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CHAPTER ONE
1. VECTOR AND VECTOR SPACE

Vectors can be used by air-traffic controllers when tracking planes, by meteorologists to describe
wind conditions, and also it helps to computer programmers to design virtual world. In this
chapter, applications of vectors which are commonly used in the study of physics: work, torque

and magnetic force will be presented along with the concept of vector and vector space.
1.1 Scalar and Vectors in R? and R®

Definition 1.1.1 A Physical quantities that is described by its magnitude only is called scalar.

Definition 1.1.2 A physical quantities that is described using both magnitude and direction is
called vector

Example 1.1 Temperature, Mass, area, density, volume, etc, are examples of scalars because
they are completely described by a number that tells "How Much" like 10°C and length of 5 m

whereas force, displacement, velocity, acceleration, etc are examples of vectors.

Definition 1.1.3 Vectors in R2 and R3

A vector in the plane R? can be described as v = (v, v,) orv = ( ) where vy, v, € R.

U1
VU2

Similarly, a vector in the space R3 can be described as a triple of numbers w = (w;, w,, w3) or

W1

w= (Wz), where wy, w,, w3 € R.
W3

Definition 1.1.4. A number x can be used to represent a point on a line. A pair of numbers or a

couple of numbers(x,y) can be used to represent appoint in the plane. A triple of numbers

(x,y,z) can be used to represent a point in space.

We can say that a single number represents a point inl-space or on a line, a couple of numbers

represents a point in 2-space or on a plane and a triple of numbers represents a point in3-space.



Although we cannot draw a picture to go further, a quadruple of numbers(x,y,z, w) or

(x1, x5, X3, x4) represent a point in 4-space.
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Figure 1.1: Representation of a point on a line, plane and on 3- space

Definition 1.1.5 Vectors in n—space,

Every pair of distinct points P and Q in R™ determines a directed line segment with initial point
at P and terminal point at Q. We call such a directed line segment a vector and denote it by PQ.
The length of the line segment is the magnitude of the vector. Although PP has zero length, and
strictly speaking, no direction, it is convenient to view it as a vector. It is called a zero or a null

vector. It is often denoted by 0

Definition 1.1.6 A position vector is a vector whose initial point is at the origin otherwise it is a
located vector.

Definition 1.1.7 Two non-zero vectors v and w of the same dimension are said to be parallel if
they are scalar multiples of one another. In other words, the two vectors v and w are said to be
parallel, denoted by v//w if there is a scalar k such that v = kw and if k > 0, then they have the

same direction and if k < 0, then they are in the opposite direction.

The vector 0 is parallel to every vector v in the same dimension, since it can be expressed as the
scalar multiple 0 = Ov. Although, zero vectors has no natural direction, it can be assigned any

direction that is convenient for the problem at hand.



Example 1.2 Consider P, = (3,7), P, = (5,1), Q; = (-4.,2) and Q, = (—16,—14) are points on a
plane Then P1Q1:Q1 - P1 = (_7,_5) and P2Q2:Q2 - PZ = (_21,_15) = 3(_7,_5)

Therefore, P,Q,and P,(Q, are parallel and have the same direction, since 3 > 0.

Exercise 1.1 Show that vector v = (1,2,3) and w = (—2,—4,—6) are parallel vectors and determine

the  direction of the vectors?

Definition 1.1.8 Two vectors v and w will be considered to be equal (or equivalence), v = w, if
they have the same magnitude and direction even though they may be located in different

position.
That is, if v = (v1,v,) and w = (w;,w,) in R?, v =w if and only if v; = w, and v,= w,.

7

g/ /
" i
’ r F

F

Figure 1.2: Equal Vectors

The definition of equality of two vectors does not require that the vectors have the same initial
and terminal points. Rather it suggests that we can move vectors freely provided we make no

change in magnitude and direction.
1.2 Vector Addition and Scalar Multiplication

Definition 1.2.1 If v and w are any two vectors, then the sum v + w is the vector determined as
follows; position the vector w so that its initial point coincides with the terminal point of v. The

vector v + w is represented by the arrow from the initial point of v to the terminal point of w.

Figure 1.3: The sum of vector v and w



More than two vectors can also be added by joining the terminal point of the first to the initial
point of the second and so on, finally the result will be a vector from the initial point of the first

to the terminal point of the last vector.

Definition 1.2.2 If v is a non-zero vector and k a non-zero real numbers(scalar), then the product
kv is defined to be the vector whose length is [k| times the length of v and whose direction is the

same as that of v if k > 0 and opposite to that of v if k <0. We define kv =0 if k=0 or v=0.

Note that the vector (—1)v has the same length as v but is oppositely direction. Thus (—1)v is just

the negative of v.

Figure 1.4: -v is in the opposite direction of v
Vectors in Coordinate System

Let v be any vectors in the plane, that v has been positioned. So, its initial point is at the origin of
a rectangular coordinates system. The coordinates (v, v,) of the terminal point of v are called
the components of v and we write v = (v, v,). An order pair consists of two terms the abscissa
(horizontal, usually x) and the ordinate (vertical, usually y) which define the location of a point

in two-dimensional rectangular space.

The operation of vector addition in terms of components for v = (v4,v,) and w = (wy, w,),
then

Figure 1.5: The location of a point in two dimensional rectangular space

v+w = (v +w,v, +wy)



Figure 1.6: The sum of vector v and w component wise
Definition 1.2.3 If v = (v, v,) and k is any number or scalar. Then kv is a vector and defined

as kv = (kvy, kv,).

Figure 1.7: Scalar multiple of a vector
Example 1.4 If u = (4,3,2) anda =2, then au = 2(4,3,2) = (8,6,4).

If a vector v in 3-space is positioned. So its initial point is at the origin of rectangular coordinate

system, the coordinates of the terminal point are called the components of v, and we write v =

(v1, V2, V2).

Figure 1.8: Position Vector

Definition 1.2.4 If v and w are any two vectors, then the difference of w from v is defined by
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Figure 1.9: The difference of vector v and w
Example 1.5 Consider v = (1,2,4) andw = (3,1,2). Find v + w,2v and v — 2w.
Solution: From the definition of vector addition and scalar multiplication
v+w = (1,24)+ (3,1,2) = (43,6)
2v = 2(1,24) = (2,4,8)
v—2w = (1,2,4) — 2(3,1,2) = (-5,0,0)
Properties of Vector addition and Scalar Multiplication
Let u,v and w be vectors in R? and o and B are scalars. Then
1.v+w € R2(R3)
2v+w =w+v
3.u+0 = 04+u = u, where 0=(0,0) € R?
4. There exist weR?, such thatu + w = 0 for every u € R?
S (u+v)+w =u+@w+w)
6.a(fu) = (af)u
7.(a+p)u =au+au

8.1-u =u



The properties described above also hold true for every vectors in R3, where 0= (0,0,0) € R3

and generally is also true in R™, where 0 = (0,0,0,-+-,0) € R™.

1.3 Norm of vector and Scalar Product, Orthogonal Projection,

and Direction Cosines
1.3.1 Norm of a Vector

Definition 1.3.1 Let v = (v,, v,) be a vector in R2. Then the norm or magnitude of v, denoted by

vl
is defined by ||v|| = V12 + v,?

Similarly, for a vector w = (w;, w,, w3) be a vector in R3. Then the magnitude of w, denoted

by [wl|

is defined by [|w|| = w;2 + w,2 + w2

Example 1.6 Find the norm of a vector u = (2,3,5,4).

Solution: From the definition of norm |[u|| = V22 + 32 + 52 + 42 = /54

Example 1.7 If ||v|| =6, find x such that v = (—1,x,5).

Solution: From the definition of norm [|v]| = \/(—1)% + (x)2 + (5)2
36 =1+x%*+25
x = +V10

Remark 1.3.11i. ||lv|| #0ifv #0

i flvll = [I=vll

Theorem 1.3.2 if k € R, then ||kv|| = |k|||v]|

Proof: suppose that v € R™, then

Ivll =/ (kv1)? + (kva)? + - + (kvy)?




= \/kz(vlz + vzz + -+ Unz)
= VkZ\/v,2 + 1,2 + -+ + 1,2
= k]Il

Example 1.8 Letv = (1,3,5). Then find the norm or magnitude of the vector —3v.

Solution: From the definition and properties of the norm ||—-3v|| = |-3|||v||
=3/ +(3)* + (5)7
=3v35

Definition 1.3.2 A vector u satisfying ||u|] = 1 is called a unit vector.

NB: |lul| = 0 <u=0
Example 1.9 The vector (0,1), (—1,0), (%, - %), (1,0,0) are examples of unit vectors
Example 1.10 Find a unit vector in the same direction as w = (3,—4).
Solution: First, note that [|w|| = |13, —4|| = \/(3)2 + (—4)2 =v25 = 5
A unit vector in the same direction as w is then u = ﬁw = %(3, —4) = (%, —g)

Example 1.11 Find a unit vector in the same direction as (1,-2,3) and write (1,-2,3) as the

product of its magnitude and a unit vector.

Solution: First, we find the magnitude of the vector ||1, —2,3|| = \/12 +(—2)?+32=+v14

The unit vector having the same direction as (1,-2,3) is given by

1 1 2 3
N v LN v v

Furthermore, (1,-2,3) = \/14(\/%, —\/%_4,\/%)
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Remark 1.3.3 « All unit vectors in R? are of the form (cos®8, sinf), where 0 €[0,2x].

* For any non-zero vector w, the unit vector u corresponding to w in the direction

of w

. 1
can be obtained as u = mw

« For two points P; = (x,y4,2;) and P, = (x5, ¥,, Z,) on the plane R3,

we calculate the distance d(P;, P,) between the two points as

d(Py, Po)= PP, || = v/ (2 — x:1)% + (v2 — ¥1)? + (22 — 21)?
where P; P, is the vector with initial point P; and terminal point P,

Thatis PiP, = (X5 — X1, Y2 — V1,22 — Z1).

Figure 1.10: Vector
1.3.2 Scalar Product

Definition 1.3.3 Suppose v and w be two vectors in R? or R® and 0 € [0,n] represents the angle

between them. Then scalar product of v and w is the number defined by

S {{”U””W” cos@ ifv#0andw #0
B Oifv=00rw=0
The scalar product of the two vectors is a scalar quantity and its value is maximum when 6 = 0°

and minimum if @ = 180° and the scalar product is also called a dot product or inner product and

its value are scalar.



Let v= (v, v,) and w= (w;, w,) be two non -zero vectors. If 6 is the angle between v and w, then

the law of cosines yields

Figure 1.11: The dot product of two vectors
lv—wl? = lvlI* + llwl|* = 2|[v]lllw|| cos 6
= 2||lv|lllwll cos 8 = ||v]|* + [[w]|* — [lv — w]|?

1
= [lvllliwll cos & = S [lIlvlI* + llwll? — llv — wll?]

1
= v.w =[llvlI* + lwll* = llv — wll?]

1
—_ E [Ulz + 1722 + W12 + W22 + 2171W1 + 2U2W2 - Ulz - UZZ - W12 - WZZ]

1
= E [2171W1 + 2172W2] = U1W1 + v2W2
There fOt‘e v-w =1v1Wq + VaWo

Similarly, ifv = (vy,v,,v3) and w = (wy,w,, w3) are non zero vectors in R3, then the dot

product can be givenby v-w = vyw; + v,wytvswy
Properties of Scalar Product

If u, v and w are vectors in the same dimension and a €R, then
Lu-u =|ul?

2.V-wW = w- v

u-(v+w) =u-v+u-w

4.0-u =0
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5.(av) w =a(v-w) = w- (av)
6.u-u>0ifu#0andu-u = Oifandonlyifu = 0
Example 1.12 If v =(1,-2,3) and w = (0,1,-5), then find v - v,v - w and (v + w) - v.
Solution: From the definition of dot product and properties of dot product
= (1,-23)-(1,-23) =

v-w = (1,-2,3)-(0,1,-5) =—

w+w)-v = ((1,-23)+(0,1,-5)-(01,-5) =
1.3.3 Angle between two vectors

If 6 is the angle between two vectors v and w, then the angle between the two vectors can be

obtained by

cos @ = =0 = cos‘l( ) where 0 €[0,7].

llwlliwll
Example 1.13 Find the angle between the vectors v = (2,0,~2) and w = (2,2,0).

Solution: Let 0 be the angle between the two vectors, then

v.w

— -1 — -1(_% )\ _ -1(1\_™
oy > ¢ = cos (|v||||w||) cos <\/—x/—) cos (2) 3

cosfO =
Hence, 8 = g = 60°

Definition 1.3.4 Two non-zero vectors v and w are said to be orthogonal (perpendicular) if and

only ifv-w = 0; thatis, 6 = ~.

Example 1.14 Find the value(s) of x such that the vectors v = (1,4,3)and w = (x,—1,2) are

orthogonal.
Solution: From the definition of orthogonality, v -w = 0

= (1,4,3)- (x,—1,2) =

11



Remark 1.3.4 If v is orthogonal to w, then it is also orthogonal to any scalar multiple of w.

