
ELECTRO MAGNETIC FIELD 



CHAPTER 1 

VECTOR ALGEBRA 

INTRODUCTION 

• Electromagnetics (EM) may be regarded as the study of the interactions between electric charges at rest 

and in motion.  

• It entails the analysis, synthesis, physical interpretation, and application of electric and magnetic fields. 

•  It is a branch of physics or electrical engineering in which electric and magnetic phenomena are studied 

• EM devices include transformers, electric relays, radio/TV, telephone, electric motors, transmission 

lines, 

waveguides, antennas, optical fibers, radars, and lasers. 

•  The design of these devices requires thorough knowledge of the laws and principles of EM. 

 



 1.1 SCALARS AND VECTORS 

• A scalar is a quantity that has only magnitude. 

• A vector is a quantity that has both magnitude and direction. 

• A field is a function that specifies a particular quantity everywhere in a region. 

• If the quantity is scalar (or vector), the field is said to be a scalar (or vector) 

field.  

• Examples of scalar fields are temperature distribution in a building, sound 

intensity in a theater, electric potential in a region, and refractive index of a 

stratified medium.  

• The gravitational force on a body in space and the velocity of raindrops in the 

atmosphere are examples of vector fields. 

 
 



1.2 UNIT VECTOR 

• A vector A has both magnitude and direction. The magnitude of A is a 

scalar written as A or |A|.  

• A unit vector aA along A is defined as a vector whose magnitude is unity 

(i.e., 1) and its direction is along A, that is, 

 

 
• Note that |aA| = 1. Thus we may write A as A = AaA,which 

completely specifies A in terms of it magnitude A and its 

direction aA.  

• A vector A in Cartesian (or rectangular) coordinates may be 

represented as (Ax, Ay, Az) or Ayay + Azaz. 



             Figure 1.1 (a) Unit vectors ax, ay, and az, (b)     components of A 
along ax, ay,, and az. 

• where Ax, Ar and Az are called the components of A in the x, y, and z 

directions respectively; ax, aT and az are unit vectors in the x, y, and z 

directions, respectively. 

CONT’D 
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The magnitude of vector A is given by; 

and the unit vector along A is given by; 

1.3 VECTOR ADDITION AND SUBTRACTION 

• Two vectors A and B can be added together to give another vector C; that is, 

C = A + B     

• The vector addition is carried out component by component. Thus, if A = (Ax, Ay, Az) and 

B = (Bx,By,Bz).         C = (Ax + Bx)ax + {Ay + By)ay + (Az + Bz)az 

• Vector subtraction is similarly carried out as 

D = A - B = A + (-B) 

= (Ax - Bx)ax + (Ay - By)ay + (Az - Bz)az 



1.4 POSITION AND DISTANCE VECTORS 

• The position vector r,. (or radius vector) of point P is as (he directed silancc from 

       the origin () lo P: i.e.. 

                           rp = OP = Xax + Yay +Zaz 

 

The distance vector is thc displacement from one point to another. 

If two points P and Q are given by (Px, Py, Pz) and (Qx, Qy, Qz), the distance 

vector (or separation vector) is the displacement from P to Q as shown in; that is, 

                                      rPQ =Rq- rP 

= (xQ - xP)ax + (yQ - yP)&y + (zQ - zP)az 



CONT’D 

EXAMPLE 1.1 

• If A = 10ax - 4ay + 6az and  B = 2ax + ay, find: (a) the 

component of A along ay, (b) the magnitude of 3A - B, (c) a 

unit vector along A + 2B. 

Solution: 

(a) The component of A along ay is Ay = -4. 

(b) 3A - B = 3(10, - 4 , 6) - (2, 1, 0) 

= (30,-12,18) - (2, 1,0) 

= (28,-13,18) 

Hence =  

35.74 

(c) Let C = A + 2B = (10, - 4 , 6) + (4, 2, 0) = (14, - 2 , 6). 

A unit vector along C is 

 

ac = 0.91 13ax - 0.1302ay + 0.3906az 
Note that |ac| = 1 as expected. 



1.5  VECTOR MULTIPLICATION 

• There are two types of vector multiplication: 

1. Scalar (or dot) product: A • B 

2. Vector (or cross) product: A X B 

      1.Dot Product 

The dot product of two vectors A and B, written as A • B. is defined geometrically 

as the product of the magnitudes of A and B and the cosine of the angle between 

them. 

