeeeeeeereeeeeeeereeeeeeeaeeeneeens 328

T4 TYPE CONVEISIONS .eetieireeeteeeeeeeteeeeteeeteeeeeeeeteeeereeeaeeeeaeeeaeeeaeeeneeens 329

HISEOFY NOTE wuvneneneneneneteteeeteneenenenesasasesasasasnenenenanenesesasesesnsnsnenanenesanns 332

7.5 Relational and Boolean EXPressions.......coveeeeeereeeeeeiueeeveeereeenens 332

HISEOFY NOTE wutneneneneneneteteeeteeneenenenesanesesasesenenenenasanesesasesnsnsnsnenanenesanns 333

7.6 Short-Circuit Evaluationocceeveevievierieieeieeeieeeeeeeeeeveeae e 335

7.7 Assignment Statements ..c..oeoveueeiveeee it 336

HISEOFY NOTE wuvntneneneneneteteteseeneenenenesasasesesesnenenenenesenesesesasnsnsnsnenenenesanns 340

7.8 Mixed-Mode ASSIGNMENt c..eevvviieieeeeeeeie et 341

Summary ¢ Review Questions ¢ Problem Set ¢ Programming Exercises..... 341

Chapter 8 Statement-Level Control Structures 347
8.1 INtrOdUCTION...cuiieieeieieieieeteete ettt 348

8.2 SeleCtion StAteMENTS.....ccvivveevieeeereeteeieeteeee ettt 350

8.3 Iterative STAteMENTS....cociciievieieerieiicieeieeee ettt 362

8.4 Unconditional BranChingooueveeeiiiniiiiiiiieiieeieeeeeeeeeeeeeeean 375

HISEOFY NOE e eveetneenieti ettt eiie et e e e et et et e eaieeaie e eaeeaaeenaeenaeenaes 376

8.5 Guarded COMMANGScveviverictietieie ettt 376

8.6 CONCIUSIONS. cuevirieiieiieeieteet ettt ettt ettt nas 379

Summary ¢ Review Questions ¢ Problem Set ¢ Programming Exercises..... 380

Chapter 9 Subprograms 387
Q.1 INtrodUCHION...ceieeieeeeeeeeeeeee e 388

9.2 Fundamentals of SUDPrOGIaMSeevvivveeeiieiieieeeeceeeeee e eeeeeee e 388

9.3 Design Issues for SUDPrOGIAMSco.veeeueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeas 396

9.4 Local Referencing ENVIFONMENTS.......eeueeeeeeeeeeeeeeeeeeeeeeeee e 397

9.5 Parameter-Passing Methodscocueeeeeeeeeeeeeeeeeeee e 399

HISEOFY NOLE +uentnenenen ettt ettt ettt e e et ettt e e e eaea et e et e eneneneneaeaaans 407

HISEOFY NOTE «eueseneneeeeneneeteseneneeseneneesesenensesenensesesenensesenensnsenenensenenensnns 407

xvi

Contents

Chapter 10

Chapter 11

9.6 Parameters That Are SUDPIrOGramscceveeveeeeeueereieeeeeeeieeneennan 417
9.7 Calling Subprograms INAIFCtIY.....ccueeueeeeeeeeieeee e 419
HISEOFY NOLE +ueueretetetetteneneneneteuasesesaseenenenenenesesesesasasnsnsnenenenssesasnsnsnsns 419
9.8 Overloaded SUDPIOGIAMS.....ccveeviereerieeeeteeeteeee et e et e ereenean 421
9.9 GENEric SUDPIOGIAMS .eovvieeveeeeeereeeeeeteeee ettt ettt eae e 422
9.10 Design Issues for FUNCLIONSeeeveeeeeeieeeeeee e 428
9.11 User-Defined Overloaded OPerators.........coeeeeveeereevveeeeireeieeeneannas 430
Q.12 CIOSUIES vttt ettt ettt ettt ae e ens 430
Q.13 COPOULINES wvevveetietiticte ettt ettt ettt et 432
Summary * Review Questions * Problem Set ¢ Programming Exercises..... 435
Implementing Subprograms 441
10.1 The General Semantics of Calls and RetUrnS........ccccveevreveeveereeneanen. 442
10.2 Implementing “Simple’” SUbProOgramscccocvveevreveeveevieieeineennnns 443
10.3 Implementing Subprograms with Stack-Dynamic Local Variables... 445
10.4 Nested SUDPIOGIAMS ..ccvveveieiieeieeieeeeeeeeeie ettt 454
L0.5 BIOCKS cvtetieeeeeteee ettt 460
10.6 Implementing Dynamic SCOPING ..c.ueeeueeeeeeeee et e 462
Summary ¢ Review Questions ® Problem Set ¢ Programming Exercises..... 466
Abstract Data Types and Encapsulation Constructs 473
11.1 The Concept of ABStraCtion ...ccueeeeeeeueeiieeeeee e 474
11.2 Introduction to Data AbStractionccccceveeeievuieieiueecieereeereenenan, 475
11.3 Design Issues for Abstract Data TYPEScoeveevveeereeeiveeeeeereeeneene. 478
11.4 Language EXAmMPIES ...ccocueieooieeeeiee e 479
Interview: BJARNE STROUSTRUP —C++: Its Birth,
Its Ubiquitousness, and Common CritiCiSmscccveeeerriiieeeenniiiee e, 480
11.5 Parameterized Abstract Data TYPES......ccouvevreeeveeeeeeieeeeeeeeeeeeneeenn. 503
11.6 Encapsulation CONStIUCTS ...cvvievieeereeieeeeeeeeee e 509
11.7 Naming Encapsulationscc.ceceeeeeeceeeieeeeeeeeeeeeeeeeeeeee e e e 513