Definition 1.3.5 If P and Q are points in 2 or 3 space, the distance between P and Q, by using dot
product, denoted by ||P — Q|| is given by

IP—Qll=y(P—-Q).(P—Q)

Theorem 1.3.5 Given two vectors v and w in space, ||[v + w|| = |[v — w]| if and only if v and
w are orthogonal vectors.
Proof: (=) Given ||v + w|| = ||lv — w]||, we want to show v and w are orthogonal
lv+wl?=w+w).(v+w)
= |Iv||? + 2v.w + ||w]|?
lv—wl?=@-w).(v—-w)
= vl = 2v.w + [w]|?
By hypothesis ||v + w|| = |[v — w|| implies that
IvlI? + 2v.w + [wli? = [l = 2v.w + [w]|?
>4v.w=0
Therefore, v and w are orthogonal.
Proof: (<) Given v and w are orthogonal We want to show |[v + w|| = ||lv — w|]
lv+wl* = |[v|I* + 2v.w + |[w]]?
lv —wli? = [lvlI* = 2v.w + [lw]|?
Since, v and w are orthogonal, v.w = 0

v +wl = lv—wll

Theorem 1.3.6 Pythagoras Theorem If v and w are orthogonal vectors, then
lv+wll? = [Ivll* + [lw]|?
Proof: ||v + w]|? can be written as

lv+wl|?=w+w).(v+w)

12



= |lvlI? + 2v.w + [|w]|?
= |[v]|* + |lw]|?, since v.w = 0
Example 1.15 Find any unit vectors that are orthogonal to the vector v = (6,8).
Solution: Letw = (a, b)be a unit vector orthogonal to v, then ||w|| = 1 = Va2 + b2 and
v.w=6a+8b=0

. . . -4 3 4 -3
By using simultaneous equation, w = (?'E) orw = (E'?)

Example 1.16 If the angle between the vector v and w is 6 = g with each other and ||v|| = V3
and |lwl|= 1, then calculate the cosine of the angle between the vectors v + w and v — w.
Solution: Let A = v+ w and B = v — w. Now we need to find the angle between A and B. If ®

is the angle between A and B, then

A.B v+w).(v-w 1
cosd = = Wt vow) _ 1
lalsll - llv+wllilv-wil V7

== cos‘l(\%)

Since, ||lv + w||? = ||[v]|? + 2v.w + ||w]|?
=3+2(3)) cos% +1
=7

lv+w|=+v7and |lv+w| =1
Hence, (v + w).(v —w) = |[v]|? = [[w|]? = 1

Exercise 1.17 Let v and w be a pair orthogonal vectors such that||v|| =t and |[|w|| = r. Find the

tw+rv

angle between the vector p = 0 and the vector v.

1.3.4 Orthogonal Projection

Definition 1.3.6 Suppose S is the foot of the perpendicular from R to the line containing PR,

then the magnitude of the vector with representation PS is called the component of w along v
and is denoted by compy/; that is

compy = ||lw|| cos 8, where 6 is the angle between v & w.

v.w

v.w -
= |lw ,since cosf =
lIwll [[lwlllwl| lvlliwll

_vw
el
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Figure 1.12: Component of w along v

Definition 1.3.7 The projection of w on to v is defined to be the vector w in the direction of

vector v, which is denoted by proj)’ ; that is

W VW U
To =(—)—
Projy = G o
_ A%
B
LW v.W 4 VA%
70 =(—)—= v
Projy’ = G 1ol = iz

Note: 1. projyis parallel to A. Thatis proj;’ = tA, for some t e R

2.w —projy is orthogonal (perpendicular) to A.
Example 1.18 Find the component of v along w and the projection of v on to w,

Where v = (1,2) andw = (3,4).

v.w _ 1x3+2x4 _11

. -
Solution: Since, compy, = Wl = v s
imi v rw o (1 — (33 4
Similarly, projy, = W = (5 ) (34) = )

Remark 1.3.7 compy’ # compy, and projy + proj,,

Theorem 1.3.8 Let u be a non-zero vector, then for any other vector w

w.au
[lull?

vV=w— .u is orthogonal to u.

Proof: v.u = (W L u) U

flull?”

_ _ w.u 2
=w.au = [|u]|

=wu—w.u=0

Example 1.19 Find an orthogonal vectortou = (0,2,0,2,1).
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Solution: Letw = (0,—1,0,—1,0), then
_ w.u
flull?”

= %(0, —1,0,—1,0) is orthogonal (perpendicular) to u.

Theorem 1.3.9 Cauchy-Schwarz inequality For any two vectors v and w, v.w = ||v||||w||

Equality holds if and only if either v is a scalar multiple of w or one of v or w is 0.
Proof: Let p is the end point of projy,; that is, p = proj,, and let d is the distance from the

terminal point of v to the terminal point of the vector projy, from the figure below,

A%
d=[v - wl|
i

So, from the above assumption, the square of the distance from the line to the origin to be

2 2 2

W (v.w) (v.w)

— =p.w—22W L BW)

” ||w||2W|| v-w ww T ww
2 (vw)?
= [lv||* — —=

= (Il llwll? — (w.w)?)

Since, the number is square, it cannot be negative.
Hence, (v.w)? < ||[v]|?|lw]|?

=v.w < |vllwll

Figure 1.13: The distance from a point on vector v to a point p on vector w

Theorem 1.3.10 Triangular Inequality For vectors v and w in space ||v + w|| < |[v]|||w]]|
Proof: [[v+w|? = (v +w).(v+w)
= |Iv||? + 2v.w + ||w]||?
By the cauchy-schwarz inequality, we have

v+ wll? = |IvlI? + 2v.w + [lw]|?
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< lvli? + 2livlliwil + llwll?
< (vl + liwlh)?

Hence, |lv + wil < [lv]l + llwll

1.3.5 Directional angles and cosines

Let u = uyi + u,j + uzk be a vector positioned at the origin in R3, making an angle of a,f and
vy with the positive x,y and z —axis respectively. Then the angles a, 8 and y are called the
directional angles of u, and the quantities cosa, cosf and cosy are called the directional cosines

of u, which can be computed as

Uq
cecosa =—,a €0,
[lull [0,7]
*cosf = R N = [0, ]
Tl ’

. = Uz
COSV - llull 1)’ € [0, T[]

Remark 1.3.11 cos?a+cos?p +cos?y = 1

Example 1.20: Let u = (1, -2, 3). Find the direction cosines of u.

Solution: Since |u] = Vuu = {/(1-2,3).(1-2,3) =V1+4+9 = V14

Thus the direction cosines are: Cosg = 22 = —L_, Cosar= 22 = —2, and Cosy = 22 = >
Jul - V14 ul - 14 jul 14

1.4 The Vector product
The second type of product of two vectors is the cross product. Unlike the dot product, the cross
product of two vectors is a vector.
Definition 1.4.1  The cross product (or vector product) A x B of two vectors
A = (a1, a2, as) and B = (by, by, b3) is defined by
AXB = (a2bs—asbz, asb1 — a1 bs, aib2 - azbi)

i
AXB:Zi Zi Z: :i|Z§ Zi|—f|(;i Z§|+k|Zi Zﬂ

So using the concept of determinants we can compute the cross product of vectors
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Note that the cross product is defined in R’

Example1.4.1 LetA=(2,-1,3)and B = (-1, -2, 4)
|
2 -1 3
-1 -2
:(2, -11, -5)
Activity 1.4.1: Find B xA.

Properties of cross product

AXB= —||_ o =02 k|2 ek

Theorem 1.4.1 Let A and B be non zero vectors in R3then the length of AxB is by
|AxB||=||A|llIB|||sin€| where 8 is the between A and B
Proof: Suppose that A = (a1, az, as) and B = (by, b2, bs), then
AXB = (a2bs—aszh, asby — arbs, aihy - axhi)
Hence ||AxB||?> = (ayb; — asb,)? + (asb; — a;b3)? + (a b, — ayby)?
=(a,? + az? + az®) (b, + by + b3®) — (aby + ayb, + azhz)?
=||A||1?]|B]|* — (A. B)? but we A.B=||A]|||B]|COSO
= [|1AxB|I* = lAlI?IIBII> — (Il BlICOS6)?
=(IIAlIPIIBII®) (1 — cos?6)
=(1141121IBII*) (sin?6)
lAxBI| =[|Alll| B||sin6|
Theorem 1.4.2  For vectors A, B and C,
1) AxB = -(BxA)
2) AXA=0
3) tAxB=t(AxB)=AXx(iB), teR
4) |AxB[" = |Al|8" - (ABY
5) C.(AXxB) = B.(CxA)=A. (BxC)
6) (A+B)xC=(AxC)+(BxC)
7) Cx(A+B)=(CxA)+(CxB)
8) A.(AxB) =0andB. (AxB)=0 (that is, AxB is perpendicular to both A

and B.)
9) (AxB)xC=(A.C)B-(B.C)A
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Proof: The following is the proof for 1, 2 and 8. The rest are left as an exercise
1) From the definition of cross product,
AXB = (a2bs—asbhz, asby — a1 bs, a1b> — axbi)
For B x A, interchange A and B to obtain
BXA =(bzaz—bzay, bsar -bras, biax - brap)
(a2bz—az bz, azb1 -ai bz, aib2 - axbi)
-(A x B)
(a2az3—azaz, asar -ai1as, ard2 - azai)
0,0,0)
8) Setting C = Ain5) yields
A.(AXxB) = B.(AXxA)
= B.0 (why?)
=0
By setting C = B in 5),
B.(AxB) = A.(BxB)
=A.0=0
This shows that for non zero vectors A and B, the cross product A x B is orthogonal to both A
and B.
Activity 1.4.2: Are the usual commutative and associative laws valid?i.e. for any vectors A, B
andCin ®°,isAxB = BxA?IsAx(BxC) = (AxB)xC?

2) AXxXA

Exercise 1.4.1: Let A=(2,1,0), B=(2,-1,1) and C =(0,1,1). Find
a. AxB b. (AxB)xC c.(A.C)B—(B.C)A d.BxC e. Ax(BxC)
From 4) of theorem 1.4.1, we derive an important formula for the norm of the cross product.

|axe]" = A" [B] - (ABY
= |A]” |BJ* - [Al°|B]* cos? 6 (e is the angle between A and B)
= A" B (-cos”e)
= A" [B]"sin*6
= |AxB| = |A|[B|sin® (For0<6 <, sin is non- negative)

18



Activity 1.4.3:

- For the unit vectors i, j andk,find i x j, jxk andk xi.Whatis jxi?
- If Aand B are parallel, what is A xB?
- If Aand B are orthogonal, What is |A x B|?

Example
1. Find a unit vector perpendicular to both A =(2,-3,1) and B = (1,2,-4).
Solution: AxB=(2-3,1)x(1,2,4)=(10,9,7) is orthogonal to both A and B
2. Activity Prove that (A — B)x(A + B) = 2 (AxB).

Let u and v be vectors and consider the parallelogram that the two vectors make.
U

)

\Y

\ 4

Then Area =||U||||V||sin6 = HU X VH

HU X VH = Area of the Parallelogram

The direction of uxv is a right angle to the parallelogram that follows the right hand rule.

To find the volume of the parallelepiped spanned by three vectors u, v, and w, we find the triple
product:

‘U-(VXV\M = Volume
This can be found by computing the determinant of the three vectors:
ul Vl Wl
Uy V, Wyl = U, (V,Wy —VaW,) =V, (U,W, —UW, ) + W, (U,V; —U,V,)

Ug V3 W,
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Example 1.5.1: 1. Find the area of the parallelogram which is formed by the two vectors u= (1,
3,2)and v=(-2, 1, 3).

2. Find the volume of the parallelepiped spanned by the vectors
u=(3,-2,-1),v=(1,3,2),andw = (-2, 1, 3).

Solution: 1. The area of the parallelogram is given by:

lu = V|| =]@3,2) < (=2,13)||=(7,—7.7)|| = /147
2. The volume of the parallelepiped spanned by the three vectors is:
ju.(vxw)| =|(3-2,-1)(13,2) x (-213)) = |3 -2,-1).(7,-7,7)| = 28

Exercise: Find the area of the triangle having vertices at u = (3, -2, -1),

v=(13,2),andw=(-2,1, 3).

1.5 Lines and planes

Vector equations of lines

Definition 1.5.1: A line L is any set of the form {p:p = A +1tB, te R}where B is assumed to

be a non-zero vector and A is a fixed point on the line.
Note that if (X, y, z) is on line L and if A = (ai, a2, a3) a point and B = (bs, b2, b3 ) be a vector
then (X, Y, z) = (a1, a2, a3) + t(by, bz, b3) for some real number t. z

Activity 1.5.1: Is point A on L? Is B parallel to a vector formed by any
points of L?P = A +tB is a vector equation of a line through A A {.

Example 1.5.1 Find equation of a line through P1 = (0, 1, 2) and

L

P2=(-1,1,1). Y/

Solution: We need a point A on the line and a vector B parallel to
the vector formed by two point of the line.
Take A =Piand B =P, —P1. Then
A+tB=(0,1,2)+t(-1,0,-1)
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(x,y,2)=(0,1,2) +t(-1, 0, -1) is equation of the line. By giving distinct values for t we will

obtain distinct points on the line. Find some of the points.
Note: The equation of a line passing through points A and B is given by:
P=A+t(B-A) or P=(1-t)A+B,teR

Exercise 1.5.1: Let the line L1 passes through the points (5,1,7) and (6,0,8) and the line L> passes
through the points (3,1,3) and (-1,3,«). Find the value of « for which the two

lines intersect.

Suppose P = (x, Y, z) is a point on line ¢ through A = (a1, a2 a3) in the direction of B=
(b1, b2, b3). Thenp=A +tB = (X, Y, z) = (a1, a2, a3) + t(by, b2, b3) or equivalently

X =ap + bat

y =az + bat

z=az+ bat

These equations are parametric equation of a line and t is called a parameter.
Activity 1.5.2: 1) Find the parametric equation of a line that contains (2, -1, 1) and is parallel to

the vector (3, % 0).