 

    2. Cross Product 

The cross product of two vectors A and B. written as A X B. is a vector quantity 

whose magnitude is the area of the parallelopiped formed by A and It 

and is in the direction of advance of a right-handed screw as A is turned into B. 



CONT’D 

The above  vector multiplication of is called cross product due to the cross sign; it 

is also called vector product because the result is a vector. If A = (Ax,Ay,Az)    B = 

(Bx, By, Bz)  then 

 

=(AyBz- AzBy)ax + (AZBX - AxBz)ay + (AxBy - AyBx)az 



CHAPTER TWO 

COORDINATE SYSTEMS AND TRANSFORMATION 

INTRODUCTION 

 In general, the physical quantities we shall be dealing with in EM are functions of space and time.  

 In order to describe the spatial variations of the quantities, we must be able to define all points uniquely in 

space in a suitable manner.  

 This requires using an appropriate coordinate system. A point or vector can be represented in any 

curvilinear coordinate system, which may be orthogonal or nonorthogonal. 

 An orthogonal system is one in which the coordinates arc mutually perpendicular. 

 Nonorthogonal systems are hard to work with and they are of little or no practical use.  



 2.1 CARTESIAN COORDINATES (X, Y, Z) 

 As mentioned in Chapter 1, a point P can be represented as (x, y, z) as illustrated in Figure 1.1. 

The ranges of the coordinate variables x, y, and z are 

 

 

 

 A vector A in Cartesian (otherwise known as rectangular) coordinates can be written as     

Ax,Ay,Az or Axax + Ayay + Azaz  

 where ax, ay, and az are unit vectors along the x-, y-, and z-directions as shown in Figure 1.1.  

2.2 CIRCULAR CYLINDRICAL COORDINATES (ƿ, ϕ, z) 

A point P in cylindrical coordinates is represented as (ƿ, ϕ, z) and is as shown in Figure 2.1.  

p is the radius of the cylinder passing through P or the radial distance from the z-axis: ϕ, called the 

azimuthal angle, is measured from the x-axis in the xy-plane; and z is the same as in the Cartesian 

system. 

 



CONT’D 
 The ranges of the variables are: 
 

Figure 2.1 Point P and unit vectors in the cylindrical coordinate system 

 A vector A in cylindrical coordinates can be written as 

(Aƿ, Aφ,, Az) or  Aƿap +Aφaφ+Azaz 

 the relationships between the variables (x, y, z) of the Cartesian coordinate 

system and those of the cylindrical system (p, φ, z) are easily obtained from 

Figure 2.2  

 



CONT’D 

 Whereas the first  is for transforming a point from Cartesian (x, y, z) to 
cylindrical (p, φ, z) coordinates, second eq. is for (p, φ, z) _(x, y, z) 
transformation. 

Figure 2.2 Relationship between (x, y, z) and 
(P, φ, z). 
 



CONT’D 
 The relationships between (ax, ay, az) and (ap, aφ, az) are 

obtained geometrically from Figure 2.3: 
 



CONT’D 
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 Finally, the relationships between (Ax, Ay, Az) and (Ap, Aφ, Az) are 

In matrix form, 



CONT’D 
The inverse of the transformation is 

2.3 SPHERICAL COORDINATES (r, φ, z) 

 From Figure 2.4, we notice that r is defined as the distance from the origin to 

point P or the radius of a sphere centered at the origin and passing through P; θ (called the 

colatitude) is the angle between the z-axis and the position vector of P; and φ is measured 

from the x-axis (the same azimuthal angle in cylindrical coordinates). According to these 

definitions, the ranges of the variables are 



CONT’D 

where ar, aθ, and aφ are unit vectors along the r, θ, and φ directions. 



CONT’D 

Figure 2.4 Point P and unit vectors in spherical coordinates. 

 The space variables (x, y, z) in Cartesian coordinates can be 

related to variables (r, θ, φ) of a spherical coordinate system. 

From Figure 2.5 it is easy to notice that 



CONT’D 

 The unit vectors ax, ay, az and ar, aθ, aφ are related as follows: 



CONT’D 

Figure 2.5 Relationships between space variables (x, y, z), (r, 
θ,φ) and (p, φ, z). 



CHAPTER 3 
VECTOR CALCULUS 

3.1 DIFFERENTIAL LENGTH, AREA, AND VOLUME 

 Differential elements in length, area, and volume are useful in vector calculus. 

They are defined in the Cartesian,cylindrical, and spherical coordinate systems. 