Summary * Review Questions ¢ Problem Set ¢ Programming Exercises..... 517

Chapter 12

Chapter 13

Contents Xvii

Support for Object-Oriented Programming 523
121 INtrOdUCTION...cuiitiieticieieteeeet e 524
12.2 Object-Oriented Programmingcc.coeeeeeeeeeeeeeeeeeeeeeeeeeee e 525
12.3 Design Issues for Object-Oriented Languages........ccceeuveeveeeueeennens 529
12.4 Support for Object-Oriented Programming in Smalltalk................. 534
Interview: BJARNE STROUSTRUP —On Paradigms and Better

PrOGramMmMINGeeeeeeeeieiiieeeeeeeeeeeeeceer et 536
12.5 Support for Object-Oriented Programming in C++....ccueevveeeueeennnns 538
12.6 Support for Object-Oriented Programming in Objective-C 549
12.7 Support for Object-Oriented Programming in Java.........ccccceueeune.... 552
12.8 Support for Object-Oriented Programming in C# ..c.ooeovveeuveeueeennnne 556
12.9 Support for Object-Oriented Programming in Ada 95c...ccuveunee.. 558
12.10 Support for Object-Oriented Programming in RUbYccoceeuvennne.n. 563
12.11 Implementation of Object-Oriented CONStIUCES.....evvvevviereiirieieenens 566

Summary ¢ Review Questions ¢ Problem Set ¢ Programming Exercises 569

Concurrency 575
13,1 INtrOTUCHION.ccuiitieie ittt ettt ettt ettt et eve e e 576
13.2 Introduction to Subprogram-Level CONCUFIENCY...ccuveeereeeeeeeeeneee 581
13,3 SEMAPNOIES .eeieeeeeeeeeeeeeee et 586
13,4 MIONIOIS. ieuiictieteeie ettt ettt ettt ettt eaeeeve e eaneas 591
13.5 MESSAGE PaSSING ..eeiiurieiiiiiiieeiee et et ettt eee e e 593
13.6 Ada Support for CONCUIIENCY ..cuveeeveeeeeeeeeeeereeeee e e ens 594
13.7 JAVA TRIEAUS ...ecvieeiicveete ettt ettt 603
13.8 CHTIIEAUS c.vevieieeiieieeteeee ettt 613
13.9 Concurrency in Functional Languagesccueeeveeeeeeeueeeeeeeeeeeenns 618
13.10 Statement-Level CONCUIENCY w..uveeeeeeeeeeeeeeeeeeeee e 621

Summary ¢ Bibliographic Notes ¢ Review Questions ¢ Problem Set ¢
Programming EXEICISES .uuiuniiiiiie et e ettt e et e e e e e e e eaaeeaanes 623

xviii Contents

Chapter 14 Exception Handling and Event Handling 629
14.1 Introduction to Exception Handlingccoeeveeeeveeeeeecneeceeeereeeeene 630
HISEOFY NOLE +ueueretetetetteneneneneteuasesesaseenenenenenesesesesasasnsnsnenenenssesasnsnsnsns 634
14.2 Exception Handling in Adacc.ocveeveereeiieeieieeeeeeeeceeeee e 636
14.3 Exception Handling in Ca+.uueeeieeureeeeeee et 643
14.4 Exception Handling in JAVA c...ccueeeveeeueeeeeeeeee e, 647
14.5 Introduction to Event Handling.......ccceeevvueeieiiieicineeiiieeeeeee e 655
14.6 Event Handling With JaVa......ceeueeeueeeeueeeeeeeee e, 656
14.7 Event Handling in CH# .oovveeiieeeeeeeiee et 661
Summary * Bibliographic Notes ¢ Review Questions ¢ Problem Set
Programming EXEICISES ... iiuuueeiiiieeiiie e et e e et e e e e et e e e e e e e e e eaaeeeaenns 664
Chapter 15 Functional Programming Languages 671
15,1 INtrOdUCHION.cviiiictieie ettt e e 672
15.2 Mathematical FUNCHIONS......cveevieuieeieeieeieeieieeeieet ettt 673
15.3 Fundamentals of Functional Programming Languages................... 676
15.4 The First Functional Programming Language: LISPcccceevnneee. 677
15.5 An Introduction t0 SChEME.....ceevvieeiiiiieie et 681
15,6 ComMMON LISP ittt 699
I5.7 ML 701
15.8 HASKEIl cuvviieieeieeieeceeeeeeee et 707
150 e 712
15.10 Support for Functional Programming in Primarily
Imperative LangUAGES c.u..evuniiineiieeiiee e eeie e e e e e e e e eaeereeeens 715
15.11 A Comparison of Functional and Imperative Languages................. 717
Summary * Bibliographic Notes ¢ Review Questions ¢ Problem Set
Programming EXEICISES ..uuiiuniiiiiie et e e e e e aanas 720
Chapter 16 Logic Programming Languages 727
16.1 INtrodUCHION.cuiiuieceieieceeeeee ettt 728
16.2 A Brief Introduction to Predicate CalCulus.....c.coeeveeeueecieereeereennnn, 728