2) From the parametric equation of a line in %°, derive the equation

xX—aq _y—az _ zZ—agz

by by b3

It is called standard form of equation of a line. If the line is on a plane show that the standard
form reduces to an equation of the formy = mx + c.

Parallel and Perpendicular lines

Two lines L and m given by A; + tB1 and Az + B are said to be parallel if B, and B; are
parallel (their directional vectors are Parallel. Two lines are said to be perpendicular if their
directional vectors are perpendicular That is the vectors P1 — Q1 and P2 — Q2 are parallel for any
two points P1, Q1 of L and P2, Q2 of m.

Let L be a line through A in the direction of B (B = 0) . Consider the distance between L and the

origin. This distance is the minimum of the lengths of all vectors with initial point the origin and

terminal point on L. That is, minimum of |A+tB] for any real number t.
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Planes and their equation

Now put f (t) = ||A+tB||2

This is a quadratic function whose graph opens upward: f (t) = ||A||2 +2t(AB) +t2||B||2

. . -2AB -AB
So it has minimum at; t= = .
28" [B]
/
P oy
i
A

Let P, be a point and N be a non zero vector. We define the plane passing through P, to
perpendicular to N to be the collection of all points P such that the vector Ep is perpendicular
N. According to our definition, if P is any point on the plane through Po and perpendicular to N,
then N.p,p =0 or N.(p-p,)=0
Activity 1.5.3: Starting from the equation N . @ = 0, show that equation of a plane through

point Po = (Xo, Yo, Zo) perpendicular to N = (a, b, c) is

ax + by + cz = d where d = axo + byo + CZo.

This equation can be written as N.P = d . The vector N is said to be normal to the plane.

Hence a plane is any set of the form {P: N.P = d}. Where N is a given non-zero vector and d is a
given number.
Example 1.5.2: Find an Equation of the plane that contains point p, (-2, 4, 5) and that is normal
to N(7, 0, -6).
Solution: Let P=(x,y,z) be any point on the plane then the equation of the plane given by
N.p=N.p,=(7,0,6).(x,y,2)=(7,0,6)(-2,4,5)=7x+62=16
Does this plane intersect the y-axis?
Remark:. Two planes in 3 spaces are said to be parallel if their normal vectors are parallel.
They are said to be perpendicular if their normal vectors are perpendicular. The angle between
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two planes is defined to be the angle between their normal vectors.
Activity 1.5.4:
1. A plane passes through (-1, 2, 3) and is perpendicular to the y-axis. What is the
equation?
2. Consider the planes x + 2y - 3z = 2 and 15x - 9y — z = 2. Are they parallel or
perpendicular planes? Or neither parallel nor perpendicular?
Exercise 1.5.2: Find the equation of the plane passing through the three points
P1=(2,1,1), P2 = (3,-1,1), P3 = (4,1,-1).
Let Q be a point outside a plane normal to N. We define the distance from point Q to the plane as fo
Let Po be the point of intersection of the line through Q, in the direction of N, and the plane through
The distance d from Q to the plane is the distance between Q and Po.

P
Now we find a formula for this distance. Clearly d = “Proj@ ®| = HProj ?H
However, ProjN@ = N—QEJN
INJ
5 N.QP N.QP
Hence d = (N'QZPJN = ‘ - ‘ ||N|| = u
INJ INI INI
Therefore the distance d of a point Q from a plane through P which is normal to N is given by:
_ Ivod
INJ

1.6 VECTOR SPACES

1.6.1 The axioms of a vector space

23



Definition 1.6.1: A set F having at least 2 elements is called a field if two operations
called addition (+) and multiplication (-) are defined in F and satisfy the
following two axioms:

a) If xis an element of K, then —x is also an element of K. Furthermore, if x
= 0, then x! is also an element of K.
b) 0and 1 are elements of K.
Definition: The set of complex numbers is C = {(a, b) | a, b € R}. Define addition on C as (a, b) +
(c,d)=(a+c, b+ d)and multiplication on C as (a, b) - (¢, d) =(ac — bd, bc + ad).
Remark: The order pair (a,b) refers a+bi
Example 1.6.1: The set of all complex numbers C are fields.
Solution:
a). Letu=a+bi,andv=c+di €C
ut+v=>@+bi)+(c+di)=(@a+c)+ (b+d)i
u+veC (since (a+c)eRand(b+d)eR
Cis closed under addation.
Similarly, uv = (a + bi)(c + di) = (ac-bd)+(ad+bc)i
uv € C (since (ac —bd) € R and (ad + bc) € R
C is closed under addation.
b). Letu=a+bi,and —1€ R
(). (Du=(CD(a+bi)=(—a—-»bi)eC .....(Note: —a € Rand —b € R)
—u € C ..(—u isanaddative inverse of u)

ii. suppose u = (a+bhi) #0

— . . . _ 1 1
Then the multiplicative inverse of uis u === ,
u a+bi

—1 _ a+bi _ a (b)i
aZ+b%2  a2+b? a2+b?2

., ulecC

u

0) 0=(0,0)=0+0ie C (0 R )
1=(1,00=140i€ C
Hence, The set C is is Field.

Activity 1.6.1: Are Z (The set of all integers) and Q (the set of all rational numbers fields?
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Definition 1.6.2: A vector space V over a field K is a set of objects which can be added and
can be multiplied by elements of K. It satisfies the following properties.

V1) Foranyu,v e Vanda e K, we have
u+veV and au eV
Vo) Foranyu,v,w € V,
(U+v) +w = u+(v+w)
V3)  There is an element of V, denoted by O (called the zero element), such that
O+u =u+0 = u forall elementsu of V.
Vi)  Foru eV, there exists —u € V such that
u+(-u)=0
Vs)  Foru,v eV, we have
u+v =v+u
Ve) Foru,veVanda ek,
a(u+v) = au+av
V7) ForueVanda b ek, (a+b)u=au+buand (ab)u=a(bu)
Vg) Foruev,
lu=u
Activity 1.6.2:What is the name given for each of the above properties?

Other properties of a vector space can be deduced from the above eight properties. For example,

the property Ou = O can be proved as :

Ou+u=0u+1lu (by Vg)

O0+1u (by V7)
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By adding —u to both sides of ou + u = u, we have Ou = O.
1.6.2 Examples of different models of a vector space
Example 1.6.2. (n-tuples space)

(ug, uy, o tty) + (V1,v5, ., ) = (U + vy, Uy + vy, ..., Uy, + Vy,), Vector addition
k((uq,uy, ... uy) = (kuy, kus,, ..., kuy), scalar multiplication and 0=(0,0,0,...0) with these

operations R™ is a vector space over filed ‘R.

The other 5 properties can be easily verified. Hence 2 is a vector space overs.

Example 1.6.3.

LetV=9R2and K=C

Forany u, v € )2, we have u +v € R2
But fora e C, au is not always in R2.
Forexamplefora=3iandu = (1,—-2),au = (3i,—2i) g 92.
Hence R? is not vector space over C.

Thus when dealing with vector spaces, we shall always specify the field over which we take the

vector space.
Example 1.6.4.

Let F be the set of all functions form R to R, forany fand g inF, f + g is a function from R to
R defined by (f + g) (x) = f(x) + g(x).

Fora e #,af = af(x) isinF.

The zero element O of F is the zero function f(x) = 0 forallx € 9.
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By verifying the other properties, we can see that F is a vector space over ‘R.
Example 1.6.5.

vz = the set containing of all polynomials of degree 3 or less in the set of real numbers together

with standard polynomial addation and scalar multiplication.
Is v a vector space.
Solution: we need to examine whether conditions
Let u =a,x?+a;x+a,
v = b,x? + b;x + b,
w = cx% + X+ ¢ and cand d be scalars. Then
1). U+V = (a,x? + a;x + ag) + (byx? + byx + by)

= (ay+by)x? + (a; + by)x + (ag + by) € Vs
U+V E 1,

2). u+v=(ayx?+a;x+ag) + (byx? +b;x+bg)
= (ay+by)x% + (a; + by)x + (ag + by)
= (by+ay)x? + (by+ a)x + (by+ ap)
= (byx? +byx+by) + (ax? +a;x+ap) = V+U

3).  U+(v+w) = (apx? + a;x + ag) + [(byx? + byx + by) + (c3x% + ¢;x + ¢o)]

=(a,+by+cy) x2 + (a; + by+cy)x + (ag + by + ¢)

=[(a;+b)x? + (a; + by)x + (ag + bg)] +(c2x% + ¢1x + ¢g)

= (u+v)+w

4). Let 0 =0x?+0x+ 0. then
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5).

6).

7).

8).

9).

10).

U+0=(a, + 0)x? + (a; + 0)x + (ag + 0) = (0 + a,)x* + (0 +a;)x+ (0 + ay)
U+0=0+u=u
Let -u= (—ay)x% + (—a;)x+ (—ap) . Then
U+ - u=[a, + (—ay)]x? + [a; + (—(a)]x + [((ag) + —ag)] = 0x* + 0 x + 0=0
Cu=(cay)x + (cay)x + (cag)€ vs
Since cu is a polynomial of degree 2 or less.
C(u+v) = [c(az+by)] x2 + [c(a; + by)]x + [c(ag + by)]
= (cap,+cb,) x2 + (ca; + cby)x + (cag + cby) =cu +cv
(c+d)u = [(c+d) ay] x? + [(c + d)a; ]x + [(c + d)ay] = cu+dv
C(du) =c[(da,) x* + (da; )x + (dag)
= (cd) a,x% + (cd)a; x + (cd)ay, = (cd)u
1u = l.ayx’+l.ajx+1l.ay, = u

Hence, the given space is vector space.

The algebraic properties of elements of an arbitrary vector space are very similar to those of elements

of K2, K3, or R". Consequently, we call elements of a vector space as vectors

Activity 1.6.1:  Which of the following are vector spaces?

a) Con R?
b) C"over C

c) Q"overQ
d) R"over C

1.6.3 Subspaces, Linear Combinations and generators
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Definition 1.6.3.1: Suppose V is a vector space over k and W is a subset of V. If, under the
addition and scalar multiplication that is defined on V, W is also a vector space then we call W a

subspace of V.
Using this definition and the axioms of a vector space, we can easily prove the following:
A subset W of a vector space V is called a subspace of V if:

i)  Wais closed under addition. That is, ifu,w e W, thenu+w € W
i) W is closed under scalar multiplication. That is, if ue W and a € k, then aueW.
iii) W contains the additive identity 0.

Then as W c V, properties V1 — Vg are satisfied for the elements of W.
Hence W itself is a vector space over k. We call W a subspace of V.
Example Consider H={(X,y): X,y € Rand x + 4y = 0} .

H is a subset of the vector space R2 over R. To show that H is a subspace of V, it is enough to

show the above three properties hold in H.

Letu = (Xg,y1)andw = (X2, ¥2) beinH. Then x1+4y; = 0 andx2+4y>, = 0

U+tw = X1+ X2, y1+y2)and (X1 +X2) +4(y1+y2) = X1 +4y+Xx2+4y>=0+0=0
Which shows u+we H

For ac R, au=(axq,ax,)and (ax; )+4(ax, )=a(x; +4x,) = 0a =0.

Hence au € H. Now, the element O of k2 is (0, 0). 0 + 4(0) = 0. Hence O = (0, 0) is in H.
-. H is a subspace of R?

Activity: Take any vector A in R3. Let W be the set of all vectors B in R® where B.A = 0.

Discuss whether W is a subspace of R* or not.
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1.7 Linear dependence and independence of vectors

Definition 1.7.1: Let V be a vector space over k. Elements vi, v, ..., vo Of V are said to be
linearly independent if and only if the following condition is satisfied:

whenever ai, ay, ..., an are in k such that ajvi + agv2 + ... +anpvn =0, then a; = 0 for all
1=1,2,...,n.

If the above condition does not hold, the vectors are called linearly dependent. In other words
V1, Vo,..., vn are linearly dependent if and only if there are numbers a1, a2, ..., an where aivi +

axvz + ... +apvnh = 0 for at least one non-zero a;.
Example 1.7.1: Consider vi1=(1,-1,1),v2=(2,0,-1) and vz = (2, -2, 2)

i) avi+avo=ai(1,-1,1) +a2(2,0,-1) = (a1 + 222, -a1, a1 — a2)

aivi+ave=0 > a1+2a =0,-as=0anda;—a>=0
= a1=0anda;=0
Hence vi1 & v» are linearly independent.

i) atvi +axva=ai (1,-1,1) +a2(2,-2,2)

= (a1 + 2ap, -a1 —2az, a1 +2 a2)
avi+tavs=0 = a+2a =0,-a1—2a2=0anda; +2a, =0
= a1 =-2a
Takear =2and a2 =-1, we get 2(1,-1,1) +(-1) (2,-2,2) =0.
As the constants are not all equal to zero, vi and vs are linearly dependent.
Activity 1.7.1: Show that v1, v, and vz are also linearly dependent.

Remark: If vectors are linearly dependent, at least one of them can be written as a linear

combination of the others.
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Activity 1.7.2: Show that (1, 0, 0, ...,0), (0, 1,0,...)..., (0,0,0, ..., 1) are linearly independent

vectors in R".
1.8 Bases and dimension of a vector space

Definition 1.8.1: If elements ey, €2, ..., en Of a vector space V are linearly independent and
generate V, then the set B = {ey, ez, ..., en} is called a basis of V. we shall

also say that the elements ey, e»,..., en constitute or form a basis of V.