A. Cartesian Coordinates 

From Figure 3.1, we notice that 

(1) Differential displacement is given by 

            dl= dx ax + dy ay + dz az 

Afigure 3.1 Differential elements in the 
right-handed Cartesian coordinate system. 



CONT’D 

(2) Differential normal area is given by 

dS =   dy dzax 

         = dxdzay 

          =dzdyaz 

(3) Differential volume is given by 
dv = dx dy dz 

Figure 3.2 Differential normal areas in Cartesian coordinates: 
(a) dS = dy dz ax, (b) dS = dxdz ay, (c) dS = dx dy az, 



B. Cylindrical Coordinates 

  From Figure 3.3 that in cylindrical coordinates, differential 

elements can be found as follows: 

(1) Differential displacement is given by 

           dl = dpap + p dφaφ + dzaz  

(2) Differential normal area is given by 

              

 

 

 

 

 

and illustrated in Figure 3.4. 

(3) Differential volume is given by 

 



Figure 3.3 Differential elements in 
cylindrical coordinates 

C. Spherical Coordinates 

From Figure 3.5, we notice that in spherical coordinates, 

(1) The differential displacement is 

dl = drar + rdθaθ + r sin θ dφaφ 



CONT’D 

Figure 3.5 Differential elements 
in the spherical coordinate system. 

(2) The differential normal area is 



CONT’D 

(3) The differential volume is 



3.2 LINE, SURFACE, AND VOLUME INTEGRALS 

 The line integral  Is the integral of the tangential component 
of A along curve L. 

 Given a vector field A and a curve L, we define the integral 

 If the path of integration is a closed 
curve such as abca . 

 which is called the circulation of A around L. 
Given a vector field A, continuous in a region containing the smooth 
surface S, we 
define the surface integral or the flux of A through S as 



CONT’D 

or simply 

Figure 3.1 The flux of a vector field A 
through surface S. 



CONT’D 

 Notice that a closed path defines an open surface whereas a 

closed surface defines a volume . 

          We define the integral 

 

 as the volume integral of the scalar pv over the volume v. The physical 

meaning of a line, surface, or volume integral depends on the nature of 

the physical quantity represented by A or pv. 



3.3 DEL OPERATOR 

 The del operator, written V, is the vector differential 
operator. In Cartesian coordinates, 

 This vector differential operator, otherwise known as the gradient operator, is not a 

vector in itself, but when it operates on a scalar function, for example, a vector 

ensues. The operator is useful in defining 
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In cylindrical coordinates as 



CONT’D 

in spherical coordinates: 



 
3.4 GRADIENT OF A SCALAR 

 The gradient of a scalar field V is a vector that represents both the magnitude and the 

direction of the maximum space rate of increase of V.  

 A mathematical expression for the gradient can be obtained by evaluating the 

difference in the field dV between points P1 and P2of Figure 3.2 where V1,, V2, and V3 

are contours on which V is constant. From calculus, 

CONT’D 

For convenience, let 



CONT’D 

Then 

or 

Figure 3.2 Gradient of a scalar. 



CONT’D 

 where dli s the differential displacement from P1, to P2 and 

θ is the angle between G and dl.  

 NOTE  that dV/dl is a maximum when θ = 0, that is, when dL 

is in the direction of G. Hence, 

 where dV/dn is the normal derivative. Thus G has its magnitude 

and direction as those of the maximum rate of change of V. By 

definition, G is the gradient of V. Therefore: 



CONT’D 

 The gradient of V can be expressed in Cartesian, cylindrical, 

and spherical coordinates. For Cartesian coordinates 

for cylindrical coordinates, 

and for spherical coordinates, 



CONT’D 
 The following computation formulas on gradient, which are 

easily proved, should be noted: 

where U and V are scalars and n is an integer. 

 Also take note of the following fundamental properties of 
the gradient of a scalar field V: 



3.5 DIVERGENCE OF A VECTOR AND DIVERGENCE THEOREM 

 The divergence of A at a given point P is ihc outward Flux 

per unit volume as the volume shrinks about P. 