16.3 Predicate Calculus and Proving TheOremsc..eeeeueeevvueeeeeieeeeeenn. 732

Contents Xix

16.4 An Overview of Logic Programmingccceeeeeeeeeeeeeeeeeeeeeeeeeeeenns 734
16.5 The OFigins 0f Prolog c...ceeieceeeeeeeee et 736
16.6 The Basic Elements of Prolog......ccoueeeueeeeeeeeeeieeeeeeee e 736
16.7 Deficiencies 0f Prol0g ...cc i e eeeeeeeeee et 751
16.8 Applications of Logic Programmingc.ceeeeeeueeeeeeeeeeeeeeeeeeeenns 757
Summary ¢ Bibliographic Notes ¢ Review Questions ¢ Problem Set

Programming EXEFCISES ...ciuuuniiiiieeeeiiiee et e et e e e tee e et e e eri e e eaaeeeeaeeeaannnns 758
BibliOgraphy cccceeeeeeeeeeeeee e 763

This page intentionally left blank

Preliminaries

11
1.2
1.3
14
1.5
1.6
1.7
1.8

Reasons for Studying Concepts of Programming Languages
Programming Domains

Language Evaluation Criteria

Influences on Language Design

Language Categories

Language Design Trade-Offs

Implementation Methods

Programming Environments

Chapter 1 Preliminaries

consider a few preliminaries. First, we explain some reasons why computer

science students and professional software developers should study general
concepts of language design and evaluation. This discussion is especially valu-
able for those who believe that a working knowledge of one or two programming
languages is sufficient for computer scientists. Then, we briefly describe the major
programming domains. Next, because the book evaluates language constructs and
features, we present a list of criteria that can serve as a basis for such judgments.
Then, we discuss the two major influences on language design: machine architecture
and program design methodologies. After that, we introduce the various categories
of programming languages. Next, we describe a few of the major trade-offs that
must be considered during language design.

Because this book is also about the implementation of programming languages,
this chapter includes an overview of the most common general approaches to imple-
mentation. Finally, we briefly describe a few examples of programming environments
and discuss their impact on software production.

B efore we begin discussing the concepts of programming languages, we must

1.1 Reasons for Studying Concepts of Programming Languages

It is natural for students to wonder how they will benefit from the study of pro-
gramming language concepts. After all, many other topics in computer science
are worthy of serious study. The following is what we believe to be a compel-
ling list of potential benefits of studying concepts of programming languages:

* [Increased capacity to express ideas. It is widely believed that the depth at
which people can think is influenced by the expressive power of the lan-
guage in which they communicate their thoughts. Those with only a weak
understanding of natural language are limited in the complexity of their
thoughts, particularly in depth of abstraction. In other words, it is difficult
for people to conceptualize structures they cannot describe, verbally or in
writing.

Programmers, in the process of developing software, are similarly con-
strained. The language in which they develop software places limits on
the kinds of control structures, data structures, and abstractions they can
use; thus, the forms of algorithms they can construct are likewise limited.
Awareness of a wider variety of programming language features can reduce
such limitations in software development. Programmers can increase the
range of their software development thought processes by learning new
language constructs.

It might be argued that learning the capabilities of other languages does
not help a programmer who is forced to use a language that lacks those
capabilities. That argument does not hold up, however, because often, lan-
guage constructs can be simulated in other languages that do not support
those constructs directly. For example, a C programmer who had learned
the structure and uses of associative arrays in Perl (Wall et al., 2000) might
design structures that simulate associative arrays in that language. In other

1.1 Reasons for Studying Concepts of Programming Languages 3

words, the study of programming language concepts builds an appreciation
for valuable language features and constructs and encourages programmers
to use them, even when the language they are using does not directly sup-
port such features and constructs.