Example 1.8.1:

1) Show that e1 = (0, -1) and ez = (2, 1) form a basis of R?2.

Solution: we have to show that

)] e1 and e are linearly independent

i) They generate R? i.e every element (x,y) of %2 can be written as a linear
combination of ejand e.

arertazes = 0 = ai(0,-1) + ax(2,1) = (0,0)
—23»=0and-a1+a =0
—a =0anda; =0
.. er and ez are linearly independent
i) (x,y) = ate2 + a2e2 = (X, y¥) = (0, -a1) + (2az, a2)

= Xx=2aandy=-ar+a
X
:>a2:Eanda1:az—y ()

X—2y
2

Therefore, given any (X, y), we can find a1 and a2 given by (*) and (x, y) can be written as
a linear combination of e; and e as

31



= (X=2y _ X
(x,y) ( 5 j(o, 1)+(2j (2,1)

For example, (4,3) = (4;263) (0,-1) + (g) (23)

Or (4, 3) =-0,-1) + 2(2,1)

Note that {(1, 0), (0, 1)} is also a basis of R2. Hence a vector space can have two or more basis.

Find other bases of $R2.

2) Showthate: = (2,1,0)and e, = (1, 1, 0) form a basis of R>.
Solution: e1 = (2, 1, 0) and e2

(1, 1, 0) are linearly independent but they do not generate

9R3. There are no numbers a; and a» for which
(3,4,2) = a1(2,1,0) +a2(1, 1,0).
Hence {(2, 1, 0), (1,1,0)} is not a basis of R3.

The vectors E1 = (1, 0, 0) , E2 = (0, 1, 0), Ez = (0, 0, 1) are linearly independent and every

element (x, y, z) of )3 can be written as
(X,y¥,2) = x(1,0,0) +y(0,1,0) +z(0,0,1)
= XE1 + YE2 + zE3
Hence {E1, Ez, Es} is a basis of R3.

Note that the set of elements E1 = (1, 0, 0,...,0), E2=(0, 1,0, ... 0),....En=1(0,0,0, ...,1)is a

basis of R". It is called a standard basis.

LetB = {e1, e, ..., en} be a basis of V. since B generates V, any u in V can be represented as u
= aie; + a2 €2 + ... + an en. Since the e; are linearly independent, such a representation is unique.
We call (a1, a, ..., an) the coordinate vector of u with respect to the basis B, and we call aj the i

— th coordinate.
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Example 1.8.2

1) In 1) of example 3.3.1 The coordinate vector of (4,3) with respect to the basis
{(0, -1), (2,1)} is (-1, 2). But with respect to the standard basis it is (4, 3).

Find coordinates of (4,3) in some other basis of R?.

2) Consider the set V of all polynomial functions f: R — R which are of degree less than or
equal to 2.

Every element of V has the form f(x) = bx? + cx + d, where b, ¢, d € R
V is a vector space over R (show).
Clearly, e1 =x? e; =xand e3 = 1 are in V and aie; + az €2 + azez = O
(O is the zero function)
= aix’ + a2 + azes = O forall x
—Sa =a=a=0.

Which shows ey, e2 and es are linearly independent

bx2+cx +d = aier + aze2 + ages for all x

=bx?+cx+d = ax? + axx + as

=b=a,c=aandd=as

Thus ey, e2 and ez generate V.

. {x?, x1 1} is a basis of V and the coordinate vector of an element

f(x) = bx?+cx+dis (b, c, d)

The coordinate vector of x2 —3x + 5is (1, -3, 5)

Activity 1.8.1:Show that the polynomials
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Er = (x-1)2=x?-2x+1
Eo = x-1
and Esz =1

form a basis of a vector space V defined in 2) of example 1.8.2. What is the coordinate of
f(x) = 2x% — 5x + 6 with respect to the basis {E1, E2, E3}?

E={(1,0,0), (0,1,0), (0,0,1)} and B = {(-1,1,0), (-2, 0, 2), (1, 1, 1)} are bases of %3 and each

has three elements. Can you find a basis of %3 having two elements? four elements?

The main result of this section is that any two bases of a vector space have the same number of

elements. To prove this, we use the following theorem.

Theorem 1.8.1: Let V be a vector space over the field K. Let {v1, v2,...,vn} be a basis of V. If wy,
Wo,...,wm are elements of V, where m > n, then wiy, wo, ..., wm are linearly

dependent.
Proof (reading assignment)

Theorem 1.8.2: Let V be a vector space and suppose that one basis B has n elements, and
another basis W has m elements. Them m =n.

Proof: As B is a basis, m > n is impossible. Otherwise by theorem 3.4.1, W will be a linearly
dependent set. Which contradicts the fact that W is a basis. Similarly, as W is a basis, n >

m is also impossible. Hence n = m.

Definition 1.8.2: Let V be a vector space having a basis consisting of n elements. We shall say

that n is the dimension of V. It is denoted by dim V.
Remarks: 1. If V = {0}, then V doesn’t have a basis, and we shall say that dim v is
zero.
2. The zero vector space or a vector space which has a basis consisting of

a finite number of elements, is called finite dimensional. Other vector
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spaces are called infinite dimensional.

Example 1.8.3:

1) %3 over % has dimension 3. In general R"over R has dimension n.
2) R over Rhas dimension 1. In fact, {1} is a basis of R, because
a.l=0=a=0and
any number x e Rhas a unique expression x = x.1.

Definition 1.8.3: The set of elements {v1, vo, ...,vn}of a vector space V is said to be a maximal
set of linearly independent elements if v1, vo, ...,vn are linearly independent
and if given any element w of V, the elements w,vi, vz, ..., vn are linearly

dependent.

Example 1.8.4: In %3 {(1, 0, 0), (0, 1, 1), (O, 2, 1)} is a maximal set of linearly independent

elements.

We now give criteria which allow us to tell when elements of a vector space constitute a basis.
Theorem 1.8.3: Let V be a vector space and {vi, V2, ...,va}be a maximal set of linearly

independent elements of V. Then {v1, v2, ...,vn}is a basis of V.
Proof: It suffices to show that vi, V2, ...,vnh generate V.  (Why?)
Letwev.
Thenw, vy, va, ...,vn are linearly dependent (why?).
Hence there exist numbers ao, a1, az, ..., an ot all 0 such that
QW+avitave+...+anva = O

In particular a, #0 (why?

Therefore, by solving for w,
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—a a —a
Ly, - 22y, .
a a

0 0

W=

n

This proves that w is a linear combination of vy, va, ...,vn.
Theorem 1.8.4: Let dim V =n, and let vy, v, ...,vn be linearly independent elements of v. Then
{Vv1, V2, ...,vn} is a basis of v.

Proof: According to theorem 3.4.1, {v1, V2, ...,vn} IS @ maximum set of linearly independent

elements of V.
Hence it is a basis by theorem 2.5.3
Corollary 1.8.1: Let W be a subspace of V. If dim W = dimV, then V =W

Proof: Exercise

1.9 Direct sum and direct product of subspaces

Let V be a vector space over the field K. Let U, W be subspaces of V. We define the sum of U
and W to be the subset of V consisting of all sums u + w with u eU andw eW . We denote this

sum by U +W and it is a subspace of V. Indeed, if u,,u, eU and w,,w, €W then
(U +wW)+ U, +wW,) =u, +U, +w, +w, eU +W
If ce K, then
c(u, +w,)=cu, +cw, eU +W
Finally, 0+0<U +W . This proves that U + W is a subspace.

Definition 1.9.1: A vector space V is a direct sum of U and W if for every element v in V there

exist unique elements u eU andw W such thatv=u+w.

Theorem 1.9.1: Let V be a vector space over the field K, and let U, W be subspaces. If U + W
=V, and ifU "W = {0}, then V is the direct sum of U and W.
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Proof: Exercise
Note: When V is the direct sum of subspaces U, W we write:
V=U®W

Theorem 1.9.2: Let V be a finite dimensional vector space over the field K. Let W be a

subspace. Then there exists a subspace U such that V is the direct sum of W and U.
Proof: Exercise

Theorem 1.9.3: If V is a finite dimensional vector space over the field K, and is the direct sum

of subspaces U, W then
dimV=dimU+dmWwW
Proof: Exercise

Remark: We can also define V as a direct sum of more than two subspaces. Let W1, W, ....,
W, be subspaces of V. We shall say that V is their direct sum if every element of can be

expressed in a unique way as a sum

With wj in Wi.

Suppose now that U, W are arbitrarily vector spaces over the field K(i.e. not necessarily
subspaces of some vector space). We let UXW be the set of all pairs (u, w) whose first
component is an element u of U and whose second component is an element w of W. We define

the addition of such pairs component wise, namely, if (u,,w,) eUXW and (u,,w,) e UXW we

define
(u,w) +(u,,w,) =u, +u,, W, +W,)
If c e K, we define the product c(u,,w,)by

C(ul’ Wl) = (Cu1' CW1)
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It is then immediately verified that UXW is a vector space, called the direct product of U and

W.

Note: If n is a positive integer, written as a sum of two positive integers, n=r +s, then we see

that K" is the direct product K" XK® and dim(UXW) =dimU +dimW
Example 1.9.1: Let, V = R®, U ={(0,0, x,), X, € R}, and
W = {(Xl, X,,0), X, X, € 9?} Show that V is the direct sum of W and U.

Solution: Since V, U and W are vector spaces, and in addition to that U and W are subspaces of

V. The sum of U and W is:

U+W= {(X, %, %), X, X, X, € R} =R =V
Thus; V=U+W

The intersection of U and W is: U NW = {0}

Therefore, V is the direct sum of W and U.

Activity 1.9.1: 1. Let,V =R* U = {(x,0,x3), X, X; € R}, and W ={(0, X,,0), X, € R}.
Show that V is the direct sum of W and U.

2 Let,V = R® U ={(x,%,,0), X, X, € R}, and W = {(0,0, x,), X, € R}.

Show that V is the direct sum of W and U.

Exercise:

2 b b
1. LetV =R ,U:{(a;b,a;b),a,beﬂ%},andw:{(a—zb,bTa),a,befR}.

Show whether V is the direct sum of W and U or not.

2. LetV = Rs,U = {(Xl, XZ,O), X, X, € YR}, and W = {(0, X2, X3), X2, X3 € %}Show

whether V is the direct sum of W and U or not.
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Exercise 2.1
1. Let k be the set of all numbers which can be written in the forma+b/2 , where a, b are
rational numbers. Show that k is a field.
2. Show that the following sets form subspaces
a. Thesetofall (x,y)in %2 suchthatx =y
b. Thesetofall (x,y)in % suchthatx-y=0
c. Thesetofall (x,y,z)in ®*suchthatx +y= 3z
d. Thesetofall (x,y, z)in R%° suchthatx =y and z = 2y
3. If U and W are subspaces of a vector space V, show that UWand U+ Ware
subspaces.
4. Decide whether the following vectors are linearly independent or not (on R)

a) (m,0)and (0, 1)
b) (-1, 1, 0) and (0, 1, 2)
c)(0,1,1),(0,2,1),and (1,5, 3)

5. Find the coordinates of X with respect to the vectors A, B and C
a. X=(1,0,0, A=¢(,11,B=(110), C=(1,0,-1)
bh. X=(,11,A=(0,1,-1),B=(,1,0),C=(,0,2)
6. Prove: The vectors (a, b) and (c, d) in the plane are linearly dependent if and only if ad —
bc=0
7. Find a basis and the dimension of the subspace of %R “generated by
{(1,-4,-2,1),(1,-3,-1, 2),(3,-8,-2, 7)}.

8. Let W be the space generated by the polynomials x® + 3x? — x + 4, and

2x3 + x2 — 7x — 7. Find a basis and the dimension of W.

9. LetvV={(a,b,cd e R b-2c+d=0}
W={(ab,cd) eR*a=d, b =2c}

Find a basis and dimension of
a) V b) W c) VNwW
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10.  What is the dimension of the space of 2 x 2 matrices? Give a basis for this space.

Answer the same question for the space of n x m matrices.
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CHAPTER TWO
2 MATRICES AND DETERMINANTS

2.1 Definition of matrix and basic operations
The concept of matrices has had its origin in various types of linear problems, the most important
of which concerns the nature of solutions of any given system of linear equations. Matrices are
also useful in organizing and manipulating large amounts of data. Today, the subject of matrices
is one of the most important and powerful tools in mathematics which has found applications to a
very large number of disciplines such as engineering, business and economics, statistics etc.
Definition and Examples of Matrices

Definition: A matrix is a rectangular table of form

a1 QA2 0 Qp
az1 Az -+ Qyp
Am1 Amz  *** Amn

A matrix is said to be of dimension m X n when it has m rows and n columns. This method of
describing the size of a matrix is necessary in order to avoid all confusion between two matrices
containing the same amount of entries. For example, a matrix of dimension 3 X 4 has 3 rows and
4 columns. It would be distinct from a matrix 4 x 3, that has 4 rows and 3 columns, even if it
also has 12 entries. The elements are matrix entries a;;, that are identified by their position. The
element a5, would be the entry located on the third row and the second column of matrix A. This
notation is essential in order to distinguish the elements of the matrix. The element a5, distinct
from as,, is situated on the second row and the third column of the matrix A.