Hence, 

 Suppose we wish to evaluate the divergence of a vector field 

A at point P(xo,yo, zo); we let the point be enclosed by a 

differential volume as in Figure 3.3. The surface integral  is 

obtained from 



CONT’D 
 A three-dimensional Taylor series expansion of Ax about P is 

For the front side, x = xo + dx/2 and dS = dy dz ax. Then, 

For the back side, x = x0 - dx/2, dS = dy dz(-ax). Then, 



CONT’D 

Figure 3.15 Evaluation of V • A at point 
P(x0, yo,Zo) 



 
 Note that Av = dx dy dz, we get 

CONT’D 

 because the higher-order terms will vanish as Av —> 0. 
Thus, the divergence of A at point P(xo, yo, zo) in a Cartesian 
system is given by 

 In cylindrical coordinates, 
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 divergence of A in spherical coordinates as 

Note the following properties of the divergence of a vecto field: 



CONT’D 

 The divergence theorem states that the total outward flux of a vector field A 

through the closed surface s is the same as the volume integral of the 

divergence of A. 

3.6 CURL OF A VECTOR AND STOKES'S THEOREM 

 The curl of A is an axial (or rotational) vector whose magnitude is the maximum circulation 

    of A per unit area as the area lends to zero and whose direction is the normal  

    direction of the area when the area is oriented so as to make the circulation maximum.'' 



CONT’D 

That is 

In Cartesian coordinates the curl of A is easily found using 



CONT’D 

The curl of A in cylindrical coordinates as: 

and in spherical coordinates as 



CONT’D 

Stokes's theorem states  that the circulation of a vector field A around a 

(closed) path L  is equal lo the surface integral of the curl of A over the open 

surface S bounded by l provided that A and V X A are continuous on V. 

3.7 LAPLACIAN OF A SCALAR 

The Laplacian of a scalar field V, written as V2V. is the 
divergence of the gradient of V. 



CONT’D 

The Laplacian of V in other coordinate systems can be obtained 
from  by transformation. In cylindrical coordinates, 



CONT’D 
and in spherical coordinates, 

3.8  CLASSIFICATION OF VECTOR FIELDS 

A vector field A is said to be solenoidal (or divergenceless) if V • 
A = 0. 



CONT’D 
A vector field A is said to be irrotational (or potential) if V X A =0. 



CHAPTER FOUR 

ELECTROSTATICS 

4.1 COULOMB'S LAW AND FIELD INTENSITY 

Coulomb's law states that the force F between two point charges Q1 and Q2 is: 

1. Along the line joining them 

2. Directly proportional to the product Q1Q2 of the charges 

3. Inversely proportional to the square of the distance R between them 

Expressed mathematically, 



CONT’D 

 If point charges Q1 and Q2 are located at points having position 

vectors r1 and r2, then the force F12 on Q2 due to Q1, 



CONT’D 

 The electric field intensity (or electric field strength) K is the 

force per unit charge when placed in the electric field. 

Thus 

or simply 

 The electric field intensity E is obviously in the direction of 

the force F and is measured in newtons/coulomb or 

volts/meter. 



4.2 ELECTRIC FIELDS DUE TO CONTINUOUS CHARGE DISTRIBUTIONS 

 So far we have only considered forces and electric fields due to point charges, which are 

essentially charges occupying very small physical space. It is also possible to have 

continuous charge distribution along a line, on a surface, or in a volume. 

 The charge element dQ and the total charge Q due to these charge distributions are 

obtained from Figure 2.1 as 



Thus by replacing Q in the above eq. with charge element dq = 
pL dl, ps dS, or pv dv and integrating, we get 



A.  Line Charge 

 Consider a line charge with uniform charge density pL extending from 

A to B along the z-axis as shown in Figure 2.2. The charge element dQ 

associated with element dl = dz of the line is 

Figure 4.1Evaluation of the E field due to a line charge 
 
 
Thus E= 



B. A Surface Charge 

 Consider an infinite sheet of charge in the xy-plane with uniform charge density ps. The 

charge associated with an elemental area dS is, 

and hence the total charge is 

 the contribution to the E field at point P(0, 0, h) by the 
elemental surface shown in Figure 2.3 is 

Figure 4.2 Evaluation of the E field due to an infinite sheet of 
charge. 



 that is, E has only z-component if the charge is in the xy-
plane. In general, for an infinite sheet of charge 

where an is a unit vector normal to the sheet. 