Improved background for choosing appropriate languages. Many professional
programmers have had little formal education in computer science; rather,
they have developed their programming skills independently or through in-
house training programs. Such training programs often limit instruction to
one or two languages that are directly relevant to the current projects of the
organization. Many other programmers received their formal training years
ago. The languages they learned then are no longer used, and many features
now available in programming languages were not widely known at the time.
The result is that many programmers, when given a choice of languages for a
new project, use the language with which they are most familiar, even if it is
poorly suited for the project at hand. If these programmers were familiar with
awider range of languages and language constructs, they would be better able
to choose the language with the features that best address the problem.

Some of the features of one language often can be simulated in another
language. However, it is preferable to use a feature whose design has been
integrated into a language than to use a simulation of that feature, which is
often less elegant, more cumbersome, and less safe.

Increased ability to learn new languages. Computer programming is still a rela-
tively young discipline, and design methodologies, software development
tools, and programming languages are still in a state of continuous evolu-
ton. This makes software development an exciting profession, but it also
means that continuous learning is essential. The process of learning a new
programming language can be lengthy and difficult, especially for someone
who is comfortable with only one or two languages and has never examined
programming language concepts in general. Once a thorough understanding
of the fundamental concepts of languages is acquired, it becomes far easier
to see how these concepts are incorporated into the design of the language
being learned. For example, programmers who understand the concepts of
object-oriented programming will have a much easier time learning Java
(Arnold et al., 2006) than those who have never used those concepts.

The same phenomenon occurs in natural languages. The better you
know the grammar of your native language, the easier it is to learn a sec-
ond language. Furthermore, learning a second language has the benefit of
teaching you more about your first language.

The TIOBE Programming Community issues an index (http: //www
.tiobe.com/tiobe index/index.htm) that is an indicator of the
relative popularity of programming languages. For example, according to
the index, Java, C, and C++ were the three most popular languages in use
in August 2011." However, dozens of other languages were widely used at

1. Note that this index is only one measure of the popularity of programming languages, and

its accuracy is not universally accepted.

http://www.tiobe.com/tiobe_index/index.htm
http://www.tiobe.com/tiobe_index/index.htm

Chapter 1

Preliminaries

the time. The index data also show that the distribution of usage of pro-
gramming languages is always changing. The number of languages in use
and the dynamic nature of the statistics imply that every software developer
must be prepared to learn different languages.

Finally, it is essential that practicing programmers know the vocabulary
and fundamental concepts of programming languages so they can read and
understand programming language descriptions and evaluations, as well as
promotional literature for languages and compilers. These are the sources
of information needed in order to choose and learn a language.

Better understanding of the significance of implementation. In learning the con-
cepts of programming languages, it is both interesting and necessary to touch
on the implementation issues that affect those concepts. In some cases, an
understanding of implementation issues leads to an understanding of why
languages are designed the way they are. In turn, this knowledge leads to
the ability to use a language more intelligently, as it was designed to be used.
We can become better programmers by understanding the choices among
programming language constructs and the consequences of those choices.

Certain kinds of program bugs can be found and fixed only by a pro-
grammer who knows some related implementation details. Another ben-
efit of understanding implementation issues is that it allows us to visualize
how a computer executes various language constructs. In some cases, some
knowledge of implementation issues provides hints about the relative effi-
ciency of alternative constructs that may be chosen for a program. For
example, programmers who know little about the complexity of the imple-
mentation of subprogram calls often do not realize that a small subprogram
that is frequently called can be a highly inefficient design choice.

Because this book touches on only a few of the issues of implementa-
tion, the previous two paragraphs also serve well as rationale for studying
compiler design.

Better use of languages that are already known. Many contemporary program-
ming languages are large and complex. Accordingly, it is uncommon for
a programmer to be familiar with and use all of the features of a language
he or she uses. By studying the concepts of programming languages, pro-
grammers can learn about previously unknown and unused parts of the
languages they already use and begin to use those features.

Overall advancement of computing. Finally, there is a global view of comput-
ing that can justify the study of programming language concepts. Although
it is usually possible to determine why a particular programming language
became popular, many believe, at least in retrospect, that the most popu-
lar languages are not always the best available. In some cases, it might be
concluded that a language became widely used, at least in part, because
those in positions to choose languages were not sufficiently familiar with
programming language concepts.

For example, many people believe it would have been better if ALGOL
60 (Backus et al., 1963) had displaced Fortran (Metcalf et al., 2004) in the

1.2 Programming Domains 5

early 1960s, because it was more elegant and had much better control state-
ments, among other reasons. That it did not, is due partly to the program-
mers and software development managers of that time, many of whom did
not clearly understand the conceptual design of ALGOL 60. They found its
description difficult to read (which it was) and even more difficult to under-
stand. They did not appreciate the benefits of block structure, recursion,
and well-structured control statements, so they failed to see the benefits of
ALGOL 60 over Fortran.