Remark: By the size of a matrix or the dimension of a matrix we mean the order of the matrix.

1 5 2
0 3 6F

Solution: Since A has 2 rows and 3 columns, we say A has order 2 x 3, where the number of

Example: Let A = [

rows is specified first. The element 6 is in the position a,5 (read a two three) because it is in row

-1 4 7
2 3 1/?

5 7 8

2 and column 3.

Example: What is the value of a,; and a3, in A =
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Solution: a,s, the element in the second row and third column, is 1 and as,, the element in the
third row and second column, is 7. What is the size of this matrix?
Activity: 1. Suppose A isa 5 X 7 matrix, then

a) A has 7 rows. (True/False)

b) a;; is an element of A for i = 6 and j = 4.(True/False)

¢) Forwhat values of i and j, a;; is an element of A?

4 8
2. Suppose A = [4 _17 2] and B = [—7 1]

8 5 6
a) What is the order of A and B? b) Find a,,, a,3, by5 and bs;.
It is customary to abbreviate the matrix
ai1 QA2 ot Qan
A = aztl :azz azn
Gy Gy Ay

by the symbol (aij)mxn or more simply (a;;). This notation merely indicates what type of
symbols we are using to denote the general entry.
Example: Form a 4 by 5 matrix, B, such that b;; =i + j.

Solution: Since the number of rows is specified first, this matrix has four rows and five columns.

b21 b22 b23 b24 b25
b31 b32 b33 b34 b35
b41 b42 b4-3 b44- b4-5

Activity: Form a 4 by 3 matrix, B, such that
a) bjj=1ixXj b) by = (=D

byy biz bz by b15‘ 2 3 4 5 6
5 [

o Ul

6 7
7 8|
8 9

Definition: Two matrices A and B are said to be equal, writtenA = B, if they are of the same

order and if all corresponding entries are equal.
6 .

Example: Given the matrix equatlon[ t Y ] [é g] Find x andy.

+y=1

=3

Activity: Find the values of x, y, z and w which satisfy the matrix equation

Solution: By the definition of equality of matrlces solving givesx = 2and y = —1.

xX—y 2x+z
2x—y 3Z+W] [0 13]
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[x+3 2y+x] _ [0 —7]
z—1 4w -6 3 2w

Types of matrices

Row Matrix: A matrix that has exactly one row. For example, the matrix A=[5 2 —1 4]is

a row matrix of order 1 x 4.

3
Column Matrix: A matrix consisting of a single column. For example, the matrix B = \1] Is a
4

3 X 1 column matrix.
Zero or Null Matrix: A matrix whose entries are all 0 is called a zero or null matrix. It is usually

0 0 0 O
0 0 0 O

Square Matrix: An m X n matrix is said to be a square matrix of order n if m = n. That is, if it

denoted by 0,,,»,, or more simply by 0. For example, 0 = [ ] isa 2 X 4 zero matrix.

has the same number of columns as rows.

-3 4 6
Forexample,| 2 1 3 ] and [g _61] are square matrices of order 3 and 2 respectively.
5 2 -1
In a square matrix A = (al-j) of order n, the entries a4, a;,, ***, a,, Which lie on the diagonal

extending from the left upper corner to the lower right corner are called the main diagonal

3 2 4
entries, or more simply the main diagonal. Thus, in the matrix C = [1 6 0] the entries C,; =
5 1 8

3, C,, = 6 and C35 = 8 constitute the main diagonal.

Note: The sum of the entries on the main diagonal of a square matrix A of order n is called the
trace of A. That is, Trace of A = Y, a;;.

Activity: Find the trace of C in the above example.

Triangular Matrix: A square matrix is said to be an upper (lower) triangular matrix if all entries

below (above) the main diagonal are zeros.

2 4 8 5 0 0 O
For example, [0 1 2 ] and é i (2) 8 are upper and lower triangular matrices,
00 =3 2 -4 8 6

respectively.
Diagonal Matrix: A square matrix is said to be diagonal if each of the entries not falling on the

main diagonal is zero. Thus a square matrix A = (a;;) is diagonal if a;; = 0 for i # j.
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Activity: What about for i = j?

5 0 0
0 0 O
0 0 7

Notation: A diagonal matrix A of order n with diagonal elements a4, a,,, :**, a,, is denoted by

For example, is a diagonal matrix.

A = diag (a;1, a2z, , Qup)-

Scalar matrix: A diagonal matrix whose all the diagonal elements are equal is called a scalar

matrix.
2 0 0

For example, |0 2 0] is a scalar matrix.
0 0 2

Note: Let A = (a;;) be a square matrix. A is a scalar matrix if and only if a;; = {18 i;f l.i :j

Identity Matrix or Unit Matrix: A square matrix is said to be identity matrix or unit matrix if all
its main diagonal entries are 1’s and all other entries are 0’s. In other words, a diagonal matrix
whose all main diagonal elements are equal to 1 is called an identity or unit matrix. An identity

matrix of order n is denoted by I,, or more simply by I.

1 00
For example, 15 = [0 1 0] is identity matrix of order 3. I, = ((1) 2) is identity matrix of
0 0 1

order 2.

Note: Let A= (a;;) be a square matrix. A is an identity matrix if and only if a; =
{1, if i=j

0, if i #j

Algebra of matrices

30 18 36 20 66 ?
Activity: |20 12|+ (24 18| =|? 30]. Can you guess what number should appear in the
16 10 20 12 ? ?

entries marked by question mark?

Addition of matrices

Let A and B be two matrices of the same order. Then the addition of A and B, denoted by A + B,
is the matrix obtained by adding corresponding entries of A and B. Thus, if
A= (al’j)an and B = (bl'j)an then A+ B = (al-j + bU)

mxn’
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Remark: Notice that we can add two matrices if and only if they are of the same order. If they
are, we say they are conformable for addition. Also, the order of the sum of two matrices is same
as that of the two original matrices.
Activity: Given the matrices A, B, and C below

1 2 4 2 -1 3 4
2 3 1],B= [2 4 2]andC= [2]
5 0 3 3 6 1 3
Find, if possible.a)A+B  b)B+C

A=

If A is any matrix, the negative of A, denoted by —A, is the matrix obtained by replacing each

entry in A by its negative. For example, if

2 -1 -2 1
A=]|5 4 |, then —A = [-5 —4].
-6 0 6 0

Properties of Addition of Matrices
1. Matrix addition is commutative. That is, if A and B are two matrices of the same order,
then A+ B =B+ A.
2. Matrix addition is associative. That is, if A, B and C are three matrices of the same order,
then(A+B)+C=A+ (B+ ().
3. Existence of additive identity. That is, if 0 is the zero matrix of the same order as that of
the matrix A, thenA+0=A =0+ A.
4. Existence of additive inverse. That is, if A is any matrix, then A + (=A) =0 = (—A) +
A.
Note: The zero matrices play the same role in matrix addition as the number zero does in
addition of numbers.
Subtraction of Matrices
Let A and B be two matrices of the same order. Then by A — B, we mean A + (—B). In other
words, to find A — B we subtract each entry of B from the corresponding entry of A.
4 -1 0 2 4—-0 -—-1-2
2 3] and Bz[s —2]. ThenA—B:[Z—S 3—(—2)]=

5 -7 6 1 5-6 -7-1

Example: Let A=

4 =3
5 s |

-1 -8
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Multiplication of a Matrix by a Scalar
Let A be an m X n matrix and k be a real number (called a scalar). Then the multiplication of A
by k, denoted by kA, is the m x n matrix obtained by multiplying each entry of A by k. This

operation is called scalar multiplication.

Example: IfAz[(Z) i i] ande[Z 2 g].Find 2A + 3B.
.0 2 31_70 6 _.[7 6 31_721 18 9
Solutlon.ZA—Z[2 1 4]—[4 8]and3B—3[1 4 5113 15]
_ [0 4 6 21 18 971 _7121 22 15
2A+3B=1, 8]+ 3 12 15 _[7 14 23

Example: Express the matrix equation x[ﬂ —y[g] =2 [181] as a system of equations and
solve.
Solution: The given matrix equation gives
[Zx] B gy] _ [16 [Zx_— 3y] [
X y 22 x — 5y
By equality of matrices we have

2x —3y =16
x —5y =22

Solving gives x = 2, y = —4.
Properties of scalar multiplications

1. If A and B are two matrices of the same order and if k is a scalar, then k(A + B) = kA +

kB.

2. If k; and k, are two scalars and if A is a matrix, then (k; + k;)A = k;A + k,A.

3. If ky and k, are two scalars and if A is a matrix, then (k{k,)A = k,(k,A) = k,(k,A).
Product of Matrices and some algebraic properties
While the operations of matrix addition and scalar multiplication are fairly straightforward, the
product AB of matrices A and B can be defined under the condition that the number of columns
of A must be equal to the number of rows of B. If the number of columns in the matrix A equals
the number of rows in the matrix B, we say that the matrices are conformable for the product AB.
Because of wide use of matrix multiplication in application problems, it is important that we
learn it well. Therefore, we will try to learn the process in a step by step manner. We first begin

by finding a product of a row matrix and a column matrix.
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d
Example: GivenA =[2 3 4]andB = Ibl find the product AB.
C

Solution: The product is a 1x 1 matrix whose entry is obtained by multiplying the

corresponding entries and then forming the sum.
d

AB=1[2 3 4] lbl = [(2a + 3b + 40)]
C

Note that AB isa 1 X 1 matrix, and its only entry is 2a + 3b + 4c.

5
Example: GivenA=[2 3 4] andB =6
7

, find the product AB.

5
Solution: AB=[2 3 4] [6] =[10 + 18 + 28] = [56]
7

Note: In order for a product of a row matrix and a column matrix to exist, the number of entries
in the row matrix must be the same as the number of entries in the column matrix.
Example: Here is an application: Suppose you sell 3 T-shirts at $10 each, 4 hats at $15 each, and

1 pair of shorts at $20. Then your total revenue is

3

(10 15 20) (4) =((10x3) (15%x4) (20x1)) = (110).
1

QLT;IE;ty

Price Revenue

5 3
Example: GivenA=[2 3 4]andB = [6 4], find the product AB.
7 5

Solution: We already know how to multiply a row matrix by a column matrix. To find the
product AB, in this example, we will be multiplying the row matrix A to both the first and second
columns of matrix B, resulting ina 1 X 2 matrix.
AB=[2Xx5+3Xx6+4%x7 2x3+4+3x4+4x5]=[56 38]

We have just multiplied a 1 x 3 matrix by a matrix whose order is 3 X 2. So unlike addition and
subtraction, it is possible to multiply two matrices with different dimensions as long as the
number of entries in the rows of the first matrix is the same as the number of entries in columns
of the second matrix.

Activity: Given the matrices E, F, G and H, below
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EzFL g],F— 1] G=[4 1]andH = [3]

Find, if possible. a) GH b) FH c) EF d) FE

We summarizes matrix multiplication as follows: In order for product AB to exist, the number of
columns of A must equal to the number of rows of B. If matrix A is of dimension m X n and B of
dimension n X p, the product AB will have the dimension m x p. Let A = (a;;) be an m x n
matrix and B = (b;;) be an n x p matrix. Then the product AB is the m x p matrix defined by
AB = (c;;), where

Cik = b1k + apbyr + -+ Qb = X1 a;; b, i =1,2,...,mandk =1,2, ..., p.

Thus, the product AB is the m X p matrix, where each entry c;;, of AB is obtained by multiplying
corresponding entries of the i™ row of A by those of the k™ column of B and then finding the
sum of the results.

Remark: The definition refers to the product AB, in that order, A is the left factor called pre

factor and B is the right factor called post factor.

1 —4
Example: Find the product ABifA=|5 3 |andB = [_2 4 16 .
0 2 2 7 3 8

Solution: Since the number of columns of A is equal to the number of rows of B, the product
AB = C is defined. Since A is 3 X 2 and B is 2 x 4, the product AB will be 3 x 4

The entry C,; is obtained by summing the products of each entry in row 1 of A by the
corresponding entry in column 1 of B, that is. C;; = (1)(—2) + (—4)(2) = —10. Similarly, for
C,;, we use the entries in row 2 of A and those in column 1 of B, that is C,; = (5)(—2) +
3)(2) =-
Also, Co=(D@A) +(—4)(7) =—-24

Cz=MDM+(=HB) =-11

Cia = (D(6) + (=H)(8) = —26

Cop, =)@+ (3)(7) =41

C:=0G)M+B)B) =14
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Ca = (5)(6) + (3)(8) = 54
CGi=0)(=2)+(2)(2) =4
G2 = () +(2)(7) = 14
G =(0)(D)+(2)B) =6
C3a = (0)(6) + (2)(8) = 16
-10 -24 -11 —26]

Thus AB = [—4 41 14 54
4 14 6 16

Observe that the product BA is not defined since the number of columns of B is not equal to the
number of rows of A. This shows that matrix multiplication is not commutative. That is, for any

two matrices A and B, it is usually the case that AB # BA (even if both products are defined).

Example: Let A = [(1) g] and B = i (2)] then AB = [(1) 3] BA = [1 8] Thus, AB # BA.

Activity
1. Which of the following are defined?
) 6 2 10(°) i) (@ D) )
iv)
i) () @

Note: 1. AB = 0 does not necessarily imply A = 0or B = 0.
2. AB = AC does not necessarily imply B = C.