CONT’D 

C. A Volume Charge 

Let the volume charge distribution with uniform charge density 

pv be as shown in Figure 2.4. The charge dQ associated with 

the elemental volume dv is 



CONT’D 

Figure 2.5Evaluation of the E field due to a volume charge 
distribution. 

and hence the total charge in a sphere of radius a is 

 The electric field dE at P(0, 0, z) due to the elementary 
volume charge is 



4.3 ELECTRIC FLUX DENSITY 

 A vector field D independent of the medium ψis defined by 

 We define electric flux f in terms of D using 

and for a volume charge distribution 



4.4  GAUSS'S LAW—MAXWELL'S EQUATION 

 Gauss's law states that the total electric flux ψ through any 
closed surface is equal to the total charge enclosed by that 
surface. 



CONT’D 
 
By applying divergence theorem to the middle term, 

Comparing the two volume integrals 

which is the first of the four Maxwell's equations to be derived. 



4.4 ELECTRIC POTENTIAL 

 The electric field intensity E due to a charge distribution can be obtained from Coulomb's law in 

 general or from Gauss's law when the charge distribution is symmetric.  

 Another way of obtaining E is from the electric scalar potential V to be defined in this section. In a sense,  

this way of obtaining E is easier because it is easier to handle scalars than vectors.  

 Suppose we wish to move a point charge Q from point A to point B in an electric field 

E as shown in Figure 2.6. From Coulomb's law, the force on Q is F = QE so that the 

work done in displacing the charge by dl is 

                          dW = - F • dl= -QE • dl 

 The negative sign indicates that the work is being done by an external agent. Thus the 

total work done, or the potential energy required, in moving Q from A to B is 



CONT’D 

Gives the potential energy per unit charge. This quantity, 

denoted by VAB, is known as the potential difference between 

points A and B. Thus 

 

2. 5 RELATIONSHIP BETWEEN E AND V—MAXWELL'S EQUATION 

 The potential difference between points A and B is 

independent of the path taken. Hence, 



CONT’D 

that is, 

 This shows that the line integral of E along a closed path as shown 

in Figure 2.6  must be zero. Physically, this implies that no net work 

is done in moving a charge along a closed path in an electrostatic 

field. 

or 



CONT’D 
From the way we defined potential, 

it follows that 

Figure 4.3 Conservative nature of an electrostatic 
field 



CONT’D 

 That is, the electric field intensity is the gradient of V. The 

negative sign shows that the direction of E is opposite to the 

direction in which V increases; E is directed from higher to lower 

levels of V. 

 4.5 AN ELECTRIC DIPOLE AND FLUX LINES 

 An electric dipole is formed when two poim charges of 
equal magnitude but opposite Sign are separated by a small 
distance. 



CONT’D 
where r1, and r2 are the distances between P and +Q and P and -Q, respectively If 
r » d,r2- r1, = d cos θ, r2rx1- r2, 

Figure 4.4 An electric dipole. 

Since d cos θ = d • ar, where d = daz, if we define 
as the dipole moment,  may be written as 



CONT’D 

 Note that the dipole moment p is directed from — Q to +Q. 

If the dipole center is not at the origin but at r',  becomes 

 The electric field due to the dipole with center at the origin,  
can be obtained readily as 

 An electric flux line is an imaginary path or line drawn in such a way that its 
direction at any point is the direction of the electric field at that point. 



CHAPTER FIVE 

ELECTRIC FIELDS IN MATERIAL SPACE 

 Just as electric fields can exist in free space, they can exist in material media. 

Materials are broadly classified in terms of their electrical properties as 

conductors and nonconductors. 

 Nonconducting materials are usually referred to as insulators or dielectrics. 

5.1 CONVECTION AND CONDUCTION CURRENTS 

 The current (in amperes) through a given area is the electric charge passing through 

the area per unit time. 

 Thus in a current of one ampere, charge is being transferred at a rate of one columb per 

second. That is, 



CONT’D 

 We now introduce the concept of current density J. If 

current ΔI flows through a surface ΔS, the current density is 

 assuming that the current density is perpendicular to the 
surface. If the current density is not normal to the surface, 

Thus, the total current flowing through a surface S is 
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 If there is a flow of charge, of density pv, at velocity 

u = ayay, the current through the filament is, 

 The current density at a given point is thc current through a 
unit normal area at that point. 

5.2  CONDUCTORS 

 A perfect conductor cannot contain an electrostatic field within it. 

 A conductor is called an equipotential body, implying that 
the potential is the same everywhere in the conductor. This 
is based on the fact that 



5.3  DIELECTRIC CONSTANT AND STRENGTH 

 The dielectric constant (or relative permittivity) Ԑr, is the 

ratio of the permittivity of the dielectric to that of free 

space. 