Of course, many other factors contributed to the lack of acceptance of
ALGOL 60, as we will see in Chapter 2. However, the fact that computer
users were generally unaware of the benefits of the language played a sig-
nificant role.

In general, if those who choose languages were well informed, perhaps
better languages would eventually squeeze out poorer ones.

1.2 Programming Domains

1.21

1.2.2

Computers have been applied to a myriad of different areas, from controlling
nuclear power plants to providing video games in mobile phones. Because of
this great diversity in computer use, programming languages with very different
goals have been developed. In this section, we briefly discuss a few of the areas
of computer applications and their associated languages.

Scientific Applications

The first digital computers, which appeared in the late 1940s and early 1950s,
were invented and used for scientific applications. Typically, the scientific appli-
cations of that time used relatively simple data structures, but required large
numbers of floating-point arithmetic computations. The most common data
structures were arrays and matrices; the most common control structures were
counting loops and selections. The early high-level programming languages
invented for scientific applications were designed to provide for those needs.
Their competition was assembly language, so efficiency was a primary concern.
"The first language for scientific applications was Fortran. ALGOL 60 and most
of its descendants were also intended to be used in this area, although they were
designed to be used in related areas as well. For some scientific applications
where efficiency is the primary concern, such as those that were common in the
1950s and 1960s, no subsequent language is significantly better than Fortran,
which explains why Fortran is still used.

Business Applications

The use of computers for business applications began in the 1950s. Special
computers were developed for this purpose, along with special languages. The
first successful high-level language for business was COBOL (ISO/IEC, 2002),

Chapter 1

1.2.3

1.2.4

Preliminaries

the initial version of which appeared in 1960. It is still the most commonly
used language for these applications. Business languages are characterized by
facilities for producing elaborate reports, precise ways of describing and stor-
ing decimal numbers and character data, and the ability to specify decimal
arithmetic operations.

There have been few developments in business application languages out-
side the development and evolution of COBOL. Therefore, this book includes
only limited discussions of the structures in COBOL.

Artificial Intelligence

Artificial intelligence (AI) is a broad area of computer applications charac-
terized by the use of symbolic rather than numeric computations. Symbolic
computation means that symbols, consisting of names rather than numbers,
are manipulated. Also, symbolic computation is more conveniently done with
linked lists of data rather than arrays. This kind of programming sometimes
requires more flexibility than other programming domains. For example, in
some Al applications the ability to create and execute code segments during
execution is convenient.

The first widely used programming language developed for Al applications
was the functional language LISP (McCarthy et al., 1965), which appeared
in 1959. Most Al applications developed prior to 1990 were written in LISP
or one of its close relatives. During the early 1970s, however, an alternative
approach to some of these applications appeared—logic programming using
the Prolog (Clocksin and Mellish, 2003) language. More recently, some
Al applications have been written in systems languages such as C. Scheme
(Dybvig, 2003), a dialect of LISP, and Prolog are introduced in Chapters 15
and 16, respectively.

Systems Programming

The operating system and the programming support tools of a computer sys-
tem are collectively known as its systems software. Systems software is used
almost continuously and so it must be efficient. Furthermore, it must have low-
level features that allow the software interfaces to external devices to be written.

In the 1960s and 1970s, some computer manufacturers, such as IBM,
Digital, and Burroughs (now UNISYS), developed special machine-oriented
high-level languages for systems software on their machines. For IBM main-
frame computers, the language was PL/S, a dialect of PL/I; for Digital, it was
BLISS, a language at a level just above assembly language; for Burroughs, it
was Extended ALGOL. However, most system software is now written in more
general programming languages, such as C and C++.

The UNIX operating system is written almost entirely in C (ISO, 1999),
which has made it relatively easy to port, or move, to different machines. Some
of the characteristics of C make it a good choice for systems programming.
It is low level, execution efficient, and does not burden the user with many

1.3 Language Evaluation Criteria 7

safety restrictions. Systems programmers are often excellent programmers
who believe they do not need such restrictions. Some nonsystems program-
mers, however, find C to be too dangerous to use on large, important software
systems.

1.2.5 Web Software

The World Wide Web is supported by an eclectic collection of languages,
ranging from markup languages, such as HI'ML, which is not a programming
language, to general-purpose programming languages, such as Java. Because
of the pervasive need for dynamic Web content, some computation capability
is often included in the technology of content presentation. This functionality
can be provided by embedding programming code in an HTML document.
Such code is often in the form of a scripting language, such as JavaScript or
PHP. There are also some markup-like languages that have been extended to
include constructs that control document processing, which are discussed in
Section 1.5 and in Chapter 2.

1.3 Language Evaluation Criteria

As noted previously, the purpose of this book is to examine carefully the under-
lying concepts of the various constructs and capabilities of programming lan-
guages. We will also evaluate these features, focusing on their impact on the
software development process, including maintenance. To do this, we need a set
of evaluation criteria. Such a list of criteria is necessarily controversial, because
it is difficult to get even two computer scientists to agree on the value of some
given language characteristic relative to others. In spite of these differences,
most would agree that the criteria discussed in the following subsections are
important.