3. IfA= [i ﬂ and B = _Cgl g] find a and b such that AB = BA.

Example
1 -1 1] 1 2 3 0 0 O
1) LetA=|-3 2 -1|,B=|2 4 6| thenAB=|(0 0 0]
-2 1 0 1 2 3 0 0 O
1 -3 2 1 4 1 0 31 -1 =2
2) LetA=|2 1 -3|,B=|2 1 1 1|andC=|3 -2 -1 -1}, then
4 -3 -1 1 -2 1 2 2 -5 -1 0
-3 =3 0 1
AB=]1 15 0 -5|/=ACButB=C.
-3 15 0 -5
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Properties of Matrix multiplication
If A, B and C are any matrices, and if | is an identity matrix, then the following hold, whenever

the dimensions of the matrices are such that the products are defined.

A(BC) = (AB)C Associative Law
A-I=1-A=A Multiplicative Identity Law
(The order of 1 and A is the same)

A(B+C) =AB+ AC Left Distributive Law
(A+B)C=AC+BC Right Distributive Law
A-0=0-A=0 Multiplication by Zero

Remark: For real numbers, a multiplied by itself n times can be written as a™. Similarly, a
square matrix A multiplied by itself n times can be written as A™. Therefore, A> means AA, A3

means AAA and so on.

Exercise
1 2 3 4 5 6 -1 -2 1
1. fA=|-1 0 2 ] B= [—1 0 1] and C= [—1 2 3], then find each of the
1 -3 -1 2 1 2 -1 -2 2
following
Q) A+B (i) A+B-C (V) 2A—C
(i) 2B—-3C (ivy A-2B+3C
5 21 ,_1[2 4 13 , ..
2. Let A= [_1 3], B = [6 1] and C = [7 2], then find the following:
Q) AB (i)  BC (iii))  (AB)C (iv)  A(BC)
4 -1 —4
3. fA=[4 0 —4]|compute A2. Is it equal to I3, where I; is the identity matrix of order 3?
3 -1 -3

2.2 Transpose of a matrix
Definition: Let A be an m x n matrix. The transpose of A, denoted by A" or Af, is the n x m
matrix obtained from A by interchanging the rows and columns of A. Thus the first row of A is

the first column of A¢, the second row of A is the second column of A and so on.

2 3
Example: If A = (g _14 Z) then At = <_4 1)
6 4

Activity: Find a 3 x 3 matrix A for which A = AC,

Properties of matrix transpose
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a) If A and B have the same order, (A + B)t = A" + Bt.
b) Forascalar k, (kA)! = kAt.
c) IfAism xnandBisn x p, then (AB)t = B*At.
d) (AH =A.
Definition: A square matrix A is said to be orthogonal if AA* = A*A = 1.

A 1 (1 =1
Example.A—\/E(1 1)IS orthogonal.

Definition: A square matrix A = (aij) is said to be symmetric if A® = A, or equivalently, if

a;j = aj; foreach i and j.

2 1 5
Example:A=|1 0 —3]issymmetric.
5 =3 6
Activity
a 3 4 8
1. ForA= Z g ;3 18 IS to be a symmetric matrix, what numbers should the letters
g h i J

a to j represent?
2. a) Does a symmetric matrix have to be square?
c) Are all square matrices symmetric?
Definition: A square matrix A = (a;;) is said to be skew-symmetric if A®=—A, or
equivalently, if a;; = —a;; for each i and j.
Remark: a;; = —a;; = 2a;; =0 or a; = 0. Hence elements of main diagonal of a skew-

symmetric matrix are all zero.

0 5 7 0 -5 =7
Example:ForA=|-5 0 3]|=A"'=[|5 0 —3]=—A. SoA isskew-symmetric.
-7 =3 0 7 3 0

Properties of symmetric and skew-symmetric matrices
1. For any square matrix A, A + A’ is symmetric and A — A? is skew- symmetric. That is,
A+ANE=A"+ (A =A"+ A=A+ A
(A— AN = At — (At = At — A = —(A — AY)
2. If A and B are two symmetric (or skew symmetric) matrices of the same order, then so is
A + B. That is,

() Suppose A and B are symmetric
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(A+B)=A"+B‘'=A+B
(i)  Suppose A and B are skew symmetric
(A+B)Yl=A"+B‘=—-A—-B=-(A+B)
3. If A is symmetric or skew symmetric, then so is kA. That is,
Q) Suppose A is symmetric
(kA)t = kAt = kA
(i) Suppose A is skew symmetric
(kA)t = kA* = —kA
4. Let A and B be symmetric matrices of the same order. Then the product AB is symmetric
if and only if AB = BA. That is,
(=) AB is symmetric = AB = (AB)! = B'A* = BA (- A and B be symmetric)
~ AB = BA
(<) Suppose AB = BA. Then AB = BA = B!At = (AB)¢
. AB is symmetric
Exercise

1. Form a4 by 5 matrix, B, such that b;; = i = j, where * represents multiplication.

a) What is Bt? b) Is B symmetric? Why or why not?
3 -1 0 -2 4 3
2. GivenA=1]2 4 5landB=]|5 1 7| Verifythat
1 3 6 2 3 8
i) (A+B)t = A" + B! ii) (AB)! = BYAt i) (2A)t = 2A¢
3. LetA= [i ; ;] then show that A*A is symmetric.

2.3 Elementary operations and its properties
Elementary row operations

1. (Replacement) Replace one row (say R;) by the sum of itself and a multiple of another
row
(say R;). This is abbreviated as R; = kR; + R;.

2. (Interchange) Interchange two rows (say R; and R;). This is abbreviated as R; < R;.

3. (Scaling) Multiply all entries in a row (say R;) by a nonzero constant (scalar) k. This is
abbreviated as R; — kR;.

For elementary column operations “row” by “column” in (1), (2) and (3) above.
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We say that two matrices are row equivalent if one is obtained from the other by a finite
sequence of elementary row operations.

It is important to note that row operations are reversible. If two rows are interchanged, they can
be returned to their original positions by another interchange. If a row is scaled by a non-zero

constant C, then multiplying the new row by % produces the original row. Finally, consider a

replacement operation involving two rows, say rows i and j, and suppose c times row i is added
to row j to produce a new row j. To “reverse” this operation, add —C times row i to the new row
j and obtain the original row j.

Example: Find the elementary row operation that transforms the first matrix in to the second,
and then find the reverse row operation that transforms the second matrix in to the first.

1 3 -1 1 3 -1
0o 2 -4, |0 1 -2

0 -3 4 0 -3 4
1 3 —1]g i, [1 3 -1
Solution: [0 2 -4 —= o 1 =2
0 -3 4 0 -3 4|
1 3 1] ppcp, [I 3 -1
0 2 —4|l——1]0 1 =2
0 -3 4| 0 -3 4|

Activity: Find the elementary row operation that transforms the first matrix in to the second, and
then find the reverse row operation that transforms the second matrix in to the first.
0 5 =311 5 -2 1 3 -1 571 3 -1 5
a)[l 5 —2],[0 5 —3] b)[O 1 -4 2],[0 1 -4 2]
2 1 8112 1 8 0 2 -5 —1llo 0 3 -5
In the definition that follows, a non-zero row (or column) in a matrix means a row (or column)
that contains at least one non-zero entry; a leading entry of a row refers to the left most non-zero
entry (in a non zero row).
Definition: A matrix is in echelon form (or row echelon form) if it has the following three
properties:
1. All non-zero rows are above any rows of all zeros.
2. Each leading entry of a row is in a column to the right of the leading entry of the row
above it.

3. All entries in a column below a leading entry are zero.
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If a matrix in echelon form satisfies the following additional condition, then it is in reduced
echelon form (or row reduced echelon form)
4. The leading entry in each non-zero row is 1
5. Each leading 1 is the only non-zero entry in its column.
Example: The following matrices are in row echelon form; in fact the second matrix is in row
reduced echelon form
2 =3 21

10 0 29
0 1 -4 8101 0 16
o0 o 32floo 11

Definition: (i) A matrix which is in row echelon form is called an echelon matrix.

(if) A matrix which is in row reduced echelon form is called a reduced echelon
matrix.
Note: 1) Each matrix is row equivalent to one and only one row reduced echelon matrix.

2) But a matrix can be row equivalent to more than one echelon matrices.

If matrix A is row equivalent to an echelon matrix U, we call U an echelon form of A. If U is in
reduced echelon form, we call U the reduced echelon form of A.
Activity: Determine which of the following matrices are in row reduced echelon form and which

others are in row echelon form (but not in reduced echelon form)

10 1]
) lo 1 0

0 0 ol

101 1]

i) o 0 0

0 0 ol

1 0 1 0
o1 1 0
ity 0 0 1
0 0 0 o
1 3 5 7
iv)[2 4 6 8
3 5 7 9
0 2 3 4 5
00 3 4 5
1o oo o s
0 0 0 0 0
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2.4 Determinants of a matrix and its properties
Definition of a Determinant

If A is a square matrix, then the determinant function associates with A exactly one numerical

value called the determinant of A, that gives us valuable information about the matrix. By

denoting the determinant of A by |A| or det A we can think of the determinant function as

correspondence:

A - A
square matrix deter min ant of A

In this case, the straight bars do NOT mean absolute value; they represent the determinant of the

matrix. Let's find out how to compute the determinant of a square matrix .

Definition: (Determinant of order 1): Let A:[an] be a square matrix of order 1. Then

determinant of A is defined as the number ay; itself. That is, [aj5| = ay.

Example 3=3,|-5/=-5 and [0 =0

. : a;; a .
Definition: (Determinant of order 2): Let [ 1 12} be a2 x 2 matrix, then
ap1 az
ai1 Q12
detA:|A|:|a21 a22|:a11a22 — Q12021

That is, the determinant of a 2 x 2 matrix is obtained by taking the product of the entries in the

main diagonal and subtracting from it the product of the entries in the other diagonal.

To define the determinant of a square matrix A of order n(n > 2), we need the concepts of the

minor and the cofactor of an element.

Let |A| = ‘aij‘ be a determinant of order n. The minor of ajj, is the determinant that is left by

deleting the ith row and the jth column. It is denoted by Mi;;.
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a11 a2 413
For example, given the 3 x 3 determinant [a1 ap» aps|. The minor of aj; is

az; 4ag 4ass

a, a _ _ a, a
M, =% "% theminorof a;,is M, =|>" "*| andsoon.

a32 a33 a32 a33

Let |A = ‘aij‘be a determinant of order n. The cofactor of ajj denoted Cjj or Aj;, is defined as

(—1)i+j Mi;, where i + j is the sum of the row number i and column number j in which the entry

My, if i+ ] is even

e . . For example, the cofactor of a1z in the 3 x 3 determinant
—My, if i+ jis odd P o

lies. Thus C;; :{

djp dip a3
ay1 az a3 is
dz; 4aszp 4ass

az; Apgz
azy Aags3

dz1 Aapzsz

Cyo =(—1)t*2
az1 agasz

Example: Evaluate the cofactor of each of the entries of the matrix:

w R, o
N CRRS
Row N

Solution: C11=-1,C2,=1,C31=-1,C12=8,C13=-5,Cx0=-6,C32=2,Co3=3, C33=-1

Activity: Evaluate the cofactor of each of the entries of the given matrices:

2 3 2 0 -1
a. |3 2 b.|5 1 0
11 -2 01 3
Definition: (Determinant of order n): If A is a square matrix of order n (n >2), then its
determinant may be calculated by multiplying the entries of any row (or column) by their

cofactors and summing the resulting products. That is,
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detA=a,C, +a,C, +....+8,C;;, Or detA=a;C;+a,,C) +...+a,C

Remark: It is a fact that determinant of a matrix is unique and does not depend on the row or

column chosen for its evaluation.

1 -3 4
Example: Find the valueof [0 2 5
-2 6 3

Solution: Choose a given row or column. Let us arbitrarily select the first row. Then

1 -3 4
2 5 0 5 |0 2
0 2 5=(1) J+(=3)-1) +4 =1(6—30) +3(0+10) + 40+ 4) =22
> o 3 6 3 23 -2 6

If we had expanded along the first column, then

1 -3 4
2 5 -3 4
0 2 5:(1)6 3+O + (-2) 5 5=1(6—30)—2(—15—8):22,asbefore
-2 6 3
1 2 0 -
Example: Findthevalueof|A|= 3 -1 4 1
-2 0 -3 3

4 3 1 2

Solution: Expanding along first row, we have

|Al = a1lCll + 8.12C12 + a13013 + a-14(:14 = a11M11 - a12M12 + a13M13 - a14M14

-1 4 1 |3 4 1 3 -1 4
=(1))0 -3 3-2-2 -3 3+0+(1)-2 0 -3= 54—94+13=-27
3 1 2 |4 1 2 4 3 1
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Activity: Compute the determinant of A if:

1 35 1 5 0
a. A=|2 1 1 c. A=|2 4 -1
3 4 2 0 -2 0
5 -7 2 2 3 0 0O
0 3 0 -4 5 -2 00
b. A= d. A=
-5 -8 0 3 -8 3 1 0
0O 5 0 -6 4 -7 5 2

Note: 1. detl, =1, where | is an identity matrix of order n.

2. det A=The product of the diagonal elements, if A is a diagonal matrix or lower

triangular matrix or upper triangular matrix.

Exercise:
2 1 5
i i 2 -2 -a
1) Evaluate the following determinants: a) 5 _4 b) c)-3 4 -1
0 6 -1
1 2 3
2) LetA=|4 5 4|. Determine each of the following
3 21
a) the minor of az: b) the minor of a22  c) the cofactor of a2

d) the cofactor of a23  e) the cofactor of as».