Some of the characteristics that influence three of the four most impor-
tant of these criteria are shown in Table 1.1, and the criteria themselves
are discussed in the following sections.” Note that only the most impor-
tant characteristics are included in the table, mirroring the discussion in
the following subsections. One could probably make the case that if one
considered less important characteristics, virtually all table positions could
include “bullets.”

Note that some of these characteristics are broad and somewhat vague,
such as writability, whereas others are specific language constructs, such as
exception handling. Furthermore, although the discussion might seem to imply
that the criteria have equal importance, that implication is not intended, and
it is clearly not the case.

2. The fourth primary criterion is cost, which is not included in the table because it is only
slightly related to the other criteria and the characteristics that influence them.

Chapter 1

131

Preliminaries

Table 1.1 Language evaluation criteria and the characteristics that affect them

CRITERIA
Characteristic READABILITY WRITABILITY RELIABILITY
Simplicity i . .
Orthogonality . . .
Data types . . .
Syntax design o . .
Support for abstraction . .
Expressivity] .
Type checking .
Exception handling .
Restricted aliasing .

Readability

One of the most important criteria for judging a programming language is the
ease with which programs can be read and understood. Before 1970, software
development was largely thought of in terms of writing code. The primary
positive characteristic of programming languages was efficiency. Language
constructs were designed more from the point of view of the computer than
of the computer users. In the 1970s, however, the software life-cycle concept
(Booch, 1987) was developed; coding was relegated to a much smaller role, and
maintenance was recognized as a major part of the cycle, particularly in terms
of cost. Because ease of maintenance is determined in large part by the read-
ability of programs, readability became an important measure of the quality of
programs and programming languages. This was an important juncture in the
evolution of programming languages. There was a distinct crossover from a
focus on machine orientation to a focus on human orientation.

Readability must be considered in the context of the problem domain. For
example, if a program that describes a computation is written in a language not
designed for such use, the program may be unnatural and convoluted, making
it unusually difficult to read.

The following subsections describe characteristics that contribute to the
readability of a programming language.

1.3.1.1 Overall Simplicity

The overall simplicity of a programming language strongly affects its readabil-
ity. A language with a large number of basic constructs is more difficult to learn
than one with a smaller number. Programmers who must use a large language
often learn a subset of the language and ignore its other features. This learning
pattern is sometimes used to excuse the large number of language constructs,

1.3 Language Evaluation Criteria 9

but that argument is not valid. Readability problems occur whenever the pro-
gram’s author has learned a different subset from that subset with which the
reader is familiar.

A second complicating characteristic of a programming language is feature
multiplicity—that is, having more than one way to accomplish a particular
operation. For example, in Java, a user can increment a simple integer variable
in four different ways:

count = count + 1
count += 1
count++

++count

Although the last two statements have slightly different meanings from each
other and from the others in some contexts, all of them have the same mean-
ing when used as stand-alone expressions. These variations are discussed in
Chapter 7.

A third potential problem is operator overloading, in which a single oper-
ator symbol has more than one meaning. Although this is often useful, it can
lead to reduced readability if users are allowed to create their own overloading
and do not do it sensibly. For example, it is clearly acceptable to overload +
to use it for both integer and floating-point addition. In fact, this overloading
simplifies a language by reducing the number of operators. However, suppose
the programmer defined + used between single-dimensioned array operands
to mean the sum of all elements of both arrays. Because the usual meaning of
vector addition is quite different from this, it would make the program more
confusing for both the author and the program’s readers. An even more extreme
example of program confusion would be a user defining + between two vector
operands to mean the difference between their respective first elements. Opera-
tor overloading is further discussed in Chapter 7.

Simplicity in languages can, of course, be carried too far. For example,
the form and meaning of most assembly language statements are models of
simplicity, as you can see when you consider the statements that appear in the
next section. This very simplicity, however, makes assembly language programs
less readable. Because they lack more complex control statements, program
structure is less obvious; because the statements are simple, far more of them
are required than in equivalent programs in a high-level language. These same
arguments apply to the less extreme case of high-level languages with inad-
equate control and data-structuring constructs.

1.3.1.2 Orthogonality

Orthogonality in a programming language means that a relatively small set of
primitive constructs can be combined in a relatively small number of ways to
build the control and data structures of the language. Furthermore, every pos-
sible combination of primitives is legal and meaningful. For example, consider

10

Chapter 1

Preliminaries

data types. Suppose a language has four primitive data types (integer, float,
double, and character) and two type operators (array and pointer). If the two
type operators can be applied to themselves and the four primitive data types,
a large number of data structures can be defined.

The meaning of an orthogonal language feature is independent of the
context of its appearance in a program. (the word orthogonal comes from the
mathematical concept of orthogonal vectors, which are independent of each
other.) Orthogonality follows from a symmetry of relationships among primi-
tives. A lack of orthogonality leads to exceptions to the rules of the language.
For example, in a programming language that supports pointers, it should be
possible to define a pointer to point to any specific type defined in the language.
However, if pointers are not allowed to point to arrays, many potentially useful
user-defined data structures cannot be defined.

We can illustrate the use of orthogonality as a design concept by compar-
ing one aspect of the assembly languages of the IBM mainframe computers
and the VAX series of minicomputers. We consider a single simple situation:
adding two 32-bit integer values that reside in either memory or registers and
replacing one of the two values with the sum. The IBM mainframes have two
instructions for this purpose, which have the forms

A Regl, memory cell
AR Regl, Reg2

where Regl and Reg2 represent registers. The semantics of these are

Regl <« contents(Regl) + contents (memory cell)
Regl ¢« contents(Regl) + contents (Reg2)

The VAX addition instruction for 32-bit integer values is

ADDL operand 1, operand 2

whose semantics is

operand_ 2 < contents (operand 1) + contents(operand 2)

In this case, either operand can be a register or a memory cell.

The VAX instruction design is orthogonal in that a single instruction can
use either registers or memory cells as the operands. There are two ways to
specify operands, which can be combined in all possible ways. The IBM design
is not orthogonal. Only two out of four operand combinations possibilities are
legal, and the two require different instructions, A and AR. The IBM design
is more restricted and therefore less writable. For example, you cannot add
two values and store the sum in a memory location. Furthermore, the IBM
design is more difficult to learn because of the restrictions and the additional
instruction.

1.3 Language Evaluation Criteria 11

Orthogonality is closely related to simplicity: The more orthogonal the
design of a language, the fewer exceptions the language rules require. Fewer
exceptions mean a higher degree of regularity in the design, which makes the
language easier to learn, read, and understand. Anyone who has learned a sig-
nificant part of the English language can testify to the difficulty of learning its
many rule exceptions (for example, i before e except after ¢).

As examples of the lack of orthogonality in a high-level language, consider
the following rules and exceptions in C. Although C has two kinds of struc-
tured data types, arrays and records (structs), records can be returned from
functions but arrays cannot. A member of a structure can be any data type
except void or a structure of the same type. An array element can be any data
type except void or a function. Parameters are passed by value, unless they
are arrays, in which case they are, in effect, passed by reference (because the
appearance of an array name without a subscript in a C program is interpreted
to be the address of the array’s first element).

As an example of context dependence, consider the C expression

a + b

This expression often means that the values of a and b are fetched and added
together. However, if a happens to be a pointer, it affects the value of b. For
example, if a points to a float value that occupies four bytes, then the value of b
must be scaled—in this case multiplied by 4—before it is added to a. Therefore,
the type of a affects the treatment of the value of b. The context of b affects
its meaning.

Too much orthogonality can also cause problems. Perhaps the most
orthogonal programming language is ALGOL 68 (van Wijngaarden et al.,
1969). Every language construct in ALGOL 68 has a type, and there are no
restrictions on those types. In addition, most constructs produce values. This
combinational freedom allows extremely complex constructs. For example, a
conditional can appear as the left side of an assignment, along with declarations
and other assorted statements, as long as the result is an address. This extreme
form of orthogonality leads to unnecessary complexity. Furthermore, because
languages require a large number of primitives, a high degree of orthogonality
results in an explosion of combinations. So, even if the combinations are simple,
their sheer numbers lead to complexity.

Simplicity in a language, therefore, is at least in part the result of a com-
bination of a relatively small number of primitive constructs and a limited use
of the concept of orthogonality.

Some believe that functional languages offer a good combination of sim-
plicity and orthogonality. A functional language, such as LISP, is one in which
computations are made primarily by applying functions to given parameters.
In contrast, in imperative languages such as C, C++, and Java, computations
are usually specified with variables and assignment statements. Functional
languages offer potentially the greatest overall simplicity, because they can
accomplish everything with a single construct, the function call, which can be

12

Chapter 1

Preliminaries

combined simply with other function calls. This simple elegance is the reason
why some language researchers are attracted to functional languages as the
primary alternative to complex nonfunctional languages such as C++. Other
factors, such as efficiency, however, have prevented functional languages from
becoming more widely used.

1.3.1.3 Data Types

The presence of adequate facilities for defining data types and data structures
in a language is another significant aid to readability. For example, suppose a
numeric type is used for an indicator flag because there is no Boolean type in the
language. In such a language, we might have an assignment such as the following:

timeOut = 1

The meaning of this statement is unclear, whereas in a language that includes
Boolean types, we would have the following:

timeOut = true

The meaning of this statement is perfectly clear.