Properties of Determinants
We now state some useful properties of determinants. These properties help a good deal in the
evaluation of determinants. We use the notations R; and C; to denote respectively the i-th row and

the j-th column of a determinant.
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Property 1: The value of a determinant remains unchanged if rows are changed into columns

and columns into rows. That is,

a;; d, a;; dy Ay

_ t
Ay Ay Ayl = |8, Ay dgy or det A=det A
Ay 43 Ay Q3 8, Ag

Property 2: If any two rows (or columns) of a determinant are interchanged, the value of the

determinant so obtained is the negative of the value of the original determinant. That is,

a, &, aj; a;, &, ag
Ay 8y Ay = —(8g Qg Aggl.
d; Qa3 Ag Ay Ay Ay

Remark: The notation Rj <> R; (Cj & Cj )is used to represent interchange of ith and jth row

(column).

Property 3: If any two rows (or columns) of a determinant are identical, the value of the

a; by ¢
determinant is zero. Thatis, [a; b; ¢1| = 0. Rz and R> are identical
a; by ¢

Property 4: If each element of a row (or column) of a determinant is multiplied by a constant Kk,
the value of the determinant so obtained is k times the value of the original determinant. That is,

aj; a2 413 dj; dip a3
kapy kapy kags| =k |ap; apy aps

az; azx  as3 az; azy ass

Remark: 1. The notation Rj =k R;(Cj — KkC;j )is used to represent multiplication of each
element of ith row (column) by the constant k.

2. det(kA) = k" det A, where k is any real number and A is an nxn matrix.
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Property 5: If to the elements of a row (or column) of a determinant are added k times the
elements of another row (or column), the value of the determinant so obtained is equal to the

value of the original determinant. That is,

aj; aj;p a3 aj; +kazy ajp +kazy ajz+kagg
dpy Qdpp A3l = azy an? azs
dz; 4aszy 4ass azi azp ass

Property 6: If each element of a row (or column) of a determinant is the sum of two elements,

the determinant can be expressed as the sum of two determinants. That is,

ajg ajp ajis dj; agp a3 (A1 4z 13
az; azp azs = (@1 Qdpp Aapz|t|@p1 adr2 Qa3
azp +b; agy+by azz+bs azp agp agz| |by by b3

Property 7: If a row or a column of a square matrix is zero then the determinant is zero.
Property 8: The determinant of a triangular matrix is the product of the diagonal elements.

1 18 72

Example: Find the value of the determinant |A/=|2 40 148
3 45 150

Solution: By applying various properties of determinants, we make maximum number of zeros

in a row or a column. We shall make maximum number of zeros in Ci. Performing the

operations R, — R, —2R; and Ry = R, — 2R, (property 5),

1 18 72
4 4
A= 4 4:‘ 6‘:24-36:-12
0 9 6

Activity: Evaluate the following determinants by using the properties listed above:
1 -3 1 =2

3 1 43 2 4 6 s e 1
a) 2 7 35 by 7 9 11 c) I
0 -4 5 1

1 3 17 8 10 12
-3 10 -6 8
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Product of two determinants

Theorem: The determinant of the product of two matrices of order n is the product of their
determinants. That is, |AB| = |A| |B|.

30 2 5 3 012 5
Example: Let A:{ } and B :{ } then |AB| :|A||B|=‘ H
4 1 1 4

4 11 4‘:(3)(3):9

Example: Let A and B be 3x3 matrix with det A =2 and det B = -3.
Find det (2ABY).
Solution: det(2AB') = 2° det Adet B' =8(2)(—3) = —48, since det B = det B'.

2.5 Inverse of a matrix and its properties

Adjoint of a matrix
Definition: Let A = (a;;) be a square matrix of order n and let Cjj be the cofactor of ajj. Then the

ad joint of A, denoted by adj A, is defined as the transpose of the cofactor matrix (Cj).

Let C=(c; j)nxn be cofactor matrix then adjA=C* = (c; ,—)an = (Cji)nxn

1 2 3
Example: Findadj A, if A=|-1 0 1
4 3 2

Solution: We have C11=-3, C12=6, C13= -3, C21=5, C22=-10, C23=5, C31=2,C32=-4, C33=2.

-3 5 2
Thus, adj A=| 6 -10 -4/|.
-3 5 2
1 5 0
Activity: Findadj Aif A=12 4 -1
0 -2 0

Properties of the Adjoint of a matrix
1. If Aisasquare matrix of order n, then
A(adj A) = |A| In = (adj A)A, where In is an identity matrix of order n.
2. If Alis a square matrix of order n, then adj (A') = (adjA)’

3. If Aand B are two square matrices of the same order, then

61



adj(AB) = adj(B) adj (A).

2 13
Example: IfA=| 2 0 1|, verify that A(adjA) =|A| Iz = (adjA)A
-4 5 6

Solution: We have |A| = 2(-5)-1(12+4)+3(10) =-10-16 +30=4
Now C11=-5, C12=-16, C13=10, Co1 = 9, C22=24, C23=-14, C31=1, C32=4, C33=-2.

-5 9 1
Therefore, adj A=|-16 24 4
10 -14 -2

2 1 3][-5 9 1 4
Hence A(adjA)=| 2 0 1(|-16 24 4 |= |0
~4 5 6|10 -14 -2| |0

o ~ O
A~ O O
Il
N
o O -
o - O

0
0|=|All3
1

Similarly, it can be proved that (adjA)A=|All3

Definition: Let A be a square matrix of order n. Then a square matrices B of order n, if it exists,
is called an inverse of A if AB = BA = In. A matrix A having an inverse is called an invertible
(non-singular) matrix. It may easily be seen that if a matrix A is invertible, its inverse is
unique. The inverse of an invertible matrix A is denoted by A™.

Does every square matrix possess an inverse? The answer is No

0 0
Let A= {0 O}' If B is any square matrix of order 2, we find that AB = BA = 0.

We thus see that there cannot be any matrix B for which AB and BA both are equal to l2.

Therefore A is not invertible. Hence, we conclude that a square matrix may not to have an

inverse. However, if A is a square matrix such that|Al = 0, then A is invertible and

ATl = ﬁadj A. For, we know that A(adjA) = (adiA)A=|A I,
1 . 1 . . . 11 .
A{—adJAJ = (—ade]A = I,. Thus Alis invertibleand A"~ =—adjA.
A A A

A square matrix A is said to be singular (not invertible) if| A/=0, and it is called non-singular

(invertible) if |A/=0.
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6 7 -1
Example: Find Aif the matrix A=|{3 A4 5 |has no inverse.
9 11 2
Solution: 6(A* —55)—7(34—45)—(33-94) =0
> 1°-21-8=0
> (A-2)(A-4)=0
> A=20r 1=4

3 1 2
Example: If A=|2 -3 —1| then |[N=3(-3+2)-1(2+1)+2(4+3)=8
1 2 1

Since |Al =0, A is non-singular or invertible.

Activity: Find AL,

2 0 O
Further,ifB=|3 -1 4 |then|B|=0and it is singular.
5 -2 8

. ) ) . 1
Note: If A is an invertible nxn matrix, then AA™* = I, and det A = m, where det A=0.

Properties of the inverse of a matrix
1. A square matrix is invertible if and only if it is non-singular.
2. The inverse of the inverse is the original matrix itself, i.e. (A_l )_1 = A)
3. The inverse of the transpose of a matrix is the transpose of its inverse, i.e.,
O
4. If A and B are two invertible matrices of the same order, then AB is also invertible and

moreover, (AB)" = BA™

4 -2 1
Example: Find the inverse of the matrix A=|7 3 3].
2 0 1
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Solution: |A/=(4)(3)—(-2)(1)+1(—6)=8=0. Thus A7l exists and is given by

_ 1
A

column of |A|. Thus C11=3, C12 = -1, C13=-6, C21 = 2, C22=2, C23=-4, C31=-9 C3=-5 and Cz3 =26.

AL adjA. To find adjA, let Cj; denote the cofactor of aj; the element in the ith row and jth

3 2 -9 . . 3 2 -9
adj A=| -1 2 -5/|.Hence A_l=wadj A=2|-1 2 -5
-6 -4 16 -6 -4 16
b 1
a
Activity: 1. Find the inverse of A, if DA:L d} i) A=|-1 2 2
0

. . 3 4 2 8
2. Find matrix A such that A = )
6 2 9 4

3.1f AX =b thenX = A™b. (True/False)
2.6 System of Linear equations

Definition: A linear equation in the variables X, X,,...,X, over the real field Ris an
equation that can be written in the form a,x, +a,x, +...+a,X, =b.......... (1),where b and the

coefficients a,,a,,...,a,are given real numbers.

Definition: A system of linear equations (or a linear system) is a collection of one or more

linear equations involving the same variables, say X;, X,,..., X, .
Now consider a system of m linear equations in n-unknowns X, X,,..., X, :

a; X, +a,X, +..+a, X, =b
A, X, +8,,X, +...+8,, X, =b,

2n*n

)

X, +8,,,X, +..+8,, X, =b
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If b, =b, =...=b, =0 then we say that the system is homogeneous. If b, # 0 for some

1e{1,2,3, ..., m} then the system is called non homogeneous.

Matrix Form of a Linear System

In matrix notation, the linear system (2) can be written as AX = B where

a, a, .. a X, b,
a21 a22 a2n X2 2
A= , X=| | and B=
_aml am2 arm _ _Xn_ _bm_

We call A the coefficient matrix of the system (2).

Observe that entries of the k-th column of A are the coefficients of the variable x, in (2).

The mx (n+1) matrix whose first n columns are the columns of A (the coefficient matrix) and

whose last column is B is called the augmented matrix of the system. We denote it by [A|B].
The augmented matrix determines the system (2) completely because it contains all the

coefficients and the constants to the right side of each equation in the system.
For example for the non homogeneous linear system

X, +3X, = X3 =2
X, —2X; =4 (3)
—2X, —3X, —=3X, =5

1 3 -1 1 3 -1 2
The matrix A=| 0 1 -2 is the coefficient matrix and 0 1 -2 4lis the
-2 -3 -3 -2 -3 -3 5

augmented matrix.

Definition: A solution of a linear system in n-unknowns X, X,,...,X, is an n-tuple (s,s,,...,S,)

of real numbers that makes each of the equations in the system a true statement when s; is
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substituted for xi, i = 1,2, ..., n. The set of all possible solutions is called the solution set of the

linear system. We say that two linear systems are equivalent if they have the same solution set.
Note: A system of linear equations has either

1. no solution,this case happnes if rank(A)< rank([A|B]).
2. exactly one solution,if rank(A)= rank([A|B]) =number of unknowns or
3. Infinitely many solutions if rank(A)= rank([A|B]) <number of unknowns.
We say that a linear system is consistent if it has either one solution or infinitely many solutions;

a system is inconsistent if it has no solution.
Methods for solving a linear system

This is the process of finding the solutions of a linear system. We first see the technique of
elimination (Gaussian elimination method) and then we add two more techniques, matrix

inversion method and Cramer’s rule.
Gaussian Elimination Method

The Gaussian elimination method is a standard method for solving linear systems. It applies to
any system, no matter whether m < n, m = n or m > n (where m and n are number of equations
and variables respectively). We know that equivalent linear systems have the same solutions.
Thus the basic strategy in this method is to replace a given system with an equivalent system,

which is easier to solve.

The basic operations that are used to produce an equivalent system of linear equations are the

following:

1. Replace one equation by the sum of itself and a multiple of another equation.
2. Interchange two equations
3. Multiply all the terms in an equation by a non zero constant.

Example: Using Gaussian elimination method, solve the system of equations

X, +3X, = X; =2
X, —=2X; =4
—2X; —3X, —=3X; =5
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Solution: We perform the elimination procedure with and without matrix notation of the system.

For each step we put the resulting system and its augmented matrix side by side for comparison:

X, +3X, = X; =2 1 3 -1 2
X2_2X3:4 O 1 -2 4
—2X,; —3X, =3X; =5 -2 -3 -3 5

We keep x1 in the first equation and eliminate it from the other equations. For this replace the
third equation by the sum of itself and two times equation 1.

2Jeq.1]: 2%, +6x, -2x, =4

+[eq.3]:  —2x,-3x,-3x,=5

[Neweq.3] 3X, =5X; =9

We write the new equation in place of the original third equation:

X, +3X, = X3 =2 1 3 -1 2
X, —2X; =4 Rs &»Rs+2R1 |0 1 -2 4
3X, —5X, =9 "~ |03 -5 9

Next use the Xz in equation 2 to eliminate 3x; in equation 3.

—-3]eq.2]: —3X, +6X; =-12
+1eq.3): 3X, —=5X; =5
[Neweq.3] Xy, =-3

The resulting equivalent system is:

X, +3X, = X; =2 1 3 -1 2
X, —2X; =4 R; —»Rs—3R, (0 1 -2 4
X, = -3 00 1 -3

Now we eliminate the —2x3 term form equation 2. For this we use X3 in equation 3.

2.eq9.3|: 2X, =—6
+1eq.2]: X, —2X; =4
[Neweq.3] Xy =-3
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From this we get

X, +3X, = X; =2 1 3 -1 2
X, =-2 Rz &»R;+2Rs |0 1 0 -2
X, =—3 oo 1 -3

Again by using the x3 term in equation 3, we eliminate the —xs term in equation 1.