1.3.1.4 Syntax Design

The syntax, or form, of the elements of a language has a significant effect on
the readability of programs. Following are some examples of syntactic design
choices that affect readability:

* Special words. Program appearance and thus program readability are strongly
influenced by the forms of a language’s special words (for example, while,
class, and for). Especially important is the method of forming compound
statements, or statement groups, primarily in control constructs. Some lan-
guages have used matching pairs of special words or symbols to form groups.
C and its descendants use braces to specify compound statements. All of
these languages suffer because statement groups are always terminated in the
same way, which makes it difficult to determine which group is being ended
when an end or a right brace appears. Fortran 95 and Ada make this clearer
by using a distinct closing syntax for each type of statement group. For
example, Ada uses end if to terminate a selection construct and end loop
to terminate a loop construct. This is an example of the conflict between
simplicity that results in fewer reserved words, as in C++, and the greater
readability that can result from using more reserved words, as in Ada.

Another important issue is whether the special words of a language can
be used as names for program variables. If so, the resulting programs can
be very confusing. For example, in Fortran 95, special words, such as Do
and End, are legal variable names, so the appearance of these words in a
program may or may not connote something special.

1.3.2

1.3 Language Evaluation Criteria 13

* Form and meaning. Designing statements so that their appearance at least
partially indicates their purpose is an obvious aid to readability. Semantics,
or meaning, should follow directly from syntax, or form. In some cases, this
principle is violated by two language constructs that are identical or similar
in appearance but have different meanings, depending perhaps on context. In
C, for example, the meaning of the reserved word static depends on the
context of its appearance. If used on the definition of a variable inside a func-
ton, it means the variable is created at compile time. If used on the definition
of a variable that is outside all functions, it means the variable is visible only in
the file in which its definition appears; that is, it is not exported from that file.

One of the primary complaints about the shell commands of UNIX
(Raymond, 2004) is that their appearance does not always suggest their
function. For example, the meaning of the UNIX command grep can be
deciphered only through prior knowledge, or perhaps cleverness and famil-
iarity with the UNIX editor, ed. The appearance of grep connotes nothing
to UNIX beginners. (In ed, the command /regular_expression/ searches for a
substring that matches the regular expression. Preceding this with g makes
it a global command, specifying that the scope of the search is the whole
file being edited. Following the command with p specifies that lines with
the matching substring are to be printed. So g/regular_expression/p, which
can obviously be abbreviated as grep, prints all lines in a file that contain
substrings that match the regular expression.)

Writability

Writability is a measure of how easily a language can be used to create programs
for a chosen problem domain. Most of the language characteristics that affect
readability also affect writability. This follows directly from the fact that the
process of writing a program requires the programmer frequently to reread the
part of the program that is already written.

As is the case with readability, writability must be considered in the con-
text of the target problem domain of a language. It is simply not reasonable to
compare the writability of two languages in the realm of a particular application
when one was designed for that application and the other was not. For example,
the writabilities of Visual BASIC (VB) and C are dramatically different for
creating a program that has a graphical user interface, for which VB is ideal.
Their writabilities are also quite different for writing systems programs, such
as an operation system, for which C was designed.

The following subsections describe the most important characteristics
influencing the writability of a language.

1.3.2.1 Simplicity and Orthogonality

If a language has a large number of different constructs, some programmers
might not be familiar with all of them. This situation can lead to a misuse of
some features and a disuse of others that may be either more elegant or more

14

Chapter 1

Preliminaries

efficient, or both, than those that are used. It may even be possible, as noted
by Hoare (1973), to use unknown features accidentally, with bizarre results.
Therefore, a smaller number of primitive constructs and a consistent set of
rules for combining them (that is, orthogonality) is much better than simply
having a large number of primitives. A programmer can design a solution to a
complex problem after learning only a simple set of primitive constructs.

On the other hand, too much orthogonality can be a detriment to writ-
ability. Errors in programs can go undetected when nearly any combination of
primitives is legal. This can lead to code absurdities that cannot be discovered
by the compiler.

1.3.2.2 Support for Abstraction

Briefly, abstraction means the ability to define and then use complicated
structures or operations in ways that allow many of the details to be ignored.
Abstraction is a key concept in contemporary programming language design.
This is a reflection of the central role that abstraction plays in modern pro-
gram design methodologies. The degree of abstraction allowed by a program-
ming language and the naturalness of its expression are therefore important to
its writability. Programming languages can support two distinct categories of
abstraction, process and data.

A simple example of process abstraction is the use of a subprogram to
implement a sort algorithm that is required several times in a program. With-
out the subprogram, the sort code would need to be replicated in all places
where it was needed, which would make the program much longer and more
tedious to write. Perhaps more important, if the subprogram were not used, the
code that used the sort subprogram would be cluttered with the sort algorithm
details, greatly obscuring the flow and overall intent of that code.

As an example of data abstraction, consider a binary tree that stores integer
data in its nodes. Such a binary tree would usually be implemented in a language
that does not support pointers and dynamic storage management with a heap,
such as Fortran 77, as three paral