1]eq.3]: Xy =3
+[eq.1]: X, +3X, — X; =2
[Neweq.1] X; +3X, =-1

Thus we get the system

X, +3x, =-1 1 30 -1
X, =-2 R1—» R1+R3 10010 -2
X, = -3 1001 -3

Finally, we eliminate the 3x, term in equation 1. We use the X, term in equation 2 to eliminate
the 3x, term above it.

~3Jeq.2]: ~-3x, =6
+[eq.1]: X, +3X, =2

[Neweq.1] X, =5

So we have an equivalent system (to the original system) that is easier to solve.

i 100 5
X2 = Ri—> R;-3R, |0 1 0 -2
% = “lo 01 -3

Thus the system has only one solution, namely (5, -2, -3) or X, =5,X, =—-2,X,; =—-3. To verify

that (5, -2, -3) is a solution, substitute these values in to the left side of the original system, and

compute:
5+3(2)-(-3)=5-6+3=2
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-2-2(-3)=-2+6=4
-2(5)-3(-2)- 3(-3)=-10+6+9=5
It is a solution, as it satisfies all the equation in the given system (3).

The example above illustrates how operations in a linear system correspond to operations on the
appropriate rows of the augmented matrix. The three basic operations listed earlier correspond to
the three elementary row operations on the augmented matrix.

Let us see how elementary row operations on the augmented matrix of a given linear system can
be used to determine a solution of the system. Suppose a system of linear equations is changed to
a new one via row operations on its augmented matrix. By considering each type of row
operation it is easy to see that any solution of the original system remains a solution of the new

system.

Conversely, since the original system can be produced via row operations on the new system,
each solution of the new system is also a solution of the original system. From this we have the

following important property.

e |If the augmented matrices of two linear systems are row equivalent, then the two systems
have the same solution set.

Thus to solve a linear system by elimination we first perform appropriate row operations on the
augmented matrix of the system to obtain the augmented matrix of an equivalent linear system
which is easier to solve and use back substitution on the resulting new system. This method can
also be used to answer questions about existence and uniqueness of a solution whenever there is
no need to solve the system completely.

In Gaussian elimination method we either transform the augmented matrix to an echelon matrix
or a reduced echelon matrix. That is we either find an echelon form or the reduced echelon form
of the augmented matrix of the system. An echelon form of the augmented matrix enables us to

answer the following two fundamental questions about solutions of a linear system. These are:

1. Is the system consistent; that is, does at least one solution exists?

2. Ifasolution exists, is it the only one; that is, is the solution unique?
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Example: Determine if the following system is consistent. If so how many solutions does it

have?
X, =X, +X; =3
X, +5X, —=5X; =2
2X, + X, =X, =1
1 -1 1 3
Solution: The augmented matrixis A=|{1 5 -5 2
2 1 -11

Let us perform a finite sequence of elementary row operations on the augmented matrix.

1 -1 1 8] poppr [L-11 3] o, om
[AB]=|1 5 -5 2 >0 6 -6 -1 N
2 1 -1 1 2 1 -1 1

1 -1 1 3] gotpeR |1 -1 1 3
0 6 -6 -1 > |0 6 -6 -1
0 3 -3 -5 0 0 0 —%

The corresponding linear system of the last matrix is

X, =X, +X; = 3

6X, —6x, =-1 ™
i
2

. -9 . .
But the last equation 0.X, +0.X, +0.X; = - IS never true. That is there are no values X, X,, X,

that satisfy the new system (*). Since (*) and the original linear system have the same solution

set, the original system is inconsistent (has no solution)
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Example: Use Gaussian elimination to solve the linear system

2X — Yy + 2 = 2
-2X+ Yy +z2 =4
6x — 3y — 2z =-9

Solution: The augmented matrix of the given system is

2 -1 1 2
AB]=[-2 1 1 4
6 -3 -2 -9

Let us find an echelon form of the augmented matrix first. From this we can determine whether
the system is consistent or not. If it is consistent we go ahead to obtain the reduced echelon form

of [A|B] , which enable us to describe explicitly all the solutions.

2 -1 1 2 R~R.-R, 2 -1 1 2 R>—3RiR.
-2 1 1 4|—>0 0 2 6 >
' 6 -3 -2 -9 6 -3 -2 -9

2 -1 1 2] RolRem, [2 L

00 2 6 0 0 R:2aR.
0 0 -5 -15 0 0 0

2 -11 2 [2—10—1 .
0 1 3 R~>—R,*R, . 00 1 3 Ri~>5R.

0 0 0 0 0 0 0

The associated linear system to the reduced echelon form of [A|B] is
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The third equation is Ox + Oy + 0z = 0. It is not an inconsistency, it is always true whatever

values we take for x, y, z.

The system is consistent and if we assign any value A for y in the first equation, we get

X =3 + 1+ 4. From the second we have z = 3. Thusx = 3+ + 34,y = A and z = 3 is the

solution of the given system, where A is any real number. There are an infinite number of

solutions, for example,
X=5,y=0,2=3
x=0,y=1,z=3 andsoon.

In vector form the general solution of the given system is of the form (3 +34,4,3) , where 4

eR.

Cramer’s rule
Suppose we have to solve a system of n linear equations in n unknowns Ax = b. Let Ai(b) be the
matrix obtained from A by replacing column i by the vector b and Ak be the k-th column vector

of matrix A.
A;Bi=1a" & ..ob LAY

COlLm |

Now let e1, €2, . . . en be columns of the n x n identity matrix I and li(x) be the matrix obtained

from I by replacing column i by x.
If Ax = b then by using matrix multiplication we have
Alix)=Ale1 ... x ... en]=[Ae1 ... Ax ... Aen]

=[A' ... b ... A"=Aib)
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By the multiplicative property of determinants, (detA)(detli(x)) = det Ai(b)

The second determinant on the left is xi. (Make a cofactor expansion along the ith row.) Hence

det A, (b)

(det A). xi = det Ai(b). Therefore if detA # 0 then we have x; = A
e

This method for finding the solutions of n linear equations in n unknowns is known as Cramer’s
Rule.

Example: Solve the following system of linear equations by Cramer’s Rule.

2X; — X, + X3 =6
X, +4X, —2X; =—-4
X, +X3=7

Solution: Matrix form of the given systemis Ax = b

2-11 X, 6
where A =|1 4 -2| x=|X, and b=|-4
30 1 X, 7
By Cramer’s Rule, X; = w (i=12, 3
detA
2 -1 1
detA =1 4 -2 =3
3 0 1
6 -1 1 2 6 1
-4 4 -2 1 -4 -2
7 1 7 1| -
_ detAl(b)= 0 =§=2 x =detA2(b)=3 :_3:_1 and
det A 2 3 det A 2 3
1 6
1 4 -4
detAz(b) |3 0O 7| 3
X3 = = =—=1
det A 2 3
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Example: Solve the following system of linear equations by Cramer’s Rule.

2X, + X, =7
—3X, + 2X;, = -8
X, + 2X; = =3

Solution: Matrix form of the given systemis Ax = b where

2 10 X, 7
A=|-3 0 1| x=|Xx, and b=-8
0 1 2 X -3
By Cramer’s Rule, X; = det A, (b) (i=12, 3
det A
2 10
detA=-3 0 1 = 4
0 2
7 1 0 2 7 0
-8 0 1 -3 -8 1
_detA() -3 1 2 6 3 L _deta® |0 -3 2 16 _,
Yo detA 4 42 CTPT detA 4 4
2 1 7
-3 0 -8
CdetA(b) [0 1 -3 —14 -7
7 detA 4 42

and

Remark: For the non homogeneous systtemAx = b, if det A =0, then the Cramer’s

rule does not give any information whether or not the system has a solution.

Inverse matrix method

Consider the following linear system with n-equations in n-unknowns xi, X2, X3, ..., Xn;

arxXi+ arXot ... + amxn=b1
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A21X1+ Az2Xot ... + AonXn= b2

................................................ *)

aniX1+tan2Xo+... +anan:bn .

The matrix notation of the given linear system (*) iS AX = B ... ... .. e oo o oo . (¥%), Where,
_all a12 aln_ _Xl_ _bl_
a‘21 a22 a'2n X2 2
A=| , X=| |andB=
_an an2 ann_ _Xn_ _bn_

Now, to solve equation (*) the coefficient matrix (A) must be invertible and we multiply eqn(**)

both sides by A~ to get

which is the required solution of (*).

Solve the given system of equations using the inverse of a matrix.
3z +8y=>5
4 11y =7
Example: =+ My
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SOLUTION

Write the system in terms of a coefficient matrix, a variable matrix, and a constant matrix.

a=[3 5] x=3]=-[5]
] [v]-]7]

First, we need to calculate A_1. Using the formula to calculate the inverse of a 2 by 2 matrix, we have:

—1 o 1 d _b
4= = [—c a ]
_ 11 -8
Toa1)-84) | —4 3
{11 —8]
—4 3
4_| N -8
=[5 3]
Now we are ready to solve. Multiply both sides of the equation by A™".
(a')ax=(a")B
[ 11 —8} {3 8] {m} [11 —8] [5]
4 11] ly] [-4 3] |7
1 0 11(5) +
101 —4(5) +3{'?]

[

Then

|—'|»—'

So,

The solution is (—1,1).
Example:

Use matrix inversion to solve the following linear system.

211’1—'—3.?32 —|—:I?3: 1
T+ 219 = —2
33'3:3
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Solution: The coefficient matrix A, the column vector b and the inverse A~!, respectively,
are given by

—
]
o oW
o
1
-~

Now, the unique solution of the given linear system from eqn(***) is

7 2 -3 21 T1 2
|l =ATh=|-1 2 1| ]|=2]=1]0
I3 0 0 1 3 3

2.7 Eigenvalues and Eigenvectors of a matrix

Definition: Let A be an nxn matrix. A scalar A in is said to be an eigenvalue of A iff there isa

non-zero vector X suchthat AX = AX ..o (*)

If A is an eigenvalue of A then any vector satisfying (*) is called an eigenvector of A

corresponding to A.
How to determine the Eigenvalues and corresponding Eigenvectors of a Matrix?

X is an eigenvector with eigenvalue A << AX = AX <S(A-Aln) X = 0...(*%)

a4 Ay - a, | X 0
ay  Ap—A .. . Ay, X 0
or ' ' - . =
L Ay a,, a,, _/1_ X, 0
X = 0 i the trivial solution of (**). Further solutions will exist iff [A— Al | = 0.
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Hence, solving the equation ‘A - Al n‘ = 0 gives the eigenvalue(s) of A.

For each eigenvalue A, the corresponding eigenvector is found by substituting A back into the

equation |A — Al | X = 0.
Note: i) The polynomial ‘A — Al ‘ is called the characteristic polynomial of A.

ii) The equation ‘A — Al n‘ = 0 is called the characteristic equation.

16

Example: Let o _
5 2

}. Find the eigenvalues and the corresponding eignvectors of A.

1 6 10
Solution: ‘A—MZ‘ = 0o ‘{5 2} - A {O J =0
o -4 0 =0 AF-31-28 =0
5 2-1

=S A =7T0or A =-4

The corresponding eigenvectors can now be found as follow:

Fora. = 7: (A-TI)X =0 Hé ﬂ ‘7{3 m m: m
=[5 L= -

1
Hence, any vector of the type BL} , Where B is any real number, is an eigenvector corresponding

to the eigenvalue 7.

e awene o [[2 5ol 3] [
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1
Hence, any vector of the type ﬂ[__s}, where B is any real number, is an eigenvector
6

corresponding to the eigenvalue -4.

Note: If X is an eigenvector with eigenvalue A, aX is also an eigenvector with the same

eigenvalue, where o is a non-zero scalar.
The following theorem summarizes our results so far.
Theorem: If A is an n x n matrix, then the following statements are equivalent:

1) A is an eigenvalue of A.
i) There is a non-zero vector X € K" such that AX = AX.
iii) The system of equations (A - L)X = 0 has non-trivial solutions.

iv) A is a solution of the characteristic equation det (A - Al) in K.

3 -2 0
Example:Let o _ | _, 3 . Find the eigenvalues and the corresponding eignvectors of A.
0 0 5
3-14 =2 0
Solution: Characteristic equationof A: | _» 3_, o | = 0o
0 0 5-1

& B-)E-1)G-2)-45-21)=0
& [B-2)2-4(G-21)=0
& (W -6L+5) (A-5) =0
& (-1 (L -52=0
So, eigenvalues of Aare: A = 1 and 2 = 5.
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To find the corresponding eigenvectors, we substitute the values of A in the equation

3-4 =2 0 X 0
(A-A)X = 0. Thatis,| —2 3-41 0 y| = |0 *)
0 0 5-2 z 0
2 -2 0] [x 0
For A = 1,(*) becomes: | _, 5> g vyl = [o|® X =Yy z = 0

Thus, the eigenvectors corresponding to eigenvalue 1 are vectors of the form:

X 1
X=| x|=X| 1| for any x in the set of real numbers.
0 0
-2 =2 0] |x 0
Forh = 5,(*) becomes: |—2 —2 0of |y| = |0]|& X ==y
0 0O 0| ]z 0

Thus, eigenvectors of A corresponding to eigenvalues 5 are vectors of the form.

X X 0 1 0
X = |-x| = |=x!| + lol =x |=1| 4+ z| o] foranyxandzinthe set of real
z 0 z 0 1

numbers.
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